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Abstract

It is a task of widespread interest to learn the underlying causal structure for systems
of random variables. Entropic Causal Inference is a recent framework for learning the
causal graph between two variables from observational data (i.e., without experiments)
by finding the information-theoretically simplest structural explanation of the data.
In this thesis, we develop theoretical techniques that enable us to show how Entropic
Causal Inference permits learnability of causal graphs with particular information-
theoretically simple structure. We show the first theoretical guarantee for finite-sample
learnability with Entropic Causal Inference for pairs of random variables. Later, we
extend this guarantee to show the first result for Entropic Causal Inference in systems
with more than two variables: proving learnability of general directed acyclic graphs
over many variables (under assumptions on the generative process). We implement
and experimentally evaluate Entropic Causal Inference on synthetic and real-world
causal systems. Moreover, we improve the best-known approximation guarantee for the
Minimum Entropy Coupling problem. This information-theoretic algorithmic problem
has direct relevance to Entropic Causal Inference and is also of independent interest.
In totality, this thesis develops algorithmic and information-theoretic tools that shed
light on how information-theoretic properties enable learning of causal graphs from
both a practical and theoretical perspective.
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Chapter 1

Introduction

Very often, random variables in a system have relationships with each other (i.e., they

are not independent). Such relationships can take many forms. For example, variables

can be correlated. Correlation enables us to conclude statements such as “Smoking is

positively correlated with lung cancer.” However, correlation alone does not enable us

to claim smoking causes cancer. Learning causal relationships enables counterfactual

reasoning such as claiming “If I make this person not smoke, they will be less likely to

have lung cancer.” Here, knowing the causal relationships between variables enabled

us to predict how interventions to a system would affect it.

More generally, learning causal relationships in a system enables higher quality

decision-making. While we mentioned an example with just two random variables,

it is of greater interest to learn causal structure in more complex systems with more

random variables. In the study of graphical models, we can encode the causal structure

of a system with a directed acyclic graph called the causal graph. In the causal graph,

nodes represent random variables and edges represent relationships between said

random variables. The task of identifying the true causal graph of a system is called

causal graph discovery.

Of course, causal graph discovery relies on the assumptions we make on how

the system is generated. Without any assumptions, a joint distribution of a system

alone cannot completely inform us about the system’s underlying causal mechanism.

Yet, with some assumptions, we can begin to make inferences about systems’ causal

17



mechanisms. The gold-standard for learning causal graphs is to perform interventions

(i.e., experiments). This is analogous to running randomized control experiments on

smoking to identify its causal effect on lung cancer. However, in many real-world

settings it is impossible or undesirable to perform such interventions (e.g., it would be

unethical to perform an intervention to force an individual to smoke). In these cases,

we must perform causal graph discovery with only observational data. In this body of

work, we investigate information-theoretic structure where the true causal graph is

identifiable from only observational data and providing provable algorithms to do so.

In Chapter 2, we study Entropic Causal Inference in the setting of pairs of variables.

We consider causal relationships between two variables where one variable is a function

of the other with low-entropy randomness (and more technical assumptions). In joint

work (published as [12]) with Murat Kocaoglu, Kristjan Greenewald, and Dmitriy

Katz, we show the first finite-sample identifiability result for Entropic Causal Inference

and experimentally evaluate the approach.

In Chapter 3, we study Entropic Causal Inference in the setting of systems with

many variables. We consider systems of causal relationships over many variables. In

joint work with Murat Kocaoglu, Kristjan Greenewald, and Dmitriy Katz, we show the

first result for Entropic Causal Inference beyond the pairwise setting. In particular, we

show learnability of the underlying causal graph when variables are functions of their

parents and low-entropy randomness (and more technical assumptions). Additionally,

we experimentally evaluate this approach for learning causal graphs of real-world and

synthetic systems.

In Chapter 4, we study Minimum Entropy Coupling, an algorithmic information-

theory problem that is a key subroutine for Entropic Causal Inference, and is also of

independent interest. We design a novel algorithmic analysis that improves the best-

known polynomial-time additive-approximation guarantee to within log2(𝑒) ≈ 1.44

bits of the optimal.

At a high level, this body of work studies information-theoretically “simple” rela-

tionships between variables. The key results shown in Chapters 2 and 3 shed insight

into how (under particular assumptions), simplicity in relationships between variables

18



enables us to learn underlying causal structure that would otherwise be impossible to

ascertain. Similar to how humans often use principles like Occam’s razor to evaluate

explanations, this work studies “Under what conditions is the true generative model

the most information-theoretically simplest way to produce a distribution?” With a

particular information-theoretic notion of simplicity in mind, the Minimum Entropy

Coupling problem studied in Chapter 4 corresponds to solving the problem of fitting

the simplest explanation to a causal graph. In totality, this body of work aims to

build information-theoretic and algorithmic techniques, and to provide insight into

learning causal structure with information-theoretic properties.

19
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Chapter 2

Entropic Causal Inference:

Identifiability and Finite Sample

Results

2.1 Overview

In this chapter, we detail joint work with Murat Kocaoglu, Kristjan Greenewald, and

Dmitriy Katz.

Entropic causal inference is a framework for inferring the causal direction between

two categorical variables from observational data. The central assumption is that the

amount of unobserved randomness in the system is not too large. This unobserved

randomness is measured by the entropy of the exogenous variable in the underlying

structural causal model, which governs the causal relation between the observed

variables. [30] conjectured that the causal direction is identifiable when the entropy

of the exogenous variable is not too large. In this paper, we prove a variant of their

conjecture. Namely, we show that for almost all causal models where the exogenous

variable has entropy that does not scale with the number of states of the observed

variables, the causal direction is identifiable from observational data. We also consider

the minimum entropy coupling-based algorithmic approach presented by [30], and for
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the first time demonstrate algorithmic identifiability guarantees using a finite number

of samples. We conduct extensive experiments to evaluate the robustness of the

method to relaxing some of the assumptions in our theory and demonstrate that both

the constant-entropy exogenous variable and the no latent confounder assumptions can

be relaxed in practice. We also empirically characterize the number of observational

samples needed for causal identification. Finally, we apply the algorithm on Tübingen

cause-effect pairs dataset.

2.2 Introduction

Understanding causal mechanisms is essential in many fields of science and engineering

[56,63]. Distinguishing causes from effects allows us to obtain a causal model of the

environment, which is critical for informed policy decisions [48]. Causal inference has

been recently utilized in several machine learning applications, e.g., to explain the

decisions of a classifier [1], to design fair classifiers that mitigate dataset bias [28, 68]

and to construct classifiers that generalize [62].

Consider a system that we observe through a set of random variables. For example,

to monitor the state of a classroom, we might measure temperature, humidity and

atmospheric pressure in the room. These measurements are random variables which

come about due to the workings of the underlying system, the physical world. Changes

in one are expected to cause changes in the other, e.g., decreasing the temperature

might reduce the atmospheric pressure and increase humidity. As long as there

are no feedback loops, we can represent the set of causal relations between these

variables using a directed acyclic graph (DAG). This is called the causal graph of the

system. Pearl and others showed that knowing the causal graph enables us to answer

many causal questions such as, “What will happen if I increase the temperature of the

room?” [48].

Therefore, for causal inference, knowing the underlying causal structure is crucial.

Even though the causal structure can be learned from experimental data, in many

tasks in machine learning, we only have access to a dataset and do not have the

22
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Figure 2-1: Intuition behind the entropic causality framework. (a) Most deterministic
maps would be non-deterministic in the opposite direction, requiring non-zero addi-
tional randomness. (b) Entropic causality relaxes the deterministic map assumption
to a map that needs low-entropy, and demonstrates that, most of the time, the reverse
direction needs more entropy than the true direction.

means to perform these experiments. In this case, observational data can be used for

learning some causal relations. There are several algorithms in the literature for this

task, which can be roughly divided into three classes: Constraint-based methods and

score-based methods use conditional independence statements and likelihood function,

respectively, to output (a member of) the equivalence class. An equivalence class of

causal graphs are those that cannot be distinguished by the given data. The third

class of algorithms impose additional assumptions about the underlying system or

about the relations between the observed variables. Most of the literature focus on

the special case of two observed variables 𝑋, 𝑌 and to understand whether 𝑋 causes

𝑌 or 𝑌 causes 𝑋 under different assumptions. Constraint or score-based methods

cannot answer this question simply because observed data is not sufficient without

further assumptions. In this work, we focus on the special case of two categorical

variables. Even though the literature is more established in the ordinal setting, few

results exist when the observed variables are categorical. The main reason is that, for

categorical data, numerical values of variables do not carry any meaning; whereas in

continuous data one can use assumptions such as smoothness or additivity [20].

We first start with a strong assumption. Suppose that the system is deterministic.

This means that, even though observed variables contain randomness, the system has

no additional randomness. When 𝑋 causes 𝑌 , this assumption implies that 𝑌 = 𝑓(𝑋)
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for some deterministic map 𝑓(.). Consider the example in Figure 2-1. Since there is

no additional randomness, each value of 𝑋 is mapped to a single value of 𝑌 . What

happens if we did not know the causal direction and tried to fit a function in the

wrong direction as 𝑋 = 𝑔(𝑌 ). Unlike 𝑓 , 𝑔 has to be one-to-many: 𝑌 = 2 is mapped to

three different value of 𝑋. Therefore, it is impossible to find a deterministic function

in the wrong causal direction for this system. In fact, it is easy to show that most of

the functions have this property: If 𝑋, 𝑌 each has 𝑛 ≥ 7 states, all but 2−𝑛 fraction

of models can be identified.

Although there might be systems where determinism holds such as in traditional

computer software, this assumption in general is too strict. Then how much can we

relax this assumption and still identify if 𝑋 causes 𝑌 or 𝑌 causes 𝑋? In general, we

can represent a system as 𝑌 = 𝑓(𝑋,𝐸) where 𝐸 captures the additional randomness.

To quantify this amount of relaxation, we use the entropy of the additional randomness

in the structural equation, i.e., 𝐻(𝐸). For deterministic systems, 𝐻(𝐸) = 0. This

question was posed as a conjecture in [30], within the entropic causal inference

framework.

We provide the first result in resolving this question. Specifically, we show that

the causal direction is still identifiable for any 𝐸 with constant entropy. Our usage of

“constant” is relative to the support size 𝑛 of the observed variables (note 0 ≤ 𝐻(𝑋) ≤

log(𝑛)). This establishes a version of Kocaoglu’s conjecture.

A practical question is how much noise can the entropic causality framework

handle: do we always need the additional randomness to not scale with 𝑛? Through

experiments, we demonstrate that, in fact, we can relax this constraint much further.

If 𝐻(𝐸) ≈ 𝛼 log(𝑛), we show that in the wrong causal direction we need entropy of at

least 𝛽 log(𝑛) for 𝛽 > 𝛼. This establishes that entropic causal inference is robust to

the entropy of noise and for most models, reverse direction will require larger entropy.

We finally demonstrate our claims on the benchmark Tübingen dataset.

We also provide the first finite-sample analysis and provide bounds on the number

of samples needed in practice. This requires showing finite sample bounds for the

minimum entropy coupling problem, which might be of independent interest. The
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following is a summary of our contributions.

• We prove the first identifiability result for the entropic causal inference framework

using Shannon entropy and show that for most models, the causal direction

between two variables is identifiable, if the amount of exogenous randomness

does not scale with 𝑛, where 𝑛 is the number of states of the observed variables.

• We obtain the first bounds on the number of samples needed to employ the

entropic causal inference framework. For this, we provide the first sample-bounds

for accurately solving the minimum entropy coupling problem in practice, which

might be of independent interest.

• We show through synthetic experiments that our bounds are loose and entropic

causal inference can be used even when the exogenous entropy scales with

𝛼 log(𝑛) for 𝛼<1.

• We employ the framework on Tübingen data to establish its performance. We

also conduct experiments to demonstrate robustness of the method to latent

confounders, robustness to asymmetric support size, i.e., when 𝑋, 𝑌 have very

different number of states, and finally establish the number of samples needed

in practice.

Notation: We will assume, without loss of generality, that if a variable has 𝑛 states,

its domain is [𝑛] := {1, 2, . . . , 𝑛}. 𝑝(𝑥) is short for 𝑝(𝑋 = 𝑥). 𝑝(𝑌 |𝑥) is short for the

distribution of 𝑌 given 𝑋 = 𝑥. Simplex is short for probability simplex, which, in 𝑛

dimensions is the polytope defined as ∆𝑛 := {(𝑥𝑖)𝑖∈[𝑛] :
∑︀

𝑖 𝑥𝑖 = 1, 𝑥𝑖 ≥ 0,∀𝑖 ∈ [𝑛]}.

1{𝜀} is the indicator variable for event 𝜀. SCM is short for structural causal model and

refers to the functional relations between variables. For two variables where 𝑋 causes

𝑌 , the SCM is 𝑌 = 𝑓(𝑋,𝐸), 𝑋⊥⊥𝐸 for some variable 𝐸 and function 𝑓 .

2.3 Related Work

There are a variety of assumptions and accompanying methods for inferring the causal

relations between two observed variables [16,17,36,50,58]. For example, authors in [20]
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developed a framework to infer causal relations between two continuous variables if the

exogenous variables affect the observed variable additively. This is called the additive

noise model (ANM). Under the assumption that the functional relation is non-linear

they show identifiability results, i.e., for almost all models the causal direction between

two observed variables can be identified. This is typically done by testing independence

of the residual error terms from the regression variables. Interestingly in [34] authors

show that independence of regression residuals leads the total entropy in the true

direction to be smaller than the wrong direction, which can be used for identifiability

thereby arriving at the same idea we use in our paper.

A challenging setting for causal inference is the setting with discrete and categorical

variables, where the variable labels do not carry any specific meaning. For example,

Occupation can be mapped to discrete values {0, 1, 2, . . .} as well as to one-hot encoded

vectors. This renders methods which heavily rely on the variable values, such as

ANMs, unusable. While extensions of ANMs to the discrete setting exist, they still

utilize the variable values and are not robust to permuting the labels of the variables.

One related approach proposed in [24] is motivated by Occam’s razor and proposes

to use the Kolmogorov complexity to capture the complexity of the causal model,

and assume that the true direction is "simple". As Kolmogorov complexity is not

computable, the authors resort to a proxy, based on minimum description length.

Another line of work uses the idea that causes are independent from the causal

mechanisms, which is called the independence of cause and mechanism assumption.

The notion of independence should be formalized since comparison is between a random

variable and a functional relation. In [23, 25], authors propose using information

geometry within this framework to infer the causal direction in deterministic systems.

Specifically, they create a random variable using the functional relation based on

uniform distribution and utilize the hypothesis that this variable should be independent

from the cause distribution.
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2.4 Identifiability with Entropic Causality

Consider the problem of identifying the causal graph between two observed categorical

variables 𝑋, 𝑌 . We assume for simplicity that both have 𝑛 states, although this is not

necessary for the results. Similar to the most of the literature, we make the causal

sufficiency assumption, i.e., there are no latent confounders and also assume there is no

selection bias. Then without loss of generality, if 𝑋 causes 𝑌 , there is a deterministic

𝑓 and an exogenous (unmeasured) variable 𝐸 that is independent from 𝑋 such that

𝑌 = 𝑓(𝑋,𝐸), where 𝑋 ∼ 𝑝(𝑋) for some marginal distribution 𝑝(𝑋). Causal direction

tells us that, if we intervene on 𝑋 and set 𝑋 = 𝑥, we get 𝑌 = 𝑓(𝑥,𝐸) whereas if we

intervene on 𝑌 and set 𝑌 = 𝑦, we still get 𝑋 ∼ 𝑝(𝑋) since 𝑌 does not cause 𝑋.

Algorithms that identify causal direction from data introduce an assumption on

the model and show that this assumption does not hold in the wrong causal direction

in general. Hence, checking for this assumption enables them to identify the correct

causal direction. Entropic causality [30] also follows this recipe. They assume that

the entropy of the exogenous variable is bounded in the true causal direction. We first

present their relevant conjecture, then modify and prove as a theorem.

Conjecture 1 ( [30]). Consider the structural causal model 𝑌 = 𝑓(𝑋,𝐸), 𝑋 ∈ [𝑛], 𝑌 ∈

[𝑛], 𝐸 ∈ [𝑚] where 𝑝(𝑋), 𝑓, 𝑝(𝐸) are sampled as follows: Let 𝑝(𝑋) be sampled uniformly

randomly from the probability simplex in 𝑛 dimensions ∆𝑛, and 𝑝(𝐸) be sampled

uniformly randomly from the set of points in ∆𝑚 that satisfy 𝐻(𝐸) ≤ log(𝑛)+𝒪(1). Let

𝑓 be sampled uniformly randomly from all mappings 𝑓 : [𝑛]×[𝑚]→ [𝑛]. Then with high

probability, any �̃�⊥⊥𝑌 that satisfies 𝑋 = 𝑔(𝑌, �̃�) for some mapping 𝑔 : [𝑛]× [𝑚]→ [𝑛]

entails 𝐻(𝑋) +𝐻(𝐸) < 𝐻(𝑌 ) +𝐻(�̃�).

In words, the conjecture claims the following: Suppose 𝑋 causes 𝑌 with the SCM

𝑌 = 𝑓(𝑋,𝐸). Suppose the exogenous variable 𝐸 has entropy that is within an additive

constant of log(𝑛). Then, for most of such causal models, any SCM that generates

the same joint distribution in the wrong causal direction, i.e., 𝑌 causes 𝑋, requires a

larger amount of randomness than the true model. The implication would be that if

one can compute the smallest entropy SCM in both directions, then one can choose
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the direction that requires smaller entropy as the true causal direction.

We modify their conjecture in two primary ways. First, we assume that the

exogenous variable has constant entropy, i.e., 𝐻(𝐸) = 𝒪(1). Unlike the conjecture,

our result holds for any such 𝐸. Second, rather than the total entropy, we were able

to prove identifiability by only comparing the entropies of the simplest exogenous

variables in both directions 𝐻(𝐸) and 𝐻(�̃�).1 In Section 2.6, we demonstrate that

both criteria give similar performance in practice.

Our technical result requires the following assumption on 𝑝(𝑋), which, for constant

𝜌 and 𝑑 guarantees that a meaningful subset of the support of 𝑝(𝑋) is sufficiently

uniform. We will later show that this condition holds with high probability, if 𝑝(𝑋) is

sampled uniformly randomly from the simplex.

Assumption 1 ((𝜌, 𝑑)-uniformity). Let 𝑋 be a discrete variable with support [𝑛].

Then there exists a subset 𝑆 of size |𝑆| ≥ 𝑑𝑛, such that 𝑝(𝑋 = 𝑥) ∈ [ 1√
𝜌𝑛
,
√
𝜌

𝑛
],∀𝑥 ∈ 𝑆.

Our following theorem establishes that entropy in the wrong direction scales with

𝑛.

Theorem 1 (Entropic Identifiability). Consider the SCM 𝑌 = 𝑓(𝑋,𝐸), 𝑋⊥⊥𝐸, where

𝑋 ∈ [𝑛], 𝑌 ∈ [𝑛], 𝐸 ∈ [𝑚]. Suppose 𝐸 is any random variable with constant entropy,

i.e., 𝐻(𝐸) = 𝑐 = 𝒪(1). Let 𝑝(𝑋) satisfy Assumption 1(𝜌, 𝑑) for some constants

𝜌≥ 1, 𝑑>0. Let 𝑓 be sampled uniformly randomly from all mappings 𝑓 : [𝑛]×[𝑚]→

[𝑛]. Then, with high probability, any �̃� that satisfies 𝑋 = 𝑔(𝑌, �̃�), �̃�⊥⊥𝑌 for some

𝑔, entails 𝐻(�̃�) ≥ (1 − 𝑜(1)) log(log(𝑛)). Specifically, for any 0 < 𝑟 < 𝑞, 𝐻(�̃�) ≥(︁
1− 1+𝑟

1+𝑞

)︁
(0.5 log(log(𝑛))−log(1 + 𝑟)−𝒪(1)),∀𝑛≥𝜈(𝑟, 𝑞, 𝜌, 𝑐, 𝑑) for some 𝜈.

Theorem 1 shows that when 𝐻(𝐸) is a constant, under certain conditions on 𝑝(𝑋),

with high probability, the entropy of any causal model in the reverse direction will

be at least Ω(log(log(𝑛))). Specifically, if a constant fraction of the support of 𝑝(𝑋)

contains probabilities that are not too far from 1
𝑛
, our result holds. Note that with

1Entropy of the exogenous variable, or in the case of Conjecture 1 the entropy of the system, can
be seen as a way to model complexity and the method can be seen as an application of Occam’s
razor. In certain situations, especially for ordinal variables, it might be suitable to also consider the
complexity of the functions.
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high probability statement is induced by the uniform measure on 𝑓 , and it is relative

to 𝑛. In other words, Theorem 1 states that the fraction of non-identifiable causal

models goes to 0 as the number of states of the observed variables goes to infinity. If

a structure on the function is available in the form of a prior that is different from

uniform, this can potentially be incorporated in the analysis although we expect

calculations to become more tedious.

Through the parameters 𝑟, 𝑞 we obtain a more explicit trade-off between the

lower bound on entropy and how large 𝑛 should be for the result. 𝜈(𝑟, 𝑞, 𝜌, 𝑐, 𝑑) is

proportional to 𝑞 and inversely proportional to 𝑟. The explicit form of 𝜈 is given in

Proposition 1 in the supplement.

We next describe some settings where these conditions hold: We consider the cases

when 𝑝(𝑋) has bounded element ratio, 𝑝(𝑋) is uniformly randomly sampled from the

simplex, or 𝐻(𝑋) is large.

Corollary 1. Consider the SCM in Theorem 1. Let 𝐻(𝐸) = 𝑐 = 𝒪(1) and 𝑓 be

sampled uniformly randomly. Let 𝑝(𝑥) be such that either (𝑎) max𝑥 𝑝(𝑥)
min𝑥 𝑝(𝑥)

≤ 𝜌, or (𝑏)

𝑝(𝑥) is sampled uniformly randomly from the simplex ∆𝑛, or (𝑐) 𝑝(𝑋) is such that

𝐻(𝑋)≥ log(𝑛)−𝑎 for some 𝑎=𝒪(1).

Then, with high probability, any �̃� that satisfies 𝑋 = 𝑔(𝑌, �̃�), �̃�⊥⊥𝑌 for some

deterministic function 𝑔 entails 𝐻(�̃�) ≥ 0.25 log(log(𝑛))−𝒪(1). Thus, there exists

𝑛0 (a function of 𝜌, 𝑐) such that for all 𝑛 ≥ 𝑛0, the causal direction is identifiable with

high probability.

The proof is given in Section 2.9.1. Note that there is no restriction on the support

size of the exogenous variable 𝐸.

Proof Sketch of Theorem 1. The full proof can be found in Appendix 2.9.1.

1. Bound 𝐻(�̃�) via 𝐻(�̃�) ≥ 𝐻(𝑋|𝑌 = 𝑦),∀𝑦 ∈ [𝑛].

2. Characterize the sampling model of 𝑓 as a balls-and-bins game, where each

realization of 𝑌 corresponds to a particular bin, each combination (𝑋= 𝑖, 𝐸=𝑘)

corresponds to a ball.
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3. Identify a subset of “good" bins 𝒰 ⊆ [𝑚]. Roughly, a bin is “good" if it does not

contain a large mass from the balls other than the ones in {(𝑖, 1) : 𝑖 ∈ 𝑆}.

4. Show one of the bins in 𝒰 , say 𝑦 = 2, has many balls from {(𝑖, 1) : 𝑖 ∈ 𝑆}.

5. Bound the contribution of the most-probable state of 𝐸 to the distribution

𝑝(𝑋|𝑌 = 2).

6. Characterize the effect of the other states of 𝐸 and identify a support for 𝑋

contained in 𝑆 on which the conditional entropy can be bounded. Use this to

lower bound for 𝐻(𝑋|𝑌 = 2).

Conditional Entropy Criterion: From the proof of Proposition 1 in Appendix

2.9.1, we have 𝐻(�̃�)≥max𝑦 𝐻(𝑋|𝑌 =𝑦) ≥ (1− 𝑜(1)) log(log(𝑛)). Further, we have

max𝑥 𝐻(𝑌 |𝑋 = 𝑥) ≤ 𝐻(𝐸)≤ 𝑐=𝒪(1). Hence not only is 𝐻(�̃�)>𝐻(𝐸) for large

enough 𝑛, but max𝑦 𝐻(𝑋|𝑌 = 𝑦)>max𝑥𝐻(𝑌 |𝑋 =𝑥) as well. Therefore, under the

assumptions of Theorem 1, max𝑦 𝐻(𝑋|𝑌 =𝑦) and max𝑥𝐻(𝑌 |𝑋=𝑥) are sufficient to

identify the causal direction:

Corollary 2. Under the conditions of Theorem 1, we have that max
𝑦

𝐻(𝑋|𝑌=𝑦)>

max
𝑥

𝐻(𝑌 |𝑋=𝑥).

2.5 Entropic Causality with Finite Number of Sam-

ples

In the previous section, we provided identifiability results assuming that we have access

to the joint probability distribution of the observed variables. In any practical problem,

we can only access a set of samples from this joint distribution. If we assume we can

get independent, identically distributed samples from 𝑝(𝑥, 𝑦), how many samples are

sufficient for identifiability?

Given samples from 𝑁 i.i.d. random variables {(𝑋𝑖, 𝑌𝑖)}𝑖∈[𝑁 ] where (𝑋𝑖, 𝑌𝑖) ∼

𝑝(𝑥, 𝑦), consider the plug-in estimators 𝑝(𝑦) := 1
{𝑁}

∑︀𝑁
𝑖=1 1{𝑌𝑖=𝑦} and 𝑝(𝑥, 𝑦) :=

30



1
𝑁

∑︀𝑁
𝑖=1 1{𝑋𝑖=𝑥}1{𝑌𝑖=𝑦} and define the estimator of the conditional 𝑝(𝑥|𝑦) as 𝑝(𝑥|𝑦) :=

𝑝(𝑥,𝑦)
𝑝(𝑦)

. Define 𝑝(𝑥) and 𝑝(𝑦|𝑥) similarly.

Definition 1. The minimum entropy coupling of 𝑡 random variables 𝑈1, 𝑈2, . . . , 𝑈𝑡 is

the joint distribution 𝑝(𝑢1, . . . , 𝑢𝑡) with minimum entropy that respects the marginal

distributions of 𝑈𝑖,∀𝑖.

The algorithmic approach of [30] relies on minimum entropy couplings. Specifically,

they show the following equivalence: Given 𝑝(𝑥, 𝑦), let 𝐸 be the minimum entropy

exogenous variable such that 𝐸⊥⊥𝑋, and there exists an 𝑓 such that 𝑌 = 𝑓(𝑋,𝐸), 𝑋 ∼

𝑝(𝑥) induces 𝑝(𝑥, 𝑦). Then the entropy of the minimum entropy coupling of the

distributions {𝑝(𝑌 |𝑥) : 𝑥 ∈ [𝑛]} is equal to 𝐻(𝐸).

Therefore, understanding how having a finite number of samples affects the mini-

mum entropy couplings allows us to understand how it affects the minimum entropy

exogenous variable in either direction. Suppose |𝑝(𝑦|𝑥) − 𝑝(𝑦|𝑥)| ≤ 𝛿, ∀𝑥, 𝑦 and

|𝑝(𝑥|𝑦)− 𝑝(𝑥|𝑦)| ≤ 𝛿, ∀𝑥, 𝑦. Given a coupling for distributions 𝑝(𝑌 |𝑥), we construct a

coupling for 𝑝(𝑌 |𝑥) whose entropy is not much larger. As far as we are aware, the

minimum entropy coupling problem with sampling noise has not been studied.

Consider the minimum entropy coupling problem with 𝑛 marginals

p𝑘 = [𝑝𝑘(𝑖)]𝑖∈[𝑛], 𝑘 ∈ [𝑛]. Let 𝑝(𝑖1, 𝑖2, . . . , 𝑖𝑛) be a valid coupling, i.e.,∑︀
𝑗 ̸=𝑘

∑︀𝑛
𝑖𝑗=1 𝑝(𝑖1, 𝑖2, . . . , 𝑖𝑛) = 𝑝𝑘(𝑖𝑘), ∀𝑘, 𝑖𝑘. Consider the marginals with sampling

noise shown as p̂𝑘 = [𝑝𝑘(𝑖)]𝑖∈[𝑛], 𝑘 ∈ [𝑛]. Suppose |𝑝𝑘(𝑖) − 𝑝𝑘(𝑖)| ≤ 𝛿, ∀𝑖, 𝑘. The

following is shown in Section 2.9.1 of the supplement.

Theorem 2. Let 𝑝 be a valid coupling for distributions {p𝑖}𝑖∈[𝑛], where p𝑖 ∈ ∆𝑛,∀𝑖 ∈

[𝑛]. Suppose {q𝑖}𝑖∈[𝑛] are distributions such that |q𝑖(𝑗) − p𝑖(𝑗)| ≤ 𝛿, ∀𝑖, 𝑗 ∈ [𝑛]. If

𝛿 ≤ 1
𝑛2 log(𝑛)

, then there exists a valid coupling 𝑞 for the marginals {q𝑖}𝑖∈[𝑛] such that

𝐻(𝑞) ≤ 𝐻(𝑝) + 𝑒−1 log(𝑒) + 2 + 𝑜(1).

Theorem 2 shows that if the 𝑙∞ norm between the conditional distributions and

their empirical estimators are bounded by 𝛿 ≤ 1
𝑛2 log(𝑛)

, there exists a coupling that is

within 3 bits of the optimal coupling on true conditionals. To guarantee this with the

plug-in estimators, we have the following:
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Lemma 1. Let 𝑋 ∈ [𝑛], 𝑌 ∈ [𝑛] be two random variables with joint distribution 𝑝(𝑥, 𝑦).

Let 𝛼 = min{min𝑖 𝑝(𝑋 = 𝑖),min𝑗 𝑝(𝑌 = 𝑗)}. Given 𝑁 samples {(𝑋𝑖, 𝑌𝑖)}𝑖∈[𝑁 ] from

independent identically distributed random variables (𝑋𝑖, 𝑌𝑖) ∼ 𝑝(𝑥, 𝑦), let 𝑝(𝑋|𝑌 = 𝑦),

𝑝(𝑌 |𝑋 = 𝑥) be the plug-in estimators of the conditional distributions. If 𝑁 =

Ω(𝑛4𝛼−2 log3(𝑛)), then |𝑝(𝑦|𝑥)−𝑝(𝑦|𝑥)| ≤ 1
𝑛2 log(𝑛)

and |𝑝(𝑥|𝑦)−𝑝(𝑥|𝑦)| ≤ 1
𝑛2 log(𝑛)

,∀𝑥, 𝑦

with high probability.

Next, we have our main identifiability result using finite number of samples:

Theorem 3 (Finite sample identifiability). Let 𝒜 be an algorithm that outputs

the entropy of the minimum entropy coupling. Consider the SCM in Theorem 1.

Suppose 𝐸 is any random variable with constant entropy, i.e., 𝐻(𝐸)=𝑐=𝒪(1). Let

𝑝(𝑋) satisfy Assumption 1(𝜌, 𝑑) for some constants 𝜌≥ 1, 𝑑 > 0. Let 𝑓 be sampled

uniformly randomly from all mappings 𝑓 : [𝑛]×[𝑚]→ [𝑛]. Let 𝛼 = min{min𝑖 𝑝(𝑋 =

𝑖),min𝑗 𝑝(𝑌 = 𝑗)}. Given 𝑁 = Ω(𝑛4𝛼−2 log3(𝑛)) samples, let 𝑝(𝑋|𝑦), 𝑝(𝑌 |𝑥) be the

plug-in estimators for the conditional distributions. Then, for sufficiently large 𝑛,

𝒜({𝑝(𝑋|𝑦)}𝑦) > 𝒜({𝑝(𝑌 |𝑥)}𝑥) with high probability.

From the equivalence between minimum entropy couplings and minimum exogenous

entropy, Theorem 3 shows identifiability of the causal direction using minimum-entropy

exogenous variables. Similar to Corollary 1, the result holds when 𝑝(𝑋) is chosen

uniformly randomly from the simplex:

Corollary 3. Consider the SCM in Theorem 1, where 𝐻(𝐸)=𝑐=𝒪(1), 𝑓 is sampled

uniformly randomly. Let 𝑝(𝑋) be sampled uniformly randomly from the simplex

∆𝑛. Given 𝑁 =Ω(𝑛8 log5(𝑛)) samples, let 𝑝(𝑋|𝑌 = 𝑦), 𝑝(𝑌 |𝑋 = 𝑥) be the plug-in

estimators for the conditional distributions. Then, for large enough 𝑛, 𝒜({𝑝(𝑋|𝑌 =

𝑦)}𝑦) > 𝒜({𝑝(𝑌 |𝑋 = 𝑥)}𝑥) with high probability.

Conditional Entropy Criterion with Finite Samples: Note that the sample

complexity in Theorem 3 scales with 𝛼−2 where 𝛼 := min{min𝑖 𝑝(𝑋= 𝑖),min𝑗 𝑝(𝑌 =𝑗)}.

If either of the marginal distributions are not strictly positive, this can make the

bound of Theorem 3 vacuous. To address this, we use an internal result from the
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Figure 2-2: 𝑚 : number of states of 𝑋, 𝑛 : number of states of 𝑌 in causal graph 𝑋 → 𝑌 .
(a) 𝑛 = 40,𝑚 = 40. Accuracy on simulated data: Obs. entropy-based declares 𝑋 → 𝑌
if 𝐻(𝑋) > 𝐻(𝑌 ) and 𝑌 → 𝑋 otherwise; Exog. entropy-based compares the exogenous
entropies in both direction and declares 𝑋 → 𝑌 if the exogenous entropy for this
direction is smaller, and 𝑌 → 𝑋 otherwise; Total entropy-based compares the total
entropy of the model in both directions and declares the direction with smaller entropy
as the true direction as proposed in [30]. (b) uses uniform mixture data from when
𝑚 = 40, 𝑛 = 20 and 𝑚 = 20, 𝑛 = 40. Similarly for (c) for 𝑚 = 40, 𝑛 = 5 and
𝑚 = 5, 𝑛 = 40. Magenta and red dashed vertical lines show log2(min{𝑚,𝑛}) and
log2(max{𝑚,𝑛}), respectively.

proof of Theorem 1. In the proof we show that for some 𝑖, 𝑝(𝑌 = 𝑖) = Ω( 1
𝑛
) and

𝐻(𝑋|𝑌 = 𝑖) = Ω(log(log(𝑛))). Then, it is sufficient to obtain enough samples

to accurately estimate 𝑝(𝑋|𝑌 = 𝑖). Even though 𝑖 is not known a priori, since

𝑝(𝑌 = 𝑖) = Ω( 1
𝑛
), estimating conditional entropies 𝐻(𝑋|𝑌 =𝑗) where the number of

samples |{(𝑥, 𝑌 = 𝑗)}𝑥| exceeds a certain threshold guarantees that 𝑝(𝑋|𝑌 = 𝑖) is

estimated accurately. We have the following result:

Theorem 4 (Finite sample identifiability via conditional entropy). Consider the SCM

in Theorem 1, where 𝐻(𝐸)= 𝑐=𝒪(1), 𝑓 is sampled uniformly randomly. Let 𝑝(𝑋)

satisfy Assumption 1(𝜌, 𝑑) for some constants 𝜌≥ 1, 𝑑> 0. Given 𝑁 = Ω(𝑛2 log(𝑛))

samples, let 𝑁𝑥 be the number of samples where 𝑋=𝑥 and similarly for 𝑁𝑦. Let �̂�

denote the entropy estimator of [64]. Then, for 𝑛 large enough, max{𝑦:𝑁𝑦≥𝑛} �̂�(𝑋|𝑌 =

𝑦) > max{𝑥:𝑁𝑥≥𝑛} �̂�(𝑌 |𝑋=𝑥) with high probability.

Theorem 4 shows that 𝒪(𝑛2 log(𝑛)) samples are sufficient to estimate the large

conditional entropies of the form 𝐻(𝑌 |𝑥), 𝐻(𝑋|𝑦), which is sufficient for identifiability

even for sparse 𝑝(𝑥, 𝑦).
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2.6 Experiments

In this section, we conduct several experiments to evaluate the robustness of the

framework. Complete details of each experiment are provided in the supplementary

material. Unless otherwise stated, the greedy minimum entropy coupling algorithm

of [30] is used to approximate 𝐻(𝐸) and 𝐻(�̃�).

Implications of Low-Exogenous Entropy Assumption. We investigate the

implications of this assumption. Specifically, one might ask if having low exogenous

entropy implies 𝐻(𝑋)>𝐻(𝑌 ). This would be unreasonable, since there is no reason

for cause to always have the higher entropy.

In Figure 2-2, we evaluate the accuracy of the algorithm on synthetic data for

different exogenous entropies 𝐻(𝐸). To understand the impact of the assumption on

𝐻(𝑋), 𝐻(𝑌 ), in addition to comparing exogenous entropies (Exog. entropy-based) and

total entropies (total entropy-based) [30], we also show the performance of a simple

baseline that compares 𝐻(𝑋) and 𝐻(𝑌 ) (obs. entropy-based) and declares 𝑋 → 𝑌 if

𝐻(𝑋) > 𝐻(𝑌 ) and vice versa.

We identify three different regimes, e.g., see Figure 2-2a: Regime 1: If 𝐻(𝐸) <

0.2 log(𝑛), we get 𝐻(𝑋) > 𝐻(𝑌 ) most of the time. All methods perform very well

in this regime which we can call almost deterministic. Regime 2: If 0.2 log(𝑛) <

𝐻(𝐸) < 0.6 log(𝑛), accuracy of obs. entropy-based method goes to 0 since, on average,

we transition from the regime where 𝐻(𝑋) > 𝐻(𝑌 ) to 𝐻(𝑋) < 𝐻(𝑌 ). Regime 3:

0.6 log(𝑛) < 𝐻(𝐸) < 0.8 log(𝑛) where 𝐻(𝑋) < 𝐻(𝑌 ) most of the time. As can be

seen, total entropy-based and exog. entropy-based methods both show (almost) perfect

accuracy in Regime 1, 2, 3 whereas obs. entropy-based performs well only in Regime 1.

We also evaluated the effect of the observed variables having different number of

states on mixture data in Figure 2-2b, 2-2c. In this case, framework performs well up

until about 0.8 log(min{𝑚,𝑛}).

Relaxing Constant Exogenous-Entropy Assumption. In Section 2.4, we

demonstrated that the entropic causality framework can be used when the exogenous

randomness is a constant, relative to the number of states 𝑛 of the observed variables.
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Figure 2-3: Histogram of 𝐻(�̃�) when 𝐻(𝐸) ≈ 0.8 log2(𝑛). Yellow line shows 𝑥 =
0.8 log2(𝑛)
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Figure 2-4: (a) Probability of correctly discovering the causal direction 𝑋 → 𝑌 as a
function of 𝑛 and number of samples 𝑁 , using the conditional entropies as the test.
(b) Probability of correctly discovering the causal direction 𝑋 → 𝑌 using the greedy
MEC algorithm. (c) Samples 𝑁 required to reach 95% correct detection as a function
of 𝑛, derived from the plots in Figure 2-4a and Figure 2-4b.

For very high dimensional variables, this might be a strict assumption. In this section,

we conduct synthetic experiments to evaluate if entropic causality can be used when

𝐻(𝐸) scales with 𝑛. In particular, we test for various 𝛼<1 the following: Is it true

that the exogenous entropy in the wrong direction will always be larger, if the true

exogenous entropy is ≤𝛼𝑙𝑜𝑔(𝑛)? For 𝛼= {0.2, 0.5, 0.8}, we sampled 10k 𝑝(𝐸) from

Dirichlet distribution such that 𝐻(𝐸)≈𝛼 log(𝑛) and calculated exogenous entropy

in the wrong direction 𝐻(�̃�). Figure 2-3 shows the histograms of 𝐻(�̃�) for 𝛼=0.8

and 𝑛={16, 64, 128}. We observe that 𝐻(�̃�) tightly concentrates around 𝛽 log(𝑛) for

some 𝛽>𝛼. For reference, 𝛼 log(𝑛) is shown by the vertical yellow line. Similar results

are observed for other 𝛼 values which are provided in the supplementary material.

Effect of Finite Number of Samples. In Section 2.5, we identified finite
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sample bounds for entropic causality framework, both using the exogenous en-

tropies 𝐻(𝐸), 𝐻(�̃�) and using conditional entropies of the form max𝑦 𝐻(𝑋|𝑌 =

𝑦),max𝑥 𝐻(𝑌 |𝑋=𝑥). We now test if the bounds are tight.

We observe two phases and a transition phenomenon in between. The first phase

occurs for small values of 𝑛, for 𝑛 ∈ {20, 30, 40}. Here, the fraction of identifiable

causal models does not reach 1 as the number of samples is increased, but saturates

at a smaller value. This is expected since exogenous noise is relatively high, i.e.,

𝐻(𝐸) ≥ log(𝑛). For 𝑛 > 40, or equivalently, when 𝐻(𝐸) ≤ log(𝑛), increasing number

of samples increases accuracy to 1, as expected.

The greedy MEC criterion has slightly better performance (by ≈ 5%), indicating

more robustness. This may be due to a gap between 𝐻(�̃�) and 𝐻(𝑋|𝑌 = 𝑦) since

greedy-MEC output is not limited by log(𝑛) unlike conditional entropy. In contrast to

the �̃�(𝑛8) bound, the number of samples needed has a much better dependence on 𝑛.

Figure 2-4c includes a dashed linear growth line for comparison.

Effect of Confounding The equivalence between finding the minimum entropy

exogenous variable and finding the minimum entropy coupling relies on the assumption

that there are no unobserved confounders in the system. Despite lack of theory, it is

useful to experimentally understand if the method is robust to light confounding. One

way to assess the effect of confounding is through its entropy: If a latent confounder

𝐿 is a constant, i.e., it has zero entropy, it does not affect the observed variables. In

this section, we simulate a system with light confounding by limiting the entropy of

the latent confounder and observing how quickly this degrades the performance of the

entropic causality approach.

The results are given in Figure 2-5. The setting is similar to that of Figure 2-2.

We set 𝐻(𝐸) ≈ 2 and show accuracy of the method as entropy of the latent 𝐿 is

increased. Perhaps surprisingly, the effect of increasing the entropy of the confounder

is very similar to the effect of increasing the entropy of the exogenous variable. This

shows that the method is robust to light latent confounding.

