Contour Motion Compensation
for
Image Sequence Coding

by
Chong Uk Lee

B.S.E.E. Massachusetts Institute of Technology (1981)
M.S.E.E. Massachusetts Institute of Technology (1985)

Submitted in Partial Fulfillment
of the Requirement for the
Degree of

Doctor of Philosophy
at the
Massachusetts Institute of Technology
May 1989

©1989, Massachusetts Institute of Technology

Signature of the Author s =
Department of Electrical Engmee/ ring and Computer Science
May 22, 1989

Certified by

William F. Schreiber

Werwsor

Accepted by =~ —a N P
Arthur C. Smith
Chairman, EE Department Committee on Graduate Students

MASS“ INST, rECH‘
JUL 11 1989) ARCHIVES
L\IB IS A_R ‘ E“’E)

Contour Motion Compensation
for
Image Sequence Coding

by
Chong Uk Lee

Submitted to the Department of Electrical Engineering
and Computer Science on May 22, 1989 in partial fulfillment
of the requirements for the Degree of Doctor of Philisophy
in Electrical Engineering

Abstract

In this thesis we develop contour matching and interpolation
techniques for the purpose of motion compensation of image sequences.
Contours extracted from an image segmentation process over a sequence of
frames are the input data. The moving contours are matched from frame to
frame and are interpolated to produce intermediate frames. Two matching
techniques are developed; The first is a transform technique based on the
circular transform of the contour, similar to the Fourier transform.
Applicable only to closed contours, the transform and the associated
normalization procedure extract the shape parameters of the contour. A
mean square error criterion is used to match pair of contours. An
associated interpolation technique is also develcped that interpolates the
intermediate contour in the shape space and inverse transforms it for
reconstruction. The second technique is a spatial method applicable to open
contousrs. By extracting the curvature or the tangent of the contour, a
distance matrix is set up. Imposing a rigid motion constraint enables a
simple formulation of a Hough transform technique that estimates the
alignment parameters. The procedure finds the transformation parameters
as well as the end points of the matching segments. However, this matching
technique lacks a suitable interpolation and reconstruction method. Both
the transform and the spatial techniques are shown to be relatively robust
when given a contour sequence extracted from a set of simple gray scale
images. The motion compensaticn of a moving contour sequence is
demonstrated using the two techniques.

Thesis Supervisor: William F. Schreiber
Title: Professor of Electrical Engineering

Acknowledgments

I am very thankful to Prof. William F. Schreiber whose
continuous support, supervision, and encouragements made this
thesis possible. I am also grateful to the members of the ATRP group
who have created a pleasant research environment. A special thank
goes to John Wang for his unending supply of computer expertise
and wisdom. I wish to recognize all my friends at MIT who made my
stay at MIT very memorable. There are many people, relatives and
acquaintances, who provided valuable moral support. I am very
grateful to my Mother and express my greatest love and respect.
She was behind me through out my education, always with love and
care.

This work was supported in part by the sponsors of the
Advanced Television Research Project.

Contents

Chapter 1. IntroductioN...c.ccccececeecececiereceranscaccrerecesesscscsscossescnes 7
Chapter 2. Background.....c.cccecieeceenniccncrncsscrcrccsnsossccessoncsncnes 12
2.1 Synthetic Highs SyStemccceomrrererennccrneenesesreeeeserereeneeseesenns 13
2.2 Region-Growing Based Coding.........ccceeveerrvirevivriccceieninrenececnnenne, 14
2.3 Contour-Based Motion Estimation............cceeeeenecncnenn. 16
2.4 TEXUUTL.......cuereiireececiieiericsisetssnreneesasssnsessnesssessssssanssessssssssessessasssessessanens 18
2.5 SegMENtAtION....ccueiriereirereerrnisestisesseesstesserssrestessesreesnsessasssessessessessssenes 21
2.5.1 Segmentation EXPEriments..........ccceeeveervrvererereresereenen. 23
2.6 Contour Coding.......cccceveeeeererenneicersenerserecresesseeeseesresssesssessasssessssssnsses 32
2.7 Shape ANALYSIS ...cccceivcerrrercrenrrneesrereseestesesessesssssssssessesssessssssasassssenes 35
Chapter 3. Closed CoONtoUrsS ...ccccccirerncerniarecesrcacessesecesesscsosscssssans 37
3.1 Contour in Complex Plane............coomonnrvcnnnerenenssensesesessnnns 38
3.1.1 Circular Transform..........cceeeveveveverecereneceiesessesenesnennns 39
3.1.2 Center of CONLOUT......ccccecrreeereererrrernenrenessienessssreseesesesesesenens 40
3.1.3 TrANSIAHON.....oeeeeeeveevsseesesssesssseesneenssessssssnseneesssnsssssesssssessnnns 41
3.1.4 Magrification (ZOOMING)ccccereverrerererrerreererenreerrenerenene 41
3.1.5 ROLALION...ccriecererereerrreneernree s sessess e e sassas e s s erensesesesssnns 42
3.1.6 Circular Shift......ccciivreeeieerrrerreesentresr e s sssss s 42
3.2 Motion from Contours -- Contour Matching..........cccoeuurereeennn. 44
3.2.1 Mean Square Error between Contours...........ccccuuue..... 44
3.2.2 Normalization of Magnitude and Phase..................... 45
3.3 Contour INterpolation........ereecnnenenneccnrncnesenreeeeeecessssesessns 49
3.3.1 Spatial Interpolation/Decimation of Contours......... 49
3.3.2 Temporal Interpolation of Contours........ccccoocerureuene... 51
3.4 EXPEIIMENL....crorerreerrereeesenesesssennseesssssssssscsssecsenessesssesnssessssseseressaes 55
Chapter 4. Open ContoOUrS...cccccrierccrcrerrercresessccecossscsssssssensassosenne 59
4.1 Previous WOTK ...ttt esescsscsane e emcaeens 61
4.2 Proposed ApPProach......iinicicncsecccninian 63
4.2.1 Curvature Representation..........cvcevninnrcsenescrecnn 63
4.2.2 DisStance MatriX.....cooovreercerenenrerensncraeresesseesesesensencsssnsscsnens 64
4.2.3 Dynamic Time Warping.........cccceeoveveveieinciiinnccnicnnncnceen. 65
4.2.4 Hough transform........coervererenereeceresecsennenessessscsssnscssnens 67

4.3 CUIVAtUTE QiSTANCE......ceceeeereernrrrrrranrereereteeereseeeseessessonssssnsssssnssenssassasens 70

4.3.1 Hough Accumulator AITay........ccceveeeeeieivnrineeeeeceneeeneeeens 73

4.3.2 Curvature Matching Example.......ccvvvvcnecevenreennene. 77

4.4 Tangent diStANCE........ccceviuiieutiiiirinitineersereesereseseecs e eessees s e esneessrnenans 86

4.4.1 Tangent Matching Example.......covcomvvvnvcnncecrncennnne 88

4.5 INtETPOIAtION ..cucvcetreceeecc et steanese st ese e e ssste s snnesesens 96

4.6 DiSCUSSION.....ccerirrerrrererrersersieeseesrersnesessseessesseessesssesssesssessassssessssssessessee 97
Chapter 5. ConcluSionS....cciciiciiciceieiicieieceneercrcrececacessesesscnsecscreses 102
5.1 SUIMMATY.....covrererrenreeeereesesieesreresresteseeressseessesnesrsessesssssssesessesssssssens 103
5.2 Motion Compensation Example........c.cccevevermnrerreeereereeneccnnnnneenneen, 105
5.3 DiSCUSSION....cecteeireeeerrrertenrertiresereestsstessessessesssessessaessensessessesssessessessenns 119
| 193 -0 o -3 1 o K T RSON 124

List of Figures

2.1(a) Text image, 64 by 64 26
2.1(b) Text segmented by thresholding 26
2.2(a) Camera man (cman) image, 128 by 128 27
2.2(b) Cman segmented by thresholding 27
2.3 Multiple thresholds of cman 28
2.4(a) Sobel magnitude of cman 28
2.4(b) Gradient computed by sum of the differences 29
2.4(c) Gradient magnitude from bi-cubic B-spline fitting 29
2.5 Gradient contours from figure 2.4(c) 30
2.6(a) Perspective view of two saddle points 30
2.6(b) Perspective view of the thresholded gradient magnitude 31
3.1 Complex representation of contour 38
3.2 First-order ellipse c;(n) 47
3.3 Interpolation/decimation process in frequency 50
3.4 Decimated and interpolated contours processed

in the transform domain 51
3.5 Two images used for matching and interpolation 56
3.6 Contours extracted from Figures 3.5(a) and 3.5(b) 57
3.7 Interpolated from Figures 3.6(a) and 3.6(b) 58
4.1 Dynamic Time Warping (DTW) 66
4.2 Contour segmentation 67
4.3 Hough Transform 68
4.4 Distance matrix and Hough accumulator array 73
4.5 3 cases of overlap for open contours 74
4.6 Modified distance matrix and Hough accumulator array 75
4.7 Allowed ranges for the warping function 77
4.8 Two contours used in the curvature matching example 78
4.9 Curvature plots for ¢; (solid line) and ¢, (dotted line) 79
4.10 Curvature distance matrix and its Hough transform 80
4.11 Modified curvature distance matrix

and its Hough transform 81

4.12(a) Perspective plot of Hough transform in Figure 4.10(b) 82
4.12(b) Perspective plot of Hough transiorm in Figure 4.11(b) 82

4.13 Result of the curvature matching 84
4.14 Tangent difference matrix and line histograms 87
4.15 Tangent plots for ¢; (solid line) and ¢, (dotted line) 89
4.16 Tangent difference, tangent distance, and Hough transform
90
4.17(a) Tangent difference histogram from Figure 4.16(a) 91
4.17(b) Smoothed tangent difference histogram by Gaussian filter
92
4.18 Modified curvature distance matrix and its Hough transform
93

4.19(a) Perspective plot of Hough transform in Figure 4.16(c) 93
4.19(b) Perspective plot of Hough transform in Figure 4.18(b) 94

4.20 Result of the tangent matching 95
4.21 Plots for closed 5 (solid) and open 5 (dotted) 98
4.22 Failed curvature matching for contours in Figure 4.21 99
4.23 Tangent matching result of the contours in Figure 4.21 100
5.1 Three key frames used for motion compensation 106
5.2 9 frames generated by motion compensation from

three key frames in Figure 5.1 111
5.3 Closed E and open E from Figures 5.1(b) and 5.1(c) 112
5.4 Tangent matching result of the contours in Figure 5.3 113
5.5 9 frames generated by motion compensation of the E 118

CHAPTER 1. INTRODUCTION

Most digital image processing techniques are based on the
canonic representation of the image as a two-dimensional array of
intensity samples. The intensity of a sample is usually quantized so
that the image can be stored and transmitted by a finite number of
bits. The goal of a conventional coding scheme is then to reduce the
number of bits to represent the image by exploiting the property of
local correlation among neighboring samples. Therefore the traditional
view treated an image as a two-dimensional stochastic signal and
information theory played a central role in increasing the coding
efficiency within this framework. However in the recent years, it
became apparent that the coding efficiency, as measured in terms of
compression ratio, has been approaching the limit. A higher
compression ratio could be obtained only at the expense of a rapid
degradation of the image quality, where the type and severity of the
degradation depends on the coding scheme used. To further increase
the compression ratio it seems necessary to exploit the properties of
the human visual system to a fuller extent since the eye is the
ultimate receiver of the processed image.

It is clear that the low-level processing that goes on in the
human visual system has no direct equivalence of the two-dimensional
sampling grid the current image processing is based on. Rather, the
eye is more adapted to deal with rather abstract features such as
edges and lines through the lateral inhibition process that occurs at the
retina and the orientation sensitive cells in the visual cortex [7]. For
example, the eye can make out and understand most of the objects
even from a high-pass filtered image because the high-frequency
information usually corresponds to edges in the image. On the other
hand, the intermediate level processing that occurs in the brain seems
to involve topological characterization such as shapes, blobs, regions,
etc., which can be derived from the edge information supplied by the
low-level processing. It would come as a no surprise that so much can
be conveyed by simple line drawings such as caricatures and cartoons.
These low and intermediate processings can be viewed as data

7

reduction steps to a higher-level processing which puts together the
shape information to recognize three-dimensional objects in the image.

Although the above view of the human visual system is very
simplistic and is undoubtedly based on inadequate understanding of
the actual process, it provides us with a new framework in processing
images for the purpose of human viewing. In the framework of
region-based image model, the image is represented by a collection of
regions where the region boundary is represented by the bounding

contour and inside the region is described by its texture. This
approach corresponds to the intermediate level of processing
described above. At this level of abstraction the image can be

represented as concisely as possible without having to introduce
knowledge as to how the image is formed (from the three-dimensional
real world) or knowledge as to how the human visual system
perceives objects.

The term region is not very easy to define quantitatively. That
is one of the reasons that image segmentation is not a solved problem
and still is an active area of research. In qualitative terms, a region
can be defined as a spatially connected area of similar property such
that crossing the region boundary leads into another region of
different property. The property should be such that the boundary
between regions is perceptible by the human eye. The word texture is
generally used to refer to this property inside the region and we shall
use the word contour to describe the boundary between regions.

The significance of representing images by contours and textures
is the high degree of data reduction possible. The contour can be
represented by a polygonal approximation which can be efficiently
coded using techniques such as curve fitting, chain code, etc. A wealth
of contour coding techniques exist under the general heading of outline
coding which were originally developed for typographical character
coding [34,35]. On the other hand the texture can be characterized as a
low-contrast random detail. Because of its random nature it has been
widely suggested that the texture need net be reproduced on a point-
by-point basis and therefore can be characterized by a small set of

statistical properties. A synthetic texture reproduced this way can
look remarkably similar to the real texture to a human eye [61]. An
alternative approach that more or less reproduces texture on a point-
by-point basis is to use traditional coding techniques such as
predictive or transform techniques [58]. Here, the local statistics do
not vary much over the region so that the information-theoretic
approach will be quite valid and we can expect a high coding
efficiency.

The recent interest and progress in image sequence coding has
seen many coding schemes based on motion information. They make
use of the high degree of correlation between successive frames in the
sequence by measuring the motion information of one sample point in
the frame to the corresponding point in the next frame. A motion
vector describes the motion of a sample point from frame to frame. A
typical system transmits fewer frames than there are in the original
sequence, computes the motion vector fields, and interpolates the
missing frames based on the transmitted frames and the motion vector
fields. It is apparent that a successful contour-texture based coding
scheme could be naturally extended to code sequences by measuring
the motion of a region instead that of a sample point. The distinct
advantages of doing so are numerous. A more robust and accurate
motion estimation should be possible since the region has a distinct
shape and texture which aids in finding the corresponding region. The
region boundary will often coincide with the discontinuities in the
motion vector field. It can be speculated that only the contour
information will be enough in most cases and the texture can be used
to resolve ambiguous cases. Although the operation involved will be
more complicated than that of pixel-based motion-estimation
techniques, the number of operations will be fewer since the number
of contours will be fewer than the pixels in the image. In addition, the
amount of motion information will be very small because only the
correspondence information between regions is needed (of course the
matter becomes more complicated when the region is allowed to
deform over time). In addition, the problem of occlusion (regions

covering one another) and uncovered background, which is difficult to
handle in the conventional approach, becomes easier to analyze.

On the reconstruction side, where more frames are interpolated
from the transmitted frames using motion information, the contour-
texture approach has more advantages: interpolating the contour is
relatively simple and the texture can be synthesized by interpolating
the texture parameters. It seems safe to make the assumption that
the texture in a given region does not vary rapidly in time. Therefore,
with a further assumption that a particular region remains in the
image over a period of time, predictive coding of the parameters that
describe the texture in the region will give a higher compression ratio.
(Intuitively, we can imagine a cylinder traced out by the closed
contour of a moving region. The two ends of this cylinder will
correspond to the appearance and disappearance of the region due to
various reasons such as occlusion at the image boundary or by
foreground objects.)

