
Learning State and Action Abstractions for
Effective and Efficient Planning

by

Rohan Chitnis
B.S., University of California, Berkeley (2016)

S.M., Massachusetts Institute of Technology (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 13, 2022
Certified by. .

Leslie P. Kaelbling
Professor of Electrical Engineering and Computer Science

Thesis Supervisor
Certified by. .

Tomás Lozano-Pérez
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Learning State and Action Abstractions for

Effective and Efficient Planning

by

Rohan Chitnis

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

An autonomous agent should make good decisions quickly. These two considera-
tions — effectiveness and efficiency — are especially important, and often competing,
when an agent plans to make decisions sequentially in long-horizon tasks. Unfortu-
nately, planning directly in the state and action spaces of a task is intractable for many
tasks of interest. Abstractions offer a mechanism for overcoming this intractability,
allowing the agent to reason at a higher level about the most salient aspects of a task.
In this thesis, we develop novel frameworks for learning state and action abstractions
that are optimized for both effective and efficient planning. Most generally, state and
action abstractions are arbitrary transformations of the state and action spaces of
the given planning problem; we focus on task-specific abstractions that leverage the
structure of a given task (or family of tasks) to make planning efficient. Throughout
the chapters, we show how to learn neuro-symbolic abstractions for bilevel planning;
present a method for learning to generate context-specific abstractions of Markov
decision processes; formalize and give a tractable algorithm for reasoning efficiently
about relevant exogenous processes in a Markov decision process; and introduce a
powerful and general mechanism for planning in large problem instances containing
many objects. We demonstrate across both classical and robotics planning tasks,
using a wide variety of planners, that the methods we present optimize a tradeoff
between planning effectively and planning efficiently.

Thesis Supervisor: Leslie P. Kaelbling
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Tomás Lozano-Pérez
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

This thesis is dedicated to several people who have been pivotal to the last six

years of my life, as I went from understanding very little about myself and my research

field, to understanding much more about myself and a bit more about my research

field.

First and foremost, I’d like to thank my advisers Leslie Kaelbling and Tomás

Lozano-Pérez. You both have been incredible advisers, and constantly gave me the

freedom to explore my research passions without worrying about pressure to publish

or work on the things that are considered cool right now. I really appreciate your

support, both personal and professional, as I’ve grown over these last six years.

I’d also like to thank George Konidaris, the third member of my thesis committee,

for many productive conversations over the years, and for helping shape this thesis

into what it is. Your work has been inspirational to me, and crucial in shaping my

own research.

To Tom Silver: you’ve been a wonderful collaborator and dear friend over the

years. I am so thankful that we got fortuitously placed together on a project about

curiosity many years ago; in retrospect, that was one of the defining moments of

my PhD. I wish you nothing but success in continuing our research agenda, and in

all your future endeavors. I also want to thank all my other collaborators over the

years: Nishanth Kumar, Willie McClinton, Beomjoon Kim, Aidan Curtis, Ferran

Alet, Kaiyu Zheng, Yoonchang Sung, Clement Gehring, Caelan Garrett, and Rachel

Holladay. Thank you for giving me the opportunity to learn from and alongside you.

On the personal side, I want to thank all my friends, both from the Sidney-Pacific

residence and in my department, for helping me have a community outside the lab.

I also want to thank my family friend Shirish Joshi for the great advice given to

me during the first year of my program. I have never forgotten the words you spoke

that day; I still think about them regularly, and they are a large part of the reason I

was able to finish my PhD.

I want to finish by thanking my family. Thank you to my parents, Sunil and

5

Shubhada Chitnis, whose generosity and nonstop support has enabled me to work

hard to get where I am today. My mom, especially, has sacrificed so much in her own

life to enable me to succeed. Thank you to my extended family: Aji, Bobby, Sanju

Mama, Aarti Mami, Shreyus, and Anish, for talking to me regularly and making sure

that I’m doing okay. Sanju Mama: your PhD thesis from MIT many years ago was

dedicated to me, in the hopes that I’d be inspired to pursue “a lifetime of learning”

— I really appreciated that, and my thesis is dedicated to Shreyus and Anish doing

the same. Finally, to Shalini Gupta, you’ve been the greatest partner I could ever

hope for, through both the good times and the hard times these past few years. I’m

so lucky to have met you, and I’m so happy we got the chance to take this journey

through the PhD together. Looking forward to what’s in store ahead.

6

Contents

1 Introduction 17

1.1 Papers Covered in this Thesis . 20

2 Background 23

2.1 Markov Decision Processes and Factored Markov Decision Processes . 23

2.1.1 Context-Specific Independence in Factored mdps 24

2.1.2 Factored mdps with Exogenous Variables 25

2.2 Relational Planning Problems . 26

3 Inventing Symbolic, Relational Abstractions for Bilevel Planning 29

3.1 Motivation . 29

3.2 Related Work . 32

3.3 Problem Setting . 33

3.4 Relational State and Action Abstractions for Planning: Predicates,

Operators, and Samplers . 35

3.5 Bilevel Planning with Relational Abstractions 38

3.5.1 Algorithm Description . 39

3.5.2 Discussion: The Virtues of Abstractions in Bilevel Planning . 40

3.6 Learning Predicates, Operators, and Samplers 41

3.6.1 Learning Operators . 41

3.6.2 Learning Samplers . 46

3.6.3 Inventing Predicates via Local Search over a Grammar 48

7

3.6.4 Discussion: The Potential Vices of Learned Abstractions in

Bilevel Planning . 56

3.7 Experiments . 57

3.7.1 Experimental Design . 57

3.7.2 Main Results and Discussion 62

3.7.3 Additional Results . 66

3.7.4 More Explanation of Blocks / hAdd Results 69

4 CAMPs: Learning Context-Specific Abstractions of Factored MDPs 79

4.1 Motivation . 79

4.2 Related Work . 81

4.3 Problem Setting . 82

4.4 Context-Specific Abstract Markov Decision Processes (CAMPs) . . . 84

4.5 Learning to Generate CAMPs . 86

4.5.1 Approximating the Context-Specific Independences 86

4.5.2 Learning the Context Selector 88

4.6 Experiments . 89

4.6.1 Experimental Design . 90

4.6.2 Main Results and Discussion 95

4.6.3 Additional Results . 96

5 Learning Compact Models for Planning with Exogenous Processes 101

5.1 Motivation . 101

5.2 Related Work . 102

5.3 Problem Setting . 104

5.4 Approach . 106

5.4.1 Leveraging Exogeneity . 106

5.4.2 Objective Estimation and Simple Strategies 107

5.4.3 Analyzing the Value Functions of Interest 108

5.4.4 A Correlational Algorithm for Mask-Learning 111

5.5 Experiments . 113

8

6 Planning with Learned Object Importance in Large Problems 119

6.1 Motivation . 119

6.2 Related Work . 121

6.3 Problem Setting . 122

6.4 Planning with Object Importance . 123

6.4.1 Scoring Object Importance Individually 124

6.4.2 Training with Supervised Learning 126

6.5 Object Importance Scorers as GNNs 127

6.6 Experiments . 129

6.6.1 Experimental Design . 130

6.6.2 Main Results and Discussion 133

6.6.3 Additional Results . 135

7 Conclusion and Future Work 143

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

List of Figures

1-1 Overview Figure for Thesis . 19

3-1 Overview Figure for Chapter 3 . 31

3-2 Illustration of Predicate Invention via Hill Climbing 54

3-3 Main Results for Chapter 3 . 62

3-4 Proxy Objective Decomposition Analysis 72

3-5 Learned Abstractions for PickPlace1D 73

3-6 Learned Abstractions for Blocks . 74

3-7 Learned Abstractions for Painting, 1 of 2 75

3-8 Learned Abstractions for Painting, 2 of 2 76

3-9 Learned Abstractions for Tools, 1 of 2 77

3-10 Learned Abstractions for Tools, 2 of 2 78

4-1 Motivating Example for camps . 80

4-2 Overview Figure for Chapter 4 . 83

4-3 Example of a camp . 98

4-4 Data-flow Diagram for camp Learning and Evaluation 99

4-5 Mean Returns versus Computation Time on Test Tasks 99

5-1 Additional Experimental Results and Environment Visualizations . . 115

5-2 Qualitative Example of a Learned Abstraction 116

6-1 Fast Downward Planning Times versus Number of Extraneous Objects 137

6-2 Overview Figure for Chapter 6 . 138

6-3 Illustration of Object Importance Scoring with GNNs 139

11

6-4 Visualization of Example Problem from the PyBullet Domain. 139

6-5 Number of Iterations Required for ploi and Random Object Scoring 140

6-6 Effect of Message Passing Iterations on ploi 140

6-7 Effect of Number of Training Examples on ploi 141

12

List of Tables

3.1 Main Results for Chapter 3 . 63

3.2 Learning Times . 67

3.3 Expanded Results for Number of Nodes Created 67

3.4 Expanded Results for Wall-Clock Time 68

4.1 Main Results for Chapter 4 . 95

5.1 Main Results for Chapter 5 . 115

6.1 Main Results for Chapter 6 . 130

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

List of Algorithms

1 Bilevel Planning with Abstractions . 48

2 Predicate Invention Proxy Objective 48

3 Context-Specific Independence Learning Algorithm 87

4 Context Selector Learning Algorithm 89

5 Correlational Mask-Learning Algorithm for Exogenous Variables 112

6 ploi Pseudocode . 123

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

Chapter 1

Introduction

An autonomous agent should make good decisions quickly. These two considera-

tions — effectiveness and efficiency — are especially important, and often competing,

when an agent is planning to make decisions sequentially in long-horizon tasks [96].

In order for robots to be able to support us in a wide range of activities in our ev-

eryday lives, such as cooking, cleaning, and running errands, this sort of planning is

essential: the robot must be able to reason about its future behavior, as humans do

very naturally. It must think about the effects of its actions and figure out how to

chain together its various capabilities (e.g., moving an end effector or performing a

detection) to produce effective sequences of actions that drive it to complete the tasks

given to it.

Unfortunately, planning is hard — and often intractable — for many settings of

interest, spanning discrete symbolic reasoning [66], stochastic shortest paths [124], and

robotics domains with continuous state and action spaces [52]. A major issue is that

planners are highly sensitive to the choice of state and/or action representation, but

these representations are usually hand-specified for the entire domain by a designer,

rather than tailored to any particular task (or family of tasks). This is unsatisfying

because hand-specified representations cannot scale effectively, and limit the potential

of designing autonomous systems for a variety of applications.

This thesis explores the idea of learning abstractions as a general mechanism

for ameliorating the intractability of planning. Abstractions, in the most general

17

sense, allow the agent to reason at a higher level about the most salient aspects of

a task [42, 44, 98, 91, 1]. Importantly, the learned abstractions should be specific to

the tasks the agent will need to solve: they should simplify the representation of the

task while preserving the aspects that are important for generating a good solution.

We will explore two forms of task-specific abstractions, with a common goal of using

an abstraction for effective and efficient planning. The first form, studied in Chapter

3, is neuro-symbolic, relational abstractions, which allow a robot to plan to long

horizons in continuous spaces by learning STRIPS-style predicates and operators [51]

and neural network samplers, then using them for bilevel hierarchical planning. The

second form, studied in Chapters 4, 5, and 6, is projective abstractions, which detect

and drop irrelevant variables from a factored planning problem to make it easier to

solve.

Throughout this thesis, we will focus on state abstractions and action abstractions.

An abstraction over state space 𝒮 and action space 𝒜 is a pair of functions (𝜎, 𝜏),

with 𝜎 : 𝒮 ↦→ 𝒮 ′ and 𝜏 : 𝒜 ↦→ 𝒜′, where 𝒮 ′ and 𝒜′ are the abstract state and

action spaces [91]. In words, this simply says that the abstraction maps states and

actions into some other representation. Generally, we will be interested in abstractions

that map to representations compatible with provided planners, such as classical AI

planners, mdp solvers, or task and motion planners [52].

A central theme in this thesis will be the idea of optimizing (approximately) both

the effectiveness of planning (the ability for a planner to return good solutions), and

the efficiency of planning (the speed at which the planner returns its solutions). On

one extreme, running a brute-force planner directly on a given task without suitable

abstractions can produce solutions given enough time, but will be unusable in practice.

On the other extreme, a planner that immediately returns bad solutions would be

highly undesirable. It will often be the case that the methods presented in this

thesis offer a good balance between these two criteria: we aim to learn task-specific

abstractions that are not necessarily quality-preserving, but allow for faster planning

without compromising too much quality.

Throughout the thesis, we will study algorithms for speeding up various planning

18

Figure 1-1: Top Left : We focus on solving large, continuous-space planning problems
effectively and efficiently. Using a planner directly on large, complex problems can
yield accurate solutions given enough time, but will be intractable in practice. Top
Right : To remedy this intractability, we focus on learning task-specific abstractions
from data. These abstractions can then be used to accelerate planning. Bottom
Left : Chapter 3 of this thesis studies neuro-symbolic abstractions for bilevel planning.
Here, we learn STRIPS-style symbolic predicates and operators, and neural network
samplers, then use these for efficient hierarchical planning in both the abstraction
and the original planning problem. Bottom Right : Chapters 4, 5, and 6 of this thesis
study projective abstractions for factored planning problems. Here, we learn which
variables can be dropped from consideration during planning, leading to a reduced
problem that is more efficient to plan in than the original planning problem.

strategies, including task and motion planning, mdp value iteration, Monte Carlo tree

search, and classical AI planning. We will also study a variety of planning problems,

including geometry-aware robotics tasks and both deterministic and stochastic PDDL

problems [107].

See Figure 1-1 for an overview diagram.

The remainder of this thesis is organized as follows:

• We begin by providing relevant background information in Chapter 2.

• In Chapter 3, we study how to invent STRIPS-style relational abstractions and

19

use them for planning in continuous spaces.

• In Chapter 4, we study a version of projective abstraction in which a robot

imposes constraints on its own behavior in an environment to make some aspects

of the environment irrelevant. We examine and solve two learning problems:

which constraints to impose given a task, and what aspects of the environment

become irrelevant under a given constraint.

• In Chapter 5, we study a version of projective abstraction in which the planning

problem contains exogenous processes, which are processes that are unaffected

by the robot’s actions. We show how to leverage this property to design an effi-

cient approximate algorithm for deciding which exogenous processes the planner

should reason about.

• In Chapter 6, we study a version of projective abstraction in which the planning

problem is object-centric and has many objects. Here, the robot must reason

about which objects are relevant to solving any particular problem. We will

show how to train graph neural networks [132] to perform this type of reasoning.

• Finally, we offer concluding thoughts and ideas for future research directions in

Chapter 7.

1.1 Papers Covered in this Thesis

This thesis contains the contents of four papers, three of which are published at

peer-reviewed conferences, and one of which is under review. Furthermore, all the

work described here builds off several other of my previous works [29, 32, 33, 137].

Chapter 3 covers the following paper:

Inventing Relational State and Action Abstractions for Effective and Efficient

Bilevel Planning. Tom Silver*, Rohan Chitnis*, Nishanth Kumar, Willie McClin-

ton, Tomás Lozano-Pérez, Leslie Pack Kaelbling, Joshua Tenenbaum. Under review.

Preliminary version appeared at RLDM 2022.

20

Chapter 4 covers the following paper:

CAMPs: Learning Context-Specific Abstractions for Efficient Planning in Fac-

tored MDPs. Rohan Chitnis*, Tom Silver*, Beomjoon Kim, Leslie Pack Kael-

bling, Tomás Lozano-Pérez. In the proceedings of the Conference on Robot Learning

(CoRL), 2020.

Chapter 5 covers the following paper:

Learning Compact Models for Planning with Exogenous Processes. Rohan Chit-

nis, Tomás Lozano-Pérez. In the proceedings of the Conference on Robot Learning

(CoRL), 2019.

Chapter 6 covers the following paper:

Planning with Learned Object Importance in Large Problem Instances using Graph

Neural Networks. Tom Silver*, Rohan Chitnis*, Aidan Curtis, Joshua Tenenbaum,

Tomás Lozano-Pérez, Leslie Pack Kaelbling. In the proceedings of the AAAI Confer-

ence on Artificial Intelligence (AAAI), 2021.

21

THIS PAGE INTENTIONALLY LEFT BLANK

22

Chapter 2

Background

In this thesis, we will be interested in decision-making problems where a robot

interacts with an environment, taking actions and receiving observations of the re-

sulting next states under some system dynamics. There are many possible ways to

formalize such a setting. This section describes two popular frameworks: Markov

decision processes and relational planning. In the former, the robot’s objective is to

maximize rewards accrued over an episode of interaction with the dynamical system

(i.e., the environment). In the latter, the robot’s objective is to achieve given goals

starting from given initial states, where states and goals are represented in relational

first-order logic. Both formulations can support either deterministic or stochastic

planning; various parts of the thesis will study one or the other, and we will make it

clear when a particular part is only applicable to the deterministic setting.

2.1 Markov Decision Processes and Factored Markov

Decision Processes

An infinite-horizon Markov decision process (mdp) [124] is a tupleℳ = ⟨𝒮,𝒜, 𝑇, 𝑅, 𝛾⟩

where: 𝒮 is the state space; 𝒜 is the action space; 𝑇 (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) = 𝑃 (𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡) is

the state transition distribution with 𝑠𝑡, 𝑠𝑡+1 ∈ 𝒮 and 𝑎𝑡 ∈ 𝒜; 𝑅(𝑠𝑡, 𝑎𝑡) is the reward

function; and 𝛾 is the discount factor in (0, 1]. On each timestep, the agent chooses an

23

action, transitions to a new state sampled from 𝑇 , and receives a reward as specified

by 𝑅. The solution to an mdp is a policy 𝜋, a mapping from states in 𝒮 to actions in

𝒜, such that the expected discounted sum of rewards over trajectories resulting from

following 𝜋, which is E [
∑︀∞

𝑡=0 𝛾
𝑡𝑅(𝑠𝑡, 𝜋(𝑠𝑡))], is maximized. Here, the expectation is

with respect to the stochasticity in the initial state and state transitions. The value

of a state 𝑠 ∈ 𝒮 under policy 𝜋 is defined as the expected discounted sum of rewards

from following 𝜋, starting at state 𝑠: 𝑉𝜋(𝑠) = E [
∑︀∞

𝑡=0 𝛾
𝑡𝑅(𝑠𝑡, 𝜋(𝑠𝑡)) | 𝑠0 = 𝑠]. The

value function for 𝜋 is the mapping from 𝒮 to R defined by 𝑉𝜋(𝑠),∀𝑠 ∈ 𝒮.

A finite-horizon mdp ℳ = ⟨𝒮,𝒜, 𝑇, 𝑅,𝐻⟩ is similar to an infinite-horizon one,

but rather than a discount factor 𝛾, a horizon 𝐻 is given. The solution is a policy 𝜋

that maximizes the expected sum of rewards up to the horizon: E
[︁∑︀𝐻

𝑡=0𝑅(𝑠𝑡, 𝜋(𝑠𝑡))
]︁
.

Dynamic programming algorithms (e.g., value iteration) are a common strategy for

solving mdps [124] by leveraging a recursive formulation of the value function.

In a factored mdp [62], each state variable 𝑆 is factored into 𝑛 variables {𝑆1, . . . , 𝑆𝑛},

where 𝑆𝑖 has domain 𝒮 𝑖. A state 𝑠 ∈ 𝒮 is then an assignment 𝑠 = [𝑠1, . . . , 𝑠𝑛] with

𝑠𝑖 ∈ 𝒮 𝑖; thus, 𝒮 ⊆ 𝒮1 × . . . × 𝒮𝑛. Actions are similarly factored into 𝑚 variables

{𝐴1, . . . , 𝐴𝑚} with domains 𝒜𝑖 so that 𝑎 ∈ 𝒜 is an assignment [𝑎1, . . . , 𝑎𝑚] with

𝑎𝑖 ∈ 𝒜𝑖; thus, 𝒜 ⊆ 𝒜1 × . . . × 𝒜𝑚. Let 𝑉 = {𝑆1, . . . , 𝑆𝑛} ∪ {𝐴1, . . . , 𝐴𝑚} denote

all state and action variables together. The reward function for a factored mdp is

defined in terms of a subset of variables 𝑉rew ⊆ {𝑆1, . . . , 𝑆𝑛, 𝐴1, . . . , 𝐴𝑚}, which we

call the reward variables. Variable domains may be discrete or continuous for both

states and actions.

2.1.1 Context-Specific Independence in Factored mdps

In a factored mdp, a variable is relevant for a particular task if there is any

possibility that its value at some timestep will have an eventual influence on the

value of the reward. Unfortunately, as identified by Baum et al. [16], relevance is

often too conservative of a property to be useful in practice — most variables typically

have some way of influencing the reward, under some sequence of actions taken by

the agent.

24

For greater flexibility, following the work of Boutilier et al. [25], we define a context

as a pair (𝐶, 𝒞), where 𝐶 ⊆ 𝑉 is some subset of state and action variables, and 𝒞 is a

space of possible joint assignments. A state-action pair (𝑠, 𝑎) is in the context (𝐶, 𝒞)

when its joint assignment of variables in 𝐶 is present in 𝒞. Two variables 𝑋, 𝑌 ⊆ 𝑉 ∖𝐶

are contextually independent under (𝐶, 𝒞) if 𝑃 (𝑋 | 𝑌,𝐶 = 𝑐) = 𝑃 (𝑋 | 𝐶 = 𝑐) ∀ 𝑐 ∈ 𝒞,

in which case we write 𝑋 ⊥⊥ 𝑌 | (𝐶, 𝒞). This relation is called a context-specific

independence (CSI). In Chapter 4, we will explore how CSIs can be automatically

identified and exploited for planning in factored mdps.

2.1.2 Factored mdps with Exogenous Variables

As demonstrated in the fig-

ure on the right, some mdps

may decompose into an endoge-

nous component and a (much

larger) exogenous component.

Concretely, an exogenous state

variable is a state variable in a

factored mdp whose dynamics

are not affected by the actions of the agent. Examples include the weather and

time of day. However, though they are exogenous, these processes will often play a

major role in the decisions the robot should make, because they will affect the rewards

(e.g., the robot should finish making dinner before evening).

Formally, we can write the state of a factored mdp at timestep 𝑡 as 𝑠𝑡 =
[︁
𝑛𝑡 𝑥𝑡

]︁
,

where 𝑛𝑡 is the endogenous component of the state, whose transitions the agent

can affect through its actions, and 𝑥𝑡 is the exogenous component of the state. This

assumption means that 𝑃 (𝑥𝑡+1 | 𝑥𝑡, 𝑎𝑡) = 𝑃 (𝑥𝑡+1 | 𝑥𝑡), and therefore 𝑃 (𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡) =

𝑃 (𝑛𝑡+1 | 𝑛𝑡, 𝑎𝑡, 𝑥𝑡) · 𝑃 (𝑥𝑡+1 | 𝑥𝑡). Because the mdp is factored, the exogenous state 𝑥𝑡

is made up of 𝑚 (not necessarily independent) state variables 𝑥1𝑡 , 𝑥2𝑡 , . . . , 𝑥𝑚𝑡 .

Though unaffected by the agent’s actions, the exogenous state variables influence

the agent through rewards and endogenous state transitions. Therefore, to plan, the

25

agent will need to reason about future values of the 𝑥𝑡. In Chapter 5, we will discuss

algorithms for learning to plan efficiently in this setting.

2.2 Relational Planning Problems

While mdps are a popular way to formalize decision-making problems, in their

most general form there is very little structure to exploit, and so solving mdps can

quickly become intractable. Another formalization of decision-making that affords

more structure is relational planning, where states are represented via first-order

logical predicates. This structure allows for fast general-purpose solvers that can

scale to solve problems involving hundreds or even thousands of actions [66].

We now formally define the notion of a relational, object-centric planning problem.

A property is a real-valued function on a tuple of objects. For example, in the

expression pose(cup3) = 5.7, the property is pose and the tuple of objects is ⟨cup3⟩.

Predicates, e.g., on in the expression on(cup3, table) = True, are a special case of

properties where the output is binary.

A relational planning problem is a tuple Π = ⟨𝒫 ,𝒜, 𝑇,𝒪, 𝐼, 𝐺⟩, where 𝒫 is a finite

set of properties, 𝒜 is a finite set of object-parameterized actions, 𝑇 is a (possibly

stochastic) transition model, 𝒪 is a finite set of objects, 𝐼 is the initial state, and 𝐺 is

the goal. A state is an assignment of values to all possible applications of properties

in 𝒫 with objects in 𝒪. A goal is an assignment of values to any subset of the ground

properties, which implicitly represents a set of states. We use 𝒮 to denote the set

of possible states and 𝒢 to denote the set of possible goals over 𝒫 . A ground action

results from applying an object-parameterized action in 𝒜 to a tuple of objects in 𝒪;

for example, pick(?x) is an object-parameterized action and pick(cup3) is a ground

action. The transition model 𝑇 defines the dynamics of the environment; it maps a

state, ground action, and next state to a probability.

A solution to Π can either be (1) a plan (a sequence of ground actions) if 𝑇

is deterministic; or (2) a policy (a mapping from states to ground actions) if 𝑇 is

stochastic. A plan is a solution to Π if following the actions from the initial state

26

reaches a goal state. A policy is a solution to Π if executing the policy from the

initial state reaches a goal state within some time horizon, with probability above

some threshold; in practice, this can be approximated by sampling trajectories. In

Chapter 6, we will study how to efficiently solve relational planning problems where

𝒪 is large and contains many extraneous objects.

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

Chapter 3

Inventing Symbolic, Relational

Abstractions for Bilevel Planning

3.1 Motivation

We have discussed in Chapter 1 that an autonomous agent should make good de-

cisions quickly. These two considerations are especially important when state and

action spaces are continuous, and task objectives are specified with goals alone; plan-

ning can be intractable without environment-specific biases. Abstractions offer a

mechanism to overcome this intractability, allowing the agent to reason at a higher

level about the most salient aspects of a task [42, 44, 98, 91, 1].

State and action abstractions have a rich history in AI and robotics [115], but

a major limitation of early work is the assumption that abstractions are “all you

need”: that planning can be decomposed into first searching for an abstract plan, and

then refining it into an actual plan for solving the task. This downward refinability

assumption [106] is untenable in many applications, especially in robotics, where

complex geometric constraints cannot be easily abstracted. To avoid this assumption,

we consider bilevel planning, where reasoning in a high-level abstraction provides

guidance for reasoning in a low-level task (cf. task and motion planning [52, 139]).

Importantly, abstractions can vary widely in how much they help (Section 3.5.2) or

hinder (Section 3.6.4) bilevel planning in an environment.

29

Another clear limitation of early work on abstractions is the reliance on manual

specification [51, 115, 106]. Even with domain expertise, this is nontrivial: it re-

quires understanding not only the environment, but also the interplay between the

abstractions and the planner. A large body of work has emerged that studies learning

abstractions for planning [119, 74, 92], but with a few notable exceptions [13, 101, 39],

these efforts assume that the learned abstractions should be “all you need.”

Building on the above points, we identify three key desiderata of a system for

planning with state and action abstractions:

1. These state and action abstractions should be learned, not manually designed for

each environment.

2. Planning with the learned abstractions should be tolerant to violations of the

downward refinability assumption.

3. The abstractions should be trained to explicitly optimize both the effectiveness

and the efficiency of planning.

In this chapter, we develop a framework for learning abstractions for planning

that addresses all three desiderata. Specifically, we learn state and action abstrac-

tions explicitly optimized for effective and efficient bilevel planning. We consider

learning from a modest number of demonstrations (around 50-200 per environment

in our experiments) in deterministic, fully observed, goal-based planning problems.

The problems have object-centric continuous states and hybrid discrete-continuous

actions, as are common in robotics [52]. The agent knows the transition model of

the environment, but it is highly intractable to plan directly using this model in the

continuous spaces, motivating the need to learn abstractions for guidance. To obtain

data-efficient generalization over object identities, we learn relational, neuro-symbolic

abstractions, where the symbolic components are predicates and operators, like those

used in AI planning [51], and the neural components are samplers that refine the

abstractions into actions that can be executed in the actual environment [29, 81, 33].

In experiments across four robotic planning environments, we find that our frame-

work is very data-efficient, and that the resulting learned abstractions are both

“task-aware” and “planner-aware.” We demonstrate task-awareness by evaluating the

30

Figure 3-1: Overview of our framework. Given a small set of goal predicates (first
panel, top), we use demonstration data to learn new predicates (first panel, bottom).
In this Blocks example, implemented using the PyBullet physics simulator [37], the
learned predicates P1 – P4 intuitively represent Holding, NotHolding, HandEmpty,
and NothingAbove respectively. Collectively, the predicates define a state abstraction
mapping continuous states 𝑥 in the environment to abstract states 𝑠. Object types are
omitted for clarity. After predicate invention, we learn abstractions of the continuous
action space and transition model via planning operators (second panel). For each
operator, we learn a sampler (third panel), a neural network that maps continuous
object features in a given state to continuous action parameters for controllers which
can be executed in the environment. In this example, the sampler proposes different
placements on the table for the held block. With these learned representations, we
perform bilevel planning (fourth panel), with search in the abstract spaces guiding
planning in the continuous spaces. Here, the goal is to create two specific towers.

learned abstractions in held-out tasks involving different numbers of objects, longer

horizons, and larger goal expressions than were seen in the demonstrations, finding

them to lead to effective and efficient planning. Interestingly, we find that in some

environments, the learned abstractions outperform ones that we manually specified.

For planner-awareness, we show that as the configuration of the planner varies, the

learned abstractions adapt accordingly. We compare against several baselines and

ablations of our system to further validate our results.