Tübingen Cause-Effect Pairs In [30], authors employed the total entropy-based

algorithm on Tübingen data [43] and showed that it performs similar to additive noise
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Figure 2-5: Accuracy on simulated data with light confounding. Number of states
and data are identical to those in Figure 2-2. We use exogenous entropy of 2 bits and
add a confounder 𝐿. This can be interpreted as replacing some bits of the exogenous
variable in Figure 2-2 with those of a latent confounder. Surprisingly, performance
for 𝐻(𝐸)=2, 𝐻(𝐿)= 𝑡 is similar to the performance when 𝐻(𝐸)=2 + 𝑡 in Figure 2-2.
This indicates that the proposed method is robust to latent confounders, as long as
the total exogenous and confounder entropy is not very close to min{log(𝑛), log(𝑚)}.

5-state quantization
Threshold (× log support) 0.7 0.8 0.85 0.9 1.0 1.2

# of pairs 14 25 34 42 57 85
Accuracy (%) 85.7 64.0 58.8 57.1 63.2 60.0

10-state quantization
Threshold (× log support) 0.7 0.8 0.85 0.9 1.0 1.2

# of pairs 13 23 34 46 67 85
Accuracy (%) 84.6 73.9 70.6 63.0 61.2 56.5

20-state quantization
Threshold (× log support) 0.7 0.8 0.85 0.9 1.0 1.2

# of pairs 12 21 41 52 76 85
Accuracy (%) 75.0 61.9 53.7 51.9 51.3 49.4

Table 2.1: Performance on Tübingen causal pairs with low exogenous entropy in at
least one direction.

models with an accuracy of 64%. Next, we test if entropic causality can be used when

we only compare exogenous entropies.

The challenge of applying entropic causality on Tübingen data is that most of

the variables are continuous. Therefore, before applying the framework, one needs to

quantize the data. The authors chose a uniform quantization, requiring both variables

have the same number of states. We follow a similar approach. For 𝑏 ∈ {5, 10, 20},

the value of 𝑛 is chosen for both 𝑋, 𝑌 as the minimum of 𝑏, 𝑁/10, 𝑁𝑢𝑛𝑖𝑞
𝑥 and 𝑁𝑢𝑛𝑖𝑞

𝑦 ,

where 𝑁 is the number of samples available for pair 𝑋, 𝑌 and 𝑁𝑢𝑛𝑖𝑞
𝑥 , 𝑁𝑢𝑛𝑖𝑞

𝑦 are the

number of unique realizations of 𝑋, 𝑌 , respectively.

As a practical check for the validity of our key assumption, we make a decision

based on the following: For a threshold 𝑡, algorithm makes a decision only for pairs for

which either 𝐻(𝐸)≤ 𝑡 log(𝑛) or 𝐻(�̃�)≤ 𝑡 log(𝑛). We report the accuracies in Table 2.1.
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As we expect, for stricter thresholds, accuracy is improved, supporting the assumption

that in real data, the direction with the smaller exogenous entropy is likely to be the

true direction. Performance is most consistent with 𝑏 = 10.

To check the stability of performance in regards to quantization, we conducted

an experiment where we perturb the quantization intervals and take majority of 5

independent decisions. This achieves qualitatively similar (it is sometimes better,

sometimes worse) performance shown in Table 2.3 in the appendix. Exploring best

practices for how to quantize continuous data is an interesting avenue for future work.

We now compare performance with other leading methods on this dataset. The

total-entropy approach for Entropic Causal Inference achieved 64.21% accuracy at

100% decision rate in [30]. ANM methods are evaluated on this data in [43], where

they emphasize two ANM methods with consistent performance that achieve 63± 10%

and 69± 10% accuracy. IGCI methods are also evaluated in [43] and were found to

vary greatly with implementation and perturbations of data. No IGCI method had

consistent performance. LiNGAM methods are evaluated in [21] and reported nonlinear

approaches with 62% and 69% accuracy. Of these, only Entropic Causal Inference

and IGCI can handle categorical data. As comparison with different approaches is

difficult given limited data, we suggest assessing the MEC in both directions when

deciding how to use our approach in combination with other methods.

2.7 Discussion

In this section we discuss several aspects of our method in relation with prior work.

First, note that our identifiability result holds with high probability under the measure

induced by our generative model. This means that, even under our assumptions, not

all causal models will be identifiable. However, the non-identifiable fraction vanishes

as 𝑛, i.e., the number of states of 𝑋, 𝑌 goes to infinity. In essence, this is similar to

many of the existing identifiability statements that show identifiability except for an

adversarial set of models [20]. Specifically in [30], the authors show that under the

assumption that the exogenous variable has small support size, causal direction is
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identifiable with probability 1. This means that the set of non-identifiable models has

Lebesgue measure zero. This is clearly a stronger identifiability statement. However,

this is not surprising if we compare the assumptions: Bounding the support size of

a variable bounds its entropy, but not vice verse. Therefore, our assumption can be

seen as a relaxation of the assumption of [30]. Accordingly, a weaker identifiability

result is expected.

Next, we emphasize that our key assumption, that in the true causal direction

the exogenous variable has small entropy, is not universal, i.e., one can construct

cause-effect pairs where the anti-causal direction requires less entropy. [22] provides

an example scenario: Consider a ball traveling at a fixed and known velocity from the

initial position 𝑋 towards a wall that may appear or disappear at a known position

with some probability. Let 𝑌 be the position of the ball after a fixed amount of time.

Clearly we have 𝑋 → 𝑌 . If the wall appears, the ball ends up in a different position

(𝑦0) from the one it would if the wall does not (𝑦1). Then the mapping 𝑋 → 𝑌 requires

an exogenous variable to describe the behavior of the wall. However, simply by looking

at the final position, we can infer whether wall was active or not, and accordingly infer

what the initial position was deterministically. This shows that our key assumption is

not always valid and should be evaluated depending on the application in mind.

Finally note that the low-entropy assumption should not be enforced on the

exogenous variable of the cause, since this would imply that 𝑋 has small entropy. This

brings about a conceptual issue to extend the idea to more than two variables: Which

variables’ exogenous noise should have small entropy? For that setting, we believe the

original assumption of [30] may be more suitable: Assume that the total entropy of

the system is small. In the case of more than two variables, this means total entropy

of all the exogenous variables is small, without enforcing bounds on specific ones.

2.8 Conclusion

In this work, we showed the first identifiability result for learning the causal graph

between two categorical variables using the entropic causal inference framework. We
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also provided the first finite-sample analysis. We conducted extensive experiments

to conclude that the framework, in practice, is robust to some of the assumptions

required by theory, such as the amount of exogenous entropy and causal sufficiency

assumptions. We evaluated the performance of the method on Tübingen dataset.
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2.9 Supplementary Material

2.9.1 Proofs

Proof of Theorem 1

Step 1. Bounding 𝐻(�̃�) by 𝐻(�̃�) ≥ 𝐻(𝑋|𝑌 = 𝑦),∀𝑦: Consider any �̃�⊥⊥𝑌 for

which there exists a deterministic map 𝑔 such that 𝑋 = 𝑔(�̃�, 𝑌 ). We have

𝑝(𝑋 = 𝑥|𝑌 = 𝑦) = 𝑝(𝑔(�̃�, 𝑌 ) = 𝑥|𝑌 = 𝑦)

= 𝑝(𝑔(�̃�, 𝑦) = 𝑥) = 𝑝(𝑔𝑦(�̃�) = 𝑥),

for 𝑔𝑦(𝑒) := 𝑔(𝑒, 𝑦),∀𝑒, 𝑦, since �̃�⊥⊥𝑌 . Due to data processing inequality, it follows

that 𝐻(�̃�) ≥ 𝐻(𝑋|𝑌 = 𝑦).

In [30], this analysis is used to show that the minimum entropy exogenous variable

�̃� can be obtained by solving the minimum entropy coupling problem on the conditional

distributions 𝑝(𝑋|𝑌 = 𝑦). Here, we use the conditional entropies to lower bound the

entropy of the exogenous variable �̃�. Therefore, in the rest of our analysis we attempt

to show that under the given assumptions, with high probability, 𝐻(𝑋|𝑌 = 𝑦) is large

for some value of 𝑦.

Step 2. Generative process as a balls and bins game: In order to analyze

the conditional distributions 𝑝(𝑋|𝑌 = 𝑦) we relate the generative model to a balls

and bins game:

Consider a deterministic map 𝑓 : [𝑛] × [𝑚] → [𝑛]. Let 𝑝(𝑋 = 𝑖) = 𝑥𝑖 and

𝑝(𝐸 = 𝑘) = 𝑒𝑘. Without loss of generality, assume that 𝑋 and 𝐸 are labeled in

decreasing probability order. In other words, 𝑒𝑘 ≥ 𝑒𝑙 if 𝑘 < 𝑙 and 𝑥𝑖 ≥ 𝑥𝑗 if 𝑖 < 𝑗.2

Let M be the matrix defined as M𝑖,𝑘 := 𝑓(𝑖, 𝑘). The probability distribution 𝑝(𝑌 |𝑋)

is determined by the causal mechanism, i.e., the structural equation 𝑌 = 𝑓(𝑋,𝐸).

The conditional distributions in the wrong causal direction, i.e., 𝑝(𝑋|𝑌 ) can then be

2This relabeling of 𝑋,𝐸 is without loss of generality since realization of 𝑓 is symmetric across
rows and columns.
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calculated as follows:

𝑝(𝑋 = 𝑖|𝑌 = 𝑗) =
1

𝑍
𝑥𝑖

𝑚∑︁
𝑘=1

1{M𝑖,𝑘=𝑗}𝑒𝑘.

𝑍 =
𝑛∑︀

𝑖=1

𝑥𝑖

𝑚∑︀
𝑘=1

1{M𝑖,𝑘=𝑗}𝑒𝑘 is the normalizing constant.

To sample 𝑓 uniformly randomly from all the mappings is equivalent to filling the

entries of M independently and uniformly randomly from 𝒴 = [𝑛]. A small example

is given in Table 1, which shows a realization of 𝑓 through matrix M, and illustrates

how this affects 𝑝(𝑋|𝑌 = 1).

ℰ 1 2 3 4 5

𝒳 PMF
of 𝑋

PMF
of 𝐸

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

1 𝑥1 2 3 2 1 1
2 𝑥2 3 2 3 3 1
3 𝑥3 3 1 2 3 2

P(𝑋 = 𝑥|𝑌 = 1)

𝑥 = 1
𝑥1(𝑒4+𝑒5)

𝑍

𝑥 = 2
𝑥2𝑒5
𝑍

𝑥 = 3
𝑥3𝑒2
𝑍

Table 2.2: Left: Balls and bins representation of function 𝑓 : 𝒳 × ℰ → 𝒴, where
𝒳 = 𝒴 = [3] and ℰ = [5]. The function values for a given 𝑋 = 𝑖, 𝐸 = 𝑘 can be seen as
realizations of a two dimensional balls and bins game. Right: Conditional probability
values of 𝑋 given 𝑌 = 1 for the given function. 𝑍 = 𝑥1(𝑒1 + 𝑒3) + 𝑥2(𝑒2) + 𝑥3(𝑒5) is
the normalization constant, which also gives P(𝑌 = 1).

Any realization of 𝑓 corresponds to a realization of matrix M. The first column

is of special interest to us because it corresponds to the value of 𝐸 with the highest

probability. The realization of M can be thought of as a balls and bins process, with

the cells corresponding to balls and each entry M𝑖,𝑘 corresponding to which bin that

cell’s ball landed in.

Step 3. Identify a set of “good" bins: Each coordinate (𝑖, 𝑘) is a ball and the

value of M𝑖,𝑘 is the identity of the bin this ball is placed in. We utilize the existence

of a set 𝑆 as described in the theorem statement as follows: We focus on the set of

balls corresponding to the cells (𝑖, 1) for 𝑖 ∈ 𝑆. Our goal is to identify a bin which

contains a large fraction of these balls. We also want this bin to not contain too much

probability mass from balls outside of the set 𝑆 in order to get a close bound in Step
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6.

Recall that each bin 𝑦 contains mass 𝑥𝑖𝑒𝑘 when M𝑖,𝑘 = 𝑦. To restrict our search

of a good bin, we first discard all the bins that contain a large mass from entries of

M that are either in rows corresponding to 𝑥 /∈ 𝑆 or columns other than the first

column. Let 𝑝(𝑋, 𝑌,𝐸) represent the joint distribution between 𝑋, 𝑌,𝐸. Then we

discard every value of 𝑦 where
∑︀
𝑥/∈𝑆

𝑚∑︀
𝑒=1

𝑝(𝑥, 𝑦, 𝑒) +
∑︀
𝑥∈𝑆

𝑚∑︀
𝑒=2

𝑝(𝑥, 𝑦, 𝑒) is large. We pick the

threshold of 2
𝑛

and define the set ℬ accordingly:

ℬ =

{︂
𝑦 :
∑︁
𝑥/∈𝑆

𝑝(𝑥, 𝑦) +
∑︁
𝑥∈𝑆

𝑝(𝑥, 𝑦, 𝐸 > 1) >
2

𝑛

}︂
.

We know that |ℬ| ≤ 𝑛
2
, since otherwise the total mass would exceed 1.3 Let 𝒰 := [𝑛]∖ℬ.

Then |𝒰| ≥ 𝑛/2. Note that ℬ and 𝒰 are determined in a manner not affected by the

realized values of M𝑥,1 for 𝑥 ∈ 𝑆. We will next focus on only the values of 𝑦 ∈ 𝒰 , and

later quantify the following claim: A significant fraction of the probability mass that

falls in any bin in 𝒰 is due to entries from M𝑥,1 for 𝑥 ∈ 𝑆. Therefore, for one of these

bins 𝑦 ∈ 𝒰 , we can focus on obtaining a lower bound of 𝐻(𝑋|𝑌 = 𝑦,𝑋 ∈ 𝑆,M𝑋,1 = 𝑦)

to later show that 𝐻(𝑋|𝑌 = 𝑦) cannot be much smaller.

Step 4. Show a bin from 𝒰 has many balls from the first column of M

and rows in 𝑆: We focus our attention to the balls in 𝑆 and bins in 𝒰 . We want to

show that ∃𝑦 ∈ 𝒰 such that M𝑥,1 = 𝑦 for a large number of values of 𝑥 ∈ 𝑆. Recall

that since |𝑆| ≥ 𝑑𝑛, we have at least 𝑑𝑛 balls falling into 𝑛 bins. Moreover, since

|𝒰| ≥ 𝑛/2, at least 𝑛/2 of these bins are “good" for us. First, we show that, with high

probability, at least 𝑑𝑛
4

of the 𝑑𝑛 balls fall in the bins in 𝒰 .

Lemma 2. Consider the process of uniformly randomly throwing 𝑑𝑛 = Θ(𝑛) balls

into 𝑛 bins.4 Let 𝒰 be an arbitrary, fixed subset of bins with size |𝒰| ≥ 𝑛
2
. Then with

high probability, at least 𝑑𝑛
4

balls fall into the bins in 𝒰 . Moreover, these balls are also

uniformly randomly thrown.

3The probabilities we sum correspond to disjoint events, hence the total probability cannot exceed
1.

4Uniformity follows from uniformity of 𝑓 .
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The above lemma, proven in Appendix 2.9.1 is directly applicable to our setting,

even though 𝒰 is a random variable. This is because the realization of the entries of

M outside the rows 𝑆 or outside the first column, which determines the set 𝒰 are

independent from the entries in M in the rows 𝑆 and in the first column. In other

words, how balls are thrown into the bins in 𝒰 is not affected by how 𝒰 is chosen.

We want to use this to show that there is a bin 𝑦 ∈ 𝒰 such that the conditional

distribution 𝑝(𝑋|𝑌 = 𝑦) is due to many balls 𝑥 ∈ 𝑆 where M𝑥,1 = 𝑦. We have shown

that with high probability at least 𝑑𝑛
4

balls land in bins corresponding to 𝑦 ∈ 𝒰 . We

apply a bound from Theorem 1 of [54], which implies that with high probability when

there are 𝑏 bins and 𝜂𝑏 balls (𝜂 = Θ(1)), the most loaded bin has at least ln(𝑏)

ln(ln(𝑏))+ln( 1
𝜂 )

balls. We know that with high probability we have some number of balls in range

[𝑛𝑑
4
, 𝑛𝑑] in some number of good bins in range [𝑛

2
, 𝑛]. In terms of the established bound

on the most loaded bin, this means 𝜂 ≥ 𝑑
4

and 𝑏 ∈ [𝑛
2
, 𝑛]. If we substitute valid values

of 𝜂 and 𝑏 that minimize the lower bound, we know that with high probability the

heaviest loaded bin among 𝒰 conditional distributions has at least ln(𝑛)−ln(2)

ln(ln(𝑛))+ln( 4
𝑑
)

balls.

Without loss of generality, suppose this bin has label 2. We show that 𝐻(𝑋|𝑌 = 2) is

large using the above bound.

Step 5. Bounding 𝐻(𝑋|𝑌 = 2): Next, we obtain a lower bound for 𝐻(𝑋|𝑌 = 2).

We utilize the following lemma, proved in Section 2.9.1 of the supplement:

Lemma 3. Let 𝑋 be a discrete random variable with distribution [𝑝1, 𝑝2, . . . , 𝑝𝑛].

Consider the random variable 𝑋 ′ with distribution [ 𝑝𝑖∑︀
𝑗∈𝑆′ 𝑝𝑗

]𝑖 for any 𝑆 ′ ⊆ [𝑛]. Then,

𝐻(𝑋) ≥ 𝜇𝐻(𝑋 ′), where 𝜇 =
∑︀

𝑖∈𝑆′ 𝑝𝑖.

To use this lemma, we consider a specific distribution induced on the support of

𝑋|𝑌 = 2. First, let us define the following: For any subset 𝑆 ′ ⊆ [𝑛], 𝑦 ∈ [𝑛], let 𝑋𝑆′,𝑦

be the discrete variable with the following distribution:

𝑝(𝑋𝑆′,𝑦= 𝑖)=
𝑝(𝑋 = 𝑖|𝑌 = 𝑦)∑︀
𝑙∈𝑆′ 𝑝(𝑋 = 𝑙|𝑌 = 𝑦)

,∀𝑖 ∈ 𝑆 ′. (2.1)

We focus on 𝑋𝑆′,2, where 𝑆 ′ = {𝑖 : 𝑖 ∈ 𝑆,M𝑖,1 = 2}. We first show that 𝐻(𝑋𝑆′,2) is

large, and then show the total mass 𝜇 =
∑︀

𝑖∈𝑆′ 𝑝(𝑋 = 𝑖|𝑌 = 2) that 𝑋𝑆′,2 contributes

44



to (𝑋|𝑌 = 2) is large, which allows us to use Lemma 3.

To show 𝐻(𝑋𝑆′,2) is large, we use the following lemma from [9]:

Lemma 4 (Theorem 2 of [9]). Let 𝑋 be a strictly positive discrete random variable

on 𝑛 states such that max𝑖 𝑝(𝑋=𝑖)
min𝑖 𝑝(𝑋=𝑖)

≤ 𝜌. Then

𝐻(𝑋) ≥ log(𝑛)−
(︂
𝜌 ln(𝜌)

𝜌− 1
− 1− ln

(︂
𝜌 ln(𝜌)

𝜌− 1

)︂)︂
1

ln(2)
.

To lower bound 𝐻(𝑋𝑆′,𝑦) using the above lemma, we obtain an upper bound to

𝜌′ :=
max𝑖 𝑝(𝑋𝑆′,2=𝑖)

min𝑖 𝑝(𝑋𝑆′,2=𝑖)
by utilizing our knowledge that 𝐻(𝐸) = 𝑐. For each value 𝑖 ∈ 𝑆 ′,

we know that M𝑖,1 = 2. Thus, 𝑝(𝑋𝑆′,2 = 𝑖) ≥ 𝑥𝑖𝑒1
𝜇

. Also 𝑝(𝑋𝑆′,2 = 𝑖) ≤ 𝑥𝑖
∑︀𝑚

𝑘=1 𝑒𝑘
𝜇

= 𝑥𝑖

𝜇

and max𝑖∈𝑆 𝑥𝑖

min𝑖∈𝑆 𝑥𝑖
≤ 𝜌. Therefore 𝜌′ ≤ max𝑖

𝑥𝑖
𝜇

min𝑖
𝑥𝑖𝑒1
𝜇

≤ 𝜌
𝑒1

.

In order to understand how small 𝑒1 can be under the given constraints, we obtain

a useful characterization for constant entropy distributions. The following lemma

shows that the maximum probability value for any discrete distribution with constant

entropy is a constant away from zero.

Lemma 5. Let 𝐸 be a discrete random variable with 𝑚 states, with the probability

distribution [𝑒1, 𝑒2, . . . , 𝑒𝑚], where without loss of generality 𝑒𝑖 ≥ 𝑒𝑗,∀𝑗 > 𝑖. If 𝐻(𝐸) ≤

𝑐 then 𝑒1 ≥ 2−𝑐.

The proof is given in Section 2.9.1 in the supplement.

Applying Lemmas 3-5, with some derivation we show in Section 2.9.1 of the

supplement that:

Proposition 1 (Step 6). Under the conditions stated above,

𝐻(�̃�) ≥ max
𝑦

𝐻(𝑋|𝑌 = 𝑦) ≥ 𝐻(𝑋|𝑌 = 2)

≥ (1− 𝑜(1))[log(log(𝑛))− log(log(log(𝑛)))−𝒪(1)].

Furthermore, to make the trade-off between the strength of the lower bound and
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assumptions on 𝑛 more explicit, when 𝑛 ≥ 𝜈(𝑟, 𝑞, 𝜌, 𝑐, 𝑑) with

𝜈(𝑟, 𝑞, 𝜌, 𝑐, 𝑑) = max{4, 𝑒(
4
𝑑)

1/𝑟

, 2𝑒𝑞
222(𝑐+1)𝜌},

we have

𝐻(�̃�) ≥ max
𝑦

𝐻(𝑋|𝑌 = 𝑦) ≥ 𝐻(𝑋|𝑌 = 2)

≥
(︂
1− 1 + 𝑟

1 + 𝑞

)︂
(0.5 log(log(𝑛))− log(1 + 𝑟)−𝒪(1)) .

This completes the proof of Theorem 1.

Potential Improvements and Limitations: In our analysis, we use

max𝑦 𝐻(𝑋|𝑌 = 𝑦) to bound 𝐻(�̃�). One potential improvement might be obtained

by considering the gap between 𝐻(�̃�) and the collection {𝐻(𝑋|𝑌 = 𝑦)}𝑦 for a

given 𝑝(𝑥, 𝑦). [30] showed that the smallest 𝐻(�̃�) is given by the minimum entropy

coupling of the conditional distributions {𝑝(𝑋|𝑌 = 𝑦)}𝑦. Follow-up works have

developed minimum-entropy coupling algorithms [7,31,55] and obtained approximation

guarantees. However there is currently no tight analysis characterizing this entropy

gap.

Note that the original conjecture proposes that 𝐻(𝐸) ≤ log(𝑛) +𝒪(1) is sufficient.

This is a very strong statement and we believe, even if it is true, it requires a much

deeper understanding on the minimum entropy couplings than is currently available in

the literature. We do, however, provide evidence in Section 2.6 that 𝐻(𝐸) ≤ 𝛼 log(𝑛)

for 𝛼 < 1 seems sufficient for identifiability.

One point in our analysis that is related to this setting when 𝐻(𝐸) scales with

𝑛, is that we only considered the first column of the matrix M, i.e., we have only

taken into account the probability values of the form 𝑥𝑖𝑒1 contributing to the entropy

of 𝐻(𝑋|𝑌 = 𝑦). As long as the function 𝑓 is sampled uniformly randomly in the

considered generative model, this approach cannot give 𝐻(�̃�)≫ log(log(𝑛)) due to

the support size of 𝑋 being upper bounded by 𝒪(log(𝑛)) with high probability from

the balls and bins perspective. For when 𝐻(𝐸) is very small, we do expect this to be
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a reasonable approach as the remaining columns have very small probability values,

hence very small impact. However, for going beyond the current analysis and for

proving identifiability when 𝐻(𝐸) scales with 𝑛, we strongly believe that the effect of

the remaining columns should be considered.

Proof of Lemma 2

Let 𝜀 be the event that less than 𝑑𝑛
4

balls fall in the bins in 𝒰 . We provide an upper

bound for the probability of this event 𝑃 (𝜀). Consider the indicator variables each

corresponding to the event that a particular ball lands in 𝒰 . These indicator variables

are independently and identically distributed, where each has probability 𝒰
𝑛
≥ 1

2
of

being 1. We use Hoeffding’s inequality to bound 𝑃 (𝜀). Let 𝑆𝑑𝑛 be the sum of the 𝑑𝑛

indicator variables (i.e., the number of the balls that land in bins corresponding to 𝒰)

and 𝐸𝑑𝑛 be the expected sum of the indicator variables (𝐸𝑑𝑛 = 𝑑𝑛
(︀𝒰
𝑛

)︀
).

𝑃 (𝜀) = 𝑃

(︂
𝑆𝑑𝑛 <

𝑑𝑛

4

)︂
(2.2)

≤ 𝑃

(︂
|𝑆𝑑𝑛 − 𝐸𝑑𝑛| >

⃒⃒⃒⃒
𝐸𝑑𝑛 −

𝑑𝑛

4

⃒⃒⃒⃒)︂
(2.3)

≤ 𝑃

(︂
|𝑆𝑑𝑛 − 𝐸𝑑𝑛| >

𝑑𝑛

2
− 𝑑𝑛

4

)︂
(2.4)

≤ 𝑃

(︂
|𝑆𝑑𝑛 − 𝐸𝑑𝑛| >

𝑑𝑛

4

)︂
= 2𝑒−

𝑑𝑛
8 (2.5)

(2.3) to (2.4) is due the fact that for all valid values of 𝒰 , it holds that 𝐸𝑑𝑛 = 𝑑𝑛(𝒰
𝑛
) ≥ 𝑑𝑛

2
.

(2.5) is due to Hoeffding’s inequality. As such, 𝑃 (𝜀) ≤ 2𝑒−
𝑑𝑛
8 . Thus, with high

probability there are at least 𝑑𝑛
4

balls that fall into bins corresponding to 𝒰 . Since

balls are thrown independently and uniformly at random, conditioned on the balls

that land in 𝒰 , they are thrown independently and uniformly at random.
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Proof of Lemma 3

Recall that 𝜇 =
∑︀

𝑖∈𝑆′ 𝑝(𝑋 = 𝑖). We have

𝐻(𝑋) ≥
∑︁
𝑖∈𝑆′

𝑝(𝑋 = 𝑖) log

(︂
1

𝑝(𝑋 = 𝑖)

)︂

= 𝜇

(︃∑︁
𝑖∈𝑆′

𝑝(𝑋 = 𝑖)

𝜇
log

(︂
1

𝑝(𝑋 = 𝑖)

)︂)︃

≥ 𝜇

(︃∑︁
𝑖∈𝑆′

𝑝(𝑋 = 𝑖)

𝜇
log

(︂
𝜇

𝑝(𝑋 = 𝑖)

)︂)︃

= 𝜇

(︃∑︁
𝑖∈𝑆′

𝑝(𝑋 ′ = 𝑖) log

(︂
1

𝑝(𝑋 ′ = 𝑖)

)︂)︃
= 𝜇𝐻(𝑋 ′).

Proof of Lemma 5

We show the contrapositive. Suppose that 𝑝1 ≤ 𝜀 < 2−𝑐. We have 𝑝𝑖 ≤ 𝑝1,∀𝑖 ∈ [𝑚].

We consider all such distributions and find the one with smallest entropy:

min
𝑝1≥𝑝2,...≥𝑝𝑚

𝐻([𝑝1, 𝑝2, . . . , 𝑝𝑚])

s.t.
∑︁
𝑖

𝑝𝑖 = 1

𝜀 ≥ 𝑝𝑖 ≥ 0,∀𝑖 ∈ [𝑚]

(2.6)

For simplicity, suppose 1
𝜀

is an integer. We show that the solution to the above

optimization problem is strictly greater than 𝑐 using majorization theory. For any

given 𝑝, define the vector 𝑢𝑝 = [
∑︀𝑖

𝑗=1 𝑝𝑗]𝑖. Recall that a probability distribution 𝑝

majorizes another distribution 𝑞 if 𝑢𝑝(𝑖) ≥ 𝑢𝑞(𝑖),∀𝑖 ∈ [𝑚]. Also if 𝑝 majorizes 𝑞, we

have 𝐻(𝑝) ≤ 𝐻(𝑞).

Consider all distributions in the feasible region of the above problem. For any

𝑝*, consider the vector 𝑢𝑝* . Clearly, 𝑢𝑝*(1) ≥ 𝜀. Since 𝑝2 ≤ 𝑝1 < 𝜀, we have that

𝑢𝑝*(2) ≤ 2𝜀. Similarly, we have 𝑢𝑝*(𝑖) ≤ 𝜀. The uniform distribution achieves this

upper bounding 𝑢 vector, establishing that the uniform distribution majorizes every
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other distribution in the feasible set. Then for any distribution in the feasible region,

we get that 𝐻(𝑝) ≥ log(1
𝜀
) > 𝑐.

Suppose 1
𝜀

is not an integer. Let 𝑡 be the largest integer such that 𝑡𝜀 ≤ 1. Then

the above argument leads to the distribution with entropy

𝐻 = 𝑡𝜀 log

(︂
1

𝜀

)︂
+ (1− 𝑡𝜀) log

(︂
1

1− 𝑡𝜀

)︂
. (2.7)

Next, we show that if 𝜀 < 2−𝑐, above value is greater than 𝑐. We can rewrite

𝐻 = 𝑡𝜀 log

(︂
1

𝜀

)︂
+ (1− 𝑡𝜀) log

(︂
1

1− 𝑡𝜀

)︂
(2.8)

≥ 𝑡𝜀 log

(︂
1

𝜀

)︂
+ (1− 𝑡𝜀) log

(︂
1

𝜀

)︂
(2.9)

= log

(︂
1

𝜀

)︂
> 𝑐 (2.10)

since 1− 𝑡𝜀 ≤ 𝜀. This concludes the proof.

Proof of Proposition 1

By Lemma 5 we then know 𝜌′ ≤ 𝜌
𝑒1
≤ 𝜌2𝑐, and the size of the support of 𝑋𝑆′,2 is the

number of balls in the most loaded bin which is at least ln (𝑛)−ln (2)

ln (ln (𝑛))+ln ( 4
𝑑
)
. Using Lemma

4, we conclude 𝐻(𝑋𝑆′,2) ≥ log ( ln (𝑛)−ln (2)

ln (ln (𝑛))+ln ( 4
𝑑
)
)− (𝜌2

𝑐 ln (𝜌2𝑐)
𝜌2𝑐−1

− 1− ln (𝜌2
𝑐 ln (𝜌2𝑐)
𝜌2𝑐−1

)) 1
ln (2)

.

Using our previous results, we know that min𝑖∈𝑆′ 𝑝(𝑋 = 𝑖, 𝑌 = 2) ≥ min𝑖∈𝑆′ 𝑒1𝑥𝑖 ≥
𝑒1√
𝜌𝑛
≥ 2−𝑐

√
𝜌𝑛

. Then, 𝑝(𝑋 ∈ 𝑆 ′, 𝑌 = 2) ≥ ( ln (𝑛)−ln (2)

ln (ln (𝑛))+ln ( 4
𝑑
)
)( 2−𝑐

√
𝜌𝑛
) = ln (𝑛)−ln (2)

(ln (ln (𝑛))+ln ( 4
𝑑
))
√
𝜌𝑛2𝑐

.

Additionally:
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𝑝(𝑋 /∈ 𝑆 ′, 𝑌 = 2) =
∑︁
𝑖∈𝑆𝑐

𝑚∑︁
𝑗=1

𝑝(𝑋 = 𝑖, 𝑌 = 2, 𝐸 = 𝑗)

+
∑︁

𝑖∈𝑆,𝑖/∈𝑆′

𝑚∑︁
𝑗=1

𝑝(𝑋 = 𝑖, 𝑌 = 2, 𝐸 = 𝑗) (2.11)

=
∑︁
𝑖∈𝑆𝑐

𝑚∑︁
𝑗=1

𝑝(𝑋 = 𝑖, 𝑌 = 2, 𝐸 = 𝑗)

+
∑︁

𝑖∈𝑆,𝑖/∈𝑆′

𝑚∑︁
𝑗=2

𝑝(𝑋 = 𝑖, 𝑌 = 2, 𝐸 = 𝑗) (2.12)

≤
∑︁
𝑖∈𝑆𝑐

𝑚∑︁
𝑗=1

𝑝(𝑋 = 𝑖, 𝑌 = 2, 𝐸 = 𝑗)

+
∑︁
𝑖∈𝑆

𝑚∑︁
𝑗=2

𝑝(𝑋 = 𝑖, 𝑌 = 2, 𝐸 = 𝑗) ≤ 2

𝑛
. (2.13)

We go from (2.11) to (2.12) by realizing that for any 𝑖 ∈ 𝑆, 𝑝(𝑋 = 𝑖, 𝑌 =

2, 𝐸 = 1) > 0 only if M𝑥,1 = 2 and thus 𝑖 ∈ 𝑆 ′. We simplify (2.12) by definition

of 𝒰 . As such, 𝑝(𝑋 ∈ 𝑆 ′|𝑌 = 2) = 𝑝(𝑋∈𝑆′,𝑌=2)
𝑝(𝑋∈𝑆′,𝑌=2)+𝑝(𝑋/∈𝑆′,𝑌=2)

≥
ln (𝑛)−ln (2)

(ln (ln (𝑛))+ln ( 4
𝑑
))
√
𝜌𝑛2𝑐

ln (𝑛)−ln (2)

(ln (ln (𝑛))+ln ( 4
𝑑
))
√
𝜌𝑛2𝑐

+ 2
𝑛

=

ln (𝑛)−ln (2)

ln (𝑛)−ln (2)+(ln (ln (𝑛))+ln ( 4
𝑑
))
√
𝜌2𝑐+1 . Thus, we have shown that 𝐻(𝑋𝑆′,2) ≥

log ( ln (𝑛)−ln (2)

ln (ln (𝑛))+ln ( 4
𝑑
)
) − (𝜌2

𝑐 ln (𝜌2𝑐)
𝜌2𝑐−1

− 1 − ln (𝜌2
𝑐 ln (𝜌2𝑐)
𝜌2𝑐−1

)) 1
ln (2)

and 𝑃 (𝑋 ∈ 𝑆 ′, 𝑌 = 2) ≥
ln (𝑛)−ln (2)

ln (𝑛)−ln (2)+(ln (ln (𝑛))+ln ( 4
𝑑
))
√
𝜌2𝑐+1 .
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Using Lemma 3 we have:

𝐻(�̃�) ≥ 𝐻(𝑋|𝑌 = 2) ≥ 𝑃 (𝑋 ∈ 𝑆 ′, 𝑌 = 2)(𝐻(𝑋𝑆′,2))

≥
(︂

ln (𝑛)− ln (2)

ln (𝑛)− ln (2) + (ln (ln (𝑛)) + ln (4
𝑑
))
√
𝜌2𝑐+1

)︂
(︂
log (

ln (𝑛)− ln (2)

ln (ln (𝑛)) + ln (4
𝑑
)
)

−
(︂
𝜌2𝑐 ln (𝜌2𝑐)

𝜌2𝑐 − 1
− 1− ln (

𝜌2𝑐 ln (𝜌2𝑐)

𝜌2𝑐 − 1
)

)︂
1

ln (2)

)︂
=

(︂
1−

(ln (ln (𝑛)) + ln (4
𝑑
))
√
𝜌2𝑐+1

ln (𝑛)− ln (2) + (ln (ln (𝑛)) + ln (4
𝑑
))
√
𝜌2𝑐+1

)︂
(︂
log (

ln (𝑛)− ln (2)

ln (ln (𝑛)) + ln (4
𝑑
)
)

−
(︂
𝜌2𝑐 ln (𝜌2𝑐)

𝜌2𝑐 − 1
− 1− ln (

𝜌2𝑐 ln (𝜌2𝑐)

𝜌2𝑐 − 1
)

)︂
1

ln (2)

)︂
. (2.14)

Since 𝑐 = 𝑂(1) and 𝑑 = Θ(1), this lower bound is asymptotically 𝐻(�̃�) ≥

max𝑦 𝐻(𝑋|𝑌 = 𝑦) ≥ 𝐻(𝑋|𝑌 = 2) ≥ (1 − 𝑜(1))(log (log (𝑛)) − log (log (log (𝑛))) −

𝒪(1)).

Now when 𝑛 ≥ 𝜈(𝑟, 𝑞, 𝜌, 𝑐, 𝑑), we can lower bound the (1− 𝑜(1)) term as:

1−
(ln (ln (𝑛)) + ln (4

𝑑
))
√
𝜌2𝑐+1

ln (𝑛)− ln (2) + (ln (ln (𝑛)) + ln (4
𝑑
))
√
𝜌2𝑐+1

(2.15)

≥ 1−
(1 + 𝑟) ln (ln (𝑛))

√
𝜌2𝑐+1

ln (𝑛/2) + ln (ln (𝑛))
√
𝜌2𝑐+1

(2.16)

≥ 1−
(1 + 𝑟)

√︀
ln (𝑛/2)

√
𝜌2𝑐+1

ln (𝑛/2) +
√︀

ln (𝑛/2)
√
𝜌2𝑐+1

(2.17)

= 1− 1 + 𝑟

1 + ln (𝑛/2)√
𝜌2𝑐+1

(2.18)

≥ 1− 1 + 𝑟

1 + 𝑞
(2.19)

We bound from (2.15) to (2.16) by using 𝑛 ≥ 𝑒(
4
𝑑)

1/𝑟

which implies ln (ln (𝑛)) +

ln (4
𝑑
) ≤ (1+𝑟) ln (ln (𝑛)). We go from (2.16) to (2.17) by using

√︀
ln (𝑛/2) ≥ ln (ln (𝑛))

when 𝑛 ≥ 3. We bound from (2.18) to (2.19) by using 𝑛 ≥ 2𝑒𝑞
222(𝑐+1)𝜌. Next, we lower
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bound the term log
(︁

ln (𝑛)−ln (2)

ln (ln (𝑛))+ln ( 4
𝑑
)

)︁
.

log

(︂
ln (𝑛)− ln (2)

ln (ln (𝑛)) + ln (4
𝑑
)

)︂
(2.20)

≥ log

(︂
ln (𝑛/2)

(1 + 𝑟) ln (ln (𝑛))

)︂
(2.21)

≥ log
(︁√︀

ln (𝑛/2)
)︁
− log (1 + 𝑟) (2.22)

≥ 0.5 log (0.5 log (𝑛/2))− log (1 + 𝑟) (2.23)

≥ 0.5 log (log (𝑛))− log (1 + 𝑟)− 1 (2.24)

We bound from (2.20) to (2.21) by using ln (ln (𝑛)) + ln (4
𝑑
) ≤ (1 + 𝑟) ln (ln (𝑛)).

We bound from (2.21) to (2.22) using
√︀
ln (𝑛/2) ≥ ln (ln (𝑛)). We then substitute all

of these bounds into our previous lower bound on 𝐻(�̃�) (2.14) yielding:

𝐻(�̃�) ≥
(︂
1− 1 + 𝑟

1 + 𝑞

)︂(︂
0.5 log (log (𝑛))− log (1 + 𝑟)

−𝒪(1)− 1

ln(2)

(︂
𝜌2𝑐 ln(𝜌2𝑐)

𝜌2𝑐 − 1
− 1− ln

(︂
𝜌2𝑐 ln (𝜌2𝑐)

𝜌2𝑐 − 1

)︂)︂)︂
=

(︂
1− 1 + 𝑟

1 + 𝑞

)︂
(0.5 log(log(𝑛))− log(1 + 𝑟)−𝒪(1)) .

Proof of Corollary 1

Condition (a): Bounded Ratio. We know that max𝑥 𝑝(𝑥)
min𝑥 𝑝(𝑥)

≤ 𝜌. Since
∑︀

𝑥 𝑝(𝑥) = 1,

min𝑥 𝑝(𝑥) ≤ 1
𝑛
≤ max𝑥 𝑝(𝑥) and we have max𝑥 𝑝(𝑥)

1/𝑛
≤ 𝜌⇒ max𝑥 𝑝(𝑥) ≤ 𝜌

𝑛
and similarly

min𝑥 𝑝(𝑥) ≥ 1
𝜌𝑛

. Then using Theorem 1, when 𝑛 ≥ 𝜈(𝑟 = 1, 𝑞 = 3, 𝜌2, 𝑐, 𝑑 = 1),

𝐻(�̃�) ≥ max𝑦 𝐻(𝑋|𝑌 = 𝑦) ≥ 0.25 log (log (𝑛))−𝒪(1) with high probability (where

the 𝒪(1) term is a function of only 𝜌, 𝑐). As such, there exists an 𝑛0 (which is a

function of only 𝜌, 𝑐) such that for all 𝑛 > 𝑛0, the causal direction is identifiable with

high probability.

Condition (b): Sampled Uniformly on the Simplex. We first show that

when the distribution of 𝑋 is uniformly sampled from the simplex, there exist a set 𝑆

that satisfies the assumptions of Theorem 1 with high probability.
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Lemma 6. When the 𝑥𝑖 are sampled uniformly from the simplex, there exists a subset

of the support with size at least (𝑒−
1√
𝜌 − 1√

𝜌
− 𝛿)𝑛 for which all 𝑥𝑖 are within a factor of

√
𝜌 from 1

𝑛
and make up total probability mass ≥

(︁
𝑒
− 1√

𝜌 − 1√
𝜌
− 𝛿
)︁

1√
𝜌
, with probability

> 1− 2𝑒−2𝛿2𝑛 for 𝜌, 𝑛 ≥ 1, 𝛿 > 0.

Proof. Let us call a probability “small” if 𝑥𝑖 ≤ 1√
𝜌𝑛

. We want to show that with

high probability (at least 1 − 2𝑒−2𝛿2𝑛), there are at most (1 − 𝑒
− 1√

𝜌 + 𝛿)𝑛 small 𝑥𝑖.

Using Theorem 3 of [39], we know that for each 𝑥𝑖 in a Dirichlet distribution with

𝛼 = 1 (i.e., the uniform distribution over the probability simplex) and support size

𝑛, 𝑃 (𝑥𝑖 > 𝑧) = (1 − 𝑧)𝑛−1 (This is by setting 𝑎𝑖 = 𝑧 and 𝑎𝑗 = 0,∀𝑗 ̸= 𝑖 and using

the fact that 𝑃 (𝑥𝑖 = 0) = 0,∀𝑖 ∈ [𝑛]). As such, 𝑃 (𝑥𝑖 ≤ 𝑧) = 1 − (1 − 𝑧)𝑛−1. The

probability that 𝑥𝑖 is small is then equal to 𝑃 (𝑥𝑖 ≤ 1√
𝜌𝑛
) = 1 − (1 − 1√

𝜌𝑛
)𝑛−1. This

value is non-decreasing when 𝑛 ≥ 1, and approaches 1− 𝑒
− 1√

𝜌 as 𝑛 approaches infinity.