In the current image-processing literature, there does not seem
to be much attempt at combining the contour-texture based image
coding with the motion-compensated sequence coding. Certainly there
is a great deal of research done on individual processing steps
necessary to achieve this. The three main areas are segmentation,
contour motion compensation, and texture analysis. Segmentation has
been widely studied by the scene-analysis and pattern-recognition
community. Motion compensation has been mainly developed in the
traditional image-processing community. Texture analysis has been
researched by both. However, in view of the amount of research effort
in each of the areas, putting all three techniques together and building
a successful image coding system is indeed a great task. In this thesis
we choose to concentrate on solving the least researched area,
processing and motion compensating the contours.

We assume that a suitable segmentation process exists that
extracts contours from an image sequence. Given a sequence of
contour frames displaced in time, the task is then to identify the
matching contours and to perform motion compensation to recomstruct

10

the contours for the in-between frames. The basic approach we
employ starts by removing the orientation information from the
contour until only the shape information of the contour remains. The
shape matching and interpolation takes place in this shape space.
Then, appropriate orientation information is added back to reconstruct
the contour at a desired orientation and time displacement.

In Chapter 2, the background framework relevant to the
contour-texture based image coding will be presented. Although a
contour can be represented by a polygonal approximation, we will
apply the signal processing concepts and view it as a contour signal.
Based on a complex signal representation of the contour, we develop
two distinct approaches in matching and interpolating contours. In
Chapter 3, a Circular Transform technique similar to the Fourier
transform is developed, and a frequency-domain interpretation is
applied to match and interpolate closed contours. Because transform
methods cannot handle open (partial) contours very easily, in Chapter
4 we develop a spatial-domain technique based on the distance matrix
to match partial contours. . Chapter 5 concludes with experimental
results obtained using both techniques.

11

CHAPTER 2. BACKGROUND

One of the earliest and one of the most recent coding schemes
based on contours are presented first to establish the background and
the motivation for developing a contour-texture based coding system.
A brief description of the current states of contour-based motion
estimation and texture analysis follows. The issues of segmentation
are presented in more detail since it is a necessary step before
contours can be manipulated. Discussions of contour coding and shape
analysis set the stage for the next two chapters on matching and
interpolation of contours.

12

2.1 Synthetic Highs System

This is perhaps the earliest predecessor of the class of feature-
based coding schemes which was developed in the 60's [1,2]. Like two-
channel coding system [3], it achieves data compression by exploiting
the spatial masking effect of the eve. The eye is less sensitive to the
noise in the vicinity of the large discontinuities in brightness such as
edges in the image. Therefore the edge information can be quantized
coarsely to reduce the bit rate. Edges normally correspond to the
high-frequency component of the image.

In the synthetic highs system the image is first filtered by a low-
pass filter to obtain the low-frequency image. The low-frequency
image is subsampled and coded in a conventional manner. The edge
points are found using Laplacian or Gradient operators. The fact that
the edge points line up and form contours is exploited to code the edge
information as contours. The gradient information is also coded along
with the contour. At the receiver, the high-frequency image is
synthesized from the gradient along the contour by applying a
synthesis filter. It has been shown that a unique synthesis filter can
be derived from the low-pass filter to recover the missing high-
frequency image exactly from the gradient image [4]. The original
image is then reconstructed by adding the low-frequency image and
the synthesized high-frequency image. The coding system becomes
information lossy when some of the contours with low gradient are not
transmitted. This is necessary to reduce the number of contours
transmitted in order to achieve a high compression ratio. The
information discarded this way can be viewed as texture and a
possible way to synthesize the texture has been suggested in [5].

13

2.2 Region-Growing Based Coding

This is one of the most recent developments in feature-based
coding, advanced mainly by Kunt and Kocher [7,17]. First the image is
segmented into regions by a region-growing algorithm. Then the
contour defining the boundary of the region and the texture describing
the variation within the region are coded separately. Unlike the
synthetic highs system, however, no gradient information is sent along
the contour. Also the coding of texture eliminates the need for sending
the low-frequency image.

In order to segment the image into a small number of regions,
three steps are taken. The first is an inverse gradient filter that
removes the local granularity while preserving the edges as well as
possible. This is a kind of adaptive filtering based on the local contrast
and needs to be applied iteratively to remove the granularity
sufficiently for the next step. Next, a relatively simple grey-level
based region-growing technique is applied. It is basically an adaptive
threshold method with a fixed threshold interval. Pixels that fall
within the interval are admitted into the region. The interval is
moved up and down the scale to admit the pels into the region with
the constraint that the previously intercepted pels remain in the
region. The third step tries to eliminate the artifacts produced by the
region-growing algorithm, such as open contours and contours that are
two pels wide, by hevristic rules.

After segmentation, some heuristics are used to further decrease
the number of regions by eliminating small regions and merging
weakly contrasted regions with adjacent regions. The edge pels found
in the segmentation step are grouped into contours and each contour
can be coded as a piece-wise approximation using line segments, or
circle segments, or without any approximation. The texture in each
region can be assumed to be relatively smooth with no discontinuities
so that two-dimensional polynomial function is fit over the region. It
has been reported that the rirst- or second-order polynomial is
adequate if the granularity removed is added back in the form of

14

random noise. The variance of the noise is controlled by the mean-
square error between the original and the reconstructed image
without the noise.

Although a very high compression ratio is reported for this
coding scheme, on the order of 50 to 1, the reconstructed image
quality is quite poor. Even with the random noise, it still has the
"painted by the number" look and has many of the important low-
contrast edges missing. Also some of the seemingly smooth edges are
distorted and in general poorly reproduced. It seems that most of the
problems can be rectified in various ways. The segmentation
algorithm should produce contours that line up better along the
perceptual edges in the image. Incorporation of the gradient
information should help. The contours along high-contrast edges
should be reproduced more faithfully, whereas that of low contrast
may be coded with less fidelity. The junction points where three or
more contours converge should also be reproduced well since they
correspond to the corner points of adjacent regions. The fidelity of the
texture reproduction needs to be improved by increasing the
polynomial order in large regions or perhaps by resorting to different
coding methods such as transform coding or predictive coding. The
micro-texture added in the form of random noise can be better
characterized by including directionality of the variance and higher-
order statistics.

15

2.3 Contour-Based Motion Estimation

The motion estimation can be broadly classified as intensity-
based and token-matching schemes [8]. Psychovisual evidence
supports that both schemes may be present in human vision. The
short-range motion based on intensity takes place early on in the
visual chain and the long-range motion based on matching occur at
higher levels in the brain. The contour-based scheme can be classified
as a token-matching scheme where part or whole of the contour is
used as a token.

The Hough transform was originally developed to detect the
presence or absence of a straight line parameterized by y=ax+b. The
transform maps a line in the image onto a poirt in the parameter
space. A clustering in the parameter space indicates a presence of a
line. Later the Hough transform was generalized to detect curves that
can be described by analytic functions. Darmon [9] has shown a way
to linearize the equations of the contour and recursively estimate the
parameters when the a priori estimate is available. The estimate is
available when processing a sequence of images except at the
beginning, where the initialization is performed either manually or by
applying the Hough method itself on the first image. This technique
seems to be limited in its use to simple scenes with a handful of
contours and is not very attractive for our purpose.

Davis has proposed a contour-based technique where the motion
is estimated at the corner points of the contour, then propagated along
the rest of the contour [10]. Based on the observation that the motion
can be computed unambiguously at corners from measurements made
only at or near the corner points, two approaches are taken. A
structural approach measures the location, corner shape (angle of two
line segments that form the corner), and corner contrast. A least-
squares approach that resembles a gradient method is applied around
the corner. Rotation as well as rigid translation can be accommodated
this way. The velocity obtained at the corner is then propagated as
the normal component and the tangential component. An error occurs

16

if a propagation from one corner does not agree with a propagation
from another corner at the midpoint between two corners. This error
has to be redistributed to avoid the discontinuity.

A more fundamental and theoretical analysis of motion along
contours was developed by A.I researchers for applications in
computer vision [11,12]. A local measurement of motion can only
compute one component of the velocity, and in case of a contour only
the component normal to the contour can be directly computed. An
integration of local measurements along the contour is necessary to
compute the full velocity field. @ However, the integration can be
ambiguous, as pointed out by Hildreth. Based on human perception,
which prefers the least variation in velocity, a smoothness constraint is
imposed. It is found that a mathematically unique velocity can be
found by minimizing the variation of the velocity function along the
contour in the form of a functional [11].

V() »
fl 3 I“ds

V(s) is the velocity vector along the contour parameterized by the arc
length s. Yuille [13] has shown mathematically that a token-matching
scheme that matches tangent vectors along the contour gives the
equivalent result that could be gotten by imposing the smoothness
constraint to the above equation.

17

2.4 Texture

Once we have a set of contours representing the boundaries of
segmented regions, we need to describe the texture in each region so
that the original image can be reconstructed. A well segmented region
should exhibit a homogeneous texture that can be efficiently
represented by a small number of parameters. A good texture model
is essential in order to describe the region compactly for coding
purposes. Unfortunately, there are relatively few texture models that
are aimed directly at coding segmented regions; most research efforts
are oriented toward a pattern recognition problem or a synthesis
problem for computer graphics.

Most coding-oriented approaches so far have adopted very
simplistic methods: Kocher [17] has assigned a single gray level value
as the average brightness of the region. Kunt [7] refined it by fitting a
two-dimensional polynomial function of a small order (0 to 2). A
Gaussian random noise was added as a "microtexture" to minimize the
cartoon-like look. Lemay [57] coded only those pixels along the
contour and ignored the variation inside the region. Schreiber [5]
suggested the texture be modeled by a low-pass random noise with
vertical and horizontal bandwidths plus power. Anderson [58] coded
texture by Fourier spectrum magnitude thresholded and quantized,
and added random phase to obtain a compression ratio of over 10.
Margos [59] has applied a linear predictive analysis on arbitrarily
shaped regions, but their goal was texture discrimination based on LPC
distance measures. For our purposes, a more refined model needs to
be developed in order to produce a natural-looking picture while
maintaining a good coding efficiency.

A precise definition of texture is quite difficult and often
ambiguous since the notiocn of texture is largely subjective. To most
people, texture means a repetitive pattern of some sort, not
necessarily regularly spaced. This description may apply well for a
picture of brick wall or wire braid or closely woven fabric where the
texture primitives that make up the texture are relatively easy to

18

identify. However, other materials such as grass, sand, or concrete
wall have no discernible pattern and the texture primitive is less
obvious. The former fits into the structural model in which the
placement of well-defined primitives is governed by a generation rule.
The latter, on the other hand, fits into the statistical model in which
the distribution and relation of gray levels are described instead,
because of the lack of apparent texture primitives.

It may be tempting to assume that the structural model is
suitable for generating macrotextures and the statistical model is
adequate for microtextures. In fact, this assumption is true in many
cases and the division into two models has been widely accepted. For
example, Zucker [60] describe a structural model that views the real
texture as a distorted version of the ideal texture. The ideal texture is
represented on a regular tesselation of the plane and this tesselation
can be distorted to approximate the real texture. However, the
distortion process may involve random parameters. An example of a
statistical model can be found in [61] which explores the Markov
random field model. Their model assumes a two-dimensional Markov
process with directional clustering property (for extension of Markov
model to color texture, see [62].) However, this division into two
models cannot be too rigid since a statistical model can describe
pattern-like textures and vice versa. Haralick, for example, discusses
hybrid approaches that apply statistical techniques to the structural
primitives, along with an excellent survey of both models in [63]. For
a typical discussion on texture representation oriented toward
machine vision, see [64].

So far, current understanding of texture is not adequate for our
needs for the following reason: First, the appropriate texture model
we need to adopt is strongly dependent upon the segmentation
algorithm. We have to know whether the segmented region will
contain macrotextures or only microtextures. Some segmentation
methods even use texture models themselves [65]. It is anticipated
that gradient-based segmentation, which is one of the strong
candidates for the type of coding we envision, will produce only

19

microtextured regions since the macrotextured area will be further
segmented into smaller regions. However, it is possible to identify a
group of similarly shaped small regions and aggregate them into a
macrotextured region. In that case the small region can serve as the
texture primitive for a structural model. It is interesting to consider a
generalization of a structural model, in which the whole image is
viewed as a textured region. Then the image can be hierarchically
represented in a tree structure where each branch corresponds to a
textured region which may be recursively segmented further to form a
subtree. The leaves of the tree will be the primitives of a structural
model.

The second difficulty stems from the fact we are trying tc code
sequences of images. Suppose we have identified two (or more)
corresponding regions from two (or more) successive frames of an
image sequenc:. If we adopt a statistical texture model, the variation
of the texture over time within the region would be very noticeable,
even though each frame by itself were quite acceptable subjectively.
If we adopt a structural model, this randomness may disappear, but
many microtextured regions cannot be efficiently coded because the
size of the texture primitives will be on the order of a few pixels. The
dilemma is that we want to reconstruct the texture on a point-by-
point basis to some extent even for microtextures when coding image
sequences, in order to avoid producing temporal noise. That is, we
need a three-dimensional model for texture that incorporates the time
axis. Although there does not seem to be any work on 3-D texture
models, it is possible to extend a 2-D model, either statistical or
structural. In light of the cylinder model for the moving region,
however, it may simplify the matter by discarding the texture model
and adopting a straightforward coding, perhaps a scheme using two-
channel coding spatially and predictive coding temporally within the
region. It is clear, at least, that the coding efficiency will depend very
much on how the texture is handled; therefore a lot of attention must
be given to texture coding.

20

2.5 Segmentation

The segmentation problem arises in a wide variety of
applications ranging from locating mitochondria of a liver cell from
electron micrographs [31] to identifying machine parts from industrial
images [27]. It is an essential first step in most machine vision
systems because higher level information about objects such as
structure and orientation can be inferred from the segmented image.
The importance of segmentation for processing images is very much
apparcnt in the amount of literature available on the subject,
especially in the field of pattern recognition and scene analysis.
Unfortunately the large amount of research effort in the literature also
indicates that segmentation is an inherently difficuit problem that is
far from solved. The main problem seems to be the noise, either
introduced during the imaging process or something inherent in the
image such as surface texture. Although one can find an algorithm
that works on a particular class of images taken in a highly controlled
environment, there is no one algorithm that works well on natural
images such as outdoor scenes. Because of the difficulty, widely
different approaches have been suggestcd, not to mention minor
variations and improvements on each approach.

The simplest idea for segmentation is intensity thresholding,
which requires no neighborhood interaction in decision making. It
performs poorly in most cases, except perhaps for line art and
typographical characters, which are essentially binary images.
However, thresholding forms a basis for a number of approaches, such
as histogram-based and clustering techniques. A histogram-based
approach [14] recursively splits the image into regions based on the
histogram of each region. Usually two or more peaks in the intensity
histogram are identified at each iteration. The value near the valley
between the peaks is then used to split the current region into two (or
more) by thresholding. Some form of noise elimination is necessary to
remove small holes in the region. Chromaticity can be used to
augment the intensity for selecting the threshold and the resulting
segmentation can be quite convincing even on natural scenes [15].

21

The clustering technique is closely related to the histogram
methods where the threshold is selected in the feature space. The
feature space is formed from various measurements from the intensity
such as brightness and texture. Coleman and Andrews [16] have used
a dozen measurements based on the brightness as well as the
magnitude and phase of the Sobel edge operator, each of them
computed using different window sizes. A mode filter similar to a
median filter was applied to each measure to avoid producing small
fragments. Here the Sobel operator output represents some measure
of texture, so other edge operators could have been used instead. The
results were then rotated to decorrelate the features and a feature
reduction is performed to retain several features for good clustering.
Then the actual segmentation process becomes just a multi-
dimensional extension of the histogram approach.

The relaxation methods and region-growing methods are also
closely related. The region-growing method finds a small group of
pixels with similar intensity and then merges adjacent groups to form
regions [17]. Therefore a "hard decision” is made at each merging step.
In a relaxation method, on the other hand, each pixel is explicitly
assigned a probability of belonging to a particular class. Then this
probability is iteratively adjusted on the basis of the adjacent pixels.
It is only after the final iteration that each pixel is classified as
belonging to a region of the maximum probability. Eklundh [18] has
applied the relaxation method to color images. Hanson [19], on the
other hand, performed relaxation based on the probabilities mapped
from the feature clusters. The idea was to improve the spatial
clustering of the clustering algorithm. Rutkowski [20] applied
relaxation techniques to a slightly different problem where
probabilities are assigned between boundary segments represented by
a directed graph. In general, region growing and relaxation methods
do a good job segmenting gross shapes, but at the expense of obscuring
fine detail.