31

3.2 Related Work

Our work continues a long line of research on learning state abstractions [98, 20,

42, 44, 6, 1, 91, 78, 90, 155] and action abstractions [143, 148, 8] for planning. Most

relevant are works that learn symbolic state and action abstractions compatible with

AI planners [95, 74, 146, 3, 10, 9, 22, 11, 147]. Our work is particularly influenced by

Pasula et al. [119], who use search through a concept language to invent symbolic state

and action abstractions, and Konidaris et al. [92], who discover symbolic abstractions

by leveraging the initiation and termination sets of a provided set of options [143]

that satisfy an abstract subgoal property [5, 72]. However, these prior works assume

the abstractions learned are “all you need” (downward refinability), and thus only

perform sequential reasoning at the abstract level. Relatedly, the objectives used

in these prior works are based on variations of auto-encoding, prediction error, or

bisimulation, which stem from the perspective that the abstractions should replace

planning in the original transition space, rather than guide it.

Recent works have also considered learning abstractions for multi-level planning,

like those in the task and motion planning (TAMP) [59, 52] and hierarchical plan-

ning [19] literature. Some of these efforts consider learning symbolic action abstrac-

tions [158, 114, 137] or refinement strategies [29, 103, 30, 149, 33, 117]; our operator

and sampler learning methods take inspiration from these prior works. Recent ef-

forts by Loula et al. [101, 100] and Curtis et al. [39] consider learning both state

and action abstractions for TAMP, like we do. The main distinguishing feature of

our work is that our abstraction learning framework explicitly optimizes an objective

that considers downstream planning efficiency.

More broadly, our work is situated within the larger research agenda of learning

to plan. Other efforts in this space include heuristic learning [7, 134] (sometimes for

TAMP [133, 82, 121]), learning to estimate the feasibility of abstract plans [46, 116],

and learning to generate reductions of planning models [31, 136]. Our efforts are also

related to neuro-symbolic approaches that make use of symbolic planners, often in the

context of hierarchical reinforcement learning [61, 152, 88]; we differ in that the agent

32

knows the environment transition model in our setting, but is trying to learn effective

abstractions that making planning under that model efficient. Finally, the related

fields of inverse planning [14, 126, 157] and inverse reinforcement learning [113, 120,

94, 73] study the problem of leveraging demonstrations to infer cost functions and, in

turn, policies. In our setting, we also learn from demonstration, but differ in that we

assume goals are known; the unknowns are effective state and action abstractions for

planning in held-out tasks.

3.3 Problem Setting

We consider learning from demonstration in deterministic planning problems.

These problems are goal-based and object-centric, with continuous states and hybrid

discrete-continuous actions, which makes them importantly different from relational

planning problems (Section 2.2). Formally, an environment is a tuple ⟨Λ, 𝑑, 𝒞, 𝑓,Ψ𝐺⟩,

and is associated with a distribution 𝒯 over tasks, where each task 𝑇 ∈ 𝒯 is a tuple

⟨𝒪, 𝑥0, 𝑔⟩. All components of environments and tasks are given to the agent.

Λ is a finite set of object types, and the map 𝑑 : Λ→ N defines the dimensionality

of the real-valued feature vector for each type. Within a task, 𝒪 is an object set,

where each object has a type drawn from Λ; this 𝒪 can (and typically will) vary

between tasks. The 𝒪 induces a state space 𝒳𝒪 (going forward, we simply write 𝒳

when clear from context). A state 𝑥 ∈ 𝒳 in a task is a mapping from each 𝑜 ∈ 𝒪 to

a feature vector in R𝑑(type(𝑜)); 𝑥0 is the initial state of the task.

𝒞 is a finite set of controllers. A controller 𝐶((𝜆1, . . . , 𝜆𝑣),Θ) ∈ 𝒞 can have both

discrete typed parameters (𝜆1, . . . , 𝜆𝑣) and a continuous real-valued vector of param-

eters Θ. For instance, a controller Pick for picking up a block might have one discrete

parameter of type block and a Θ that is a placeholder for a specific grasp pose. The

controller set 𝒞 and object set 𝒪 induce an action space 𝒜𝒪 (going forward, we write

𝒜 when clear). An action 𝑎 ∈ 𝒜 in a task is a controller 𝐶 ∈ 𝒞 with both dis-

crete and continuous arguments: 𝑎 = 𝐶((𝑜1, . . . 𝑜𝑣), 𝜃), where the objects (𝑜1, . . . 𝑜𝑣)

are drawn from the object set 𝒪 and must have types matching the controller’s dis-

33

crete parameters (𝜆1, . . . , 𝜆𝑣). Transitions through states and actions are governed by

𝑓 : 𝒳 ×𝒜 → 𝒳 , a known, deterministic transition model that is shared across tasks.

A predicate 𝜓 is characterized by an ordered list of types (𝜆1, . . . , 𝜆𝑚) and a

lifted binary state classifier 𝑐𝜓 : 𝒳 ×𝒪𝑚 → {true, false}, where 𝑐𝜓(𝑥, (𝑜1, . . . , 𝑜𝑚)) is

defined only when each object 𝑜𝑖 has type 𝜆𝑖. For instance, the predicate Holding

may, given a state and two objects, robot and block, describe whether the block is

held by the robot in this state. A lifted atom is a predicate with typed variables

(e.g., Holding(?robot, ?block)). A ground atom 𝜓 consists of a predicate 𝜓 and

objects (𝑜1, . . . , 𝑜𝑚), again with all type(𝑜𝑖) = 𝜆𝑖 (e.g., Holding(robby, block7)).

Note that a ground atom induces a binary state classifier 𝑐𝜓 : 𝒳 → {true, false},

where 𝑐𝜓(𝑥) ≜ 𝑐𝜓(𝑥, (𝑜1, . . . , 𝑜𝑚)).

Ψ𝐺 is a small set of goal predicates that we assume are given and sufficient for

representing task goals, but insufficient practically as standalone state abstractions.

Specifically, the goal 𝑔 of a task is a set of ground atoms over predicates in Ψ𝐺 and

objects in 𝒪. A goal 𝑔 is said to hold in a state 𝑥 if for all ground atoms 𝜓 ∈ 𝑔,

the classifier 𝑐𝜓(𝑥) returns true. A solution to a task is a plan 𝜋 = (𝑎1, . . . , 𝑎𝑛), a

sequence of actions 𝑎 ∈ 𝒜 such that successive application of the transition model

𝑥𝑖 = 𝑓(𝑥𝑖−1, 𝑎𝑖) on each 𝑎𝑖 ∈ 𝜋, starting from initial state 𝑥0, results in a final state

𝑥𝑛 where 𝑔 holds.

The agent is provided with a set of training tasks from 𝒯 and a set of demon-

strations 𝒟, with one demonstration per task. We assume action costs are unitary

and demonstrations are near-optimal, which will be exploited in Section 3.6.3.1. Each

demonstration consists of a training task ⟨𝒪, 𝑥0, 𝑔⟩ and a plan 𝜋* that solves the task.

Note that for each plan, we can recover the associated state sequence starting at 𝑥0,

since 𝑓 is known and deterministic. The agent’s objective is to efficiently solve held-

out tasks drawn from 𝒯 , using anything it chooses to learn from the demonstrations.

In other words, the agent should produce good solutions quickly. In our experiments,

to assess generalization, we evaluate the agent on tasks that involve more objects,

require longer action sequences, and have larger goal expressions than the training

tasks.

34

3.4 Relational State and Action Abstractions for Plan-

ning: Predicates, Operators, and Samplers

Since the agent has access to the transition model 𝑓 , one approach for optimizing

the objective described in Section 3.3 is to forgo learning entirely, and solve any held-

out task by running a planner over the state state 𝒳 and action space 𝒜. However,

searching for a solution directly in these large spaces is highly infeasible, making this

approach unattractive. Instead, we propose to learn abstractions using the provided

demonstrations. We adopt a very general definition of an abstraction [91]: mappings

from 𝒳 and 𝒜 to alternative state and action spaces. In this section, we will describe

representations that allow for fast general-purpose planning (Section 3.5), and then

we will learn object-centric, relational abstractions that are optimized for efficiency

when using our planning strategy (Section 3.6).

We first characterize an abstract state space 𝒮Ψ and a transforma-

tion from states in 𝒳 to abstract states. Next, we describe an abstract

action space Ω and an abstract transition model 𝐹 : 𝒮Ψ × Ω → 𝒮Ψ
that can be used to plan in the abstract space. Finally, we define

samplers Σ for refining abstract actions back into 𝒜, so that abstract

plans can guide planning in the task. See the diagram on the right for

a summary.

(1) An abstract state space. We use a set of predicates Ψ (as defined in Section

3.3) to induce an abstract state space 𝒮Ψ. Recalling that a ground atom 𝜓 induces a

classifier 𝑐𝜓 over states 𝑥 ∈ 𝒳 , we have:

Definition 1 (Abstract state). The abstract state 𝑠 corresponding to state 𝑥 ∈ 𝒳 is

the set of ground atoms under Ψ that hold true in 𝑥:

𝑠 = Abstract(𝑥,Ψ) ≜ {𝜓 : 𝑐𝜓(𝑥) = true,∀𝜓 ∈ Ψ}.

The (discrete) abstract state space induced by Ψ is denoted 𝒮Ψ. Throughout

this work, we use predicate sets Ψ that are supersets of the given goal predicates

35

Ψ𝐺. However, only the goal predicates are given, and they alone are typically very

limited; in Section 3.6, we will discuss how the agent can use data to invent predicates

that will make up the majority of Ψ. See Figure 3-1 (first panel) for an example of a

predicate set Ψ, made up of goal predicates and learned predicates.

(2) An abstract action space and abstract transition model. We address

both by having the agent learn operators :

Definition 2 (Operator). An operator is a tuple 𝜔 = ⟨Par,Pre,Eff+,Eff−,Con⟩

where:

∙ Par is an ordered list of parameters: variables with types drawn from the type

set Λ.

∙ Pre,Eff+,Eff− are preconditions, add effects, and delete effects respectively,

each a set of lifted atoms over Ψ and Par.

∙ Con is a tuple ⟨𝐶,ParCon⟩ where 𝐶((𝜆1, . . . , 𝜆𝑣),Θ) ∈ 𝒞 is a controller and

ParCon is an ordered list of controller arguments, each a variable from Par.

Furthermore, |ParCon| = 𝑣, and each argument 𝑖 must be of the respective type

𝜆𝑖.

We denote the set of operators as Ω. See Figure 3-1 (second panel) for an example.

Unlike in STRIPS [51], our operators are augmented with controllers and controller

arguments, which will help us connect to the task actions in (3) below. Now, given a

task with object set 𝒪, the set of all ground operators defines our (discrete) abstract

action space for a task:

Definition 3 (Ground operator / abstract action). A ground operator 𝜔 = ⟨𝜔, 𝛿⟩ is

an operator 𝜔 and a substitution 𝛿 : Par → 𝒪 mapping parameters to objects. We

use Pre,Eff+,Eff−, and ParCon to denote the ground preconditions, ground add

effects, ground delete effects, and ground controller arguments of 𝜔, where variables

in Par are substituted with objects under 𝛿.

We denote the set of ground operators (the abstract action space) as Ω. Together

with the abstract state space 𝒮Ψ, the preconditions and effects of the operators induce

an abstract transition model for a task:

36

Definition 4 (Abstract transition model). The abstract transition model induced by

predicates Ψ and operators Ω is a partial function 𝐹 : 𝒮Ψ × Ω→ 𝒮Ψ. 𝐹 (𝑠, 𝜔) is only

defined if 𝜔 is applicable in 𝑠: Pre ⊆ 𝑠. If defined, 𝐹 (𝑠, 𝜔) ≜ (𝑠− Eff−) ∪ Eff+.

(3) A mechanism for refining abstract actions into task actions. Observe

that a ground operator 𝜔 induces a partially specified controller, 𝐶((𝑜1, . . . 𝑜𝑣),Θ) with

(𝑜1, . . . 𝑜𝑣) = ParCon, where object arguments have been selected but continuous

parameters Θ have not. To refine this abstract action 𝜔 into a task-level action

𝑎 = 𝐶((𝑜1, . . . 𝑜𝑣), 𝜃), we use samplers :

Definition 5 (Sampler). Each operator 𝜔 ∈ Ω is associated with a sampler 𝜎 :

𝒳 ×𝒪|Par| → ∆(Θ), where ∆(Θ) is the space of distributions over Θ, the continuous

parameters of the operator’s controller.

Definition 6 (Ground sampler). For each ground operator 𝜔 ∈ Ω, if 𝜔 = ⟨𝜔, 𝛿⟩ and

𝜎 is the sampler associated with 𝜔, then the ground sampler associated with 𝜔 is a

state-conditioned distribution 𝜎 : 𝒳 → ∆(Θ), where 𝜎(𝑥) ≜ 𝜎(𝑥, 𝛿(Par)).

We denote the set of samplers as Σ. See Figure 3-1 (third panel) for an example.

What connects the transition model 𝑓 , abstract transition model 𝐹 , and samplers

Σ? While previous works enforce the downward refinability property [106, 119, 74, 92],

it is important in robotics to be robust to violations of this property, since learned

abstractions will typically lose critical geometric information. Therefore, we only

require our learned abstractions to satisfy the following weak semantics : for every

ground operator 𝜔 with partially specified controller 𝐶((𝑜1, . . . , 𝑜𝑣),Θ) and associated

ground sampler 𝜎, there exists some 𝑥 ∈ 𝒳 and some 𝜃 in the support of 𝜎(𝑥) such that

𝐹 (𝑠, 𝜔) is defined and equals 𝑠′, where 𝑠 = Abstract(𝑥,Ψ), 𝑎 = 𝐶((𝑜1, . . . , 𝑜𝑣), 𝜃),

and 𝑠′ = Abstract(𝑓(𝑥, 𝑎),Ψ). Note that downward refinability [106] makes a

much stronger assumption: that this statement holds for every 𝑥 ∈ 𝒳 where 𝐹 (𝑠, 𝜔)

is defined.

37

3.5 Bilevel Planning with Relational Abstractions

How can we use the components of an abstraction — predicates Ψ, operators Ω,

and samplers Σ — for efficient planning? We begin by defining the notion of an

abstract plan.

Definition 7 (Abstract plan). An abstract plan �̂� for a task ⟨𝒪, 𝑥0, 𝑔⟩ is a sequence

of ground operators (𝜔1, . . . , 𝜔𝑛) such that applying the abstract transition model 𝑠𝑖 =

𝐹 (𝑠𝑖−1, 𝜔𝑖) successively starting from 𝑠0 = Abstract(𝑥0,Ψ) results in a sequence of

abstract states (𝑠0, . . . , 𝑠𝑛) that achieves the goal, i.e., 𝑔 ⊆ 𝑠𝑛. This (𝑠0, . . . , 𝑠𝑛) is

called the expected abstract state sequence.

Crucially, because downward refinability does not hold in our setting, an abstract

plan �̂� is not guaranteed to be refinable into a solution 𝜋 for the task. In order to

produce effective plans, we will need to appeal to hierarchical planning strategies that

can reason about both abstract plans and task-level plans, and flexibly move between

reasoning at either level. Therefore, we use a bilevel planning strategy that conducts

an outer search over abstract plans using the predicates and operators, and an inner

backtracking search over refinements of an abstract plan into a task solution 𝜋 using

the predicates and samplers.

Our bilevel planning strategy builds on the basic structure of a popular task and

motion planning system devised by Srivastava et al. [139], but without the domain-

specific error propagation mechanisms. Variations on this algorithm are possible,

such as using local search rather than backtracking in the inner search [29], or using

other optimization techniques [145, 52]. The relative performance of these algorithms

will depend on the properties of the environment and tasks; we have chosen to follow

the basic outline of Srivastava et al. [139] due to its relative simplicity of explanation

and implementation, and due to its strong empirical performance in our experimental

domains. Our initial experimentation with PDDLStream [53] (both incremental and

focused) found it to be much less efficient on evaluation tasks than the planning

algorithm we describe in this section.

We next describe the planning algorithm in detail.

38

3.5.1 Algorithm Description

The overall structure of the planner is outlined in Algorithm 1. For the outer

search that finds abstract plans �̂�, denoted GenAbstractPlan (Alg. 1, Line 2),

we leverage the STRIPS-style operators and predicates [51] to automatically derive

a domain-independent heuristic popularized by the AI planning community, such as

LMCut [67]. We use this heuristic to run an A* search over the abstract state space 𝒮Ψ
and abstract action space Ω. This A* search is used as a generator (hence the name

GenAbstractPlan) of abstract plans �̂�, outputting one at a time1. Parameter

𝑛abstract governs the maximum number of abstract plans that can be generated before

the planner terminates with failure.

For each abstract plan �̂�, we conduct an inner search that attempts to Refine

(Alg. 1, Line 3) it into a solution 𝜋 (a plan that achieves the goal under the transition

model 𝑓). While various implementations of Refine are possible [29], we follow

Srivastava et al. [139] and perform a backtracking search over the abstract actions

𝜔𝑖 ∈ �̂�. Recall that each 𝜔𝑖 induces a partially specified controller 𝐶𝑖((𝑜1, . . . , 𝑜𝑣)𝑖,Θ𝑖)

and has an associated ground sampler 𝜎𝑖. To begin the search, we initialize an

indexing variable 𝑖 to 1. On each step of search, we sample continuous parameters

𝜃𝑖 ∼ 𝜎𝑖(𝑥𝑖−1), which fully specify an action 𝑎𝑖 = 𝐶𝑖((𝑜1, . . . , 𝑜𝑣)𝑖, 𝜃𝑖). We then check

whether 𝑥𝑖 = 𝑓(𝑥𝑖−1, 𝑎𝑖) obeys the expected abstract state sequence, i.e., whether

𝑠𝑖 = Abstract(𝑥𝑖,Ψ). If so, we continue on to 𝑖← 𝑖+ 1. Otherwise, we repeat this

step, sampling a new 𝜃𝑖 ∼ 𝜎𝑖(𝑥𝑖−1). Parameter 𝑛samples governs the maximum number

of times we invoke the sampler for a single value of 𝑖 before backtracking to 𝑖← 𝑖−1.

Refine succeeds if the goal 𝑔 holds when 𝑖 = |�̂�|, and fails when 𝑖 backtracks to 0.

If Refine succeeds given a candidate �̂�, the planner terminates with success

(Alg. 1, Line 4) and returns the plan 𝜋 = (𝑎1, . . . , 𝑎|�̂�|). Crucially, if Refine fails,

we continue with GenAbstractPlan to generate the next candidate �̂�. In the

taxonomy of task and motion planners (TAMP), this approach is in the “search-

1This usage of A* search as a generator is related to the field of top-𝑘 planning [128, 79, 127]. We
experimented with off-the-shelf top-𝑘 planners, but chose to use A* because it was faster in our
domains. Note that it is used heavily in the learning loop (Section 3.6.3).

39

then-sample” category [139, 40, 52]. As we have described it, this planner is not

probabilistically complete, because abstract plans are not revisited. Furthermore,

there is no propagation of information about failures in the inner search back to the

outer search. Extensions to ensure completeness and improve practical performance

are straightforward [29], but are not our focus in this work.

3.5.2 Discussion: The Virtues of Abstractions in Bilevel Plan-

ning

We have seen in Section 3.5.1 that our bilevel planning algorithm uses search in

the abstract transition space as a form of guidance. But how exactly are the state

and action abstractions being leveraged? We identify four key ways:

∙ Pruning unlikely candidate plans. The Refine procedure is only run on ab-

stract plans �̂�, which by definition achieve the goal at the abstract level. Therefore,

sequences of abstract actions that do not achieve the goal are never sent to Re-

fine. This can greatly improve efficiency because Refine can be expensive (e.g.,

it may require collision checking).

∙ AI planning heuristics. Because our abstractions are symbolic (i.e., predicate-

and operator-based), our A* search is informed by domain-independent AI plan-

ning heuristics. This greatly reduces the search space over the abstractions, which

once again serves to reduce the number of calls to the Refine procedure, providing

large gains in efficiency.

∙ Targeted samplers. Because each ground sampler is associated with a ground

operator, it specializes in producing continuous parameters that achieve that

ground operator’s effects. This means the ground samplers are able to guide

the Refine procedure to “follow” the expected abstract state sequence. For in-

stance, consider an operator with two different groundings, one that has add effect

Holding(cup1) and another that has add effect Holding(plate1). When ground,

the sampler for this operator can produce grasp poses specific to cup1 and plate1

respectively, e.g., based on object pose or shape information in the state that is

40

provided as input to the sampler.

∙ Dense subgoal sequence. The “expected abstract state sequence” check de-

scribed in Section 3.5.1 serves as a dense subgoal sequence for the Refine pro-

cedure, in the sense that if there is ever a deviation from it, Refine is able

to resample and/or backtrack immediately (rather than, say, needing to roll out

trajectories up to the end of the time horizon before testing the goal [33]).

The virtues described here only hold for certain “helpful” abstractions, whereas

other abstractions may be harmful for planning (Section 3.6.4); this is an important

consideration when learning abstractions, which we discuss next.

3.6 Learning Predicates, Operators, and Samplers

Equipped with an understanding of how predicates Ψ, operators Ω, and samplers

Σ can make planning efficient when they are helpful, we now describe how to learn

all these components data-efficiently from demonstrations 𝒟.

3.6.1 Learning Operators

We begin by describing how to learn operators Ω, assuming that the full set of

predicates Ψ is already learned. In Section 3.6.3, we will describe how to invent

predicates beyond the goal predicates Ψ𝐺.

Our operator learning method is largely based on prior work [8, 11, 33]. This

method makes two restrictions on the representation that together lead to very effi-

cient operator learning (linear time in the number of transitions in 𝒟). First, for each

Con and each possible effect set pair (Eff+,Eff−), there is at most one operator

with that (Con,Eff+,Eff−). This restriction makes it impossible to learn multiple

operators with different preconditions for the same controller and effect sets. Sec-

ond, each parameter in Par must appear in at least one of ParCon,Eff+, or Eff−.

This restriction prevents modeling “indirect effects,” where some object impacts the

execution of a controller without its own state being changed. Though these two

restrictions are limiting, we are willing to accept them because predicate invention

41

(Section 3.6.3) can compensate. For example, an invented predicate can quantify out

an object that does not appear in the controller or the effects, to capture indirect

effects.2

With these restrictions established, we learn operators from our demonstrations

𝒟 and predicates Ψ in three steps. Note that each demonstration can be expressed

as a sequence of transitions {(𝑥, 𝑎, 𝑥′)}, with 𝑥, 𝑥′ ∈ 𝒳 and 𝑎 ∈ 𝒜. First, we use Ψ to

Abstract all states 𝑥, 𝑥′ in the demonstrations 𝒟, creating a dataset of transitions

{(𝑠, 𝑎, 𝑠′)} with 𝑠, 𝑠′ ∈ 𝒮Ψ. Next, we partition these transitions using the following

equivalence relation: (𝑠1, 𝑎1, 𝑠
′
1) ≡ (𝑠2, 𝑎2, 𝑠

′
2) if the effects and partially specified

controllers unify, that is, if there exists a mapping between the objects such that 𝑎1,

(𝑠1 − 𝑠′1), and (𝑠′1 − 𝑠1) are equivalent to 𝑎2, (𝑠2 − 𝑠′2), and (𝑠′2 − 𝑠2) respectively.

This partitioning step automatically determines the number of operators that will

ultimately be learned: each equivalence class will induce one operator. Furthermore,

the parameters Par, controller tuple Con, and effects (Eff+,Eff−) of the operators

can now be established as follows. For each equivalence class, we create Par by

selecting an arbitrary transition (𝑠, 𝑎, 𝑠′) and replacing each object that appears in

the controller or effects with a variable of the same type (here, we are leveraging the

fact that types Λ are given). This further induces a substitution 𝛿 : Par→ 𝒪 for the

objects 𝒪 in this transition; the Con, Eff+, and Eff− are then created by applying

𝛿 to 𝑎, (𝑠′−𝑠), and (𝑠−𝑠′) respectively. By construction, for all other transitions 𝜏 in

the same equivalence class, there exists an injective substitution 𝛿𝜏 under which the

controller arguments and effects are equivalent to the newly created Con,Eff+, and

Eff−. We use these substitutions for the third and final step of operator learning:

precondition learning. For this, we perform an intersection over all abstract states in

each equivalence class [22, 33, 39]: Pre ←
⋂︀
𝜏=(𝑠,·,·) 𝛿

−1
𝜏 (𝑠), where 𝛿−1

𝜏 (𝑠) substitutes

all occurrences of the objects in 𝑠 with the parameters in Par following an inversion

of 𝛿𝜏 , and discards any atoms involving objects that are not in the image of 𝛿𝜏 . By

this construction, only the parameters in Par will be involved in Pre, as desired.

2We see an example of this phenomenon in our experiments, where in the Painting environment, a
quantified predicate is learned to capture whether a box lid is open or closed, as a precondition of
placing something into that box.

42

With Par,Pre,Eff+,Eff−, and Con now established for each equivalence class,

we have completed the operators Ω.

Soundness. We note that for any predicates Ψ, the operator learning proce-

dure is sound [92] over the data, in the following sense: for each transition 𝜏 =

(𝑥, 𝑎, 𝑥′) ∈ 𝒟, there exists some 𝜔, a learned operator ground with objects in 𝑥, such

that 𝐹 (Abstract(𝑥,Ψ), 𝜔) is defined and equals Abstract(𝑥′,Ψ). To see this,

recall that 𝜏 belongs to an equivalence class, and that this equivalence class was used

to learn an operator 𝜔. Now, we show that the desired 𝜔 is ⟨𝜔, 𝛿𝜏 ⟩, where 𝛿𝜏 is the

injective parameter-to-object substitution defined above. The Con, Eff+, and Eff−

of 𝜔 exactly equal those in 𝜏 , by construction of the substitution 𝛿𝜏 . Additionally,

because Pre was formed by taking an intersection of abstract states that included

Abstract(𝑥,Ψ), it must be the case that Pre ⊆ Abstract(𝑥,Ψ), since an inter-

section must be a subset of every constituent set. By Definition 4, then, the statement

is satisfied. A corollary of this soundness property is that our learned abstractions

are guaranteed to obey the semantics we defined in Section 3.4 with respect to the

training data.

As a byproduct of operator learning, we have also determined “local” datasets for

each operator, with each transition in the respective equivalence class defining an

example of the operator’s preconditions, controller, and effects. We will use these

local datasets and the corresponding substitutions 𝛿𝜏 next, as we discuss learning

samplers.

3.6.1.1 Extended Example of Operator Learning Algorithm

We provide an extended example of operator learning. We give a small dataset

for this example, and use it to walk through each of the three steps in the procedure.

Step 1: Generate Dataset. In this example, our demonstrations contain four

transitions, which are tuples (𝑥, 𝑎, 𝑥′). For clarity, we will not write out the task-level

states 𝑥 and 𝑥′. Additionally, for the sake of the example, we will assume that in this

environment there is only one controller C, with no discrete arguments. We abstract

these states with the predicate set Ψ = {Held, On, IsPurple, IsRed, IsGreen,

43

IsStowable, IsStowed}, which produces four (𝑠, 𝑎, 𝑠′) tuples:

1. ({On(𝑜1, 𝑜2), On(𝑜2, 𝑜3), IsPurple(𝑜1)}, C(𝜃1),{Held(𝑜1), On(𝑜2, 𝑜3), IsPurple(𝑜1)})

2. ({On(𝑜4, 𝑜5), On(𝑜5, 𝑜6), IsRed(𝑜4)}, C(𝜃2),{Held(𝑜4), On(𝑜5, 𝑜6), IsRed(𝑜4)})

3. ({Held(𝑜1), IsStowable(𝑜1), IsGreen(𝑜2)}, C(𝜃3),{IsStowed(𝑜1), IsStowable(𝑜1),

IsGreen(𝑜2)})

4. ({Held(𝑜8), IsStowable(𝑜8), IsGreen(𝑜9)}, C(𝜃4),{IsStowed(𝑜8), IsStowable(𝑜8),

IsGreen(𝑜9)})

Intuitively, the first and second transitions might occur when picking up an object

(𝑜1 or 𝑜4 respectively), while the third and fourth might occur when stowing an

object (𝑜1 or 𝑜8 respectively). We begin by noting that we can ignore the continuous

parameters 𝜃𝑖 of C, since they do not matter for operator learning (they would be

used in sampler learning).

Step 2: Produce Equivalence Classes. Recall that two transitions are in

the same equivalence class if there exists a mapping between objects such that

the controller, controller discrete arguments, and effects are equivalent. Since we

only have one controller C with no discrete arguments in this example, we must

only check for effect equivalence. The first transition has effects (Eff+,Eff−) =

({Held(𝑜1)}, {On(𝑜1, 𝑜2)}), while the second has effects (Eff+,Eff−) = ({Held(𝑜4)},

{On(𝑜4, 𝑜5)}). These can be unified with the mapping {𝑜1 ↔ 𝑜4, 𝑜2 ↔ 𝑜5}. Similarly,

the third transition has effects (Eff+,Eff−) = ({IsStowed(𝑜1)}, {Held(𝑜1)}), while

the fourth has effects (Eff+,Eff−) = ({IsStowed(𝑜8)}, {Held(𝑜1)}). These can be

unified with the mapping {𝑜1 ↔ 𝑜8}.

Note that in this unification procedure, the atoms which were unchanged, such

as IsPurple(𝑜1), do not play a role. Furthermore, the fact that the objects are the

same between transitions 1 and 3 is unimportant, because these transitions belong to

different equivalence classes.