Hence when 𝑛 ≥ 1, the probability that any 𝑥𝑖 is “small” is upper-bounded by 1−𝑒
− 1√

𝜌 .

We want to show that the outcome that there are more than (1− 𝑒
− 1√

𝜌 + 𝛿)𝑛 small 𝑥𝑖

will not happen with high probability. To do this, we note that all 𝑥𝑖 in a symmetric

Dirichlet distribution are negatively associated (this follows from Lemma 9 in Section

2.9.1). This implies that the probability that there are at least (1−𝑒
− 1√

𝜌 +𝛿)𝑛 small 𝑥𝑖

is upper-bounded by the probability that there are at least that many 𝑥𝑖 when we treat

the 𝑥𝑖 as if they are i.i.d. random variables. This allows us to use Hoeffding’s inequality.

Let 𝑆𝑛 be the total number of small 𝑥𝑖 and 𝐸𝑛 be the expected number of small 𝑥𝑖.

Since 𝐸𝑛 ≤ (1−𝑒
− 1√

𝜌 )𝑛, then 𝑃 (𝑆𝑛 > (1−𝑒
− 1√

𝜌 +𝛿)𝑛) ≤ 𝑃 (|𝑆𝑛−𝐸𝑛| > 𝛿𝑛) < 2𝑒−2𝛿2𝑛.

As such, the probability that there are at most (1− 𝑒
− 1√

𝜌 + 𝛿)𝑛 small 𝑥𝑖 is at least

(1− 2𝑒−2𝛿2𝑛).

Let us call an 𝑥𝑖 “big” if 𝑥𝑖 ≥
√
𝜌

𝑛
. There are at most 𝑛√

𝜌
big 𝑥𝑖, since otherwise

their total probability mass would exceed 1.

Next, consider the subset of 𝑥𝑖 that are neither “big” nor “small”. They are in the

range [ 1√
𝜌𝑛
,
√
𝜌

𝑛
]. We know that with high probability (1− 2𝑒−2𝛿2𝑛) there are at most

(1− 𝑒
− 1√

𝜌 + 𝛿)𝑛 small 𝑥𝑖 and at most 𝑛√
𝜌

big 𝑥𝑖. This means our desired subset has size

at least
(︁
𝑛− (1− 𝑒

− 1√
𝜌 + 𝛿)𝑛− 𝑛√

𝜌

)︁
=
(︁
𝑒
− 1√

𝜌 − 1√
𝜌
− 𝛿
)︁
𝑛 with probability at least

1− 2𝑒−2𝛿2𝑛.
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As such, if we set 𝜌 = 25 and 𝛿 = 0.1, there exists a subset of the support of

size ≥ (𝑒
− 1√

25 − 1√
25
− 0.1)𝑛 ≥ 0.5𝑛 where all 𝑥𝑖 are within a factor of

√
25 = 5 from

1
𝑛

with probability > 1 − 2𝑒−2(0.1)2𝑛 = 1 − 2𝑒−0.02𝑛. Using Theorem 1, we conclude

that when 𝑛 ≥ 𝜈(𝑟 = 1, 𝑞 = 3, 𝜌 = 25, 𝑐, 𝑑 = 0.5), 𝐻(�̃�) ≥ max𝑦 𝐻(𝑋|𝑌 = 𝑦) ≥

0.25 log (log (𝑛))−𝒪(1) with high probability (where the 𝒪(1) term is a function of

only 𝑐). As such, there exists an 𝑛0 (which is a function of only 𝑐) such that for all

𝑛 > 𝑛0, the causal direction is identifiable with high probability.

Condition (c): High Entropy. We show that when 𝑋 has entropy within

an additive constant of log (𝑛), there exists a set 𝑆 that satisfies the assumptions of

Theorem 1.

Lemma 7. For any distribution 𝑋 with support size 𝑛 and entropy ≥ log (𝑛) − 𝑎,

there exists a subset 𝑆 with all 𝑥𝑖 ∈ .[ 3
40𝑛

, 2
2𝑏

𝑛
] for 𝑖 ∈ 𝑆, and support size |𝑆| ≥ 𝑛

22𝑏+3 ,

where 𝑏 = max{𝑎, 2}.

Proof. Let us call an 𝑥𝑖 “large” if 𝑥𝑖 ≥ 22𝑏

𝑛
, and 𝜇large be the total probability mass

contributed by large 𝑥𝑖. The upper bound for the sum of the terms in the formula

for 𝐻(𝑋) corresponding to large 𝑥𝑖 is 𝜇large log (
𝑛
22𝑏

). The upper bound for the

sum of the terms in Shannon entropy corresponding to 𝑥𝑖 that are not large is

(1− 𝜇large) log (
𝑛

1−𝜇large
). Since entropy is greater than log(𝑛)− 𝑎 and 𝑏 = max{𝑎, 2},

we have that entropy is greater than or equal to log(𝑛) − 𝑏 as well. Then, for

the total entropy to be at least log(𝑛)− 𝑏 it must be true that 𝜇large log (
𝑛
22𝑏

) + (1−

𝜇large) log (
𝑛

1−𝜇large
) ≥ log (𝑛)−𝑏. It follows that 2𝑏𝜇large+(1−𝜇large) log (1− 𝜇large) ≤ 𝑏.

For 𝑥 ≥ 0, we have that (1−𝑥) log(1−𝑥) ≥ −1.5𝑥. Then we have 2𝜇large(𝑏−0.75) ≤ 𝑏,

or equivalently 𝜇large ≤ 𝑏
2(𝑏−0.75)

. Since 𝑏 ≥ 2, we have that 𝜇large ≤ 0.8.

Let us call an 𝑥𝑖 “small” if it is ≤ 0.075
𝑛

, and let 𝜇small be the total probability

mass in small 𝑥𝑖. Even if all 𝑥𝑖 were small (although that would be impossible),

𝜇small ≤ 0.075. As such, 𝜇small + 𝜇large ≤ 7
8
. This means at least 1

8
total probability

mass belongs to 𝑥𝑖 ∈ [0.075
𝑛

, 2
2𝑏

𝑛
]. Our subset 𝑆 of 𝑋 will be all of these 𝑥𝑖. Since every

element in 𝑋 is upper-bounded by 22𝑏

𝑛
, 𝑆 has a support size of at least

1
8

22𝑏

𝑛

= 𝑛
22𝑏+3 .

We can therefore satisfy the conditions of Theorem 1 with 𝑑 = 1
22max{𝑎,2}+3 and
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𝜌 ≤ (40
3
22max{𝑎,2})2 ≤ 24max{𝑎,2}+8. Using Theorem 1, we conclude that when 𝑛 ≥

𝜈(𝑟 = 1, 𝑞 = 3, 𝜌 = 24max{𝑎,2}+8, 𝑐, 𝑑 = 1
22max{𝑎,2}+3 ), 𝐻(�̃�) ≥ max𝑦 𝐻(𝑋|𝑌 = 𝑦) ≥

0.25 log (log (𝑛))−𝒪(1) with high probability (where the 𝒪(1) term is a function of

only 𝑎, 𝑐). Hence there exists an 𝑛0 (a function of only 𝑎, 𝑐) such that for all 𝑛 > 𝑛0,

the causal direction is identifiable with high probability.

Proof of Theorem 2

Given the random variables 𝑈𝑖, 𝑖 ∈ [𝑛] with marginal distributions pi(𝑢𝑖), let

𝑝(𝑢1, 𝑢2, . . . , 𝑢𝑛) be a valid coupling. Then 𝑝 satisfies pi(𝑢𝑖) =∑︀
𝑘 ̸=𝑖

∑︀
𝑢𝑘∈[𝑛] 𝑝(𝑢1, 𝑢2, . . . , 𝑢𝑛) holds for all 𝑖, 𝑢𝑖. Therefore, for all 𝑖, 𝑢𝑖, we can

define 𝑆𝑖,𝑢𝑖
= {(𝑢𝑗)𝑗 ̸=𝑖 : 𝑝(𝑢1, 𝑢2, . . . 𝑢𝑛) > 0}. 𝑆𝑖,𝑢𝑖

contains the coordinates in

the coupling that contribute non-zero mass to satisfy the 𝑖𝑡ℎ marginal distribu-

tion, specifically the probability that variable 𝑈𝑖 takes the value 𝑢𝑖. Let us de-

fine the function 𝑔𝑖,𝑢𝑖
((𝑢𝑗)𝑗 ̸=𝑖) := 𝑝(𝑢1, . . . , 𝑢𝑛). Then equivalently, we can write

pi(𝑢𝑖) =
∑︀

𝑡∈𝑆𝑖,𝑢𝑖
𝑔𝑖,𝑢𝑖

(𝑡).

Consider a noisy version of the marginal distributions: Let p̂i be the noisy

marginals where |p̂i(𝑢𝑖) − pi(𝑢𝑖)| ≤ 𝛿 for all 𝑖, 𝑢𝑖. Our strategy is to start with

the coupling 𝑝(𝑢1, . . . , 𝑢𝑛) and convert it to a coupling for the noisy marginals. Let

us define 𝑇+
𝑖 (𝑝) := {𝑢𝑖 :

∑︀
𝑘 ̸=𝑖

∑︀
𝑢𝑘∈[𝑛] 𝑝(𝑢1, 𝑢2, . . . , 𝑢𝑛) < p̂i(𝑢𝑖)}, 𝑇−

𝑖 (𝑝) := {𝑢𝑖 :∑︀
𝑘 ̸=𝑖

∑︀
𝑢𝑘∈[𝑛] 𝑝(𝑢1, 𝑢2, . . . , 𝑢𝑛) > p̂i(𝑢𝑖)}. In words, 𝑇+

𝑖 (𝑝) shows the coordinates of

the 𝑖𝑡ℎ noisy marginal which has excess mass compared to the mass induced by coupling

𝑝. Similarly, 𝑇−
𝑖 (𝑝) shows the coordinates of the 𝑖𝑡ℎ noisy marginal for which the

coupling 𝑝 has more mass than needed. We update 𝑝 in two stages: First, we update

𝑝 so that 𝑇−
𝑖 (𝑝) = ∅. In the second stage, we further update 𝑝 so that 𝑇+

𝑖 (𝑝) = ∅ and

𝑇−
𝑖 (𝑝) = ∅, which shows that the updated 𝑝 is a valid coupling for the noisy marginals

p̂i. We finally bound the entropy of the new coupling relative to the initial coupling

we started with.

First we observe the following: Consider any 𝑢𝑖 ∈ 𝑇−
𝑖 . Then there exists a function
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Algorithm 1 Phase I
Input: Valid coupling 𝑝init for the marginals {pi}𝑖∈[𝑛]. Noisy marginals {p̂i}
𝑝← 𝑝init.
Construct 𝑔𝑖,𝑢𝑖

, 𝑆𝑖,𝑢𝑖
, 𝑇+

𝑖 , 𝑇−
𝑖 from 𝑝init for all 𝑖, 𝑢𝑖.

while ∃𝑖 ∈ [𝑛] s.t. 𝑇−
𝑖 ̸= ∅ do

Pick arbitrary ℎ𝑖,𝑢𝑖
for all 𝑢𝑖 such that

0 ≤ ℎ𝑖,𝑢𝑖
(𝑡) ≤ 𝑔𝑖,𝑢𝑖

(𝑡),∀𝑡 ∈ 𝑆𝑖,𝑢𝑖
,∑︁

𝑡∈𝑆𝑖,𝑢𝑖

ℎ𝑖,𝑢𝑖
(𝑡) = p̂i(𝑢𝑖).

Update 𝑝 as follows:

𝑝(𝑢1, 𝑢2, . . . , 𝑢𝑛)← ℎ𝑖,𝑢𝑖
((𝑢𝑗)𝑗 ̸=𝑖),∀(𝑢𝑗)𝑗 ̸=𝑖 ∈ 𝑆𝑖,𝑢𝑖

(2.27)

Construct 𝑔𝑖,𝑢𝑖
, 𝑆𝑖,𝑢𝑖

, 𝑇+
𝑖 , 𝑇−

𝑖 from 𝑝 for all 𝑖, 𝑢𝑖.
end while
return 𝑝

ℎ𝑖,𝑢𝑖
(𝑡) such that

0 ≤ ℎ𝑖,𝑢𝑖
(𝑡) ≤ 𝑔𝑖,𝑢𝑖

(𝑡),∀𝑡 ∈ 𝑆𝑖,𝑢𝑖
, (2.25)∑︁

𝑡∈𝑆𝑖,𝑢𝑖

ℎ𝑖,𝑢𝑖
(𝑡) = p̂i(𝑢𝑖). (2.26)

This is true since
∑︀

𝑡∈𝑆𝑖,𝑢𝑖
𝑔𝑖,𝑢𝑖

(𝑡) = pi(𝑢𝑖) and p̂i(𝑢𝑖) < pi(𝑢𝑖),∀𝑢𝑖 ∈ 𝑇𝑖. We can

describe the first phase as follows: For each 𝑖 ∈ [𝑛] and 𝑢𝑖 ∈ 𝑇−
𝑖 , we pick an arbitrary

ℎ𝑖,𝑢𝑖
and update 𝑝 to match the entries of ℎ𝑖,𝑢𝑖

. Notice that each update of 𝑝 changes the

corresponding ℎ, 𝑔 functions. Our construction proceeds by updating these functions

every time 𝑝 is updated as given above. This procedure is summarized in Algorithm 1.

Note that the size of 𝑇−
𝑖 after an update is at least one less than the size of 𝑇−

𝑖

before the update. To see this, note that after the update in (2.27), 𝑢𝑖 /∈ 𝑇−
𝑖 . Also by

reducing elements of 𝑝, we can never add a new element to 𝑇−
𝑖 for any 𝑖 by definition

of 𝑇−
𝑖 . Therefore, after at most

∑︀
𝑖|𝑇

−
𝑖 | applications of the above update for the initial

sets 𝑇−
𝑖 , we have 𝑇−

𝑖 = ∅,∀𝑖 ∈ [𝑛]. Since there are at most 𝑛 elements in 𝑇−
𝑖 and 𝑛
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such sets, the first phase terminates in at most 𝑛2 steps.

Let 𝑝 be the output of Algorithm 1 in the rest of the proof. In the second phase, we

consider the updated 𝑇+
𝑖 . Our strategy here is to distribute the remaining mass in each

marginal as its own coupling and add this coupling to 𝑝 that is the output of Algorithm

1. Let us represent the excess probability mass in coordinate 𝑢𝑖 of marginal 𝑖 relative

to coupling 𝑝 by 𝑟𝑖,𝑢𝑖
. Note that 𝑟𝑖,𝑢𝑖

(𝑝) := p̂i(𝑢𝑖)−
∑︀

𝑘 ̸=𝑖

∑︀
𝑢𝑘∈[𝑛] 𝑝(𝑢1, 𝑢2, . . . , 𝑢𝑛) may

increase at each step of the first phase. The exact increase in this gap for each 𝑖, 𝑢𝑖

depends on the choice of ℎ𝑖,𝑢𝑖
function at each step. However, we can bound the total

gap per marginal at the end of first phase as
∑︀

𝑢𝑖∈[𝑛] 𝑟𝑖,𝑢𝑖
(𝑝) ≤ 𝛿𝑛2,∀𝑖. Each step of

Algorithm 1 can add a mass of at most 𝛿 to each marginal at each step (it terminates

after at most
∑︀

𝑖 |𝑇
−
𝑖 | steps) and at the beginning of first phase, each coordinate of

each marginal has at most 𝛿 excess mass (there are
∑︀

𝑖 |𝑇
+
𝑖 | coordinates with excess

mass). As such, there is at most
∑︀

𝑖 𝛿|𝑇
−
𝑖 |+

∑︀
𝑖 𝛿|𝑇

+
𝑖 | ≤ 𝛿𝑛2 total gap per marginal

at the end of the first phase. Let 𝑝(𝑢1, . . . , 𝑢𝑛) be the output of Algorithm 1. [30]

showed a greedy minimum entropy coupling algorithm that produces a coupling with

support at most 𝑛2. Let 𝑞(𝑢1, 𝑢2 . . . , 𝑢𝑛) be the output of this greedy algorithm when

given the excess marginal mass as its input. Then we have that 𝑣 := 𝑝+ 𝑞 is a valid

coupling for the noisy marginals. This is because, by feeding the greedy algorithm the

excess marginal mass, we guarantee that the marginals of 𝑣 are correct. Moreover, all

cells in the coupling are in range [0, 1] as no cell in 𝑝 or 𝑞 has negative value and their

sum has the correct marginals.

Next, define the distribution 𝑠 : 2× [𝑛]𝑛 → [0, 1] as follows:

𝑠(0, 𝑢1, 𝑢2, . . . , 𝑢𝑛) = 𝑝(𝑢1, 𝑢2, . . . , 𝑢𝑛), (2.28)

𝑠(1, 𝑢1, 𝑢2, . . . , 𝑢𝑛) = 𝑞(𝑢1, 𝑢2 . . . , 𝑢𝑛). (2.29)

From the argument above, it is easy to see that 𝑠 is a valid probability distribution,

i.e., it has non-negative entries and its entries sum to 1.

We compare entropy of the obtained coupling 𝑣 with entropy of 𝑠 and that with

entropy of the initial coupling 𝑝init. First, it is easy to see from concavity of entropy
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and Jensen’s inequality that 𝐻(𝑣) ≤ 𝐻(𝑠). Let �̄� be the extended entropy operator

that admits vectors outside the simplex as input, for vectors whose entries are between

0 and 1: �̄�(𝑝(𝑥)) = −
∑︀

𝑥 𝑝(𝑥) log(𝑝(𝑥)). We have the following lemma that allows us

to compare �̄�(𝑝) with 𝐻(𝑝init):

Lemma 8. Let p = [𝑝1, 𝑝2, . . . , 𝑝𝑛] be a discrete probability distribution. Let q =

[𝑞1, 𝑞2, . . . , 𝑞𝑛] be a non-negative vector such that 𝑞𝑖 ≤ 𝑝𝑖,∀𝑖 ∈ [𝑛]. Then �̄�(q) ≤

�̄�(p) + log(𝑒)
𝑒

.

The proof is in Section 2.9.1 in the supplement.

From the lemma, we can conclude that �̄�(𝑝) ≤ 𝐻(𝑝init) +
log(𝑒)

𝑒
. Finally, the

maximum entropy contribution of 𝑞 is when it induces uniform distribution over 𝑛2

states. Since the total mass of 𝑞 is 𝛿𝑛2, we have

�̄�(𝑞) ≤ 𝑛2

(︂
𝛿𝑛2

𝑛2
log

(︂
𝑛2

𝛿𝑛2

)︂)︂
(2.30)

= 𝛿𝑛2 log

(︂
1

𝛿

)︂
(2.31)

Suppose 𝛿 ≤ 1
𝑛2 log(𝑛)

. Then we can further bound �̄�(𝑞) ≤ 2 + log (log (𝑛))
log (𝑛)

≤ 2 + 𝑜(1)

since 𝛿 log
(︀
1
𝛿

)︀
≤ 2 log(𝑛)+log(log(𝑛))

𝑛2 log(𝑛)
if 𝛿 < 1

𝑛2 log(𝑛)
.

Bringing it all together, we obtain the following chain of inequalities:

𝐻(𝑣) ≤ 𝐻(𝑠) = �̄�(𝑝) + �̄�(𝑞) (2.32)

≤ 𝐻(𝑝init) +
log(𝑒)

𝑒
+ 2 + 𝑜(1). (2.33)

This concludes the proof.

Proof of Lemma 8

If 𝑝𝑖 < 1
exp(1)

,∀𝑖, due to monotonicity of −𝑝 log(𝑝) in 𝑝, we have �̄�(q) ≤ �̄�(p).

In general, no more than 2 states can satisfy 𝑝𝑖 >
1

exp(1)
. Therefore, �̄�(𝑞) can only

be larger than �̄�(𝑝) due to two states. Let us call these two states 𝑝1, 𝑝2 without loss

of generality. Reducing the probability of any other state only gives a looser bound.
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We can obtain the largest entropy increase by solving the following optimization

problem:

max
𝑝1,𝑝2

1{𝑝1>1/𝑒}

(︂
log(𝑒)

𝑒
− 𝑝1 log

(︂
1

𝑝1

)︂)︂
+ 1{𝑝2>1/𝑒}

(︂
log(𝑒)

𝑒
− 𝑝2 log

(︂
1

𝑝2

)︂)︂
subject to 𝑝1 + 𝑝2 ≤ 1,

𝑝1 ≥ 0, 𝑝2 ≥ 0

(2.34)

Suppose 𝑝1 > 1/𝑒 and 𝑝2 < 1/𝑒. Then the solution is simply to set 𝑝1 = 1 since this

minimizes the entropy contribution of 𝑝1. This gives a gap of log(𝑒)
𝑒

. Due to symmetry,

we only need to investigate the case where 𝑝1 > 1/𝑒 and 𝑝2 > 1/𝑒. In this case, we

have the following optimization problem:

min
𝑝1,𝑝2

𝑝1 log

(︂
1

𝑝1

)︂
+ 𝑝2 log

(︂
1

𝑝2

)︂
subject to 𝑝1 + 𝑝2 ≤ 1,

𝑝1 ≥ 1/𝑒, 𝑝2 ≥ 1/𝑒

(2.35)

This is a concave minimization problem and the solution has to be at the boundary of

the convex constraint region. If 𝑝1 = 1/𝑒, the maximum gap is obtained when 𝑝2 is

maximized to 𝑝2 = 1 − 1/𝑒 which gives a gap that is strictly less than log(𝑒)
𝑒

, hence

we can discard this solution for the maximum entropy gap. 𝑝2 = 1/𝑒 gives the same

solution from symmetry. When 𝑝1 + 𝑝2 = 1, the problem reduces to minimizing the

binary entropy function, which again is minimized at the boundary. The boundary

in this case is where either 𝑝1 = 1/𝑒 or 𝑝2 = 1/𝑒. Therefore, both probabilities being

greater than 1/𝑒 cannot yield a better bound.

Proof of Lemma 1

Joint Probabilities. First, we bound the estimates of the entries of the joint

distribution between 𝑋 and 𝑌 . Both 𝑋 and 𝑌 have 𝑛 states which we index as

𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑛 respectively. Hence the joint distribution has 𝑛2 states.

Probability that 𝑋 = 𝑖 and 𝑌 = 𝑗 is shown as 𝑝𝑖𝑗. Suppose 𝑁 samples from 𝑁
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independent, identically distributed random variables are drawn as {(𝑥𝑘, 𝑦𝑘)}𝑘∈[𝑁 ].

This yields the empirical probability estimates (𝐼 is the indicator function)

𝑝𝑖𝑗 =
1

𝑁

𝑁∑︁
𝑘=1

𝐼(𝑥𝑘 = 𝑖& 𝑦𝑘 = 𝑗).

Note that each of these estimates are averages of Bernoulli random variables with

success probability 𝑝𝑖𝑗. We also consider the marginal probability empirical estimates

𝑝𝑋𝑖 =
1

𝑁

𝑁∑︁
𝑘=1

𝐼(𝑥𝑘 = 𝑖)

and

𝑝𝑌𝑗 =
1

𝑁

𝑁∑︁
𝑘=1

𝐼(𝑦𝑘 = 𝑗).

which are also averages of 𝑁 Bernoulli random variables (with success probabilities

𝑝𝑋𝑖 and 𝑝𝑌𝑗 respectively).

Since these estimates are clearly correlated with one another, our approach will be

to use concentration results on individual entries of the joint distribution and then do

a union bound over all 𝑛2 + 2𝑛 probabilities. Note that 𝐼(𝑥𝑘 = 𝑖& 𝑦𝑘 = 𝑗) = 1 with

probability 𝑝𝑖𝑗 and 0 otherwise. Thus by Hoeffding’s inequality [65],

P {|𝑝𝑖𝑗 − 𝑝𝑖𝑗| ≥ 𝑡} ≤ 2 exp
(︀
−2𝑡2𝑁

)︀
. (2.36)

We can define an event 𝒜 where all the probability estimates are within 𝑡 of the truth:

𝒜 =

{︂
max

𝑖,𝑗∈1,...,𝑛
|𝑝𝑖𝑗 − 𝑝𝑖𝑗| ≤ 𝑡

}︂⋂︁{︂
max
𝑖∈1,...,𝑛

|𝑝𝑋𝑖 − 𝑝𝑋𝑖 | ≤ 𝑡

}︂⋂︁{︂
max

𝑗∈1,...,𝑛
|𝑝𝑌𝑗 − 𝑝𝑌𝑗 | ≤ 𝑡

}︂
.

Starting with (2.36) and taking the union bound over all 𝑛2 + 2𝑛 probabilities in the

joint and marginal distribution, we obtain

P(𝒜) > 1− 2(𝑛2 + 2𝑛) exp
(︀
−2𝑡2𝑁

)︀
(2.37)

> 1− 4 exp(2 ln(𝑛)− 2𝑡2𝑁).
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Conditional Probabilities. Given the above bound on the estimates of the joint

probabilities, we formulate bounds on the conditional probability estimates. Recall

that

𝑃 (𝑋 = 𝑖|𝑌 = 𝑗) =
𝑃 (𝑋 = 𝑖, 𝑌 = 𝑗)

𝑃 (𝑌 = 𝑗)
=

𝑝𝑖𝑗∑︀𝑛
𝑖=1 𝑝𝑖𝑗

.

Using the plug-in approach, we have

𝑝𝑖|𝑗 =
𝑝𝑖𝑗
𝑝𝑌𝑗

.

Note that it is critical for 𝑝𝑌𝑗 to be bounded away from zero, otherwise a small error

in 𝑝𝑖𝑗 may cause a large error in 𝑝𝑖|𝑗. In what follows, we set

𝛼 =
min𝑗=1,...,𝑛 𝑝

𝑌
𝑗

2
.

𝛼 will naturally appear in the number of samples, and notably must depend on 𝑛.

Note that the case of
∑︀𝑛

𝑖=1 𝑝𝑖𝑗 = 0 is allowable since if that is the case 𝑌 = 𝑗 will never

occur and corresponding probability estimates will all be zero and the conditional

probabilities will not be of interest.

Now consider any 𝑡 < 𝛼, assume that event 𝒜 holds. We then have that all

𝑝𝑌𝑗 > 𝑝𝑌𝑗 − 𝑡 > 2𝛼− 𝑡 > 𝛼. Combined with the fact that under event 𝒜, |𝑝𝑖𝑗 − 𝑝𝑖𝑗| < 𝑡

and 𝑡 ≥ 0, it is easy to check that

𝑝𝑖|𝑗 − 𝑝𝑖|𝑗 =
𝑝𝑖𝑗
𝑝𝑌𝑗
− 𝑝𝑖𝑗

𝑝𝑌𝑗

<
𝑝𝑖𝑗 + 𝑡

𝑝𝑌𝑗 − 𝑡
− 𝑝𝑖𝑗

𝑝𝑌𝑗

=
𝑝𝑖𝑗𝑝

𝑌
𝑗 + 𝑡𝑝𝑌𝑗 − 𝑝𝑖𝑗𝑝

𝑌
𝑗 + 𝑡𝑝𝑖𝑗

𝑝𝑌𝑗 (𝑝
𝑌
𝑗 − 𝑡)

<
𝑡𝑝𝑌𝑗 + 𝑡𝑝𝑖𝑗

𝑝𝑌𝑗 𝛼

<
2𝑡

𝛼
,
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where the last inequality follows since 𝑝𝑖𝑗 < 𝑝𝑌𝑗 by definition. Similarly,

𝑝𝑖|𝑗 − 𝑝𝑖|𝑗 =
𝑝𝑖𝑗
𝑝𝑌𝑗
− 𝑝𝑖𝑗

𝑝𝑌𝑗

<
𝑝𝑖𝑗
𝑝𝑌𝑗
− 𝑝𝑖𝑗 − 𝑡

𝑝𝑌𝑗 + 𝑡

=
𝑝𝑖𝑗𝑝

𝑌
𝑗 + 𝑡𝑝𝑖𝑗 − 𝑝𝑖𝑗𝑝

𝑌
𝑗 + 𝑡𝑝𝑌𝑗

𝑝𝑌𝑗 (𝑝
𝑌
𝑗 + 𝑡)

<
𝑡𝑝𝑌𝑗 + 𝑡𝑝𝑖𝑗

𝑝𝑌𝑗 2𝛼

<
𝑡

𝛼
,

hence

|𝑝𝑖|𝑗 − 𝑝𝑖|𝑗| <
2𝑡

𝛼
.

Since by (2.37) the event𝒜 holds with probability at least 1−4 exp(2 log(𝑛)−2𝑡2𝑁),

we have

P
(︂

max
𝑖,𝑗∈1,...,𝑛

|𝑝𝑖|𝑗 − 𝑝𝑖|𝑗| ≥
2𝑡

𝛼

)︂
≤ 4 exp(2 ln (𝑛)− 2𝑡2𝑁). (2.38)

The derivation of the bound for the conditional probability estimates in the other

direction is similar and relies on the same event 𝒜 holding. Hence the probability the

bounds hold in both directions simultaneously remains P(𝒜).

Achieving error of 𝛿 = 1/(𝑛2 ln (𝑛)). Let 𝛼 = min{min𝑥 𝑝(𝑥),min𝑦 𝑝(𝑦)}
2

. Suppose we

want 2𝑡/𝛼 = 1/(𝑛2 ln (𝑛)). Then we need 𝑡 = 1/(2𝑛2𝛼−1 ln (𝑛)). Note that 𝑡 < 𝛼 as

required above. Suppose further that we want this to hold with probability at least

1− 4/𝑛. By the above, we require

2 ln(𝑛)− 2𝑡2𝑁 < − ln(𝑛)

3 ln(𝑛) <
2𝑁

4𝑛4𝛼−2 ln2(𝑛)

6𝑛4𝛼−2 ln3(𝑛) < 𝑁

Hence 𝑁 needs to be Ω(𝑛4𝛼−2 ln3(𝑛)).
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Proof of Theorem 3

From the equivalence between the minimum entropy coupling problem and the problem

of finding the exogenous variable with minimum entropy, the output of 𝒜({𝑝(𝑌 |𝑋 =

𝑥)}𝑥) is the smallest entropy of any exogenous variable for the causal model 𝑋 → 𝑌 .

Similarly, this claim holds for 𝒜({𝑝(𝑋|𝑌 = 𝑦)}𝑦) as well. From Theorem 1, entropy in

the direction 𝑌 → 𝑋 scales with 𝑛 using 𝑝(𝑋|𝑌 = 𝑦). From Theorem 6 of [18], it can

be seen that the given sampling error can induce an entropy difference of at most 𝑜(1)

in the conditional entropies. Hence, even with noisy conditionals, max𝑦 �̂�(𝑋|𝑌 = 𝑦)

scales with 𝑛, implying that 𝒜({𝑝(𝑋|𝑌 = 𝑦)}𝑦) scales with 𝑛. In the forward direction,

the true exogenous variable provides a valid coupling under the true joint distribution

without sampling noise. From Lemma 2, given 𝑁 samples, there exists a valid coupling

in the forward direction that is constant entropy away from the true exogenous variable.

Hence 𝒜({𝑝(𝑌 |𝑋 = 𝑥)}𝑥) is constant. Since 𝒜({𝑝(𝑋|𝑌 = 𝑦)}𝑦) scales with 𝑛, the

result follows.

Proof of Theorem 4

We first show that the 𝐻(𝑋|𝑌 = 2) conditional entropy will have enough samples

to be included in the criterion listed in Theorem 4. As 𝑁 = Ω(𝑛2 log(𝑛)), we have

at least 𝑐1𝑛
2 log(𝑛) samples for 𝑐1 = Θ(1). As shown in the proof of Theorem

1, 𝑝(𝑌 = 2) = Ω( 1
𝑛
) ≥ 𝑐4

𝑛
where 𝑐4 = Θ(1). Following a rejection sampling ap-

proach, we use Hoeffding’s inequality to show that if 𝑐1𝑛2 log 𝑛 samples are drawn

from the joint distribution, then with probability 1− 𝑜(1) we will successfully draw

Ω(𝑛 log (𝑛)) independent samples from the distribution 𝑝(𝑋|𝑌 = 2). Specifically, let

𝑆𝑛 denote the number of samples (out of 𝑐1𝑛2 log(𝑛) total samples from the joint

distribution) for which 𝑌 = 2, and 𝐸𝑛 = E[𝑆𝑛] denote the expected number of such

samples. We have 𝐸𝑛 ≥ (𝑐1𝑛
2 log(𝑛))( 𝑐4

𝑛
) = 𝑐1𝑐4𝑛 log(𝑛). Hence using Hoeffding’s

inequality, 𝑃
(︁
𝑆𝑛 < 𝑐1𝑐4𝑛 log(𝑛)

2

)︁
≤ 𝑃

(︁
|𝑆𝑛 − 𝐸𝑛| > 𝑐1𝑐4𝑛 log(𝑛)

2

)︁
< 2𝑒

− 2(𝑐1𝑐4𝑛 log(𝑛))2

𝑐1𝑛
2 log(𝑛) =

2𝑒−2𝑐1𝑐24 log(𝑛) = 𝑜(1). Hence 𝑆𝑛 ≥ 𝑐1𝑐4𝑛 log(𝑛)
2

≫ 𝑛 with probability 1− 𝑜(1). Thus the

�̂�(𝑋|𝑌 = 2), which we use for identifiability, will have sufficient number of samples
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to be included in the criterion in Theorem 4.

We now show that each conditional entropy in the criterion in Theorem 4 will

have error bounded by a constant with high probability. Immediately following from

Corollary 1.12 of [64], for a distribution 𝐷 with support size 𝑛, |𝐻(𝐷)−�̂�(𝐷)| ≤ 1 with

probability 1− 𝑒−𝑛𝑐2 given a sample of size at least 𝑐3𝑛
log(𝑛)

where 𝑐2, 𝑐3 = Θ(1). Since we

only calculate conditional entropy estimates with ≥ 𝑛 samples, the number of samples

𝑛≫ 𝑐3𝑛
log(𝑛)

for all considered conditional entropies. Hence the total probability of any

computed conditional entropy estimate being off by more than 1 is ≤ 𝑛𝑒−𝑛𝑐2 = 𝑜(1) by

the union bound. Since by the proof of Theorem 1 we know max𝑥 𝐻(𝑋|𝑌 = 𝑦) ≤ 𝑐≪

Ω(log(log(𝑛))) ≤ 𝐻(𝑋|𝑌 = 2), it immediately follows that max𝑥,𝑝(𝑋=𝑥)𝑁≥𝑛 �̂�(𝑌 |𝑋 =

𝑥) ≤ 𝑐+ 1≪ Ω(log(log(𝑛)))− 1 ≤ max𝑦,𝑝(𝑌=𝑦)𝑁≥𝑛 �̂�(𝑋|𝑌 = 𝑦).

Proof of Corollary 3

This generative model satisfies the assumptions of Theorem 3 following from the

proof of Corollary 1. As such, under this generative model for sufficiently large 𝑛 and

𝑁 = Ω(𝑛4𝛼−2 log3 (𝑛)) samples, 𝒜({𝑝(𝑋|𝑌 = 𝑦)}𝑦) > 𝒜({𝑝(𝑌 |𝑋 = 𝑥)}𝑥) with high

probability.

We show a lower bound on 𝛼 with high probability, under this generative model. As

mentioned in the proof of Corollary 1, under this generative model, for any 𝑖, 𝑃 (𝑥𝑖 ≤

𝑧) = 1− (1− 𝑧)𝑛−1. We aim to show that with high probability, 𝑥𝑖 ≥ 1
𝑛2 log(𝑛)

,∀𝑖 ∈ [𝑛]

when 𝑛 is sufficiently large.

We lower bound the probability of this not happening as (1− (1− 1
𝑛2 log(𝑛)

)𝑛−1)𝑛

by the union bound. Note that lim𝑛→∞
(1−(1− 1

𝑛2 log(𝑛)
)𝑛−1)𝑛

1/ log(𝑛)
= 1.

Hence for sufficiently large 𝑛 the probability that there exists an 𝑥𝑖 <
1

𝑛2 log(𝑛)
is

upper bounded by 2
log(𝑛)

. Thus, we have a high probability lower bound for 𝛼. We

substitute this for 𝛼 in our lower bound for the number of required samples in the

previous paragraph. This yields that under this generative model for sufficiently large

𝑛 and 𝑁 = Ω(𝑛8 log5 (𝑛)) samples, 𝒜({𝑝(𝑋|𝑌 = 𝑦)}𝑦) > 𝒜({𝑝(𝑌 |𝑋 = 𝑥)}𝑥) with

high probability.
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Proof of Negative Association

Lemma 9. Let [𝑥𝑖]𝑖∈[𝑛] be a vector, uniformly randomly sampled from the probability

simplex in 𝑛 dimensions. Then [𝑥𝑖]𝑖∈[𝑛] is negatively associated.

Proof. Let 𝑥𝑖 =
𝑧𝑖∑︀
𝑗 𝑧𝑗

, where each 𝑧𝑖 is independent and identically distributed ex-

ponential random variable with mean 1, i.e. distributed as Exp(1). Then [𝑥𝑖]𝑖 is a

discrete probability distribution uniformly randomly chosen from the simplex in 𝑛

dimensions. We will show that 𝑥𝑖 are negatively associated. The following argument

is provided by [53] as an answer on the online forum https://mathoverflow.net/,

which we reproduce here for completeness.

Consider the following theorem:

Theorem 5. [27] Let 𝑧1, 𝑧2, . . . , 𝑧𝑛 be 𝑛 random variables with log-concave probability

densities. Then (𝑧1, 𝑧2, . . . , 𝑧𝑛) conditioned on
∑︀

𝑖∈[𝑛] 𝑧𝑖 are negatively associated.

Note that exponential distribution is log-concave. Hence the theorem is applicable

in our setting. Furthermore, the distribution induced on ( 𝑧𝑖∑︀
𝑗∈[𝑛] 𝑧𝑗

)𝑖∈[𝑛] is identical

to the distribution induced on (𝑧1, 𝑧2, . . . , 𝑧𝑛) conditioned on
∑︀

𝑖∈[𝑛] 𝑧𝑖 = 1. This

concludes the proof.

2.9.2 Additional Experiments and Experimental Details

Experimental Details

In this section, we provide the complete details of every experiment given in the main

text, as well as provide additional results that we were not able to present in the main

text due to space constraints.

Sampling low-entropy exogenous variables: We use Dirichlet distribution

to sample the distribution for the exogenous variable from the probability simplex.

Dirichlet has the parameter 𝛼 which affects the entropy of the distribution obtained by

sampling the corresponding Dirichlet distribution: Smaller 𝛼 values lead to sampling

distributions with smaller entropy. Suppose we want to sample distributions for 𝐸

such that 𝐻(𝐸) ≤ 𝜃. Since a good 𝛼 value for this 𝜃 is not known a priori, we use
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the following adaptive sampling scheme: Suppose we want to sample 𝑁 distributions

for 𝐸 such that 𝐻(𝐸) ≤ 𝜃. We initialize with 𝛼(0) = 1 and obtain 10𝑁 samples from

Dirichlet with parameters 𝛼(0). If there are at least 𝑁 samples out of 10𝑁 which has

entropy less than 𝜃, we are done. If not, we set 𝛼(1) = 0.5𝛼(0) and iterate until for a

particular 𝛼(𝑖) such that at least 𝑁 out of 10𝑁 samples satisfy the entropy condition.

Details about Figure 2-2: We set 𝐸 to have 𝑚𝑛 number of states where 𝑚,𝑛

are the number of states of 𝑋 and 𝑌 , respectively. It can be shown that this many

number of states is sufficient to obtain any joint distribution. We uniformly randomly

sample the function 𝑓 in the structural equation 𝑌 = 𝑓(𝑋,𝐸). We also independently

and uniformly randomly sample 𝑝(𝑋) from the simplex, i.e., we obtain samples from

Dirichlet distribution with parameter 𝛼 = 1. For 𝑚 = 𝑛 = 40, we choose 20 values of

𝜃, i.e., entropy thresholds for the exogenous variable 𝐸, uniformly spaced in the range

[0, log(𝑚)]. For 𝑚 ̸= 𝑛, we choose 10 𝜃 values in the range [0, log(max{𝑚,𝑛})].

When 𝑚 ̸= 𝑛, we use a mixture data as follows: We obtain 10000 samples from

the graph 𝑋 → 𝑌 and we obtain 10000 samples from 𝑋 ← 𝑌 . We operate on this

mixed data. This is done to reflect the fact that, there is no reason for the cause

or the effect variable to have less or more number of states. Accuracy shown in the

figures reflect the fraction of times each algorithm correctly identifies the true causal

direction. Total entropy-based compares 𝐻(𝑋) + 𝐻(𝐸) and 𝐻(𝑌 ) + 𝐻(�̃�) where

𝐸 and �̃� are the outputs of the greedy minimum entropy coupling algorithm in the

direction 𝑋 → 𝑌 and 𝑋 ← 𝑌 , respectively.

Details about Figure 2-3: We sample exogenous variable using the above

adaptive sampling method so that, for each value of 𝑛, we have 𝐻(𝐸) ≤ 0.8 log(𝑛).

The other details are identical (e.g., 10000 samples for each configuration.) Due

to the sampling method, we observe that most of the samples are very close to

𝐻(𝐸) ≈ 0.8 log(𝑛). We then obtain the histogram plots for 𝐻(�̃�), where �̃� is the

output of the greedy minimum entropy coupling algorithm in the wrong direction. As

observed, data fits well to a Gaussian and is highly concentrated around 0.854 log(𝑛).

Details about Figure 2-5: In this section, we introduce a latent confounder 𝐿.