The segmentation approach described so far either progressively
splits large regions into small ones or progressively merges regions

22

based on the similarity of the pixels in the region. Another popular
approach is based on edge detection, where the boundary of the region
is extracted as edge points. First a local edge operator such as Sobel,
Roberts, Kirsh, Prewitt, etc., is applied to find edge points and assign
edge strengths. For a survey on edge detection see [21] and [22].
More discussion on edge detection can be found in [23,24]. Once the
edge points are found they are linked according to some heuristics to
form a closed outline or boundary of the region. One of the simple
ways to group edge points into edges is to threshold the edge strength
and apply a thinring operation [25] to reduce the edge thickness to a
single pixel. However the threshold method reveals a problem
common to most edge based approaches: depending on the threshold
value, gaps appear between edge segments which must be bridged in
order to get a closed region. To solve this problem, Basseville [26] has
presented a recursive edge-following scheme based on a Kalman filter
using a noisy straight line as the model. Perkins [27] proposed an
expansion-contraction technique where edge points are first expanded
to bridge the gaps and then contracted back using a connectivity
analysis similar to the thinning operation. Prager [28], on the other
hand, applied a relaxation scheme to edge points to improve the edge
grouping.

Other segmentation schemes include a texture-based approach
used by Derbin [29] where the texture was modeled by a Gibbs
distribution and a dynamic programming approach was taken for
segmentation. Pal [30] has introduce a notion of fuzzy sets to enhance
the contrast between regions before edge detection. Gritton [31]
describes a bead chain algorithm for locating a boundary from a
known initial approximation. For general discussion on image models
for segmentation, see [32,33].

2.5.1 Segmentation Experiments

One important property a segmentation scheme must have in
order to be useful in our application is that the segment boundary
should coincide with perceptual edges as much as possible. This
requirement favors the edge-based approach. Another requirement is

23

the accuracy of the segmentation in terms of the edge location. For a
good reconstruction from contours, the edge location needs sub-pixel
accuracy. This implies some form of interpolation when extracting
edge points. Unfortunately, the bulk of segmentation schemes were
developed as a preprocessing step for a scene analysis and
understanding system. Consequently, the edge locations are quantized
to a pixel spacing, and edge pixels are often used to mark the
boundary between regions, making it ambiguous to decide to which
region the edge pixels belong.

The following two experiments are aimed at satisfying the above
two requirements. The first is a simple-minded thresholding
technique in which a bilinear interpolation is performed for sub-pixel
accuracy. The contours generated this way are called iso-luminance
contours because the luminance value is constant along the contour. A
careful selection of the threshold value can produce an excellent
segmentation for a simple image as in Fig. 2.1, but results in a
somewhat ambiguous segmentation on more natural image as in Fig.
2.2. However the main advantage of this scheme is that it always
produces closed contours (except at the image boundary) and the
computation is very simple. Perhaps a histogram approach described
above can be employed to select the threshold adaptively. Fig. 2.3
shows the result of using four threshold values. A suitable histogram
method may be able to eliminate redundant contours and leave oniy
the essential ones.

The second experiment is based on edge detection after a curve
fitting over the image. A two-dimensional cubic B-spline is fit over a
4-by-4 window so that gradients can be computed from the spline
coefficients. The cubic B-spline was chosen because it has continuous
first and second derivatives and also because it is a good interpolation
function, comparable to a Gaussian function. Fig. 2.4 compares a
gradient magnitude picture produced this way against a conventional
edge operator. The curve-fitting approach can detect edges along a
very thin line whereas the conventional edge dectector obscures the
line. Once we have the image intemsity function in analytic form, a

24

two-dimensional polynomial in this case, we can get accurate gradient
by computing the directional derivatives. Then we can trace out the
contour of maximum gradient or gradient peaks. Conceptually, the
gradient peak corresponds to the zero-crossing contours of the second
derivative so that we should be able to get a piecewise polynomial
description of the gradient contour by solving for the roots. However,
solving for roots in this case is not trivial as it involves solving
polynomials of two variables. In practice, we can compute gradients
at several places around a pixel and link these points according to the
magnitude and angle of the gradient.

One simple method is to link two points whose dot product of the
gradients is maximized. This insures edge points of similar orientation
get linked even when the gradient magnitude is low. The contour
tracing stops when the dot product becomes smaller than a threshold,
the contour runs into another contour thereby producing a junction, or
the contour closes itself. Fig. 2.5 shows a preliminary result of the
gradient contours produced in this manner. Although most of the
noticeable edges were detected, many contours failed to link properly
and were left open. A close examination indicates that saddle points
are responsible for the majority of these cases. A saddle point is
where more than two contours can meet and produce a junction point.
Fig. 2.6 shows two saddle points where the algorithm may fail. To
make this algorithm useful we need to find a way to treat these saddle
points separately. If open contours still remain, then other contour
following or gap filling procedure will be needed. In addition, some of
the small noisy contours must be removed by examining the Iength
and edge strength.

25

Figure 2.1(a)
Text image, 64 by 64

ed by
[l

<L M\ =

Figure 2.1(b)
Text segmented by thresholding

26

Figure 2.2(a)
Camera man (cman) image, 128 by 128

Figure 2.2(b)
Cman segmented by thresholding

27

Figure 2.3
Multiple thresholds of cman.

Figure 2.4(a)
Sobel magnitude of cman

28

Figure 2.4(b)
Gradient computed by sum of the differences
at four nearest neighbor pixels

Figure Z.4(c)
Gradient magnitude from bi-cubic B spline fitting

29

Figure 2.5
Gradient contours from figure 2.4(c).

[I ;’;; 3
/{[I’) (, I !/ oy
i i
I!!”II’”’//;"".\mH”!lﬁ””’l”’!]l'l'l/l,", .
Tty XN i g M "
il i / Y
2 I// ;,,,, N7 //, // Il [,l//' o
/,lu,lm, “; X “\\ ! I!!III I/I’l, O
Ay /4/1"'.'\’ 4, '///I;’ /Il /I/ l"
/

‘\ “\\\ \\\ '
\ \ \\\\\ v \‘0.\ “‘-'l ’I,ll’l 1"r
'\\ (\\“' "\\\’ ‘ I

al,ﬂ

\\
'Ir/ y
‘\\ Al

Figure 2.6(a)
Perspective view of two saddle points in gradient

30

magnitude.

N

Figure 2.6(b) _
Perspective view of the thresholded gradient magnitude
(from figure 2.6(a)) to show the two junction points.

31

2.6 Contour Coding

After the image has been segmented into regions, we need an
efficient way to represent the resulting contour and texture.
Representing the contour is of primary concern since most of the shape
information is embedded in the contour. Even if we can obtain the
contour to an arbitrary precision, it is desirable to approximate the
contour by a finite number of samples for storage, transmission, or
manipulation. However, a representation scheme efficient for storage
and transmission may not necessarily be the most convenient form for
manipulation. Investigation of different contour representations and
manipulation techniques is thus an important research topic.

A piece-wise approximation is by far the most popular approach
taken in the literature for representing an arbitrarily shaped contour.
In encoding typographical characters, the outline of a character is
usually divided into a series of curve segments, where each segment is
actually a part of a mathematical function such as a circle or a spiral.
Fah [34] has demonstrated a character-coding technique that combines
both circle segments and line segments. Although curve-fitting
methods work well for smooth and predictable outlines of printing
characters, they are not so suitable for arbitrary contours such as a
shoreline in a map, outline of a chromosome, etc., because the lengths
of the curve segments tend to be very short.

For an arbitrary contour, a polygonal approximation is the
accepted canonical form in image processing and computer graphics. A
polygonal approximation is equivalent to a piecewise linear
approximation using straight lines. The goal is to represent the
contour using the minimum number of vertices (line segments) while
satisfying a given fit criterion. The fit criterion can be maximum
absolute deviation, mean-square error, or absolute area between the
contour and the polygonal approximation, etc. For example, Ramer
[35] presented a computationally efficient iterative algorithm for
finding the polygonal approximation. It is based on iteratively
splitting the curve segments at the point of maximum deviation.

32

Recently Dunham [36] proposed an optimum iterative procedure using
the uniform 1, norm and made a performance comparison against
other algorithms, including Ramer's. His conclusion suggests that all
algorithms perform similarly well for a small error criterion. Although
his optimum approach always produces the solution with the least
number of vertices, the computation time increases for a large error
criterion.

Although the polygonal approximation quantizes the contour into
a finite number of samples (vertices), it does not suggest a way to
quantize the sample coordinates. Another successful and widely used
method for coding contours is the chain code, originally developed by
Freeman [37]. The chain code can be thought of as a two-dimensional
extension of the delta modulation technique, in which the position of
the next vertex from the current vertex is encoded differentially as up,
down, left, and right. The unit of movement is one grid spacing. In
addition to these four directions, four diagonal directions can be added
to improve the performance. Different chain codes are obtained
depending on how the grid points are chosen: Square quantization
defines a non-overlapping square area centered around the grid point
and assigns the grid point to the chain if the contour goes through the
square; Circular quantization defines a circle instead of a square
whose diameter is same as the grid spacing; Grid-intersect
quantization picks the nearest grid point from the point where the
contour intersects the grid line. The square quantization does not use
diagonal directions and therefore requires only 2 bits to encode, as
opposed to 3 bits for the other two. Koplowitz [38] has generalized
these chain codes by the p-Minkowski metric quantization for which
the above three methods become special cases.

Many simple manipulations and extraction of contour
parameters are possible with the chain code and are illustrated in [39]
and [40]. A procedure for scaling of a chain coded contour without
resampling was reported in [41]. The quantization error analysis and
coding efficiency of various chain codes can be found in [42] and [43].

33

A practical curve generation technique is presented in [44]. Other
contour representation methods can be found in [45] and [46].

34

2.7 Shape Analysis

It is desirable to manipulate the contours in various ways while
preserving their general shape. Rotation, translation, and scaling are
shape-preserving transformations useful for shape analysis. For
example, a contour extracted from the image can be rotated,
translated, and scaled in size to match stored library contours for
shape classification or object recognition. However, determining these
three transformation parameters from a polygonal or chain code
representation is not trivial. Therefore it is advantageous tc have a
representation that retains only the shape information so that the
similarity measure between two contours can be made easily.

There are several different techniques for transforming a
contour such that the resulting representation is invariant to rotation,
translation, and scaling. Zahn [48] used the Fourier descriptor of
Cosgriff [49] for the analysis and synthesis of closed contours. He used
the coefficients of the Fourier series expansion of the angle versus arc-
length function so that all redundant parameters are removed.
Granlund on the other hand computed the Fourier transform of the
complex representation of the contour in which the real axis is the x-
coordinate and the imaginary axis is the y-coordinate [50]. Then the
properties of the Fourier transform were used to factor out the
rotation, translation, and scale parameters. Dubois [51] has proposed
an autoregressive model from & representation that divides the
contour into a number of radius vectors equally spaced in angle. The
approximation is then given by the sequence of radii from the centroid
to the boundary. A scale-space approach was taken by Mokhtarian
[S2] in which the zeros of curvature of the contour is plotted at
varying levels of detail. A Gaussian kernel of varying ¢ was used to
control the scale of the detail. This too produces a representation
which is independent of the three parameters. For other scale-space
approaches see [53].

The above techniques were mostly developed for pattern
recognition problems where a contour is compared against a known

35

shape for classification. Granlund applied the Fourier descriptor for
recognizing hand-printed characters. Mokhtarian used the scale-space
for registering Landsat satellite images to a known map. Richard [54]
and Wallace [55] described the use of the Fourier descriptor for
aircraft identification. In this thesis, however, we are interested in
utilizing these techniques for matching two unknown contours for the
purpose of motion estimation. The discussion in the following chapter
on contour transform is based on independent research but it was
later realized that similar work was done by others. It closely
resembles the developments by Granlund [50], Richard [54], Persoon
[56], and later by Wallace [55]. The research is then further extended
to develop a robust contour motion interpolation technique. In
Chapter 4, we will develop new techniques for matching open contours
which cannot be treated otherwise using the transform techniques.

36

CHAPTER 3. CLOSED CONTOURS

In this chapter we assume that the contour is closed. The
contour transform we are about to describe is based on the fact that
the contour can be represented by a periodic signal, which requires
the contour to be closed. The transform technique is shown to provide
very convenient properties for separating the shape parameters from
the orientation information, i.e. translation, rotation, and magnification.
These properties lead to the development of efficient matching and
interpolation techniques.

37

3.1 Contour in Complex Plane

Pick an arbitrary point on the contour as the origin and use the
parameterization s as the distance from the origin along the contour as
the contour is traversed counter-clockwise. Then the set {x(s),y(s)}
completely describes the contour, where x(s) is the x coordinate and y(s)
is the y coordinate of a contour point at s. Now let ¢(s) be a complex
signal that represents the contour such that the real part is x(s) and the
imaginary part is y(s).

c(s) = x(s) + jy(s) (3.1a)

Alternatively, c(s) can be put into a polar form.

c(s)=r(s) &% (3.1b)
x4 x(s) = Re[c(s)]
4
y
5=0
>
s
W f ¥(s) = Im[c(s)] s o)
0(s) —
X

>
S
Figure 3.1

Complex representation of contour.

This represents the contour by a one-dimensional complex signal. An
important observation we make here is that if the contour is closed,
c(s) is truly a periodic signal and can be subjected to a Fourier analysis.
If the contour is continuous in s, from the nature of periodic signals,
we get a Fourier series. If the contour is discrete, we can use Discrete
Fourier Transform (DFT).

38

Suppose a contour is given by a polygon whose N vertices are
equally spaced in arc length. Then the contour can be represented by
a complex periodic signal as above with a period of N.

c(n) = x(n) + jy(n) (3.2a)

c(n +iN)=c(n) i=..,-2,-1,0,1,2,... (3.2b)
And in polar form,

c(n)=r(n) &% (3.2¢)
3.1.1 Circular Transform

We now define the circular transform as the Fourier transform of
the contour signal c(n). The resulting transform pairs are no different
from the ordinary DFT pairs:

N-1 2

Cl="Y clr) e T (3.3a)
n=0
1 N1 2w

cln)= -N-Z(;C(k) S (3.3b)

The transform coefficients C(k) can be represented more naturally in
polar coordinates:

Ck) = m(k) &*¥ (3.42)
where

mk)=1Ck)| (3.4b)

(k) = arg[C k)] -n<pk)<n (3.4¢)

From this we can see that the contour is represented by a linear
combination of circles of different radius, frequency, and phase. At
any frequency k, m(k) is the radius and ¢(k) is the phase (starting point)
of a circle that spins k revolutions per period (the period is N).
Therefore at zero frequency (at DC), m(0) and ¢(k) are the polar

39

coordinate of the center of the contour (i.e. the centroid). At k=1, the
contour traverses a circle counter-clockwise exactly once over a
period. At k=2, it traverses at twice the speed, making 2 circles over a
period, and so on. The circles traverse clockwise for negative
frequencies. When all are combined, they can traverse an arbitrarily
shaped contour. Hence the basis functions of this transform are circles
instead of sinusoids. For this reason this transform was originally
named circular transform. However, this is identical to the Fourier
descriptor used by Granlund. Since there are other kinds of Fourier
descriptors, we shall refer to this specific procedure as either circular
transform or, when appropriate, contour transform.

3.1.2 Center of Contour

As indicated above, we define the center of a contour as the
average of the contour points. This can be thought of as the center of
gravity of the contour when all the contour points are given identical
weights. The center of contour is

Ce=x.+Jjy; (3.5a)
where
= N-1
x, = N-zo(y(n) = -I%I—Z;Re[c(n)]
LY 1
= -IVR{ ;Oc(n)} = ﬁRe[C(O)] (3.5b)
and,
1 1
Y, = -ﬁzoy(n) = SIm{CO) (3.5¢)
or simply
1
C.=7C0O) (3.5d)

40

Obviously, the DC term of the transform corresponds to the center of
the contour -- i.e. displacement from the origin.