Selecting an arbitrary transition from each equivalence class and substituting ob-

jects with variables, we get the following:

44

• Equivalence class 1:

– Par: ⟨ ?x, ?y ⟩

– Eff+: {Held(?x)}

– Eff−: {On(?x, ?y)}

– Con: ⟨ C, [] ⟩

– Transitions contained: 1 and 2

– 𝛿1 (substitution for transition 1): {?x → 𝑜1, ?y → 𝑜2}

– 𝛿2 (substitution for transition 2): {?x → 𝑜4, ?y → 𝑜5}

• Equivalence class 2:

– Par: ⟨ ?z ⟩

– Eff+: {IsStowed(?z)}

– Eff−: {Held(?z)}

– Con: ⟨ C, [] ⟩

– Transitions contained: 3 and 4

– 𝛿3 (substitution for transition 3): {?z → 𝑜1}

– 𝛿4 (substitution for transition 4): {?z → 𝑜8}

Note that the parameter list Par for each equivalence class contains all parameters

that appear in ParCon,Eff+, or Eff−.

Step 3: Learn Operator Preconditions. We now have all the ingredients of

the operators except for their preconditions. For each transition in each equivalence

class, we first discard any atom from the abstract state 𝑠 which involves objects not

in the image of that transition’s substitution 𝛿. For instance, the first transition has

𝛿1 = {?x → 𝑜1, ?y → 𝑜2}. The image is {𝑜1, 𝑜2}, which excludes 𝑜3. This means that

the atom On(𝑜2, 𝑜3) is discarded from 𝑠.

After discarding atoms appropriately, we end up with these abstract states for

each transition:

45

1. {On(𝑜1, 𝑜2), IsPurple(𝑜1)}

2. {On(𝑜4, 𝑜5), IsRed(𝑜4)}

3. {Held(𝑜1), IsStowable(𝑜1)}

4. {Held(𝑜8), IsStowable(𝑜8)}

Now, the preconditions for each equivalence class are obtained by applying each

𝛿−1
𝑖 to these abstract states and taking intersections [22, 33, 39]. This produces the

final operator set Ω, which does not contain any extraneous atoms related to object

color:

• Operator 1 (from equivalence class 1):

– Par: ⟨ ?x, ?y ⟩

– Pre: {On(?x, ?y)}

– Eff+: {Held(?x)}

– Eff−: {On(?x, ?y)}

– Con: ⟨ C, [] ⟩

• Operator 2 (from equivalence class 2):

– Par: ⟨ ?z ⟩

– Pre: {Held(?z), IsStowable(?z)}

– Eff+: {IsStowed(?z)}

– Eff−: {Held(?z)}

– Con: ⟨ C, [] ⟩

3.6.2 Learning Samplers

The role of a sampler 𝜎 ∈ Σ is to refine its associated operator 𝜔, suggesting

continuous parameters of actions that will transition the environment from a state

46

where the preconditions hold to a state where the effects follow. Recall that a sampler

𝜎 : 𝒳 ×𝒪|Par| → ∆(Θ) defines a conditional distribution 𝑃 (𝜃 | 𝑥, 𝑜1, . . . , 𝑜𝑘), where 𝜃

are continuous parameters for the controller 𝐶 in 𝜔, and (𝑜1, . . . , 𝑜𝑘) represent a set

of objects that could be used to ground 𝜔, with |Par| = 𝑘. We learn samplers of the

following form, one per operator:

𝜎(𝑥, 𝑜1, . . . , 𝑜𝑘) = 𝑟𝜎(𝑥[𝑜1]⊕ · · · ⊕ 𝑥[𝑜𝑘]),

where 𝑥[𝑜] denotes the feature vector for 𝑜 in 𝑥, the ⊕ denotes concatenation, and 𝑟𝜎

is the model to be learned.

From the local datasets created during operator learning (Section 3.6.1), we can

create datasets for supervised sampler learning, with one dataset per sampler. Con-

sider any (non-abstract) transition 𝜏 = (𝑥, 𝑎, ·) in the equivalence class associated

with an operator 𝜔. To create a data point for the associated sampler, we can

reuse the substitution 𝛿𝜏 found during operator learning to create an input vector

𝑥[𝛿𝜏 (𝑣1)] ⊕ · · · ⊕ 𝑥[𝛿𝜏 (𝑣𝑘)], where (𝑣1, . . . , 𝑣𝑘) = Par. The corresponding output for

supervised learning is the continuous parameter vector 𝜃 in the action 𝑎.

With these datasets created, one could use any method for multidimensional dis-

tributional regression to learn each 𝑟𝜎. In this work, we learn two neural networks

to parameterize each sampler. The first neural network takes in 𝑥[𝑜1] ⊕ · · · ⊕ 𝑥[𝑜𝑘]

and regresses to the mean and covariance matrix of a Gaussian distribution over 𝜃;

here, we are assuming that the desired distribution has nonzero measure, but the

covariances can be arbitrarily small in practice. This neural network is a sampler

in its own right, but its expressive power is limited, e.g., to unimodal distributions.

To improve representational capacity, we learn a second neural network that takes

in 𝑥[𝑜1] ⊕ · · · ⊕ 𝑥[𝑜𝑘] and 𝜃, and returns true or false. This binary classifier is then

used to rejection sample from the Gaussian distribution produced by the first neural

network. To create negative examples for the classifier for any operator, we use all

transitions 𝜏 ′ such that the controller in 𝜏 ′ matches that in Con, but the effects in 𝜏 ′

are different from (Eff+,Eff−). These two neural networks resemble the generator

47

and discriminator used in generative adversarial networks [81, 58], but we train them

separately for simplicity and stability.

Plan(𝑥0, 𝑔, Ψ, Ω, Σ)
// Parameters: 𝑛abstract,

𝑛samples.
1 𝑠0 ← Abstract(𝑥0,Ψ)
2 for �̂� in

GenAbstractPlan(𝑠0, 𝑔,
Ω, 𝑛abstract) do

3 if Refine(�̂�, 𝑥0, Ψ, Σ,
𝑛samples) succeeds w/ 𝜋
then

4 return 𝜋

Algorithm 1: Pseudocode for our
bilevel planning algorithm. The inputs
are an initial state 𝑥0, goal 𝑔, predicates
Ψ, operators Ω, and samplers Σ; the out-
put is a plan 𝜋. An outer loop runs Gen-
AbstractPlan, which generates plans
in the abstract state and action spaces.
An inner loop runs Refine, which at-
tempts to concretize each abstract plan
�̂� into a plan 𝜋. If Refine succeeds,
then the found plan 𝜋 is returned as
the solution; if Refine fails, then Gen-
AbstractPlan continues. See Section
3.5.1 for details. The use of an abstrac-
tion helps guide planning in the continu-
ous task spaces, making it more efficient
in several ways, as discussed in Section
3.5.2.

EstimateTotalPlanningTime(𝑥0,
𝑔, Ψ, Ω, 𝜋*)
// Note: does not take in

samplers!
// Parameters: 𝑛abstract,

𝑡upper.
1 𝑠0 ← Abstract(𝑥0,Ψ)
2 𝑝terminate-here ← 0.0
3 𝑡expected ← 0.0
4 for �̂� in

GenAbstractPlan(𝑠0, 𝑔,
Ω, 𝑛abstract) do

5 𝑝refined ←
EstimateRefineProb(�̂�,
𝜋*)

6 𝑝terminate-here ←
(1− 𝑝terminate-here) · 𝑝refined

7 𝑡iter ← EstimateTime(�̂�,
𝑥0, Ψ, Ω)

8 𝑡expected ←
𝑡expected + 𝑝terminate-here · 𝑡iter

9 𝑡expected ← 𝑡expected + (1−
𝑝terminate-here) · 𝑡upper

10 return 𝑡expected

Algorithm 2: Pseudocode for our pred-
icate invention proxy objective. The
structure mimics that of Algorithm 1,
with commonalities shown in blue. See
Section 3.6.3.1 for details.

3.6.3 Inventing Predicates via Local Search over a Grammar

We have described how we can learn action abstractions and samplers for refine-

ment when a state abstraction Ψ is provided. Now, we describe how such a state

abstraction can be learned via predicate invention, completing our pipeline.

Inspired by prior work [22, 101, 39], we approach the predicate invention problem

from a program synthesis perspective [140, 97, 38, 49]. First, we define a compact

representation of an infinite space of predicates in the form of a grammar. We then

48

enumerate a large pool of candidate predicates from this grammar, with simpler can-

didates enumerated first. Next, we perform a local search over subsets of candidates,

with the aim of identifying a good final subset to use as Ψ. The crucial question in

this step is: what objective function should we use to guide the search over candidate

predicate sets? We begin with this last question, then work backward from there, in

Sections 3.6.3.1 through 3.6.3.3.

3.6.3.1 Scoring a Candidate Predicate Set

Ultimately, we want to find a set of predicates Ψ that will lead to effective and

efficient planning, after we use the predicates to learn operators Ω and samplers Σ.

The real objective we want to minimize can be expressed as:

𝐽real(Ψ) ≜ E(𝒪,𝑥0,𝑔)∼𝒯 [Time(Plan(𝑥0, 𝑔,Ψ,Ω,Σ))],

where Ω and Σ are learned using Ψ as we described in Sections 3.6.1 and 3.6.2, Plan

is the algorithm described in Section 3.5, and Time(·) measures the time that Plan

takes to find a solution.3 However, we need an objective that can be used to guide a

search over candidate predicate sets, meaning the objective must be evaluated many

times. Unfortunately, 𝐽real is far too expensive for this, due to two speed bottlenecks:

sampler learning, which involves training several neural networks; and the repeated

calls to Refine from within Plan, which each perform backtracking search over an

abstract plan. To overcome this intractability, we propose to use a proxy objective

𝐽proxy, one that is cheaper to evaluate than 𝐽real, but that approximately preserves

the ordering over predicate sets, i.e., 𝐽proxy(Ψ) < 𝐽proxy(Ψ
′) ⇐⇒ 𝐽real(Ψ) < 𝐽real(Ψ

′).

Identifying a proxy objective that balances the trade-off between tractability and

fidelity to 𝐽real can be very challenging. In the course of our research, we considered

many options inspired by prior work, including per-operator prediction error [119,

137], bisimulation [22, 39], and inverse planning-based objectives [120, 157], but found

them all to be divergent from 𝐽real, leading to poor performance (see the baselines
3If no plan can be found (e.g., a task is infeasible under the abstraction), Time would return a large
constant representing a timeout.

49

in Section 3.7). Our main insight was based on the following observation: although

sampler learning and Refine are slow, operator learning and abstract search (on the

training tasks) are both fast — operator learning takes time linear in the size of the

dataset, and abstract search is guided by powerful AI planning heuristics. Therefore,

we can use these to design a proxy objective 𝐽proxy that mirrors 𝐽real, but with cheap

approximation schemes to avoid the two bottlenecks.

In particular, we will consider a proxy objective that estimates the time it would

take to solve the training tasks under the abstraction induced by a candidate predicate

set Ψ, without using samplers or doing refinement. Recalling that our dataset 𝒟 has

one demonstration 𝜋* for each training task ⟨𝒪, 𝑥0, 𝑔⟩, we propose the following proxy

objective:

𝐽proxy(Ψ) ≜
1

|𝒟|
∑︁

(𝒪,𝑥0,𝑔,𝜋*)∈𝒟

[EstimateTotalPlanningTime(𝑥0, 𝑔,Ψ,Ω, 𝜋*)].

There are three key points to note about 𝐽proxy, in comparison to 𝐽real: (1) it esti-

mates the expectation in 𝐽real using an average over the training tasks; (2) it estimates

planning times using the demonstration 𝜋* of each training task; (3) it does not rely

on samplers Σ. See Algorithm 2 for pseudocode of the key method, EstimateTo-

talPlanningTime.

To estimate the total planning time, we perform the same A* abstract search

described in Section 3.5.1, using the operators Ω learned from Ψ (Alg. 2, Line 4).

In the process, we keep track of two quantities: 𝑝terminate-here, which is a probability

estimating whether Plan with learned samplers would terminate with success on this

step; and 𝑡expected, which approximates the cumulative time elapsed of Plan thus far.

Both quantities are initialized to 0 (Alg. 2, Lines 2-3).

To update 𝑝terminate-here on each abstract plan (Alg. 2, Lines 5-6), we must estimate

both whether Plan would have terminated before this step, and whether Plan would

terminate on this step. For the former, we can use (1 − 𝑝terminate-here). For the

latter, since Plan terminates only if Refine succeeds, we use a function called

EstimateRefineProb to approximate the probability of successfully refining the

50

given abstract plan, if we were to learn samplers Σ and then call Refine. While

various implementations are possible, we use a simple strategy that leverages the

demonstration:

EstimateRefineProb(�̂�, 𝜋*) ≜ (1− 𝜖)𝜖|Cost(�̂�)−Cost(𝜋*)|.

Here, 𝜖 > 0 is a small constant (10−5 in our experiments), and Cost(·) is in our case

simply the number of actions in the plan, due to unitary costs. The intuition for this

geometric distribution is as follows. Since the demonstration 𝜋* is assumed to be near-

optimal, an abstract plan �̂� that is cheaper than 𝜋* should look suspicious; if such a �̂�

were refinable, then the demonstrator would have likely used it to produced a better

demonstration. If �̂� is more expensive than 𝜋*, then even though this abstraction

would eventually produce a refinable abstract plan, it may take a long time for the

outer loop of the planner, GenAbstractPlan, to get to it (Section 3.5.1). We

use a geometric distribution in particular to allow for some difference in cost while

making the probability drop off steeply – this provides robustness to small degrees

of suboptimality in the demonstrations. If costs are not integers, one could use an

exponential distribution instead. We note that this scheme for estimating refinability

is surprisingly minimal, in that it needs only the cost of each demonstration rather

than its contents. While more sophisticated strategies could be helpful in general,

this simple and cheap procedure worked well in our experiments.

To update 𝑡expected on each abstract plan (Alg. 2, Lines 7-8), we use a function

called EstimateTime to approximate the time spent on this abstract plan, and

weight the result of this function by 𝑝terminate-here. To implement EstimateTime, we

sum up estimates of the abstract search time and of the refinement time. Since we

are running abstract search, we can exactly measure its time; however, we use the

cumulative number of nodes created by the A* search so far as a processor-independent

estimate of this quantity, to avoid noise due to CPU speed. To estimate refinement

time, recall that Refine performs a backtracking search, and so over many calls to

Refine, the potentially several that fail will dominate the one or zero that succeed.

51

Therefore, we estimate refinement time as a large constant (103 in our experiments)

that captures the average cost of an exhaustive backtracking search. Note that even

though this is a constant, the fact that it is multiplied by 𝑝terminate-here (Alg. 2, Line

8) means that its impact on the overall score will vary greatly based on the predicate

set.

Before finishing, we add a final term to 𝑡expected (Alg. 2, Line 9) corresponding to

the probability that Plan would fail to refine any skeleton (𝑡upper = 105 in our ex-

periments). For instance, no abstract plan may be found under the current predicate

set. Finally, we return 𝑡expected as our estimated planning time for a single training

task (Alg. 2, Line 10). The expression for 𝐽proxy sums this over all the training tasks.

What is the ideal choice for 𝑛abstract, the maximum number of abstract plans to

consider within EstimateTotalPlanningTime? From an efficiency perspective,

𝑛abstract = 1 is ideal, but otherwise, it is not obvious whether to prefer the value

of 𝑛abstract that will eventually be used with Plan at evaluation time, or to instead

prefer 𝑛abstract = ∞. On one hand, we want EstimateTotalPlanningTime to

be as much of a mirror image of Plan as possible; on the other hand, some ex-

perimentation we conducted suggests that a larger value of 𝑛abstract can smooth the

objective landscape, which makes search easier. In practice, it may be advisable to

treat 𝑛abstract as a hyperparameter of the learning algorithm.

The proxy objective 𝐽proxy we proposed calculates and combines two characteris-

tics of a candidate predicate set Ψ: (1) abstract plan cost “error,” i.e., |Cost(�̂�) −

Cost(𝜋*)|; and (2) abstract planning time, i.e., number of nodes created during A*.

The first feature uses only the costs of the demonstrated plans, while the second

feature does not use the demonstrated plans at all. In Figure 3-4, we conduct an em-

pirical analysis to further unpack the contribution of these two features to the overall

proxy objective, finding them to be helpful together but insufficient individually.

52

3.6.3.2 Local Search over Candidate Predicate Sets using the Proxy Ob-

jective

With our proxy objective 𝐽proxy established, we turn to the question of how to best

optimize it. The empirical analysis in Figure 3-4 shows that 𝐽proxy monotonically

improves as predicates are added one at a time to Ψ, which motivates the idea of

using local search as our optimizer. Specifically, we perform simple hill climbing,

which has the benefit of being much more efficient than potential alternatives such as

enforced hill climbing or greedy best-first search. We initialize search with the given

goal predicates Ψ0 ← Ψ𝐺, and add a single new predicate 𝜓 from the candidate pool

on each step 𝑖:

Ψ𝑖+1 ← argmin
𝜓 ̸∈Ψ𝑖

𝐽proxy(Ψ𝑖 ∪ {𝜓}).

We repeat until no improvement can be found, and use the last predicate set as our

final Ψ.

See Figure 3-2 for a real example of predicate invention via hill climbing search,

taken from our experiments in the Blocks environment.

3.6.3.3 Designing a Grammar of Predicates

Designing a grammar of predicates can in general be difficult, since there is a

tradeoff between the expressivity of the grammar and the practicality of searching

over it. For our experiments, we found that a simple grammar with the following

production rules, similar to those of Pasula et al. [119], suffices:

∙ The base grammar includes two kinds of predicates: all the goal predicates Ψ𝐺,

and single-feature inequality classifiers. These inequality classifiers are less-than-

or-equal-to expressions that compare a constant against an individual feature di-

mension from {1, . . . , 𝑑(𝜆)}, for some object type 𝜆 ∈ Λ. For the constant, we

consider an infinite stream of numbers in the pattern 0.5, 0.25, 0.75, 0.125, 0.375,

0.625, 0.875, . . ., which represent normalized values of the feature, based on the

range of values it takes on across all states in the dataset 𝒟. We use this pattern

because we want our grammar to describe an infinite stream of classifiers, starting

53

Figure 3-2: Predicate invention via hill climbing. (Left) An example task in Blocks.
(Middle) Hill climbing over predicate sets, starting with the goal predicates Ψ𝐺. On each
iteration, the single predicate that improves 𝐽proxy the most is added to the set. The
rightmost table column shows success rates under a 10-second timeout on a held-out set
of evaluation tasks. These tasks are not part of the learning algorithm; we include them
here only to make the point that the evaluation performance improves as 𝐽proxy decreases.
(Right) Abstract plans generated by planning in the example task (left) with each predicate
set (middle). Each iteration of hill climbing adds a predicate that causes all abstract plans
above the dotted line to be pruned from consideration. At iteration 0, the robot believes it
can achieve the goal by simply stacking b2 on b3 and b1 on b2, even though it hasn’t picked
up either block. The first step of this abstract plan (shown in red) is, thus, unrefinable. At
iteration 1, a predicate with the intuitive meaning Holding is added, which makes the A*

only consider abstract plans that pick up blocks before stacking them. Still, the abstract
plan shown is unrefinable on the first step because b4 is obstructing b2 in the initial state.
At iteration 2, a predicate with the intuitive meaning NothingAbove is added, which allows
the agent to realize that it must move b4 out of the way if it wants to pick up b2. This
plan is still unrefinable, though: the second step fails, because the abstraction still does not
recognize that the robot cannot be holding two blocks simultaneously. Finally, at iteration
3, a predicate with the intuitive meaning HandEmpty is added, and the abstract search finds
a refinable plan to solve the task. This example shows that the predicates “prune away”
unrefinable abstract plans, making planning more effective and efficient.

from the median values in 𝒟. As an example, a type block might have a feature

dimension corresponding to its size, and a classifier could be block.size ≤ 0.5.

All goal predicates have cost 0. All single-feature inequality classifiers have cost

computed based on the normalized constant, with cost 0 for constant 0.5, cost 1

for constants 0.25 and 0.75, cost 2 for constants 0.125, 0.375, 0.625, 0.875, etc.

This provides a bias toward predicates that split on the median value seen in the

data.

∙ We include all negations of predicates in the base grammar. Negating a predicate

adds a cost of 1.

∙ We include two types of universally quantified predicates over the predicates thus

54

far: (1) quantifying over all variables, and (2) quantifying over all but one variable.

An example of the first is P() = ∀ ?x, ?y . On(?x, ?y), while an example of the

second is P(?y) = ∀ ?x . On(?x, ?y). Universally quantifying adds a cost of 1.

∙ We include all negations of universally quantified predicates. Negating a predicate

adds a cost of 1.

∙ Following prior work [39], we prune out candidate predicates if they are equivalent

to any previously enumerated predicate, in terms of all groundings that hold in

every state in the dataset 𝒟. Finally, we discard the goal predicates Ψ𝐺 from the

grammar, since they are included in every candidate predicate set Ψ of our search

already.

Note that there are many concepts this grammar cannot represent, such as rela-

tionships between two objects or two features of the same object, but it is nevertheless

rich enough to capture a wide class of state abstractions in practice. For instance,

existential quantification can be expressed by composing a negation, a universal quan-

tification, and another negation.

The costs accumulated over the production rules lead us to a final cost associated

with each predicate 𝜓, denoted pen(𝜓), where a higher cost represents a predicate

with higher complexity. These costs are akin to (unnormalized) negative log proba-

bilities in a probabilistic context-free grammar (PCFG). For improved generalization

to held-out tasks, we use the costs to regularize 𝐽proxy during local search, with a

weight small enough to primarily prevent the addition of “neutral” predicates that

neither harm nor hurt 𝐽proxy. The regularization term is:

𝐽reg(Ψ) ≜ 𝑤reg

∑︁
𝜓∈Ψ

pen(𝜓),

where 𝑤reg = 10−4 in our experiments. To generate our candidate predicate set for

local search (Section 3.6.3.2), we enumerate 𝑛grammar predicates from the grammar,

in order of increasing cost. In our experiments, we use 𝑛grammar = 200.

55

3.6.4 Discussion: The Potential Vices of Learned Abstractions

in Bilevel Planning

In Section 3.5.2, we saw several ways that abstractions can aid bilevel planning.

As we conclude our discussion on learning, we emphasize that not all abstractions are

equally helpful; in fact, some can be actively harmful, for several reasons:

∙ Abstract state space can become large. With each new predicate added to

Ψ during predicate invention, the size of the abstract state space grows combina-

torially, slowing down abstract search.

∙ Abstract action space can become large. Similarly, additional predicates

added to Ψ will often lead to additional operators learned, which grows the ab-

stract action space, in turn increasing the branching factor of abstract search.

∙ Bilevel planning can spend more time on worse abstract plans. Even

with constant size, different state and action abstractions can lead to radically

different planning performance. For example, in the abstract search, the heuristic

induced by the learned predicates and operators can have an enormous impact on

the time required to find abstract plans; also, those abstract plans will vary in

refinability depending on the predicates and operators.

∙ Generalization may suffer. If abstraction learning overfits to the training data,

planning may fail to generalize to held-out evaluation tasks. For example, overly

specific preconditions may prevent the use of a necessary controller.

Furthermore, the vices or virtues of any given abstraction depend on the properties of

the environment, task distribution, and planner. These observations make a strong

case for the type of abstraction learning we have discussed in this section, which

is both “task-aware” and “planner-aware,” reasoning explicitly about optimizing the

efficiency of the planner.

56

3.7 Experiments

Our experiments are designed to answer the following questions: (Q1) To what

extent do our learned abstractions help both the effectiveness and the efficiency of

planning, and how do they compare to abstractions learned using other objective

functions? (Q2) How do our learned state abstractions compare in performance

to manually designed state abstractions? (Q3) How data-efficient is learning, with

respect to the number of demonstrations? (Q4) Do our abstractions vary as we

change the planner configuration, and if so, how?

3.7.1 Experimental Design

We evaluate ten methods across four robotic planning environments. All exper-

iments were conducted on a quad-core Intel Xeon Platinum 8260 processor, and all

results are averaged over 10 random seeds, which vary the training and evaluation

tasks, random initializations during learning, and tiebreaking during planning. For

each seed, in all four environments, we sample a set of 50 evaluation tasks from the

task distribution 𝒯 , with hyperparameters chosen to involve more objects and harder

goals than were seen at training. Our key measures of effective and efficient plan-

ning are (1) success rate and (2) wall-clock time. Planning is limited to a 10-second

timeout across all environments and methods.

Environments. We now describe the environments. The first three environments

were established in prior work by Silver et al. [137], but in that prior work, all state

abstractions were manually defined (we use the same state abstractions for our Manual

baseline below).

∙ PickPlace1D. In this toy environment, a robot must pick blocks and place them

onto target regions along a table surface. All pick and place poses are in a 1D

line. The three object types are block, target, and robot. Blocks and targets

have two features for their pose and width, and robots have one feature for the

gripper joint state. The block widths are larger than the target widths, and the

goal requires each block to be placed so that it completely covers the respective

57

target region, so Ψ𝐺 = {Covers}, where Covers is an arity-2 predicate. There is

only one controller, PickPlace, with no discrete arguments; its Θ is a single real

number denoting the location to perform either a pick or a place, depending on the

current state of the robot’s gripper. Each action updates the state of at most one

block – the block that is closest to the location 𝜃, so long as it is within a threshold

of that location (if no block is within this threshold, the state is unchanged). Both

training tasks and evaluation tasks involve 2 blocks, 2 targets, and 1 robot. In

each task, with 75% probability the robot starts out holding a random block;

otherwise, both blocks start out on the table. Evaluation tasks require 1-4 actions

to solve.

∙ Blocks. In this environment, a robot in 3D must interact with blocks on a table

to assemble them into towers. This is a robotics adaptation of the blocks world

domain in AI planning. The two object types are block and robot. Blocks have

four features: an x/y/z pose and a bit for whether it is currently grasped. Robots

have four features: x/y/z end effector pose and the (symmetric) value of the finger

joints. The goals involve assembling towers, so Ψ𝐺 = {On, OnTable}, where the

former has arity 2 and describes one block being on top of another, while the

latter has arity 1. There are three controllers: Pick, Stack, and PutOnTable.

Pick is parameterized by a robot and a block to pick up. Stack is parameterized

by a robot and a block to stack the currently held one onto. PutOnTable is

parameterized by a robot and a 2D place pose representing normalized coordinates

on the table surface at which to place the currently held block. Training tasks

involve 3 or 4 blocks, while evaluation tasks involve 5 or 6 blocks; all tasks have

1 robot. In all tasks, all blocks start off in collision-free poses on the table.

Evaluation tasks require 2-20 actions to solve.

∙ Painting. In this challenging environment, a robot in 3D must pick, wash, dry,

paint, and place widgets into either a box or a shelf, as specified by the goal. The

five object types are widget, box, shelf, box lid, and robot. Widgets have eight

features: an x/y/z pose, a dirtiness level (requiring washing), a wetness level

(requiring drying), a color, a bit for whether it is currently grasped, and the 1D

58

gripper rotation with which it is grasped if so. Boxes and shelves have one feature

for their color. Box lids have one feature for whether or not they are open. Robots

have one feature for the gripper joint state. The goals involve painting the widgets

to be the same color as either a box or a shelf, and then placing each widget into

the appropriate one, so Ψ𝐺 = {InBox, InShelf, IsBoxColor, IsShelfColor}, all

of which have arity 2 (a widget, and either a box or a shelf). There are two

physical constraints in this environment: (1) placing into a box can only succeed

if the robot is top-grasping a widget, while placing into a shelf can only succeed if

the robot is side-grasping it; (2) a box can only be placed into if its respective lid

is open. There are six controllers: Pick, Wash, Dry, Paint, Place, and OpenLid.

All six are discretely parameterized by a robot argument; Pick is additionally

parameterized by a widget to pick up, and OpenLid by a lid to open. Pick has

4 continuous parameters: a 3D grasp pose delta from that widget’s center of

mass, and a gripper rotation. Wash, Dry, and Paint have 1 continuous parameter

each: the amount of washing, the amount of drying, and the desired new color,

respectively. Place has 3 continuous parameters: a 3D place pose corresponding

to where the currently held widget should be placed. Training tasks involve 2 or 3

widgets, while evaluation tasks involve 3 or 4 blocks; all tasks have 1 box, 1 shelf,

and 1 robot. In each task, with 50% probability the robot starts out holding a

random widget; otherwise, all widgets start out on the table. Also, in each task,

with 30% probability the box lid starts out open. Evaluation tasks require 11-25

actions to solve.

∙ Tools. In this challenging environment, a robot operating on a 2D table surface

must assemble contraptions by fastening screws, nails, and bolts, using a provided

set of screwdrivers, hammers, and wrenches respectively. This environment has

physical constraints outside the scope of our predicate grammar, and therefore

tests the learner’s ability to be robust to an insurmountable lack of downward

refinability. The eight object types are contraption, screw, nail, bolt, screw-

driver, hammer, wrench, and robot. Contraptions have two features: an x/y pose.

Screws, nails, bolts, and the three tools have five features: an x/y pose, a shape, a

59

size, and a bit indicating whether it is held. Robots have one feature for the grip-

per joint state. The goals involve fastening the screws, nails, and bolts onto target

contraptions, so Ψ𝐺 = {ScrewPlaced, NailPlaced, BoltPlaced, ScrewFastened,

NailFastened, BoltFastened}. The first three have arity 2 (a screw/nail/bolt

and which contraption it is placed on); the last three have arity 1. There are

three physical constraints in this environment: (1) a screwdriver can only be used

to fasten a screw if its shape is close enough to that of the screw; (2) some screws

have a shape that does not match any screwdriver’s, and so these screws must be

fastened by hand; (3) the three tools cannot be picked up if their sizes are too

large. There are eleven controllers: Pick{Screw, Nail, Bolt, Screwdriver,

Hammer, Wrench}, Place, FastenScrewWithScrewdriver, FastenScrewByHand,

FastenNailWithHammer, and FastenBoltWithWrench. All eleven are discretely

parameterized by a robot argument; Pick controllers are additionally parameter-

ized by an object to pick up, and Fasten controllers by a screw/nail/bolt and

tool (except FastenScrewByHand, which does not have a tool argument). Place

has 2 continuous parameters: a 2D place pose corresponding to where the cur-

rently held object should be placed, which can be either onto the table or onto

a contraption (only if the currently held object is not a tool). Training tasks in-

volve 2 screws/nails/bolts and 2 contraptions, while evaluation tasks involve 2 or

3 screws/nails/bolts and 3 contraptions; all tasks have 3 screwdrivers, 2 hammers,

1 wrench, and 1 robot. Evaluation tasks require 7-20 actions to solve.