First, distribution of 𝐿 and distribution of 𝐸 are sampled independently. Then the

66



2.0 2.5 3.0 3.5
H(E)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Histogram of H(E) for m=n=16

Normal fit:
 /log2(n) = 0.765 
 /log2(n) = 0.058

(a)

3.0 3.5 4.0 4.5
H(E)

0.0

0.5

1.0

1.5

2.0

Histogram of H(E) for m=n=64
Normal fit:
 /log2(n) = 0.694 
 /log2(n) = 0.031

(b)

3.5 4.0 4.5 5.0 5.5
H(E)

0.0

0.5

1.0

1.5

2.0

2.5

Histogram of H(E) for m=n=128
Normal fit:
 /log2(n) = 0.692 
 /log2(n) = 0.024

(c)

Figure 2-6: Histogram of 𝐻(�̃�) when 𝐻(𝐸) ≈ 0.5 log2(𝑛). Yellow line shows 𝑥 =
0.5 log2(𝑛)

distributions 𝑝(𝑋|𝑙), 𝑝(𝑌 |𝑥, 𝑙, 𝑒) are sampled uniformly randomly from the simplex for

every configuration of 𝑥, 𝑙, 𝑒. We use the adaptive sampling described above to sample

𝐸 such that 𝐻(𝐸) ≤ 2. Using the same sampling method, we sweep through different

entropy thresholds for the latent confounder 𝐿 and sample such that 𝐻(𝐿) ≤ 𝜑 for

𝜑 ∈ {0.5, 1, 1.5, 2, 2.5, 3}. The settings for 𝑚,𝑛 and how data is mixed is identical to

the procedure used to obtain Figure 2-2: When 𝑚 ̸= 𝑛, we use uniformly mixed data

from 𝑋 → 𝑌 and 𝑋 ← 𝑌 . For each configuration, we obtain 1000 total number of

samples and report the accuracy of the method to identify the true causal direction.

Relaxing constant exogenous entropy assumption

As indicated in Section 2.6, we provide additional experiments for 𝛼 = 0.2 and 0.5 in

Figure 2-7 and Figure 2-6, respectively. As can be seen, for both 𝛼 values, i.e., when

𝐻(𝐸) ≤ 𝛼 log(𝑛), 𝐻(�̃�) highly concentrates around 𝛽 log(𝑛) for some 𝛽 > 𝛼.

Additional results on the finite sample regime

Figure 2-8 shows results on finite sample identifiability for the setting considered in

the figure in the main text, except with smaller 𝐻(𝐸) ≤ ln(4).

Results for 𝑝(𝑋) drawn from Dir(1) are shown Figure 2-9, as described in the

main text. We find that the greedy MEC performance degrades to a level that is

similar to the conditional entropy criterion. This might be explained by the fact that
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Figure 2-7: Histogram of 𝐻(�̃�) when 𝐻(𝐸) ≈ 0.2 log2(𝑛). Yellow line shows 𝑥 =
0.2 log2(𝑛)
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Figure 2-8: Finite sample identifiability of the causal direction via entropic causality.
(a) Probability of correctly discovering the causal direction 𝑋 → 𝑌 as a function of 𝑛
and number of samples 𝑁 , using the conditional entropies as the test. (b) Probability
of correctly discovering the causal direction 𝑋 → 𝑌 using the greedy MEC algorithm
to test the direction. (c) Samples 𝑁 required to reach 95% correct detection as a
function of 𝑛, derived from the plots in Figure 2-8a and Figure 2-8b.

if 𝑝(𝑋|𝑌 = 𝑦) are close to uniform, then the gap between 𝐻(�̃�) and 𝐻(𝑋|𝑌 = 𝑦)

vanishes.

Additional Tuebingen Experiments

In this section, we perform additional experiments to evaluate the stability of the

method to choice of quantization on the Tuebingen dataset. Specifically, to quantize

[𝑎, 𝑏] into 𝑛 intervals, we perturb each quantization point {𝑎+ (𝑏−𝑎)𝑖
𝑛
}𝑖 with a uniform

noise in [− (𝑏−𝑎)
8𝑛

, (𝑏−𝑎)
8𝑛

]. For every pair, this is done 5 times independently and the

majority decision is taken. The results, which show similar performance to Table 2.1
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Figure 2-9: Finite sample identifiability of the causal direction via entropic causality,
where 𝑝(𝑥) ∼ Dir(1) (uniform on the simplex). (a) Probability of correctly discovering
the causal direction 𝑋 → 𝑌 as a function of 𝑛 and number of samples 𝑁 , using the
conditional entropies as the test. (b) Probability of correctly discovering the causal
direction 𝑋 → 𝑌 as a function of 𝑛 and number of samples 𝑁 , using the greedy MEC
algorithm to test the direction. (c) Samples 𝑁 required to reach 98% correct detection
as a function of 𝑛, derived from the plots in Figure 2-9a and Figure 2-9b.

5-state quantization
Threshold (× log support) 0.6 0.7 0.8 0.85 0.9 1.0 1.2

# of pairs 10 13 32 42 53 69 85
Accuracy (%) 90.0 61.5 53.1 54.8 56.5 58.5 57.6

10-state quantization
Threshold (× log support) 0.6 0.7 0.8 0.85 0.9 1.0 1.2

# of pairs 8 12 23 39 49 71 85
Accuracy (%) 87.5 66.7 60.9 53.8 51.0 52.1 57.6

20-state quantization
Threshold (× log support) 0.6 0.7 0.8 0.85 0.9 1.0 1.2

# of pairs 5 10 15 31 54 78 85
Accuracy (%) 60.0 70.0 73.3 54.8 48.1 48.7 55.3

Table 2.3: Performance on Tübingen causal pairs with low exogenous entropy in at
least one direction. Chosen based on majority voting on 5 random quantizations.

are shown in Table 2.3, demonstrating a degree of stability to choice of quantization.

We observe that perturbed quantization demonstrates better performance for 20−state

quantization, whereas it shows somewhat worse performance for the 5 and 10−state

quantizations. This indicates that more research is needed to determine the optimal

quantization for a given dataset.
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Chapter 3

Entropic Causal Inference: Graph

Identifiability

3.1 Overview

In this chapter, we detail joint work with Kristjan Greenewald, Dmitriy Katz, and

Murat Kocaoglu.

Entropic causal inference is a recent framework for learning the causal graph

between two variables from observational data by finding the information-theoretically

simplest structural explanation of the data, i.e., the model with smallest entropy. In our

work, we first extend the causal graph identifiability result in the two-variable setting

under relaxed assumptions. We then show the first identifiability result using the

entropic approach for learning causal graphs with more than two nodes. Our approach

utilizes the property that ancestrality between a source node and its descendants

can be determined using the bivariate entropic tests. We provide a sound sequential

peeling algorithm for general graphs that relies on this property. We also propose a

heuristic algorithm for small graphs that shows strong empirical performance. We

rigorously evaluate the performance of our algorithms on synthetic data generated

from a variety of models, observing improvement over prior work. Finally we test our

algorithms on real-world datasets.
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3.2 Introduction

Causal reasoning is essential for high-quality decision-making, as, for instance, it

improves interpretability and enables counterfactual reasoning [2, 44,45]. By learning

the relationships between causes and effects, we can predict how various interventions

would affect a system. Advances in causality enable us to better answer questions

such as “Why does this phenomenon occur in the system?” or “What could happen

if the system were perturbed in this particular way?” Moreover, causal inference

methods are being utilized to tackle key challenges for reliability of ML systems, such

as domain adaptation [38,69] and generalization (e.g. via causal transportability or

imputation) [3, 49,61].

Structural causal models (SCMs) represent relationships in a system of random

variables [47]. In particular, each variable is modeled with a structural equation that

characterizes how the variable is realized. Causal graphs are directed acyclic graphs

(DAGs) that are used to represent such systems, where nodes and edges correspond to

variables and the causal relations between these variables, respectively. A variable’s

structural equation is a function of the variable’s corresponding node’s parents in the

graph.

Learning such causal graphs can be done through a series of interventions. However,

in many settings it is not possible to perform such interventions. A large amount

of literature has focused on learning the causal graph from observational data with

additional “faithfulness assumptions” [60], though in general it is impossible to

fully learn the causal graph without stronger assumptions on the generative model.

A variety of stronger assumptions and corresponding methodologies exist in the

literature [19,37,51,59]. Most of these methods, however, are limited to continuous

variables and thus cannot handle categorical data, especially in the multivariate

setting.

A recent framework explicitly designed to handle categorical data is entropic causal

inference [12, 29]. At a high level, the underlying assumption of this approach is

that true causal mechanisms in nature are often “simple,” taking inspiration from the
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Occam’s razor principle. The authors adopt an information-theoretic realization of

this principle by using “entropy" to measure the complexity of a causal model. As we

further explore in this work, entropic causal inference provides a means to measure

the amount of randomness a generative model would require to produce an observed

distribution. As Occam’s razor prefers simpler explanations, entropic causal inference

prefers generative models with small randomness. We do not expect following this

preference to always lead to the discovery of true causal relationships (just as one does

not expect a simpler explanation to be always be the correct one), but view this as a

guiding intuition that mirrors nature and experimental observations. Our experiments

on semi-synthetic data demonstrates that the low-entropy assumption indeed holds in

certain settings.

Previously, the framework was applied to discovering the causal direction between

two random variables given that the amount of randomness in the true causal rela-

tionship is small. We focus on extending this framework to learn larger causal graphs

instead of just cause-effect pairs. Suppose the observed variables have 𝑛 states. Our

contributions follow:

1. We show pairwise identifiability with strictly relaxed assumptions compared

to the previously known results. We enable learning the causal graph 𝑋 → 𝑌

from observational data even when (𝑖) the cause variable 𝑋 has low entropy of

𝑜(log(𝑛)) and (𝑖𝑖) the exogenous noise has non-constant entropy, i.e., 𝒪(1)≪

𝐻(𝐸) = 𝑜(log log(𝑛)).

2. We show the first identifiability result for causal graphs with more than two

observed variables, with a new peeling algorithm for general graphs.

3. We propose a heuristic algorithm that searches over all DAGs and outputs the

one that requires the minimum entropy to fit to the observed distribution.

4. We experimentally evaluate our algorithms and show that entropic approaches

outperform the discrete additive noise models in synthetic data. We also ap-

ply our algorithms on semi-synthetic data using the bnlearn1 repository and

1https://www.bnlearn.com/bnrepository/
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demonstrate the applicability of low-entropy assumptions and the proposed

method.

3.3 Related Work

Learning causal graphs from observational data has been studied extensively in the

case of continuous variables. [37] proposes an algorithm for learning linear structural

causal models when the error variance is known. Similarly, [51] show that linear

models with Gaussian noise become identifiable if the noise variance is the same for

all variables. A more general modeling assumption is the additive noise model (ANM).

In [59], the authors show that for almost all linear causal models, the causal graph is

identifiable if the additive exogenous noise is non-Gaussian.

In the case of discrete and/or categorical variables, causal discovery literature is

much more sparse. [5] introduces a method for categorical cause-effect pairs when

there exists a hidden intermediate representation that is compact. In [14, 25], the

authors propose using an information-geometric approach called IGCI that is based

on independence of cause and the causal mechanism. However IGCI can provably

recover the causal direction only in the case of deterministic relations. An extension

of additive noise models to discrete data is done in [52] where identifiability is shown

between two variables. The authors also propose using the regression-based algorithm

of [42] (which made continuous domain ANM applicable to arbitrary graphs) for the

discrete setting as well. Without specific assumptions on the graph and the generative

mechanisms, this is a heuristic algorithm, i.e., identifiability in polynomial time is not

guaranteed by discrete ANM on graphs with more than two nodes.

One related idea is to use Kolmogorov complexity to determine the simplest causal

model [24]. Minimum-description length has been used as a substitute for Kolmogorov

complexity (which is not computable) in a series of follow-up papers [4, 41]. Our

extension of entropic causal inference to graphs can be seen as an information-theoretic

realization of this promise, where the complexity of the causal model is captured by

its entropy. Other information-theoretic concepts such as interaction information [17]
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and directed information [15] have also been studied in the context of causality.

3.4 Background and Notation

Causal Graphs and Learning: Consider a causal system where each variable is

generated as a function of a subset of the rest of the observed variables and some

additional randomness. Such systems are modeled by structural equations and are

called structural causal models (SCMs). Let 𝑋1, 𝑋2, . . . , 𝑋|𝑉 | be the set of observed

variables. Accordingly, there exists functions 𝑓𝑖 and exogenous noise terms 𝐸𝑖 such

that 𝑋𝑖 = 𝑓𝑖(Pa𝑖, 𝐸𝑖). This equation in a causal system should be understood as

an assignment operator since changing Pa𝑖 affects 𝑋𝑖 whereas changing 𝑋𝑖 does not

affect Pa𝑖. We say the set of variables Pa𝑖 cause 𝑋𝑖. A directed acyclic graph (DAG)

can be used to summarize these causal relations, which is called the causal graph.

We denote the causal graph by 𝐺 = (𝑉, ℰ) where 𝑉 is the set of observed nodes

and ℰ is the set of directed edges. There are |𝑉 | nodes, 𝑋1, 𝑋2, . . . , 𝑋|𝑉 |, where each

𝑋𝑖 corresponds to an observable random variable. Edges are constructed by adding

a directed arrow from every node in the set Pa𝑖 to 𝑋𝑖 for all 𝑖. Pa𝑖 then becomes

the set of parents of 𝑋𝑖 in 𝐺. We assume causal sufficiency, i.e., that there are no

unobserved confounders, and that there is no selection bias. Under these assumptions,

Pa𝑖⊥⊥𝐸𝑖. Additionally, for simplicity of presentation we denote the number of states

of all variables as 𝑛 (i.e. |𝑋𝑖| = 𝑛 for all 𝑖). Note that our proofs do not require each

observed variable to strictly have the same number of states; we merely need them

scale together, i.e. if 𝑋1 ∈ [𝑛1] and 𝑋2 ∈ [𝑛2] then 𝑛1

𝑛2
= Θ(1). All big-o notation in

the paper is relative to 𝑛. Our goal is to infer the directed causal graph from the

observed joint distribution 𝑝(𝑋1, 𝑋2, . . . , 𝑋|𝑉 |) using the assumptions of the entropic

causality framework as needed.

Even without making any parametric assumptions, we can learn some properties

of the graph from purely observational data. Algorithms relying on conditional

independence tests (such as the PC or IC algorithms [47,60]) can identify the Markov

equivalence class (MEC) of 𝐺, i.e. the set of graphs that produce distributions with
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the exact same set of conditional independence relations. Moreover, a graph’s Markov

equivalence class uniquely determines its skeleton (the set of edges, ignoring orientation)

and unshielded colliders (the induced subgraphs of the form 𝑋 → 𝑍 ← 𝑌 ). A Markov

equivalence class is summarized by a mixed graph called the essential graph, which

has the same skeleton and contains a directed edge if all graphs in the equivalence

class orient the edge in the same direction. All other edges are undirected. The

problem of determining the true causal graph from observational data thus reduces

to orienting these remaining undirected edges, given enough samples to perform

conditional independence tests reliably.

Entropic Causality Framework: Without interventional data, one needs

additional assumptions to refine the graph structure further than the equivalence class.

The key assumption of the entropic causality framework is that, in nature, true causal

models are often “simple.” In information-theoretic terms, this is formalized as the

entropy of exogenous variables often being small. Previous work has shown guarantees

for identifying the direction between a causal pair 𝑋, 𝑌 where 𝑌 = 𝑓(𝑋,𝐸), 𝑋⊥⊥𝐸

for some exogenous variable 𝐸 from observational data. The work of [29] showed that

when the support size of the exogenous variable (i.e. the Renyi-0 entropy 𝐻0(𝐸) = |𝐸|)

is small, with probability 1 it is impossible to factor the model in the reverse direction

(as 𝑋 = 𝑔(𝑌, �̃�)) with an exogenous variable with small support size (i.e. |�̃�| must

be large). Thus, one can identify the causal pair direction by fitting the smallest

cardinality exogenous variable in both directions and checking which direction enables

the smaller cardinality. [29] conjectured that this approach also would work well for

Shannon entropy. [12] resolved this conjecture, showing identifiability for causal pairs

under particular generative assumptions.

Definition 2 ((𝛼, 𝛽)-support). A discrete random variable 𝑋 is said to have (𝛼, 𝛽)-

support if at least 𝛼 states of 𝑋 have probability of at least 𝛽.

[12] assumes that the cause variable 𝑋 has (Ω(𝑛),Ω( 1
𝑛
))-support and that the

Shannon entropy of the exogenous variable (i.e. 𝐻(𝐸) = 𝐻1(𝐸)) is small. Specifically,

they showed that when 𝐻(𝐸) = 𝑂(1), 𝐻(�̃�) = Ω(log(log(𝑛))) with high probability.
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The high probability statement is with respect to the selection of the function 𝑓 , i.e.,

for all but a vanishing (in 𝑛) fraction of functions 𝑓 , identifiability holds. Moreover,

they showed that this approach was robust to only having a polynomial number of

samples, whereas the result of [29] that assumed small |𝐸| required knowing the exact

joint distribution, e.g. from an oracle or infinite samples.

Algorithmically, one can provably orient causal pairs under the assumptions of [12]

by comparing the minimum entropy exogenous variable needed to factor the pair

in both directions (i.e. comparing the minimum 𝐻(𝐸) for which there exists a

function 𝑓 and 𝐸⊥⊥𝑋 such that 𝑌 = 𝑓(𝑋,𝐸), and the analogous quantity minimizing

𝐻(�̃�)). Finding this minimum entropy exogenous variable is an optimization problem

equivalent to the minimum-entropy coupling problem for the conditionals, specifically,

the minimum 𝐻(𝐸) in the direction 𝑋 → 𝑌 is the same as the minimum-entropy

coupling for [(𝑌 |𝑋 = 𝑖)],∀𝑖 ∈ [𝑛] [8, 29,46]. Accordingly, we denote the entropy of the

minimum-entropy coupling for a variable 𝑋 conditioned on a set 𝑆 as MEC(𝑋|𝑆). [12]

showed MEC(𝑌 |𝑋) < MEC(𝑋|𝑌 ) with high probability.

3.5 Tightening the Entropic Identifiability Result for

Cause-Effect Pairs

In this work, we leverage results for the bivariate entropic causality setting to learn

general graphs. Theorem 1 of [12] provides identifiability guarantees in the bivariate

setting. However, the assumptions of their theorem are not general enough to imply

an identifiability result on graphs with more than 2 nodes. Specifically, a fundamental

challenge in applying bivariate causality to discover each edge in a larger graph is

confounding due to the other variables, i.e., when one considers a pair of variables, the

remaining variables act as confounders. These confounders cannot be controlled for

since we do not know the causal graph and conditioning on other variables unknowingly

creates additional dependencies. One natural approach to handle confounding is to

recursively discover source nodes by conditioning on the common causes that are
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discovered so far in the graph. This idea will form the basis for our peeling algorithm to

be proposed in Section 3.6.1. We are interested in learning graphs where the exogenous

variable for every node has small entropy (in particular, 𝐻(𝐸𝑖) = 𝑜(log(log(𝑛)))).

When conditioning on the source nodes, some nodes 𝑋 (e.g. the children of the source

nodes) will thus have conditional entropies of order 𝐻(𝑋|sources) = 𝑜(log(log(𝑛)))

since for the children of source nodes, the only remaining randomness on 𝑋 will be

due to the low-entropy exogenous variable. This creates problems when attempting to

orient edges connected to these variables conditioned on the source nodes. Specifically,

Theorem 1 of [12] requires the cause variable 𝑋 to have (Ω(𝑛),Ω( 1
𝑛
))-support which

enforces 𝐻(𝑋) = Ω(log(𝑛)) – and this is not satisfied for the above nodes with

𝑜(log(log(𝑛))) entropy.

In the following bivariate result, we instead only require (Ω(𝑛),Ω( 1
𝑛 log(𝑛)

))-support,

and simultaneously relax the exogenous variable constraint from 𝐻(𝐸) = 𝑂(1) to

𝐻(𝐸) = 𝑜(log(log(𝑛))). This condition can be satisfied for 𝑋 with 𝐻(𝑋) = 𝑂(1) as

needed.

Theorem 6. Consider the SCM 𝑌 = 𝑓(𝑋,𝐸), 𝑋⊥⊥𝐸, where 𝑋, 𝑌 ∈ [𝑛], 𝐸 ∈ [𝑚].

Suppose 𝐸 is any random variable with entropy 𝐻(𝐸) = 𝑜(log(log(𝑛))). Let 𝑋 have

(Ω(𝑛),Ω( 1
𝑛 log(𝑛)

))-support. Let 𝑓 be sampled uniformly randomly from all mappings

𝑓 : [𝑛]×[𝑚]→ [𝑛]. Suppose 𝑛 is sufficiently large. Then, with high probability, any �̃�

that satisfies 𝑋=𝑔(𝑌, �̃�), �̃�⊥⊥𝑌 for some 𝑔, entails 𝐻(�̃�)≥Ω(log(log(𝑛))).

While interesting in its own right, we apply this tightened bivariate identifiability

result to the general graph case in Section 3.6. Note that the assumption of a uniformly

random 𝑓 (also used in [12], [29]) is not meant as a description of how nature generates

causal functions, but as the least-restrictive option for putting a measure on the

space of possible functions so that high-probability statements can be made rigorously.

Theorem 6 can be immediately adapted to any alternative distribution on the space

of 𝑓 that does not assign any individual value of 𝑓 probability mass more than 𝑛𝑐′

times the probability mass assigned by the uniform distribution, for some constant 𝑐′.
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Proof overview for Theorem 6. Here we provide the intuition behind the proof

strategy, the full proof is given in Appendix 3.9.1. It is simple to show that the

minimum entropy required to fit the function in the incorrect direction, 𝐻(�̃�), is lower-

bounded as 𝐻(�̃�) ≥ max𝑦 𝐻(𝑋|𝑌 = 𝑦). The overarching goal of our proof method is

then to show that there exists a state 𝑦′ of 𝑌 such that 𝐻(𝑋|𝑌 = 𝑦′) = Ω(log(log(𝑛))).

To accomplish this, we start by showing that the (Ω(𝑛),Ω( 1
𝑛 log(𝑛)

))-support of

𝑋 implies existence of a subset 𝑆 of Ω(𝑛) states of 𝑋 that each have probability

Ω( 1
𝑛 log(𝑛)

) and are all relatively close in probability to each other. We call this subset

𝑆, the plateau states. If one envisions them as adjacent in the PMF of 𝑋, these states

would have similar heights and thus look like a plateau.

Now, we conceptualize the realization of 𝑓 as a balls-and-bins game, where each

element of 𝑋 × 𝐸 (a ball) is mapped i.i.d. uniformly randomly to a state of 𝑌 (a

bin). Using balls-and-bins arguments, it is our hope to show that there is a bin that

receives Ω( log(𝑛)
log(log(𝑛))

) plateau balls of the form (𝑋 ∈ 𝑆,𝐸 = 𝑒1), where 𝑒1 is the most

probable state of 𝐸, and that this will cause the corresponding conditional distribution

to have large entropy. The primary intuition is that a bin receiving many plateau

balls would cause the corresponding conditional distribution to have many plateau

states that all have near-uniform probabilities, and this near-uniform subset of the

conditional distribution would contribute a significant fraction of the probability mass

to guarantee that its entropy is large. With the stronger assumptions on (𝛼, 𝛽)-support

by [12], this proof method suffices. However, as we are assuming a weaker notion

of (𝛼, 𝛽)-support, it is not clear that the plateau balls would make up a significant

fraction of the conditional’s mass to guarantee large entropy.

In a sense, the plateau balls are probability masses that are “helping” us make

some conditional entropy large. The proof of [12] takes the perspective that all

remaining mass from non-plateau states are “hurting” our effort to make a conditional

distribution with large entropy. To accommodate our relaxed assumptions, we take a

more nuanced perspective on helpful and hurtful mass. Consider a non-plateau state

𝑥 of 𝑋 that contributes a small amount of mass towards the conditional distribution

corresponding to a state 𝑦 of 𝑌 . With the perspective of [12], this would be viewed as
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hurtful mass because it is from a non-plateau state of 𝑋. But intuitively, in terms

of its contribution to 𝐻(𝑋|𝑌 = 𝑦), it does not matter whether 𝑥 is a plateau state

or not. Through careful analysis, we can show that if 𝑃 (𝑋 = 𝑥|𝑌 = 𝑦) is small then

they are not “too hurtful.” We follow this intuition to make a new definition of the

good mass, where we set a threshold 𝒯 , define the first 𝒯 mass we receive from a

non-plateau state of 𝑋 as helpful mass for the state of 𝑌 , and the surplus beyond 𝒯

from the non-plateau state of 𝑋 as hurtful mass for the state of 𝑌 . As before, all mass

from plateau states will be helpful. With this new perspective and a careful analysis,

we show that there is a state 𝑦′ that receives many plateau balls, and has much more

helpful mass than hurtful mass. This then enables us to show that 𝐻(𝑋|𝑌 = 𝑦′) is

large, proving the theorem.

3.6 Learning Graphs via Entropic Causality

Now, we focus on how to leverage the capability of correctly orienting causal pairs to

learn causal graphs exactly. In comparison, traditional structure learning methods only

learn the Markov equivalence class of graphs from observational data. For example,

given the line graph 𝑋 → 𝑌 → 𝑍, such methods would deduce the true graph is either

𝑋 → 𝑌 → 𝑍 or 𝑋 ← 𝑌 ← 𝑍, but not that it is exactly 𝑋 → 𝑌 → 𝑍.

As was discussed in Section 3.4, learning the entire graph can be reduced to

correctly orienting each edge in the skeleton. However, we cannot naively use a

pairwise algorithm, as the rest of the observed variables can act as confounders. We

examine how different pairwise oracles can enable us to characterize the value of using

minimum entropy couplings to learn causal graphs. One example of a natural-feeling

oracle is one that can correctly orient any edges that have no active confounding. Such

an oracle enables learning of directed trees and complete graphs. However, it cannot

be used to learn all general graphs (see Section 3.9.1 for an example). We propose an

alternative oracle, that can distinguish between a source node and any node it can

reach:

Definition 3 (Source-pathwise oracle). A source-pathwise oracle for a DAG 𝐺 always
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orients 𝐴→ 𝐵 if 𝐴 is a source and there exists a directed path from 𝐴 to 𝐵 in 𝐺.

Let us formalize our entropic method for causal pairs as the following oracle:

Definition 4 (MEC oracle). A minimum entropy coupling (MEC) oracle returns 𝑋 →

𝑌 if MEC(𝑌 |𝑋) < MEC(𝑋|𝑌 ) and 𝑋 ← 𝑌 otherwise, given the joint distribution

𝑝(𝑋, 𝑌 ).

We aim to show that our MEC oracle is a source-pathwise oracle for graphs with

the following assumptions:

Assumption 2 (Low-entropy assumption). Consider an SCM where 𝑋𝑖 = 𝑓𝑖(Pa𝑖, 𝐸𝑖),

Pa𝑖⊥⊥𝐸𝑖, ∀𝑖, where 𝑋𝑖 ∈ [𝑛], 𝐸𝑖 ∈ [𝑚]. Suppose |𝑉 | = 𝑂(1), 𝐻(𝐸𝑖) = 𝑜(log(log(𝑛)))

and 𝐸𝑖 has (Ω(𝑛),Ω( 1
𝑛 log(𝑛)

))-support for all 𝑖, and 𝑓𝑖 are sampled uniformly randomly

from all mappings 𝑓𝑖 : [𝑛]×[𝑛]|Pa𝑖|→ [𝑛].

We are now ready to show the main result of our paper. We show that, under

certain generative model assumptions, applying entropic causality on pairs of observed

variables acts as a source-pathwise oracle for DAGs:

Theorem 7. For any SCM under Assumption 2, the MEC oracle is a source-pathwise

oracle for the causal graph with high probability for sufficiently large 𝑛.

Characterizing entropic causality as a source-pathwise oracle enables us to identify

the true causal graph for general graphs. We outline the key intuitions of our proof:

Proof overview for Theorem 7. Suppose 𝑋src is a source and 𝑌 is a node such that

there is a path from 𝑋src to 𝑌 . To show the MEC oracle is a source-pathwise oracle,

we show that MEC(𝑋src|𝑌 ) > MEC(𝑌 |𝑋src). As in Theorem 6, we will accomplish

this by showing there is a state 𝑦′ of 𝑌 such that 𝐻(𝑋src|𝑌 = 𝑦′) = Ω(log(log(𝑛))).

We begin by conceptualizing the realization of all 𝑓𝑖 as a balls-and-bins game.

Every node 𝑋𝑖 is a uniformly random function 𝑓𝑖 of Pa(𝑋𝑖) ∪ 𝐸𝑖. Let us define each

ball as the concatenation of 𝑋 and all 𝐸𝑖 other than 𝐸src. More formally, we denote

each ball as (𝑋 = 𝑥,𝐸1 = 𝑒1, . . . , 𝐸src−1 = 𝑒src−1, 𝐸src+1 = 𝑒src+1, . . . , 𝐸|𝑉 | = 𝑒|𝑉 |),
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Figure 3-1: Graphs colored according to the Random Function Graph Decomposition
(Definition 5) used in the proof of Theorem 7.

and each ball has a corresponding probability mass of 𝑃 (𝑋 = 𝑥)× Π𝑖 ̸=src𝑃 (𝐸𝑖 = 𝑒𝑖).

To view the realization of 𝑓𝑖 as a balls-and-bins game, we consider the nodes in an

arbitrary topological order for the graph. When we process a node 𝑋𝑖, we group balls

according to their configuration of (Pa(𝑋𝑖) ∪ 𝐸𝑖). This is because balls with the same

configuration correspond to the same cell of the function 𝑓𝑖. For each group of balls

that all share the same configuration, we uniformly randomly sample a state of 𝑋𝑖 to

assign all the balls in the group. This is essentially realizing one cell of 𝑓𝑖. Groups

are assigned independently of other groups. In this sense, each realization of 𝑓𝑖 is

a balls-and-bins game where we group balls by their configuration, and throw them

together into states of 𝑋𝑖 (bins).

Let us define plateau balls as those who have a plateau state of 𝑋src and have the

most probable state of 𝐸𝑖 for every 𝑖 ̸= src. As was done in Theorem 6, our goal is to

show that there will be a state 𝑦′ of 𝑌 such that 𝑦′ receives many plateau balls and

much more helpful mass than hurtful mass. However, it is not immediately clear how

to show this in the graph setting. For intuition, we explore two special cases.

Consider the case of a line graph (Figure 3-1a). For simplicity of this proof

overview, assume all 𝑋𝑖 other than 𝑋src are deterministic functions of their parents

(i.e., 𝐻(𝐸𝑖) = 0). Using techniques similar to Theorem 6, we can show there are
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many bins of 𝑋2 that receive many plateau balls and much more helpful mass than

hurtful mass. Moreover, we can then use similar techniques to show a non-negligible

proportion of those bins will have their corresponding balls mapped together to a bin

of 𝑋3 where it does not encounter much hurtful mass. We can repeat this argument

again to show some of these desirable bins “survive” from 𝑋3 to 𝑌 . While only a

scalingly small fraction of these desirable bins “survive” each level, this still ensures the

survival of at least one bin if the number of vertices is constant. This will accomplish

our goal of having a state 𝑦′ of 𝑌 with many plateau balls and much more helpful

mass than hurtful mass.

On the other hand, consider the case of a diamond graph in Figure 3-1b. Again,

assume for simplicity that all 𝑋𝑖 other than 𝑋src are deterministic functions of their

parents. Note that when we realize 𝑓𝑌 , two balls are always mapped independently

unless they share the same configuration of Pa(𝑌 ) = {𝑋2, 𝑋3}. We observe that 𝑋2 and

𝑋3 are both independent deterministic functions of 𝑋src. Accordingly, the probability

of two particular states 𝑥, 𝑥′ ∈ 𝑋src satisfying 𝑓2(𝑥) = 𝑓2(𝑥
′) and 𝑓3(𝑥) = 𝑓3(𝑥

′) is equal

to 1
𝑛2 . Therefore, almost all pairs of balls are mapped to 𝑌 from 𝑋src independently.

Since everything is almost-independently mapped to 𝑌 , we can treat it like a bivariate

problem and use techniques similar to Theorem 6.

We are able to prove correctness for both of these graphs, but we do so in ways

that are essentially opposite. For the line graph, we utilize strong dependence as bins

with desired properties “survive” throughout the graph. For the diamond graph, we

utilize strong independence as balls are all mapped to 𝑌 essentially independently. To

combine the intuitions of these two cases into a more general proof, we introduce the

Random Function Graph Decomposition:

Definition 5 (Random Function Graph Decomposition). Given a DAG and a pair of

nodes (𝑋src, 𝑌 ), Random Function Graph Decomposition colors the nodes iteratively

following any topological order of the nodes as follows:

1. Color the node with a new color if 𝑋src is a parent of the node or if the node

has parents of different colors.
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Algorithm 2 Learning general graphs with oracle
1: ℛ ← {1, . . . , |𝑉 |} {set of remaining nodes}
2: ℐ ← ∅ {set of pairs found to be conditionally independent}
3: 𝒯 ← [ ] {list of nodes in topological order}
4: while |ℛ| > 0 do
5: 𝒩 ← ∅ {set of nodes discovered as non-sources}
6: 𝒞 ← {1, . . . , |𝑉 |}∖ℛ {condition on previous sources}
7: for all (𝑋𝑖, 𝑋𝑗) ∈ {ℛ×ℛ} do
8: if 𝑋𝑖 /∈ 𝒩 and 𝑋𝑗 /∈ 𝒩 and (𝑋𝑖, 𝑋𝑗) /∈ ℐ then
9: if CI(𝑋𝑖, 𝑋𝑗 |𝒞) then

10: ℐ ← ℐ ∪ (𝑋𝑖, 𝑋𝑗)
11: else if Oracle(𝑋𝑖, 𝑋𝑗 |𝒞) orients 𝑋𝑖 → 𝑋𝑗 then
12: 𝒩 ← 𝒩 ∪ {𝑋𝑗} {𝑋𝑗 is not a source}
13: else
14: 𝒩 ← 𝒩 ∪ {𝑋𝑖} {𝑋𝑖 is not a source}
15: end if
16: end if
17: end for
18: 𝒮 ← ℛ∖𝒩 {the remaining nodes that are a source}
19: ℛ ← ℛ∖𝒮 {remove sources from remaining nodes}
20: for all 𝑋𝑖 ∈ 𝒮 do
21: append 𝑋𝑖 to 𝒯
22: end for
23: end while{Now, 𝒯 is a valid topological ordering}
24: for all (𝑖, 𝑗) ∈ {1, . . . , |𝑉 |}2 where 𝑖 < 𝑗 do
25: if CI(𝒯 (𝑖), 𝒯 (𝑗)|{𝒯 (1), . . . , 𝒯 (𝑗 − 1)}∖𝒯 (𝑖)) then
26: no edge between 𝒯 (𝑖) and 𝒯 (𝑗)
27: else
28: orient 𝒯 (𝑖)→ 𝒯 (𝑗)
29: end if
30: end for

2. Color the node with the color of its parents if all of the node’s parents have the

same color.

Using the Random Function Graph Decomposition, we claim that when a node is

assigned a new color as in step 1, we utilize independence as in the diamond graph

(Figure 3-1b), and when a node inherits its color as in step 2 we utilize dependence as in

the line graph in Figure 3-1a. We illustrate Figure 3-1c as an example. With a careful

analysis, we utilize these intuitions to prove the MEC oracle is a source-pathwise

oracle with high probability.
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3.6.1 Peeling Algorithm for Learning Graphs

In the previous section, we have shown how entropic causality can be used as a

source-pathwise oracle. Next, we show how to learn general graphs with a source-

pathwise oracle. Our algorithm will iteratively determine the graph’s sources, condition

on the discovered sources, determine the graph’s sources after conditioning, and so

on. Doing this will enable us to find a valid lexicographical ordering of the graph.

Given a lexicographical ordering, we can learn the skeleton with 𝑂(𝑛2) conditional

independence tests.

Now, we outline how we iteratively find the sources. In each stage, we consider all

the remaining nodes as candidate sources. It is our goal to remove all non-sources

from our set of candidates. To do this, we iterate over all pairs of candidates and do

a conditional independence test conditioned on the sources that are found so far. If

the pair is conditionally independent, we do nothing. We note that this will never

happen for a pair where one node is a true source and the other node is reachable

from the source through a directed path: Conditioning on previously found sources

cannot d-separate such paths. Otherwise, the pair is conditionally dependent. We

then use the source-pathwise oracle to orient between the two nodes, and eliminate

the sink node of the orientation as a candidate (i.e., if we orient 𝐴→ 𝐵, we eliminate

𝐵 as a candidate source).

Suppose two nodes are dependent conditioned on the past sources. Then either

the pair contains a source node and a descendant of the source node, or it contains

two non-source nodes. In the former case when the pair contains a source node the

source-pathwise oracle will always orient correctly and the non-source node will be

eliminated. In the latter case when the pair are two non-sources we can safely eliminate

either as a source candidate and accordingly oracle output is irrelevant. By the end of

this elimination process, we can show that only true sources will remain as candidates

in each step, which enables us to obtain a valid lexicographical ordering, and thus

learn the causal graph. We summarize this procedure as Algorithm 2. The following

theorem shows the correctness of Algorithm 2 given a source-pathwise oracle:
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Figure 3-2: Performance of methods in the unconstrained setting in the triangle graph
𝑋 → 𝑌 → 𝑍,𝑋 → 𝑍: 50 datasets are sampled for each configuration from the
unconstrained model 𝑋 = 𝑓(Pa𝑋 , 𝐸𝑋). The 𝑥−axis shows entropy of the exogenous
noise. The exogenous noise of the first variable is fixed to be large (≈ 3.3 bits), hence
it is a high entropy source (HES). Entropic methods consistently outperform the ANM
algorithm in almost all regimes.

Theorem 8. Algorithm 2 learns any causal graph 𝐷 = (𝑉,𝐸) with 𝒪(|𝑉 |2) calls to a

source-pathwise oracle and 𝒪(|𝑉 |2) conditional independence tests.

Finally, we show that we can use entropic causality together with Algorithm 2 for

learning general causal graphs:

Corollary 4. For any SCM under Assumption 2, using entropic causality for pairwise

comparisons in Algorithm 2 learns, with high probability, the causal graph that is

implied by the SCM.
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3.7 Experiments

We first introduce a heuristic that we call the entropic enumeration algorithm. In this

algorithm, we enumerate over all possible causal graphs consistent with the skeleton

and calculate the minimum entropy needed to generate the observed distribution from

the graph with independent noise at each node. The minimum entropy needed to

generate the joint distribution with some graph 𝐷 is
∑︀

𝑋𝑖
MEC(𝑋𝑖|Pa𝐷(𝑋𝑖)) where

Pa𝐷(𝑋𝑖) denotes the parents of 𝑋𝑖 in 𝐷. The graph requiring the least randomness is

then selected.

We are not aware of any provably correct method for causal discovery between

categorical variables that are non-deterministically related. For discrete variables, the

only such method other than entropic causality is the discrete additive noise model [52].

We compare entropic causality to discrete ANM for learning causal graphs, using the

graph extension of ANM proposed by [42]. To isolate the role of our algorithms in

identifying causal graphs beyond the equivalence class, we support every algorithm

in our comparisons with the skeleton of the true graph (obtainable from conditional

independence tests given enough data). We evaluate performance via the structural

Hamming distance (SHD) from the estimated graph to the true causal graph. See the

Appendix for implementation details.

Performance on Synthetic Data. Figure 3-2 compares the performance of entropic

peeling, entropic enumeration and discrete ANM algorithms for the triangle graph,

i.e., the graph with edges 𝑋 → 𝑌 , 𝑌 → 𝑍, and 𝑋 → 𝑍. Every datapoint is obtained

by averaging the SHD to the graph for 50 instances of structural models. To ensure

that the entropy of the exogenous nodes are close to the value on the x-axis, their

distributions are sampled from a Dirichlet distribution with a parameter that is

obtained through a binary search. We observe that the entropic methods consistently

outperform the ANM approach. Importantly, we observe how entropic methods are

able to near-perfectly learn the exact triangle graph in almost all regimes, even though

all triangle graphs are in the same Markov equivalence class and thus traditional

structure learning algorithms like PC or GES cannot learn anything. With enough
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Figure 3-3: Performance of methods on networks from the bnlearn repository with
varying samples: 10 datasets are sampled for each configuration from the bnlearn
network. E.g., entropic enumeration exactly recovers Alarm, no algorithm correctly
learns half of Sachs.

samples, entropic enumeration learns the graph near-perfectly until the exogenous

noise nears log(𝑛), exceeding our theoretical guarantee of 𝑜(log(log(𝑛))). In Figure

3-2, we fix the source node to have high entropy. Our motivation is that if all nodes

have essentially zero randomness, then we expect the performance of any method to

degrade as there is no randomness in samples to observe causality or faithfulness. In

Figure 3-9 in Appendix, we do not fix a high-entropy source and still observe that

entropic methods outperform ANM in almost all regimes. Experiments with different

and larger graphs can be seen in the Appendix.
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Performance in Discrete Additive Noise Regime. In this section, we compare

the performance of the entropic algorithms and discrete ANM when the true SCM is

a discrete additive noise model. Using the discrete ANM generative model, we observe

that entropic enumeration out-performs the discrete ANM method with few samples

and matches its performance with many samples. This demonstrates that even though

entropic methods are designed for the general unconstrained SCM class, they perform

similarly to ANM which was designed specifically for this setting. Please see Figure

3-8 in Appendix for the results.

Effect of Finite Samples. We observe that entropic methods, particularly enu-

meration, work well even in regimes with low samples. Experiments focusing on the

impact of finite samples can be found in the Appendix.

Performance on Real-World Data. Due to the computational cost of discrete

ANM, we compared entropic causality against GES and PC algorithms to evaluate

how well it learned real-world causal graphs from the bnlearn repository beyond their

equivalence class. Figure 3-3 shows performance on three of the six networks we

evaluated (see Appendix for remaining networks). Of particular interest is Figure

3-3a, where entropic enumeration almost perfectly identifies a graph with 46 edges

from its skeleton and finite samples. Again, we do not claim that the assumptions

of entropic causality are universally true in nature, but instead that there are real

settings such as Figure 3-3a where the framework enables us to learn causal graphs.

Our experiments, exceeding our best theoretical guarantees, show that even when the

number of nodes is the same as the number of states, entropic causality can be used

for learning the causal graph with a moderate number of samples.

3.8 Conclusion

In this work, we have extended the entropic causality framework to graphs. An iden-

tifiability result was proven, and two algorithms were presented and experimentally

evaluated — a theoretically-motivated sequential peeling algorithm and a heuristic
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entropic enumeration algorithm that performs better on small graphs. Overall, we

observed strong experimental results in settings much more general than the assump-

tions used in our theory, indicating that a much stronger theoretical analysis might

be possible. We note however that the quantity 𝐻(𝐸𝑖) = Θ(log(log(𝑛))) appears to

be approximately a phase transition for the balls-and-bins setting, and posit that the

development of novel tools may be required for such an extension of the theory.