3.1.3 Translation
Let d be the displacement vector (translation by x, and y,).
d=x3+jy, (3.6)
Then the translated contour is
c’m)=cn)+d (3.7a)

whose transform is

N-1
2
C'®)= Y (ctw)+d) 7T
n=0
N1 27 N oo
= ZC(n) eI 4 dZe""}Vk"
n=0 n=0
=C(k) + dNS(k) - (3.7b)

Therefore the translation only affects the DC term at k=0. The
following properties assume that the contour is already translated to
the origin for simplicity -- i.e. C(0)=0.

3.1.4 Magnification (zooming)

With C(0)=0, assume we would like to scale the contour by a
magnification factor of f. Then the scaled contour is

c'(n)=fc(n) (3.8a)
whose transform is
C')=fClk) =f m(k) &*Y = m'(k) &4V (3.8%)

so that

41

m'(k) = f m(k) (3.8¢)
¢'(k) = o(k) (3.8d)

So, magnification involves scaling the magnitude of the transform.
3.1.5 Rotation

Again with C(0)=0, let us rotate the contour by an angle 6,
counter-clockwise. This is easily accomplished in polar coordinate.

¢'(n) =r'(n) &7 = r(n) SO +6) (3.9a)
N-1
. 27
C'tk)= Zr(n) O +6) guigrkn
n=0
Nl . 2n .
=[Zr(n) ele(n) e-—kaﬂ } e]Br
n=0
= Clk) &% = mk) JOP+9 (3.9b)
so that
m'(k)=m(k) (3.9¢)
¢'k) = (k) + 6, (3.9d)

Therefore the rotation only adds a constant phase to the phase of the
transform.

3.1.6 Circular Shift

Circularly shifting the contour samples in one direction or
another does not change the shape or orientation of the contour. It
only redefines the origin of the parameterization. This is significant
when the contouring algorithm cannot supply a consistent initial point,
which is usually the case. As expected, the shift operation adds a
linear phase to the transform. Assume a shift by / points:

c'(n) =cn-1) (3.10a)
it 2|

Cl)= Y cl-l) eI N*" (3.10b)
n=0

42

Let n'=n-1. Then,

N-1 2,
C-(k) = Zc(n:) e-—j-lv-k(n +1)

n=0

2Zu (o0 - 2,
=Ck)e?’ N =mk) e N (3.10¢c)
SO,

m'(k) = m(k) (3.10d)
¥ = 9 - 2k (3.10e)

The significance of the above properties that relate to the
geometric transformation is that translation, zoom and rotation can be
achieved independently of one another in the transform domain. A
new contour c’(n) that has been translated by d =x, + jy,, scaled by f,
rotated by 6,, and circularly shifted by / points can be expressed in the

transform domain as:

(o 27
C'(k) =fe’(9"'7v"r"‘)C(k) + dNS(k) (3.11)

43

3.2 Motion from Contours -- Contour Matching

Using the circular transform properties developed above, we can
easily extract the parameters of the geometric transformation
necessary to orient a contour to best match another contour. A
suitable similarity measure can be used to compare two contours to
establish a correspondence. Once a match is made, we can readily use
the resulting motion information for a temporal interpolation.

3.2.1 Mean Square Error between Contours

Since the circular transform is a unique decomposition of the
contour signal into an orthonormal basis (the basis functions being
circles in the complex plane), the Euclidean distance in transform space
can be used as the similarity measure. We define the mean square
error between the two contours i and j as follows:

N-1
mse;; = %z 1C;(k) - C;lke) (3.12)
k=1

where N is the transform length, and C k) and Z‘j(k) are the
normalized transform coefficients of C k) and Cj(k) such that the two
contours are of same scale and orientation. The normalization will be
discussed in detail in the following section.

Notice that the DC term at k=0 is excluded to avoid the
transiational component. Having excluded the translational component
from the MSE measurement, we are left with the problem of factoring
out the magnification and rotational components by normalizing the
magnitude and phase of the circular transform. Both components are
relative parameters between similarly shaped contours: one can only
speak of the magnification factor and the rotation angle of a contour
relative to another contour. Thus, if C; is a contour in frame 1 and we
want to find one contour among many in frame 2 that best matches C,,
we would let E,-(k) = Cyk) and transform each contour in frame 2 (and
substitute it in for Ej(k) to minimize Eq. (3.12). It is quite possible to
solve for the magnification and rotation values for each contour pair

44

that minimize the MSE between two contours provided N is greater
than 2. However this would be a computationally very expensive
approach if the solution has to be found for every permutation pairs of
contours in frame 1 and 2. To solve this problem we propose a simpler
scheme that normalizes the contours with respect to a universal
reference such that a reasonable approximation to the MSE is obtained
without much computation.

3.2.2 Normalization of Magnitude and Phase

In Eq. (3.12) we were able to factor out the translation term by
effectively translating each contour to the origin, thus using the origin
as the reference. Similarly we can factor out the magnification and
rotation terms if we have a consistent reference. To do this we turn to
the magnification and rotation properties of the circular transform
(magnification by f and rotation by 6,):

m'(k) = f m(k) (3.13a)
¢'(k)= ¢(k) + 6, (3.13b)

Unfortunately there is an additional parameter 6, (slope of the linear
phase due to circular shift of the contour points) to deal with when the
origin of the contour is unknown. This is another relative parameter.
8, 1is undesirable since it does not influence the shape or the
orientation of the contour. Nevertheless, it is essential to completely
describe the contour. When combined with the rotation term, we get

m' () = f m(k) 1SS (3.14a)

¢'k)=opk)+ 6, + 6.k (3.14b)
or

C'tk)=m'(k) &*¥ = £ SO+ 8P) (3.14c)

where 6, = -2mI/N when the shift is by / sample points (see the circular
shift property). Now we define the normalized magnitude and phase
as follows:

45

m(k) N-1

r;z(k)=7 1<Iks = (3.15a)

ok) = (k) - 8,— O,k (3.15b)
where

f=m() (3.15¢)

b,=¢—@-'—*2i(52 (3.15d)

bs=9g)—’# (3.15¢)

The rationale behind this normalization is that most of the
energy of the contour is concentrated in the first harmonic at k = *1,
especially at & = 1. Here, m(k=1)/N is the radius of the first-order circle
traversing ccounter-clockwise and m(k=-1)/N is the radius of the first-
order circle traversing clockwise. When combined, they trace out an
ellipse whose major chord length is 2{m(1) + m(-1)}/N and whose minor
chord length is 2{m(1) - m(-1)}/N. We have assumed here m(1) > m(-1) so
that the traverse direction of the contour is counter-clockwise. If m(1I)
< m(-1), the contour traverses clockwise and must be reversed in
direction by setting m(k) =m(-k). (m(-1) can be zero or very small, in
which case higher-order terms must be examined for consistent
normalization. Wallace gives a more refined discussion of this issue in
[55].) The major axis inclination of this ellipse is 8, from the x-axis and
0, is the polar angle to the starting point (n=0) from the major axis (see
Figure 3.2). This first-order ellipse can be described by

. 2n . 2
c;(n)= %{m(]) o0+ 35n) | m(-1) ¢ (oc-2- 7"")}
0<n<N-1 (4.16)

Notice that m(1)/N can be thought of as the average radius of the
contour. All other circles for k= 1 simply deform the first-order circle
in and out radially but never change the average radius. Thus Eq.
(3.15a) normalizes the contour to unit average radius. (The real radius
of the first-order circle is m(1)/N. However, using f=m(I) instead of f=

46

m(1)/N actually factors out N, making the matching independent of the
transform size). It can be seen from Figure 3.2 that Eq. (3.15b) orients
this first-order ellipse such that its major axis coincides with the x-
axis. Also the contour starts on the x-axis when n=0 since ¢(1)= ¢(-1) =
0. All the higher-order circles (or ellipses) are reoriented relative to
this first-order ellipse in such a manner that the shape of the contour
is preserved.

(>

Figure 3.2
First-order ellipse c¢;(n)

One problem with this normalization scheme is that there is a
180-degree ambiguity in rotation. This arises because an ellipse is
two-fold symmetric under rotation. More work is needed to
determine how to incorporate the higher-order terms (k>1) to resolve
this ambiguity. However, because the energy in the higher frequency
coefficients decreases rapidly, incorporating higher-order terms does
not always resolve the ambiguity. Instead, we take a simple-minded

47

approach where the two-fold ambiguity is resolved by making two
MSE measurements and then picking the orientation that corresponds
to the smaller of the two. This has proven to work reliably.

48

3.3 Contour Interpolation

It is easier to divide the problem of interpolation into two and
discuss each one separately: spatial interpolation within a frame and
temporal interpolation between frames. Spatial interpolation increases

the sampling density of the contour. Since decimation, which
decreases the density, is closely related, we will discuss both spatial
interpolation and decimation. Ordinary temporal interpolation of

continuous-tone images guided by motion information can be
troublesome if the magnification and rotation information is included
in addition to the translation. However, in the case of processing
contours, it becomes relatively easy if we use the circuiar-transform
properties.

3.3.1 Spatial Interpolation/Decimation of Contours

Interpolation and decimation of 1-D signals can be easily carried
out, either in the signal space or in the frequency domain. Suppose we
have an N-point contour and would like tc¢ interpolate/deci-aate to get
an L-point contour. When L>N (interpolation), we will not lose any
information, but when L<N (decimation), we will need to band-limit
the signal in order to avoid aliasing. In the time-domain (signal-space)
approach, an appropriate interpolation/decimation filter is convolved
with the signal, and the resulting signal is suitably resampled to L
points. In the frequency-domain approach, the computation is simpler
since the convolution is replaced by windowing. The spectrum is first
multiplied by a periodic window function (transform of the
interpolation/decimation filter) and the resulting frequency replicas
are displaced relative to each other to have a period of L (see Figure
3.3).

49

4 CROW(K)

C'k)
Y YIY Y — /) /h [
— + > 4 —
L -NR2 7] L X
®

L]
N N2 N2 N k

¢:))

[

N /]

M

! L2

© @
Figure 3.3
(a) and (b) : Interpolation process in frequency
(¢) and (d) : Decimation process in frequency

Here we have chosen to use the rectangular window which
corresponds to the ideal low-pass filter. Because the closed contour
signal is truly periodic, the ILPF is both feasible to implement and
desirable; it produces no undesirable ringing and has the maximum
bandwidth possible. Besides, almost no real computation is required to
implement this scheme (multiplications by 0 or 1). The sequence of
plots in Figure 3.4 shows an example where a contour is gradually
decimated and interpolated back in the circular-transform domain.
Since the interpolation was performed from the decimated contour, the
interpolated contours are somewhat band-limited but still retain the
general shape. In fact, it can be said that the contour band-limited in
this manner is usually the best approximation (in the MSE sense as
given in Eq. (3.12)) to the original contour, since the magnitude of the
Fourier coefficients usually decreases rapidly at a rate proportional to
1/k2 [54].

50

addd
a dd

Figure 3.4
Decimated and interpolated contours processed
in the transform domain.
(a) original, L=52, (b) decimated, L=30, (c¢) decimated, L=20
(d) same as (c), L=20, (e) interpolated from (d), L=30,
(f) interpolated from (d), L=52

3.3.2 Temporal Interpolation of Contours

Once a match is established between two contours from two
successive key frames, we would like to compute the in-between
frames to increase the frame rate. Given the motion parametsrs, one
can geometrically transform the contour in frame 1 such that it
gradually changes from frame 1 to frame 2. However, if the match is
not perfect or the motion parameters contain error, by the time it gets
to frame 2 the transformed contour will not exactly coincide with the
contour in frame 2. The situation is the same if the contour in frame 2
is used instead to move backward in time. The imperfect match and
motion estimation error can be caused by noise in the picture

51

sequence, spatial and intensity quantization effects, deformation of the
contour over time, etc.

In order to interpolate the contour smoothly from frame 1 to
frame 2 even in the presence of noise and deformation, we propose to
interpolate the circular transform coefficients. A bilinear interpolation
is assumed here but higher-order interpolation using more than 2
frames is also possible. Recall that when two contours are to be
matched, the transform coefficients are normalized so that they are as
close as possible at each frequency. If the contours match exactly, the
normalized coefficients are identical at each frequency, so we only
need to add back the appropriate translation, magnification and
rotation values to go from contour 1 to contour 2, or anywhere in
between. If the two contours are not identical but have a similar
shape, the normalized transform coefficients will be similar so that we
can linearly interpolate between each pair of corresponding
coefficients and still retain the general shape.

Let C,(k) and C,(k) be the normalized transform of the two
matching contours in frame 1 and frame 2. Suppose frame 1 is at time
t=0 and frame 2 is at time =T where T is the frame period. Then the
linearly interpolated contour at time r=7 for 0<t<T has the normalized
transform C (k).

C k)= (1-0C, (k) + 7C, (k) 1<kl S ~—— (3.17)

where
& ,'(k) = r;z,(k)e’ ¢‘(k)

If f;, 6, and @,; were used to normalize the contour 1 and f,, 6,, and

6, were used to normalize the contour 2 as in Egs. (3.15), we linearly
interpolate these values also:

fo=(-0f; + 7, (3.18a)
6,.=(1-96,; + 76, (3.18b)
6= (1-7)6,; + 76,, (3.18c)

52

Because the linear-phase term does not affect the shape or the
orientation of the contour we need not use 6,,. The interpolated

contour is then

Clk)=f,&¥C (k) 1< ki< -NTI- (3.19a)
where C.(k) is given in Eq. (3.17). Of course the translational

component is handled separately so that

Ck) = (1-9C; (k) + 1C, (k) for k=0 (3.19b)

One minor detail we have not included so far concerns the spatial
interpolation/decimation necessary when the transform sizes of the
two contours are not the same. Suppcse the contour 1 is N; points long
and the contour 2 is N, points long. If we desire the interpolated
contour to be N, points long, we simply compute only N, points of C (k)
for 1<lkI<(N,-1)/2. Any coefficients missing in the computation (i.e. for
lkI>(N ,-1)/2 are set to zero. This is consistent with the

interpolation/decimation process described above.

In deciding the value of N, it seems to be safe to pick a value
between N,; and N,. Therefore we also interpolate the transform
length. The complete formula for temporal interpolation of contour is
given below.

C. k)= (l—c) C (k) + r Cz(k) for k=0 (3.20a)
C k)= f, e"z’”&,(k) for 1 < Ikl < ;— (3.20b)
where

53

Co(k) = (1-9C, (k) + 7C, (k) for 1 < Ikl < —Z (3.20c)

2
- N.- N.-
fe= (I—r)ﬁf, + TTV—:-fz (3.20d)
6,.= (1-1)6,; + 16, (3.20e)
N.=(1-79N; + ™, (3.20f)

(The factors N./N, and N./N, appearing in Eq. (3.20a) properly account
for the different transform sizes involved).

Again, this temporal interpolation process takes relatively little
computation if we make use of the intermediate results in the
matching process (e.g. normalized transform values, parameters used
for the normalization, etc).

54

3.4 Experiment

Experimental programs were set up to extract contours from a
pair of image frames 2nd perform the matching and interpolation
based on the previous discussions. Figures 3.5(a) and 3.5(b) show two
images from the IEEE test chart scanned in at two different
orientations and magnifications. Figures 3.6(a) and 3.6(b) show the
contours extracted from these two images by an iso-luminance
contouring process. Due to different density settings used at scanning
and due to a moderate subsampling (by a factor of 4), the
corresponding letters in the images are nct identical. Therefore they
represent a sequence of two successive frames undergoing translation,
magnification, rotation, and small distortion in shape. Figure 3.7 shows
the interpolated frame halfway between Figures 3.6(a) and 3.6(b).
The contours that did not match sufficiently well in the matching
process were excluded from the interpolation.