Methods. The methods we evaluate are: ours, six baselines, a manually designed

state abstraction, and two ablations.

∙ Ours. Our main approach, which learns abstractions and uses them to guide

planning on the evaluation tasks.

∙ Bisimulation. A baseline that learns abstractions by approximately optimizing

the bisimulation criteria [55], as in prior work [39]. Specifically, this baseline learns

abstractions that minimize the number of transitions in the demonstrations where

the abstract transition model 𝐹 is applicable but makes a misprediction about

the next abstract state. Note that because goal predicates are given, the criterion

60

regarding goal distinguishability is satisfied under any abstraction.

∙ Branching. A baseline that learns abstractions by optimizing the branching fac-

tor of planning. Specifically, this baseline learns abstractions that aim to minimize

the total number of applicable operators over states in the demonstrations.

∙ Boltzmann. A baseline that assumes the demonstrator is acting noisily ratio-

nally with respect to the cost-to-go under the (unknown) optimal abstractions.

Specifically, for any candidate abstraction in our search, we compute the probabil-

ity of the demonstration under a Boltzmann policy, with the AI planning heuristic

used as a proxy for the true cost-to-go; we seek to maximize this probability. This

baseline is inspired by work on inverse planning [14, 157].

∙ GNN Shooting. A baseline that trains a graph neural network [15] policy. This

GNN takes in the current state 𝑥, abstract state 𝑠 = Abstract(𝑥,Ψ𝐺), and goal

𝑔. It outputs an action 𝑎, via a one-hot vector over 𝒞 corresponding to which

controller to execute, one-hot vectors over all objects at each discrete argument

position, and a vector of continuous arguments. We train the GNN using behavior

cloning on the data 𝒟. At evaluation time, we sample trajectories by treating the

produced continuous arguments as the mean of a Gaussian with fixed variance.

We use the known transition model 𝑓 to check if the goal is achieved, and repeat

until the planning timeout is reached.

∙ GNN Model-Free. A baseline that uses the same trained GNN as above, but

at evaluation time, directly executes the policy. This has the advantage of being

more efficient during evaluation than GNN Shooting, but is less effective.

∙ Random. A baseline that simply executes a random controller with random

arguments on each step. This baseline does not do any learning.

∙ Manual. An oracle approach that plans with manually designed state abstrac-

tions (predicates) for each environment. Operators and samplers are still learned.

∙ Down Eval. An ablation of Ours that uses 𝑛abstract = 1 during evaluation only,

in Plan (Algorithm 1).

∙ No Invent. An ablation of Ours that uses Ψ = Ψ𝐺, i.e., only goal predicates are

used for the state abstraction.

61

Figure 3-3: Ours versus baselines. Percentage of 50 evaluation tasks solved under a 10-
second timeout, for all four environments. All results are averaged over 10 seeds. Horizontal
black bars denote standard deviations. Learning times and additional metrics are reported
in Section 3.7.3. We can see that our learned abstractions (Ours) perform extremely well
compared to all six baselines.

Additional details. All sampler neural networks are fully connected, with two

hidden layers of size 32 each, and trained with the Adam optimizer [84] for 1K epochs

using learning rate 1e-3. The regressor networks are trained to predict a mean and

covariance matrix of a multivariate Gaussian; this covariance matrix is restricted to

be diagonal and PSD with an exponential linear unit [35]. For training the classifier

networks, we subsample data to ensure a 1:1 balance between positive and negative

examples. All AI planning heuristics are implemented using Pyperplan [4]; all exper-

iments use the LMCut heuristic unless otherwise specified. The planning parameters

are 𝑛abstract = 1000 for Tools and 8 for the other environments, and 𝑛samples = 1 for

Tools and 10 for the other environments.

3.7.2 Main Results and Discussion

We provide real examples of learned predicates and operators for all environments

in Section 3.7.3.

Comparisons with baselines are shown in Figure 3-3, and allow us to answer

(Q1): our method solves many more held-out tasks within the timeout. A major

reason for this performance gap is that unlike the baselines, our proxy objective

𝐽proxy explicitly takes into account the effectiveness and efficiency of bilevel planning

with candidate abstractions. The lackluster performance of the bisimulation baseline

62

Ours Manual Down Eval No Invent
Environment Succ Node Time Succ Node Time Succ Node Time Succ Node Time
PickPlace1D 98.6 4.8 0.006 98.4 6.5 0.045 98.6 4.8 0.008 39.6 14.1 1.369
Blocks 98.4 2949 0.296 98.6 2941 0.251 98.2 2949 0.318 3.2 427.7 1.235
Painting 100.0 501.8 0.470 99.6 2608 0.464 98.8 489.0 0.208 0.0 – –
Tools 96.8 1897 0.457 100.0 4771 0.491 42.8 152.5 0.060 0.0 – –

Table 3.1: Ours versus Manual and ablations. Percentage of 50 evaluation tasks solved
under a 10-second timeout (Succ), number of nodes created during GenAbstractPlan
(Node), and wall-clock planning time in seconds (Time). All results are averaged over 10
seeds. The Node and Time columns average over solved tasks only. Standard deviations
are provided in Section 3.7.3. These ablations confirm that abstraction learning and bilevel
planning contribute to the strong performance of Ours.

is especially notable because of its prevalence in the literature [119, 74, 22, 39]. We

examined its failure modes more closely and found that it consistently selects good

predicates, but not enough of them. This is because requiring the operators to be a

perfect predictive model in the abstract spaces is often not enough to ensure good

planning performance. For example, in the Blocks environment, the goal predicates

together with the predicate Holding(?block) are enough to satisfy bisimulation on

our data, while other predicates like Clear(?block) and HandEmpty() are useful

from a planning perspective. Considering now the GNN baselines, we see that while

shooting with the transition model 𝑓 is beneficial versus using the GNN as a raw

policy, the performance is generally far worse than Ours. Additional experimentation

we conducted suggests that the GNN gets better with around an order of magnitude

more data; this is consistent with previous findings that such strategies are very

data-hungry [110].

Table 3.1 compares Ours with Manual and the two ablations. We can address

(Q2) by comparing Ours to Manual in this table, which shows that the learned

abstractions are on par with, and sometimes better than, our hand-designed ab-

stractions. To understand this, let us walk through an example from PickPlace1D,

where our learned abstractions lead to a 10x improvement in planning time. Our

manually designed predicate set contained Held(?block) and HandEmpty(), in ad-

dition to the always-given goal predicate Covers(?block, ?target). In addition

to inventing two predicates that are equivalent to Held and HandEmpty, Ours in-

63

vented two more: P3(?block) ≜ ∀?t . ¬Covers(?block, ?t), and P4(?target) ≜

∀?b . ¬Covers(?b, ?target). Intuitively, P3 means “the given block is not on any

target,” while P4 means “the given target is clear.” These predicates turn out to be

very useful from an abstract search perspective, because there is no use in moving a

block once it is already on a target, and the robot cannot place a block on a target

that is already occupied. So, the operators have more restrictive preconditions under

the learned predicates, causing the A* search to have lower branching factor. Fur-

thermore, the inclusion of P4 prevents the planner from considering a non-refinable

abstract plan that “parks” a held object on a target where another object must later

be placed. This example illustrates that the learned abstractions are tailored to the

task distribution; that is, our learning method is task-aware.

Next, we look at the performance of the ablations in Table 3.1. The results for

No Invent show that, as expected, using the goal predicates as a standalone state

abstraction is completely insufficient for most tasks. Comparing Ours to Down Eval

shows that assuming downward refinability at evaluation time works for PickPlace1D,

Blocks, and Painting, but not for Tools. We were surprised by this result because

the manually designed abstractions for PickPlace1D and Painting are not downward

refinable [137]. Upon inspection, we find that Ours learns abstractions that are

downward refinable. For PickPlace1D, the learned “target clear” predicate leads to

downward refinability, as discussed with P4 in the previous paragraph. For Painting, a

learned “box lid open” predicate resolves the downward refinability issue discussed in

prior work [137], where the position of the box lid (open or closed) was not modeled in

the manual abstraction. By contrast, the abstractions learned by Ours for the Tools

environment are not downward refinable; for example, it is not possible to determine

whether a screwdriver’s shape is compatible with that of a screw, at the abstract

level.

To address (Q3), the figure on the

right clearly shows the data efficiency of

Ours. Each point shows a mean over

10 seeds, with standard deviations shown

64

as vertical bars. Recall that we provide

a single demonstration for each training

task. In most environments, the figure

shows that we obtain very good evalua-

tion performance within just 50 demonstrations, and this performance typically im-

proves as the number of demonstrations increases. Generally, providing more demon-

strations helps the following aspects of our system: (1) inventing fewer extraneous,

overfitted predicates; (2) learning more accurate operator preconditions; (3) allowing

the sampler neural networks to be trained on a larger amount of data.

Ours Manual

Heuristic Succ Node Time Succ Node Time

LMCut 98.4 2949 0.296 98.6 2941 0.251

hAdd 98.6 121.6 0.115 97.8 3883 0.235

To address (Q4), the table on the

right shows an additional experiment

we conducted, where we varied the AI

planning heuristic used by the GenAb-

stractPlan routine of our bilevel plan-

ner in the Blocks environment. Recall that our predicate invention method uses Gen-

AbstractPlan as well, so it too is affected by this heuristic change. All numbers

show a mean over 10 seeds. Interestingly, while the gap in performance is limited

when using LMCut, our system shows a massive improvement (over 30x fewer nodes

created) versus Manual when using hAdd. These results are especially surprising

because A* with hAdd is generally considered inferior to other heuristic search algo-

rithms.4 Inspecting the learned abstractions, we find that our approach invents four

unary predicates with the intuitive meanings Holding, NothingAbove, HandEmpty,

and NotOnAnyBlock, to supplement the given goal predicates On and OnTable. Com-

paring these to Manual, which has the same predicates and operators as those in

the International Planning Competition (IPC) [12], we see the following differences:

Clear is omitted5, and NothingAbove and NotOnAnyBlock are added.

We observe that NothingAbove and NotOnAnyBlock are logical transformations

of predicates used in the standard IPC representation. This motivated us to run a

4We also experimented with GBFS instead of A*, and hFF, hSA, and hMax instead of hAdd. A*

with hAdd performed the best by far.
5In the standard encoding, “clear” means “nothing above and not holding.”

65

separate, symbolic-only experiment, where we collected IPC blocks world problems

and transformed them to use these learned predicates. We found that using A* and

hAdd, planning with our learned representations is much faster than planning with

the IPC representations. For example, in the hardest problem packaged with Pyper-

plan, which contains 17 blocks, planning with our operators requires approximately

30 seconds and 841 node expansions, whereas planning with the standard encoding

requires 560 seconds and 17,795 expansions. We also tried Fast Downward [66] (again

with A* and hAdd) on a much harder problem from IPC 2000 with 36 blocks. With

our learned representations, planning succeeds in 12.5 seconds after approximately

7,000 expansions, whereas under the standard encoding the planner fails to find a

plan within a 2 hour timeout. See Section 3.7.4 for the complete operators, as well

as further insight into this discrepancy. Note that all of these results are specific to

Blocks, A*, and hAdd, and that is exactly the point: even when using an uncon-

ventional combination of search algorithm and heuristic, our planner-aware method

learns abstractions that optimize the efficiency of the given planner in the given en-

vironment.

3.7.3 Additional Results

Table 3.2 provides learning times for all experiments. Tables 3.3 and 3.4 report

nodes created and wall-clock time respectively for all evaluation tasks.

Figure 3-4 analyzes the two main features used by our proxy objective function:

plan cost error and abstract search time. It shows that neither of these components

is sufficient on its own for making our predicate invention pipeline work.

We now go through each of our four environments, providing an example of learned

predicates and operators from a single seed randomly chosen among successful ones.

We also provide additional statistics for our main method, to supplement the data

presented in the main text. Note that the evaluation plan length statistics are aver-

aged over both 10 seeds and 50 evaluation tasks per seed, with standard deviations

over seed only.

66

Environment Ours Bisimulation Branching Boltzmann GNN Sh GNN MF Manual No Invent
PickPlace1D 625 (134) 176 (3) 219 (145) 264 (17) 1951 (85) 1951 (85) 177 (147) 66 (0)
Blocks 10237 (853) 800 (44) 1561 (98) 9798 (1688) 4047 (209) 4047 (209) 102 (5) 84 (2)
Painting 18395 (28153) 872 (380) 2883 (144) 9457 (3421) 9185 (166) 9185 (166) 565 (457) 260 (2)
Tools 18666 (2815) 573 (20) 5524 (747) 9716 (1000) 7362 (197) 7362 (197) 167 (3) 141 (3)

Table 3.2: Learning times in seconds for all experiments. All numbers are
means over 10 seeds, with standard deviations in parentheses. For the GNN-based
methods, learning time encompasses training the neural networks. For the other
methods, learning time encompasses learning predicates, operators, and samplers
(i.e., all components of the abstraction). Even though our main method performs well
(Ours), this does come at the cost of increased learning time (although the learning
is purely offline). Note that the Manual approach only manually specifies a state
abstraction (predicates); operators and samplers must still be learned, contributing
to the non-zero learning time. Thus, comparing Ours and Manual shows that the
large majority of learning time in our system is spent on predicate invention.

Environment Ours Bisimulation Branching Boltzmann Manual Down Eval No Invent
PickPlace1D 4.8 (0.2) 4.7 (0.2) 4.7 (0.2) 5.3 (0.2) 6.5 (0.3) 4.8 (0.2) 14.1 (4.0)
Blocks 2948.5 (1293.2) 46.9 (18.0) 2948.5 (1293.2) 7844.0 (6655.4) 2940.5 (1299.1) 2948.5 (1293.2) 427.7 (83.7)
Painting 501.8 (180.0) – 876.6 (509.7) 4008.8 (3851.3) 2607.5 (1117.2) 489.0 (190.2) –
Tools 1897.2 (1404.0) 5247.7 (2560.6) 167.8 (78.4) 909.9 (174.1) 4770.9 (886.8) 152.5 (27.6) –

Table 3.3: Number of nodes created by abstract search during planning in
evaluation tasks. All numbers are means over solved tasks only across 10 seeds,
with 50 evaluation tasks per seed, and with standard deviations in parentheses.

3.7.3.1 PickPlace1D

Statistics for our main method, averaged over 10 random seeds (standard devia-

tions parenthesized):

∙ Average number of predicates in Ψ (both invented and goal predicates): 5.9 (0.54)

∙ Average number of operators in Ω: 2.1 (0.3)

∙ Average plan length during evaluation: 2.44 (0.09)

See Figure 3-5 for example learned predicates and operators for a randomly chosen

successful seed.

3.7.3.2 Blocks

Statistics for our main method, averaged over 10 random seeds (standard devia-

tions parenthesized):

∙ Average number of predicates in Ψ (both invented and goal predicates): 6.0 (0.0)

∙ Average number of operators in Ω: 4.0 (0.0)

∙ Average plan length during evaluation: 9.17 (0.69)

67

Environment Ours Bisimulation Branching Boltzmann GNN Sh GNN MF Random Manual Down Eval No Invent
PickPlace1D 0.006 (0.0) 0.006 (0.0) 0.006 (0.0) 0.005 (0.0) 0.436 (0.1) 0.014 (0.0) 0.004 (0.0) 0.045 (0.0) 0.008 (0.0) 1.369 (0.6)
Blocks 0.296 (0.1) 0.158 (0.1) 0.284 (0.1) 0.954 (0.3) 0.138 (0.1) 0.249 (0.1) 0.006 (0.0) 0.251 (0.1) 0.318 (0.1) 1.235 (1.3)
Painting 0.470 (0.2) – 4.186 (0.9) 0.600 (0.3) 2.077 (1.2) 0.073 (0.0) – 0.464 (0.1) 0.208 (0.0) –
Tools 0.457 (0.3) 0.699 (0.3) 0.109 (0.0) 0.247 (0.0) 0.311 (0.2) 0.043 (0.0) – 0.491 (0.1) 0.060 (0.0) –

Table 3.4: Total time in seconds for evaluation tasks. These results encompass
planning time (when applicable) and policy or plan inference time (the time taken
to produce an action at each step, given the current state). All numbers are means
over solved tasks only across 10 seeds, with 50 evaluation tasks per seed, and with
standard deviations in parentheses.

See Figure 3-6 for example learned predicates and operators for a randomly chosen

successful seed.

3.7.3.3 Painting

Statistics for our main method, averaged over 10 random seeds (standard devia-

tions parenthesized):

∙ Average number of predicates in Ψ (both invented and goal predicates): 22.1 (1.45)

∙ Average number of operators in Ω: 11.2 (0.6)

∙ Average plan length during evaluation: 14.76 (0.29)

See Figures 3-7 and 3-8 for example learned predicates and operators for a ran-

domly chosen successful seed.

3.7.3.4 Tools

Statistics for our main method, averaged over 10 random seeds (standard devia-

tions parenthesized):

∙ Average number of predicates in Ψ (both invented and goal predicates): 27.4 (4.39)

∙ Average number of operators in Ω: 17.8 (0.98)

∙ Average plan length during evaluation: 10.1 (0.12)

See Figures 3-9 and 3-10 for example learned predicates and operators for a ran-

domly chosen successful seed.

68

3.7.4 More Explanation of Blocks / hAdd Results

Why exactly do our learned predicates and operators outperform the standard

ones when planning with A* and hAdd? First, we note that it is highly uncommon to

use hAdd with A* in practice with hand-defined PDDL representations, because hAdd

is inadmissible and suffers greatly from overestimation issues [21]. Nevertheless, the

interesting phenomenon in our work is that our system is able to learn an abstraction

that copes with the faults of this combination of search algorithm and heuristic. To

understand this further, we make the following observations:

• In both cases, the planner must escape from a local minimum with almost every

pick operation. For example, in a small problem with 5 blocks where the hand

is initially empty, the hAdd values of the states in the plan found are [9, 13, 9,

11, 6, 8, 4, 5, 2, 1, 0] when planning with the standard operators, and [14, 16,

11, 10, 6, 7, 4, 4, 2, 1, 0] when planning with our learned operators. Note the

alternation of increasing and decreasing values; the ideal scenario for planning

would instead be that these values decrease monotonically.

• In states that follow a pick, the hAdd values consistently overestimate the true

cost-to-go, in both cases. For example, after the first pick with the standard

operators, the hAdd value and true cost-to-go are 13 and 9 respectively; for the

learned operators, they are 16 and 9 respectively.

• Here is the main difference: in states that precede a pick, the hAdd values from

the standard operators sometimes underestimate the true cost-to-go. In the

example above, the initial state has an hAdd value of 9, but the true cost-to-go

is 10. In harder problems, these underestimations occur with higher frequency;

for example, in a problem with 20 blocks, there are 8 cases in the plan found

where states preceding picks underestimate the true cost-to-go. By contrast,

the hAdd values from our learned operators do not ever seem to underestimate

the true cost-to-go, in the problems that we analyzed.

• Furthermore, this underestimation occurs regularly in states that are local min-

69

ima, immediately preceding states where the heuristic will be an overestimate,

so A* struggles greatly. Since nodes are expanded in order of 𝑓 = 𝑔+ℎ, that is,

cost of the plan so far plus heuristic value, A* will spend time exploring large

subtrees rooted at nodes that underestimate true cost-to-go before moving onto

the nodes that overestimate it, including those that will ultimately be included

in the plan.

For reproducibility, we provide the complete operators used to conduct this ex-

periment. We started from the standard blocks domain PDDL downloaded from

the planning.domains Github repository, removed the Clear predicate, and added

the two predicates our system learned, with the intuitive meanings NothingAbove

and NotOnAnyBlock. Problem files were updated accordingly. We ran Fast Down-

ward with the –search astar(add) option. Here is the domain file, with changes

highlighted in red (deletion) and green (addition):

70

(define (domain blocks)
(:predicates

(on ?v0 ?v1)
(ontable ?v0)
(clear ?v0)
(nothingabove ?v0)
(notonanyblock ?v0)
(handempty)
(holding ?v0)

)
(:action pick-up

:parameters (?x)
:precondition (and

(clear ?x)
(nothingabove ?x)
(notonanyblock ?x)
(ontable ?x)
(handempty))

:effect (and
(not (clear ?x))
(not (ontable ?x))
(not (handempty))
(holding ?x))

)
(:action put-down

:parameters (?x)
:precondition (and

(holding ?x)
(nothingabove ?x)
(notonanyblock ?x))

:effect (and
(clear ?x)
(not (holding ?x))
(handempty)
(ontable ?x))

)

(:action stack
:parameters (?x ?y)
:precondition (and

(holding ?x)
(clear ?y)
(nothingabove ?x)
(notonanyblock ?x)
(nothingabove ?y))

:effect (and
(not (holding ?x))
(not (clear ?y))
(clear ?x)
(not (nothingabove ?y))
(not (notonanyblock ?x))
(handempty)
(on ?x ?y))

)
(:action unstack

:parameters (?x ?y)
:precondition (and

(on ?x ?y)
(clear ?x)
(nothingabove ?x)
(handempty))

:effect (and
(holding ?x)
(clear ?y)
(not (clear ?x))
(nothingabove ?y)
(notonanyblock ?x)
(not (handempty))
(not (on ?x ?y)))

))

71

Figure 3-4: Decomposing the proxy objective. In these plots, each column cor-
responds to one environment. The x-axes correspond to sets of manually designed
predicates. The predicate sets grow in size from left to right, starting with the goal
predicates alone, adding one predicate at each tick mark, and concluding with the
full set of manual predicates for the respective environment. The order that the pred-
icates are added was determined by hill climbing with respect to the proxy objective.
The top row shows the proxy objective itself; the middle row shows the plan cost er-
ror |Cost(�̂�)−Cost(𝜋*)| minimized over the first 8 skeletons generated by abstract
search; and the bottom row shows the total number of nodes created by the abstract
search (our measure of abstract search time), cumulative over the 8 skeletons. There
are two key takeaways from this plot. (1) The proxy objective (first row) monotoni-
cally decreases in all environments; this property makes local search over candidate
predicate sets an attractive option. (2) Neither of the two components that make up
the proxy objective — plan cost error (second row) or abstract search time (third
row) — has the same monotonically decreasing property on its own, suggesting that
both parts are necessary for making our predicate invention pipeline work. All results
are means over 10 seeds.

72

Figure 3-5: PickPlace1D learned abstractions (top: predicates, bottom: operators).

73

Figure 3-6: Blocks learned abstractions (top: predicates, bottom: operators).

74

Figure 3-7: Painting learned abstractions (top: predicates, bottom: operators part 1
of 2).

75

Figure 3-8: Painting learned abstractions (operators part 2 of 2).

76

Figure 3-9: Tools learned abstractions (top: predicates, bottom: operators part 1 of
2).

77

Figure 3-10: Tools learned abstractions (operators part 2 of 2).

78

Chapter 4

CAMPs: Learning Context-Specific

Abstractions of Factored MDPs

4.1 Motivation

In this chapter and the remaining ones, we shift our focus from neuro-symbolic

abstractions to projective abstractions, where the robot learns which aspects of a

factored environment can be ignored during planning.

Online planning is a popular paradigm for sequential decision-making in robotics

and beyond, but its practical application is limited by the computational burden

of planning while performing a task. In meta-planning, the agent learns to guide

planning efficiently and effectively based on its previous planning experience. Learn-

ing to impose constraints on the states considered and actions taken by an agent is

a promising paradigm for meta-planning; it reduces the space of policies the agent

must consider [82, 46, 150]. In contrast to (e.g., physical or kinematic) constraints

beyond the agent’s control, these constraints are imposed by the agent on itself for

the sole purpose of efficient planning.

Beyond reducing the space of policies, imposing constraints can improve plan-

ning efficiency in another important way. In factored domains, where the states and

actions decompose into variables, imposing constraints can induce context-specific in-

dependences (CSIs) [25] that render some variables irrelevant. For example, consider

79

Figure 4-1: (A, B) In the NAMO domain, the robot (red circle) must reach the
red object, which requires navigating there while moving obstacles out of the way.
Two sample problems are shown. (C, D) If the robot constrains itself to stay within
certain rooms (yellow), the obstacles in other rooms become irrelevant. (E, F) In the
sequential manipulation domain, the robot must put the red objects into bins. (G,
H) If the robot constrains itself to top grasps, the blue objects become irrelevant.
Similarly, if the robot constrains target placements to certain bins (yellow), the green
objects become irrelevant.

the two navigation among movable obstacles (NAMO) problems in Figure 4-1 (A, B).

Imposing a constraint that forbids certain rooms induces CSIs between the robot’s

position and that of all obstacles in those forbidden rooms. Consequently, these ob-

stacles can be ignored, as in Figure 4-1 (C, D). A planning problem with a context

imposed1 and the resulting irrelevant variables removed constitutes an abstraction of

the original problem [98, 91]. Adopting the Markov decision process (mdp) formalism,

we refer to this as a context-specific abstract mdp (camp).

Planning in a camp is often more efficient than planning in the original mdp,

but may abstract away important details of the environment, leading to a suboptimal

policy. Practically speaking, we are often interested in a trade-off: we would like

our planners to produce highly rewarding behavior, but not be too computationally

burdensome; we are willing to sacrifice optimality to maximize this trade-off in ex-

pectation. In this chapter, we propose a learning-based approach to maximize this

trade-off. Given a set of training tasks with a shared transition model and factored

states and actions, we first approximate the set of CSIs present in these tasks. We

1We henceforth use context as a synonym for constraint.

80

then train a context selector, which predicts a context that should be imposed for

a given task. At test time, given a novel task, we use the learned context selector

and CSIs to induce a camp, which we then use to plan. This overall pipeline is

summarized in Figure 4-2.

Our approach rests on the premise that predicting contexts to impose is easier,

and generalizes better, than learning a reactive policy. Intuitively, the burden on

reactive policy learning is higher, as the policy must exactly carve out a specific,

good path through transition space, whereas an imposed context must only carve out

a region of transition space that includes at least one good path.

In experiments, we consider four domains, including robotic NAMO and sequential

manipulation, that collectively exhibit discrete and continuous states and actions,

relational states, sparse rewards, stochastic transitions, and long planning horizons.

To evaluate the generality of camps, we consider multiple planners, including Monte

Carlo tree search [26], FastDownward [66], and a task and motion planner [139]. Our

results suggest that planning with learned camps strikes a strong balance between

pure planning and pure policy learning [111]. In the NAMO domain, we also find that

camps with a generic task and motion planner outperform Stilman’s NAMO-specific

algorithm [142]. We conclude that camps offer a promising path toward fast, effective

planning in large and challenging domains.

4.2 Related Work

Our work falls under the broad research theme of learning to make planners more

efficient using past planning experience. A fundamental question is deciding what

to predict; for instance, it is common to learn a policy and/or value function from

planning experience [134, 83, 82, 29]. By contrast, we learn to predict contexts.

Recent work leverages a given set of contexts to represent planning problem instances

in “score space” [82], but does not consider the resulting CSIs, which we showed

experimentally to yield large performance improvements. Other methods predict the

feasibility of task plans or motion plans [46, 150, 47], which can also be seen as

81

learning constraints on the search space. These methods can be readily incorporated

into the camp framework.

We will formalize camps as a particular class of mdp abstractions. There is a long

line of work on deriving abstractions for mdps, much of it motivated by the prospect

of faster planning or more sample-efficient reinforcement learning [98, 68, 78, 141, 1].

One common technique is to aggregate states and actions into equivalence classes

[17, 20, 91], a generalization of our notion of projective abstractions. Other work has

learned to select abstractions [75]; a key benefit of camps is that the contexts induce

a structured hypothesis space of abstractions that greatly improve planning efficiency.

camps identify and exploit CSIs [25] in factored planning problems. In graphical

models, CSIs can be similarly used to speed up inference [156, 123, 45]. Stochastic

Planning using Decision Diagrams (SPUDD) is a method that adapts these insights

for planning with CSIs [70]. These insights are orthogonal to camps, but could

be integrated to yield further efficiencies. SPUDD is a pure planning approach that

considers all contexts, whereas we learn a context selector that induces abstractions.

4.3 Problem Setting

A task is a pair of initial state and reward function, denoted 𝜔 = (𝑠0, 𝑅). We

are given a set of 𝑁 training tasks, 𝑊train = {𝜔(𝑖)}𝑁𝑖=1, and a test task, 𝜔test, all of

which are drawn from some unseen distribution 𝑃 (𝒲). In this chapter, we assume

the reward is a function of state only, although this assumption is not critical to our

methods and could be removed with minor changes. All tasks share the same factored

state space 𝒮, factored action space 𝒜, transition model 𝑇 , and horizon 𝐻; therefore,

each task induces a finite-horizon factored mdp (Section 2.1), denoted ℳ𝜔. Each

task is parameterized by a feature vector, denoted 𝜃𝜔 = 𝜑(𝑠0, 𝑅), with featurizer 𝜑.

For instance, in our robotic NAMO domain, 𝜑 gives a top-down image of the initial

scene (which also implicitly describes the goal). The agent interacts with 𝑇 and 𝑅

as black boxes; it does not know their analytical representations or causal structure.