We suggest such an advancement may involve an increased focus on a total entropy

criterion (i.e., an extension of comparing 𝐻(𝑋) + 𝐻(𝐸) to 𝐻(𝑌 ) + 𝐻(�̃�) in the

bivariate case), as in our proposed algorithm of entropic enumeration. Experiments

indicate that this performs well, and one might argue that it appears to be more

conceptually justified. For one, it mirrors Occam’s razor in that it prefers the causal

graph with minimal total randomness required. While we do not claim that this

methodology will always discover the true generative model (as Occam’s razor does not

require the simplest explanation to always be true), we believe these intuitions mirror

nature more often than not, as confirmed by our experimental results. Moreover,

such an approach appears to fare better with counter-examples for exogenous-based

criterion such as the traveling ball scenario of [22] discussed in [12]. Showing theoretical

guarantees for this approach’s performance is of interest in future work, and can be

framed more generally as, “Under what conditions is the true generative model the

most information-theoretically efficient way to produce a distribution?”
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3.9 Supplementary Material

3.9.1 Proofs

Proof of Theorem 6

Proof Outline.

Following the approach described in the proof overview in the main text (with the

descriptions of helpful and hurful mass), we first introduce the surplus of a state of 𝑌

to characterize the amount of hurtful mass it receives:

Recall that 𝑆 is the set of “plateau states" of 𝑋, i.e., those whose probabilities are

close to one another.

Definition 6 (Surplus). We define the surplus of a state 𝑦 of 𝑌 as

𝑧𝑦 =
∑︀

𝑗 /∈𝑆 max(0, 𝑃 (𝑋 = 𝑗, 𝑌 = 𝑖)− 𝒯 ).

Intuitively, only values from states of 𝑋 outside the plateau states which exceed

the threshold will significantly “hurt" conditional entropy 𝐻(𝑋|𝑌 = 𝑦). We will show

there is a state 𝑦′ of 𝑌 where 𝑧𝑦′ is small and 𝑦′ receives Ω( log(𝑛)
log(log(𝑛))

) plateau balls.

To bound 𝑧𝑦′ , we will characterize it as the sum of contributions from three types of

balls from (𝑋∖𝑆)× 𝐸.2

Definition 7 (Ball characterizations). We characterize three types of balls:

1. Dense balls. Consider a set 𝐿 of states of 𝑋, where a state of 𝑋 is in 𝐿 if

𝑃 (𝑋 = 𝑥) ≥ 1
log3(𝑛)

. Dense balls are all balls of the form (𝑥 ∈ 𝐿, 𝑒 ∈ 𝐸). We

call these dense balls, because the low-entropy of 𝐸 will prevent the collective

mass of these balls from “expanding” well.

2. Large balls. For all balls of the form (𝑥 ∈ 𝑋∖(𝑆 ∪ 𝐿), 𝑒 ∈ 𝐸) where the ball has

mass ≥ 𝒯
2
.

3. Small balls. For all balls of the form (𝑥 ∈ 𝑋∖(𝑆 ∪ 𝐿), 𝑒 ∈ 𝐸) where the ball has

mass < 𝒯
2
.

2In the proofs, with a slight abuse of notation, we use 𝑋,𝐸 both for the observed and exogenous
variables, respectively and their supports.
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We will show there are a non-negligible fraction of bins such that 𝑧𝑦 is small. To do

so, we will bound the contribution from dense balls by showing that the small entropy

of 𝐸 prevents “spread” in a sense, as there cannot be many states of 𝑌 that receive

much contribution towards 𝑧𝑦 from these dense balls. We will bound contribution from

large balls by bounding the number of large balls, and showing that a non-negligible

number of bins receive no large balls. Finally, we will bound contribution from small

balls by showing how they often are mapped to states of 𝑌 that have yet to receive
𝒯
2

mass from the corresponding state of 𝑋, meaning they often don’t immediately

increase 𝑧𝑦.

Finally, we will show (with high probability) the existence of a bin 𝑦′ with small

𝑧𝑦′ that will receive many plateau balls, and how this will imply 𝐻(𝑋|𝑌 = 𝑦′) =

Ω(log(log(𝑛))).

Complete Proof.

Bounding 𝐻(�̃�) via 𝐻(𝑋|𝑌 = 𝑦). Because �̃�⊥⊥𝑌 , it must be true that 𝐻(�̃�) ≥

max𝑦 𝐻(𝑋|𝑌 = 𝑦). This is simple to prove by data processing inequality and is shown

in Step 1 of the proof of Theorem 1 by [12]. We aim to show there exists a 𝑦′ such

that 𝐻(𝑋|𝑌 = 𝑦′) = Ω(log(log(𝑛))).

Showing existence of a near-uniform plateau. First, we aim to find a subset

of the support of 𝑋 whose probabilities are multiplicatively close to one another.

Here, we have a looser requirement for closeness than [12]. Instead of requiring these

probabilities to be within a constant factor of each other, we allow them to be up to

a factor of log𝑐close(𝑛) apart where 𝑐close is a constant such that 0 < 𝑐close < 1. While

there are multiple values of 𝑐close that would be suitable for our analysis, for simplicity

of presentation we choose 𝑐close = 1
4

throughout. This set of states of 𝑋 that are

multiplicatively close to one another will be called the plateau of 𝑋. We begin by

showing how the (Ω(𝑛),Ω( 1
𝑛 log(𝑛)

))-support assumption implies a plateau of states of

𝑋:

Lemma 10 (Plateau existence). Suppose 𝑋 has (𝑐support𝑛,
1

𝑐lb𝑛 log(𝑛)
)-support for con-

stants 0 < 𝑐support ≤ 1 and 𝑐lb ≥ 1. Additionally, assume 𝑛 is sufficiently large such

that log(2𝑐lb/𝑐support)

log(log(𝑛))
≤ 1. Then, there exists a subset 𝑆 ⊆ [𝑛] of the support of 𝑋, such
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that the following three statements hold:

1. max𝑖∈𝑆 𝑃 (𝑋=𝑖)
min𝑖∈𝑆 𝑃 (𝑋=𝑖)

≤ log𝑐close(𝑛)

2. min𝑖∈𝑆 𝑃 (𝑋 = 𝑖) ≥ 1
𝑐lb𝑛 log(𝑛)

3. |𝑆| ≥ 𝑐close𝑐support𝑛

6
, for any 0 < 𝑐close < 1.

Proof. By definition of (𝑐support𝑛,
1

𝑐lb𝑛 log(𝑛)
) support, there are at least 𝑐support𝑛 states

of 𝑋 with probability in range [ 1
𝑐lb𝑛 log(𝑛)

, 1]. Moreover, at most 𝑐support𝑛

2
states will have

probabilities in range [ 2
𝑐support𝑛

, 1]. Otherwise, they would have total probability mass

> 1 which is impossible. Therefore, there are at least 𝑐support𝑛

2
states with probabilities

in range [ 1
𝑐lb𝑛 log(𝑛)

, 2
𝑐support𝑛

].

Now, we aim to divide the range [ 1
𝑐lb𝑛 log(𝑛)

, 2
𝑐support𝑛

] into a number of contiguous

segments such that all values in any segment are multiplicatively within log𝑐close(𝑛)

of each other. To do so, we can create segments [ 1
𝑐lb𝑛 log(𝑛)

× (log𝑐close(𝑛))𝑖, 1
𝑐lb𝑛 log(𝑛)

×

(log𝑐close(𝑛))𝑖+1] from 𝑖 = 0 until the smallest 𝑖 that satisfies 1
𝑐lb𝑛 log(𝑛)

×(log𝑐close(𝑛))𝑖+1 ≥
2

𝑐support𝑛
. Accordingly, we need ⌈ log((2/(𝑐support𝑛))/(1/(𝑐lb𝑛 log(𝑛))))

log(log𝑐close (𝑛))
⌉ ≤ 1+ 1

𝑐close
+ log(2𝑐lb/𝑐support)

𝑐close log(log(𝑛))

≤ 3
𝑐close

groups. Hence one group must have at least 𝑐support𝑛/2

3/𝑐close
= 𝑐close𝑐support𝑛

6
states of 𝑋

that are multiplicatively within log𝑐close(𝑛) and have probability at least 1
𝑐lb𝑛 log(𝑛)

.

Lower-bounding the most probable state of 𝐸. Our proof method focuses

on a balls-and-bins game where states of 𝑋 × 𝐸 are balls and states of 𝑌 are bins.

We focus first on plateau balls, which are balls corresponding to states of 𝑆 (the set of

plateau states of 𝑋) and the highest probability state of 𝐸. In particular, they are

balls of the form (𝑋 ∈ 𝑆,𝐸 = 𝑒1) where 𝑒1 is the most probable state of 𝐸. To show

that these plateau balls have enough probability mass to be helpful, we first show that

𝑃 (𝐸 = 𝑒1) is relatively large:

Lemma 11. If 𝐻(𝐸) ≤ 𝑐close log(log(𝑛)) then 𝑃 (𝐸 = 𝑒1) ≥ 1
log𝑐close (𝑛)
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Proof. For any distribution with entropy 𝐻, its state with the highest probability has

at least probability 2−𝐻 (see Lemma 5 of [12]). Thus if 𝐻(𝐸) ≤ 𝑐close log(log(𝑛)) then

𝑃 (𝐸 = 𝑒1) ≥ 2−𝑐close log(log(𝑛)) = 1
log𝑐close (𝑛)

.

Introducing surplus. We now begin proving how there exists a bin that receives

a large amount of mass that helps the bin have large conditional entropy (such helpful

mass includes the plateau balls), and not much mass that hurts the conditional entropy

making it small. To formalize this hurtful mass, recall the surplus quantity described

in Definition 6. This surplus is a way of quantifying the probability mass received by

a state of 𝑌 that is hurtful towards making the conditional entropy large. We define

surplus, with the threshold of 𝒯 specified as 12
𝑛 log(𝑛)

as follows:

Definition 8 (Surplus, 𝒯 = 12
𝑛 log(𝑛)

). We define the surplus of a state 𝑖 of 𝑌 as

𝑧𝑖 =
∑︀

𝑗 /∈𝑆 max(0, 𝑃 (𝑋 = 𝑗, 𝑌 = 𝑖)− 12
𝑛 log(𝑛)

), where 𝑆 is the set of plateau states of

𝑋.

Characterizing balls-and-bins. Now we will show that there are a non-negligible

number of states of 𝑌 where the surplus is small. Recall from our proof outline that

we view the process of realizing the random function 𝑓 as a balls-and-bins game. In

particular, each element of 𝑋 × 𝐸 (a ball) is i.i.d. uniformly randomly assigned to a

state of 𝑌 (a bin). Only balls of the form (𝑥 ∈ 𝑋∖𝑆, 𝑒 ∈ 𝐸) affect a bin’s surplus. To

bound surplus for bins, we characterize it as the sum of contributions from three types

of balls from (𝑋∖𝑆)× 𝐸, and restate this characterization from the proof outline:

Definition 7 (Ball characterizations). We characterize three types of balls:

1. Dense balls. Consider a set 𝐿 of states of 𝑋, where a state of 𝑋 is in 𝐿 if

𝑃 (𝑋 = 𝑥) ≥ 1
log3(𝑛)

. Dense balls are all balls of the form (𝑥 ∈ 𝐿, 𝑒 ∈ 𝐸). We

call these dense balls, because the low-entropy of 𝐸 will prevent the collective

mass of these balls from “expanding” well.

2. Large balls. For all balls of the form (𝑥 ∈ 𝑋∖(𝑆 ∪ 𝐿), 𝑒 ∈ 𝐸) where the ball has

mass ≥ 𝒯
2
.
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3. Small balls. For all balls of the form (𝑥 ∈ 𝑋∖(𝑆 ∪ 𝐿), 𝑒 ∈ 𝐸) where the ball has

mass < 𝒯
2
.

Bounding the harmful effects of dense balls. Recall that 𝒯 = 12
𝑛 log(𝑛)

. Now,

we show how to bound the contribution of dense balls towards surplus. By our

assumptions, 𝑌 = 𝑓(𝑋,𝐸), and 𝐻(𝐸) is small, meaning there is not much randomness

in our function. We defined 𝐿 as states of 𝑋 with probability at least 1
log3(𝑛)

, so

|𝐿| ≤ log3(𝑛). We would like to show that there are not too many bins where the

dense balls contribute a significant amount to surplus. If 𝐻(𝐸) = 0, this would be

easy to show as then there would only be |𝐿| ≤ log3(𝑛) dense balls and thus they

could only affect the surplus of log3(𝑛) bins. However, we aim to show this claim in

the more general setting where 𝐻(𝐸) = 𝑜(log(log(𝑛))). To accomplish this, we follow

the same intuition to show that the limited entropy of 𝐸 prevents this small number

of states of 𝑋 from greatly “spreading” to significantly affect a large number of states

of 𝑌 . In particular, we show:

Lemma 12 (Limited expansion). Suppose 𝑌 can be written as a function 𝑓(𝑋,𝐸)

and 𝑋⊥⊥𝐸. Consider any subset 𝑅 of the support of 𝑋. For any subset 𝑇 of the

support of 𝑌 that satisfies ∀𝑡 ∈ 𝑇 : 𝑃 (𝑋 ∈ 𝑅, 𝑌 = 𝑡) > 𝛿, the cardinality of 𝑇 is upper

bounded as |𝑇 | ≤ 𝐻(𝐸)+log(|𝑅|)+2

𝛿 log( 1
𝛿
)

.

Proof. Consider a variable 𝑋 ′, whose distribution is obtained from the distribution

of 𝑋 by keeping only the states in 𝑅, and then normalized. More formally, for any

𝑖 ∈ 𝑅, 𝑃 (𝑋 ′ = 𝑖) = 𝑃 (𝑋=𝑖)
𝑃 (𝑋∈𝑅)

, and for any 𝑖 /∈ 𝑅, 𝑃 (𝑋 ′ = 𝑖) = 0.

Recall 𝑌 = 𝑓(𝑋,𝐸). Using the same 𝑓, 𝐸, we define 𝑌 ′ = 𝑓(𝑋 ′, 𝐸). Note

that 𝑃 (𝑋 ∈ 𝑅, 𝑌 = 𝑖) ≤ 𝑃 (𝑌 ′ = 𝑖). If 𝑃 (𝑋 ∈ 𝑅, 𝑌 = 𝑖) ≥ 𝛿, then it must

be true that 𝑃 (𝑌 ′ = 𝑖) ≥ 𝛿. Moreover, this implies that if there exists such a

subset 𝑇 then 𝐻(𝑌 ′) ≥ |𝑇 |𝛿 log(1
𝛿
) − 2 (note the negative two is from the fact

that modifying a distribution by adding non-negative numbers to probabilities can

decrease entropy by at most 2). Moreover, by data-processing inequality note that

𝐻(𝑌 ′) ≤ 𝐻(𝑋 ′) + 𝐻(𝐸|𝑋 ′) ≤ 𝐻(𝑋 ′) + 𝐻(𝐸) ≤ log(|𝑅|) + 𝐻(𝐸), where previous

inequality is due to the fact that conditioning reduces entropy. This implies the desired
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inequality for the cardinality of set 𝑇 .

To more directly use this for our goal, we present:

Corollary 5. There exist no subset |𝑇 | = 𝑛/4 such that ∀𝑡 ∈ 𝑇 : 𝑃 (𝑋 ∈ 𝐿, 𝑌 = 𝑡) ≥
1

𝑛 log(log(𝑛)) log2𝑐close (𝑛)

Proof. Note that |𝐿| ≤ log3(𝑛). By Lemma 12, any such 𝑇 must satisfy:

|𝑇 | (3.1)

≤ 𝐻(𝐸) + log(|𝐿|) + 2

1/(𝑛 · log(log(𝑛)) · log2𝑐close(𝑛)) · log(𝑛)
(3.2)

≤ 5 log2(log(𝑛)) · 𝑛 · log2𝑐close(𝑛)
log(𝑛)

(3.3)

≤ 5 log2(log(𝑛)) · 𝑛 · log1/2(𝑛)
log(𝑛)

(3.4)

≤ 𝑛

4
(3.5)

We obtain Step 3.4 by previously setting 𝑐close =
1
4
. We obtain Step 3.5 when 𝑛 is

sufficiently large such that 5 log2(log(𝑛))

log1/2(𝑛)
≤ 1

4
. It can be shown that 𝑛 ≥ 5 is sufficient.

As a result, dense balls cannot significantly affect the surplus of many bins.

Bounding the harmful effects of large balls. We now show how large balls

cannot significantly affect the surplus of too many bins, by showing there is a non-

negligible number of bins that receive no large balls.

Lemma 13 (Avoided big). Given a balls-and-bins game with 𝑐 · 𝑛 ln(𝑛) balls mapped

uniformly randomly to 𝑛 bins, at least 𝑛1−𝑐

2
bins will receive no balls with high probability

if 𝑐 is a constant such that 0 < 𝑐 ≤ 1
3
.

Proof. This follows directly from [67]. By [67], with high probability the number of

empty bins will be 𝑛1−𝑐 ± 𝑂(
√︀

𝑛 log(𝑛)). For sufficiently large 𝑛, 𝑂(
√︀

𝑛 log(𝑛)) ≤
𝑛2/3

2
≤ 𝑛1−𝑐

2
and thus the number of empty bins is at least 𝑛1−𝑐

2
with high probability.

Note how this relates to the coupon collector’s problem, where it is well-known

that Θ(𝑛 log(𝑛)) trials are necessary and sufficient to receive at least one copy of all
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coupons with high probability. This is analogous to the number of balls needed such

that every bin has at least one ball. The result of Lemma 13 is intuitive from the

coupon collector’s problem, because the number of trials needed concentrates very well.

Meaning, with a constant-factor less number of trials than the expectation required,

there are many coupons that have not yet been collected with high probability.

Corollary 6. As there are at most 1
𝒯 /2
≤ 𝑛 log(𝑛)

6
≤ 1

4
· 𝑛 ln(𝑛) large balls, with high

probability there are at least 𝑛3/4

2
bins that receive no large balls.

Bounding the harmful effects of small balls. For the small balls, we will also

show that they cannot contribute too much surplus to too many states of 𝑌 . We will

notably use that all small balls correspond to a state of 𝑋 where 𝑃 (𝑋 = 𝑥) ≤ 1
log3(𝑛)

.

We will utilize this to show that most small balls are assigned to a state of 𝑌 that has

not yet received > 𝒯
2

mass from its corresponding state of 𝑋, and accordingly would

not increase the surplus. To accomplish this, we define a surplus quantity that only

takes into account small balls:

Definition 9 (Small ball surplus). We define the small ball surplus of a state 𝑦 of 𝑌

as

𝑧small
𝑦 =

∑︁
𝑥/∈(𝑆∪𝐿)

max

⎛⎜⎜⎜⎜⎝0,

⎛⎜⎜⎜⎜⎝
∑︁
𝑒:

𝑃 (𝑋=𝑥,𝐸=𝑒)

<𝒯
2

𝑃 (𝑋 = 𝑥,𝐸 = 𝑒, 𝑌 = 𝑦)

⎞⎟⎟⎟⎟⎠− 𝒯
⎞⎟⎟⎟⎟⎠ .

With this notion of surplus constrained to small balls, we show the following:

Lemma 14 (Small ball limited surplus). With high probability, there are at most 𝑛
4

values of 𝑖, i.e., number of bins, where 𝑧small
𝑖 ≥ 1

𝑛 log(log(𝑛)) log2𝑐close (𝑛)
.

Proof. We will consider all small balls in an arbitrary order. Let 𝑥(𝑡) be the corre-

sponding state of 𝑋 for the 𝑡-th small ball, 𝑒(𝑡) the corresponding state of 𝐸, and

𝑤ball(𝑡) be the ball’s probability mass (i.e., 𝑃 (𝑋 = 𝑥(𝑡), 𝐸 = 𝑒(𝑡))). Recall that for
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all small balls it must hold that 𝑥(𝑡) /∈ 𝐿 and thus 𝑃 (𝑋 = 𝑥(𝑡)) < 1
log3(𝑛)

. We define

the total small ball surplus as 𝑍small =
∑︀

𝑦∈𝑌 𝑧small
𝑦 . Now, we will consider all small

balls in an arbitrary order and realize their corresponding entry of 𝑓 to map them to

a state of 𝑌 . Initially, we have not realized the entry of 𝑓 for any balls and thus all

𝑧small
𝑦 = 0 and 𝑍small = 0. As we map small balls to states of 𝑌 , we define ∆(𝑡) as the

increase of 𝑍small after mapping the 𝑡-th ball to a state of 𝑌 . By definition,
∑︀

𝑡∆(𝑡)

is equal to 𝑍small after all values of 𝑓 have been completely realized.

Our primary intuition is that we will show for many small balls it holds that

∆(𝑡) = 0. As a result, we expect 𝑍small to not be very large.

As a result, we expect 𝑍small to not be very large. Let 𝑦(𝑡) be equal to 𝑓(𝑥(𝑡), 𝑒(𝑡)),

the state of 𝑌 that the 𝑡-th ball is mapped to. As 𝑓 is realized for each configuration,

let 𝑤𝑡
𝑌 (𝑦, 𝑥) denote the total mass of balls assigned to state 𝑦 of 𝑌 so far from state 𝑥

of 𝑋, i.e., 𝑤𝑡
𝑌 (𝑦

′, 𝑥′) :=
∑︀

𝑥′,𝑒:𝑓(𝑥′,𝑒)=𝑦′
𝑤ball(𝑡

′).

We upper-bound the expectation of ∆(𝑡):

Claim 1. Regardless of the realizations of all ∆(𝑡′) for 𝑡′ < 𝑡, it holds that ∆(𝑡) is a

random variable with values in range [0, 𝑤ball(𝑡)] and 𝐸[∆(𝑡)] ≤ 𝑤ball(𝑡)

log2(𝑛)
.

Proof. The only conditions under which ∆(𝑡) takes a positive value (which is upper-

bounded by 𝑤ball(𝑡)), is when 𝑤𝑡
𝑌 (𝑦(𝑡), 𝑥(𝑡)) > 𝒯

2
before the 𝑡-th ball is realized.

Recall that 𝑃 (𝑥(𝑡)) ≤ 1
log3(𝑛)

. Accordingly, the number of states 𝑦′ of 𝑌 where

𝑤𝑡
𝑌 (𝑦

′, 𝑥(𝑡)) > 𝒯
2

is upper-bounded by 𝑃 (𝑋=𝑥(𝑡))
𝒯 /2

≤ 1/ log3(𝑛)
6/(𝑛 log(𝑛))

= 𝑛 log(𝑛)

6 log3(𝑛)
≤ 𝑛

log2(𝑛)
. This

is due to the fact that balls partition the total mass of 𝑃 (𝑋 = 𝑥(𝑡)) since we have

𝑃 (𝑋 = 𝑥(𝑡)) =
∑︀

𝑒 𝑃 (𝑋 = 𝑥(𝑡), 𝐸 = 𝑒). This implies that the probability that the

𝑡-th ball will be mapped to a state 𝑦′ of 𝑌 such that 𝑤𝑡
𝑌 (𝑦

′, 𝑥(𝑡)) already exceeds the

threshold of 𝒯 /2 (in other words where we might have ∆(𝑡) > 0) is upper-bounded

by 𝑛/ log2(𝑛)
𝑛

= 1
log2(𝑛)

due to the fact that the function 𝑓 is realized independently and

uniformly randomly for each pair of (𝑥, 𝑒), i.e., for every distinct ball. Accordingly,

𝐸[∆(𝑡)] ≤ 𝑤(𝑡)

log2(𝑛)
.

This enables us to upper-bound the sum of ∆(𝑡):

Claim 2.
∑︀

𝑡∆(𝑡) ≤ 1
4 log(𝑛)

with high probability.
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Proof. We will transform ∆(𝑡) into a martingale. In particular, we define ∆′(𝑡) =

∆′(𝑡 − 1) + ∆(𝑡) − 𝐸[∆(𝑡)|∆(1), . . . ,∆(𝑡 − 1)]. We define ∆′(0) = 0, and note that

∆′(𝑐) is a martingale. By Azuma’s inequality, we show |
∑︀

𝑡 ∆
′(𝑡)| ≤ 1

8 log(𝑛)
with high

probability:

𝑃 [|∆(𝑡)| > 𝜀] < 2𝑒
− 𝜀2

2
∑︀

𝑐2
𝑖

≤ 2𝑒
−

( 1
8 log(𝑛))

2

2(max𝑖 𝑐𝑖)·
∑︀

𝑐𝑖

≤ 2𝑒−
( 1
8 log(𝑛))

2

2×𝒯 /2·1

= 2𝑒
−𝑛 log(𝑛)

12×8×|𝑉 |×log(𝑛)

Accordingly, by definition of ∆′(𝑡) this implies |(
∑︀

𝑡 ∆(𝑡))−
∑︀

𝑐 𝐸[∆(𝑡)|∆(1), . . . ,∆(𝑐−

1)]| ≤ 1
8 log(𝑛)

. By Claim 16 we know all 𝐸[∆(𝑡)|∆(1), . . . ,∆(𝑐 − 1)] ≤ 𝑤config(𝑐)

log2(𝑛)
and

accordingly,
∑︀

𝑡 𝐸[∆(𝑡)|∆(1), . . . ,∆(𝑐−1)] ≤ 1
log2(𝑛)

. Together, these imply
∑︀

𝑡 ∆(𝑡) ≤
1

8 log(𝑛)
+ 1

log2(𝑛)
with high probability, and for sufficiently large 𝑛 it holds that 1

log2(𝑛)
≤

1
8 log(𝑛)

. Thus, our high-probability on |∆′(𝑡)| implies that
∑︀

𝑡 ∆(𝑡) ≤ 1
4 log(𝑛)

with high

probability.

Finally, we conclude that our upper-bound on
∑︀

𝑡 ∆(𝑡) implies an upper-bound on

the number of states of 𝑌 with non-negligible small ball support:

Claim 3. If
∑︀

𝑡∆(𝑡) ≤ 1
4 log(𝑛)

, then there are at most 𝑛
4

bins where

𝑧small
𝑖 ≥ 1

𝑛 log(log(𝑛)) log2𝑐close (𝑛)
.

Proof. 𝑍small =
∑︀

𝑡∆(𝑡) ≤ 1
4 log(𝑛)

. Given this upper-bound for total small ball

surplus, we can immediately upper-bound the number of states of 𝑌 with small ball

surplus greater than 1
𝑛 log(log(𝑛)) log2𝑐close (𝑛)

by the quantity 1/(4 log(𝑛))

1/(𝑛·log(log(𝑛))·log2𝑐close (𝑛)) ≤
𝑛·log(log(𝑛))·log1/2(𝑛)

4 log(𝑛)
≤ 𝑛

4
. We obtain this by using 𝑐close =

1
4

and for sufficiently large 𝑛

such that log(log(𝑛)) ≤ log1/2(𝑛).

99



Combining the three ball types: many bins with small surplus. Now, we

combine all these intuitions to show there are many bins that have a small amount

of surplus. We have shown that, with high probability, the are at most 𝑛/4 bins

with non-negligible mass from dense balls by Corollary 5, and at most 𝑛/4 bins

with non-negligible mass from small balls Lemma 20. Combining these sets, there

are at most 𝑛/2 bins with non-negligible mass from dense balls or small balls. By

Corollary 11, with high probability at least 𝑛3/4

2
bins will receive no large balls. Our

goal is to show the intersection of the sets is large, so there are many bins that have

small surplus.

Lemma 15. Let there be two sets 𝐴,𝐵 ⊆ [𝑛], where |𝐴| ≥ 𝑛
2

and 𝐴 and 𝐵 are both

independently uniformly random subsets of size |𝐴| and |𝐵|, respectively. It holds that

𝑃 (|𝐴 ∩𝐵| ≥ |𝐵|
4
) ≥ 1− 2𝑒

−|𝐵|
8 .

Proof. To accomplish this, we will heavily utilize properties of negative association

(NA). Lemma 8 of [67] shows that permutation distributions are NA. Lemma 9 of [67]

shows closure properties of NA random variables. In particular, they show that

concordant monotone functions defined on disjoint subsets of a set of NA variables are

also NA. Accordingly, consider concordant monotone functions where each bin 𝑖 has

a random variable 𝒜𝑖 that takes value 1 if it is the first |𝐴| values of a permutation

distribution and value 0 otherwise. These random variables are thus NA. Suppose we

first realize the set 𝐵, independently of the realization of 𝐴. Then, a bin 𝑦 ∈ 𝐵 would

be in 𝐴∩𝐵 if 𝐴𝑦 = 1. It is clear this formulation of the random process has a bijective

mapping with the true random process, so 𝑃 (|𝐴∩𝐵| ≥ |𝐵|
4
) = 𝑃 (

∑︀
𝑦∈𝐵 𝒜𝑦 ≥ |𝐵|

4
). By

Theorem 5 of [67], we can use Hoeffding’s upper tail bound to show 𝑃 (
∑︀

𝑦∈𝐵 𝒜𝑦 <

|𝐵|
4
) ≤ 𝑃 (|

∑︀
𝑦∈𝐵 𝒜𝑦 − 𝐸[

∑︀
𝑦∈𝐵 𝒜𝑦]| > |𝐵|

4
) ≤ 2𝑒

−|𝐵|
8 .

Corollary 7. With high probability, there are at least 𝑛3/4

8
bins with surplus 𝑧𝑦 ≤

2
𝑛 log(log(𝑛)) log2𝑐close (𝑛)

.

Proof. We have defined three types of balls, and have proven results that show how

there are many bins with negligible bad contribution for each type of ball. Now,

we combine these with Lemma 15 to show there are many bins where there is not
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much bad contribution in total. By Corollary 5 there are at most 𝑛/4 bins with

more than 1

𝑛 log(log(𝑛)) log2𝑐close(𝑛)(𝑛)
mass from dense balls. By Lemma 20, there are at

most 𝑛/4 bins with small ball surplus more than 1

𝑛 log(log(𝑛)) log2𝑐close(𝑛)(𝑛)
. Let 𝐴 be

the set of bins with at most 1

𝑛 log(log(𝑛)) log2𝑐close(𝑛)(𝑛)
mass from dense balls and at most

1

𝑛 log(log(𝑛)) log2𝑐close(𝑛)(𝑛)
small ball surplus. By combining Corollary 5 and Lemma 20

we know |𝐴| ≥ 𝑛
2

with high probability. Let 𝐵 be the set of bins that receive no big

balls. By Corollary 11, it holds that |𝐵| ≥ 𝑛3/4

2
with high probability. By Lemma 15,

it holds that |𝐴 ∩ 𝐵| ≥ 𝑛3/4

8
with failure probability at most 2𝑒

−2𝑛3/4

16 . Moreover, all

such bins will have total surplus at most 2
𝑛 log(log(𝑛)) log2𝑐close (𝑛)

, because they receive no

large balls and total surplus is then upper-bounded by the sum of small ball surplus

and total mass from dense balls.

Existence of a small surplus bin with many plateau balls. Recall plateau

balls, which are balls of 𝑋 × 𝐸 that take the form (𝑥 ∈ 𝑆,𝐸 = 𝑒1), where 𝑒1 is the

most probable state of 𝐸. We show that at least one of the bins with small surplus

will receive many plateau balls with high probability:

Lemma 16. There exists a bin with surplus at most 2
𝑛 log(log(𝑛)) log2𝑐close (𝑛)

and at least
log(𝑛)

2 log(log(𝑛))
plateau balls.

Proof. Note that total surplus is independent of how plateau balls are mapped.

Accordingly, we have determined a set of 𝑛3/4

8
bins with small enough surplus. We

aim to show that one of these bins receives a large number of plateau balls with high

probability. We will rely on negative association (NA) in the balls-and-bins process to

prove our result.

Claim 4. Indicator variables for if a bin receives some threshold of balls in a i.i.d.

uniformly random balls-and-bins game are NA.

Proof. This follows immediately by using results of [67]. By Theorem 10 of [67], the

random variables of the number of balls assigned to each bin are NA. By Lemma

9 of [67], concordant monotone functions define on disjoint subsets of a set of NA

random variables are NA. Accordingly, if we have an indicator variable for whether a

bin receives at least some number of balls, these indicator variables are NA.
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Now, we lower-bound the expectation of these indicator variables:

Claim 5. Suppose 𝑐𝑛 balls (𝑐 ≤ 1) are thrown i.i.d. uniformly randomly into 𝑛 bins.

The probability that a particular bin receives at least 𝑘 = 𝑑 log(𝑛)
log(log(𝑛))

balls is at least
1

𝑒𝑛𝑑 given that 𝑑
𝑐
≤ log(log(𝑛)).

Proof. We use the method outlined by [13]. We lower-bound the probability of a bin

receiving at least 𝑘 balls as follows:

(︂
𝑐𝑛

𝑘

)︂
· ( 1
𝑛
)𝑘·(1− 1

𝑛
)𝑐𝑛−𝑘 ≥ (

𝑐𝑛

𝑘
)𝑘 · 1

𝑛𝑘
· 1
𝑒

≥ 1

𝑒
· ( 𝑐
𝑘
)𝑘

=
1

𝑒
· (𝑐 log(log(𝑛))

𝑑 log(𝑛)
)loglog(𝑛)(𝑛

𝑑)

≥ 1

𝑒
· ( 1

log(𝑛)
)loglog(𝑛)(𝑛

𝑑) (3.6)

=
1

𝑒𝑛𝑑

We obtain Step 3.6 by using 𝑑
𝑐
≤ log(log(𝑛)).

By Lemma 10 there are at least 𝑐close𝑐support
6

· 𝑛 = 𝑐support
24
· 𝑛 plateau balls. Now,

consider NA indicator variables ℬ𝑖 for whether or not a particular bin receives at least
log(𝑛)

2 log(log(𝑛))
plateau balls. By Claim 4, these indicator variables are NA. By Claim 5, it

holds that 𝐸[ℬ𝑖] ≥ 1
𝑒𝑛0.5 for sufficiently large 𝑛 where 1/2

𝑐support/24
= 12

𝑐support
≤ log(log(𝑛)).

Finally, we can upper-bound the probability that ℬ𝑖 = 0 for all bins with small

enough surplus, of which there are at least 𝑛3/4

8
. Using marginal probability bounds

for NA variables shown in Corollary 3 of [67], all such ℬ𝑖 = 0 with probability at most

( 1
𝑒𝑛0.5 )

𝑛3/4

8 .

Proving large conditional entropy. Finally, we show how the existence of a bin

with small surplus and many plateau balls implies that the bin has large conditional

entropy:

Lemma 17 (High-entropy conditional). Given a bin 𝑦′ that has 𝑧𝑦′ ≤
2

𝑛·log(log(𝑛))·log2𝑐close (𝑛) , and receives log(𝑛)
2 log(log(𝑛))

plateau balls, then 𝐻(𝑋|𝑌 = 𝑦′) =
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Ω(log(log(𝑛))).

Proof. To show 𝐻(𝑋|𝑌 = 𝑦′) is large, we first define the vector 𝑣 such that 𝑣(𝑥) =

𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦′). Similarly, we define 𝑣(𝑥) = 𝑣
𝑃 (𝑌=𝑦′)

, meaning 𝑣(𝑥) = 𝑃 (𝑋 = 𝑥|𝑌 =

𝑦′) and |𝑣|1 = 1. Our underlying goal is to show 𝐻(𝑣) is large. To accomplish this, we

will split the probability mass of 𝑣 into three different vectors 𝑣initial, 𝑣plateau, 𝑣surplus

such that 𝑣 = 𝑣initial + 𝑣plateau + 𝑣surplus. The entries of 𝑣plateau will correspond to mass

from plateau states of 𝑋, 𝑣initial will correspond to the first 𝒯 mass from non-plateau

states of 𝑋, and 𝑣surplus will correspond to mass that contributes to the surplus 𝑧𝑦′ .

We more formally define the three vectors as follows:

• 𝑣plateau. The vector of probability mass from plateau states of 𝑋. 𝑣plateau(𝑥) is 0

if 𝑥 /∈ 𝑆 and 𝑣plateau(𝑥) = 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦′) if 𝑥 ∈ 𝑆.

• 𝑣initial. For non-plateau states of 𝑋, their first 𝒯 probability mass belongs

to 𝑣initial. 𝑣initial(𝑥) = min(𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦′), 𝒯 ) if 𝑥 /∈ 𝑆 and 𝑣initial(𝑥) = 0

otherwise.

• 𝑣surplus. For non-plateau states of 𝑋, their probability mass beyond the first 𝒯

mass belongs to 𝑣surplus. This corresponds to the surplus quantity. 𝑣surplus(𝑥) =

max(0, 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦′)− 𝒯 ) if 𝑥 /∈ 𝑆 and 𝑣surplus(𝑥) = 0 otherwise. By this

definition, 𝑧𝑦′ = |𝑣surplus|1.

To show 𝐻(𝑋|𝑌 = 𝑦′) = 𝐻(𝑣) is large, we divide our approach into two steps:

1. Show there is substantial helpful mass: |𝑣initial + 𝑣plateau|1
= Ω

(︁
1

𝑛·log(log(𝑛))·log2𝑐close (𝑛)

)︁
2. Show the distribution of helpful mass has high entropy: 𝐻

(︁
𝑣initial+𝑣plateau

|𝑣initial+𝑣plateau|1

)︁
=

Ω(log(log(𝑛))).

3. Show that, even after adding the hurtful mass, the conditional entropy is large:

𝐻(𝑋|𝑌 = 𝑦′) = 𝐻(𝑣) ≥ 𝐻
(︁

𝑣initial+𝑣plateau
|𝑣initial+𝑣plateau|1

)︁
−𝑂(1) = Ω(log(log(𝑛)))
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In the first step, we are showing that the distribution when focusing on just the

helpful mass of 𝑣initial, 𝑣plateau has high a substantial amount of probability mass. In

the second step, we prove how this distribution of helpful mass has high entropy. In

the third step, we show that the hurtful mass of 𝑣surplus does not decrease entropy

more than a constant.

First, we show that there is a substantial amount of helpful mass:

Claim 6. |𝑣initial + 𝑣plateau|1 = 1
2𝑐lb𝑛·log(log(𝑛))·log2𝑐close (𝑛)

Proof. Recall that the bin 𝑦′ received log(𝑛)
2 log(log(𝑛))

plateau balls. As defined in Lemma 10,

the set 𝑆 of plateau states is defined such that max𝑥∈𝑆 𝑃 (𝑋=𝑥)
min𝑥∈𝑆 𝑃 (𝑋=𝑥)

≤ log𝑐close(𝑛) and

min𝑥∈𝑆 𝑃 (𝑋 = 𝑥) ≥ 1
𝑐lb𝑛 log(𝑛)

. Also recall that by Lemma 11 the most probably

state of 𝐸 has large probability. In particular, 𝑃 (𝐸 = 𝑒1) ≥ 1
log𝑐close (𝑛)

. Let the

subset 𝑆 ′ ⊆ 𝑆 be the subset of plateau states of 𝑋 such that their plateau ball is

mapped to 𝑦′. In particular, for every 𝑥 ∈ 𝑆 ′ it holds that 𝑓(𝑥, 𝑒1) = 𝑦′. Accord-

ingly, 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦′) ≥ 𝑃 (𝑋 = 𝑥) · 𝑃 (𝐸 = 𝑒1) for 𝑥 ∈ 𝑆 ′. Thus, the total

weight from plateau states of 𝑋 is at least |𝑆 ′| · min𝑥∈𝑆′ 𝑃 (𝑋 = 𝑥) · 𝑃 (𝐸 = 𝑒1) ≥

|𝑆 ′| · max𝑥∈𝑆′ 𝑃 (𝑋=𝑥)

log𝑐close (𝑛)
· 𝑃 (𝐸 = 𝑒1) ≥ 1

2𝑐lb𝑛 log(log(𝑛)) log2𝑐close (𝑛)
.

Next, we show the distribution of helpful mass has high entropy:

Claim 7. 𝐻
(︁

𝑣initial+𝑣plateau
|𝑣initial+𝑣plateau|1

)︁
≥ log(log(𝑛))

4

Proof. Let us define 𝑣helpful =
𝑣initial+𝑣plateau

|𝑣initial+𝑣plateau|1
to be the vector of helpful mass, and we

will show 𝐻(𝑣helpful) is large by upper-bounding max𝑥 𝑣helpful(𝑥).

For non-plateau states of 𝑋, it follows from Claim 20 that max𝑥/∈𝑆 𝑣helpful(𝑥) ≤
𝒯

|𝑣initial+𝑣plateau|1
≤ 𝒯

1

2𝑐lb𝑛·log(log(𝑛))·log2𝑐close (𝑛)

= 24𝑐lb log(log(𝑛))·log2𝑐close (𝑛)
log(𝑛)

.

For plateau states of 𝑋, in Claim 20 we also developed the lower-bound of |𝑣initial +

𝑣plateau|1 ≥ |𝑆 ′| · max𝑥∈𝑆′ 𝑃 (𝑋=𝑥)

log𝑐close (𝑛)
· 𝑃 (𝐸 = 𝑒1) ≥

log(𝑛)·max𝑥∈𝑆′ 𝑃 (𝑋=𝑥)

2 log2𝑐close (𝑛) log(log(𝑛))
. Accordingly, we can

upper-bound max𝑥∈𝑆′ 𝑣helpful(𝑥) ≤
max𝑥∈𝑆′ 𝑃 (𝑋=𝑥)

|𝑣initial+𝑣plateau|1
≤ 2 log(log(𝑛)) log2𝑐close (𝑛)

log(𝑛)
.

Accordingly, we can lower-bound the entropy of 𝐻(𝑣helpful) =
∑︀

𝑥 𝑣helpful(𝑥) ·

log( 1
𝑣helpful(𝑥)

) ≥
∑︀

𝑥 𝑣helpful(𝑥) · log( 1
max𝑥′ 𝑣helpful(𝑥′)

) = log( 1
max𝑥′ 𝑣helpful(𝑥′)

) ≥

log( 24𝑐lb log(𝑛)

log2𝑐close (𝑛) log(log(𝑛))
) = (1 − 2𝑐close) log(log(𝑛)) − log(log(log(𝑛))) − log(24𝑐lb) =
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log(log(𝑛))
2

− log(log(log(𝑛))) − log(24𝑐lb) ≥ log(log(𝑛))
4

for sufficiently large 𝑛 where
log(log(𝑛))

2
≥ log(log(log(𝑛))) + log(24𝑐lb).