The current matching program implements a crude scoring
system that involves four parameters: MSE, displacement,
magnification factor, and rotation angle. Basically, it looks for a

contour that requires the minimum amount of transformation and has
a small MSE at the same time. (Actually, log(mse,-j + 1) was used instead

of mse;; because the MSE for a correct match was 2 or 3 orders of
magnitude lower than the MSE for an incorrect match). It declares a
no-match if any of the four parameters exceeds a certain threshold
(for example, the contours occluded at the image boundary.)

55

(b)
Figure 3.5
Two images used for matching and interpolation

56

ed bby
18)6,)&

<1 /N)

(a)

Figure 3.7
Interpolated from Figures 3.6(a) and 3.6(b)

58

CHAPTER 4. OPEN CONTOURS

A good contour-matching algorithm must provide an accurate
estimate of the translation, rotation, and magnification parameters,
given the description of two contours. Furthermore, it must provide
the location of the overlap and a measure of the degree of matching --
how similar the overlapping segments are. Ideally it should be robust
enough to tolerate a small amount of noise in the form of minor
deformation as well as small quantization/sampling error.

The transform method that was developed in Chapter 3 works
very well for closed contours, even in noisy conditions, because it
extracts the global features of the contour. The low-freQuency
coefficients define the gross shape of the contour while the higher-
frequency coefficients describe the details. The transform method is
inherently robust -because the coefficients are computed by averaging
over many data points (i.e. all samples along the contour). However,
the shortcoming of such a global feature extractor is that the feature
parameters cannot accurately describe local changes along the contour.
In other words, any local change of the contour shape can affect every
feature parameter. For example, a sharp spike-like bump on an
otherwise smooth contour can have a similar effect as an impuise
function which has energy at all frequencies, thereby perturbing all
feature parameters. This global effect of a local change makes the
transform methcd unsuitable for partial-contour matching because the
end points of a partial (open) contour act like sharp steps when the
contour is forced closed. Even if the contour can be closed without
introducing sharp corners, the section of the contour that was added to
close the open contour adds significant energy to the transform and
make the resulting parameters unreliable. Perhaps the most
devastating problem with applying a transform method to partial
contours is that the periodicity of the contour is lost when the length
of the missing section of the contour is unknown. If the length of the
added section is longer, the feature parameters shift toward the high
frequency. If it is shorter, the parameters shift toward the low
frequency. Basically, the frequency axis gets scaled as the relative

59

length of the contour changes. In this chapter, we present techniques
to match open contours using local feature parameters.

60

4.1 Previous Work

Despite these fundamental difficulties there has been some effort
to extend the transform method to handle partial contours [71 & 73].
On the other hand, Gorman et. al. [72] proposed to combine the
transform method with a dynamic programming technique. They use
a very simple segmentation method to divide the contour into a
number of segments. To obtain a partial rotational invariance, they
find two points along the contour that are farthest apart from each
other. The contour is initially split into two at these points. Further
segmentation is performed at the point farthest from the line
connecting the two end points of the segment. The procedure is
repeated recursively until the distance of the farthest point falls below
a set threshold. The resulting segments are transformed into Fourier
descriptors. The transform coefficients are then compared to form an
intersegment distance table as if taking an outer product of two
vectors. Basically, every contour segment of the first contour is
compared against every segment of the second contour, forming a
matrix of similarity measures. A dynamic programming technique is
then employed to search for the best diagonal path through the matrix
that has the minimum overall distance measure. Such a path provides
a correspondence between matching segments. This procedure is
repeated for ali known shapes, or reference templates, and the
tempiate that produces the minimum overall distance is selected as
the recognized object. When the contour is not closed, it is arbitrarily
closed by a straight line. Since each segment is essentially an open
contour in itself, the transform was taken so that the segment is
effectively closed by traversing it backward, thus making it twice as
long. However this does not make the transform size twice as long
since only the even coefficients need to be computed due to an even
symmetry.

As expected, this technique 1is rather sensitive to the
segmentation process and does not provide any accurate estimate of
the rotation or magnification factors or the overlap locations.
Increasing the number of segments, thereby reducing the segment

61

size, can improve these estimates. But, as the segment size gets
smaller, the distance measure becomes less reliable and the problem
gets compounded by a large search space for the dynamic
programming algorithm. A large search space makes it more prone to
make wrong decisions when searching through the intersegment
distance table for the optimum path. Although this technique was
devised for recognition purposes, it bears many structural
resemblances to the proposed matching technique that will be
described shortly.

62

4.2 Proposed Approach

In order to describe the proposed technique properly, let us start
by developing the basic framework. Beginning with the same contour
representation as in Chapter 3, we define the curvature
representation. Then the idea of the distance matrix is presented
along with a dynamic time-warping (DTW) technique. Instead of using
DTW, we propose to use the Hough Transform to find the best straight
line path through the distance matrix. It will be shown that the
magnification factor is found as the slope of the straight line and the
overlap location as well as the rotation and translation factors can
eventually be derived.

4.2.1 Curvature Representation

As in the transform method in Chapter 3, let us parameterize the
partial contour as a function of arc length such that we get a one-
dimensional, complex-valued function of arc length s.

c(s) = x(s) + jy(s) a<s<p (4.1)

a and B are the lower and upper bounds of s, representing the end
points of the open contour c(s). Unlike in Chapter 3, c¢(s) need not be
assumed cyclic in s. The curvature signal is obtained by taking the
derivative of the tangent function T(s).

dT{(s)
K(s)= T as<s<p 4.2)
where
_deGs) _ dy(s) , dx(s)
TGs)= £ I = acC —ZS'—/—d_S-] (4.3)

Notice that the translational component is removed by taking the
tangent T(s) along the contour, and the rotational component is
removed by taking the curvature K(s). These two simple steps
extracts the shape information of the contour. However, K(s) still
contains the magnification component that needs to be determined

63

when comparing against another contour. [Even after the relative
magnification factor is found, one of the contours has to be shifted in s
until the two contours come into a proper alignment. This shift in s
can be used to estimate the relative rotation factor. Then the
translation can be determined from the aligned segments. It should be
noted that, because of two differentiation steps to obtain K(s), we must
eventually address the noise issue. However, the algorithm is robust
enough to tolerate some noise, such as due to sampling and
quantization, as well as minor deformation of the contour.

4.2.2 Distance Matrix

Given two contour signals c¢;(s) and c,(s), define a distance
function over a region R.

D(SI,52)=P[F(CI(SI)), F(Cz(Sz))] (44)

such that
D(s;,5,)=0 when F(c,(s;)) # F(c,(s,))
D(Sl,Sz) =1 when F(CI(SI)) #* F(C2(52))

The region of support R is a rectangular region over s; and s,
such that a;, <s; < B, and a; <5, < B,. D(sl,52) is undefined outside R. «;
and B, are the end points of c¢;(s) and o, and B, are the end points of
cy(s). F is a feature funciion that is derived from the contour and
measures the local characteristics of the contour. Later we will use the
curvature K(s) or the tangent T(s) as the feature function. The function
P is a very simple decision function that is zero if the local feature
values are identical and non-zero if they are different.

The rationale for defining such a distance function is to find a
warping function by using a technique such as the Dynamic Time
Warping (DTW) on the two contours. If the contours c,(s) and c,(s)

match and share a common matching segment, then there exists a
warping function W(s) such that

F(c,(s)) =F(cy(W(s))) forp<ss<y. (4.5)

64

The warping function W(s) warps c,(s) to match the shape of ci(s). It
implicitly contains the magnification and the rotation information. For
example, if the contours match perfectly without deformation (rigid
transformation), W(s) must be a straight line:

W(s)=as+b (4.6)

The slope a of the line equals the magnification factor. The intersect »
can be used to compute the rotation by finding p and 7, the end points
of the matching contour segment. For a more general case where small
deformation of the contour is allowed, W(s) is not a straight line but a
monotonically increasing function of s (monotonically decreasing if one
of the contours is reversed in s). However, once a deformation is
allowed, W(sj cannot be uniquely defined since no unique mapping
exists between the contours (unless we impose a restriction such as
the smoothness constraint used by Hildreth).

If the contours c¢;(s) and c,(s) were analytic functions of s, it is
possible to find suitable functions for F and P so that D(s;,s,) becomes a
two-dimensional analytic function. In that case, one can solve for W(s)
as a root locus of D(s;,s;). In reality, we cannot require c,(s) and c,y(s) to
be analytic. c¢,(s) and c,(s) will have to be represented as sampled
functions c¢,(n;) and c,(n,), and consequently D(s,,s,) has to be
represented as a two-dimensional sampled function:

D(ny,ny) = P(F(c)(n),F(cy(ny)) (4.7)
defined for ;< n; < B, and a, < n, < fB,.

We will call D(n;,n;) the distance matrix for c;(n;) and c,(n,). Instead of
solving for W(s) analytically, we must look for a heuristic method
similar to the DTW algorithm.

4.2.3 Dynamic Time Warping

Dynamic time warping is a dynamic programing technique
mainly used for time-scale registration of speech [74]. In isolated
word recognition, the test pattern and the reference paitern are not

65

perfectly aligned in time. The spoken word may be shorter or longer
than the reference word. Also a proper alignment often requires a
local compression or expansion requiring a nonlinear time warping. So
the DTW is formulated as a path finding algorithm over a finite two-
dimensional grid. Each grid point represents a distance between two
feature vectors from each of the test and the reference patterns. The
feature vectors are typically the local autocorrelation coefficients
computed over a frame of fixed length. A dynamic programming
technique is then used to find the optimum warping function W(n) that
minimizes a certain overall distance measure.

m
4

T T

Test feature vectors

1, .

Reference feature vectors

Figure 4.1
Dynamic Time Warping (DTW)

Because of the nature of speech generation, the feature vectors
vary slowly enough to permit a reasonable frame length (10-50 ms)
and the resulting feature vectors are relatively accurate because they
are derived from many sample points. This also makes the location of
the frame boundary less critical to the performance. When applied to
the matching of contours, as done by Gorman et. al., it poses a
significant challenge because a small shift in the segmentation (frame)
boundary can produce radically different shapes.

66

(a) contour (b) segmentation 1 (c) segmentation 2

Figure 4.2
Contour segmentation

Segmenting a contour consistently is a very difficult problem.
Also, as stated earlier, we need an algorithm that not only makes a
similarity measure to see if the test pattern matches the reference, but
also provides an accurate estimation of the end points of the matching
segment and subsequently the rotation and magnification estimates.
Obviously this is not possible if the segment size is large. On the other
hand, reducing the segment size makes the feature vectors unreliable
and increases the search space for the dynamic programming.

In order to avoid segmenting the contour and improve the end
points estimation, we elect to use a point function such as the
curvature function defined above as the feature vector. This does
increase the size of the distance matrix over which the DTW has to
work. Also the distance measure is very coarse since a curvature
value on one contour may have many matching points on the other
contour and vice versa. Although DTW is a very powerful method, it
cannot be expected to work reliably when provided with a poor data
set. With a few simplifying assumptions, the proposed technique uses
the Hough Transform to find the warping function over the curvature
distance matrix.

4.24 Hough transform

The Hough transform was originally devised to find a straight
line in a noisy image [75]. It works by mapping a line in the image
space onto a point in the parameter space. However a line in the
parameter space in turn maps onto a point in the image space. The

67

line finding algorithm first identifies candidate points in the image
that may belong to the line we are looking for, usually by using a
thresholding process. Then for each such point a corresponding line is
drawn in the parameter space. If all points belong to a straight line,
then they would produce lines in the parameter space with a common
intersect. This intersection point maps to the line in the image space.

2 2
y=58x+0.S5
y b
[1
(5/8,0.5)
1
0,0 1 2 0,0 1 2
X a
(2) A line in image space (b) Hough parameter space
Figure 4.3

Hough Transform
Suppose we are looking for a straight line of the form
y=ax+b (4.8)

The parameters we must find are the slope a and the intersect b. A
line in the parameter space is then represented by

b=-xa+y (4.9)

Given a (x,y) pair in the image, equation (4.9) maps out a line in the
Hough parameter space. Every (x,y) pair in the line must satisfy the
equation (4.9). Therefore they map out lines with a common intersect
at (a,b). In order to find this intersection point, a two-dimensional
accumulator array is set up and the value of the cell the line passes by
is incremented. A cell with the highest accumulated value is selected
and its location gives the desired a and b values.

68

The Hough transform is very robust even when the input data
set is very noisy. Erroneous points outside the line produce lines with
no common intersect and cannot form a false peak in the accumulator
array. The points on the line need not be connected in the image (e.g.
dotted lines or disjoint lines) since the algorithm works on a point-by-
point basis.

69

4.3 Curvature distance

Intuitively, the curvature of a contour captures all of the shape
characteristics of the contour; a straight line segment has a zero
curvature, a sharp corner has an impulse-like curvature, a smooth
circular segment has a constant curvature, etc. Locked at another way,
a contour can be completely reconstructed from its curvature if the
magnification, rotation and translation factors are provided. Being a
one-dimensional function, the curvature can be treated like a time-
domain signal. 1In fact, the curvature can be smoothed by a linear
filter and the resulting contour becomes smooth. If we make an
analogy to a speech signal, a good way to maich two curvature signals
would be to perform a time-scale registration as in the isolated word
recognition problem. If, after the registration, the two curvatures still
differ considerably, they are rejected. If they match closely, they are
declared a match and the parameters used in the registration are used
to compute the relative magnification (scale) and rotation (time shift)
factors. In order to perform the time-scale registration we utilize the
concepts developed above: - the curvature distance matrix and the
Hough transform.

Refeiring to the Egs. (4.2) and (4.3) we redefine the curvature
and tangent functions for the discrete case:

K(n)=T(n)-T'(n-1) (4.10)
where
vy y(n+1) —y(n) }
T(n)—arctan[L) —x(0) (4.11)
and
T'(n) + T'(n-1)
T(n)=) (4.12)

The reason for defining two different tangent functions T(n) and T'(n) is
to assign the tangent angle at the vertice ¢(n) to avoid a half-sample

70

spacing offset in the calculations. T‘(n) is the tangent angle of the line
connecting the contour points c¢(n) and c(rn+1). T(n) is the average of the
angles of the two adjacent line segments since the tangent angle is not
defined at the vertice c(n). Although curve fitting can be employed to
improve the tangent and curvature estimates, the improvements do
not have a significant effect on the matching because of the sampling
effect. From Eq. (4.7) we define the curvature distance matrix as
follows:

D(nl,n2)= P[K](ﬂj), Kz(nz)] (4.13)

In view of the sampled nature of the curvature functions, we
cannot enforce the same decision function P as in Eq. (4.4). Therefore
the distance measure is somewhat relaxed by providing a continuous
range of values rather than 0 or 1. A threshold value other than zero
can be used to select candidate matching points. We use the absolute
difference of the curvatures.

D(n,,n2)=P[Kl(nl), Kz(nz)] =| K](”]) —Kz(nz) | (4 14)

The reason for selecting this distance measure, besides its
computational simplicity, is that almost any reasonable distance
function performs similarly due to a rather large noise in the
curvature measure. As a comparison, a logarithmic difference of the
form

D(ny,ny)=11log(K;(n;)) - log(K,(ny)) | (4.15)

has been tried. The reasoning was that, since the contour is uniformly
sampled in arc length, the high curvature segments are effectively
undersampled and the low curvature segments are oversampled.
Therefore the curvature measure is more accurate for the low values
than for the high values. Taking the logarithmic difference allows
higher error in high curvature values by providing a reasonably high
log threshold (of course we must insure that zero curvature values do
not map to the negative infinity by providing another threshold). In
practice, however, the curvature difference for low curvature pairs
(even when they are supposed to match) often exceeds the curvature

71

of smaller of the two, requiring an additional threshold value (in linear
scale) to include these small curvature pairs into the Hough transform.
Because small curvature values are more common than large values,
this second threshold dominated over the log threshold. This second
threshold has a similar roll as the threshold for the linear curvature
difference, and consequently it did not perform any better than the
case using the linear difference.