We also assume a black-box mdp solver, Plan, which takes as input an mdpℳ and

82

Figure 4-2: Three approaches to solving an mdp. Given a task, our approach (top
row) applies its learned context selector to generate a camp, then plans in this camp
to get a policy. Our approach often achieves higher reward than pure policy learning
(middle row), and lower computational cost than pure planning (bottom row), leading
to a good objective value (right; uses 𝜆 = 1 in Equation 4.1).

a current state 𝑠, and returns a next action: 𝑎 = Plan(ℳ, 𝑠).2

Before being presented with the test task, the agent may first interact with

the training tasks 𝑊train, perhaps compiling useful knowledge that it can deploy

at test time, such as a task-conditioned policy. Then, it is given the test task

𝜔test = (𝑠0,test, 𝑅test), and its goal is to efficiently produce actions that accrue high

cumulative reward in the test mdpℳ𝜔test . We formalize this trade-off via the objec-

tive:

𝐽(𝜋, 𝜔) = E

[︃
𝐻∑︁
𝑡=0

𝑅(𝑠𝑡)− 𝜆 ·ComputeCost(𝜋, 𝑠𝑡)

]︃
, (4.1)

where 𝜔 = (𝑠0, 𝑅), ComputeCost(𝜋, 𝑠) ≥ 0 denotes the cost (e.g., wall-clock time)

of evaluating the policy 𝜋(𝑠), 𝜆 ≥ 0 is a trade-off parameter, and the expectation

is over stochasticity in the transitions. Note that ComputeCost includes the cost

of both computation performed before the agent starts acting and any computation

that might be performed on each timestep after the first.

We seek to find 𝜋test = argmax𝜋 𝐽(𝜋, 𝜔test). One possible approach is to call Plan

2Planners generally return a policy or a sequence of actions; we suppose that the planner is called
at every timestep to simplify exposition. In our experiments, we replan in domains that have
stochastic transitions.

83

on the full test mdp, that is, 𝜋test(𝑠) = Plan(ℳ𝜔test , 𝑠). This method would yield

high rewards, but it may also incur a large ComputeCost. Another possibility is to

learn (at training time) and transfer (to test time) a task-conditioned reactive policy;

this can have low ComputeCost at test time, but perhaps at the expense of rewards

if the policy fails to generalize well to the test task (Figure 4-2).

4.4 Context-Specific Abstract Markov Decision Pro-

cesses (CAMPs)

The objective formulated in Equation 4.1 trades off the computational cost of

planning with the resulting rewards. This section presents an approach to optimizing

this trade-off that lies between the two extremes of pure planning and pure policy

learning [111]. Rather than planning in the full test task, we propose to learn to

generate an abstraction [98, 91] of the test task, in which we can plan efficiently.

An abstraction over state space 𝒮 and action space 𝒜 is a pair of functions (𝜎, 𝜏),

with 𝜎 : 𝒮 ↦→ 𝒮 ′ and 𝜏 : 𝒜 ↦→ 𝒜′, where 𝒮 ′ and𝒜′ are abstract state and action spaces.

We are specifically interested in abstractions that are projections: 𝜎([𝑠1, 𝑠2, . . . , 𝑠𝑛]) =

[𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑛′] and 𝜏([𝑎1, 𝑎2, . . . , 𝑎𝑚]) = [𝑎𝑗1 , 𝑎𝑗2 , . . . , 𝑎𝑗𝑚′]. This has the effect of

dropping 𝑛− 𝑛′ state variables and 𝑚−𝑚′ action variables; the 𝑖 and 𝑗 superscripts

refer respectively to the state and action variables that are not dropped.

The relevant-variables projection is a simple projective abstraction that has been

studied in prior work (under different names) [16, 68, 23]. It drops all irrelevant

variables, in the following sense:

Definition 8 (Variable relevance). Given a factored mdp with variables 𝑉 and reward

variables 𝑉rew, any 𝑉 𝑖 ∈ 𝑉 is relevant iff ∃ 𝑉 𝑗 ∈ 𝑉rew, 𝑡 ∈ {0, . . . , 𝐻}, and 𝑡′ ∈

{𝑡+ 1, . . . , 𝐻} s.t. 𝑉 𝑖
𝑡 ̸⊥⊥ 𝑉 𝑗

𝑡′ .

Intuitively, a variable is relevant if there is any possibility that its value at some

timestep will have an eventual influence, directly or indirectly, on the value of the

reward. Unfortunately, as identified by Baum et al. [16], relevance is often too strong

84

of a property for the relevant-variables projection to yield meaningful improvements

in practice — most variables typically have some way of influencing the reward, under

some sequence of actions taken by the agent. In search of greater flexibility, we now

define a generalization of variable relevance that is conditioned on a particular context

(Section 2.1.1).

Definition 9 (Context-specific variable relevance). Given a context (𝐶, 𝒞) and a

factored mdp with variables 𝑉 and reward variables 𝑉rew, any 𝑉 𝑖 ∈ 𝑉 ∖𝐶 is relevant

in the context (𝐶, 𝒞) iff ∃ 𝑉 𝑗 ∈ 𝑉rew, 𝑡 ∈ {0, . . . , 𝐻}, and 𝑡′ ∈ {𝑡 + 1, . . . , 𝐻} s.t.

𝑉 𝑖
𝑡 ̸⊥⊥ 𝑉 𝑗

𝑡′ | (𝐶, 𝒞).

Each possible context (𝐶, 𝒞) induces a projection that drops variables which are

irrelevant in (𝐶, 𝒞); let proj𝐶,𝒞 denote this abstraction. We now define a camp, an

abstract mdp associated with proj𝐶,𝒞.

Definition 10 (Context-Specific Abstract mdp (camp)). Consider an mdp ℳ =

(𝒮,𝒜, 𝑇, 𝑅,𝐻) and a context (𝐶, 𝒞). Let proj𝐶,𝒞 = (𝜎, 𝜏) with right inverses (𝜎−1, 𝜏−1).

Let ⊥ be a new sink state, such that ⊥ ̸∈ 𝜎(𝒮). The context-specific abstract mdp,

ℳ′, for ℳ and (𝐶, 𝒞) is (𝜎(𝒮) ∪ {⊥}, 𝜏(𝒜), 𝑇 ′, 𝑅′, 𝐻), where 𝑇 ′ and 𝑅′ are defined

as follows: ∀𝑠′𝑡, 𝑠′𝑡+1 ∈ 𝜎(𝒮), 𝑎′𝑡 ∈ 𝜏(𝒜),

1. 𝑇 ′(⊥, 𝑎′𝑡,⊥) = 1

2. 𝑇 ′(𝑠′𝑡, 𝑎
′
𝑡,⊥) = 1 if (𝜎−1(𝑠′𝑡), 𝜏

−1(𝑎′𝑡)) is not in the context;

3. 𝑇 ′(𝑠′𝑡, 𝑎
′
𝑡, 𝑠

′
𝑡+1) = 𝑇 (𝜎−1(𝑠′𝑡), 𝜏

−1(𝑎′𝑡), 𝜎
−1(𝑠′𝑡+1)) if (𝜎−1(𝑠′𝑡), 𝜏

−1(𝑎′𝑡)) is in the con-

text;

4. 𝑅′(⊥) = −∞

5. 𝑅′(𝑠′𝑡) = 𝑅(𝜎−1(𝑠′𝑡))

We may also say that ℳ′ is ℳ with context (𝐶, 𝒞) imposed.

Intuitively, a camp imposes a projective abstraction that drops the variables that

are irrelevant under the given context, and also imposes that any transition in violation

85

of the context leads the agent to ⊥, an absorbing sink state with reward −∞. In

practice, the right inverses 𝜎−1 and 𝜏−1 can be obtained by assigning arbitrary values

to the dropped variables; the choice of value is inconsequential by Definition 9. For a

graphical example of a camp, see Figure 4-3.

A camp is usually not optimality-preserving, because the context restricts the

agent to a subregion of the state and action space [2]. However, context-specific

relevance is much weaker than relevance: it only requires a variable to be relevant

under the given context. For example, to a robot operating in a home, the weather

outside is irrelevant as long as it remains in the context of staying indoors.

camps offer a way to solve the test task (Section 4.3) that lies between the ex-

tremes of pure planning and pure policy learning. Namely, given a test mdpℳ𝜔test ,

we select a context, compute the relevant variables under that context via backward

induction, generate the camp, and finally plan in this camp to obtain a policy 𝜋test

for ℳ𝜔test . We have therefore reduced the problem of optimizing 𝐽(𝜋, 𝜔test) to that

of determining the best context (𝐶, 𝒞) to impose. To address this issue, we now turn

to learning.

4.5 Learning to Generate CAMPs

We now have the ability to generate a context-specific abstract mdp (camp) when

given a context and the associated context-specific independences. However, contexts

and their associated independences are not provided in our problem. In this section,

we describe how to learn approximate context-specific independences and a context

selector, for use at test time. Figure 4-4 gives a data-flow diagram.

4.5.1 Approximating the Context-Specific Independences

Recall that the agent is given mdps with factored states and variables, but only

query access to the (shared) transition model. For example, the transition model

may be a black-box physics simulator, as in two of our experimental domains. In

order to approximately determine the context-specific independences that are latent

86

Input: State and action variables 𝑉 = {𝑆1, . . . , 𝑆𝑛} ∪ {𝐴1, . . . , 𝐴𝑚}
Input: Black-box transition model 𝑇
Input: Context (𝐶, 𝒞)
Input: Number of samples 𝑘1, 𝑘2 // Hyperparameters

Returns: Approximate CSIs {(𝑉 𝑖, 𝑉 𝑗) : 𝑉 𝑗
𝑡+1 ⊥⊥ 𝑉 𝑖

𝑡 | (𝐶, 𝒞)}, for arbitrary 𝑡
// Initialize all pairs of variables to be independent
Initialize: CSIs ← 𝑉 × 𝑉
// Sample 𝑘1 state and action assignments in the context
𝑈 ← SampleInContext(𝑉,𝐶, 𝒞, 𝑘1)
// Test pairs of variables for dependence
for 𝑉 𝑖, 𝑉 𝑗 ∈ 𝑉 ∖ 𝐶 do

for 𝑢 ∈ 𝑈 do
for up to 𝑘2 samples 𝑣𝑖 of 𝑉 𝑖 do

if 𝑇 (𝑉 𝑗
𝑡+1 | 𝑉𝑡 = 𝑢) ̸= 𝑇 (𝑉 𝑗

𝑡+1 | 𝑉𝑡 ∖ {𝑉 𝑖
𝑡 } = 𝑢−𝑖, 𝑉

𝑖
𝑡 = 𝑣𝑖) then

// 𝑉 𝑗 is dependent on 𝑉 𝑖; remove this pair from CSIs
CSIs← CSIs ∖ {(𝑉 𝑖, 𝑉 𝑗)}

return CSIs
Algorithm 3: Pseudocode for learning context-specific independences (CSIs) for
a given context. See Figure 4-3B for an example output, and see Section 4.5.1 for
discussion.

within a factored mdp, we propose a sample-based procedure. Given a context,

the algorithm examines each pair of state or action variables (𝑉 𝑖, 𝑉 𝑗) and tests for

empirical dependence, that is, whether any sampled value of 𝑉 𝑖
𝑡 induces a change in

the distribution of 𝑉 𝑗
𝑡+1, conditioned on the sampled values of the remaining variables.

Pseudocode is provided in Algorithm 3.

The runtime of this algorithm depends on the size of the domain and the number of

samples used to test dependence. In theory, the number of samples required to identify

all independences could be arbitrarily large. In practice, for the tasks we considered in

our experiments, including robotic manipulation and NAMO, we found this algorithm

to be sufficient for detecting a useful set of context-specific independences. Moreover,

our method is robust to errors in the discovered independences, which in the worst

case will simply exclude some candidate abstractions from consideration.

Where Does the Space of Contexts Come From? Our approximate algo-

rithm allows us to estimate independences given a context ; this raises the question

of which contexts should be evaluated. We propose a simple method for deriving a

87

space of possible contexts that works well across our varied experimental domains.

From the set of variables 𝑉 , we consider conjunctions and disjunctions up to some

length (a hyperparameter), excluding any terms whose involved variables have joint

domain size less than some threshold (another hyperparameter). Note that for any

finite threshold, this procedure immediately excludes contexts involving continuous

variables. While this family of contexts has the benefit of being fairly general to de-

scribe, we emphasize that other choices, e.g., more domain-specific context families,

may be used as well [82, 47, 28]. Importantly, the space of considered contexts should

always include the trivial universal context so that camps can reduce to planning in

the original problem when no useful abstractions are available.

4.5.2 Learning the Context Selector

The performance of a camp depends entirely on the selected context; if the context

constrains the agent to a poor region of plan space, or induces independences that

make important variables irrelevant, the resulting policy could get very low rewards.

However, if the context is selected judiciously, the camp may exhibit substantial

efficiency gains with minor impact on rewards.

We now describe an algorithm for learning to select a context that optimizes

the objective (Equation 4.1). Pseudocode is provided in Algorithm 4. Given each

training task 𝜔(𝑖) ∈ 𝑊train, we first identify the best possible context (𝐶(𝑖), 𝒞(𝑖))* ac-

cording to the objective in Equation 4.1. This process sets up a supervised multiclass

classification problem that maps the featurized representation of a task 𝜃𝜔(𝑖) to the

best context (𝐶(𝑖), 𝒞(𝑖))* to impose on that task. We solve this classification problem

by training a neural network with cross-entropy loss, resulting in a context selector

𝑓𝛼(𝜃𝜔) = (𝐶, 𝒞)*, where 𝛼 denotes the parameters of the neural network. At test

time, we choose a context by calling 𝑓𝛼(𝜃𝜔test), generate the associated camp, and

plan in this camp to efficiently obtain a policy for the test task.

88

Input: Training tasks 𝑊train = {𝜔(𝑖)}𝑁𝑖=1 with features {𝜃𝜔(𝑖)}𝑁𝑖=1

Input: Black-box transition model 𝑇
Input: Set of contexts {(𝐶, 𝒞)}
Input: All learned CSIs (𝐶, 𝒞)→ {(𝑉 𝑖, 𝑉 𝑗) : 𝑉 𝑗

𝑡+1 ⊥⊥ 𝑉 𝑖
𝑡 | (𝐶, 𝒞)}

Returns: Context selector 𝑓𝛼(𝜃𝜔) = (𝐶, 𝒞)* // Neural network with
parameters 𝛼

Initialize: Inputs for supervised learning 𝑋 ← [𝜃𝜔(1) , . . . , 𝜃𝜔(𝑁)]
Initialize: Targets for supervised learning 𝑌 ← []

for 𝜔(𝑖) ∈ 𝑊train do
// See Subroutine below

𝑌 [𝑖]← argmax(𝐶,𝒞) ScoreContext(𝜔(𝑖), (𝐶, 𝒞), 𝑇,CSIs for (𝐶, 𝒞))
// Perform supervised learning (multiclass classification)
𝛼* ← argmin𝛼 CrossEntropyLoss(𝑋, 𝑌 ;𝛼)
return 𝑓𝛼*

Subroutine ScoreContext
Input: Training task 𝜔 = (𝑠0, 𝑅)
Input: Black-box transition model 𝑇
Input: Context (𝐶, 𝒞)
Input: Learned CSIs {(𝑉 𝑖, 𝑉 𝑗) : 𝑉 𝑗

𝑡+1 ⊥⊥ 𝑉 𝑖
𝑡 | (𝐶, 𝒞)}

Returns: A score
ℳ′ ← CreateCAMP(𝑇,𝑅, (𝐶, 𝒞),CSIs) // See Section 4.4

𝜋(𝑠) ≜ Plan(ℳ′, 𝑠) // Plan in the camp
return 𝐽(𝜋, 𝜔) // See Equation 4.1

Algorithm 4: Pseudocode for learning a context selector model, given training
tasks and their context-specific independences (CSIs). See Section 4.5.2 for dis-
cussion.

4.6 Experiments

Our experiments aim to answer the following key questions:

∙ How does planning with learned camps compare to pure planning and pure policy

learning across a varied set of domains, both discrete and continuous?

∙ To what extent is the performance of camps planner-agnostic?

∙ How does the performance of camps vary with the choice of 𝜆 (Equation 4.1)?

∙ How does the performance of camps vary with the number of training tasks?

89

4.6.1 Experimental Design

4.6.1.1 Domains and Planners

We consider four domains and five planners (four online, one offline).

Domain D1: Gridworld. The first domain we consider is a simple maze-style

gridworld in which the agent must navigate across rooms to reach a goal location,

while avoiding obstacles that stochastically move around at each timestep. The agent

has available to it remove(obj) actions, which remove the given obstacle from the

world so that the agent can no longer collide with it, but these actions can only be

used when the agent is adjacent to the obstacle. Whenever the agent collides with

an obstacle, it is placed back in its initial location. Each obstacle remains within a

particular room, and so the agent can impose a context of not entering particular

rooms, allowing it to ignore the obstacles that are in those rooms, and also not have

to consider the action of removing those obstacles. Across tasks, we vary the maze

layout. We train on 50 task instances and test on 10 held-out instances.

Planners. We consider the following planners for this domain: Monte Carlo tree

search (MCTS), breadth-first graph search with replanning (BFSReplan), and asyn-

chronous value iteration (VI). Both MCTS and BFSReplan are online planners, while

VI is offline. As such, VI computes a policy over the full state space, and thus is only

tractable in this relatively small (about 100,000 states) domain.

Representations. The features of each task are a top-down image of the maze

layout. The state is a vector of the current position and room of each obstacle, the

agent, and the goal. The actions are moving up, down, left, right; and removing each

obstacle in the environment.

Domain D2: Classical planning. We next consider a deterministic classical

planning domain in which an agent must make a meal for dinner, and has three

options: to stay within the living room to make ramen, to go to the kitchen to make

a sandwich, or to go to the store to buy and prepare a steak. Making any of these

terminates the task. The steak gives higher terminal reward than the sandwich, which

in turn gives higher terminal reward than the ramen. However, planning to go to the

90

store for steak requires reasoning about many objects that would be irrelevant under

the context of staying within the home (for a sandwich or ramen), and planning to

go to the kitchen for a sandwich requires reasoning about many objects that would

be irrelevant under the context of staying within the living room (for ramen). There

is also a timestep penalty, incentivizing the agent to finish quickly. Optimal plans

may involve 2, 16, or 22 actions depending on the relative rewards for obtaining the

ramen, sandwich, and steak. These rewards are the only thing that varies between

task instances; there is thus small variation between task instances relative to the

other domains. We train on 20 task instances and test on 25 held-out instances.

Planner. We use an off-the-shelf classical planner (Fast-Downward [66] in A* mode

with the lmcut heuristic). The various rewards are implemented as action costs. As

this domain is deterministic, we only run the planner once per task; it is guaranteed

to find a reward-maximizing trajectory.

Representations. The features of each task are a vector of the terminal rewards for

each meal. The state is a binary vector describing which logical fluents hold true (1)

versus false (0). The actions are logical operators described in PDDL, each containing

parameters, preconditions, and effects.

Domain D3: Robotic navigation among movable obstacles (NAMO).

Illustrated in Figure 4-1A, this domain has a robot navigating through rooms with

the goal of reaching the red object in the upper-right room. Roughly 20 blue obstacles

are scattered throughout the rooms, and like in the gridworld, the robot may impose

the context of not entering particular rooms; it may also pick up the obstacles and

move them out of its way. Across tasks, we vary the positions of all objects. We train

on 50 task instances and test on 10 held-out instances. This domain has continuous

states and actions, and as such is extremely challenging for planning. Though the

obstacles do not move on their own (like they do in the gridworld), the difficulty of this

domain stems from the added complexity of needing to reason about geometry and

continuous trajectories. We simulate this domain using PyBullet [37]. The reward

function is sparse: 1000 if the goal location is reached and 0 otherwise.

Planner. Developing planners for robotic domains with continuous states and

91

actions is an active area of research. For this domain, we use a state-of-the-art task

and motion planner [139], which is not specific to NAMO problems. We use the RRT-

Connect algorithm [93] for motion planning and the Fast-Forward PDDL planner [71]

for task planning.

Representations. The features of each task are a top-down image of the scene.

The state is a vector of the current pose of each object and the robot, and the robot’s

current room. The actions are moving the robot base to a target pose, and clearing

an object in front of the robot.

Domain D4: Robotic sequential manipulation. Illustrated in Figure 4-1C,

this domain has a robot manipulating the two red objects that start off on the left

table to be placed into the bins on the right table. The fifteen blue objects on the left

table serve as distractors, with which the robot must be careful not to collide when

grasping the red objects; the green objects in the bins indicate that certain bins are

already occupied. Across tasks, we vary the positions of all objects, and which bins

are occupied by green objects. We also vary the radii of the red objects. We train on

50 task instances and test on 10 held-out instances. We again simulate this domain

using PyBullet [37]. As in Domain D3, the reward function is sparse: 1000 if the goal

location is reached and 0 otherwise.

Broadly, there are two types of contexts that are useful to impose in this domain.

(1) If the robot chooses to constrain its grasp style to only allow top-grasping the

red objects, then it need not worry about colliding with the blue objects, and can

thus ignore them. However, this does not always work, since not all geometries are

amenable to being top-grasped; for instance, sometimes an object’s radius may be

too large. Note, however, that to place the red objects into the bins upright, a side-

grasp is necessary, and so we provide the robot a regrasp operator in addition to the

standard move, pick, and place. Importantly, this regrasp operator is never necessary,

but including it can allow the robot to simplify its planning problem by ignoring the

blue objects (see Equation 4.1). (2) If the robot chooses to constrain which bins it

will place the red objects into, then it need not worry about the green objects in the

other bins, simplifying the planning problem.

92

Planner. Same as in Domain D3 (NAMO).

Representations. The features of each task are a vector of the object radii and

occupied bins. The state is a vector of the current pose of each object, the grasp style

used by the robot, and the current held object (if any). The actions are moving the

robot to a target base pose and grasping at a target gripper pose (which requires an

empty gripper), and moving the robot to a target base pose and placing at a target

placement pose (which requires an object to be currently held).

4.6.1.2 Methods and Baselines

We consider the following methods:

∙ camp. Our full method.

∙ camp ablation. An ablation of our full method in which the camp only sends the

agent to a sink state for context violation, but does not project away irrelevant

variables.

∙ Pure planning. This baseline does not use the training tasks, and just solves the

full test task.

∙ Plan transfer. This baseline solves each training task to obtain a plan, and at test

time picks actions via majority vote across the training task plans.

∙ Policy learning. This baseline solves each training task to obtain a plan, then

trains a state-conditioned neural network policy to imitate the resulting dataset

of state-action trajectories, using supervised learning. This policy is used directly

to choose actions at test time.

∙ Task-conditioned policy learning. This baseline is the same as policy learning, but

the neural network also receives as input the features of the task, in addition to

the current state.

∙ (Domain D3 only) Stilman’s planning algorithm [142] for NAMO problems, named

ResolveSpatialConstraints, which attempts to find a feasible path to a target lo-

cation by first finding feasible paths to any obstructing objects and moving them

out of the way.

In all our domains, every variable is relevant under no context. For this reason,

93

the pure planning baseline can also be understood as an ablation of camp that does

not account for contexts.

4.6.1.3 Experimental Details

In all experiments, computational cost is measured in wall-clock time (seconds).

We use the following values of 𝜆: 0 for MCTS3, 100 for BFSReplan, 250 for FastDown-

ward, and 100 for TAMP. Every domain uses horizon 𝐻 = 25. Additionally, to ensure

that shorter plans are preferred in general, all domains use a discount factor 𝛾 = 0.99,

except for Domain D2 which uses a timestep penalty as previously discussed.

To properly evaluate our objective (Equation 4.1), we would need to run every

method until it completes, which can be extremely slow, e.g. for the pure planning

baseline, or when our context selector picks a bad context. To safeguard against this,

we impose a timeout of 60 seconds on all planning calls.

All neural networks are either fully connected for vector inputs or convolutional

for image inputs. Fully connected networks have hidden layer sizes ⟨50, 32, 10⟩. Con-

volutional networks use a convolutional layer with 10 output channels and kernel size

2, followed by a max-pooling layer with stride 2, and then fully connected layers of

[32, 10]. Neural networks are trained using the Adam optimizer [84] with learning

rate 10−4, until the loss on the training dataset reaches 10−3.

To generate the spaces of contexts, we use the method described in Section 4.5.1.

In Domains D1, D2, and D3, we consider disjunctive and single-term (a single vari-

able and a single value in its domain) constraints only, while in Domain D4 we also

consider conjunctive constraints. All contexts only consider the discrete variables in

the domain. Our parameters 𝑘1 and 𝑘2 (Algorithm 3) are: 𝑘1 = 𝑘2 = 50 for Domain

D1, 𝑘1 = 𝑘2 = 40 for Domain D2, and 𝑘1 = 𝑘2 = 25 for Domains D3 and D4.

94

Method Test Task Objective Value (St. Dev.)

D1 (Grid), MCTS D1 (Grid), BFSReplan D2 (Classical) D3 (NAMO) D4 (Manip)

camp (ours) 70 (16) 21 (10) -286 (9.6) 896 (63) 744 (94)
camp ablation 25 (11) 0.9 (24) -308 (52) 707 (154) 453 (237)
Pure planning 6 (5) -17 (11) -414 (20) 242 (385) 335 (86)
Plan transfer -7 (0.4) -6 (15) -467 (0.02) 141 (227) 21 (34)
Policy learning -3 (4) -11 (13) -469 (0.2) -0.2 (0.01) -0.2 (0.01)
Task-conditioned 5 (5) -2 (11) -145 (0.4) -0.3 (0.01) -0.2 (0.02)
Stilman’s [142] - - - 826 (36) -

Table 4.1: Compilation of test task objective values on all our domains and methods.
Objective values are computed using the same values of 𝜆 that were used during
training. All table entries report an average over 10 independent runs of both context
selector training and test task evaluation. Stilman’s algorithm [142] is NAMO-specific
and so is only run on the NAMO domain.

4.6.2 Main Results and Discussion

Table 4.1 shows the objective values (Equation 4.1) for all domains and methods.

Figure 4-5 plots the mean returns versus computation time on the test tasks. All

results report an average over 10 independent runs of context selector training and

test task evaluation.

camps outperform every baseline in all but Domain D2 (classical planning).

camps fare better than task-conditioned policy learning because the latter fails to

generalize from training tasks to test tasks. This failure manifests in low test task

rewards, and in a substantial difference between the training and test objective val-

ues. In classical planning, however, policy learning outperforms camps; both achieve

high task rewards, but the policy is faster to execute. This is because this domain

involves little variation between instances, in stark contrast to the other domains.

Another clear conclusion from the main results is that camps outperform pure

planning across all experiments, consistently achieving lower computational costs. In

several cases, including NAMO and manipulation, camps also achieve higher rewards

than pure planning does, since the latter sometimes hits the 60-second timeout before

discovering the superior plans found very quickly by camps.

Results for the camp ablation show that imposing contexts alone provides clear

3Since MCTS is an anytime algorithm, we give it a timeout of 0.25 seconds. With 𝜆 = 0, the
objective then reflects the best returns found within this timeout.

95

benefits, focusing the planner on a promising region of the search space. This result

is consistent with prior work showing that learning to impose constraints reduces

planning costs [82, 46, 150]. However, the difference between camp and the ablation

shows that dropping irrelevant variables provides even greater benefits.

A final observation is that camps perform comparably to Stilman’s NAMO al-

gorithm [142]. This is notable because Stilman’s algorithm employs NAMO-specific

assumptions, whereas the planner we use does not; in fact, we can see that the pure

planner is strongly outperformed by Stilman’s algorithm. In our method, the context

selector learns to constrain the robot to stay in emptier rooms, meaning it must move

comparatively few objects out of the way. This leads to efficient planning, making

the computational cost of camps almost as good as that of Stilman’s algorithm; ad-

ditionally, it leads camps to obtain higher rewards than Stilman’s algorithm, because

it often reaches the goal faster. The NAMO results also show that camps are able

to learn to impose useful contexts even when there are multiple good options, e.g.,

multiple “room paths” with similar numbers of obstacles (Figure 4-1).

4.6.3 Additional Results

4.6.3.1 Performance as a Function of 𝜆

The plots on

the right illustrate

how the objective

value (left) and re-

turns (right) ac-

crued by the camp

policy vary as a

function of 𝜆, in

Domain D2 (classical planning). The right one shows the returns from camp in-

terpolate between those obtained by pure planning (when 𝜆 = 0, the agent is okay

with spending a long time planning out its actions) and those obtained by a random

96

policy (when 𝜆 → ∞, the agent spends as little time as possible choosing actions).

The green line is dashed because pure planning does not use 𝜆, so its returns are

unaffected by the value of 𝜆. The left one (note the log-scale 𝑦-axis) shows objective

values. We see that camp never suffers a lower objective value than that of a ran-

dom policy, while pure planning drops down greatly as 𝜆 increases. This is because as

𝜆→∞, our context selector learns to choose contexts that induce very little planning

(but get low returns).

4.6.3.2 Performance as a Function of Number of Training Tasks

The plots on

the right illustrate

how the objective

value (left) and re-

turns (right) ac-

crued by the camp

policy vary as a

function of the num-

ber of training tasks, in Domain D2 (classical planning).

Discussion. As following a policy in the test task requires near-zero computational

effort (our neural networks are small enough that inference is very fast), the red curves

in both plots are nearly identical. Interestingly, in the regime of fewer training tasks

(≤ 8), camp outperforms policy learning, despite policy learning performing better

with the full set of 20 tasks. This leads us to believe that in domains where policy

learning would perform well when given a lot of data, generating and planning in

a camp may be a more viable strategy when data is limited. As shown in the

main results, this disparity between camps and policy learning is more dramatic for

the other three domains, where task instances are far more varied, so much so that

camps sharply outperform policy learning for any reasonable number of training

environments that we were able to test.