Finally, we show the hurtful mass does not decrease entropy much, and thus our

conditional distribution has high entropy:

Claim 8. 𝐻(𝑋|𝑌 = 𝑦′) = 𝐻(𝑣) ≥ Ω(1) ·𝐻
(︁

𝑣initial+𝑣plateau
|𝑣initial+𝑣plateau|1

)︁
−𝑂(1) = Ω(log(log(𝑛)))

Proof. We lower-bound 𝐻(𝑣) with the main intuitions that 𝐻
(︁

𝑣initial+𝑣plateau
|𝑣initial+𝑣plateau|1

)︁
=

Ω(log(log(𝑛))) and |𝑣initial+𝑣plateau|1
|𝑣initial+𝑣plateau+𝑣surplus|1

= Ω(1). We more precisely obtain this lower-

bound for 𝐻(𝑣) as follows:

𝐻(𝑣) = 𝐻

(︂
𝑣initial + 𝑣plateau + 𝑣surplus

|𝑣initial + 𝑣plateau + 𝑣surplus|1

)︂
=
∑︁
𝑥

𝑣initial(𝑥) + 𝑣plateau(𝑥) + 𝑣surplus(𝑥)

|𝑣initial + 𝑣plateau + 𝑣surplus|1
×

log
|𝑣initial + 𝑣plateau + 𝑣surplus|1

𝑣initial(𝑥) + 𝑣plateau(𝑥) + 𝑣surplus(𝑥)

≥
∑︁
𝑥

𝑣initial(𝑥) + 𝑣plateau(𝑥)

|𝑣initial + 𝑣plateau + 𝑣surplus|1
×

log
|𝑣initial + 𝑣plateau + 𝑣surplus|1

𝑣initial(𝑥) + 𝑣plateau(𝑥)
− 2 (3.7)

≥
∑︁
𝑥

𝑣initial(𝑥) + 𝑣plateau(𝑥)

|𝑣initial + 𝑣plateau + 𝑣surplus|1
×

log
|𝑣initial + 𝑣plateau|1

𝑣initial(𝑥) + 𝑣plateau(𝑥)
− 2

=
|𝑣initial + 𝑣plateau|1

|𝑣initial + 𝑣plateau + 𝑣surplus|1
𝐻

(︂
𝑣initial + 𝑣plateau

|𝑣initial + 𝑣plateau|1

)︂
− 2

=
|𝑣initial + 𝑣plateau|1

|𝑣initial + 𝑣plateau|1 + 𝑧𝑦′
𝐻

(︂
𝑣initial + 𝑣plateau

|𝑣initial + 𝑣plateau|1

)︂
− 2

≥ 1

1 + 2𝑐lb
·𝐻
(︂

𝑣initial + 𝑣plateau

|𝑣initial + 𝑣plateau|1

)︂
− 2 (3.8)

= Ω(log(log(𝑛))) (3.9)

To obtain Step 3.10, we note that all summands are manipulated from the form∑︀
𝑥 𝑝𝑥 log(

1
𝑝𝑥
) to

∑︀
𝑥 𝑝

′
𝑥 log(

1
𝑝′𝑥
) where 𝑝′𝑥 ≤ 𝑝𝑥 for all 𝑥. As the derivative of 𝑝 log(1

𝑝
)

is non-negative for 0 ≤ 𝑝 ≤ 1
𝑒
, the value of at most two summands can decrease, and
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they can each decrease by at most one. To obtain Step 3.11, we use Claim 20. To

obtain Step 3.12, we use Claim 22.

Thus, we have shown 𝐻(𝑋|𝑌 = 𝑦′) = Ω(log(log(𝑛))).

Corollary 8. Under our assumptions, 𝐻(𝑋|𝑌 = 𝑦′) = Ω(log(log(𝑛))) and thus

𝐻(�̃�) = Ω(log(log(𝑛))).

Proof of Theorem 7

Proof Outline.

For much of this proof, we follow intuitions and use terminology from the proof of

Theorem 6. Consider a pair of variables 𝑋 and 𝑌 such that 𝑋 is a source and there is

a path from 𝑋 to 𝑌 . We aim to show that MEC(𝑌 |𝑋) < MEC(𝑋|𝑌 ). It is simple for

us to show that MEC(𝑌 |𝑋) = 𝑜(log(log(𝑛))). To show MEC(𝑋|𝑌 ) = Ω(log(log(𝑛))),

we will use an approach similar to Theorem 6 in that we will show existence of a state

𝑦′ of 𝑌 such that 𝐻(𝑋|𝑌 = 𝑦′) is large. For showing there is a large 𝐻(𝑋|𝑌 = 𝑦′), we

will show that there is a 𝑦′ where its surplus is small and it receives many plateau balls.

While we can factor 𝑌 as a function of 𝑋 and small-entropy 𝐸 (i.e., 𝑌 = 𝑓(𝑋,𝐸)),

this is not a uniformly random function so we cannot simply apply the result of

Theorem 6. In fact, a key difficulty is that this graph setting with more than two

variables results in correlations between mappings. For example, in a graph such as

the line graph (Figure 3-1a) with each node being a uniformly random deterministic

function of its parents, one can show that conditioning on 𝑓𝑌 (𝑓𝑋2(𝑋 = 𝑥)) = 𝑦 almost

doubles the probability that 𝑓𝑌 (𝑓𝑋2(𝑋 = 𝑥′)) = 𝑦. Our new proof method must be

able to withstand the dependencies that are introduced by this setting.

To provide some intuition, we give a very high-level overview for how to show

existence of a large 𝐻(𝑋src|𝑌 = 𝑦′) for two particular graphs, and we then expand to

generalize these intuitions.

First, we consider the line graph. For simplicity, suppose that all nodes are

deterministic functions of their parents (i.e., all 𝐻(𝐸𝑖) = 0). Using the method from

Theorem 6, we can see that there exists a large 𝐻(𝑋src|𝑋2 = 𝑥′
2). This is because
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we can show there is a bin of 𝑋2 that has small surplus and receives Ω( log(𝑛)
log(log(𝑛))

)

balls. However, this analysis is actually loose in a sense. For a 𝑐 where 0 < 𝑐 < 1,

we can actually show there are 𝑛𝑐 such bins that have small surplus and receive

Ω( log(𝑛)
log(log(𝑛))

) plateau balls. Now, when we look at how 𝑋2 is mapped to 𝑌 , each of

the bins of 𝑋2 will “stick together.” More formally, each bin of 𝑋2 will have all of

its mass mapped together to a uniformly random state of 𝑌 . This is because it is a

deterministic function, but our proof will utilize a similar idea for when the function

is not deterministic but the entropy is still small. It is then our hope that a good

fraction of the bins with our desired properties (small surplus and many plateau balls)

at 𝑋2, will be mapped to a state of 𝑌 that does not have much surplus. In this sense,

we have “heavy bins” and a non-negligible proportion of them are “surviving” from

one node to the next because they aren’t mapped to a bin with too much surplus.

Through careful analysis, we are able to show that at least one such bin survives to

the node of 𝑌 , and thus 𝐻(𝑋|𝑌 = 𝑦′) is large. This proof method would hold if we

extend this line graph to any constant length.

Second, we consider the diamond graph (Figure 3-1b). Again, we assume all

functions are deterministic for simplicity. Recall that for the line graph, our proof

method was to show that there were many heavy bins at 𝑋2, and then some heavy

bins kept “sticking together” and “surviving” until we reached 𝑌 . This was because if

two states of 𝑋 were mapped to the same state of 𝑋2, then they would “stick together”

and would always be mapped to the same state for later nodes (e.g. if 𝑓𝑋2(𝑥) = 𝑓𝑋2(𝑥
′)

then 𝑓𝑋3(𝑓𝑋2(𝑥)) = 𝑓𝑋3(𝑓𝑋2(𝑥
′))). However, this is very far from what is happening

in diamond graph. In diamond graph, observe that 𝑌 = 𝑓𝑌 (𝑋2, 𝑋3). By definition

of our graph, 𝑋2 and 𝑋3 are independent deterministic functions of 𝑋. Two states

𝑥 and 𝑥′ of 𝑋 will be mapped to 𝑌 independently unless both 𝑓𝑋2(𝑥) = 𝑓𝑋2(𝑥
′) and

𝑓𝑋3(𝑥) = 𝑓𝑋3(𝑥
′). As these are independent, the probability of this happening is 1

𝑛2 .

Thus, the expected number of pairs that are not mapped to 𝑌 independently of each

other is
(︀
𝑛
2

)︀
× 1

𝑛2 < 1
2
. Accordingly, essentially all states of 𝑋 will be mapped to a

state of 𝑌 i.i.d. uniformly randomly. This enables us to more directly use the result

and techniques of Theorem 6 and treat 𝑋 and 𝑌 as a bivariate problem.
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While we are able to show how both of these graphs will result in a large 𝐻(𝑋src|𝑌 =

𝑦′), we do so very differently. For the line graph we show that there are bins with

the properties we desire (small surplus and many plateau balls), that they will “stick

together” as we move down through the graph, and at least one will “survive” to 𝑌

and thus 𝐻(𝑋src|𝑌 = 𝑦′). For the diamond graph we show that when we get to 𝑌 ,

almost everything will be mapped independently randomly again, and that we can

more directly use our bivariate techniques. There is a strong sense in which these

two proof methods are opposites of each other (utilizing probability mass staying

together throughout the graph as opposed to being independent at the end), yet we

would like one unified approach for handling general graphs. To accomplish this, we

introduce the Random Function Graph Decomposition to combine intuitions of these

two settings into a characterization for all graphs.

Definition 10 (Random Function Graph Decomposition). For the Random Function

Graph Decomposition we specify a source 𝑋 and a node 𝑌 such that there is a path

from 𝑋 to 𝑌 . We ignore all nodes not along a path from 𝑋 to 𝑌 . We define the

remaining nodes as the set 𝑉decomp. Then, we consider the nodes of 𝑉decomp an arbitrary

valid topological ordering and color each node as follows:

• If 𝑋 is a parent of the node, or if the node has multiple parents and they are

not all the same color, we create a new color for this node.

• Otherwise, all of the node’s parent(s) have the same color, and this node will

inherit said color.

At a high-level, when a new color is created for a node, then everything is being

mapped to the node almost-independently (similar to the intuition of the diamond

graph). When a node inherits its color, there is a sense in which things “stick together”

(similar to the intuition of the line graph). Let color-root(𝑌 ) be the earliest node in

any topological ordering that has the same color as 𝑌 in the Random Function Graph

Decomposition (it can be shown that color-root(𝑌 ) is unique). We aim to use the

Random Function Graph Decomposition to show that everything will be mapped to
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color-root(𝑌 ) mostly independently. This will result in there being some bins with

our desired properties (small surplus, many plateau balls) at color-root(𝑌 ). Then, we

will show that at least one of these bins survives throughout all bins with the same

color from color-root(𝑌 ) to 𝑌 , implying existence of a large 𝐻(𝑋src|𝑌 = 𝑦′).

In particular, to show that balls are mapped to color-root(𝑌 ) mostly independently,

we introduce the notion of related mass. More concretely, we define related1(𝑥) mass

as the amount of mass of balls that are ever mapped to the same state as 𝑥 among any

variable. We define related2(𝑥) mass as the amount of mass of balls that are mapped

to the same state as 𝑥 for variables of at least two distinct colors in the Random

Function Graph Decomposition. Inductively, we will show there are Ω(𝑛) plateau balls

such that related1(𝑥) = 𝑂( 1
𝑛
) and related2(𝑥) = 𝑂( 1

𝑛2 ). Moreover, we show that the

quantity related2(𝑥) upper-bounds mass that can have some dependence with 𝑥 in

how it is mapped to color-root(𝑌 ). With this upper-bound on dependence, we are

able to use techniques of Theorem 6 to show there are many bins of color-root(𝑌 )

with many plateau balls and not much surplus. Finally, we show that, within the color

of color-root(𝑌 ) and 𝑌 , at least one of these bins “survives” to 𝑌 and accordingly

MEC(𝑋src|𝑌 ) is large. Complete Proof. We must show that for a source 𝑋src and a

node 𝑌 such that there is a path from 𝑋src to 𝑌 , MEC(𝑋src|𝑌 ) > MEC(𝑌 |𝑋src).

Upper bounding MEC(𝑌 |𝑋src). It is simple to show that MEC(𝑌 |𝑋src) is

small:

Claim 9. MEC(𝑌 |𝑋src) ≤ 𝑜(|𝑉 | log(log(𝑛)))

Proof. 𝑌 can be written as a function of 𝑋src and the set of all 𝐸𝑖 excluding

𝐸𝑋src . As 𝑋src is independent of these 𝐸𝑖, and their total entropy is
∑︀

𝑖 𝐻(𝐸𝑖) =

𝑜(|𝑉 | log(log(𝑛))), the claim holds since |𝑉 | = 𝒪(1).

Bounding MEC(𝑋src|𝑌 ) via 𝐻(𝑋src|𝑌 = 𝑦). Our method for lower-bounding

MEC(𝑋src|𝑌 ) is substantially more involved. As in Theorem 6, we will lower-bound it

by MEC(𝑋src|𝑌 ) ≥ max𝑦 𝐻(𝑋src|𝑌 = 𝑦) (see Theorem 6 for proof). Our proof aims to

show there is a conditional entropy such that max𝑦 𝐻(𝑋src|𝑌 = 𝑦) = Ω(log(log(𝑛))).

Showing existence of a near-uniform plateau. A key step in our approach,
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as in the proof of Theorem 6, is that we will find a subset of the support of 𝑋 whose

probabilities are multiplicative close to one another. In particular, we will find a subset

of 𝑋src where their probabilities are within a factor of log𝑐close(𝑛) of each other, where

0 < 𝑐close < 1. For our analysis, we require a value of 𝑐close that is Ω(1) yet below

some threshold. While there are multiple values of 𝑐close that satisfy this condition,

we will use 𝑐close = 1/4. This set of states of 𝑋src that are multiplicatively close to one

another will be called the plateau of 𝑋src. We use Lemma 10 proven in Theorem 6 to

show how the (Ω(𝑛),Ω( 1
𝑛 log(𝑛)

))-support assumptions implies a plateau of states of 𝑋:

Lemma 10 (Plateau existence). Suppose 𝑋 has (𝑐support𝑛,
1

𝑐lb𝑛 log(𝑛)
)-support for con-

stants 0 < 𝑐support ≤ 1 and 𝑐lb ≥ 1. Additionally, assume 𝑛 is sufficiently large such

that log(2𝑐lb/𝑐support)

log(log(𝑛))
≤ 1. Then, there exists a subset 𝑆 ⊆ [𝑛] of the support of 𝑋, such

that the following three statements hold:

1. max𝑖∈𝑆 𝑃 (𝑋=𝑖)
min𝑖∈𝑆 𝑃 (𝑋=𝑖)

≤ log𝑐close(𝑛)

2. min𝑖∈𝑆 𝑃 (𝑋 = 𝑖) ≥ 1
𝑐lb𝑛 log(𝑛)

3. |𝑆| ≥ 𝑐close𝑐support𝑛

6
, for any 0 < 𝑐close < 1.

Characterization as a balls-and-bins game. Our proof method of Theorem 6

characterizes a balls-and-bins game where states of 𝑋×𝐸 are balls and states of 𝑌 are

bins. As we realized an entry 𝑓(𝑥, 𝑒) as a uniformly random state of 𝑌 , we characterized

this as a ball (a state of 𝑋 ×𝐸) being assigned to a uniformly random bin (a state of

𝑌 ). In the graph setting of this theorem, such a characterization is more complicated.

Any node 𝑋𝑖 is a uniformly random function of Pa(𝑋𝑖) and 𝐸𝑖. We define 𝐸* to be

the Cartesian product of all 𝐸𝑖 other than 𝐸𝑋 . Using this, we characterize balls as

being states of 𝑋 ×𝐸*. Note how any random variable in our SCM is a deterministic

function of 𝑋 ×𝐸*. In particular, it is the composition of (potentially many) 𝑓𝑖 terms.

For simplicity of notation, we let 𝑓 *
𝑇 (𝑥× 𝑒*) denote the value of a set of variables 𝑇

for a particular state of 𝑥× 𝑒*. In the characterization of our balls-and-bins game, all
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balls with the same configuration of Pa(𝑋𝑖) and 𝐸𝑖 are mapped uniformly randomly

together to a state of 𝑋𝑖. In other words, configurations are realized i.i.d. uniformly

randomly. Using our notation, this means two balls (𝑥𝑎, 𝑒
*
𝑎) and (𝑥𝑏, 𝑒

*
𝑏) are mapped

independently to variable 𝑋𝑖 if any only if 𝑓 *
Pa(𝑋𝑖)∪𝐸𝑖

(𝑥𝑎, 𝑒
*
𝑎) ̸= 𝑓 *

Pa(𝑋𝑖)∪𝐸𝑖
(𝑥𝑏, 𝑒

*
𝑏).

Lower-bounding the most probable state of 𝐸𝑖 and 𝐸*. We focus first on

plateau balls, which are balls corresponding to states of 𝑆 (the set of plateau states

of 𝑋) and the highest probability state of 𝐸*. In particular, they are balls of the

form (𝑋 ∈ 𝑆,𝐸* = 𝑒*1) where 𝑒*1 is the most probable state of 𝐸*. To show that

these plateau balls have enough probability mass to be helpful, we first use Lemma 11

proven in Theorem 6 that implies all max
𝑒

𝐻(𝐸𝑖 = 𝑒) ≥ 1
log𝑐close (𝑛)

:

Lemma 11. If 𝐻(𝐸) ≤ 𝑐close log(log(𝑛)) then 𝑃 (𝐸 = 𝑒1) ≥ 1
log𝑐close (𝑛)

This implies a lower-bound on the probability 𝑃 (𝐸* = 𝑒*1):

Lemma 18. If all max
𝑒

𝑃 (𝐸𝑖 = 𝑒) ≥ 1
log𝑐close (𝑛)

, then 𝑃 (𝐸* = 𝑒*1) ≥ 1

log𝑐close|𝑉 |(𝑛)
.

Proof. As 𝐸* is the Cartesian product of |𝑉 |−1 variables 𝐸𝑖, it holds that max𝑃 (𝐸* =

𝑒*) ≥ (min𝑖 max𝑒 𝑃 (𝐸𝑖 = 𝑒))|𝑉 |−1 ≥ ( 1
log𝑐close (𝑛)

)|𝑉 |−1 ≥ 1

log𝑐close|𝑉 |(𝑛)
.

Introducing surplus. In Theorem 6, we prove how there exists a bin that receives

a large amount of mass that helps the bin have large conditional entropy (such helpful

mass includes the plateau balls), and not much mass that hurts the conditional entropy

making it small. To formalize this hurtful mass, we introduced the surplus quantity

described in Definition 6. This surplus is a way of quantifying the probability mass

received by a state of 𝑌 that is hurtful towards making the conditional entropy large.

The proof of Theorem 6 achieves a lower-bound for max𝑦 𝐻(𝑋|𝑌 = 𝑦) by proving

existence of a state 𝑦′ of 𝑌 where 𝑦′ receives many plateau balls and the surplus is

small. Likewise, we will also prove existence of such a state of 𝑌 with many plateau

balls and small surplus, in the graph setting. We formalize the notion of surplus as

follows:

Definition 11 (Surplus, 𝒯 = 120
𝑛 log(𝑛)

). We define the surplus of a state 𝑖 of 𝑌 as

𝑧𝑖 =
∑︀

𝑗 /∈𝑆 max(0, 𝑃 (𝑋 = 𝑗, 𝑌 = 𝑖)− 120
𝑛 log(𝑛)

).
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Introducing the Random Function Graph Decomposition. In Section 3.9.1,

we introduced intuitions from considering the diamond graph in Figure 3-1b and the

line graph in Figure 3-1a. In the proof outline for a diamond graph, we utilized the

intuition that almost all balls were independently assigned to 𝑌 . This enables us to

use techniques from Theorem 6, as almost all balls were independently assigned to

a uniformly random state of 𝑌 , closely mirroring the setting of Theorem 6. In the

proof outline for line graph, we used techniques of Theorem 6 to show that there

would be many bins that received many plateau balls and small surplus. Then, we

showed that at least one of these bins would mostly “survive” and remain in-tact to 𝑌 .

While our intuitions for both of these graphs enabled us to show existence of a large

𝐻(𝑋src|𝑌 = 𝑦), but they did so with near-opposite methods. Our intuition for the

diamond graph exploits independence (everything is assigned almost independently

to 𝑌 ), while our intuition for the line graph exploits dependence (some bins with

our desired properties “survive” from the second node onwards). We introduce the

Random Function Graph Decomposition to combine intuitions of these two graphs

into a characterization for all graphs:

Definition 10 (Random Function Graph Decomposition). For the Random Function

Graph Decomposition we specify a source 𝑋 and a node 𝑌 such that there is a path

from 𝑋 to 𝑌 . We ignore all nodes not along a path from 𝑋 to 𝑌 . We define the

remaining nodes as the set 𝑉decomp. Then, we consider the nodes of 𝑉decomp an arbitrary

valid topological ordering and color each node as follows:

• If 𝑋 is a parent of the node, or if the node has multiple parents and they are

not all the same color, we create a new color for this node.

• Otherwise, all of the node’s parent(s) have the same color, and this node will

inherit said color.

At a high-level, when a new color is created for a node, then we will see that

plateau balls are being mapped to the node almost-independently (similar to the

intuition of the diamond graph). When a node inherits its color, there is a sense
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in which things “stick together” (similar to the intuition of the line graph). For

some node 𝑋𝑖 ∈ 𝑉decomp, we define color(𝑋𝑖) to be the node’s color in the Random

Function Graph Decomposition. Under a fixed topological ordering, let color-root(𝑌 )

be the earliest node that has the same color as 𝑌 in the Random Function Graph

Decomposition (it can be shown that color-root(𝑌 ) is unique). We aim to use the

Random Function Graph Decomposition to show that everything will be mapped to

color-root(𝑌 ) mostly independently. This will result in there being some bins with

our desired properties (small surplus, many plateau balls) at color-root(𝑌 ). Then, we

will show that at least one of these bins survives throughout all bins with the same

color from color-root(𝑌 ) to 𝑌 , implying existence of a large 𝐻(𝑋src|𝑌 = 𝑦′).

Introducing related mass. To show how plateau balls are mapped to

color-root(𝑌 ) mostly independently, we introduce the concept of related mass. Related

mass introduces a measure of how much mass has come into contact with a particular

plateau ball:

Definition 12 (Related mass). We define related mass of two types as follows.

• For a plateau state 𝑥 of 𝑋, we define related1(𝑥) mass as the amount of mass

of balls from non-plateau states of 𝑋 that are ever mapped to the same state

as the plateau ball of 𝑥 among any variable in the Random Function Graph

Decomposition. In other words, 𝑥′, 𝑒* contributes to related1(𝑥) if it satisfies the

following for some 𝑋𝑖: 𝑥′ together with some realization 𝑒* contributes to the

same bin of 𝑋𝑖 that 𝑥 is mapped to together with 𝑒*1. More formally, we define

ℬ1(𝑥) as the set of balls whose mass counts towards related1(𝑥), where ℬ1(𝑥) =

{𝑥′ ∈ 𝑋∖𝑆, 𝑒* ∈ 𝐸*|∃𝑋𝑖 ∈ 𝑉decomps.t.𝑓 *
𝑋𝑖
(𝑥′, 𝑒*) = 𝑓 *

𝑋𝑖
(𝑥, 𝑒*1)}. Accordingly,

related1(𝑥) =
∑︀

𝑥′,𝑒*∈ℬ1(𝑥)
𝑃 (𝑋 = 𝑥′) · 𝑃 (𝐸* = 𝑒*).

• For a plateau state 𝑥 of 𝑋, we define related2(𝑥) mass as the amount of mass

of balls from non-plateau states of 𝑋 that are ever mapped to the same state

as the plateau ball of 𝑥 among variables of at least two distinct colors in the

Random Function Graph Decomposition. In other words, 𝑥′, 𝑒* contributes

to related2(𝑥) if it satisfies the following for some 𝑋𝑖, 𝑋𝑗 with distinct colors:
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𝑥′ together with some realization 𝑒* contributes to the same bin of 𝑋𝑖 that 𝑥

is mapped to together with 𝑒*1; same holds for 𝑋𝑗. More formally, we define

ℬ2(𝑥) as the set of balls whose mass counts towards related2(𝑥), where ℬ2(𝑥) =

{𝑥′ ∈ 𝑋∖𝑆, 𝑒* ∈ 𝐸*|∃𝑋𝑖, 𝑋𝑗 ∈ 𝑉decomps.t.𝑓 *
𝑋𝑖
(𝑥′, 𝑒*) = 𝑓 *

𝑋𝑖
(𝑥, 𝑒*1), 𝑓

*
𝑋𝑗
(𝑥′, 𝑒*) =

𝑓 *
𝑋𝑗
(𝑥, 𝑒*1), color(𝑋𝑖) ̸= color(𝑋𝑗)}. Accordingly, related2(𝑥) =∑︀

𝑥′,𝑒*∈ℬ2(𝑥)
𝑃 (𝑋 = 𝑥′) · 𝑃 (𝐸* = 𝑒*).

Now, we will consider an arbitrary topological ordering of 𝑉decomp. In this ordering,

we define order(𝑋𝑖) for 𝑋𝑖 ∈ 𝑉decomp as the index of 𝑋𝑖 in the topological ordering.

We introduce a modification of related1(𝑥) where relatedorder(𝑋𝑖)
1 (𝑥) only considers

nodes of 𝑉decomp that are strictly earlier in the topological ordering than 𝑋𝑖. We define

relatedorder(𝑋𝑖)
2 (𝑥) analogously. It is our goal to show that there are many plateau

states 𝑥 ∈ 𝑆 such that relatedorder(color-root(𝑌 ))
2 (𝑥) is small. This will enable us to show

how there are many plateau balls that are mapped to color-root(𝑌 ) independently of

almost all other mass.

Upper-bounding related mass. To show independence in how some plateau balls

are mapped to color-root(𝑌 ), we bound relatedorder(color-root(𝑌 ))
2 (𝑥) for some plateau

states 𝑥 ∈ 𝑆.

To show this, we will process nodes in the topological ordering. After processing

the first 𝑖 nodes, we will argue that there is a large set 𝑆𝑖
indep with upper-bounds on

all related𝑖
1(𝑥) and related𝑖

2(𝑥).

Lemma 19. With high probability, after processing the first 𝑖 nodes in the topological

ordering, there exists a set 𝑆𝑖
indep such that |𝑆𝑖

indep| =
|𝑆|
6𝑖

, all 𝑥 ∈ 𝑆𝑖
indep satisfy

related𝑖1(𝑥) ≤ 6𝑖
𝑛

and related𝑖2(𝑥) ≤
18×𝑖×(𝑖−1)

𝑛2 , and all 𝑥, 𝑥′ ∈ 𝑆𝑖
indep satisfy 𝑓 *

𝑋𝑗
(𝑥, 𝑒*1) ̸=

𝑓 *
𝑋𝑗
(𝑥′, 𝑒*1) for all 1 ≤ 𝑗 ≤ 𝑖.

Proof. We begin with the following claims.

Claim 10. Lemma 19 holds for 𝑖 = 1.

Proof. To find a subset of 𝑆 to be 𝑆𝑖
indep, we will choose any arbitrary subset of size

𝑆
6
. By definition of related1 and related2, all plateau balls are different states of 𝑋src
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so related1
1(𝑥) = related1

2(𝑥) = 0 for every 𝑥 ∈ 𝑆, and 𝑓 *
𝑋src

(𝑥, 𝑒*1) ̸= 𝑓 *
𝑋src

(𝑥′, 𝑒*1) for all

𝑥, 𝑥′ ∈ 𝑆.

Claim 11. Lemma 19 holds for 𝑖 if it holds for all 𝑗 < 𝑖.

Proof. First, we realize 𝑓𝑋𝑖
for all cells other than those corresponding to configurations

of Pa(𝑋𝑖) ∪ 𝐸𝑋𝑖
that contain an element of 𝑆𝑖−1

indep. Now, we consider the process of

realizing the entries of 𝑓𝑋𝑖
corresponding to elements of 𝑆𝑖−1

indep in an arbitrary order.

We define a random variable for every element of 𝑆𝑖−1
indep. For the 𝑗-th element, we

define 𝒮𝑗 as follows:

• If the element is mapped to a bin that another element of 𝑆𝑖−1
indep has been mapped

to, then 𝒮𝑗 = −1.

• Otherwise, if the element 𝑥 ∈ 𝑆𝑖−1
indep is mapped to a bin that contains total mass

at least 6
𝑛
, or total mass from ℬ𝑖−1

1 (𝑥) of at least 6related𝑖−1
1 (𝑥)

𝑛
, then 𝒮𝑗 = 0.

• Else, then 𝒮𝑗 = 1.

The intuition behind 𝒮𝑗 is that we will count an element of 𝑥 ∈ 𝑆𝑖
indep as being

eligible for 𝑆𝑖
indep if it lands in a bin with no other value of 𝑆𝑖−1

indep, and if it lands in a

bin that will not increase related𝑖
1(𝑥) or related𝑖

2(𝑥) by too much.

Claim 12. Consider the set comprised of each element 𝑥 ∈ 𝑆𝑖−1
indep that satisfies the

following. Suppose 𝑥 is assigned to a bin such that before 𝑥 is mapped to the bin,

the bin has total mass at most 6
𝑛

and total mass intersecting from ℬ𝑖−1(𝑥) of at most
6related𝑖−1

1 (𝑥)

𝑛
. Moreover, suppose 𝑥 is the only element of 𝑆𝑖−1

indep that is ever assigned to

this bin. Then, this set of all such 𝑥 would meet the desired properties required of

𝑆𝑖
indep.

Proof. The increase of the quantity related𝑖
1(𝑥) is bounded by the amount of other

mass in the bin that 𝑥 is assigned to. Accordingly, related𝑖
1(𝑥) ≤ related𝑖−1

1 (𝑥) +

6
𝑛
≤ 6×(𝑖−1)

𝑛
+ 6

𝑛
= 6𝑖

𝑛
. The increase of the quantity related𝑖

2(𝑥) is bounded by the

amount of mass from ℬ𝑖−1
1 (𝑥) in the bin 𝑥 is assigned to. Accordingly, related𝑖

2(𝑥) ≤

related𝑖−1
2 (𝑥) +

6related𝑖−1
1 (𝑥)

𝑛
≤ 18×(𝑖−1)×(𝑖−2)

𝑛2 + 36(𝑖−1)
𝑛2 = 18×𝑖×(𝑖−1)

𝑛2
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Moreover, we claim that
∑︀
𝒮𝑖 serves as a lower bound for the set of elements

eligible for 𝑆𝑖
indep referenced in Claim 12.

Claim 13. The number of elements of 𝑆𝑖−1
indep that are eligible for 𝑆𝑖

indep by satisfying

Claim 12 is at least
∑︀

𝑗 𝒮𝑗.

Proof. For each bin, consider the sum of 𝒮𝑗 for variables corresponding to elements of

𝑆𝑖−1
indep that were assigned to the bin (if any). If the sum is nonpositive, then we trivially

claim the set of elements meeting the criteria in this bin is at least the sum, as there

will be at least 0 such elements. Otherwise, the sum must be 1, This implies there is

exactly one element of 𝑆𝑖−1
indep assigned to the bin, and that it met the criteria when it

was assigned, because its corresponding 𝒮𝑗 = 1. Moreover, as no other elements could

have been assigned to the bin later, it still meets the criteria. Combining both cases,

we see that the sum of 𝒮𝑗 for each bin is a lower-bound for the number of elements

satisfying the criteria in said bin, and thus globally the sum of all 𝒮𝑗 is a lower-bound

for how many elements meet the criteria in total.

We aim to now use the sum of 𝒮𝑗 as a lower-bound for the size of the set of elements

meeting the criteria. To do so, we will first lower-bound 𝐸[𝒮𝑗].

Claim 14. Regardless of the realization of any previous randomness, 𝐸[𝒮𝑗] ≥ 1
3
.

Proof. 𝒮𝑗 is equal to −1 only if it is assigned to a bin with another element of 𝑆𝑖−1
indep.

The number of such bins is upper-bounded by |𝑆𝑖−1
indep| ≤ |𝑆1

indep| ≤ 𝑛
6
. Otherwise, 𝒮𝑗 is

equal to 0 only if the bin had mass at least 𝑛
6

or it has mass from the corresponding

ℬ𝑖−1
1 (𝑥) of at least 6related𝑖−1

1 (𝑥)

𝑛
. There can only be at most 𝑛

6
bins satisfying the

former, and at most 𝑛
6

bins satisfying the latter. Accordingly, there are at least

𝑛− 3× 𝑛
6
= 𝑛

2
where if the corresponding element is assigned to it, then 𝒮𝑗 = 1. Hence

𝐸[𝒮𝑗] ≥ 1
2
− 1

6
= 1

3
.

As we need a set 𝑆𝑖
indep with cardinality |𝑆𝑖

indep| =
|𝑆𝑖−1

indep|
6

, we show the following:

Claim 15.
∑︀

𝑗 𝒮𝑗 ≥
|𝑆𝑖−1

indep|
6

with high probability.

Proof. We will modify the variables to make a martingale and then utilize Azuma’s

inequality. We define 𝒮 ′
𝑗 = 𝒮 ′

𝑗−1+𝒮𝑗−𝐸[(𝒮𝑗|𝒮1, . . . ,𝒮𝑗−1)]. Accordingly, the sequence
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of 𝒮 ′ is a martingale of length |𝑆𝑖−1
indep| where |𝒮 ′

𝑗−1−𝒮 ′
𝑗| ≤ 1. Thus, we can use Azuma’s

inequality to show 𝑃 (|𝒮 ′
|𝑆𝑖−1

indep|
− 𝒮 ′

1| ≥
|𝑆𝑖−1

indep|
6

) ≤ 2𝑒
−|𝑆𝑖−1

indep|
72 = 2𝑒

−|𝑆|
726𝑖−1 = 2𝑒−Ω(𝑛). By

definition,
∑︀

𝑗 𝒮𝑗 =
∑︀

𝑗 𝒮 ′
𝑗 +
∑︀

𝑗 𝐸[𝑆𝑗 ]. By our result with Azuma’s inequality, we then

claim that with high probability it holds that
∑︀

𝑗 𝒮𝑗 ≥ −
|𝑆𝑖−1

indep|
6

+
|𝑆𝑖−1

indep|
3

=
|𝑆𝑖−1

indep|
6

.

Combining Claim 12 and Claim 15, we have now shown that there exists a valid

set 𝑆𝑖
indep of size |𝑆𝑖

indep| =
|𝑆𝑖−1

indep|
6

, completing the proof of Claim 11.

By induction Lemma 19 holds.

Corollary 9. There exists a subset of plateau states 𝑆indep ⊆ 𝑆 such that |𝑆indep| ≥
|𝑆|
6|𝑉 | = Ω(𝑛) and every 𝑥 ∈ 𝑆indep satisfies relatedorder(color-root(𝑌 ))

2 (𝑥) ≤ 18×|𝑉 |×(|𝑉 |−1)
𝑛2 .

Moreover, for all pairs 𝑥, 𝑥′ ∈ 𝑆indep it holds that they never share a state, meaning

𝑓 *
𝑋𝑖
(𝑥) ̸= 𝑓 *

𝑋𝑖
(𝑥′) for all 𝑋𝑖 ∈ 𝑉decomp.

Proof. One such set is simply |𝑆|𝑉 |
indep| as shown in Lemma 19.

Characterizing balls. Recall that each variable assigns balls with the same

configuration of its parents and exogenous variable together. We aim to show a similar

result at color-root(𝑌 ). To do so, we will characterize the balls within configurations

into types:

Definition 7 (Ball characterizations). We characterize three types of balls:

1. Dense balls. Consider a set 𝐿 of states of 𝑋, where a state of 𝑋 is in 𝐿 if

𝑃 (𝑋 = 𝑥) ≥ 1
log3(𝑛)

. Dense balls are all balls of the form (𝑥 ∈ 𝐿, 𝑒 ∈ 𝐸). We

call these dense balls, because the low-entropy of 𝐸 will prevent the collective

mass of these balls from “expanding” well.

2. Large balls. For all balls of the form (𝑥 ∈ 𝑋∖(𝑆 ∪ 𝐿), 𝑒 ∈ 𝐸) where the ball has

mass ≥ 𝒯
2
.

3. Small balls. For all balls of the form (𝑥 ∈ 𝑋∖(𝑆 ∪ 𝐿), 𝑒 ∈ 𝐸) where the ball has

mass < 𝒯
2
.
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We use 𝒯 = 120|𝑉 |
𝑛 log(𝑛)

.

Now, we will show that for every variable 𝑋𝑖 there are many bins without too

much surplus, such that the plateau configurations have many bins that they may

be assigned to that will help us obtain a bin with small surplus and many plateau

configurations.

Definition 13 (Configuration and ball characterizations). We characterize three types

of configurations/balls:

1. Large configurations. For all configurations of the form (Pa(𝑋𝑖)∪𝐸𝑖) where the

configuration has balls of total mass ≥ 𝒯
2
.

2. Dense ball. Consider a set 𝐿 of states of 𝑋src, where a state of 𝑋src is in 𝐿 if

𝑃 (𝑋src = 𝑥) ≥ 1
log3(𝑛)

. Dense balls are all balls of the form (𝑥 ∈ 𝐿, 𝑒 ∈ 𝐸*). We

call these dense balls, because the low-entropy of 𝐸 will prevent the collective

mass of these balls from being distributed well throughout.

3. Small ball. For all balls of the form (𝑥 ∈ 𝑋src∖(𝑆 ∪ 𝐿), 𝑒 ∈ 𝐸*) where the ball

has mass < 𝒯
2
.

Bounding dense ball surplus. Recall the following used in Theorem 6 to bound

contributions from dense balls:

Lemma 12 (Limited expansion). Suppose 𝑌 can be written as a function 𝑓(𝑋,𝐸)

and 𝑋⊥⊥𝐸. Consider any subset 𝑅 of the support of 𝑋. For any subset 𝑇 of the

support of 𝑌 that satisfies ∀𝑡 ∈ 𝑇 : 𝑃 (𝑋 ∈ 𝑅, 𝑌 = 𝑡) > 𝛿, the cardinality of 𝑇 is upper

bounded as |𝑇 | ≤ 𝐻(𝐸)+log(|𝑅|)+2

𝛿 log( 1
𝛿
)

.

We use the following corollary:

Corollary 5. There exist no subset |𝑇 | = 𝑛/4 such that ∀𝑡 ∈ 𝑇 : 𝑃 (𝑋 ∈ 𝐿, 𝑌 = 𝑡) ≥
1

𝑛 log(log(𝑛)) log2𝑐close (𝑛)

These imply the following for our graph setting. While this may seems strictly

weaker than Corollary 5, we will utilize that the event of a bin having too much mass

from dense balls is now independent from how large configurations are mapped.
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Corollary 10. Let 𝒞large denote the set of large configurations of Pa(𝑋𝑖) ∪ 𝐸𝑖 as

defined in Definition 13. Let 𝐶 be a random variable denoting the configuration of the

corresponding ball of Pa(𝑋𝑖) ∪ 𝐸*. We claim that dense balls in configurations other

than 𝒞large are not distributed well throughout 𝑋𝑖. In particular, there exists no subset

|𝑇 | = 𝑛/4 such that ∀𝑡 ∈ 𝑇 : 𝑃 (𝑋 ∈ 𝐿, 𝑌 = 𝑡, 𝐶 /∈ 𝒞large) ≥ 1
𝑛 log(log(𝑛)) log2𝑐close (𝑛)

.

Proof. Note that the results of Lemma 12 and Corollary 5 still hold in this setting

as any 𝑋𝑖 ∈ 𝑉decomp can be written as a function of 𝑋src and ∪𝑗𝐸𝑗. This corollary

trivially follows from Corollary 5, as it is strictly weaker in that we add a restriction

that 𝐶 /∈ 𝒞large. Any set 𝑇 that contradicts Corollary 10 would immediately contradict

Corollary 5.

Bounding large configuration surplus. To bound contribution to surplus by

large configurations, we bound the number of bins that receive any mass from large

configurations. Recall Lemma 13 from the proof of Theorem 6:

Lemma 13 (Avoided big). Given a balls-and-bins game with 𝑐 · 𝑛 ln(𝑛) balls mapped

uniformly randomly to 𝑛 bins, at least 𝑛1−𝑐

2
bins will receive no balls with high probability

if 𝑐 is a constant such that 0 < 𝑐 ≤ 1
3
.

Accordingly, we can use the following:

Corollary 11. As there are at most 1
𝒯 /2
≤ 𝑛 log(𝑛)

60|𝑉 | ≤
1

40|𝑉 | · 𝑛 ln(𝑛) large balls, with

high probability there are at least 𝑛
1− 1

40|𝑉 |

2
bins that receive no large balls.

Bounding small ball surplus. Here we will bound the surplus from small balls.

Note that, while this proof is not short, it is using the same ideas as the corresponding

section in the proof of Theorem 6. However, there are some subtle differences that

necessitate a separate proof for the graph setting. We use identical text from the

proof of Theorem 6 when applicable.

For the small balls, we will also show that they cannot contribute too much surplus

to too many states of any 𝑋𝑖. We will notably use that all small balls correspond to

a state of 𝑋src where 𝑃 (𝑋src = 𝑥) ≤ 1
log3(𝑛)

. We will utilize this to show that most

small balls are assigned to a state of 𝑋𝑖 that has not yet received > 𝒯
2

mass from
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its corresponding state of 𝑋src, and accordingly would not increase the surplus. To

accomplish this, we define a surplus quantity that only takes into account small balls:

Definition 14 (Small ball surplus). We define the small ball surplus of a state 𝑦 of 𝑌

as

𝑧small
𝑗 =

∑︁
𝑥src /∈(𝑆∪𝐿)

max

(︃
0,−𝒯 +

∑︁
𝑒*:

(𝑋=𝑥src,𝐸*=𝑒.𝐶 /∈𝒞large)

𝑃 (𝑋src = 𝑥,𝐸* = 𝑒,𝑋𝑖 = 𝑗)

⎞⎟⎟⎠ .

With this notion of surplus constrained to small balls, we show the following:

Lemma 20 (Small ball limited surplus). With high probability, there are at most 𝑛
4

values of 𝑖, i.e., number of bins, where 𝑧small
𝑖 ≥ 1

𝑛 log(log(𝑛)) log2𝑐close (𝑛)
.

Proof. We will consider configurations 𝐶 /∈ 𝒞large in an arbitrary order, and within

each configuration consider balls in an arbitrary order. Let 𝑥𝑖(𝑐) be the corresponding

state of 𝑋𝑖 for the 𝑐-th configuration, let 𝑥src𝑐(𝑡) be the corresponding state of 𝑋src

for the 𝑡-th ball in the 𝑐-th configuration. 𝑒src𝑐(𝑡) be the corresponding state of 𝐸*

for the 𝑡-th ball in the 𝑐-th configuration, and 𝑤𝑐,ball(𝑡) be the 𝑡-th ball’s probability

mass in the 𝑐-th configuration (i.e., 𝑃 (𝑋src = 𝑥src𝑐(𝑡), 𝐸 = 𝑒src𝑐(𝑡))). Moroever, we

define 𝑤config(𝑐) as the weight of all such balls with configuration 𝑐. Recall that for

all small balls it must hold that 𝑥src𝑐(𝑡) /∈ 𝐿 and thus 𝑃 (𝑋src = 𝑥src𝑐(𝑡)) <
1

log3(𝑛)
. We

define the total small ball surplus as 𝑍small =
∑︀

𝑗∈𝑋𝑖
𝑧small
𝑗 . Now, we will consider all

non-large configurations in an arbitrary order and realize their corresponding entry

of 𝑓 to map them to a state of 𝑋𝑖. Initially, we have not realized the entry of 𝑓 for

any balls and thus all 𝑧small
𝑗 = 0 and 𝑍small = 0. As we map configurations to states of

𝑋𝑖, we define ∆(𝑐) as the increase of 𝑍small after mapping the 𝑐-th configuration to a

state of 𝑋𝑖. By definition,
∑︀

𝑐∆(𝑐) is equal to 𝑍small after all values of 𝑓 have been

completely realized.