The reason for a poor curvature estimate for the low values is
that we are not taking advantage of that information. If it is known a
priori that the local curvature value to be estimated is small, we could
use many neighboring data points to increase the accuracy (e.g. using a
high-order curve fitting). For high-curvature points, we have to use
fewer data points to preserve the locality. Rather than designing an
elaborate adaptive scheme to improve the curvature measure, we
choose to use the simple distance function in Eq. (4.14). We designate
this threshold A. No extra effort was spent to find the optimum
threshold because the range of A that worked well was quite broad and
it was difficult to come up with a good analytic criterion for selecting
it.

Until now the effect of magnification on the curvature has not
been addressed. If a contour is magnified, it becomes longer and the
curvature is scaled down linearly by the magnification factor m (m>1 if
c;(n) is larger than c,(n) and vice versa). Ideally the distance measure
has to be modified to incorporate this effect.

D(!'ll,nz)= |K1(n1)-K2(n2)/m| (416)

Initially m is not known, so it is set to 1. After taking the Hough
transform, the magnification factor m can be estimated. This m can be
used in the next iteration to improve the distance measure. However,
experiment has shown that in most cases the first estimate of m is
accurate enough to not require a second iteration if the distance
threshold A is set high enough and the true value of m is between 2/3
and 3/2. This range permits 50% variation in magnification, which is
adequate in most practical cases.

72

4.3.1 Hough Accumulatoer Array

As stateg earlier, the Hough parameter space has to be sampled
and replaced by an accumulator array in order to implement a two-
dimensional histogram. The extent of the accumulator array can be
limited by specifying ranges for a and b values. Since a is the estimate
for m, we let 2/3 < a < 3/2. b specifies the overlap location of the
matching segment so it need not be larger than the extent of the
contour. We let 0 < b < max(N;,N,) where N, and N, are the lengths of
the contours c;(n) and c,(n), respectively. Without loosing generality,
we let Ny 2 N,. Then the dimensions of the distance matrix D(nj,n,) is N,
by N; and we choose the dimensions of the accumulator array to be
the same, N; by N,. That is, there are N, entries along the a axis and N,
entries along the b axis. This way the spacing in b is the same as the
sample spacing for the contours. Also the accuracy for @ improves as
the contours get longer so that the accuracy of » remains unchanged
(which is important in finding the end points p anf y).

Ni-1 N1-1
nl b
0,0 " N2-1 0,0 N2-1
@13) 6n
“1) Distance matrix (b) Hough accumulator array
Figure 4.4

Distance matrix and Hough accumulator array

For each candidate point in the distance matrix, the Hough
transform is performed using a simple line-drawing algorithm in the
accumulator array. The value of each cell the line passes over is
incremented to update the histogram. After all points are

73

transformed, the peak of the histogram is searched to find a and ».
This value of a becomes the estimate for m. From a and b, two end
points of the overlap segment can be found by locating the crossing
points of the line with the boundaries of the distance matrix. For case
(a) in Figure 4.5, c;(n) is a sub-segment of c,(n) so that the overlap
segment is identical to c;(n). For case (b), one end pcint is contained in
c,(n) and the other contained in c;(n). Case (c) is similar to case (b), but
poses a problem since the line is mapped outside the accumulator
array (because b is negative).

N1-1 Ni1-1 N1-1
nl / nl / nl /

0,0 N2-1 0,0 N2-1 0,0 N2-1

n2 n2 n2
case (a) case (b) case (¢)

Figure 4.5
3 cases of overlap for open contours

Two remedies exist for this problem. Unfortunately both
methods double the size of the Hough parameter space. One is to
extend the Hough parameter space in b to -N; < b < (N;-1). The other is
to swap the roll of c¢;(n) and c,(n) by transposing the distance matrix
and computing a second Hough transform. The disadvantage of the
former is that there is still a slim chance that » might be smaller than -
N; when the overlap is very small and a is large. The disadvantage of

74

the later is that two histograms must be computed and the one with a
lower histogram peak value is discarded. If the second histogram
peak is higher, the estimate for m becomes 1/a. For completeness, one
would adopt this later approach to insure that all cases are covered, at
the expense of more computation. Instead, we take an engineering
solution by modifying the problem sightly to accommodate all three
cases (a,b and c) with some restrictions.

&y
N1-1 Ni1-1
y b
Yot L Yoff -
a
b
0,0 N2-1 0,0 a N2-1
X
off X @))
(a) Distance matrix (b) Hough accumulator array

Figure 4.6
Modified distance matrix and Hough accumulator array

Instead of defining the origin of the distance matrix at the lower
left-hand corner, we provide an offset in x by x,=1/2(N,-1). The offset
iny (y,4) is implicitly defined where the line crosses the y’ axis (at Xoff) -

N1
xojf: —‘2'_
x'=x - xoff

The axes in the Hough space are unchanged. If a is still restricted to
between 2/3 and 3/2, from Fig. 4.6 we see that the real intersect b can be

75

derived from the slope a and the implicit offset Yof» both found from
the Hough transform.

b =Yopy - axofy (4.17)

The range of values for » can be found from the minimum and
maximum values allowed for a using Eq. (4.17).

21 1
bll= 0 - 3- EGVZ_I) = "‘-3-(N2—1)

(4.18a)
bu= (V=1 = 3 20N-1)= (V,~1) -1~ 1) (4.18b)
by =0-32 2WN;-1)=-2(N,-1) (4.18¢)
b= =D = 2 20V~ = V-1 - 3(N-1) (4.18d)

by, bu, by, and b,, represent the b intersects corresponding to the lower-
left, upper-left, lower-right, and upper-right corners of the Hough
transform space (mapped back to lines in xy space).

From Figure 4.7 it is apparent that a line is not allowed to pass
the shaded boundary. This means the overlap must be at least 50
percent of the length of the shorter contour, in addition to the
restriction that the magnification must be less than 50 percent. These
limitations are not very severe in practical situations and are imposed
as a matter of convenience and not due to the limitations of the
algorithm. The advantage gained here is that now the lines drawn in
the Hough space can have positive slopes as well as negative slopes
because x’ is negative for half the eniries in the distance matrix. This
generally gives a better distribution (symmetric in a and b) of the
histogram in the accumulator array to make the peak detection easier.

76

‘,l"' /
bur ,a"‘
a“"
J
K
b l"“‘
ur
0,0
o !
o)
o"“‘. l"
bn ‘.n"
’,v' 312
o
!
b “‘,u
r
Distance matrix
Figure 4.7

Allowed ranges for the warping functicn
4.3.2 Curvature Matching Example

In the following we show a curvature matching example for two
open contours. Although this example represents a near ideal case in
order to illustrate the principle, the contours do exhibit a small amount
of dissimilarity due to the different filtering and sampling processes
involved. The contour of a character y was extracted from a gray-
scale image using the iso-luminance contouring process. Then it was
successively translated, rotated, magnified (reduced in size), and
finally clipped at the end points to derive the second contour. This
second contour would correspond to an object undergoing a rigid
transformation and gets occluded at the image boundary.

77

(a) (b)

Figure 4.8
Two contours used in the curvature matching example
(a) Cl(n,): N1=64 (b) Cz(nz): N2=55, m=1.111, 9,=-0.11t

Figure 4.9 shows the curvatures for these two contours, among other
things. The upper left quadrant shows two contours, properly resized
to fit in the window. The lower left quadrant shows the x and y (real
and imaginary) components of the contours. The upper right quadrant
shows the contour transform magnitudes (normalized to fit in the
window). Finally the lower right quadrant shows the curvatures.
Notice that the two curvatures can be visually registered on the time
scale, even though a perfect match is not possible.

78

c(n)

Transform Magnitude |C(k)|

x(n)

Curvature K(n)

ﬂ;[<§[§\;/\ £

%

Figure 4.9
Curvature plots (lower right quadrant) for
c; (solid line) and c, (dotted line)

79

(a) (b)
Figure 4.10
Curvature distance matrix (a) and its Hough transform (b)

Figure 4.10(a) is the curvature distance matrix for K,(n) and K,(n)
derived from c;(n) and c,(n) according to Eq. (4.10). Dark areas
represent a small curvature distance and light areas represent a large
distance (from O to m). It is apparent that the curvature at each point
on the contour is not unique over the contour. This is expected, since a
curvature is a scalar function derived as an instantaneous slope of the
tangent angle. Each curvature value along the first contour has many
matching points in the second contour. In general, a high-curvature
point matches fewer points in the second contour than do the low-
curvature points, simply because low curvature values are more
common. It may seem hopeless to find a line through this distance
matrix, but the corresponding Hough transform in Figure 4.10(b) does
exhibit a definite peak. For this transform we have used A=0.01=x.
Figure 4.12(a) gives a perspective plot of Figure 4.10(b) which also
shows a prominent peak.

80

(a) (b)
Figure 4.11
Modified curvature distance matrix (a) and its Hough transform (b)

In order to show the uncluttered Hough transform, portions of
the curvature matrix in Figure 4.10(a) were blocked off to isolate the
area that does contribute to the peak in the Hough space (this area was
determined from the initial transform in Figure 4.10(b)). This is
shown in Figure 4.11(a). Figure 4.11(b) shows the resulting Hough
transform, which has much of the clutter removed. However, this does
not improve the detection of the peak since the points in the blocked-
off area (medium shade in Figure 4.11(a)) map to lines that do not
cross the peak point. Figure 4.12(b) is the perspective plot of the
cleaned up Hough transform.

81

A

ol
i “u\»‘ Q\!\\‘ “‘“ A\ i ‘»

AR
\:\“\" “ " M‘! \\ Al»‘
\{‘ h'(“‘w ‘\
\\

by
“ ‘ H ’
W v"‘;f‘»'\\‘ o i

\‘)‘y\ ‘\“ V‘
“ ' «0
‘,.

Figure 4.12(a)
Perspective plot of Hough transform in Figure 4.10(b)

iy

i "« d \M
DA At

e m‘., \\ \

il
=) ‘“{“ﬁ'(‘ 0’\
‘)

il
AW ‘i\\“‘ Wi \\

‘\\'» B

“\"\ o

i‘ 0‘

\X ‘\A‘

\4\
\700@
\\ o ‘

N
; \‘\

4\"
S

Figure 4.12(b)
Perspective plot of Hough transform in Figure 4.11(b)

82

Finally, Figure 4.13 shows the result of the completed curvature
matching. From the Hough transform in Figure 4.10, the algorithm
derived the magnification and rotation factors and, more imporiantly,
found the end points of the matching section. Figure 4.13 shows that
transform magnitudes as well as the curvatures of the resulting
contours match very closely. The magnification estimate has 2 percent
error and the rotation estimate has 2 degree error. However, the real
merit of matching must be judged from how accurately the end points
of the matching segments are found. The magnification and rotation
values are global parameters that become inaccurate and eventually
lose their meaning when the contours differ in shape due to noise or
deformation. On the other hand, the end points depend more on the
local shape of the contour and are accurate, especially near high-
curvature points. The accuracy of the end points for this example was
a fraction of a sample spacing.

83

e(n) Transform Magnitude |C(k)|

x{n) Curvature K(n)

Figure 4.13
Result of the curvature matching
(Estimates for m and 6, are 1.1296 and -0.112x)

This algorithm works reliably because of the inherent averaging
that occurs in the Hough transform accumulator array. Consider a line
we are looking for and the point in the Hough space to which the line
maps. It is guaranteed that any other points not on this line cannot
increment the accumulator cell that maps to the line. Therefore, any
amount of clutter (unwanted matching curvature points) cannot affect

84

the peak value in the Hough space and are effectively discarded,
provided that the cluttering points do not line up and form a false line
on their own. Even if they form a false line and produce a false peak
in the Hough space, the value for the real peak is always larger as long
as the false line is shorter, and therefore contains a smaller number of
points, than the line we are looking for. Basically, the matching
curvature points add up constructively in the Hough transform space.
This is essential, since our feature vector for matching is a point
function (curvature) and does not average over many data points to
find the feature vectors as do the transform methods. The algorithm
avoids local averaging in order to attain the maximum spatial locality
(as opposed to spectral locality), but instead relies on the averaging in
the Hough transform space for reliable detecticn. This also explains
why the setting of the threshold value A is not very critical. A low
threshold uniformly affects all entries in the distance matrix and
reduces the number of entries that actually get mapped into the Hough
space. This lowers the noise floor as well as the peak value. Of course,
if the threshold is too low, very few points are mapped and the
histogram becomes too sparse. Conversely, too high a threshold allows
too many points to be mapped and the peak starts broadening. As
long as the threshold is not in these extremes, the algorithm functions
correctly because the general shape of the Hough transform does not
change.

85

4.4 Tangent distance

If we refer to Eq. (4.2), we see that the differentiation step
reduces the information content of the tangent function by one
constant. That is, T(s) can be recovered exactly from K(s) given the
constant of integration. This constant happens to be the initial tangent
angle at one end of the contour. When matching two contours, each
having this constant, the difference in these two constants is the
rotation angle 8,. Then there must be a warping function W(s) such

that the following is true (see Eq. (4.5)):

T(s)=T,(W(s))+ 6, for p<s<y (4.19)

Since we assume a rigid transformation (see Eq. (4.6)),
T,;(s)=Ty(as+b)+ 86, for p<s<y (4.20)
and we can find a and b as in the curvature-matching case above. For

this purpose, we use the definition of the tangent function in Eq. (4.12)
and let

D'(n;,ny) =T (n;) — Ty(n,) (4.21)

which we call the tangent difference matrix and

D(ny,ny) =1T(ny) —Ty(ny) - 6, | (4.22)

which is the tangeni distance matrix.

D’(ny,ny) is a biased version of D(n;,n;) by 6, and D(n;,n,) has this
bias removed. In order to perform tangent matching of contours using
(4.22), we need to find the rotation angle 6,. In the curvature
matching case above, this parameter was removed by a simple
differentiation, and it was estimated after the matching. Now we need
to estimate it in order to perform the matching.

Although this may seem like a chicken-and-egg case, a very
simple method works well in finding the rotation angle. We simply
take the histogram of the entries in D’(n;,n,) and look for the histogram

86

peak. To see this, consider a diagonal line in D’(n;,n,). If the diagonal
line happens to correspond to the warping function W(n), the entries
along this line must be constant and equal to the rotation angle. These
entries produce a single peak in the histogram (11 in Figure 4.14). If
the line has the wrong slope, the entries along the line have different
values and their histogram spreads and does not produce a prominent
peak (12 in Figure 4.14). Only the lines with the correct slope produce
peaks in the histogram. The peak value is equal to the length (number
of contour points) of the matching segment, which is usually shorter
than the line itself (13 in Figure 4.14). Consider only the lines with the
correct slope a. Suppose we know what this slope is and take the
histogram of D’(n;,n;) by taking entries line by line, each line with the
slope a. Then the line that corresponds to the warping function must
produce the highest peak since it has the longest matching segment.
The entries from the non-matching portions of the segments will tend
to have a flat distribution over the histogram and do not form a peak.
Since it makes no difference in which order we take the entries from
D’(n;,ny) to compute the histogram, we need not know the value of a.
Therefore, the location of this histogram peak is the rotation angle 6,.
(Of course this method breaks down if the assumption of rigid
transformation is violated.) In order to increase the reliability, we
filter the histogram before peak detection, reducing the effect of noise.

11
y

1 1 L

- 0 +7
12

P e - 1

- 0 +7
13

l o L

0.0 —JE 0 +n
X
(a) Tangent difference matrix (b) Histograms thru 11, 12, and 13

Figure 4.14

87

Once the rotation angle 6,is found, we form the tangent distance
matrix D(n;,n;) as in Eq. (4.22). The rest of the procedure for finding
W(n) is identical to the curvature distance case. A small error in
estimating 6, is not very critical as long as it falls within the threshold
A for the distance matrix.