97

(A) Original MDP
 all variables relevant

(C) Context-Specific Abstract MDP
 irrelevant variables dropped

(B) MDP with Imposed Context
 A2 and S3 now irrelevant

St
1

St
2

St
3

St+1
1

St+1
2

St+1
3

At
1

At
2At

Rt+1Rt

St
1

St
2

St
3

St+1
1

St+1
2

St+1
3

At
1

At
2At

Rt+1Rt

St
1

St
2

St+1
1

St+1
2

At
1

At

Rt+1Rt

Figure 4-3: (A) Example of a factored mdp represented as an influence diagram [24].
As seen in the diagram, 𝑉rew = {𝑆1}. With no contexts imposed, all variables are
relevant. (B) Imposing contexts can induce new independences. In this example, a
context involving 𝑆2 is imposed, inducing an independence between 𝑆2 and 𝑆3 (red
×). Variables 𝐴2 and 𝑆3 are irrelevant under the imposed context; relevant variables
are highlighted in blue. Note that relevance is a time-independent property. (C)
Dropping the irrelevant variables leads to a camp, an abstraction of the original
mdp.

98

Figure 4-4: Data-flow diagram for our method during learning and test time. (Left)
Approximate context-specific independence (CSI) learning derives the relevant state
and action variables under each context. (Middle) A context selector is learned by
optimizing the objective on the training tasks. The transition model and approximate
CSIs are used to evaluate the objective. (Right) Given a test task, the agent selects a
context to impose using the learned context selector. The relevant variables for this
context are calculated from the learned CSIs. From the context, relevant variables,
test task, and transition model, the agent derives a camp, and can plan in it to obtain
a policy for the test task. Note that the contexts are used in a “one-shot” manner;
there is no recourse if a bad one is selected.

Figure 4-5: Mean returns versus computation time on the test tasks, for all domains
and methods. All points report an average over 10 independent runs of training and
evaluation, with lines showing per-axis standard deviations. camps generally provide
a better trade-off than the baselines: the blue points are usually higher than pure
policy learning (camps accrue more reward) and to the left of pure planning (camps
are more efficient). For the left-most plot, only the returns vary because MCTS is an
anytime algorithm, so we run it with a fixed timeout. See Section 4.6.2 for discussion
on these results.

99

THIS PAGE INTENTIONALLY LEFT BLANK

100

Chapter 5

Learning Compact Models for

Planning with Exogenous Processes

5.1 Motivation

The previous chapter studied how a robot can learn projective abstractions by

imposing constraints on its own behavior. However, what can we do if there are

processes in the environment that are out of the robot’s control (and therefore it

cannot impose any constraints on those processes), some of which may be relevant

to a given task? This chapter studies this problem through the lens of exogenous

processes, which are processes that are unaffected by the robot’s actions.

In fact, most aspects of the world are exogenous to any of us as individuals.

However, though they are exogenous, these processes (e.g., weather and traffic) will

often play a major role in the way we should choose to perform a task at hand. Despite

being faced with such a daunting space of processes out of our control, humans are

extremely adept at quickly reasoning about which aspects of this space to concern

themselves with, for the particular task at hand.

Consider the setting of a household robot tasked with doing laundry inside a

home. It should not get bogged down by reasoning about the current weather or

traffic situation, because these factors are irrelevant to its task. If, instead, it were

tasked with mowing the lawn, then good decision-making would require it to reason

101

about the time of day and weather (so it can finish the task by sunset, say).

In this chapter, we address the problem of approximately solving Markov deci-

sion processes (mdps), without too much loss in solution quality, by leveraging the

structure of their exogenous processes. We begin by formalizing the mask-learning

problem. An autonomous agent is given a generative model of an mdp partitioned

into an endogenous state (i.e., that which can be affected by the agent’s actions) and

a much higher-dimensional exogenous state. The agent must choose a mask, a subset

of the exogenous state variables, that yields a policy not too much worse than a policy

that would be obtained by reasoning about the entire exogenous state.

After formalizing the mask-learning problem, we discuss how we can leverage

exogeneity to quickly learn transition models for only the relevant variables from

data. Then, we explore the various value functions of interest within the problem,

and discuss the conditions under which a policy for a particular mask will be optimal

for the full mdp. Our analysis lends theoretical credence to the idea that a good

mask should contain not only the exogenous state variables that directly influence

the agent’s reward function, but also ones whose dynamics are correlated (in the

sense of mutual information) with theirs. This idea leads to a tractable approximate

algorithm for the mask-learning problem that leverages the structure of the mdp,

drawing upon mutual information among exogenous state variables.

We experiment in simulated robotic manipulation domains where a robot is put in

a busy environment, among many other agents that also interact with the objects. We

show that 1) in small domains where we can plan directly in the full mdp, the masks

learned by our approximate algorithm yield competitive returns; 2) our approach

outperforms strategies that do not leverage the structure of the mdp; and 3) our

algorithm can scale up to planning problems with large exogenous state spaces.

5.2 Related Work

The notion of an exogenous event, one that is outside the agent’s control, was first

introduced in the context of planning problems by Boutilier et al. [24]. The work most

102

similar to ours is that by Dietterich et al. [43], who also consider the problem of model

minimization in mdps by removing exogenous state variables. Their formulation of an

mdp with exogenous state variables is similar to ours, but the central assumption they

make is that the reward decomposes additively into an endogenous state component

and an exogenous state component. Under this assumption, the value function of the

full mdp decomposes into two parts, and any policy that is optimal for the endogenous

mdp is also optimal for the full mdp. On the other hand, we do not make this reward

decomposition assumption, and so our value function does not decompose; instead,

our work focuses on a different set of questions: 1) what are the conditions under

which an optimal policy in a given reduced model is optimal in the full mdp? 2)

can we build an algorithm that leverages exogeneity to efficiently (approximately)

discover such a reduced model?

Model minimization of factored Markov decision processes is often defined using

the notion of stochastic bisimulation [41, 55], which describes an equivalence relation

among states based upon their transition dynamics. Other prior work in state ab-

straction tries to remove irrelevant state variables to form reduced models [78, 108].

Our approach differs from these techniques in two major ways: 1) we consider only

reducing the exogenous portion of the state, allowing us to develop algorithms which

leverage the computational benefits enjoyed by the exogeneity assumption; 2) rather

than trying to build a reduced model that is faithful to the full mdp, we explicitly opti-

mize a different objective (Equation 5.1), which tries to find a reduced model yielding

high rewards in the full mdp. Recent work in model-free reinforcement learning has

considered how to exploit exogenous events for better sample complexity [104, 34],

whereas we tackle the problem from a model-based perspective.

If we view the state as a vector of features, then another perspective on our

approach is that it is a technique for feature selection [63] applied to mdps with ex-

ogenous state variables. This is closely related to the typical subset selection problem

in supervised learning [87, 109, 77, 153], in which a learner must determine a subset

of features that suffices for making predictions with little loss.

103

5.3 Problem Setting

In this section, we formalize the mask-learning problem for a factored mdp with

exogenous variables.

We assume that the agent is given a generative model of an infinite-horizon fac-

tored mdp with exogenous variables (Section 2.1.2), in the sense of Kearns et al. [80].

Concretely, the agent is given the following:

∙ Knowledge of 𝒮, 𝒜, and 𝛾.

∙ A black-box sampler of the transition model, which takes as input a state 𝑠 ∈ 𝒮

and action 𝑎 ∈ 𝒜, and returns a next state 𝑠′ ∼ 𝑇 (𝑠, 𝑎, 𝑠′).

∙ A black-box reward function, which takes as input a state 𝑠 ∈ 𝒮 and action 𝑎 ∈ 𝒜,

and returns the reward 𝑅(𝑠, 𝑎) for that state-action pair.

∙ A black-box sampler of an initial state 𝑠0 from some distribution 𝑃 (𝑠0).

We note that this assumption of having a generative model of an mdp lies somewhere

in between that of only receiving execution traces (as in the typical reinforcement

learning setting, assuming no ability to reset the environment) and that of having

knowledge of the full analytical model. One can also view this assumption as saying

that a simulator is available. Generative models are a natural way to specify a large

mdp, as it is typically easier to produce samples from a transition model than to

write out the complete next-state distributions.

We will focus on the setting where 𝑚, the number of exogenous state variables

𝑥1, 𝑥2, . . . , 𝑥𝑚, is large. The fact that 𝑚 is large precludes reasoning about the entire

exogenous state. We will define the mask-learning problem as a discrete optimization

problem for deciding which subset of variables 𝑥1, 𝑥2, . . . , 𝑥𝑚 the agent should reason

about.

To be able to unlink the effects of each exogenous state variable on the agent’s

reward, we will need to make an assumption on the form of the reward function

𝑅(𝑠𝑡, 𝑎𝑡) = 𝑅(𝑛𝑡, 𝑥𝑡, 𝑎𝑡). This assumption is necessary for the agent to be able to

reason about the effect of dropping a particular exogenous state variable from con-

sideration. Specifically, we assume that 𝑅(𝑛𝑡, 𝑥𝑡, 𝑎𝑡) =
∑︀𝑚

𝑖=1𝑅
𝑖(𝑛𝑡, 𝑥

𝑖
𝑡, 𝑎𝑡). In words,

104

this says that the reward function decomposes into a sum over the individual effects

of each exogenous state variable 𝑥𝑖. Although this means that the computation of the

agent’s reward cannot include logic based on any combinations of 𝑥𝑖, this assump-

tion is not too restrictive: one could always construct “super-variables” encompassing

state variables coupled in the reward. Note that despite this assumption, the value

function might depend non-additively on the exogenous variables.

Our central problem of focus is that of finding a mask, a subset of the 𝑚 exogenous

state variables, that is “good enough” for planning, in the sense that we do not lose

too much by ignoring the others. Before being able to formalize the problem, we

must define precisely what it means to plan with only a subset of the 𝑚 exogenous

variables. Let 𝑥 =
[︁
𝑥1 𝑥2 . . . 𝑥𝑚

]︁
, and �̃� ⊆ 𝑥 be an arbitrary subset (a mask).

We define the reduced model �̃� corresponding to mask �̃� and mdp 𝑀 as another

mdp:

∙ 𝒜 and 𝛾 are the same as in 𝑀 .

∙ 𝒮 is reduced by removing the dimensions corresponding to any 𝑥𝑖 /∈ �̃�.

∙ 𝑃 (𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡) = 𝑃 (𝑛𝑡+1 | 𝑛𝑡, 𝑎𝑡, �̃�𝑡) · 𝑃 (�̃�𝑡+1 | �̃�𝑡). Here, 𝑠𝑡 =
[︁
𝑛𝑡 �̃�𝑡

]︁
.1

∙ 𝑅(𝑠𝑡, 𝑎𝑡) = 𝑅(𝑛𝑡, �̃�𝑡, 𝑎𝑡) =
∑︀

𝑥𝑖∈�̃�𝑅
𝑖(𝑛𝑡, 𝑥

𝑖
𝑡, 𝑎𝑡). Here, we are leveraging the as-

sumption that the reward function decomposes as discussed above.

Since the agent only has access to a generative model of 𝑀 , planning in �̃�

will require estimating the reduced dynamics and reward models, 𝑇 (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) and

�̂�(𝑠𝑡, 𝑎𝑡).

Formally, the mask-learning problem is to determine:

�̃�* = argmax
�̃�⊆𝑥

𝐽(�̃�) = argmax
�̃�⊆𝑥

E

[︃
∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑛𝑡, 𝑥𝑡, �̃�(𝑛𝑡, �̃�𝑡))

]︃
− 𝜆 · Cost(�̃�), (5.1)

where �̃� is the policy (mapping reduced states to actions) that is obtained by planning

in �̃� . In words, we seek the mask �̃�* that yields a policy maximizing the expected

1The �̃� might, in actuality, not be Markov, since we are ignoring the variables 𝑥 ∖ �̃�. Nevertheless,
this expression is well-formed, and estimating it from data marginalizes out these ignored variables.
If they were not exogenous, such estimates would depend on the data-gathering policy (and thus
could be very error-prone).

105

total reward accrued in the actual environment (the complete mdp 𝑀), minus a cost

on �̃�. Note that if 𝜆 = 0, then the choice �̃� = 𝑥 is always optimal, and so 𝜆 serves as a

regularization hyperparameter that balances the expected reward with the complexity

of the considered mask. Reasonable choices of Cost(�̃�) include |�̃�| or the amount of

time needed to produce the policy �̃� corresponding to �̃�.

5.4 Approach

5.4.1 Leveraging Exogeneity

The agent has only a generative model of the mdp 𝑀 . In order to build a reduced

mdp �̃� , it must estimate 𝑇 (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) = 𝑃 (𝑛𝑡+1 | 𝑛𝑡, 𝑎𝑡, �̃�𝑡) · 𝑃 (�̃�𝑡+1 | �̃�𝑡) and

�̂�(𝑠𝑡, 𝑎𝑡).

Recall that we are considering the setting where the space of exogenous variables

is much larger than the space of endogenous variables. At first glance, then, it seems

challenging to estimate 𝑃 (�̃�𝑡+1 | �̃�𝑡) using only the generative model for 𝑃 (𝑥𝑡+1 | 𝑥𝑡).

However, this estimation problem is in fact greatly simplified due to the exogeneity

of the 𝑥𝑖. To see why, consider the typical strategy for estimating a transition model

from data: generate trajectories starting from some initial state 𝑥0, then fit a one-step

prediction model to this data. Now, if the 𝑥𝑖 were endogenous, then we would need to

commit to some policy 𝜋rollout in order to generate these trajectories, and the reduced

transition model we learn would depend heavily on this 𝜋rollout. However, since the 𝑥𝑖

are exogenous, we can roll out simulations conditioned only on the initial state 𝑥0, not

on a policy, and use this data to efficiently estimate the transition model 𝑃 (�̃�𝑡+1 | �̃�𝑡)

of the reduced mdp �̃� .2

Because we can efficiently estimate the reduced model dynamics of exogenous

state variables, we can not only tractably construct the reduced mdp, but also allow

ourselves to explore algorithms that depend heavily on estimating these variables’

dynamics, as we will do in Section 5.4.4.

2In high dimensions, we may still need a lot of data, unless the state factors nicely.

106

We now explore some value functions induced by the mask-learning problem, and

use this analysis to develop a tractable but effective approximate algorithm for finding

good masks.

5.4.2 Objective Estimation and Simple Strategies

Observe that the expectation in the objective 𝐽(�̃�) (Equation 5.1) is the value

𝑉�̃�(𝑠0) of an initial state under the policy �̃�, corresponding to mask �̃�. Because the

full mdp 𝑀 is very large, computing this value (the expected discounted sum of

rewards) exactly will not be possible. Instead, we can use rollouts of �̃� to produce an

estimate 𝑉�̃�, which in turns yields an estimate of the objective, 𝐽(�̃�):

Procedure Estimate-Objective(𝑀, �̃�, 𝑛rollouts)

1 Construct estimated reduced mdp �̃� defined by mask �̃� and full mdp 𝑀 .
2 Solve �̃� to get policy �̃�.
3 for 𝑖 = 1, 2, . . . , 𝑛rollouts do
4 Execute �̃� in the full mdp 𝑀 , obtain total discounted returns 𝑟𝑖.
5 𝐽(�̃�) = 1

𝑛rollouts

∑︀
𝑖 𝑟𝑖 − 𝜆 · Cost(�̃�)

As discussed in Section 5.4.1, Line 1 is tractable due to the exogeneity of the 𝑥

variables, which make up most of the dimensionality of the state. With Estimate-

Objective in hand, we can write down some very simple strategies for solving the

mask-learning problem:

∙ Mask-Learning-Brute-Force: Evaluate 𝐽(�̃�) for every possible mask �̃� ⊆ 𝑥.

Return the highest-scoring mask.

∙ Mask-Learning-Greedy: Start with an empty mask �̃�. While 𝐽(�̃�) increases,

pick a variable 𝑥𝑖 at random, add it into �̃�, and re-evaluate 𝐽(�̃�).

While optimal, Mask-Learning-Brute-Force is of course intractable for even

medium-sized values of 𝑚, as it will not be feasible to evaluate all 2𝑚 possible subsets

of 𝑥. Unfortunately, even Mask-Learning-Greedy will likely be ineffective for

medium and large mdps, as it does not leverage the structure of the mdp whatsoever.

To develop a better algorithm, we will start by exploring the connection between the

value functions of the reduced mdp �̃� and the full mdp 𝑀 .

107

5.4.3 Analyzing the Value Functions of Interest

It is illuminating to outline the various value functions at play within our problem.

We have:

∙ 𝑉 *(𝑠): the value function under an optimal policy; unknown and difficult to com-

pute exactly.

∙ 𝑉�̃�(𝑠): given a mask �̃�, the value function under the policy �̃�; unknown and difficult

to compute exactly. Note that 𝑉 *(𝑠) ≥ 𝑉�̃�(𝑠) ∀𝑠 ∈ 𝒮, by definition.

∙ 𝑉�̃�(𝑠): given a mask �̃�, the empirical estimate of 𝑉�̃�(𝑠), which the agent can obtain

by rolling out �̃� in the environment many times, as was done in the Estimate-

Objective procedure.

∙ 𝑉�̃�(𝑠): given a mask �̃�, the value function of policy �̃� within the reduced mdp �̃� .

Here, 𝑠 is the reduced form of state 𝑠 (i.e., the endogenous state 𝑛 concatenated

with �̃�).

Intuitively, 𝑉�̃�(𝑠) corresponds to the expected reward that the agent believes it

will receive by following �̃�, which typically will not match 𝑉�̃�(𝑠), the actual expected

reward. In general, we cannot say anything about the ordering between 𝑉�̃�(𝑠) and

𝑉�̃�(𝑠). For instance, if the mask �̃� ignores some negative effect in the environment,

then the agent will expect to receive higher reward than it actually receives during its

rollouts. On the other hand, if the mask �̃� ignores some positive effect in the world,

then the agent will expect to receive lower reward than it actually receives.

It is now natural to ask: under what conditions would an optimal policy �̃� for

the reduced mdp �̃� also be optimal for the full mdp 𝑀? The following theorem

describes sufficient conditions:

Theorem 1. Consider an mdp 𝑀 as defined in Section 5.3, with exogenous state

variables 𝑥 =
[︁
𝑥1 𝑥2 . . . 𝑥𝑚

]︁
, and a mask �̃� ⊆ 𝑥. Let �̄� = 𝑥∖ �̃� be the variables not

included in the mask. If the following conditions hold: (1) 𝑅𝑖(𝑛𝑡, 𝑥
𝑖
𝑡, 𝑎𝑡) = 0 ∀𝑥𝑖 ∈ �̄�,

(2) 𝑃 (𝑛𝑡+1 | 𝑛𝑡, 𝑎𝑡, 𝑥𝑡) = 𝑃 (𝑛𝑡+1 | 𝑛𝑡, 𝑎𝑡, �̃�𝑡), (3) 𝑃 (�̃�𝑡+1, �̄�𝑡+1 | �̃�𝑡, �̄�𝑡) = 𝑃 (�̃�𝑡+1 |

�̃�𝑡) ·𝑃 (�̄�𝑡+1 | �̄�𝑡); then 𝑉�̃�(𝑠) = 𝑉�̃�(𝑠) ∀𝑠 ∈ 𝒮. If �̃� is optimal for the reduced mdp �̃� ,

then it must also be true that 𝑉�̃�(𝑠) = 𝑉 *(𝑠) ∀𝑠 ∈ 𝒮.

108

Proof: Consider an arbitrary state 𝑠 ∈ 𝒮, with corresponding reduced state 𝑠.

We begin by showing that under the stated conditions, 𝑉�̃�(𝑠) = 𝑉�̃�(𝑠). The recursive

form of these value functions is:

𝑉�̃�(𝑠) = 𝑅(𝑠, �̃�(𝑠)) + 𝛾
∑︁
𝑠′

𝑃 (𝑠′ | 𝑠, �̃�(𝑠)) · 𝑉�̃�(𝑠′),

𝑉�̃�(𝑠) = 𝑅(𝑠, �̃�(𝑠)) + 𝛾
∑︁
𝑠′

𝑃 (𝑠′ | 𝑠, �̃�(𝑠)) · 𝑉�̃�(𝑠′).

Now, consider an iterative procedure for obtaining these value functions, which

repeatedly applies the above equations starting from 𝑉 0
�̃� (𝑠) = 𝑉 0

�̃� (𝑠) = 0 ∀𝑠 ∈ 𝒮. Let

the value functions at iteration 𝑘 be denoted as 𝑉 𝑘
�̃� (𝑠) and 𝑉 𝑘

�̃� (𝑠). We will show by

induction on 𝑘 that 𝑉 𝑘
�̃� (𝑠) = 𝑉 𝑘

�̃� (𝑠) ∀𝑘.

The base case is immediate. Suppose 𝑉 𝑘
�̃� (𝑠) = 𝑉 𝑘

�̃� (𝑠) ∀𝑠 ∈ 𝒮, for some value of 𝑘.

109

We compute:

𝑉 𝑘+1
�̃� (𝑠) = 𝑅(𝑠, �̃�(𝑠)) + 𝛾

∑︁
𝑠′

𝑃 (𝑠′ | 𝑠, �̃�(𝑠)) · 𝑉 𝑘
�̃� (𝑠

′)

=
𝑚∑︁
𝑖=1

𝑅𝑖(𝑛, 𝑥𝑖, �̃�(𝑠)) + 𝛾
∑︁
𝑠′

𝑃 (𝑛′ | 𝑛, �̃�(𝑠), 𝑥) · 𝑃 (𝑥′ | 𝑥) · 𝑉 𝑘
�̃� (𝑠

′)

=
∑︁
𝑥𝑖∈�̃�

𝑅𝑖(𝑛, 𝑥𝑖, �̃�(𝑠)) + 𝛾
∑︁
𝑠′

𝑃 (𝑛′ | 𝑛, �̃�(𝑠), 𝑥) · 𝑃 (𝑥′ | 𝑥) · 𝑉 𝑘
�̃� (𝑠

′)

= 𝑅(𝑠, �̃�(𝑠)) + 𝛾
∑︁
𝑠′

𝑃 (𝑛′ | 𝑛, �̃�(𝑠), 𝑥) · 𝑃 (𝑥′ | 𝑥) · 𝑉 𝑘
�̃� (𝑠

′)

= 𝑅(𝑠, �̃�(𝑠)) + 𝛾
∑︁
𝑠′

𝑃 (𝑛′ | 𝑛, �̃�(𝑠), �̃�) · 𝑃 (𝑥′ | 𝑥) · 𝑉 𝑘
�̃� (𝑠

′)

= 𝑅(𝑠, �̃�(𝑠)) + 𝛾
∑︁
𝑛′,𝑥′

∑︁
𝑥′

𝑃 (𝑛′ | 𝑛, �̃�(𝑠), �̃�) · 𝑃 (𝑥′, 𝑥′ | �̃�, �̄�) · 𝑉 𝑘
�̃� (𝑠

′)

= 𝑅(𝑠, �̃�(𝑠)) + 𝛾
∑︁
𝑛′,𝑥′

∑︁
𝑥′

𝑃 (𝑛′ | 𝑛, �̃�(𝑠), �̃�) · 𝑃 (𝑥′ | �̃�) · 𝑃 (𝑥′ | �̄�) · 𝑉 𝑘
�̃� (𝑠

′)

= 𝑅(𝑠, �̃�(𝑠)) + 𝛾
∑︁
𝑛′,𝑥′

∑︁
𝑥′

𝑃 (𝑛′ | 𝑛, �̃�(𝑠), �̃�) · 𝑃 (𝑥′ | �̃�) · 𝑃 (𝑥′ | �̄�) · 𝑉 𝑘
�̃� (𝑛

′, 𝑥′)

= 𝑅(𝑠, �̃�(𝑠)) + 𝛾
∑︁
𝑛′,𝑥′

𝑃 (𝑛′ | 𝑛, �̃�(𝑠), �̃�) · 𝑃 (𝑥′ | �̃�) · 𝑉 𝑘
�̃� (𝑛

′, 𝑥′) ·
���

����∑︁
𝑥′

𝑃 (𝑥′ | �̄�)

= 𝑅(𝑠, �̃�(𝑠)) + 𝛾
∑︁
𝑠′

𝑃 (𝑠′ | 𝑠, �̃�(𝑠)) · 𝑉 𝑘
�̃� (𝑠

′) = 𝑉 𝑘+1
�̃� (𝑠).

We have shown that 𝑉 𝑘
�̃� (𝑠) = 𝑉 𝑘

�̃� (𝑠) ∀𝑘. By standard arguments [124], this itera-

tive procedure converges to the true 𝑉�̃�(𝑠) and 𝑉�̃�(𝑠) respectively. Therefore, we have

that 𝑉�̃�(𝑠) = 𝑉�̃�(𝑠).

Now, if �̃� is optimal for �̃� , then it is optimal for the full mdp 𝑀 as well. This is

because Condition (1) assures us that the variables not considered in the mask do not

affect the reward, implying that �̃� optimizes the expected reward in not just �̃� , but

also 𝑀 . Therefore, under this assumption, we have that 𝑉�̃�(𝑠) = 𝑉�̃�(𝑠) = 𝑉 *(𝑠) ∀𝑠 ∈

𝒮.

The conditions in Theorem 1 are very intuitive: (1) all exogenous variables not in

the mask do not influence the agent’s reward, (2) the endogenous state transitions do

not depend on variables not in the mask, and (3) the variables in the mask transition

110

independently of the ones not in the mask. If these conditions hold, and we use an

optimal planner for the reduced model, then we will obtain a policy that is optimal

for the full mdp, not just the reduced one. Based on these conditions, it is clear that

our mask-learning algorithm should be informed by two things: 1) the agent’s reward

function and 2) the degree of correlation among the dynamics of the various state

variables.

Hoeffding’s inequality [69] allows us to bound the difference between 𝑉�̃�(𝑠) and

the empirical estimate 𝑉�̃�(𝑠). For rewards in the range [0, 𝑅max], discount factor 𝛾,

number of rollouts 𝑛, and policy �̃�, we have that for any state 𝑠, |𝑉�̃�(𝑠)− 𝑉�̃�(𝑠)| ≤ 𝜆

with probability at least 1− 2𝑒−2𝑛𝜆2(1−𝛾)2/𝑅2
max . This justifies the use of 𝑉�̃�(𝑠) in place

of 𝑉�̃�(𝑠), as was done in the Estimate-Objective procedure. Next, we describe a

tractable algorithm for mask-learning that draws on Theorem 1.

5.4.4 A Correlational Algorithm for Mask-Learning

Of course, it is very challenging to directly search for a low-cost mask �̃� that

meets all the conditions of Theorem 1, if one even exists. However, we can use the

intuition of those conditions to develop an approximate algorithm based upon greedy

forward selection techniques for feature selection [63], which at each iteration add a

single variable that most improves some performance metric. See Algorithm 5 for

pseudocode.

Algorithm description. In line with Condition (1) of Theorem 1, we begin by

estimating the set of exogenous state variables relevant to the agent’s reward function,

which we can do by leveraging the generative model of the mdp. As shown by the

Estimate-Reward-Variables subroutine, the idea is to compute, for each variable

𝑥𝑖, the average amount of variance in the reward across different values of 𝑥𝑖 when

the remainder of the state is held fixed, and threshold this at 𝜏variance. We define our

initial mask to be this set. The efficiency-accuracy tradeoff of this subroutine can be

controlled by tuning the number of samples, 𝑛1 and 𝑛2. In practice, we can make

a further improvement by heuristically biasing the sampling to favor states that are

111

Algorithm Mask-Learning-Correlational(𝑀, 𝜏correl, 𝜏variance, 𝑛1, 𝑛2)
1 �̃�← Estimate-Reward-Variables(𝑀, 𝜏variance, 𝑛1, 𝑛2) // Initial

mask for mdp 𝑀.

2 while 𝐽(�̃�) increases do // Iteratively add to initial mask.

3 𝑥𝑖 = argmax𝑥𝑗 /∈�̃�𝐷KL(𝑇𝑠,𝑥𝑗 ‖ 𝑇𝑠 ⊗ 𝑇𝑥𝑗) // Measure mutual
informations.

4 if 𝐷KL(𝑇𝑠,𝑥𝑖 ‖ 𝑇𝑠 ⊗ 𝑇𝑥𝑖) < 𝜏correl then
break // All mutual informations below threshold, terminate.

5 �̃� = �̃� ∪ 𝑥𝑖

6 𝐽(�̃�)←Estimate-Objective(𝑀, �̃�)

7 return �̃�

Subroutine Estimate-Reward-Variables(𝑀, 𝜏variance, 𝑛1, 𝑛2)
8 for each variable 𝑥𝑖 ∈ 𝑥 do
9 for 𝑛1 random samples of endog. state, exog. variables 𝑥 ∖ 𝑥𝑖, action 𝑎

do
10 Randomly sample 𝑛2 settings of variable 𝑥𝑖, construct full states

𝑠1, 𝑠2, . . . , 𝑠𝑛2 .
11 Compute 𝜎2

𝑗 ← Var({𝑅(𝑠1, 𝑎), . . . , 𝑅(𝑠𝑛2 , 𝑎)}).
12 if 1

𝑛1

∑︀𝑛1

𝑗=1 𝜎
2
𝑗 > 𝜏variance then // Mean variance above threshold,

accept.
13 emit 𝑥𝑖

Algorithm 5: Correlational mask learning. See Section 5.4.4 for details.

more likely to be encountered by the agent (such heuristics can be computed, for

instance, by planning in a relaxed version of the problem).