Our primary intuition is that we will show for many small balls it holds that they

have zero contribution towards their configuration’s quantity ∆(𝑐). As 𝑓 is realized
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for each configuration, let 𝑤𝑋𝑖
(𝑥𝑖, 𝑥src) denote the total mass of balls assigned to state

𝑥𝑖 of 𝑋𝑖 so far from state 𝑥src of 𝑋src, i.e., 𝑤𝑋𝑖
(𝑥′

𝑖, 𝑥
′
src) :=

∑︀
𝑐′<𝑐,𝑡:𝑥𝑖(𝑐)=𝑥′

𝑖

𝑤𝑐,ball(𝑡
′). Note

that this quantity is shared among all configurations.

Claim 16. Regardless of the realizations of all ∆(𝑐′) for 𝑐′ < 𝑐, it holds that ∆(𝑐) is a

random variable with values in range [0, 𝑤config(𝑐)] and 𝐸[∆(𝑐)] ≤ 𝑤config(𝑐)

log2(𝑛)
.

Proof. Let us define ∆𝑡(𝑐) as the contribution of the 𝑡-th ball to ∆(𝑐). By definition,∑︀
𝑡 ∆𝑡(𝑐) = ∆(𝑐). We aim to show 𝐸[∆𝑡(𝑐)] ≤ 𝑤𝑐,ball(𝑡)

log2(𝑛)
. This would immediately imply

the desired bound on 𝐸[∆(𝑡)] by linearity of expectation.

The only conditions under which ∆𝑡(𝑐) takes a non-negative value (which is upper-

bounded by 𝑤𝑐,ball(𝑡)), is when 𝑤𝑋𝑖
(𝑥𝑖(𝑐), 𝑥src𝑐(𝑡)) >

𝒯
2

before the entry of 𝑓 for the

𝑐-th configuration is realized (other. Recall that 𝑃 (𝑥src𝑐(𝑡)) ≤ 1
log3(𝑛)

. Accordingly,

the number of states 𝑥′
𝑖 of 𝑋𝑖 where 𝑤𝑐

𝑋𝑖
(𝑥′

𝑖, 𝑥src𝑐(𝑡)) > 𝒯
2

is upper-bounded by
𝑃 (𝑋src=𝑥src))

𝒯 /2
≤ 1/ log3(𝑛)

60|𝑉 |/(𝑛 log(𝑛))
= 𝑛 log(𝑛)

60|𝑉 | log3(𝑛) ≤
𝑛

log2(𝑛)
. This is due to the fact that balls

partition the total mass of 𝑃 (𝑋src = 𝑥src(𝑡)) since we have 𝑃 (𝑋src = 𝑥src(𝑡)) =∑︀
𝑒 𝑃 (𝑋 = 𝑥src(𝑡), 𝐸 = 𝑒). This implies that the probability that the 𝑡-th ball of

configuration 𝑐 will be mapped to a state 𝑥′
𝑖 of 𝑋𝑖 such that 𝑤𝑐

𝑋𝑖
(𝑥′

𝑖, 𝑥src𝑐(𝑡)) already

exceeds the threshold of 𝒯 /2 (in other words where we will have ∆𝑡(𝑐) > 0) is upper-

bounded by 𝑛/ log2(𝑛)
𝑛

= 1
log2(𝑛)

due to the fact that the function 𝑓 is realized uniformly

randomly. Accordingly, 𝐸[∆𝑡(𝑐)] ≤ 𝑤𝑐,ball(𝑡)

log2(𝑛)
and thus 𝐸[∆(𝑐)] ≤ 𝑤config(𝑐)

log2(𝑛)
.

This enables us to upper-bound the sum of ∆(𝑡):

Claim 17.
∑︀

𝑐 ∆(𝑐) ≤ 1
4 log(𝑛)

with high probability.

Proof. We will transform ∆(𝑐) into a martingale. In particular, we define ∆′(𝑐) =

∆′(𝑐− 1) + ∆(𝑐)− 𝐸[∆(𝑐)|∆(1), . . . ,∆(𝑐− 1)]. We define ∆′(0) = 0, and note that

∆′(𝑐) is a martingale. By Azuma’s inequality, we show |
∑︀

𝑐 ∆
′(𝑐)| ≤ 1

8 log(𝑛)
with high

probability:

𝑃 [|∆(𝑐)| > 𝜀] < 2𝑒
− 𝜀2

2
∑︀

𝑐2
𝑖

≤ 2𝑒
−

( 1
8 log(𝑛))

2

2(max𝑖 𝑐𝑖)·
∑︀

𝑐𝑖
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≤ 2𝑒−
( 1
8 log(𝑛))

2

2×𝒯 /2·1

= 2𝑒
−𝑛 log(𝑛)

120×8×|𝑉 |×log(𝑛)

Accordingly, by definition of ∆′(𝑐) this implies |(
∑︀

𝑐 ∆(𝑐))−
∑︀

𝑐𝐸[∆(𝑐)|∆(1), . . . ,∆(𝑐−

1)]| ≤ 1
8 log(𝑛)

. By Claim 16 we know all 𝐸[∆(𝑐)|∆(1), . . . ,∆(𝑐 − 1)] ≤ 𝑤config(𝑐)

log2(𝑛)

and accordingly,
∑︀

𝑐𝐸[∆(𝑐)|∆(1), . . . ,∆(𝑐 − 1)] ≤ 1
log2(𝑛)

. Together, these imply∑︀
𝑐 ∆(𝑐) ≤ 1

8 log(𝑛)
+ 1

log2(𝑛)
with high probability, and for sufficiently large 𝑛 it holds that

1
log2(𝑛)

≤ 1
8 log(𝑛)

. Thus, our high-probability on |∆′(𝑐)| implies that
∑︀

𝑡∆(𝑡) ≤ 1
4 log(𝑛)

with high probability.

Finally, we conclude that our upper-bound on
∑︀

𝑡 ∆(𝑡) implies an upper-bound on

the number of states of 𝑌 with non-negligible small ball support:

Claim 18. If
∑︀

𝑡∆(𝑡) ≤ 1
4 log(𝑛)

, then there are at most 𝑛
4

bins where 𝑧small
𝑖 ≥

1
𝑛 log(log(𝑛)) log2𝑐close (𝑛)

.

Proof. By definition, 𝑍small =
∑︀

𝑡∆(𝑡) ≤ 1
4 log(𝑛)

. Given this upper-bound for total

small ball surplus, we can immediately upper-bound the number of states of 𝑋𝑖 with

small ball surplus greater than 1
𝑛 log(log(𝑛)) log2𝑐close (𝑛)

by the quantity
1/(4 log(𝑛))

1/(𝑛·log(log(𝑛))·log2𝑐close (𝑛)) ≤
𝑛·log(log(𝑛))·log1/2(𝑛)

4 log(𝑛)
≤ 𝑛

4
. We obtain this by using 𝑐close = 1

4

and for sufficiently large 𝑛 such that log(log(𝑛)) ≤ log1/2(𝑛).

This concludes the proof of the lemma.

Concluding many bins with small surplus. Now, we combine all these

intuitions to show there are many bins that have a small amount of surplus. We have

shown that, with high probability, the are at most 𝑛/4 bins with non-negligible mass

from dense balls by Corollary 5, and at most 𝑛/4 bins with non-negligible surplus

from small balls from non-large configurations Lemma 20. Combining these sets, there

are at most 𝑛/2 bins with non-negligible mass from dense balls or surplus from small

balls. By Corollary 11, with high probability at least 𝑛
1− 1

40|𝑉 |

2
bins will receive no large
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configurations mapped to it. Our goal is to show the intersection of the sets is large, so

there are many bins that have small surplus. We use Lemma 15 proven in Theorem 6:

Lemma 15. Let there be two sets 𝐴,𝐵 ⊆ [𝑛], where |𝐴| ≥ 𝑛
2

and 𝐴 and 𝐵 are both

independently uniformly random subsets of size |𝐴| and |𝐵|, respectively. It holds that

𝑃 (|𝐴 ∩𝐵| ≥ |𝐵|
4
) ≥ 1− 2𝑒

−|𝐵|
8 .

Corollary 12. With high probability, there are at least 𝑛
1− 1

40|𝑉 |

8
bins with surplus

𝑧𝑦 ≤ 2
𝑛 log(log(𝑛)) log2𝑐close (𝑛)

.

Proof. We have defined three types of balls, and have proven results that show how

there are many bins with negligible bad contribution for each type of ball. Now,

we combine these with Lemma 15 to show there are many bins where there is not

much bad contribution in total. By Corollary 5 there are at most 𝑛/4 bins with

more than 1

𝑛 log(log(𝑛)) log2𝑐close(𝑛)(𝑛)
mass from dense balls. By Lemma 20, there are at

most 𝑛/4 bins with small ball surplus more than 1

𝑛 log(log(𝑛)) log2𝑐close(𝑛)(𝑛)
. Let 𝐴 be

the set of bins with at most 1

𝑛 log(log(𝑛)) log2𝑐close(𝑛)(𝑛)
mass from dense balls and at most

1

𝑛 log(log(𝑛)) log2𝑐close(𝑛)(𝑛)
small ball surplus. By combining Corollary 5 and Lemma 20 we

know |𝐴| ≥ 𝑛
2

with high probability. Let 𝐵 be the set of bins that receive no large

configurations. By Corollary 11, it holds that |𝐵| ≥ 𝑛
1− 1

40|𝑉 |

2
with high probability. 𝐴

and 𝐵 are independent, as 𝐴 is undetermined by the mapping of large configurations.

By Lemma 15, it holds that |𝐴 ∩ 𝐵| ≥ 𝑛
1− 1

40|𝑉 |

8
with failure probability at most

2𝑒
−𝑛

1− 1
40|𝑉 |

16 . Moreover, all such bins will have total surplus at most 2
𝑛 log(log(𝑛)) log2𝑐close (𝑛)

,

because they receive no large configurations and total surplus is then upper-bounded

by the sum of small ball surplus and total mass from dense balls.

Existence of many desirable bins at color-root(𝑌 ).

We have shown that at each node 𝑋𝑖 there are many bins without much surplus. If

we restrict this calculation of surplus to not include mass from plateau configurations

in 𝑆indep for color-root(𝑌 ), then the set of bins that do not have much surplus is

independent of the assignment of such configurations with plateau balls not having

much related mass. Consider the set 𝑆
order(color-root(𝑌 ))
indep . By Corollary 9, we know
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|𝑆order(color-root(𝑌 ))
indep | ≥ |𝑆|

6|𝑉 | , no two corresponding plateau balls ever share a state

before color-root(𝑌 ), and all relatedorder(color-root(𝑌 ))
2 (𝑥) ≤ 18×|𝑉 |×(|𝑉 |−1)

𝑛2 . Recall that

color-root(𝑌 ) by its definition must create a new color, and thus either have 𝑋src as a

parent, or have at least two distinct colors in its parent set. Given these properties,

we know that each plateau ball in this set has at most relatedorder(color-root(𝑌 ))
2 (𝑥) ≤

18×|𝑉 |×(|𝑉 |−1)
𝑛2 mass in its configuration for color-root(𝑌 ), and all elements in the set

will be in different configurations. We aim to show that there are many bins with

small surplus that receive many of these configurations corresponding to the plateau

balls in the set. To do so, we use the following results shown in Theorem 6. First, we

use negative association:

Claim 4. Indicator variables for if a bin receives some threshold of balls in a i.i.d.

uniformly random balls-and-bins game are NA.

Second, we lower bound the probability of a bin researching a certain threshold:

Claim 5. Suppose 𝑐𝑛 balls (𝑐 ≤ 1) are thrown i.i.d. uniformly randomly into 𝑛 bins.

The probability that a particular bin receives at least 𝑘 = 𝑑 log(𝑛)
log(log(𝑛))

balls is at least
1

𝑒𝑛𝑑 given that 𝑑
𝑐
≤ log(log(𝑛)).

Corollary 13. With high probability, there are 𝑛
1− 1

20|𝑉 |

16𝑒
bins with 𝑧𝑗 ≤

2
𝑛 log(log(𝑛)) log2𝑐close (𝑛)

and at least log(𝑛)
40|𝑉 | log(log(𝑛)) configurations mapped from states of

𝑆
order(color-root(𝑌 ))
indep .

Proof. Consider the indicator variable ℬ𝑖 if a bin met the threshold of plateau config-

urations. We show that with high probability
∑︀

𝑖 ℬ𝑖 is large enough, considering just

the bins with small surplus. By Corollary 12 we know there are at least 𝑛
1− 1

40|𝑉 |

8
such

bins with high probability. Now let us focus on just the configurations corresponding

to 𝑆
order(color-root(𝑌 ))
indep that we know has cardinality Ω(𝑛). By Claim 5, the probability of

a bin receiving at least log(𝑛)
40|𝑉 | log(log(𝑛)) such configurations is at least 1

𝑒𝑛
1

40|𝑉 |
. Accordingly,

it holds that
∑︀

𝑖 𝐸[ℬ𝑖] ≥ 𝑛
1− 1

20|𝑉 |

8𝑒
.

By Hoeffding’s inequality, we show |
∑︀

𝑖 ℬ⟩−
∑︀

𝑖𝐸[ℬ⟩]| ≤ 𝑛
1− 1

20|𝑉 |

16𝑒
with high proba-
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bility:

𝑃 [|𝑆𝑛 − 𝐸𝑛| > 𝑡] < 2𝑒
− 2𝑡2∑︀

𝑐2
𝑖

≤ 2𝑒

− 2𝑛
2− 1

10|𝑉 |

162𝑒2 𝑛
1− 1

40|𝑉 |
8

≤ 2𝑒−
𝑛
1− 3

40|𝑉 |
16𝑒2 .

Therefore,
∑︀

𝑖 ℬ𝑖 ≥
𝑛
1− 1

20|𝑉 |

16𝑒
with high probability.

Survival of desirable bins to 𝑌 . Now we aim to show that of the bins that

received many plateau configurations and had small surplus, that enough will “survive”

and keep these properties as we process nodes within the same color as 𝑌 , and that

eventually at least one such bin will survive to 𝑌 with high probability.

Lemma 21. After processing 𝑖 nodes of the same color as 𝑌 , with high probability

there are at least 𝑛
1− 𝑖

20|𝑉 |

16𝑒
sets of plateau balls, such that each set has cardinality at least

log(𝑛)
100 log(log(𝑛))

, have been assigned together to a bin with surplus 𝑧𝑗 ≤ 2
𝑛 log(log(𝑛)) log2𝑐close (𝑛)

,

and no two sets were ever mapped to the same state within this color.

Proof. Trivially, this holds for 𝑖 = 1 from Corollary 13.

First, we note that all sets of plateau balls will again be mapped together. This is

because they are in the same configuration, as for any node 𝑋𝑖, as it inherits its color,

it must be true that they all have the same values for Pa(𝑋𝑖) and because they are

plateau balls they must have 𝐸* = 𝑒*1.

Now, we will make a random variable 𝒮𝑖 for whether the 𝑖-th configuration survived

together. Roughly, we desire 𝒮𝑖 to be 1 if it is assigned to a bin with small surplus

with none of the other bins that has survived to this stage, we desire 𝒮𝑖 to be 0 if

it is assigned to a bin with non-small surplus, and 𝒮𝑖 to be −1 if it lands in a small

surplus bin with another bin that had survived (the intuition is that said bin would

likely have a positive 𝒮𝑗 and now we must cancel them out). Now, we slightly modify

𝒮𝑖 so all 𝒮𝑖 are independent. By Corollary 12 we know there will be at least 𝑛
1− 1

40|𝑉 |

8

small surplus bins with high probability. Let us create a subset of bad bins 𝐵bad for

125



which 𝒮𝑖 will take value −1. Before realizing the assignment for the 𝑖-th configuration,

add all small surplus bins that have already received a bin that survived to this

round. Arbitrarily fill the remainder of 𝐵bad so that |𝐵bad| = 𝑛
1− 𝑖

20|𝑉 |

16𝑒
. Let us define

|𝐵good| = 𝑛
1− 1

40|𝑉 |

8
− 𝑛

1− 𝑖
20|𝑉 |

16𝑒
. So, if the configuration is assigned to 𝐵bad then 𝒮𝑖 = −1,

if assigned to 𝐵good then 𝒮𝑖 = 1, and otherwise 𝒮𝑖 = 0. By Hoeffding’s inequality, it

holds that
∑︀

𝑖 𝒮⟩ ≥
𝑛
1− 𝑖+1

20|𝑉 |

16𝑒
with high probability and thus the lemma holds.

Concluding large conditional entropy from desirable bin. By Lemma 21, it

is clear that with high probability there is at least 𝑛19/20

16𝑒
>
√
𝑛 bin 𝑦′ of 𝑌 satisfying the

desired properties. Now, we seek to prove that this implies 𝐻(𝑋src|𝑌 = 𝑦′). Consider

a looser definition of surplus:

Definition 15 (Relaxed Surplus, 𝒯 relax = 120|𝑉 |
𝑛 log(𝑛)

). We define the surplus of a state 𝑖

of 𝑌 as 𝑧relax
𝑖 =

∑︀
𝑗 /∈𝑆 max(0, 𝑃 (𝑋 = 𝑗, 𝑌 = 𝑖)− 120|𝑉 |

𝑛 log(𝑛)
).

Claim 19. There exists a bin with at least log(𝑛)
100 log(log(𝑛))

plateau balls and relaxed surplus

at most 2|𝑉 |
𝑛 log(log(𝑛)) log2𝑐close (𝑛)

Proof. There are two contributors towards relaxed surplus. First, when configurations

were assigned to color-root(𝑌 ), each plateau ball brought related2(𝑥) mass with it that

could contribute to the surplus. By Lemma 19, each of the plateau balls we considered

satisfied related2(𝑥) ≤ 18|𝑉 |(|𝑉 |−1)
𝑛2 . Accordingly, there is at most 𝑛× 18|𝑉 |(|𝑉 |−1)

𝑛2 ≤ 18|𝑉 |2
𝑛

such mass in total. Among the at least
√
𝑛 bins that survived to 𝑌 , let us choose the

one with the least initial mass from related2. Accordingly, it must have at most 18|𝑉 |2
𝑛1.5

such mass.

Now, consider the at most |𝑉 − 1| times that mass may have been acquired

by landing in a bin with at most 2
𝑛 log(log(𝑛)) log2𝑐close (𝑛)

surplus. Combining all these

masses and calculating the worst-case relaxed mass results in an upper-bound of
2

𝑛 log(log(𝑛)) log2𝑐close (𝑛)
× (|𝑉 | − 1) + 18|𝑉 |2

𝑛1.5 ≤ 2|𝑉 |
𝑛 log(log(𝑛)) log2𝑐close (𝑛)

. This is because the

definition of relaxed surplus gives enough threshold to fit within it all the mass that

was within the regular surplus threshold for each of the groups we are aggregating.

Now, we show that this implies 𝐻(𝑋|𝑌 = 𝑦′) is large, with almost exactly the

same proof as Lemma 17:
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Lemma 22 (High-entropy conditional). Given a bin 𝑦′ that has 𝑧relax
𝑦′ ≤

2|𝑉 |
𝑛·log(log(𝑛))·log2𝑐close (𝑛) , and receives log(𝑛)

100 log(log(𝑛))
plateau balls, then 𝐻(𝑋src|𝑌 = 𝑦′) =

Ω(log(log(𝑛))).

Proof. To show 𝐻(𝑋src|𝑌 = 𝑦′) is large, we first define the vector 𝑣 such that

𝑣(𝑥) = 𝑃 (𝑋src = 𝑥, 𝑌 = 𝑦′). Similarly, we define 𝑣(𝑥) = 𝑣
𝑃 (𝑌=𝑦′)

, meaning 𝑣(𝑥) =

𝑃 (𝑋src = 𝑥|𝑌 = 𝑦′) and |𝑣|1 = 1. Our underlying goal is to show 𝐻(𝑣) is large. To

accomplish this, we will split the probability mass of 𝑣 into three different vectors

𝑣initial, 𝑣plateau, 𝑣surplus such that 𝑣 = 𝑣initial + 𝑣plateau + 𝑣surplus. The entries of 𝑣plateau

will correspond to mass from plateau states of 𝑋, 𝑣initial will correspond to the first

𝒯 relaxed mass from non-plateau states of 𝑋src, and 𝑣surplus will correspond to mass that

contributes to the surplus 𝑧𝑦′ . We more formally define the three vectors as follows:

• 𝑣plateau. The vector of probability mass from plateau states of 𝑋src. 𝑣plateau(𝑥) is

0 if 𝑥 /∈ 𝑆 and 𝑣plateau(𝑥) = 𝑃 (𝑋src = 𝑥, 𝑌 = 𝑦′) if 𝑥 ∈ 𝑆.

• 𝑣initial. For non-plateau states of 𝑋src, their first 𝒯 probability mass belongs to

𝑣initial. 𝑣initial(𝑥) = min(𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦′), 𝒯 relaxed) if 𝑥 /∈ 𝑆 and 𝑣initial(𝑥) = 0

otherwise.

• 𝑣surplus. For non-plateau states of 𝑋src, their probability mass beyond the first

𝒯 relaxed mass belongs to 𝑣surplus. This corresponds to the surplus quantity.

𝑣surplus(𝑥) = max(0, 𝑃 (𝑋src = 𝑥, 𝑌 = 𝑦′)− 𝒯 relaxed) if 𝑥 /∈ 𝑆 and 𝑣surplus(𝑥) = 0

otherwise. By this definition, 𝑧𝑦′ = |𝑣surplus|1.

To show 𝐻(𝑋src|𝑌 = 𝑦′) = 𝐻(𝑣) is large, we divide our approach into two steps:

1. Show there is substantial helpful mass: |𝑣initial + 𝑣plateau|1 =

Ω
(︁

1
𝑛·log(log(𝑛))·log2𝑐close (𝑛)

)︁
2. Show the distribution of helpful mass has high entropy: 𝐻

(︁
𝑣initial+𝑣plateau

|𝑣initial+𝑣plateau|1

)︁
=

Ω(log(log(𝑛)))

3. Show that, even after adding the hurtful mass, the conditional entropy is large:

𝐻(𝑋src|𝑌 = 𝑦′) = 𝐻(𝑣) ≥ 𝐻
(︁

𝑣initial+𝑣plateau
|𝑣initial+𝑣plateau|1

)︁
−𝑂(1) = Ω(log(log(𝑛)))

127



In the first step, we are showing that the distribution when focusing on just the

helpful mass of 𝑣initial, 𝑣plateau has high a substantial amount of probability mass. In

the second step, we prove how this distribution of helpful mass has high entropy. In

the third step, we show that the hurtful mass of 𝑣surplus does not decrease entropy

more than a constant.

First, we show that there is a substantial amount of helpful mass:

Claim 20. |𝑣initial + 𝑣plateau|1 = 1
100𝑐lb𝑛·log(log(𝑛))·log2𝑐close (𝑛)

Proof. Recall that the bin 𝑦′ received log(𝑛)
100 log(log(𝑛))

plateau balls. As defined in

Lemma 10, the set 𝑆 of plateau states is defined such that max𝑥∈𝑆 𝑃 (𝑋=𝑥)
min𝑥∈𝑆 𝑃 (𝑋=𝑥)

≤ log𝑐close(𝑛)

and min𝑥∈𝑆 𝑃 (𝑋 = 𝑥) ≥ 1
𝑐lb𝑛 log(𝑛)

. Also recall that by Lemma 11 the most probably

state of 𝐸 has large probability. In particular, 𝑃 (𝐸 = 𝑒1) ≥ 1
log𝑐close (𝑛)

. Let the

subset 𝑆 ′ ⊆ 𝑆 be the subset of plateau states of 𝑋 such that their plateau ball is

mapped to 𝑦′. In particular, for every 𝑥 ∈ 𝑆 ′ it holds that 𝑓(𝑥, 𝑒1) = 𝑦′. Accord-

ingly, 𝑃 (𝑋src = 𝑥, 𝑌 = 𝑦′) ≥ 𝑃 (𝑋src = 𝑥) · 𝑃 (𝐸 = 𝑒1) for 𝑥 ∈ 𝑆 ′. Thus, the total

weight from plateau states of 𝑋src is at least |𝑆 ′| ·min𝑥∈𝑆′ 𝑃 (𝑋src = 𝑥) · 𝑃 (𝐸 = 𝑒1) ≥

|𝑆 ′| · max𝑥∈𝑆′ 𝑃 (𝑋src=𝑥)

log𝑐close (𝑛)
· 𝑃 (𝐸 = 𝑒1) ≥ 1

100𝑐lb𝑛 log(log(𝑛)) log2𝑐close (𝑛)
.

Next, we show the distribution of helpful mass has high entropy:

Claim 21. 𝐻
(︁

𝑣initial+𝑣plateau
|𝑣initial+𝑣plateau|1

)︁
≥ log(log(𝑛))

4

Proof. Let us define 𝑣helpful =
𝑣initial+𝑣plateau

|𝑣initial+𝑣plateau|1
to be the vector of helpful mass, and we

will show 𝐻(𝑣helpful) is large by upper-bounding max𝑥 𝑣helpful(𝑥).

For non-plateau states of 𝑋src, it follows from Claim 20 that max𝑥/∈𝑆 𝑣helpful(𝑥) ≤
𝒯 relaxed

|𝑣initial+𝑣plateau|1
≤ 𝒯 relaxed

1

100𝑐lb𝑛·log(log(𝑛))·log2𝑐close (𝑛)

= 100|𝑉 |𝑐lb log(log(𝑛))·log2𝑐close (𝑛)
log(𝑛)

. For plateau

states of 𝑋, in Claim 20 we also developed the lower-bound of |𝑣initial + 𝑣plateau|1 ≥

|𝑆 ′|·max𝑥∈𝑆′ 𝑃 (𝑋=𝑥)

log𝑐close (𝑛)
·𝑃 (𝐸 = 𝑒1) ≥

log(𝑛)·max𝑥∈𝑆′ 𝑃 (𝑋=𝑥)

2 log2𝑐close (𝑛) log(log(𝑛))
. Accordingly, we can upper-bound

max𝑥∈𝑆′ 𝑣helpful(𝑥) ≤
max𝑥∈𝑆′ 𝑃 (𝑋=𝑥)

|𝑣initial+𝑣plateau|1
≤ 100 log(log(𝑛)) log2𝑐close (𝑛)

log(𝑛)
.

Accordingly, we can lower-bound the entropy of 𝐻(𝑣helpful) =
∑︀

𝑥 𝑣helpful(𝑥) ·

log( 1
𝑣helpful(𝑥)

) ≥
∑︀

𝑥 𝑣helpful(𝑥) · log( 1
max𝑥′ 𝑣helpful(𝑥′)

) = log( 1
max𝑥′ 𝑣helpful(𝑥′)

) ≥

log( 1200𝑐lb log(𝑛)

log2𝑐close (𝑛) log(log(𝑛))
) = (1 − 2𝑐close) log(log(𝑛)) − log(log(log(𝑛))) − log(1200𝑐lb) =
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log(log(𝑛))
2

− log(log(log(𝑛))) − log(1200𝑐lb) ≥ log(log(𝑛))
4

for sufficiently large 𝑛 where
log(log(𝑛))

2
≥ log(log(log(𝑛))) + log(1200𝑐lb).

Finally, we show the hurtful mass does not decrease entropy much, and thus our

conditional distribution has high entropy:

Claim 22. 𝐻(𝑋|𝑌 = 𝑦′) = 𝐻(𝑣) ≥ Ω(1) ·𝐻
(︁

𝑣initial+𝑣plateau
|𝑣initial+𝑣plateau|1

)︁
−𝑂(1) = Ω(log(log(𝑛)))

Proof. We lower-bound 𝐻(𝑣) with the main intuitions that 𝐻
(︁

𝑣initial+𝑣plateau
|𝑣initial+𝑣plateau|1

)︁
=

Ω(log(log(𝑛))) and |𝑣initial+𝑣plateau|1
|𝑣initial+𝑣plateau+𝑣surplus|1

= Ω(1). We more precisely obtain this lower-

bound for 𝐻(𝑣) as follows:

𝐻(𝑣) = 𝐻

(︂
𝑣initial + 𝑣plateau + 𝑣surplus

|𝑣initial + 𝑣plateau + 𝑣surplus|1

)︂
=
∑︁
𝑥

𝑣initial(𝑥) + 𝑣plateau(𝑥) + 𝑣surplus(𝑥)

|𝑣initial + 𝑣plateau + 𝑣surplus|1
×

log
|𝑣initial + 𝑣plateau + 𝑣surplus|1

𝑣initial(𝑥) + 𝑣plateau(𝑥) + 𝑣surplus(𝑥)

≥
∑︁
𝑥

𝑣initial(𝑥) + 𝑣plateau(𝑥)

|𝑣initial + 𝑣plateau + 𝑣surplus|1
×

log
|𝑣initial + 𝑣plateau + 𝑣surplus|1

𝑣initial(𝑥) + 𝑣plateau(𝑥)
− 2 (3.10)

≥
∑︁
𝑥

𝑣initial(𝑥) + 𝑣plateau(𝑥)

|𝑣initial + 𝑣plateau + 𝑣surplus|1
×

log
|𝑣initial + 𝑣plateau|1

𝑣initial(𝑥) + 𝑣plateau(𝑥)
− 2

=
|𝑣initial + 𝑣plateau|1

|𝑣initial + 𝑣plateau + 𝑣surplus|1
𝐻

(︂
𝑣initial + 𝑣plateau

|𝑣initial + 𝑣plateau|1

)︂
− 2

=
|𝑣initial + 𝑣plateau|1

|𝑣initial + 𝑣plateau|1 + 𝑧𝑦′
𝐻

(︂
𝑣initial + 𝑣plateau

|𝑣initial + 𝑣plateau|1

)︂
− 2

≥ 1

1 + 50𝑐lb|𝑉 |
·𝐻
(︂

𝑣initial + 𝑣plateau

|𝑣initial + 𝑣plateau|1

)︂
− 2 (3.11)

= Ω(log(log(𝑛))) (3.12)

To obtain Step 3.10, we note that all summands are manipulated from the form∑︀
𝑥 𝑝𝑥 log(

1
𝑝𝑥
) to

∑︀
𝑥 𝑝

′
𝑥 log(

1
𝑝′𝑥
) where 𝑝′𝑥 ≤ 𝑝𝑥 for all 𝑥. As the derivative of 𝑝 log(1

𝑝
)

is non-negative for 0 ≤ 𝑝 ≤ 1
𝑒
, the value of at most two summands can decrease, and
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they can each decrease by at most one. To obtain Step 3.11, we use Claim 20. To

obtain Step 3.12, we use Claim 22.

Thus, we have shown 𝐻(𝑋|𝑌 = 𝑦′) = Ω(log(log(𝑛))).

Corollary 14. Under our assumptions, 𝐻(𝑋src|𝑌 = 𝑦′) = Ω(log(log(𝑛))) and thus

𝐻(�̃�) = Ω(log(log(𝑛))).

Counterexample for General Identifiability with Unconfounded-Pairwise

Oracles

We formalize the oracle first discussed in Section 3.6:

Definition 16 (Unconfounded-pairwise oracle). An unconfounded-pairwise oracle is

an oracle that returns the correct orientation of an edge if the edge exists in the true

graph and if there is no confounding for the edge.

Consider a causal graph 𝐺1 with four nodes and the edge set {𝑋1 → 𝑋2, 𝑋1 →

𝑋3, 𝑋2 → 𝑋4, 𝑋2 → 𝑋3, 𝑋3 → 𝑋4}. Likewise, consider 𝐺2 with four nodes and the

edge set {𝑋2 → 𝑋1, 𝑋3 → 𝑋1, 𝑋4 → 𝑋2, 𝑋2 → 𝑋3, 𝑋4 → 𝑋3}. Note that these

graphs are in the same Markov equivalence class. Finally, consider a causal graph 𝐺3

with four nodes and the edge set {𝑋1 → 𝑋2, 𝑋1 → 𝑋3, 𝑋4 → 𝑋2, 𝑋2 → 𝑋3, 𝑋4 → 𝑋3}.

If we orient all edges in the skeleton for 𝐺1 and 𝐺2 without conditioning using an

unconfounded-pairwise oracle, 𝐺3 is a consistent output of the oracle for both 𝐺1 and

𝐺2. As a result, the peeling approach would see the same set of edge orientations for

𝐺1 and 𝐺2 and not be able to identify the true source.

Proof of Theorem 3

We need to show that in each iteration of the while loop in line 4, the algorithm

correctly identifies all non-source nodes and only the true non-sources. In the first

iteration of the loop, there is no node to condition on and therefore tests are inde-

pendence (not conditional independence) tests. Consider a non-source node 𝑁 in

the initial graph. Then there must be a directed path from some source node 𝑋src
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to 𝑁 . Due to faithfulness assumption, two nodes with a directed path cannot be

unconditionally independent. Then either Oracle(𝑋src, 𝑁 |∅) will return 𝑋src → 𝑁 in

line 12 or Oracle(𝑁,𝑋src|∅) will return 𝑋src → 𝑁 . In either case, 𝑁 is added to the

non-source list. Now suppose 𝑆 is a source node. It is never identified as a non-source

since it is either conditionally independent with the node it is compared with, found

in line 9 , or it is conditionally dependent with a non-source (for which it has a path

to) and the oracle orients correctly in line 11 or line 13. Since all non-sources are

correctly identified and only the true non-sources are identified as non-sources, all

sources are correctly identified as well in line 15. Since sources are incomparable in

the partial order, the order in which they are added to the topological order does not

impact the validity of topological order in line 18.

Suppose the while loop identified all sources correctly for all iterations 𝑗, ∀𝑗 < 𝑖.

Let 𝒮𝑖 be the sources in ℛ, i.e., the sources that are to be discovered in iteration 𝑖.

Let 𝑃𝑎𝒮𝑖
be the set of parents of 𝒮𝑖 in the initial graph. Then 𝑃𝑎𝒮𝑖

⊆ 𝒞, i.e., the set

of conditioned nodes include all the parents of the current source nodes. Therefore, 𝒞

blocks all backdoor paths from 𝒮𝑖, effectively disconnecting the previous found sources

from the graph: This is because 𝐺∖𝒞 is a valid Bayesian network for the conditional

distribution 𝑝(.|𝒞 = 𝑐). Therefore, in 𝐺∖𝒞, 𝒮𝑖 are source nodes and the source pathwise

oracle correctly identifies all non-source nodes, similar to the base case.

This implies after the while loop terminates, we have a valid topological order for

the nodes in the graph. Finally, the for loop in line 19 converts the obtained total

order into a partial order since either it removes an edge, or adds an edge that is

consistent with the topological order. Therefore we only need to show that non-edges

are correct. Suppose 𝑋𝑖, 𝑋𝑗 are non-adjacent in the true graph. Then conditioned

on all ancestors of 𝑋𝑖, 𝑋𝑗 they are independent due to d-separation in the graph.

Therefore all non-edges are identified at some iteration of the for loop. Furthermore,

under the faithfulness assumption, no edge can be mistakenly identified as a non-edge:

No two adjacent nodes at any stage of the algorithm are independent conditioned on

the ancestors of the cause variable3.

3The faithfulness assumption, which was overlooked by us at the submission deadline, will be
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3.9.2 Additional Experiments and Experimental Details

Further Synthetic Experiments and Comparisons with ANM

Figure 3-4 compares the performance under the additive noise model assumption,

i.e., the data is sampled from 𝑋 = 𝑓(Pa𝑋) +𝑁𝑋 for all variables. The noise term is

chosen as a uniform, zero-mean cyclic noise in the supports {−1, 0, 1}, {−2,−1, 0, 1, 2},

{−3,−2,−1, 0, 1, 2, 3} which corresponds to different entropies 𝐻(𝑁𝑋). This entropy

is shown on the 𝑥−axis in Figure 3-4. The corresponding plots where the 𝑥−axis

represents the number of samples are given in the Appendix. While this is the genera-

tive model that discrete ANM is designed for, its performance is either approximately

matched or exceeded by entropic enumeration.

For further experiments with different number of nodes, please see Figures 3-4, 3-5,

3-7, 3-10.
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Figure 3-4: Performance of methods in the ANM setting in the triangle graph
𝑋 → 𝑌 → 𝑍,𝑋 → 𝑍: 25 datasets are sampled for each configuration from the ANM
model 𝑋 = 𝑓(Pa𝑋) +𝑁 . The 𝑥−axis shows entropy of the additive noise.

added to the main paper in camera-ready.
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Figure 3-5: Performance of methods in the ANM setting in the triangle graph
𝑋 → 𝑌 → 𝑍,𝑋 → 𝑍: 25 datasets are sampled for each configuration from the ANM
model 𝑋 = 𝑓(Pa𝑋) +𝑁 . The 𝑥−axis shows the number of samples in each dataset.
Entropic enumeration outperforms ANM algorithm in the low-noise low-sample regime.

Entropy Measure for Peeling Algorithm

In this section, we compare different versions of peeling algorithm, one that uses only

the exogenous entropy and one that uses the total entropy in pairwise comparisons. We

randomly sample exogenous distributions according to symmetric Dirichlet distribution,

which is characterized by a single parameter 𝛼. By varying 𝛼 and with rejection

sampling, we are able to generate distributions for the exogenous nodes 𝐸 such that

𝐻(𝐸) ≤ 𝜃 for some 𝜃. For each distribution, we then compare the structural Hamming

distance of the output of our peeling algorithm with the true graph. The structural

Hamming distance (SHD) is the number of edge modifications (insertions, deletions,

flips) required to change one graph to another. Results are given in Figure 3-12. Let

𝐻(𝐸) and 𝐻(�̃�) be the minimum exogenous entropy needed to generate 𝑌 from 𝑋

and the minimum exogenous entropy needed to generate 𝑋 from 𝑌 , respectively. At

each step of the algorithm for every pair 𝑋, 𝑌 , the red curve compares 𝐻(𝑋) with

𝐻(𝑌 ), the blue curve compares 𝐻(𝐸) with 𝐻(�̃�), and the green curve compares

𝐻(𝑋) +𝐻(𝐸) with 𝐻(𝑌 ) +𝐻(�̃�) and orients the edge based on the minimum. As
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Figure 3-6: Performance of methods in the unconstrained setting in the triangle graph
𝑋 → 𝑌 → 𝑍,𝑋 → 𝑍: 25 datasets are sampled for each configuration from the
unconstrained model 𝑋 = 𝑓(Pa𝑋 , 𝐸𝑋). The 𝑥−axis shows the number of samples in
each dataset. Entropic enumeration and peeling algorithms consistently outperform
the ANM algorithm in almost all regimes.

expected, comparing exogenous entropies perform better than comparing observed

variables’ entropies in the low-entropy regime. Interestingly, we observe that comparing

total entropies consistently performs much better than either.

Entropy Percentile of True Graph

In this section, We test the hypothesis that when true exogenous entropies are small,

the true causal graph is the DAG that minimizes the total entropy. To test this, we

find the minimum entropy needed to generate the joint distribution for every directed

acyclic graph that is consistent with the true graph skeleton. We then look at the

percentile of the entropy of the true graph. For example, if there are 5 DAGs with

less entropy than the true graph out of 100 distinct DAGs, then the percentile is
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Figure 3-7: Performance of methods in the ANM setting on the line graph 𝑋 → 𝑌 → 𝑍:
25 datasets are sampled for each configuration from the ANM model 𝑋 = 𝑓(Pa𝑋)+𝑁 .
The 𝑥−axis shows entropy of the additive noise.

1− 5/100 = 0.95.

Synthetic Data

Figure 3-13 shows the results for various graphs. It can be seen that, especially for

dense graphs, the true graph is the unique minimizer of total entropy needed to

generate the joint distribution for a very wide range of entropy values. This presents

exhaustive search as a practical algorithm for graphs with a small number of nodes

(or generally, those for which the MEC is small). Our experiments, contrary to our

theory, show that even when the number of nodes is the same as the number of states,

entropic causality can be used for learning the graph.
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Figure 3-8: Performance of methods in the unconstrained setting on the line graph
𝑋 → 𝑌 → 𝑍: 25 datasets are sampled for each configuration from the unconstrained
model 𝑋 = 𝑓(Pa𝑋 , 𝐸𝑋). The 𝑥−axis shows entropy of the exogenous noise. Entropic
enumeration and peeling algorithms consistently outperform the ANM algorithm in
all regimes.