4.4.1 Tangent Matching Example

To illustrate tangent matching, we use the same contour pairs in
Figure 4.8 that were used for the curvature matching. The lower right
quadrant in Figure 4.15 shows the tangent functions for the two
contours. It can be seen that if we time register the two tangent
functions, there will be a fixed offset that corresponds to the rotation
angle. In order to find this offset, we compute the tangent difference
D’(n;,ny), which is shown in Figure 4.16(a). The gray value 0 (dark
area) maps to -m, value 128 (medium shade) maps to 0, and value 255
(light area) maps to +rn (actually 256 maps to +n but it wraps around to
0). The histogram of D’(n;,n,) is shown in Figure 4.17(a) and the
smoothed histogram in Figure 4.17(b) (filtered by a Gaussian). The
peak is found at 115, which corresponds to (115-128)/128 = -0.10156% (the
correct rotation angle is -0.1m). From this rotation estimate, the
tangent distance matrix D(n;,n,) is found and shown in Figure 4.16(b)
(dark = 0, light = +r). When compared to the curvature distance matrix
in Figure 4.10(a), the tangent distance matrix exhibits less clutter
because we have incorporated an important constraint, namely the
rotation angle. The resulting Hough transform in Figure 4.16(c) also
has less clutter. The threshold value used was 1=0.01x. To parallel the
previous example for curvature matiching, in Figure 4.18(a) we show
the tangent distance matrix that excludes the points that do not
contribute to the Hough histogram peak. The corresponding Hough
transform is shown in Figure 4.18(b). The perspective plots in Figures
4.19(a) and 4.19(b) show the Hough transforms in Figure 4.16(c) and
Figure 4.18(b), respectively. The values found for a and b are identical
to those from the curvature matching example. Hence the matching
results are the same for both methods. Finally, Figure 4.20 shows the
matching result using the tangent functions in the lower right

88

quadrant. The curvature plots of these matching contours are identical
to the curvature plots in Figure 4.13.

e(n Transform Magnitude |C(k)|

:};

Tangent T(Q)

.....

Figure 4.15
Tangent plots (lower right quadrant) for
c¢; (solid line) and ¢, (dotted line)

89

(a) (b) (c)

Figure 4.16
(a) Tangent difference matrix D’(n;,n;)
(b) Tangent distance matrix D(n,,n;)
(c) Hough transform of (b)

90

File: v‘.r_uistotol
8 Date: Fri Mar 26 05:06:15 1989
60
40

- L\ L

0 64 128 192 255
-n 0 i

Figure 4.17(a)
Tangent difference histogram from Figure 4.16(a)

91

File: r.histo['ll
50 Date: Fri Mar 26 06:59:21 1989
40
30

0 64 ‘;28 192 255
-7 0 L
Figure 4.17(b)

Smoothed tangent difference histogram by a Gaussian filter, 6=0.5

92

(a) (b)
Figure 4.18
Modified curvature distance matrix (a) and its Hough transform (b)

r'\“ |
M

J\z«*\\\\\‘ \m
““ \\\ &‘:\ie“gj{»‘

\\ i

V \\
o

Figure 4.19(a)
Perspective plot of Hough transform in Figure 4.16(c)

93

Figure 4.19(b)
Perspective plot of Hough transform in Figure 4.18(b)

94

c(n) Transform Magnitude |C(k)|

x(n) Tangent T(n)

Figure 4.20
Result of the tangent matching
(Estimates for m and 6, are 1.1296 and -0.1016%)

95

4.5 Interpolation

In Chapter 3, we have utilized the contour transform to
interpolate between two matching closed contours in the transform
domain. The interpolation was very robust and took care of many
problems such as rotation, magnification, and translation, as well as
minor deformation. When matching an open contour to another open
contour (or to a closed contour) using the curvature or the tangent
method, part of the contour is missing from the open contour. If the
contours maiched perfectly (matching segments are identical), then
the missing segments could be copied from one another, properly
transformed by the required rotation, magnification, and translation
factors. However, in the presence of deformation, such surgical
method does not work because of the inevitable discontinuity between
the existing and added segments. In general, there is no satisfactory
solution since part of the data is lost by occlusion and cannot be
recovered.

96

4.6 Discussion

It is difficult to determine which of the two schemes would
perform better in realistic circumstances. The curvature matching
method avoids having to estimate the rotation before the matching.
However the magnification factor m in its distance matrix (Eq. 4.16)
makes one wonder about its robustness when the magnification factor
is not known. The tangent matching method, on the other hand,
requires the rotation angle 6, to be known in order to compute the
distance matrix (E£q. 4.22). But, a good method exists that estimates
this rotation angle from the histogram of the tangent difference matrix
(Figure 4.14). Both methods utilize the same Hough transform
technique, so the comparison can only be made based on the
computation of the distance matrix. For the sake of argument, if we let
m and 6, to be known perfectly, the only difference between the two
methods is the use of the curvature function K(n) versus the tangent
function T(n). Then the argument goes in favor of the tangent matching
method because it avoids the differentiation required to compute K(n)
that makes the curvature method prone to noisy data. Indeed, when a
moderate amount of deformation was allowed, which is usually the
case when the contours are extracted from real images, the curvature
method made a few incorrect matches.

Figure 4.21 shows the case where the curvature method would
fail while the tangent method would find the correct matching
segment. The contours were extracted from Figure 3.6(a) and 3.6(b)
and represent the snap shots of a numeral 5 in motion. The occlusion
at the bottom of the frame produced the open contcur (dotted) which
shows the top 1/3 of the closed coniour (solid). Because of the
transformation as well as the coarse sampling, the contour deforms
moderately. Figure 4.22 shows the result of the curvature matching
which failed to find the correct matching segment. Figure 4.23 shows
the result of the tangent matching which found the correct match in
spite of the noisy data.

97

Transform Magnitude |C(k)|

Tangent T{n)

Figure 4.21
Plots for closed 5 (solid) and open 5 (dotted)
extracted from Figures 3.6(b) and 3.6(a), respectively

98

c(n)

Transform Magnitude |C(k)|

..........

Tangent T(n)

y(n)

Figure 4.22

Failed curvature matching for contours in Figure 4.21

99

c(n) Transform Magnitude |C(k)|

x{n) Tangent T(n)

Figure 4.23
Tangent matching result of the contours in Figure 4.21

During the experiments, the tangent matching method was found
to be more robust than the curvature matching method in general.
However, it fails in some cases where the contour is extremely short
(not enough data) or the contour is relatively featureless (ambiguous
matching). Short contours do not allow enough averaging in the Hough
transform space for the algorithm to work effectively. Featureless
contours are the ones with constant curvature such as straight lines or

100

circle segments. Contours exhibiting multiple symmetry can also cause
ambiguity problems. Given the obvious difficulties matching open
contours in general, both algorithms performed very well.

101

CHAPTER 5. CONCLUSIONS

102

5.1 Summary

In this thesis we have taken a radically different approach to
coding and motion compensating an image sequence. The traditional
canonic representation of an image by a two dimensional matrix of
intensity values was replaced by a region-based model of an image.
This led us to represent the region boundary by contours which can
be tracked over time for the purpose of motion compensation.

Motion compensation of images has a potential for achieving a
good compression of a moving image sequence whiie preserving a
good motion rendition. A region-based image coding can in principle
achieve a very high compression by representing the image in terms
of contours and textures. By combining the two techniques, a
contour-texture based image sequence coding scheme can be
developed. In this thesis we have elected to concentrate on the
motion compensation of the moving contours. The procedure
involves first finding a matching pair of contours from two
successive frames, and then interpolate between the two contours.

We have developed two distinct techniques for matching
contours. The first was to transform the closed contours into the

frequency domain using the circular transform. Then useful
transform properties were derived so that the contour can be
normalized for efficient matching. @ The normalization procedure

extracted the global shape parameters of the contour that are
invariant to rotation, magnification, and translation. Then a mean
squared error function was defined in the transform domain to
measure the degree of similarity between normalized contours. Once
the matching is established, the same shape parameters can be
utilized to reconstruct the contour. To do this we developed a spatial
and a temporal interpolation techniques for motion compensated
interpolation of moving closed contours. The technique assumes a
rigid motion but was found to be guite robust against minor
deformation.

103

The second technique applies to open contours that arise
because of occlusion. The curvature matching and tangent matching
methods were developed to match and extract common matching
segments of open contours. In order to maximize the spatial locality,
a point function such as the curvature or the tangent along the
contour is computed as the feature parameter. Then the concept of
distance matrix was introduced as a way to time-scale register
contours in the absence of the scale and alignment information.
Assuming a rigid motion, the Hough transform was formulated to
find the matching segments by estimating the scale and alignment
parameters. The averaging that occurs in the Hough transform space
made possible a reliable estimation of the matching parameters.
Unlike the closed contour case, a good temporal interpolation is not
possible between open contours since part of the data is missing due
to occlusion.

104

5.2 Motion Compensation Example

A gray scale image was scanned in at three different
orientations to simulate a rigid motior. A coarse sampling (64x64)
covpled with a gain variation resulted in a moderate deformation
when the contours were extracted by an iso-luminance segmentation
process. The three key frames are shown in Figure 5.1. Only the
open contours that do not get occluded in all three frames were
motion compensated using the transform technique developed in
chapter 3. The up-conversion factor was 4, resulting in a 9 frame
sequence that is shown in Figure 5.2 (3 extra frames between key
frames). The reconstructed contours vary smoothly from one frame
to the next, despite the difference in shape of the contours in the key
frames.

ISP

2@75m 7

(a)

105

ed bby
R

<1 M\ (=) [~

(b)

ed ©
el

(c)
Figure 5.1
Three key frames used for motion compensation

106

eal b
85

ed o
gk

ea
B

eC @
e

(i)
Figure 5.2
9 frames generated by motion compensation from three key frames
in Figure 5.1. The interpolation factor is 4.

For an open contour example, we picked the letter E that
becomes occluded at the right boundary in the third frame (Figure
5.1(c)) and the corresponding contour in the second frame (third E in
Figure 5.1(b)). The open E and the closed E are shown together in
Figure 5.3. Figure 5.4 shows the result of the tangent matching from
which the motion information was extracted for the matching
segments. Because we lack an interpolation technique for open
contours, the motion parameters were applied to the closed E only.
Therefore the open E was used only for motion estimation and its
shape was not used for interpolation. The resulting motion
compensated sequence is shown in Figure 5.5. The first 4 frames
were generated using the transform technique as in Figure 5.2 and
the last 5 frames were generated using the tangent matching
technique.

111

Transform Magnitude |C(k)]

Figure 5.3
Closed E and open E from Figures 5.1(b) and 5.1(c)

112

c(n)

Transform Magnitude |C(k)|

x(n)

Tangent T(n)

Figure 5.4
Tangent matching result of the contours in Figure 5.3

113

(a)

(b)

114

(c)

(d)

115

(e)

()

116

(1)
Figure 5.5
9 frames generated by motion compensation of the E that occludes at
the image boundary in the third frame. The interpolation factor is 4.

i 118

5.3 Discussion

The transform technique we developed for closed contours has
a good mathematical framework that is perfectly suited to the nature
of closed contours. The technique resulted in a near perfect tracking
and interpolation of closed contours under realistic conditions.
However a few refinements are desirable. First, the normalization
procedure in section 3.2.2 can be further refined to take care of any
symmetry in the contour. Because the first-order ellipse examined
for the normalization has a two-fold symmetry, we had to make two
MSE measurements. This can be avoided if we examine the second-
or higher-order ellipses. N-fold rotational symmetry is indicated by
a strong presence of the (N-1)th coefficient in the contour transform.
Use of higher frequency coefficients for resolving symmetry was
addressed by Wallace [55]. A second refinement is needed if we
desire to use more than 2 frames for temporal interpolation. In the
examples, only a bilinear interpolation was performed temporally.
However, a higher-order interpolation, such as a cubic spline
interpolation, is straight forward using multiple frames. Because the
physical law of the nature makes the occurrence of instantaneous
direction changes very rare, 3 or 4 frame interpolation should be
considered. Eq. 3.20 can be suitably modified to accomplish this.

The implementation of the closed contour matching is rather
involved. For each contour, a complex DFT has to be computed. A
FFT implementation is not possible since the length of each contour
can not be made a power of 2. Also, the interpolation requires an
inverse DFT. Fortunately, the number of contours in an image is
relatively small, and very powerful and fast DSP chips are available
that can achieve near real-time operations.

The treatment of matching open contours was somewhat less
mathematical since the warping function W(s) could not be solved
analytically. This is because the contours are represented as discrete
signals and cannot be made to be analytic functions. Instead we had
to solve for an approximation to W(s) by a heuristic method. In order

119

to simplify the procedure, we imposed a rigid-motion constraint and
made W(s) to be a straight line. Then the Hough transform was
formulated to estimate W(s). However, the Hough transform can be
generalized to detect arbitrary curves that can be described by an
analytic function. In principle, we can allow a non-rigid motion if the
Hough transform is reformulated to detect a second- or third-order
curve instead of a straight line. This would add one or two extra
parameters to be estimated which requires an increase of the
dimensions of the Hough transform space to 3-D or 4-D. This
increase in the complexity may not be desirable in practical
implementations.

In the open contour matching experiments, the end point
locations were estimated to an accuracy of one sample spacing. A
sub-sample accuracy can be obtained if the Hough transform space is
quantized finely. An adaptive scheme [75] can be used to
successively zoom-in on the region of interest to improve the
accuracy without creating an excessive computational burden.
However, if the contours are noisy or deformed, the rigidity
assumption may not hold at such a fine scale. The alternative is to
divide the matched contour segments into two smaller sub-segments.
The shorter the contour segment is, the more likely it is for the
rigidity assumption to hold at a fine scale. Two Hough transforms at
a finer scale can be performed on the sub-segment pairs. Each
transform will provide a more accurate estimate of one of the end
points. The ultimate accuracy that can be obtained will depend on
the noisiness of the data and the amount of curvature variation in
each of the sub-segment. If the sub-segment does not have enough
curvature variation (i.e. featureless), the estimate will become
unreliable.

The lack of an interpolation strategy for open contours is a
sericus problem. In principle, there is nothing that can be done
when part of the needed data is missing. The surgical method that
borrows the missing segments from one another is about the only

120

ad-hoc alternative. The discontinuity expected may not be so bad if
the deformation is small.

Although the curvature and the tangent matching techniques
were developed for open contours, it seems quite possible to extend
them to treat closed contours as special cases. It would involve
making the distance matrix cyclic so that the warping function (a
straight line) wraps around at the boundaries from top to bottom and
from right to left. The Hough transform space must be made cyclic
also. The b-axis can be easily made cyclic since it has a direct
relationship to the y-axis of the distance matrix. However, it is not
clear without further study if the g-axis needs to be made cyclic.

The implementation of the open contour matching does not
require complex calculations such as DFT. The tangent calculation
can be simplified using a table lookup. The curvature, if needed, can
be easily derived from the tangent function. Setting up the distance
matrix only requires subtraction operations. The rest of the
operation involves a simple histogramming (for the rotation
estimate) and a Hough transform. The Hough transform itself
requires simple line drawing operations which can be implemented
very efficiently [44]. Because of the broad application of the Hough
transform, VLSI chips have been designed recently [77 & 78].

In general, there is no agreed method of measuring the
accuracy of a motion estimation method. We have not made any
effort to compare the accuracy of the contour matching method
against other motion estimation techniques. Part of the difficulty
arises from the fact that we estimate the motion of a contour. That
is, we assign a single motion vector for each contour assuming a rigid
motion. Other motion estimation techniques tries to assign a motion
vector to each pixel or a small collection of pixels. Therefore we can
only make a qualitative comparison.

A typical motion estimation scheme based on spatiotemporal
gradient equation tries to solve for the unknown motion vector for
each pixel. However, in order to reduce the effect of noise and

121

accommodate a long range motion, it has to adopt a some form of
multi-scale approach. The image is smoothed to make a gross
estimate first and the estimate is progressively refined by applying
less smoothing. The accuracy of the final estimate depends on the
number of pixels averaged to make the estimate. The more the
averaging, the higher the potential accuracy. However, any amount
of averaging basically trades off the accuracy against the spatial
locality of the estimate. If too much averaging is done, the motion
estimate near the motion boundary becomes inaccurate.

On the other hand, a block matching technique assumes a
uniform translational motion of block of pixels. Literally, a block
correlation is performed to find the motion vector for the block.
Again, the larger the block size is, the more averaging it does to
increase the motion accuracy, but at a reduced spatial locality of the
estimate. Again, the scheme does not allow for motion
discontinuities at the object boundaries such that the motion
compensated reconstruction often has trouble reconstructing around
the edges in the image.