Then, we employ an iterative procedure to approximately build toward Conditions

(2) and (3): that the variables not in the mask transition independently of those in

the mask and the endogenous state. To do so, we greedily add variables into the

mask based upon the mutual information between the empirical transition model of

the reduced state and that of each remaining variable. Intuitively, this quantitatively

measures: “How much better would we be able to predict the dynamics of 𝑠 if 𝑠 included

variable 𝑥𝑖, versus if it didn’t? ” This mutual information will be 0 if 𝑥𝑖 transitions

independently of all variables in 𝑠. To calculate the mutual information between 𝑠

and variable 𝑥𝑖, we must first learn the empirical transition models 𝑇𝑠,𝑥𝑖 , 𝑇𝑠, and 𝑇𝑥𝑖

from data. The exogeneity of most of the state is critical here: not only does it make

112

learning these models much more efficient, but also, without exogeneity, we could not

be sure whether two variables actually transition independently of each other or we

just happened to follow a data-gathering policy that led us to believe so.

5.5 Experiments

Our experiments are designed to answer the following questions: (1) In small

domains, are the masks learned by our algorithm competitive with the optimal masks?

(2) Quantitatively, how well do the learned masks perform in large, complicated

domains? (3) Qualitatively, do the learned masks properly reflect different goals

given to the robot? (4) What are the limitations of our approach?

We experiment in simulated robotic manipulation domains in which a robot is

placed in a busy environment with objects on tables, among many other agents that

are also interacting with objects. The robot is rewarded for navigating to a given

goal object (which changes on each episode) and penalized for crashing into other

agents. The exogenous variables are the states of the other agents,3 a binary-valued

occupancy grid discretizing the environment, the object placements on tables, and

information specifying the goal. We plan using value iteration with a timeout of 60

seconds. Empirical value estimates are computed as averages across 500 independent

rollouts. Each result reports an average across 50 independent trials. We regularize

masks by setting Cost(�̃�) = |�̃�|; our initial experimentation suggested that other mask

choices, such as planning time, perform similarly.

In small domains, are our learned masks competitive with the optimal

masks?

Finding the op-

timal mask �̃�* is

only possible in small

3It is true that typically, the other agents will react to the robot’s actions, but it is well worth making
the exogeneity assumption in these complicated domains we are considering. This assumption is
akin to how we treat traffic patterns as exogenous to ourselves, even though technically we can
slightly affect them.

113

models. There-

fore, to answer this

question we con-

structed a small

gridworld representation of our experimental domain, with only ∼600 states and

5 exogenous variables, in which we can plan exactly. We find �̃�* using the Mask-

Learning-Brute-Force strategy given in Section 5.4.2. We compare the optimal

mask with both 1) Ours, the mask returned by our algorithm in Section 5.4.4; and 2)

Greedy, the mode mask chosen across 10 independent trials of the Mask-Learning-

Greedy strategy given in Section 5.4.2.

Discussion. For higher values of 𝜆 especially, our algorithm performs on par

with the optimal brute-force strategy, which is only viable in small domains. The gap

widens as 𝜆 decreases because as the optimal mask gets larger, it becomes harder to

find using a forward selection strategy such as ours. In practical settings, one should

typically set 𝜆 quite high so that smaller masks are preferred, as these will yield the

most compact reduced models. Meanwhile, the greedy strategy does not perform well

because it disregards the structure of the mdp and the conditions of Theorem 1. We

also observe that our algorithm takes significantly less time than the optimal brute-

force strategy; we should expect this gap to widen further in larger domains. Our

algorithm’s stopping condition is that the score function begins to decrease, and so

it tends to terminate more quickly for higher values of 𝜆, as smaller masks become

increasingly preferred.

Quantitatively, how well do the learned masks perform in large, com-

plicated domains?

To answer this question, we consider two large domains, visualized in Figure 5-

1 (bottom row): Factory, in which a robot must fulfill manipulation tasks being

issued in a stream; and Crowd, in which a robot must navigate to target objects

among a crowd of agents executing their own fixed stochastic policies. Even after

discretization, these domains have 1011 and 1080 states respectively; Factory has 22

exogenous variables and Crowd has 124. In either domain, both planning exactly

114

Algorithm Domain Average True Returns Time / Run (sec)
Greedy Factory 0 13.4

Ours (first phase) Factory 186 —
Ours (full) Factory 226 53.8

Greedy + heuristics Crowd 188 43.7
Ours (first phase) Crowd 260 —

Ours (full) Crowd 545 123.5

Table 5.1: Main results table. See text for details.

Figure 5-1: Additional experimental results (top row) and environment visualizations
(bottom row). See text for details.

in the full mdp and searching for �̃�* by brute force are prohibitively expensive. All

results use 𝑛rollouts = 500, 𝜏correl = 10−5, 𝜏variance = 0, 𝑛1 = 250, and 𝑛2 = 5. We

compare our algorithm with the Greedy one described earlier, which disregards the

structure of the mdp. We also compare to only running our algorithm’s first phase,

which chooses the mask to be the estimated set of variables directly influencing the

reward. The results are shown in Table 5.1 and Figure 5-1.

Discussion. In the Factory domain, the baseline greedy algorithm did not suc-

ceed even once at the task. The reason is that in this domain, several exogenous

variables directly influence the reward function, but the greedy algorithm starts with

an empty mask and only adds one variable at a time, and so cannot detect the im-

provement arising from adding in several variables at once. To give the baseline a fair

115

Figure 5-2: Left : Example of the full world. We control the singular gold-and-purple
robot in the environment; the others follow fixed policies and are exogenous. Medium,
Right : Examples of reduced models learned by the robot for Goals (1) and (2). The
red squares on the ground describe which locations, within a discretization of the
environment, the robot has learned to consider within its masked occupancy grid,
while green circles denote currently occupied locations. Because all goals require
manipulating objects on the tables, the robot recognizes that it does not need to
consider occupancies in the lower-left quarter of the environment. For Goal (1), in
which the other agents cannot manipulate the objects, the robot recognizes that it
does not need to consider the states of any other agents. For Goal (2), the robot
considers one of the other agents (here, holding the green object) within its reduced
model, since this helps it better predict the dynamics of the objects.

chance, we initialized it by hand to a better mask for the Crowd domain, which is

why it sees success there (Greedy + heuristics in the table). The results suggest that

our algorithm, explicitly framed around all conditions of Theorem 1, performs well.

The graph of the reduced mdp size shows the number of states in the Factory domain

as a function of the number of exogenous variables included in the mask. The graph

of the example execution in the Crowd domain shows that adding a 55th variable to

the mask yields a decrease in the estimated objective even though the average returns

slightly increase, due to the regularizer |�̃�|.

Qualitatively, do the learned masks properly reflect different goals given

to the robot?

An important characteristic of our algorithm is its ability to learn different masks

based on what the goal is; we illustrate this concept with an example. Let us explore

the masks resulting from two different goals in the Crowd domain: Goal (1) is for the

robot to navigate to an object that cannot be moved by any of the other agents, and

116

Goal (2) is for the robot to navigate to an object that is manipulable by the other

agents. In either case, the variables that directly affect the reward function are the

object placements on the tables (which tell the robot where it must navigate to) and

the occupancy grid (which helps the robot avoid crashing). However, for Goal (2),

there is another variable that is important to consider: the states of any other agents

that can manipulate the objects. This desideratum gets captured by the second phase

of our algorithm: reasoning about the states of the other agents will allow the robot

to better predict the dynamics of the object placements, enabling it to succeed at its

task more efficiently and earn higher rewards. See Figure 5-2 for a visualization of

this concept in our experimental domain, simulated using PyBullet [37].

Discussion. In a real-world setting, all of the exogenous variables could poten-

tially be relevant to solving some problem, but typically only a small subset will be

relevant to a particular problem. Under this lens, our method gives a way of deriving

option policies in lower-dimensional subspaces.

What are the limitations of our approach?

Our experimentation revealed some limitations of our approach that are valuable

to discuss. If the domains of the exogenous variables are large (or continuous), then

it is expensive to compute the necessary mutual information quantities. To remedy

this issue, one could turn to techniques for estimating mutual information, such as

MINE [18]. Another limitation is that the algorithm as presented greedily adds one

variable to the mask at a time, after the initial mask is built. In some settings, it can

be useful to instead search over groups of variables to add in all at once, since these

may contain information for better predicting dynamics that is not present in any

single variable. Nevertheless, our experimentation has shown that our algorithm for

mask-learning, in which an agent must choose a subset of the exogenous state variables

of an mdp to reason about, leads to efficient planning in complicated domains.

117

THIS PAGE INTENTIONALLY LEFT BLANK

118

Chapter 6

Planning with Learned Object

Importance in Large Problems

6.1 Motivation

A key aim in planning is to scale to large, real-world applications. In the pre-

vious chapters, we have discussed methods for projective abstraction via selecting

constraints to impose on your own behavior and detecting irrelevant exogenous pro-

cesses. However, these approaches may not scale effectively to very large problem

instances, in particular applications that involve many objects, only some of which

are important for any particular goal. For example, a household robot’s internal state

must include all objects relevant to any of its functions, but once it receives a specific

goal, such as boiling potatoes, it should restrict its attention to only a small object

set, such as the potatoes, pots, and forks, ignoring the hundreds or even thousands of

other objects. If its goal were instead to clean the sink, the set of objects to consider

would vary drastically.

In this chapter, we study projective abstraction for planning problems with large

(but finite) universes of objects, where only a small subset need to be considered for

any particular goal. Popular heuristic search planners [71, 66, 99] scale poorly in this

regime (Figure 6-1), as they ground actions over the objects during preprocessing.

Lifted planners [129, 36] avoid explicit grounding, but struggle during search; we

119

find that a state-of-the-art lifted planner [36] fails to solve any test problem in our

experiments within the timeout (but it can usually solve the much smaller training

problems). In this many-object setting, one would instead like to identify a small

sufficient set of objects before planning, but finding this set is nontrivial and highly

problem-dependent.

Our approach is to learn to predict subsets of objects that are sufficient for solving

planning problems. This requires reasoning about discrete and continuous properties

of the objects and their relations; moreover, generalizing to problems with more

objects requires learning lifted models that are agnostic to object identity and count.

We therefore propose a convolutional graph neural network architecture [132, 85, 15]

that learns from a modest number (< 50) of small training problems and generalizes

to hard test problems with many more objects. On the test problems, we use the

network to predict a sufficient object set, remove all facts from the initial state and

goal referencing excluded objects, and call an off-the-shelf planner on this reduced

planning problem. For completeness, we wrap this procedure in an incremental loop

that considers more objects until a solution is found.

Object importance prediction offers several advantages over alternative learning-

based approaches: (1) it can treat the planner and transition model as black boxes; (2)

its runtime does not depend on the number of ground actions (for a constant number

of objects); (3) it permits efficient inference, therefore contributing negligibly to the

overall planning time; and (4) it allows for a large margin of error in one direction,

since the planning time can improve substantially even if only some irrelevant objects

are excluded (Figure 6-1).

Gathering training data can be challenging in this setting because it requires labels

of which objects are relevant; it would be impractical to assume that such labels are

given. Instead, we propose a greedy approximate procedure for generating these labels

automatically, which is only conducted in the relatively small training problems.

In experiments, we consider classical planning, probabilistic planning, and robotic

task and motion planning, with test problems containing hundreds or thousands of

objects. Our method, Planning with Learned Object Importance (ploi), results in

120

planning that is much more efficient than several baselines, including policy learn-

ing [60, 131] and partial action grounding [56]. We conclude that object importance

prediction is a simple, powerful, and general mechanism for planning in large instances

with many objects.

6.2 Related Work

Planning with Many Objects. Planning for problem instances that contain

many objects is one of the main motivations for ongoing research in lifted planning

[129, 36]. In STRIPS-like domains, lifted planners avoid the expensive preprocessing

step of grounding the actions over all objects. Another way to alleviate the burden

of grounding is to simplify the planning problem by creating abstractions [42, 44, 1].

Our object importance predictor can also be viewed as a type of learned abstraction

selection [91, 130, 65].

Relational Representations for Learning to Plan. Our work uses graph

neural networks (GNNs) [132, 85, 15], an increasingly popular choice for relational

machine learning with applications to planning [151, 102, 133, 131]. One advantage

of GNNs over logical representations [112, 97, 48] is that GNNs natively support

continuous object-level and relational properties. We make use of this flexibility in

our experiments, showing results in a simulated robotic environment.

Generalized Planning. Our work may be seen as an instance of generalized

planning, which broadly encompasses methods for collectively solving a set of plan-

ning problems, rather than a single problem in isolation [76]. Other approaches

to generalized planning include generalized policy learning [50, 60, 57], incremental

search [86, 122], and heuristic or value function learning [7, 134, 133]. Incremental

search and heuristic learning are complementary to our work and could be easily

combined; generalized policy learning suggests a different mode of execution (exe-

cuting the policy without planning) and we therefore include it as a baseline in our

experiments.

The work perhaps most similar to ours is that of Gnad et al. [56], who propose

121

partial action grounding as another approach to generalized planning in large prob-

lems. Rather than predicting the probability that objects will be included in a plan

(as we do), their approach predicts the probability that ground actions will be in-

cluded. We include two versions of this approach as baselines in our experiments,

including the implementation provided by the authors.

6.3 Problem Setting

We study relational planning problems (Section 2.2) with extraneous objects: ones

that, if ignored, would make planning easier. The methods we propose are biased

toward this subclass of planning problems and would not offer benefits in problems

for which planning is easier, or only feasible, with all objects.

We consider the usual learning setting where we are first given a set of training

problems, and then a separate set of test problems. All problems share 𝒫 , 𝒜, and 𝑇 ,

but may have different 𝒪, 𝐼, and 𝐺. In general, the test problems will have a much

larger set of objects 𝒪 than the training problems; both training and test problems

will have extraneous objects in 𝒪. For simplicity, we assume properties have arity at

most 2; higher-order ones can often be converted to an equivalent set of binary (arity

2) properties [131]. We treat object types as unary (arity 1) properties.

We are also given a black-box planner, denoted Plan, which given a relational

planning problem Π, produces either a plan or a policy, based on whether 𝑇 is deter-

ministic or stochastic. Going forward, we will not continue to make this distinction

between plans and policies; in either case, at an intuitive level, Plan produces ground

actions that drive the agent toward its goal.

Our objective is to maximize the number of test problems solved within some

time budget. Because the test problems contain many objects, and planners are

often highly sensitive to this number, we will follow the broad approach of learning a

model (on the training problems) that speeds up planning (on the test problems).

122

Planning with Learned Object Importance
Input: Planning problem Π = ⟨𝒫 ,𝒜, 𝑇,𝒪, 𝐼, 𝐺⟩. // See Section 6.3
Input: Object scorer 𝑓 . // See Section 6.4
Hyperparameter: Geometric threshold 𝛾.
// Step 1: compute importance scores
Compute score(𝑜) = 𝑓(𝑜, 𝐼, 𝐺) ∀𝑜 ∈ 𝒪
// Step 2: incremental planning
for 𝑁 = 1, 2, 3, ... do

// Select objects above threshold

�̂� ← {𝑜 : 𝑜 ∈ 𝒪, score(𝑜) ≥ 𝛾𝑁}
// Create reduced problem & plan

Π̂← ReduceProblem(Π, �̂�)
𝜋 ← Plan(Π̂)
// Validate on original problem

if IsSolution(𝜋,Π) or �̂� = 𝒪 then
return 𝜋

Algorithm 6: Pseudocode for ploi. In practice, we perform two optimizations:
(1) plan only when the object set �̂� changes, so that Plan is called at most |𝒪|
times; and (2) assign a score of 1 to all objects named in the goal. See Section 6.4
for details and Figure 6-2 for an example.

6.4 Planning with Object Importance

In this section, we describe our approach for learning to plan efficiently in large

problems. Our main idea is to learn a model that predicts a sufficient subset of the

full object set. At test time, we use the learned model to construct a reduction of

the planning problem, plan in the reduction, and validate the resulting plan in the

original problem. To guarantee completeness, we repeat this procedure, incrementally

growing the subset until a solution is found. This overall method — Planning with

Learned Object Importance (ploi) — is summarized in Algorithm 6 and Figure 6-2.

We now describe ploi in more detail, beginning with a more formal description

of the reduced planning problem.

Definition 11 (Object set reduction). Given a planning problem Π = ⟨𝒫 ,𝒜, 𝑇,𝒪, 𝐼, 𝐺⟩

and a subset of objects �̂� ⊆ 𝒪, the problem reduction Π̂ = ReduceProblem(Π, �̂�)

is given by Π̂ = ⟨𝒫 ,𝒜, 𝑇, �̂�, 𝐼, �̂�⟩, where 𝐼 (resp. �̂�) is 𝐼 (resp. 𝐺) but with only

properties over �̂�.

123

Intuitively, an object set reduction abstracts away all aspects of the initial state

and goal pertaining to the excluded objects, and disallows any ground actions that

involve these objects. This can result in a dramatically simplified planning problem,

but may also result in an oversimplification to the point where planning in the reduc-

tion results in an invalid solution, or no solution at all. To distinguish such sets from

the useful ones we seek, we use the following definition.

Definition 12 (Sufficient object set). Given a planning problem Π = ⟨𝒫 ,𝒜, 𝑇,𝒪, 𝐼, 𝐺⟩

and planner Plan, a subset of objects �̂� ⊆ 𝒪 is sufficient if 𝜋 = Plan(Π̂) is a solu-

tion to Π, where Π̂ = ReduceProblem(Π, �̂�).

In words, an object set is sufficient if planning in the corresponding reduction

results in a valid solution for the original problem. An object set that omits crucial

objects, like a key needed to unlock a door or an obstacle that must be avoided, will

not be sufficient: planning will fail without the key, and validation will fail without the

obstacle. Trivially, the complete set of objects 𝒪 is always sufficient if the planning

problem is satisfiable and the planner is complete. However, we would like to identify

a small sufficient set that permits faster planning. We therefore aim to learn a model

that predicts such a set for a given initial state and goal.

6.4.1 Scoring Object Importance Individually

We wish to learn a model that allows us to identify a small sufficient subset of

objects given an initial state, goal, and complete set of objects. There are three

basic requirements for such a model. First, since our ultimate objective is to improve

planning time, the model should be fast to query. Second, since we want to optimize

the model from a modest number of training problems, the model should permit data-

efficient learning. Finally, since we want to maintain completeness when the original

planner is complete, the model should allow for some recourse when the first subset

it predicts does not result in a valid solution.

These requirements preclude models that directly output a subset; such models

offer no obvious recourse when the predicted subset turns out to be insufficient. More-

124

over, models that reason about sets of objects are, in general, likely to require vast

amounts of training data and may require exorbitant time during inference.

We instead choose to learn a model 𝑓 : 𝒪 × 𝒮 × 𝒢 → (0, 1] that scores objects

individually. The output of the model 𝑓(𝑜, 𝐼, 𝐺) can be interpreted as the probability

that the object 𝑜 will be included in a small sufficient set for the planning problem

⟨𝒫 ,𝒜, 𝑇,𝒪, 𝐼, 𝐺⟩. We refer to this output score as the importance of an object. To

get a candidate sufficient subset �̂� from such a model, we can simply take all objects

with importance score above a threshold 0 < 𝛾 < 1.

For the graph neural network architecture we will present in Section 6.5, this infer-

ence is highly efficient, requiring only a single inference pass. This parameterization

also affords efficient learning, since as discussed at the end of this section, the loss

function decomposes as a sum over objects. As an optimization, we always include

in �̂� all objects named in the goal, since such objects must be in any sufficient set.

Another immediate advantage of predicting scores for objects individually is that

there is natural recourse when the first candidate set �̂� does not succeed: simply

lower the threshold 𝛾 and retry. In practice, we lower the threshold geometrically

(see Algorithm 6), guaranteeing completeness.

Lemma 1 (ploi is complete). Given any object scorer 𝑓 : 𝒪×𝒮 ×𝒢 → (0, 1], if the

planner Plan is complete, then Algorithm 6 is complete.

Proof. Since the codomain of 𝑓 excludes 0, there exists an 𝜖 > 0 s.t. {𝑜 : 𝑜 ∈

𝒪, 𝑓(𝑜, 𝐼, 𝐺) ≥ 𝜖} = 𝒪. Furthermore, 0 < 𝛾 < 1, so there exists an iteration 𝑁

s.t. 𝛾𝑁 < 𝜖. Therefore, even in the worst case, we will eventually run Plan on the

original problem and return the result.

In predicting scores for objects individually, we have made the set prediction

problem tractable by restricting the hypothesis class, but it is important to note that

this restriction makes it impossible to predict certain object subsets. For example,

in planning problems where a particular number of “copies” of the same object are

required, e.g., three eggs in a recipe or five nails for assembly, individual object scoring

125

can only predict the same score for all copies. In practice, we find that this limitation

is sharply outweighed by the benefits of efficient learning and inference.

In Section 6.5, we will present a graph neural network architecture for the object

scorer 𝑓 that is well-suited for relational domains. Before that, however, we describe

a general methodology for learning 𝑓 on the set of training problems.

6.4.2 Training with Supervised Learning

We now describe a general method for learning an object scorer 𝑓 given a set

of training problems Πtrain = {Π1,Π2, ...,Π𝑀}, where each Π𝑖 = ⟨𝒫 ,𝒜, 𝑇,𝒪𝑖, 𝐼𝑖, 𝐺𝑖⟩.

The main idea is to cast the problem as supervised learning. From each training

problem Π𝑖, we want to extract input-output pairs {((𝑜, 𝐼𝑖, 𝐺𝑖), 𝑦)}, where 𝑜 ∈ 𝒪𝑖
is each object from the full set for the problem, and 𝑦 ∈ {0, 1} is a binary label

indicating whether 𝑜 should be predicted for inclusion in the small sufficient set. The

overall training dataset for supervised learning, then, will contain an input-output

pair for every object, for each of the 𝑀 training problems.

The 𝑦 labels for the objects are not given, and moreover, it can be challenging to

exactly compute a minimal sufficient object set, even in small problem instances. We

propose a simple approximate method for automatically deriving the labels. Given a

training problem Π𝑖, we perform a greedy search over object sets: starting with the

full object set 𝒪𝑖, we iteratively remove an individual object from the set, accepting

the new set if it is sufficient, until no more individual objects can be removed without

violating sufficiency. All objects in the final sufficient set are labeled with 𝑦 = 1,

while the remaining objects are labeled with 𝑦 = 0. This procedure, which requires

planning several times per problem instance with full or near-full object sets to check

sufficiency, exploits the fact that the training problems are much smaller and easier

than the test problems.

It should be noted that the aforementioned greedy procedure is an approximation,

in the sense that there may be some smaller sufficient object set than the one returned.

To illustrate this point, consider a domain with a certain number of widgets where

the only parameterized action is destroy(?widget). Suppose the goal is to be left

126

with a number of widgets that is divisible by 10, and that the full object set itself

has 10 widgets. The greedy procedure will terminate after the first iteration, since

no object can be removed while maintaining sufficiency. However, the empty set is

actually sufficient because it induces the empty plan, which trivially satisfies this goal.

Despite such possible cases, this greedy procedure for deriving the training data does

well in practice to identify small sufficient object sets.

With a dataset for supervised learning in hand, we can proceed in the standard

way by defining a loss function and optimizing model parameters. To permit data-

efficient learning, we use a loss function that decomposes over objects:

ℒ(Πtrain) =
𝑀∑︁
𝑖=1

∑︁
𝑜𝑗∈𝒪𝑖

ℒobj(𝑦𝑖𝑗, 𝑓(𝑜𝑗, 𝐼𝑖, 𝐺𝑖)),

where 𝑦𝑖𝑗 is the binary label for the 𝑗𝑡ℎ object in the 𝑖𝑡ℎ training problem, and

𝑓(𝑜𝑗, 𝐼𝑖, 𝐺𝑖) ∈ (0, 1]. We use a weighted binary cross-entropy loss for ℒobj, where

the weight (10 in experiments) gives higher penalty to false negatives than false pos-

itives, to account for class imbalance.

6.5 Object Importance Scorers as GNNs

We have established individual object importance scorers 𝑓 : 𝒪 × 𝒮 × 𝐺 →

(0, 1] as the model that we wish to learn. We now turn to a specific model class

that affords gradient-based optimization, data-efficient learning, and generalization

to test problems with new and many more objects than were seen during training.

Graph neural networks (GNNs) offer a flexible and general framework for learning

functions over graph-structured data [85]. GNNs employ a relational bias that is

well-suited for our setting, where we want to make predictions based on the relations

that objects are involved in, but we do not want to overfit to the particular identity

or number of objects in the training problems [15]. Such a relational bias is crucial

for generalizing from training with few objects to testing with many. Furthermore,

GNNs can be used in domains with continuous properties, unlike traditional inductive

127

logic programming methods [112, 97]. We stress that other modeling choices are

possible, such as statistical relational learning methods [89], as long as they are lifted,

relational, efficiently learnable, and able to handle continuous properties; we have

chosen GNNs here because they are convenient and well-supported.

The input to a GNN is a directed graph with nodes 𝒱 and edges ℰ . Each node

𝑣 ∈ 𝒱 has a feature vector 𝜑node(𝑣) ∈ R𝐷in
node , where 𝐷in

node is the (common) dimen-

sionality of these node feature vectors. Each edge (𝑣1, 𝑣2) ∈ ℰ has a feature vector

𝜑edge(𝑣1, 𝑣2) ∈ R𝐷in
edge , where 𝐷in

edge is the (common) dimensionality of these edge fea-

ture vectors. The output of a GNN is another graph with the same topology, but the

node and edge features are of different dimensionalities: 𝐷out
node and 𝐷out

edge respectively.

Internally, the GNN passes messages for 𝐾 iterations from edges to sink nodes and

from source nodes to edges, where the messages are determined by fully connected

networks with weights shared across nodes and edges. We use the standard Graph

Network block [15], but other choices are possible. Like other neural networks, GNNs

can be trained with gradient descent.

We now describe how object importance scoring can be formulated as a GNN. The

high-level idea is to associate each object with a node, each unary property (including

object types) with an input node feature, each binary property with an input edge

feature, and each importance score with an output node feature. See Figure 6-3 for

an example.

Given a planning problem with object set𝒪, we construct input and output graphs

where each node 𝑣 ∈ 𝒱 corresponds to an object 𝑜 ∈ 𝑂. In the output graph, there is

a single feature for each node; i.e., 𝐷out
node = 1. This feature represents the importance

score 𝑓(𝑜, 𝐼, 𝐺) of each object 𝑜. The edges are ignored in the output graph.

The input graph is an encoding of the initial state 𝐼 and goal 𝐺. Recall that

the initial state 𝐼 is defined by an assignment of all ground properties (𝒫 over 𝒪) to

values, and that all properties are unary (arity 1) or binary (arity 2). Each unary

property, which includes object types, corresponds to one dimension of the input node

feature vector 𝜑node(𝑜). Each binary property corresponds to two dimensions of the

input edge feature vector 𝜑edge(𝑜1, 𝑜2): one for each of the two orderings of the objects

128

(see Figure 6-3).

Recall that a goal 𝐺 is characterized by an assignment of some subset of ground

properties to values. Unlike the initial state, not all ground properties must appear

in the goal; in practice, goals are typically very sparse relative to the state. For

each ground property, we must indicate whether it appears in the goal, and if so,

with what assignment. For each unary property, we add two dimensions to the input

node feature vector 𝜑node(𝑜): one indicating the presence (1) or absence (0) of the

property, and the other indicating the value, with a default of 0 if the property is

absent. Similarly, for each binary property, we add four dimensions to the input edge

feature vector 𝜑edge(𝑜1, 𝑜2): two for the orderings multiplied by two for presence and

assignment.

For STRIPS-like domains where properties are predicates, we make two small

simplifications. First, to make the graph computations more efficient, we sparsify the

edges by removing any edge whose features are all zeros. Second, in the common case

where goals do not involve negation, we note that the presence/absence dimension will

be equivalent to the assignment dimension; we thus remove the redundant dimension.

Figure 6-3 makes use of these simplifications.

Given a test problem and trained GNN, we construct an input graph, feed it to

the GNN to get an output graph, and read off the predicted importance scores for all

objects. This entire procedure needs only one inference pass (with 𝐾 = 3 message

passing iterations) to predict all object scores; it takes just a few milliseconds in our

experiments.

6.6 Experiments

In this section, we present empirical results for ploi and several baselines. We

find that ploi improves the speed of planning significantly over all these baselines.

129

Pure Plan ploi (Ours) Rand Score Neighbors Policy ILP AG GNN AG
Domains Time Fail Time Fail Time Fail Time Fail Time Fail Time Fail Time Fail
Blocks 7.47 0.00 0.62 0.00 49.99 0.00 0.52 0.00 7.25 0.74 2.33 0.00 52.95 0.23
Logistics 8.55 0.00 6.44 0.00 42.05 0.00 15.40 0.00 – 1.00 – 1.00 49.31 0.81
Miconic 87.71 0.06 21.64 0.04 – 1.00 93.86 0.98 – 1.00 – 1.00 – 1.00
Ferry 12.64 0.00 7.52 0.00 43.79 0.10 39.66 0.00 34.78 0.91 33.77 0.00 – 1.00
Gripper 24.48 0.00 0.47 0.00 56.58 0.29 37.63 0.00 28.94 0.60 5.71 0.20 86.29 0.95
Hanoi 3.19 0.00 3.39 0.00 3.47 0.00 4.63 0.00 – 1.00 6.15 0.00 7.55 0.00
Exploding 11.52 0.30 0.81 0.30 44.96 0.32 1.08 0.29 10.18 0.89 4.69 0.19 48.53 0.38
Tireworld 24.58 0.01 4.38 0.08 44.09 0.29 47.13 0.00 30.36 0.10 – 1.00 63.03 0.66
PyBullet – 1.00 2.05 0.00 – 1.00 8.58 0.01 – – – – – –

Table 6.1: On test problems, failure rates within a 120-second timeout and planning
times in seconds over successful runs. All numbers report a mean across 10 random
seeds, which randomizes both GNN training (if applicable) and testing. All times are
in seconds; bolded times are within two standard deviations of best. AG = action
grounding. Policy and AG baselines are not run for PyBullet because these methods
cannot handle continuous actions. Across all domains, ploi is consistently best and
usually at least two standard deviations better than all other methods.