Semi-synthetic Data

We use the bnlearn repository4 which contains a selection of Bayesian network models

curated from real data [57]. Using these models, we can generate any number of

samples and test the accuracy of our algorithms. The datasets however are typically

binary which makes them less suitable for Algorithm 2. We therefore limit our use of

this data to test our hypothesis that the true graph has the smallest entropy among

all graphs consistent with the skeleton. The results are given in Figure 3-14. As can

be seen, for most of the small-sized graphs that we tested, the true graph has one

of the smallest entropies. Indeed for Cancer dataset, the true graph is the unique

minimizer when the number of samples is large enough. Only in Sachs data does the

4https://www.bnlearn.com/bnrepository/

136

https://www.bnlearn.com/bnrepository/


0.5 1.0 1.5 2.0 2.5 3.0
Entropy

0.5

1.0

1.5

2.0

2.5

3.0

SH
D

3 Vars, 10 States, Triangle Graph, 100 Samples

Discrete ANM
Entropic Enumeration
Entropic Peeling
GES
PC

0.5 1.0 1.5 2.0 2.5 3.0
Entropy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SH
D

3 Vars, 10 States, Triangle Graph, 1000 Samples

Discrete ANM
Entropic Enumeration
Entropic Peeling
GES
PC

0.5 1.0 1.5 2.0 2.5 3.0
Entropy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SH
D

3 Vars, 10 States, Triangle Graph, 50000 Samples

Discrete ANM
Entropic Enumeration
Entropic Peeling
GES
PC

Figure 3-9: Performance of methods in the unconstrained setting in the triangle graph
𝑋 → 𝑌 → 𝑍,𝑋 → 𝑍: 50 datasets are sampled for each configuration from the
unconstrained model 𝑋 = 𝑓(Pa𝑋 , 𝐸𝑋). The 𝑥−axis shows entropy of the exogenous
noise. Entropic enumeration and peeling algorithms consistently outperform the ANM
algorithm in almost all regimes. Note how unlike Figure 3-2, we do not fix the source
to have high-entropy or treat the source differently than the other nodes.

true causal graph require one of the largest entropies. This shows that our low-entropy

assumption is viable for some real datasets.
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Figure 3-10: Performance of methods in the ANM setting on random 5−node graphs:
25 datasets are sampled for each configuration from the ANM 𝑋 = 𝑓(Pa𝑋) +𝑁 . The
𝑥−axis shows entropy of the exogenous noise. Entropic enumeration outperforms
consistently in all regimes.
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Figure 3-11: Performance of methods in the unconstrained setting on random 5−node
graphs: 25 datasets are sampled for each configuration from a random graph from
the unconstrained model 𝑋 = 𝑓(𝑃𝐴𝑋 , 𝑁). The 𝑥−axis shows entropy of the additive
noise. Entropic enumeration and peeling algorithms consistently outperform the ANM
algorithm in all regimes.
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(c) 4-Node Complete Graph
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Figure 3-12: Average structural Hamming distance (SHD) of peeling algorithm on
synthetic data for comparing i) exogenous entropies (blue, dashed), ii) entropies of
observed variables (red, dotted-dashed) and iii) total entropies (green, dotted) in line
11 as the Oracle for Algorithm 2. Randomly orienting all edges would result in an
average SHD equal to half the number of edges (0.5, 1.5, and 3.0 for (a), (b), and (c),
respectively).
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Figure 3-13: Percentile of the true graph’s entropy compared to minimum entropy
required to fit every other incorrect possible causal graph that is consistent with the
skeleton (synthetic data).
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Figure 3-14: Percentile of true graphs entropy compared to minimum entropy required
to fit wrong causal graphs in semi-synthetic data from Bayesian Network Reposi-
tory [57].
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Figure 3-15: Performance of methods on more networks from the bnlearn repository
with varying samples: 10 datasets are sampled for each configuration from the bnlearn
network.
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Chapter 4

A Tighter Approximation Guarantee

for Greedy Minimum Entropy

Coupling

4.1 Overview

We examine the minimum entropy coupling problem, where one must find the minimum

entropy variable that has a given set of distributions 𝑆 = {𝑝1, . . . , 𝑝𝑚} as its marginals.

Although this problem is NP-Hard, previous works have proposed algorithms with

varying approximation guarantees. In this paper, we show that the greedy coupling

algorithm of [Kocaoglu et al., AAAI’17] is always within log2(𝑒) (≈ 1.44) bits of the

minimum entropy coupling. In doing so, we show that the entropy of the greedy cou-

pling is upper-bounded by 𝐻(
⋀︀

𝑆)+ log2(𝑒). This improves the previously best known

approximation guarantee of 2 bits within the optimal [Li, IEEE Trans. Inf. Theory

’21]. Moreover, we show our analysis is tight by proving there is no algorithm whose

entropy is upper-bounded by 𝐻(
⋀︀
𝑆) + 𝑐 for any constant 𝑐 < log2(𝑒). Additionally,

we examine a special class of instances where the greedy coupling algorithm is exactly

optimal.
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4.2 Introduction

An instance of the minimum entropy coupling problem is represented by a set 𝑆 of 𝑚

distributions, each with 𝑛 states (i.e., 𝑆 = {𝑝1, . . . , 𝑝𝑚}). The objective is to find a

variable of minimum entropy that “couples” 𝑆, meaning its marginals are equal to 𝑆.

Equivalently, this can be described as finding a minimum entropy joint distribution

over variables 𝑝1, . . . , 𝑝𝑚.

This has a variety of applications, including areas such as causal inference [12,26,

29,32] and dimension reduction [6,66]. In the context of random number generation

as discussed in [35], the minimum entropy coupling is equivalent to determining the

minimum entropy variable such that one sample from this variable enables us to

generate one sample from any distribution of 𝑆.

While the problem is NP-Hard [33], previous works have designed algorithms with

varying approximation guarantees. [10] showed a 1-additive algorithm for 𝑚 = 2 and

⌈log(𝑚)⌉-additive for general 𝑚. [29] introduced the greedy coupling algorithm, [32]

showed this is a local optima and [55] showed this is a 1-additive algorithm for 𝑚 = 2.

Most recently, [35] introduced a new (2− 22−𝑚)-additive algorithm.

Our Contributions: Our work provides novel perspectives and analytical tools to

demonstrate a tighter approximation guarantee for the greedy coupling algorithm. In

Section 4.4, we show a closed-form characterization that lower-bounds each state of

the greedy coupling. In Section 4.5, we study a class of instances where the greedy

coupling is exactly optimal and the lower-bound characterization given in Section 4.4

is tight. Finally, in Section 4.6 we show the greedy coupling is always within log2(𝑒)

bits of the optimal coupling by proving it is upper-bounded by 𝐻(
⋀︀
𝑆)+ log2(𝑒). This

improves the best-known approximation guarantee for the minimum entropy coupling

problem, and we accomplish this by developing techniques involving a stronger notion

of majorization and splitting distributions in an infinitely-fine manner. We show how

this analysis is tight and that no algorithm can be upper-bounded by 𝐻(
⋀︀
𝑆) + 𝑐 for

any constant 𝑐 < log2(𝑒). This resolves that the largest possible gap between 𝐻(
⋀︀
𝑆)

and 𝐻(OPT𝑆) is log2(𝑒).
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Table 4.1: Best-Known Additive Approximation Guarantee

Algorithm (prior/now)
Greedy (prior) Best (prior) Greedy/Best (now)

𝑚 = 2 1 [55] 1 [10] 1 [10, 55]
𝑚 > 2 ⌈log(𝑚)⌉a [10, 55] 2− 22−𝑚 [35] log2(𝑒) ≈ 1.44log2(𝑒) ≈ 1.44log2(𝑒) ≈ 1.44
a Not explicitly shown before to our knowledge, but can combine [10,55].

4.3 Background

Notation: The base of log is always 2. 𝐻 denotes Shannon entropy. The states of any

distribution 𝑝 are sorted such that 𝑝(1) ≥ · · · ≥ 𝑝(|𝑝|). [𝑛] denotes {1, . . . , 𝑛}. OPT𝑆

denotes the minimum entropy coupling of a set of distributions 𝑆.

Greedy Minimum Entropy Coupling: We show approximation guarantees for the

greedy coupling algorithm of [29] (formally described in Algorithm 3). At a high-level,

the algorithm builds a coupling by repeatedly creating a state of the coupling output

that corresponds to the currently largest state of each distribution 𝑝𝑖 ∈ 𝑆, with weight

corresponding to the smallest of these 𝑚 maximal states. Intuitively, this greedily

adds the largest possible state to the coupling at each step. We use 𝒢𝑆 to denote the

sequence of states produced by the algorithm. The algorithm runs in 𝑂(𝑚2𝑛 log(𝑛))

time.

Algorithm 3 Greedy Coupling (pseudocode from [32])
1: Input: Marginal distributions of 𝑚 variables each with 𝑛 states {p1,p2, ...,pm}.
2: Initialize the tensor P(𝑖1, 𝑖2, . . . , 𝑖𝑛) = 0,∀𝑖𝑗 ∈ [𝑛], ∀𝑗 ∈ [𝑛].
3: Initialize 𝑟 = 1.
4: while 𝑟 > 0 do
5: ({pi}𝑖∈[𝑚], 𝑟) = UpdateRoutine({pi}𝑖∈[𝑚], 𝑟)
6: end while
7: return P
8: UpdateRoutine({p1,p2, ...,pm}, 𝑟)
9: Find 𝑖𝑗 := argmax𝑘{pj(𝑘)},∀𝑗 ∈ [𝑚].

10: Find 𝑢 = min{pk(𝑖𝑘)}𝑘∈[𝑛].
11: Assign P(𝑖1, 𝑖2, . . . , 𝑖𝑛) = 𝑢.
12: Update pk(𝑖𝑘)← pk(𝑖𝑘)− 𝑢,∀𝑘 ∈ [𝑚].
13: Update 𝑟 =

∑︀
𝑘∈[𝑛] p1(𝑘)

14: return {p1,p2, ...,pm}, 𝑟
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Majorization: We use ideas from majorization theory [40]. A distribution 𝑝 is

majorized by another distribution 𝑞 (i.e., 𝑝 ⪯ 𝑞) if
∑︀𝑖

𝑗=1 𝑝(𝑗) ≤
∑︀𝑖

𝑗=1 𝑞(𝑗) ∀𝑖 ∈ [|𝑝|]. It

is known that if 𝑝 ⪯ 𝑞 then 𝐻(𝑞) ≤ 𝐻(𝑝) [40].
⋀︀

𝑆 denotes the greatest lower-bound

in regards to majorization such that
⋀︀
𝑆 ⪯ 𝑝 ∀𝑝 ∈ 𝑆. Meaning, for any 𝑟 where 𝑟 ⪯ 𝑝

∀𝑝 ∈ 𝑆, it must hold that 𝑟 ⪯
⋀︀
𝑆. For ease of notation, we also use ℳ𝑆 to refer

to
⋀︀

𝑆. It is known that ℳ𝑆(𝑖) = min𝑝∈𝑆
∑︀𝑖

𝑗=1 𝑝(𝑗) −
∑︀𝑖−1

𝑗=1ℳ𝑆(𝑖) [11] and that

𝐻(
⋀︀

𝑆) ≤ 𝐻(OPT𝑆) [10].

4.4 Characterization of Greedy Coupling

To help analyze the performance of the greedy coupling algorithm, we show this

closed-form characterization that lower-bounds each element of its output:

Theorem 9. 𝒢𝑆(𝑖) ≥ max𝑗
∑︀𝑗

𝑘=1 ℳ𝑆(𝑘)−
∑︀𝑖−1

𝑘=1 𝒢𝑆(𝑘)

𝑗

Proof. We denote 𝑝ℓ before the 𝑡-th step of 𝒢𝑆 as 𝑝𝑡ℓ. We observe that 𝒢𝑆(𝑖) is

determined by Line 10 of Algorithm 3 to be minℓmax𝑘 𝑝
𝑖
ℓ(𝑘). We will lower-bound

this quantity:

Claim 23. max1≤𝑘≤𝑛 𝑝
𝑖
ℓ(𝑘) ≥

∑︀𝑗
𝑘=1 ℳ𝑆(𝑘)−

∑︀𝑖−1
𝑘=1 𝒢𝑆(𝑘)

𝑗
∀𝑗, ℓ

Proof.

max
1≤𝑘≤𝑛

𝑝𝑖ℓ(𝑘) (4.1)

≥ max
1≤𝑘≤𝑗

𝑝𝑖ℓ(𝑘) (4.2)

≥
∑︀𝑗

𝑘=1 𝑝
𝑖
ℓ(𝑘)

𝑗
(4.3)

=

∑︀𝑗
𝑘=1 𝑝

1
ℓ(𝑘)−

∑︀𝑗
𝑘=1(𝑝

1
ℓ(𝑘)− 𝑝𝑖ℓ(𝑘))

𝑗
(4.4)

≥
∑︀𝑗

𝑘=1ℳ𝑆(𝑘)−
∑︀𝑖−1

𝑘=1 𝒢𝑆(𝑘)
𝑗

(4.5)

By the definition of 𝒢𝑆 and Claim 23, our theorem holds.
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4.5 Minimum Entropy Coupling of Majorizing Sets

Many related works show guarantees for the minimum entropy coupling problem by

showing a relation to the lower-bound of 𝐻(
⋀︀
𝑆). It is natural to wonder, if we only fix⋀︀

𝑆, what is the most challenging that 𝑆 can be? We introduce a special-case of the

minimum entropy coupling problem, where for a fixed value of
⋀︀
𝑆 we consider the set

𝑆 to include all distributions that are consistent with
⋀︀
𝑆 (i.e., all distributions that

majorize
⋀︀

𝑆). More formally, in this variant 𝑆 = Majorizing-Set(𝑝) = {𝑝′|𝑝 ⪯ 𝑝′}

for some 𝑝. This corresponds to coupling the set of all distributions that majorize a

given distribution. We show that in this setting, the greedy coupling produces the

optimal solution:

Theorem 10. When 𝑆 = Majorizing-Set(𝑝) for some 𝑝, then 𝐻(𝒢𝑆) = 𝐻(OPT𝑆).

Proof. First, we clarify:

Claim 24. ℳ𝑆 = 𝑝

Proof. For sake of notation, suppose 𝑝(0) =ℳ𝑆(0) = 0. We will inductively show

ℳ𝑆(𝑖) = 𝑝(𝑖) for all 𝑖 ∈ [𝑛]. First:

ℳ𝑆(𝑖) (4.6)

=

(︃
min

𝑝′∈Majorizing-Set(𝑝)

𝑖∑︁
𝑗=1

𝑝′(𝑗)

)︃
−

(︃
𝑖−1∑︁
𝑗=1

ℳ𝑆(𝑗)

)︃
(4.7)

≥

(︃
min

𝑝′∈Majorizing-Set(𝑝)

𝑖∑︁
𝑗=1

𝑝(𝑗)

)︃
−

(︃
𝑖−1∑︁
𝑗=1

𝑝(𝑗)

)︃
(4.8)

= 𝑝(𝑖) (4.9)

(4.8) follows as all 𝑝′ ∈Majorizing-Set(𝑝) majorize 𝑝. Next:

ℳ𝑆(𝑖) (4.10)

=

(︃
min

𝑝′∈Majorizing-Set(𝑝)

𝑖∑︁
𝑗=1

𝑝′(𝑗)

)︃
−

(︃
𝑖−1∑︁
𝑗=1

ℳ𝑆(𝑗)

)︃
(4.11)
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≤

(︃
𝑖∑︁

𝑗=1

𝑝(𝑗)

)︃
−

(︃
𝑖−1∑︁
𝑗=1

𝑝(𝑗)

)︃
= 𝑝(𝑖) (4.12)

(4.12) follows as 𝑝 ∈Majorizing-Set(𝑝).

We now define a distribution 𝒢 ′𝑆 that mirrors Theorem 9:

Definition 17. 𝒢 ′𝑆(𝑖) = max𝑗
∑︀𝑗

𝑘=1 ℳ𝑆(𝑘)−
∑︀𝑖−1

𝑘=1 𝒢
′
𝑆(𝑘)

𝑗

Clearly 𝒢 ′𝑆 is a valid distribution as 𝒢 ′𝑆(𝑖) ≤ 1 −
∑︀𝑖−1

𝑘=1 𝒢 ′𝑆(𝑘) and each 𝒢 ′𝑆(𝑖) ≥
1−

∑︀𝑖−1
𝑘=1 𝒢

′
𝑆(𝑘)

𝑛
. We show that any coupling for 𝑆 must be majorized by 𝒢 ′𝑆:

Lemma 23. If a distribution 𝒞𝑆 couples 𝑆, then 𝒞𝑆 ⪯ 𝒢 ′𝑆.

Proof. For sake of contradiction, suppose 𝒞𝑆 ⪯̸ 𝒢 ′𝑆. Then, there must exist an 𝑖′

where
∑︀𝑖′

𝑘=1 𝒞𝑆(𝑘) >
∑︀𝑖′

𝑘=1 𝒢 ′𝑆(𝑘). Let 𝑖′ be the earliest such value. Additionally, let

𝑗′ = argmax𝑗

∑︀𝑗
𝑘=1 ℳ𝑆(𝑘)−

∑︀𝑖′−1
𝑘=1 𝒢′

𝑆(𝑘)

𝑗
. We use these to define a distribution 𝑝 ∈ 𝑆 such

that 𝒞𝑆 cannot couple 𝑝:

Definition 18. 𝑝(𝑘) is
∑︀𝑖′

ℓ=1 𝒢 ′𝑆(ℓ) for 𝑘 = 1, is 𝒢 ′𝑆(𝑖′) for 1 < 𝑘 ≤ 𝑗′, and is ℳ𝑆(𝑘)

for 𝑘 > 𝑗′

Claim 25. 𝑝 is a valid probability distribution.

Proof. All states are non-negative. Also, they sum to 1:

𝑛∑︁
ℓ=1

𝑝(ℓ) (4.13)

= 𝑝(1) +

𝑗′∑︁
ℓ=2

𝑝(ℓ) +
𝑛∑︁

ℓ=𝑗′+1

𝑝(ℓ) (4.14)

=

(︃
𝑖′∑︁

ℓ=1

𝒢 ′𝑆(ℓ)

)︃
+ ((𝑗′ − 1)× 𝒢 ′𝑆(𝑖′)) +

(︃
𝑛∑︁

ℓ=𝑗′+1

ℳ𝑆(ℓ)

)︃
(4.15)

=
𝑖′−1∑︁
ℓ=1

𝒢 ′𝑆(ℓ) +
𝑗′∑︁
ℓ=1

ℳ𝑆(ℓ)−
𝑖′−1∑︁
ℓ=1

𝒢 ′𝑆(ℓ) +
𝑛∑︁

ℓ=𝑗′+1

ℳ𝑆(ℓ) (4.16)

=
𝑛∑︁

ℓ=1

ℳ𝑆(ℓ) = 1 (4.17)
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(4.16) is obtained by definition of 𝒢 ′𝑆(𝑖′) and 𝑗′.

Claim 26. 𝑝 ⪯ 𝑝

Proof. We will show that 𝑝 is majorized by 𝑝. To begin:

Subclaim 1. For 𝑘 ≥ 𝑗′, it holds that
∑︀𝑘

ℓ=1 𝑝(ℓ) ≥
∑︀𝑘

ℓ=1 𝑝(ℓ)

Proof.

𝑘∑︁
ℓ=1

𝑝(ℓ) (4.18)

=

𝑗′∑︁
ℓ=1

𝑝(ℓ) +
𝑘∑︁

ℓ=𝑗′+1

𝑝(ℓ) (4.19)

=

(︃
𝑖′−1∑︁
ℓ=1

𝒢 ′𝑆(ℓ) + 𝑗′ ×
∑︀𝑗′

ℓ=1ℳ𝑆(ℓ)−
∑︀𝑖′−1

ℓ=1 𝒢 ′𝑆(ℓ)
𝑗′

)︃

+
𝑘∑︁

ℓ=𝑗′+1

ℳ𝑆(ℓ) =
𝑘∑︁

ℓ=1

ℳ𝑆(ℓ) (4.20)

=
𝑘∑︁

ℓ=1

𝑝(ℓ) (4.21)

(4.21) is obtained by Claim 24.

Still, we must show this holds for 𝑘 < 𝑗′. We start with:

Subclaim 2. If 𝑗′ > 1, it holds that 𝒢 ′𝑆(𝑖′) ≤ℳ𝑆(𝑗
′).

Proof. For sake of contradiction, suppose 𝒢 ′𝑆(𝑖′) >ℳ𝑆(𝑗
′):

𝒢 ′𝑆(𝑖′) (4.22)

=

∑︀𝑗′

ℓ=1ℳ𝑆(ℓ)−
∑︀𝑖′−1

ℓ=1 𝒢 ′𝑆(ℓ)
𝑗′

(4.23)

=
𝑗′ − 1

𝑗′
×
∑︀𝑗′−1

ℓ=1 ℳ𝑆(ℓ)−
∑︀𝑖′−1

ℓ=1 𝒢 ′𝑆(ℓ)
𝑗′ − 1

+
1

𝑗′
×ℳ𝑆(𝑗

′) (4.24)

≤ 𝑗′ − 1

𝑗′
×
∑︀𝑗′

ℓ=1ℳ𝑆(ℓ)−
∑︀𝑖′−1

ℓ=1 𝒢 ′𝑆(ℓ)
𝑗′

+
1

𝑗′
×ℳ𝑆(𝑗

′) (4.25)

=
𝑗′ − 1

𝑗′
× 𝒢 ′𝑆(𝑖′) +

1

𝑗′
×ℳ𝑆(𝑗

′) (4.26)
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<
𝑗′ − 1

𝑗′
× 𝒢 ′𝑆(𝑖′) +

1

𝑗′
× 𝒢 ′𝑆(𝑖′) = 𝒢 ′𝑆(𝑖′) (4.27)

This is a contradiction. (4.25) follows by definition of 𝑗′ and (4.27) by supposing

𝒢 ′𝑆(𝑖′) >ℳ𝑆(𝑗
′).

Using this, we take the next step:

Subclaim 3. If 1 ≤ 𝑘 < 𝑗′, then
∑︀𝑘

ℓ=1 𝑝(ℓ)−
∑︀𝑘

ℓ=1 𝑝(ℓ) ≥
∑︀𝑘+1

ℓ=1 𝑝(ℓ)−
∑︀𝑘+1

ℓ=1 𝑝(ℓ)

Proof.

𝑘∑︁
ℓ=1

𝑝(ℓ)−
𝑘∑︁

ℓ=1

𝑝(ℓ) (4.28)

=
𝑘+1∑︁
ℓ=1

𝑝(ℓ)−
𝑘+1∑︁
ℓ=1

𝑝(ℓ) + (𝑝(𝑘 + 1)− 𝑝(𝑘 + 1)) (4.29)

=
𝑘+1∑︁
ℓ=1

𝑝(ℓ)−
𝑘+1∑︁
ℓ=1

𝑝(ℓ) + (ℳ𝑆(𝑘 + 1)− 𝒢 ′𝑆(𝑖′)) (4.30)

≥
𝑘+1∑︁
ℓ=1

𝑝(ℓ)−
𝑘+1∑︁
ℓ=1

𝑝(ℓ) + (ℳ𝑆(𝑗
′)− 𝒢 ′𝑆(𝑖′)) (4.31)

≥
𝑘+1∑︁
ℓ=1

𝑝(ℓ)−
𝑘+1∑︁
ℓ=1

𝑝(ℓ) (4.32)

(4.32) is obtained by Subclaim 2.

We now show majorization for smaller indices:

Subclaim 4. If 1 ≤ 𝑘 < 𝑗′, then
∑︀𝑘

ℓ=1 𝑝(ℓ) ≥
∑︀𝑘

ℓ=1 𝑝(ℓ)

Proof. We can equivalently write this subclaim as how it must hold that for 1 ≤ 𝑘 < 𝑗′,

it holds that
∑︀𝑘

ℓ=1 𝑝(ℓ) −
∑︀𝑘

ℓ=1 𝑝(ℓ) ≥ 0. By Subclaim 1, this holds for 𝑘 = 𝑗′. By

Subclaim 3, the left-hand side is non-decreasing as we decrease 𝑘 from 𝑗′ to 1. Thus,

our subclaim is shown inductively.

It follows from Subclaims 1 and 4 that 𝑝 ⪯ 𝑝.

As we now know 𝑝 ∈ 𝑆, we show that 𝒞𝑆 cannot couple 𝑝:

Claim 27. 𝒞𝑆 cannot couple 𝑝
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Proof. We have designed 𝑝 such that all states other than 𝑝(1) will be too small for any

of 𝒞𝑆(1), . . . , 𝒞𝑆(𝑖′) to be assigned to them in a valid coupling. Additionally, we have

set 𝑝(1) to be small enough such that not all of 𝒞𝑆(1), . . . , 𝒞𝑆(𝑖′) can all be assigned

to 𝑝(1) simultaneously. We prove as follows:

Subclaim 5. 𝒞𝑆(1) ≥ · · · ≥ 𝒞𝑆(𝑖′) > 𝒢 ′𝑆(𝑖′)

Proof. This holds if 𝒞𝑆(𝑖′) > 𝒢 ′𝑆(𝑖′):

𝒞𝑆(𝑖′) (4.33)

=
𝑖′∑︁

𝑘=1

𝒞𝑆(𝑘)−
𝑖′−1∑︁
𝑘=1

𝒞𝑆(𝑘) (4.34)

≥
𝑖′∑︁

𝑘=1

𝒞𝑆(𝑘)−
𝑖′−1∑︁
𝑘=1

𝒢 ′𝑆(𝑘) (4.35)

>
𝑖′∑︁

𝑘=1

𝒢 ′𝑆(𝑘)−
𝑖′−1∑︁
𝑘=1

𝒢 ′𝑆(𝑘) (4.36)

= 𝒢 ′𝑆(𝑖′) (4.37)

(4.36) is obtained by definition of 𝑖′.

Subclaim 6. For any coupling of 𝑝 with 𝒞𝑆, all of 𝒞𝑆(1), . . . , 𝒞𝑆(𝑖′) must be assigned to

𝑝(1).

Proof. By definition, 𝑝(2), . . . , 𝑝(𝑛) ≥ 𝒢 ′𝑆(𝑖′). By Subclaim 5, we then know 𝒞𝑆(1) ≥

· · · ≥ 𝒞𝑆(𝑖′) > 𝑝(2), . . . , 𝑝(𝑛). As such, all of 𝒞𝑆(1), . . . , 𝒞𝑆(𝑖′) could only be assigned

to 𝑝(1).

Further, not all of 𝒞𝑆(1), . . . , 𝒞𝑆(𝑖′) can be assigned to 𝑝(1):

Subclaim 7. 𝑝(1) <
∑︀𝑖′

𝑘=1 𝒞𝑆(𝑘)

Proof. 𝑝(1) =
∑︀𝑖′

𝑘=1 𝒢 ′𝑆(𝑘) <
∑︀𝑖′

𝑘=1 𝒞𝑆(𝑘).

By Subclaim 6 all of 𝒞𝑆(1), . . . , 𝒞𝑆(𝑖′) can only be assigned to 𝑝(1), yet by Subclaim

7 they cannot all be assigned to 𝑝(1) simultaneously. Accordingly, 𝒞𝑆 cannot couple

𝑝.
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Thus, by contradiction, 𝒞𝑆 ⪯ 𝒢 ′𝑆 for any valid 𝒞𝑆.

By Lemma 23, we conclude 𝐻(OPT𝑆) ≥ 𝐻(𝒢 ′𝑆). Now, we show how in this setting

𝒢𝑆 is exactly 𝒢 ′𝑆:

Lemma 24. For all 𝑖, it holds that 𝒢𝑆(𝑖) = 𝒢 ′𝑆(𝑖).

Proof. We show this inductively. Using Theorem 9 we know 𝒢𝑆(𝑖) ≥

max𝑗
∑︀𝑗

𝑘=1 ℳ𝑆(𝑘)−
∑︀𝑖−1

𝑘=1 𝒢𝑆(𝑘)

𝑗
= max𝑗

∑︀𝑗
𝑘=1 ℳ𝑆(𝑘)−

∑︀𝑖−1
𝑘=1 𝒢

′
𝑆(𝑘)

𝑗
= 𝒢 ′𝑆(𝑘). Using Lemma 23

we know 𝒢𝑆(𝑖) =
∑︀𝑖

𝑘=1 𝒢𝑆(𝑘)−
∑︀𝑖−1

𝑘=1 𝒢𝑆(𝑘) ≤
∑︀𝑖

𝑘=1 𝒢 ′𝑆(𝑘)−
∑︀𝑖−1

𝑘=1 𝒢𝑆(𝑘) =
∑︀𝑖

𝑘=1 𝒢 ′𝑆(𝑘)

−
∑︀𝑖−1

𝑘=1 𝒢 ′𝑆(𝑘) = 𝒢 ′𝑆(𝑖).

Thus, 𝐻(𝒢𝑆) = 𝐻(OPT𝑆), meaning 𝒢𝑆 is optimal.

We emphasize that in Lemma 24 we have shown how in this setting, the character-

ization of Theorem 9 is actually exact.

4.6 Greedy Coupling is a log2(𝑒) ≈ 1.44 Additive Ap-

proximation

We now show our primary result:

Theorem 11. 𝐻(𝒢𝑆) ≤ 𝐻 (
⋀︀

𝑆) + log2(𝑒)

Proof. We will split
⋀︀

𝑆 in a particular way, and show that 𝒢𝑆 majorizes this modified

distribution. Moreover, we will show that it majorizes said distribution in a very strong

manner. This will enable a good approximation guarantee for 𝒢𝑆. To split
⋀︀
𝑆, we

introduce the geometric distribution with parameter 𝛾 as Geom𝛾(𝑥) = 𝛾 × (1− 𝛾)𝑥−1.

We split
⋀︀

𝑆 as follows:

Definition 19. ℳ𝛾
𝑆 = (

⋀︀
𝑆)×Geom𝛾

We will show that 𝒢𝑆 not only majorizes ℳ𝛾
𝑆 for particular 𝛾, but also satisfies

the following stronger notion:

154



Definition 20. A distribution 𝑝 is 𝛼-strongly majorized by a distribution 𝑞 (i.e.,

𝑝 ⪯𝛼 𝑞) if for all 𝑖 ∈ [|𝑝|] there exists a 𝑗 such that
∑︀𝑖

𝑘=1 𝑝(𝑘) ≤
∑︀𝑗

𝑘=1 𝑞(𝑘) and

𝛼× 𝑝(𝑖) ≤ 𝑞(𝑗).

In other words, 𝑝 is 𝛼-strongly majorized by 𝑞 if for every prefix of 𝑝(1), . . . , 𝑝(𝑖)

there is a prefix of 𝑞 that has at least the same sum, and only contains values at least

a factor of 𝛼 greater than 𝑝(𝑖). We show that as we decrease 𝛾 to split
⋀︀
𝑆 more

finely, it is increasingly strongly majorized by 𝒢𝑆:

Lemma 25. For any integer 𝑧 ≥ 2, ℳ1/𝑧
𝑆 ⪯𝑧−1 𝒢𝑆

Proof. We will prove this by contradiction. Suppose that ℳ1/𝑧
𝑆 ⪯̸𝑧−1 𝒢𝑆. This

means there exists an 𝑖, 𝑗 such that
∑︀𝑗

𝑘=1 𝒢𝑆(𝑘) <
∑︀𝑖

𝑘=1ℳ
1/𝑧
𝑆 (𝑘) and 𝒢𝑆(𝑗 + 1) <

(𝑧 − 1)×ℳ1/𝑧
𝑆 (𝑖). We show that this cannot occur:

Claim 28. For integer 𝑧 ≥ 2 and any 𝑖′, 𝑗′, if
∑︀𝑗′

𝑘=1 𝒢𝑆(𝑘) <
∑︀𝑖′

𝑘=1ℳ
1/𝑧
𝑆 (𝑘), then

𝒢𝑆(𝑗′ + 1) ≥ (𝑧 − 1)×ℳ1/𝑧
𝑆 (𝑖′).

Proof. Every element ofℳ1/𝑧
𝑆 corresponds to the product of an element of

⋀︀
𝑆 and

an element of Geom1/𝑧. We define:

Definition 21. Index⋀︀
𝑆(𝑘) is the corresponding index of

⋀︀
𝑆 forℳ1/𝑧

𝑆 (𝑘). Likewise,

IndexGeom1/𝑧
(𝑘) is the corresponding index of Geom1/𝑧 for ℳ1/𝑧

𝑆 (𝑘).

We define a set 𝒯 𝑖′(𝑘) for each index 𝑘 of
⋀︀

𝑆, denoting the set of indices of

Geom1/𝑧 inℳ1/𝑧
𝑆 (1), . . . ,ℳ1/𝑧

𝑆 (𝑖′) corresponding to the 𝑘-th element of
⋀︀
𝑆:

Definition 22. 𝒯 𝑖′(𝑘) = {ℓ|∃𝑖 ≤ 𝑖′ : Index⋀︀
𝑆(𝑖) = 𝑘, IndexGeom1/𝑧

(𝑖) = ℓ}

Also, we define the set 𝒩 as the set of non-empty 𝒯 𝑖′ :

Definition 23. 𝒩 = {𝑘 ∈ [𝑛]||𝒯 𝑖′(𝑘)| > 0}

Finally, we show our claim by:

𝒢𝑆(𝑗′ + 1) (4.38)

≥ max
𝑘

∑︀𝑘
ℓ=1ℳ𝑆(ℓ)−

∑︀𝑗′

ℓ=1 𝒢𝑆(ℓ)
𝑘

(4.39)
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≥
∑︀|𝒩 |

ℓ=1ℳ𝑆(ℓ)

|𝒩 |
−
∑︀𝑗′

ℓ=1 𝒢𝑆(ℓ)
|𝒩 |

(4.40)

>

∑︀|𝒩 |
ℓ=1ℳ𝑆(ℓ)

|𝒩 |
−
∑︀𝑖′

ℓ=1ℳ
1/𝑧
𝑆 (ℓ)

|𝒩 |
(4.41)

≥ 1

|𝒩 |

(︃∑︁
ℓ∈𝒩

ℳ𝑆(ℓ)−
𝑖′∑︁

ℓ=1

ℳ1/𝑧
𝑆 (ℓ)

)︃
(4.42)

=
1

|𝒩 |
∑︁
ℓ∈𝒩

⎛⎝ℳ𝑆(ℓ)−ℳ𝑆(ℓ)×
∑︁

𝑘∈𝒯 𝑖′ (ℓ)

Geom1/𝑧(𝑘)

⎞⎠ (4.43)

=
1

|𝒩 |
∑︁
ℓ∈𝒩

⎛⎝ ∞∑︁
𝑘=max(𝒯 𝑖′ (ℓ))+1

ℳ𝑆(ℓ)×Geom1/𝑧(𝑘)

⎞⎠ (4.44)

=
1

|𝒩 |
∑︁
ℓ∈𝒩

(1− 1/𝑧)×ℳ𝑆(ℓ)×Geom1/𝑧(max(𝒯 𝑖′(ℓ)))

1− (1− 1/𝑧)
(4.45)

≥ 1

|𝒩 |
×
∑︁
ℓ∈𝒩

(1− 1/𝑧)×ℳ1/𝑧
𝑆 (𝑖′)

1− (1− 1/𝑧)
(4.46)

= (𝑧 − 1)×ℳ1/𝑧
𝑆 (𝑖′) (4.47)

(4.39) follows from Claim 9. (4.41) follows from the conditions of Claim 28. (4.43)

follows by definition of 𝒯 𝑖′ . (4.46) follows from ℳ𝑆(ℓ) × Geom1/𝑧(max(𝒯 𝑖′(ℓ))) ≥

ℳ1/𝑧
𝑆 (𝑖′) because by definition of 𝒯 𝑖′ there is an element in the prefix ofℳ1/𝑧

𝑆 (1), . . . ,

ℳ1/𝑧
𝑆 (𝑖′) that corresponds to the ℓ-th element ofℳ𝑆 and the max(𝒯 𝑖′(ℓ))-th element

of Geom1/𝑧.

Thus, this contradiction shows thatℳ1/𝑧
𝑆 ⪯𝑧−1 𝒢𝑆.

We could use Lemma 25 to immediately conclude (by setting 𝑧 = 2) thatℳ1/2
𝑆 ⪯ 𝒢𝑆

and thus 𝐻(𝒢𝑆) ≤ 𝐻(
⋀︀

𝑆) + 2, giving a 2-additive approximation. However, we can

do better.

Lemma 26. If 𝑝 ⪯𝛼 𝑞, then 𝐻(𝑞) ≤ 𝐻(𝑝)− log(𝛼)

Proof. For any distribution 𝐷, we define 𝛽𝐷(𝑥) as the set of all indices of 𝐷 corre-

sponding to the minimum length prefix required to sum to at least 𝑥. More formally:
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Definition 24. 𝛽𝐷(𝑥) = {𝑖 ∈ [|𝐷|]|
∑︀𝑖−1

𝑗=1 𝐷(𝑗) < 𝑥}

With this, we show:

𝐻(𝑞) (4.48)

=

|𝑞|∑︁
𝑖=1

𝑞(𝑖) log

(︂
1

𝑞(𝑖)

)︂
(4.49)

=

|𝑝|∑︁
𝑖=1

∑︁
𝑗∈(𝛽𝑞(

∑︀𝑖
𝑘=1 𝑝(𝑘))∖𝛽𝑞(

∑︀𝑖−1
𝑘=1 𝑝(𝑘)))

𝑞(𝑗) log

(︂
1

𝑞(𝑗)

)︂
(4.50)

≤
|𝑝|∑︁
𝑖=1

∑︁
𝑗∈(𝛽𝑞(

∑︀𝑖
𝑘=1 𝑝(𝑘))∖𝛽𝑞(

∑︀𝑖−1
𝑘=1 𝑝(𝑘)))

𝑞(𝑗) log

(︂
1

𝛼× 𝑝(𝑖)

)︂
(4.51)

=

|𝑝|∑︁
𝑖=1

log

(︂
1

𝛼× 𝑝(𝑖)

)︂
×

∑︁
𝑗∈(𝛽𝑞(

∑︀𝑖
𝑘=1 𝑝(𝑘))∖𝛽𝑞(

∑︀𝑖−1
𝑘=1 𝑝(𝑘)))

𝑞(𝑗) (4.52)

≤
|𝑝|∑︁
𝑖=1

log

(︂
1

𝛼× 𝑝(𝑖)

)︂
× 𝑝(𝑖) (4.53)

= 𝐻(𝑝)− log(𝛼) (4.54)

(4.53) is obtained by noticing how the sequence of the values of the inner summation

must majorize 𝑝 by definition of 𝛽𝑞. As the inner summation’s coefficient is non-

decreasing, the equation is maximized when sequence of the values of the inner

summation is exactly 𝑝.

Corollary 15. For 𝑧 ≥ 2, it holds that 𝐻(𝒢𝑆) ≤ 𝐻(
⋀︀
𝑆) +𝐻(Geom1/𝑧)− log(𝑧 − 1)

Proof. This follows from Lemma 25 and Lemma 26.

We show this upper-bound approaches log2(𝑒) as 𝑧 →∞:

Claim 29. lim𝑧→∞𝐻(Geom1/𝑧)− log(𝑧 − 1) = log2(𝑒)

Proof.

lim
𝑧→∞

𝐻(Geom1/𝑧)− log(𝑧 − 1) (4.55)
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= lim
𝑧→∞

∞∑︁
𝑖=0

(1− 1/𝑧)𝑖

𝑧
× log

(︂
𝑧

(1− 1/𝑧)𝑖

)︂
− log(𝑧 − 1) (4.56)

= lim
𝑧→∞

∞∑︁
𝑖=0

(1− 1/𝑧)𝑖

𝑧
× 𝑖× log

(︂
1

1− 1/𝑧

)︂
+ log

(︂
𝑧

𝑧 − 1

)︂
(4.57)

= lim
𝑧→∞

(𝑧 − 1)× log

(︂
1

1− 1/𝑧

)︂
+ log

(︂
𝑧

𝑧 − 1

)︂
(4.58)

= log2(𝑒) (4.59)

Finally, we show that 𝐻(𝒢𝑆) ≤ 𝐻(
⋀︀
𝑆) + log2(𝑒) by contradiction. Suppose there

exists an 𝑆 where 𝐻(𝒢𝑆) = 𝐻(
⋀︀
𝑆) + log2(𝑒) + 𝜀 for some 𝜀 > 0. By combining

Corollary 15 and Claim 29 we can immediately conclude there is a sufficiently large

𝑧 where we can bound 𝐻(𝒢𝑆) < 𝐻(
⋀︀
𝑆) + log2(𝑒) + 𝜀. This is a contradiction, so it

must hold for all 𝑆 that 𝐻(𝒢𝑆) ≤ 𝐻(
⋀︀
𝑆) + log2(𝑒).

Moreover, this gap between 𝐻(𝒢𝑆) and 𝐻(
⋀︀
𝑆) is tight:

Theorem 12. There exists no algorithm 𝒜 where it holds for all 𝑆 that 𝐻(𝒜𝑆) ≤

𝐻(
⋀︀

𝑆) + 𝑐 for any 𝑐 < log2(𝑒).

Proof. Consider the instance 𝑆 = Majorizing-Set(𝒰𝑛) where 𝒰𝑛 is the uniform

distribution over 𝑛 states.

Claim 30. If 𝑆 = 𝒰𝑛, 𝒢𝑆(𝑖) = (1− 1/𝑛)𝑖−1 × 1/𝑛 ∀𝑖 ≥ 1.

Proof. By Lemma 24, we know 𝒢𝑆(𝑖) = max𝑗
∑︀𝑗

𝑘=1 ℳ𝑆(𝑘)−
∑︀𝑖−1

𝑘=1 𝒢𝑆(𝑘)

𝑗
=

max1≤𝑗≤𝑛
𝑗/𝑛−

∑︀𝑖−1
𝑘=1 𝒢𝑆(𝑘)

𝑗
= 1/𝑛 −

∑︀𝑖−1
𝑘=1 𝒢𝑆(𝑘)

𝑛
. For 𝑖 = 1, 𝒢𝑆(1) = 1/𝑛 − 0

𝑛
= (1 −

1/𝑛)0 × 1/𝑛. For 𝑖 > 1 we can inductively show, 𝒢𝑆(𝑖) = 1/𝑛 −
∑︀𝑖−1

𝑘=1 𝒢𝑆(𝑘)

𝑛
= 1/𝑛 −

𝑛((1/𝑛)−(1−1/𝑛)𝑖−1/𝑛)
𝑛

= 1/𝑛− 1−(1−1/𝑛)𝑖−1

𝑛
= (1− 1/𝑛)𝑖−1 × 1/𝑛.

Claim 31. If 𝑆 = 𝒰𝑛, lim𝑛→∞ 𝐻(𝒢𝑆) = 𝐻(
⋀︀
𝑆) + log2(𝑒)

Proof. Using Claim 30 we determine that 𝐻(𝒢𝑆) =
∑︀∞

𝑖=1 𝒢𝑆(𝑖)×log(
1

𝒢𝑆(𝑖)
) =

∑︀∞
𝑖=1(1−

1/𝑛)𝑖−1× 1/𝑛× log( 1
1/𝑛×(1−1/𝑛)𝑖−1 ) = log(𝑛)+

∑︀∞
𝑖=1(1− 1/𝑛)𝑖× 1/𝑛× 𝑖× log( 1

1−1/𝑛
) =
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log(𝑛) + (𝑛− 1)× log( 𝑛
𝑛−1

) = 𝐻(
⋀︀

𝑆) + (𝑛− 1)× log( 𝑛
𝑛−1

). Finally, lim𝑛→∞ 𝐻(𝒢𝑆) =

𝐻(
⋀︀

𝑆) + lim𝑛→∞(𝑛− 1)× log( 𝑛
𝑛−1

) = 𝐻(
⋀︀
𝑆) + log2(𝑒).

By Theorem 10, we know 𝐻(𝒢𝑆) = 𝐻(OPT𝑆). Accordingly, for any 𝑐 < log2(𝑒)

there exists an 𝑛 where if 𝑆 = Majorizing-Set(𝒰𝑛) then 𝐻(OPT𝑆) > 𝐻(
⋀︀
𝑆) +

𝑐.
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