Tow

On the contrary, the motion estimation techniques developed in
this thesis depends on the averaging of all the samples along the
contour in order to make an accurate motion estimates. The
transform-domain technique averages over all the samples in the
contour in order to extract the global shape parameters of the
contour. The spatial-domain technique does the averaging in the
Hough transform space and implicitly averages over only the
matching segment of the contour. The spatial locality of the estimate
is preserved because the contours represent the location of the
motion discontinuity. In addition, the technique provides the
rotation and magnification information, unlike other techniques that
only provide the translational information.

The ultimate goal of this investigation was to develop a region-
based image sequence coding system. We have concentrated on
solving only part of the system, namely the contour motion
compensation. Other pieces of the system such as the segmentation

122

and texture coding must be investigated before a complete coding
system can be developed. It is hoped that this investigation has
made us a step closer to achieving such a coding system and generate
enough interest for others to join in the effort. The developed
techniques may have other interesting applications in machine
intelligence.

123

(1]

(2]

(3]

[4]

(5]

(6]

[7}

(8]

(9]

[10]

(11]

[12]

[13]

REFERENCES

W. F. Schreiber, C. F. Knapp, and N. D. Kay, "Synthetic highs, an
experimental TV bandwidth compression system,” J. SMPTE, Vol.
68, pp. 525-537, Aug. 1959.

D. N. Graham, "Image transmission by two-dimensional contour
coding," Proc. IEEE, Vol. 55, No. 3, pp. 336-346, Mar. 1967.

D. E. Troxel, W. F. Schreiber, et al, "A two-channel picture coding
system: I -- Real-time implementation,” IEEE Trans. Comm., Vol.
COM-19, No. 12, Dec. 1981.

W. F. Schreiber, "The mathematical foundation of the synthetic
highs system,” MIT, RLE Quart. Progr. Rep., No. 68, pp. 140-146,
Jan. 1963.

W. F. Schreiber, "Texture in Contour-coded pictures,” MIT RLE
Internal Memo, Nov. 13, 1967.

W. F. Schreiber, T. S. Huang, and O. J. Tretiak, "Contour coding of
images," Wescon 1968.

M. Kunt, A. Ikonomopoulos, and M. Kccher, "Second-generation
image-coding techniques,” Proc. IEEE, Vol. 73, No. 4, pp. 549-574,
1985.

S. Ullman, "Analysis of visual motion by biological and computer
systems,” Computer 14, pp. 57-69, 1981.

C. A. Darmon, "Recursive method to apply the Hough transform to
a set of moving objects," Proc. ICASSP 82, pp. 825-829, 1982.

L. S. Davis, Z. Wu, and H. Sun, "Contour-based motion estimation,"
Comput. Vision, Graph., Imag. Process. 23, pp. 313-326, 1983.

E. C. Hildreth and S. Ullman, "The measurement of visual motion,"”
MIT A.l. Memo No. 699, Dec. 1982.

E. C. Hildreth, "The computation of the velocity field,” MIT A.lL
Memo No. 734, Sep. 1983.

A. L. Yuille, "The smoothest velocity field and token matching
schemes," MIT A.I. Memo No. 724, Aug. 1983.

124

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Shafer and T. Kanade, "Recursive region segmentation by
analysis of histograms,” Proc. ICASSP 82, pp. 1166-1171., 1982.

Y. Ohta, T. Kanade, and T. Sakai, "Color information for region
segmentation,” Comput. Graph. Image Process 13, pp. 222-241,
1980.

G. B. Coleman and H. C. Andrews, "Image segmentation by
clustering,” Proc. IEEE, Vol. 67, No. 5, pp. 773-785, May 19769.

M. Kocher and M. Kunt, "A contour-texture approach to picture
coding," Proc. ICASSP 82, pp. 436-439, 19%2.

J. O. Eklundh, H. Yamamoto, and A. Rosenfeld, "A relaxation
method for multispectral pixel classification,” IEEE. Trans.
Pattern. Anal. Machine Intell., Vol. PAMI-2, No. 1, pp. 72-75, Jan.
1980.

A. R. Hanson and E. M. Riseman, "Segmentation of natural scenes,"”
in Computer Vision Systems, A. Hanson and E. Riseman Eds.,
Academic Press, New York, 1978, pp. 129-163.

W. Rutkowski, S. Peleg, and A. Rosenfeld, "Shape segmentation
using relaxation,” IEEE. Trans. Pattern. Anal. Machine Intell., Vol
PAMI-3, No. 4, pp. 368-375, July 1981.

L. S. Davis, "A survey of edge detection techniques,” Comput.
Graph. Image Process. 4, pp. 248-270, 1975.

M. Kunt, "Edge detection: A Tutorial review," Proc. ICASSP 82,
pp. 1172-1175, 1982.

I. E. Abdou and W. K. Pratt, "Quantitative design and evaluation
of enhancement/thresholding edge detectors,” Proc. IEEE, Vol. 67,
No. 5, pp. 753-763, May 1979.

W. B. Thompson, K. M. Mutch, and V. Berzins, "Edge detection in
optical flow fields,”" Proc. 2nd Nat. Conf. Artif. Intell.,, pp. 26-29,
Pittsburg, PA, Aug. 1982,

T. Pavlidis, "A thinning algorithm for discrete binary images,"
Comput. Graph. Image Process. 13, pp. 142-157, 1980.

M. Basseville, "Edge detection using sequential methods for
change in level -- Part II: Sequential detection of change in

125

[27]

(28]

[29]

(30]

[31]

[32]

[33]

(34]

[35]

[36]

[37]

mean," IEEE Trans. Acoust., Speech, Signal Process., Vol. ASSP-29,
No. 1, pp. 32-50, Feb. 1981.

W. A. Perkins, "Area segmentation of images using edge points,"
IEEE Trans. Pattern Anal. Machine Intell.,, Vol. PAMI-2, No. 1, pp.
8-15, Jan. 1980.

J. M. Prager, "Extracting and labeling boundary segments in
natural scenes,” IEEE Trans. Pattern Anal. Machine Intell., Vol.
PAMI-2, No. 1, pp. 16-27, Jan. 1980.

H. Derbin and H. Elliot, "Modeling and segmentation of noisy and
textured images using Gibbs random fields," IEEE Trans. Pattern
Anal. Machine Intell.,, Vol. PAMI-9, No. 1, pp. 39-55, Jan. 1987.

S. K. Pal and R. A. King, "On edge detection of X-ray images using
fuzzy sets," IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-
5, No. 1, pp. 69-77, Jan. 1983.

C. W. K. Gritton and E. A. Parrish, Jr., "Boundary location from an
initial plan: The bead chain algorithm,”" "On edge detection of X-
ray images using fuzzy sets,” IEEE Trans. Pattern Anal. Machine
Intell., Vol. PAMI-5, No. 1, pp. 8-13, Jan. 1983.

A. Rosenfeld and L. S. Davis, "Image segmentation and image
models,” Proc. IEEE, Vol. 67, No. 5, pp. 764-772, May 1979.

M. A. Fischler, S. T. Barnard, R. C. Bolles, M. Lowry, L. Quam, G.
Smith, and A. Witkin, "Modeling and using physical constraints in
scene analysis," Proc. 2nd Nat. Conf. Artif. Intell.,, pp. 30-35,
Pittsburg, PA, Aug. 1982,

P. Fah and M. Kunt, "Efficient coding of high resolution
typographical characters," Proc. ICASSP 82, pp. 440-443, 1982,

U. Ramer, "An iterative procedure for the polygonal
approximation of plane curves,” Comp. Graphics and Image Proc.
1, pp. 244-256, 1972.

J. G. Dunham, "Optimum uniform piecewise linear approximation
of planar curves,” IEEE Trans. Pattern Anal. Machine Intell.,, Vol
PAMI-8, No. 1, pp. 67-75, Jan. 1986.

H. Freeman, "On encoding of arbitrary geometric configurations,”
IRE Trans. Elect. Computers, EC-10, pp. 260-268, June 1961.

126

[38]

(39]

[40]

(41]

[42]

[43]

[44]

(45]

[46]

[47]

[48]

[49]

J. Koplowitz, "A unified theory of coding schemes for the efficient
transmission of line drawings," Proc. Canadian Conf. on Commun.
and Power, pp. 205-208, Oct. 1976.

H. Freeman, "A review of relevant problems ir the processing of
line-drawing data,” in Automatic Identification and Classification
of Images, Grasselli, Ed., New York: Academic Press, 1969, pp.
155-174.

H. Freeman, "Computer processing of line-drawing images,"
Computing Surveys, Vol. 6, No. 1, pp. 57-97, Mar. 1974,

P. Zamperoni, "Scaling of contour-coded binary images,"
Electronic Letters, Vol. 14, No. 19, pp. 608-610, 14th Sept. 1978.

J. Koplowitz, "On the performance of chain codes for quantization
of line drawings,” IEEE Trans. Pattern Anal. Machine Intell., Vol.
PAMI-3, No. 2, pp. 180-185, Mar. 1981.

D. Neuhoff and K. Castor, "A rate and distortion analysis of chain
codes for line drawings,” IEEE Trans. on Info. Theory, Vol. IT-31,
No. 1, pp. 53-68, Jan. 1985.

J. E. Bresenham, "Algorithm for computer control of a digital
plotter,” IBM Systems Journal, Vol. 4, No. 1, pp. 25-30, 1965.

R. D. Merill, "Representation of contours and regions for efficient
computer search,” Commun. of the ACM, Vol. 16, No. 2, pp. 69-82,
Feb. 1973.

G. Sidhu and R. Boute, "Property encoding: Application in binary
picture encoding and boundary following," IEEE Trans. on
Computers, Vol. c-21, No. 11, pp. 1206-1216, Nov. 1972.

J. Loeb, "Communication theory of transmission of simple
drawings," Proc. London Symp. on Commun. Theory, pp. 317-327,
1952.

C. T. Zahn and R. Z. Roskies, "Fourier descriptor for plane closed
curves,” IEEE Trans. Comput., Vol. c-21, No. 3, pp. 269-281, Mar.
1972.

R. L. Cosgriff, "Identification of shape,” Ohio State Univ. Res.
Foundation, Columbus, Rep. 820-11, ASTIA AD254 792, Dec.
1960.

127

[50]

(51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

G. H. Granlund, "Fourier preprocessing for hand print character
recognition," IEEE Trans. Comput., Vol. c-21, pp. 195-201, Feb.
1972.

S. R. Dubois and F. H. Glanz, "An autoregressive model approach
to two-dimensional shape classification," IEEE Trans. Pattern.
Anal. Machine Intell., Vol. PAMI-8, No. 1, pp. 55-66, Jan. 1986.

F. Mokhtarian and A. Mackworth, "Scale-based description and
recognition of planar curves and two-dimensional shapes," IEEE
Trans. Pattern. Anal. Machine Intell., Vol. PAMI-8, No. 1, pp. 34-
43, Jan. 1986.

A. L. Yuille and T. A. Poggio, "Scaling theorem for zero crossings,"
IEEE Trans. Pattern. Anal. Machine Intell.,, Vol. PAMI-8, No. 1, pp.
15-25, Jan. 1986.

C. W. Richard, Jr. and H. Hemami, "Identification of three-
dimensional objects using Fourier descriptors of the boundary
curve," IEEE Trans. Syst. Man Cybern., Vol. SMC-4, No. 4, pp. 371-
378, July 1974.

T. P. Wallace and P. A. Winz, "An efficient three-dimensional
aircraft identification algorithm wusing normalized Fourier
descriptors,” Comput. Graph. Image Process., 13, pp. 99-126,
1980.

E. Persoon and K. Fu, "Shape discrimination using Fourier
descriptors,” IEEE Trans. Syst. Man Cybern., Vol. SMC-7, No. 3, pp.
170-179, Mar. 1977.

G. Lemay and J. Dessimoz, "Recovery of gray scaled images from
contour processed representations,” Proc. ICASSP 83, pp. 116-
117, Boston 1983.

G. Anderson, "Frequency-domain image representation,” MIT PhD
thesis, Oct. 1969.

P. Margos, R. Mersereau, and R. Schafer, "Two-dimensional linear
prediction analysis of arbitrarily-shaped regions," Proc. ICASSP
83, pp. 104-107, Boston 1983.

S. Zucker, "Toward a model of texture,” Comp. Graphics and
Image Proc. 5, pp. 190-202, 1976.

128

(61]

[62]

[63]

(64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]

[72]

[73]

G. Cross and A. Jain, "Markov iandom field texture models," IEEE
Trans. Pattern Anal. Machine Intell,, Vol. PAMI-5, No. 1, pp. 25-
39, Jan. 1983.

F. Schmitt, "Color texture reconstruction using a bidimensional
Markov model," Proc. ICASSP 82, pp. 444-447, 1982.

R. Haralick, "Statistical and structural approaches to texture,”
Proc. of IEEE, Vol. 67, No. 5, pp. 786-804, May 1979.

M. Riley, "The representation of image texture,”" MIT AI-TR-649,
Sept. 1981.

P. Chen and T. Pavlidis, "Segmentation by texture using
correlation,” IEEE Trans. Pattern Anal. Machine Intell., Vol.
PAMI-5, No. 1, pp. 64-69, Jan. 1983.

J. K. Aggaarwal and R. O. Duda, "Computer analysis of moving
polygonal images,” IEEE Trans. Compt, Vol. c-24, No. 10, pp. 966-
976, Oct. 1975.

W. B. Thompson, K. M. Mutch, and V. A. Berzins, "Dynamic
occlusion analysis in optical flow field," IEEE Trans. Pattern Anal.
Machine Intell.,, Vol. PAMI-7, No. 4, pp. 374-383, July 1985.

J. L. Turney, T. N. Mudge, R. A. Volz, "Recognizing partially
occluded parts," IEEE Trans. Pattern Anal. Machine Intell.,, Vol.
PAMI-7, No. 4, pp. 410-421, July 198S5.

W. K. Pratt, Digital Image Processing, John Wiley & Sons, 1978.

D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall,
1982.

O. R. Mitchell and T. A. Grogan, "Global and partial shape
discrimination for computer vision," Optical Engineering, Vol. 23,
No. 5, pp. 484-491, September/October 1984.

J. W. Gorman, O. R. Mitchell, and F. P. Kuhl, "Partial Shape
Recognition Using Dynamic Programming,” IEEE Trans. Pattern
Anal. Machine Intell.,, Vol. 10, No. 2, pp. 257-266, March 1988.

P. E. Zwicke and I. Kiss, Jr.,, "A New Implementation of the Mellin
Transform and its Application to Radar Classification of Ships,"

129

[74]

[75]

[76]

(77]

(78]

IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-5, No. 2, pp.
191-199, March 1983.

C. Myers, L. R. Rabiner, and A. E. Rosenberg, "Performance
Tradeoffs in Dynamic Time Warping Algorithms for Isolated
Word Recognition,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, Vol. ASSP-28, No. 6, pp. 623-635, December
1980.

J. Illingworth and J. Kittler, "The Adaptive Hough Transform,"
IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-9, No. 5, pp.
690-698, September 1987.

D. B. Shu, C. C. Li, J. F. Macuso, and Y. N. Sun, "A Line Extraction
Method for Automated SEM Inspection of VLSI Resist,” IEEE
Trans. Pattern Anal. Machine Intell., Vol. 10, No. 1, pp. 117-120,
January 1988.

F. M. Rhodes, J. J. Dituri, G. H. Chapman, B. E. Emerson, A. M.
Soares, and J. I. Raffel, "A Monolithic Hough Transform Processor
Based on Restructurable VLSI," IEEE Trans. Pattern Anal.
Machine Intell.,, Vol. 10, No. 1, pp. 106-111, January 1988.

K. Hanahara, T. Maruyama, and T. Uchiyama, "A Real-Time
Processor for the Hough Transform," IEEE Trans. Pattern Anal.
Machine Intell.,Vol. 10, No. 1, pp. 121-125, January 1988.

130