6.6.1 Experimental Design

Baselines. We consider several baselines in our experiments, ranging from pure

planning to state-of-the-art methods for learning to plan. All GNN baselines are

trained with supervised learning using the set of plans found by an optimal planner

on small training problems.

∙ Pure planning. Use the planner Plan on the complete test problems, with all

the objects.

∙ Random object scoring. Use the incremental procedure described in Section

6.4, but instead of using a trained GNN to score the importance of each object, give

each object a uniformly random importance score between 0 and 1. This baseline

can be understood as an ablation that removes the GNN from our system.

∙ Neighbors. This is a simple heuristic approach that incrementally tries planning

with all objects that are connected by at most 𝐿 steps in the graph of relations

to any object named in the goal, for 𝐿 = 0, 1, 2, If a plan has not been found

even after all objects connected to a goal object have been considered, we fall back

to pure planning for completeness.

∙ Reactive policy. Inspired by other works that learn reactive, goal-conditioned

policies for planning problems [60, 131], we modify our GNN architecture to pre-

dict a ground action per timestep. The input remains the same, but the output

130

has two heads: one predicts a probability over actions 𝒜, and the other predicts,

for every parameter of that action, a probability over objects. At test time, we

compute all valid actions in each state and execute the one with the highest prob-

ability under the policy. This baseline does not use Plan at test time.

∙ ILP action grounding. This baseline is the method presented by Gnad et al.

[56], described in Section 6.2, with the best settings they report. We use the

implementation provided by the authors for both training and test. We use the

SVR model with round robin queue ordering, and incremental grounding with

increment 500.

∙ GNN action grounding. We also investigate using a GNN in place of the

inductive logic programming (ILP) model used by the previous baseline [56]. To

implement this, we modify our GNN architecture to take as input a ground action

in addition to the state and goal, and output the probability that this ground

action should be considered when planning.

As mentioned in Section 6.1, we also attempted to compare to a state-of-the-art

lifted planner [36], using the implementation provided by the authors. However, we

found that this planner was unable to solve any of our test problems in any domain,

although it was usually able to solve the (much smaller) training problems.

Domains. We evaluate on 9 domains: 6 classical planning, 2 probabilistic plan-

ning, and 1 simulated robotic task and motion planning. We chose several of the most

standard classical and probabilistic domains from the International Planning Com-

petition (IPC) [27], but we procedurally generated problems involving many more

objects than is typical. In all domains, we train on 40 problem instances and test

on 10 much larger ones. For interacting with IPC domains, we use the PDDLGym

library [135], version 0.0.2.

∙ Tower of Hanoi. The classic Tower of Hanoi domain, in which disks must

be moved among three pegs. All objects are always necessary to consider in

this domain; we have included this domain to show that ploi does not have

much overhead on top of pure planning in this situation. We train on problems

containing 4-9 disks and test on problems containing 10-15 disks. The plan lengths

131

for training (test) problems range from 1-63 (511-8191).

∙ Blocks. Problems involve blocks in small piles on a table, and the goal is to

configure a particular small subset of the blocks into a tower. We train on problems

containing 15-32 blocks and test on problems containing 100-150 blocks. Test goals

involve 20-25 blocks. The plan lengths for training (test) problems range from 4-10

(26-64).

∙ Gripper. Problems involve one robot that can pick and place balls and move

to different rooms. A goal is an assignment of a subset of the balls to rooms.

We train on problems containing 36-52 objects and test on problems containing

100-200 objects. Test goals involve placing 10-20 balls in random rooms. The

plan lengths for training (test) problems range from 7-19 (27-107).

∙ Miconic. Passengers in buildings with elevators are trying to reach particular

floors. We train on problems involving 33-63 objects. We test on problems with

20-30 floors, 2 passengers per building, and 100 buildings, for a total of over 2000

objects. Goals involve moving one passenger per building to their desired floor.

The plan lengths for training (test) problems range from 11-12 (894-917).

∙ Ferry. A ferry transports cars to various locations. We train on problems with

13-21 objects and test on problems with 250-350 objects. Goals involve moving

3 cars to random locations. The plan lengths for training (test) problems range

from 7-12 (14-17).

∙ Logistics. Trucks and airplanes are used to transport crates to cities. We train

on problems with 13-40 objects. Test problems have around 50 airplanes, 20 cities,

20 trucks, 20-50 locations, and 20 crates. Goals involve moving around 20 crates

to random cities. The plan lengths for training (test) problems range from 5-32

(66-203).

∙ Exploding Blocks. A probabilistic IPC domain, where whenever the agent

interacts with a block, there is a chance that the block or the table are irreversibly

destroyed; no policy can succeed all the time in this domain. Problem sizes are

the same as in Blocks.

∙ Triangle Tireworld. A probabilistic IPC domain, containing an agent that must

132

navigate through cities, and has a chance of getting a flat tire on each timestep.

The agent can only change its tire at certain cities that have spare tires. It is

always possible to reach the goal city by simply avoiding cities that do not have

spare tires. We test on worlds with side length around 50.

∙ PyBullet robotic simulation [37]. In this domain with continuous object prop-

erties, a fixed robot arm mounted on the center of a table must interact with a

particular can on the table while avoiding all other irrelevant cans. See Figure 6-

4 for details and a visualization. To encode this domain in our GNN, we treat

the continuous object poses as node features. Test problems have around 1000

irrelevant cans on the table. The goal always involves manipulating a single can.

Experimental Details. We use Fast Downward [66] in the LAMA-first mode

as the base classical planner for test time in all experiments. To gather training data

with an optimal planner, we use Fast Downward in seq-opt-lmcut mode. For plan-

ning in probabilistic domains, we use single-outcome determinization and replanning

[154]. For TAMP in the PyBullet experiment, we use PDDLStream [53] in focused

mode. All experiments were performed on Ubuntu 18.04 using four cores of an Intel

Xeon Gold 6248 processor, with 10GB RAM per core. We use 𝛾 = 0.9 for all ex-

periments. GNNs are implemented in PyTorch, version 1.5.0. All GNNs node and

edge modules are fully connected neural networks with one hidden layer of dimen-

sion 16, ReLU activations, and layer normalization. Message passing is performed

for 𝐾 = 3 iterations. Training uses the Adam optimizer with learning rate 0.001 for

1000 epochs. The batch size is 16. Preliminary experiments with ℓ2 regularization,

dropout, and hyperparameter search yielded no consistent improvements for any of

the methods.

6.6.2 Main Results and Discussion

All experiments are conducted over 10 random seeds. Table 6.1 shows failure rates

within a 120-second timeout and average planning time on successful runs. Initial

experimentation found no significant difference in our results between 300-second

and 120-second timeouts. Across all domains, ploi consistently plans much faster

133

than all the other methods. In some domains, such as Gripper, ploi is faster than

pure planning by two orders of magnitude. In the case of Hanoi, where all objects

are necessary, we see that ploi is comparable to pure planning, which confirms the

desirable property that ploi reduces to pure planning with little overhead in problems

where all objects are required.

Comparing ploi with the random object scoring baseline, we see that ploi

performs much better in all domains other than Hanoi. This comparison suggests that

the GNN is crucial for the efficient planning that ploi attains. To further analyze

the impact of the GNN, we plot the number of iterations (𝑁 in Algorithm 6) that

are needed until the incremental planning loop finds a solution, for both ploi and

random object scoring (Figure 6-5). The dramatic difference between the two methods

confirms that the GNN has learned a very meaningful bias, allowing a sufficient object

set to be consistently found in less than 5 iterations, and often just 1.

The key difference between ploi and the action grounding (AG) baselines is

that ploi predicts which objects would be sufficient for a planning problem, while the

AG baselines predict which ground actions would be sufficient for a planning problem.

Empirically, ploi performs better than all the AG baselines, due to the fact that

ploi has comparatively little overhead, while the AG baselines spend significant time

during inference on trying to score all the possible ground actions, of which there are

significantly more than the number of objects. Another benefit of ploi is that it uses

Plan as a black box, whereas the AG baselines must modify the internals of Plan,

e.g. by changing the set of ground actions instantiated during translation or followed

during search.

The neighbors baseline performs well in some domains, but not in others; it

performs particularly poorly in domains where the agent must consider an object that

does not share a relation with some other important one, e.g. a ferry in the Ferry

domain. Looking now at the policy baseline, we see that it is generally quite slow.

This is because even though the policy baseline does not use Plan, it takes time to

compute all valid actions and query the policy GNN to find the most probable one on

every timestep; by contrast, ploi only performs inference once, on the first timestep.

134

Moreover, the policy has a high failure rate relative to the planning baselines, since

there is no recourse when it does not succeed.

Finally, the results in the continuous PyBullet domain suggest that ploi is able to

yield meaningful improvements over an off-the-shelf task and motion planning system.

Learning in the hybrid state and action spaces of task and motion planning domains

is extremely challenging in general; reactive policy learning is typically unable to

make meaningful headway in these domains. Moreover, it is not possible to apply the

action grounding approach due to the infinite number of ground actions (e.g., poses

for grasping a can). ploi works well here because it uses a planner in conjunction

with making predictions at the level of the (discrete) object set, not the (continuous)

ground action space.

6.6.3 Additional Results

Here we report additional experiments and results.

6.6.3.1 Effect of Message Passing Iterations (𝐾)

We used 𝐾 = 3 message passing iterations for all graph neural networks. To

better understand the impact of this hyperparameter on our main results, we reran

ploi on Blocks, varying 𝐾 from 1 to 5. As seen in Figure 6-6, results are robust

for 2 ≤ 𝐾 ≤ 5, but performance drops off heavily for 𝐾 = 1, suggesting that

some propagation through the GNN matters. In other domains, we would similarly

expect 𝐾 = 1 to be insufficient, but we may not always expect 𝐾 = 2 to suffice.

Generally, setting 𝐾 appropriately involves a trade-off: too low values may prevent

the model from fitting the data, while too large values may slow computation and

risk overfitting. A hyperparameter search increasing from 𝐾 = 1 should do well to

identify an appropriate value for any domain.

135

6.6.3.2 Effect of Number of Training Problems

We used < 50 training problems in all domains, with 40 used in Blocks. To better

understand the impact of the number of training problems on our main results, we

reran ploi on Blocks, varying the number of training problems between 2 and 40.

As seen in Figure 6-7, performance peaks very quickly, starting at 3 and remaining

robust for > 3. We would not necessarily expect so few examples to suffice for the

other domains.

136

Figure 6-1: Time taken by Fast Downward [66] in the LAMA-first mode on various
IPC domains, as a function of the number of extraneous objects in the problem. The
𝑥-axis is the number of objects added to a small sufficient set (Definition 12). Curves
show a median across 10 problems; shaded regions show the 25th to 75th percentiles.
We can see that planning time gets substantially worse as the number of extraneous
objects increases; real-world applications of planning will often contain large numbers
of such objects for a particular goal. In this chapter, we learn to predict a small subset
of objects that is sufficient for planning, leading to significantly faster planning than
both Fast Downward on its own and other learning-based grounding methods.

137

Figure 6-2: Overview of our method, ploi, with an example. Left: To solve this
problem, the robot must move block A to the free space, then stack B onto D. The
GNN computes the per-object importance score. Block C is irrelevant, and therefore
it receives a low score of 0.03. Right: We perform incremental planning. In this
example, 𝛾 = 0.95, so that 𝛾2 ≈ 0.9. The first iteration tries planning with the object
set {B, D}, which fails because it does not consider the obstructing A on top of B.
The second iteration succeeds, because the object set {A, B, D} is sufficient for this
problem.

138

Figure 6-3: Illustration of object importance scoring with GNNs. We consider the
same planning problem example as in Figure 6-2. A node is created for each of the four
objects, with features determined by the unary properties in the initial state and goal.
An edge is created for each ordered pair of objects, with features determined by the
binary properties, and with trivial edges excluded. These nodes and edges constitute
the input graph to a GNN, which performs 𝐾 = 3 message passing iterations before
outputting another graph with the same topology. Each output node is associated
with the object’s importance score.

Figure 6-4: Example problem from the PyBullet domain. Left: The robot arm
must move the target can (green) to the stove (black) and then to the sink (brown)
while avoiding other cans (gray). Middle: GNN importance scores for this problem,
scaled from blue (low importance) to red (high importance). We can see that cans
surrounding the sink, stove, and target have been assigned higher importance score,
meaning the GNN has reasoned about geometry. Right: The reduced problem in
which the robot plans. Only objects with importance score above some threshold
remain in the scene.

139

Figure 6-5: Number of iterations (𝑁 in Algorithm 6) needed until incremental plan-
ning finds a solution, for both ploi and random object scoring. Results are averaged
over 10 seeds, with standard deviations shown as vertical lines. Miconic and PyBullet
are not included because random object scoring never succeeded in this domain. We
can see that the GNN has learned a meaningful bias, allowing a sufficient object set
to be consistently found in fewer than 5 iterations.

Figure 6-6: Effect of message passing iterations (𝐾) on the performance of ploi in
Blocks. Results are averaged over 10 seeds, with standard deviations shown as shaded
areas.

140

Figure 6-7: Effect of number of training examples on the performance of ploi in
Blocks. Results are averaged over 10 seeds, with standard deviations shown as shaded
areas.

141

THIS PAGE INTENTIONALLY LEFT BLANK

142

Chapter 7

Conclusion and Future Work

In this thesis, we described novel frameworks for learning state and action ab-

stractions that are optimized for effective and efficient planning. Throughout the

chapters, we showed how to learn symbolic abstractions for bilevel planning (Chap-

ter 3), presented a method for learning to generate context-specific abstractions of

mdps (Chapter 4), formalized and gave a tractable algorithm for the exogenous vari-

able mask-learning problem (Chapter 5), and introduced a simple yet powerful and

general mechanism for planning in large problem instances containing many objects

(Chapter 6).

We explored the idea of learning abstractions as a general mechanism for amelio-

rating the intractability of planning. We studied two forms of task-specific abstrac-

tions, with a common goal of using an abstraction for effective and efficient planning.

The first form was neuro-symbolic, relational abstractions, which allow a robot to

plan to long horizons in continuous spaces by learning STRIPS-style predicates and

operators and neural network samplers, then using them for bilevel hierarchical plan-

ning. The second form was projective abstractions, which detect and drop irrelevant

variables from a factored planning problem to make it easier to solve.

In Chapter 3, experiments across four robotic planning environments showed that

our framework learns relational, neuro-symbolic abstractions that generalize over ob-

ject identities, can efficiently solve long-horizon held-out tasks, and are even able to

outperform manually specified abstractions. Key areas for future work include (1)

143

relaxing the assumption that controllers are provided; (2) learning better abstractions

from even fewer demonstrations by performing active learning to gather more data

online; (3) expanding the expressivity of the grammar to learn more sophisticated

predicates; and (4) applying the ideas presented in the chapter to non-deterministic

and/or partially observed planning problems. For (1), the literature on option learn-

ing [138, 144] provides a starting point; in our setting, it would be necessary to not

only learn the initiation sets, policies, and termination conditions of the options [143],

but also figure out how to segment the demonstrations appropriately in the first place

to learn these options, since now these demonstrations would be just state sequences.

For (2), we hope to investigate how relational exploration algorithms [95, 32] might

be useful as a mechanism for an agent to decide what actions to execute, toward the

goal of building better state and action abstractions. For (3), we can take inspiration

from program synthesis, especially methods that can learn programs with continuous

parameters [49]. Finally, for (4) we would like to draw insights from recent advances

in task and motion planning, in both the stochastic setting [64] and the partially

observed setting [54].

In Chapter 4, we showed that camps achieve more efficient planning while retain-

ing high rewards. There are several clear directions for future work. On the learning

side, one interesting question is whether factorizations of initially unfactored mdps

can be automatically discovered in a way that leads to useful camps. Another direc-

tion to pursue is learning the task featurizer 𝜑, which we assumed to be given in our

problem formulation. Following [82], it could also be useful to extend the methods

we have presented here so that multiple contexts can be imposed in succession at test

time, using the performance of previous contexts to inform the choice of future ones.

However, note that such a method would lead to an increase in computational cost,

possibly to the detriment of the overall objective we formulated.

In Chapter 5, we developed an efficient algorithm, based on approximate mutual

information, for deciding which exogenous variables to keep in a planning problem.

An important avenue for future work is to remove the assumption that the agent

knows the partition of endogenous versus exogenous aspects of the state. An inter-

144

esting fact to ponder is that the agent can actually control this partition by choosing

its actions appropriately. Thus, the agent can commit to a particular choice of ex-

ogenous variables in the world, and plan under the constraint of never influencing

these variables. Another avenue for future work is to develop an incremental, real-

time version of the algorithm, necessary in settings where the agent’s task constantly

changes.

In Chapter 6, we showed empirically that ploi performs well across classical

planning, probabilistic planning, and robotic task and motion planning. As ploi

makes use of a neural learner to inform black-box symbolic planners, we view it as a

step toward the greater goal of integrated neuro-symbolic artificial intelligence [105,

118]. An immediate direction for future work would be to investigate the empirical

impact of using a GNN as the importance scorer, versus techniques in statistical

relational learning [89, 125]. Another direction would be to study how to apply ploi

to open domains, where the agent does not know in advance the set of objects that

are in a problem instance. Addressing this kind of future direction can help learning-

to-plan techniques like ploi fully realize their overarching aim of solving large-scale,

real-world planning problems.

Overall, the results presented in this thesis demonstrate that we can and should

design autonomous agents that optimize a tradeoff between two competing criteria:

effectiveness and efficiency. By learning abstractions with particularly defined ob-

jective functions that explicitly consider both criteria, it is possible to control where

the capabilities of our autonomous systems lie on this spectrum. Broadly, this cor-

responds to a tradeoff between the time spent making decisions and the quality of

those decisions. Looking to the future, I’d like to offer the following quote from a blog

post I co-authored: “One day we would like to have robots that live in our houses

and do all of the chores that we would rather not do: laundry, cooking, installing

and fixing appliances, taking out the trash, and so on. When someone gives one of

these robots a task, like ‘make me pasta!’, they’ll want the robot to perform the task

effectively and efficiently. They would be unhappy to receive a bowl full of trail mix

or toothpaste or nothing at all; that would be ineffective. They would be similarly

145

disappointed to watch the robot remain motionless for hours as it ponders how to

complete the task before it, as though it were asked to prove P != NP; that would be

inefficient.” Ultimately, we will need agents to be able to learn abstractions that are

conducive to effective and efficient planning. I hope that as a field, we can keep these

important considerations in mind as the literature on planning and learning continues

to mature in the coming years and decades.

146

Bibliography

[1] David Abel, David Hershkowitz, and Michael Littman. Near optimal behavior
via approximate state abstraction. In International Conference on Machine
Learning, pages 2915–2923, 2016.

[2] David Abel, Nate Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina
Precup, and Michael Littman. Value preserving state-action abstractions. In
International Conference on Artificial Intelligence and Statistics, pages 1639–
1650, 2020.

[3] Alper Ahmetoglu, M Yunus Seker, Justus Piater, Erhan Oztop, and Emre Ugur.
Deepsym: Deep symbol generation and rule learning from unsupervised contin-
uous robot interaction for planning. arXiv preprint arXiv:2012.02532, 2020.

[4] Yusra Alkhazraji, Matthias Frorath, Markus Grützner, Malte Helmert, Thomas
Liebetraut, Robert Mattmüller, Manuela Ortlieb, Jendrik Seipp, Tobias Sprin-
genberg, Philip Stahl, and Jan Wülfing. Pyperplan. https://doi.org/10.
5281/zenodo.3700819, 2020.

[5] Barrett Ames, Allison Thackston, and George Konidaris. Learning symbolic
representations for planning with parameterized skills. In 2018 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 526–533, 2018.

[6] David Andre and Stuart J Russell. State abstraction for programmable re-
inforcement learning agents. In Eighteenth national conference on Artificial
intelligence, pages 119–125, 2002.

[7] Shahab Jabbari Arfaee, Sandra Zilles, and Robert C Holte. Learning heuristic
functions for large state spaces. Artificial Intelligence, 175(16-17):2075–2098,
2011.

[8] Ankuj Arora, Humbert Fiorino, Damien Pellier, Marc Métivier, and Sylvie
Pesty. A review of learning planning action models. The Knowledge Engi-
neering Review, 33, 2018.

[9] Masataro Asai. Unsupervised grounding of plannable first-order logic represen-
tation from images. In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, volume 29, pages 583–591, 2019.

147

https://doi.org/10.5281/zenodo.3700819
https://doi.org/10.5281/zenodo.3700819

[10] Masataro Asai and Alex Fukunaga. Classical planning in deep latent space:
Bridging the subsymbolic-symbolic boundary. In Proceedings of the AAAI con-
ference on artificial intelligence, 2018.

[11] Masataro Asai and Christian Muise. Learning neural-symbolic descriptive plan-
ning models via cube-space priors: The voyage home (to STRIPS). arXiv
preprint arXiv:2004.12850, 2020.

[12] Fahiem Bacchus. AIPS 2000 planning competition: The fifth international con-
ference on artificial intelligence planning and scheduling systems. AI magazine,
22(3):47–47, 2001.

[13] Aijun Bai, Siddharth Srivastava, and Stuart J Russell. Markovian state and
action abstractions for MDPs via hierarchical MCTS. In International Joint
Conference on Artificial Intelligence, pages 3029–3039, 2016.

[14] Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. Action understanding
as inverse planning. Cognition, 113(3):329–349, 2009.

[15] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[16] Jiri Baum, Ann E Nicholson, and Trevor I Dix. Proximity-based non-uniform
abstractions for approximate planning. Journal of Artificial Intelligence Re-
search, 43:477–522, 2012.

[17] James C Bean, John R Birge, and Robert L Smith. Aggregation in dynamic
programming. Operations Research, 35(2):215–220, 1987.

[18] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair,
Yoshua Bengio, Aaron Courville, and R Devon Hjelm. MINE: mutual infor-
mation neural estimation. arXiv preprint arXiv:1801.04062, 2018.

[19] Pascal Bercher, Ron Alford, and Daniel Höller. A survey on hierarchical
planning-one abstract idea, many concrete realizations. In International Joint
Conference on Artificial Intelligence, pages 6267–6275, 2019.

[20] Dimitri P Bertsekas, David A Castanon, et al. Adaptive aggregation methods
for infinite horizon dynamic programming. IEEE Transactions on Automatic
Control, 1988.

[21] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelli-
gence, 129(1-2):5–33, 2001.

[22] Blai Bonet and Hector Geffner. Learning first-order symbolic representations for
planning from the structure of the state space. arXiv preprint arXiv:1909.05546,
2019.

148

[23] Craig Boutilier. Correlated action effects in decision theoretic regression. In
UAI, pages 30–37, 1997.

[24] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning:
Structural assumptions and computational leverage. Journal of Artificial Intel-
ligence Research, 11:1–94, 1999.

[25] Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller.
Context-specific independence in Bayesian networks. In Proceedings of the
Twelfth conference on Uncertainty in artificial intelligence, 1996.

[26] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Pe-
ter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon
Samothrakis, and Simon Colton. A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43,
2012.

[27] Daniel Bryce and Olivier Buffet. International planning competition uncertainty
part: Benchmarks and results. In In Proceedings of IPC, 2008.

[28] Justin Carpentier, Rohan Budhiraja, and Nicolas Mansard. Learning feasibility
constraints for multi-contact locomotion of legged robots. In Robotics: Science
and Systems, page 9p, 2017.

[29] Rohan Chitnis, Dylan Hadfield-Menell, Abhishek Gupta, Siddharth Srivastava,
Edward Groshev, Christopher Lin, and Pieter Abbeel. Guided search for task
and motion plans using learned heuristics. In 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 447–454, 2016.

[30] Rohan Chitnis, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning
quickly to plan quickly using modular meta-learning. In 2019 International
Conference on Robotics and Automation (ICRA), pages 7865–7871, 2019.

[31] Rohan Chitnis, Tom Silver, Beomjoon Kim, Leslie Kaelbling, and Tomas
Lozano-Perez. CAMPs: Learning context-specific abstractions for efficient plan-
ning in factored MDPs. In Conference on Robot Learning, pages 64–79. PMLR,
2021.

[32] Rohan Chitnis, Tom Silver, Joshua B Tenenbaum, Leslie Pack Kaelbling, and
Tomás Lozano-Pérez. GLIB: Efficient exploration for relational model-based
reinforcement learning via goal-literal babbling. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 11782–11791, 2021.

[33] Rohan Chitnis, Tom Silver, Joshua B Tenenbaum, Tomas Lozano-Perez, and
Leslie Pack Kaelbling. Learning neuro-symbolic relational transition models for
bilevel planning. arXiv preprint arXiv:2105.14074, 2021.

149

[34] Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Moham-
mad Norouzi, and Honglak Lee. Contingency-aware exploration in reinforce-
ment learning. arXiv preprint arXiv:1811.01483, 2018.

[35] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accu-
rate deep network learning by exponential linear units (ELUs). arXiv preprint
arXiv:1511.07289, 2015.

[36] Augusto B Corrêa, Florian Pommerening, Malte Helmert, and Guillem Frances.
Lifted successor generation using query optimization techniques. In Proceed-
ings of the International Conference on Automated Planning and Scheduling,
volume 30, pages 80–89, 2020.

[37] Erwin Coumans and Yunfei Bai. PyBullet, a python module for physics simu-
lation for games, robotics and machine learning. GitHub repository, 2016.

[38] Andrew Cropper and Stephen H Muggleton. Learning higher-order logic pro-
grams through abstraction and invention. In International Joint Conference on
Artificial Intelligence, pages 1418–1424, 2016.

[39] Aidan Curtis, Tom Silver, Joshua B Tenenbaum, Tomas Lozano-Perez, and
Leslie Pack Kaelbling. Discovering state and action abstractions for generalized
task and motion planning. arXiv preprint arXiv:2109.11082, 2021.

[40] Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and Lydia E Kavraki.
Incremental task and motion planning: A constraint-based approach. In
Robotics: Science and systems, volume 12, page 00052, 2016.

[41] Thomas Dean and Robert Givan. Model minimization in Markov decision pro-
cesses. In AAAI/IAAI, pages 106–111, 1997.

[42] Richard Dearden and Craig Boutilier. Abstraction and approximate decision-
theoretic planning. Artificial Intelligence, 89(1-2):219–283, 1997.

[43] Thomas Dietterich, George Trimponias, and Zhitang Chen. Discovering and
removing exogenous state variables and rewards for reinforcement learning. In
International Conference on Machine Learning, pages 1262–1270, 2018.

[44] Thomas G Dietterich. State abstraction in MAXQ hierarchical reinforcement
learning. In Advances in Neural Information Processing Systems, pages 994–
1000, 2000.

[45] Carmel Domshlak and Solomon E Shimony. Efficient probabilistic reasoning
in BNs with mutual exclusion and context-specific independence. International
journal of intelligent systems, 19(8):703–725, 2004.

[46] Danny Driess, Jung-Su Ha, and Marc Toussaint. Deep visual reasoning: Learn-
ing to predict action sequences for task and motion planning from an initial
scene image. In Proc. of Robotics: Science and Systems (R:SS), 2020.

150

[47] Danny Driess, Ozgur Oguz, Jung-Su Ha, and Marc Toussaint. Deep visual
heuristics: Learning feasibility of mixed-integer programs for manipulation
planning. In IEEE International Conference on Robotics and Automation
(ICRA), 2020.

[48] Sašo Džeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement
learning. Machine learning, 43(1-2):7–52, 2001.

[49] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary,
Lucas Morales, Luke Hewitt, Armando Solar-Lezama, and Joshua B Tenen-
baum. Dreamcoder: Growing generalizable, interpretable knowledge with wake-
sleep Bayesian program learning. arXiv preprint arXiv:2006.08381, 2020.

[50] Richard E Fikes, Peter E Hart, and Nils J Nilsson. Learning and executing
generalized robot plans. Artificial intelligence, 3:251–288, 1972.

[51] Richard E Fikes and Nils J Nilsson. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208,
1971.

[52] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom
Silver, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Integrated task and
motion planning. Annual review of control, robotics, and autonomous systems,
4:265–293, 2021.

[53] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Pddl-
stream: Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning. In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, volume 30, pages 440–448, 2020.

[54] Caelan Reed Garrett, Chris Paxton, Tomás Lozano-Pérez, Leslie Pack Kael-
bling, and Dieter Fox. Online replanning in belief space for partially observable
task and motion problems. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 5678–5684, 2020.

[55] Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and
model minimization in Markov decision processes. Artificial Intelligence, 147(1-
2):163–223, 2003.

[56] Daniel Gnad, Alvaro Torralba, Martín Domínguez, Carlos Areces, and Facundo
Bustos. Learning how to ground a plan–partial grounding in classical planning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 7602–7609, 2019.

[57] Paweł Gomoluch, Dalal Alrajeh, and Alessandra Russo. Learning classical plan-
ning strategies with policy gradient. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling, volume 29, pages 637–645, 2019.

151

[58] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. Advances in neural information processing systems, 27, 2014.

[59] Fabien Gravot, Stephane Cambon, and Rachid Alami. aSyMov: a planner that
deals with intricate symbolic and geometric problems. In Robotics Research.
The Eleventh International Symposium, pages 100–110, 2005.

[60] Edward Groshev, Maxwell Goldstein, Aviv Tamar, Siddharth Srivastava, and
Pieter Abbeel. Learning generalized reactive policies using deep neural net-
works. In Proceedings of the International Conference on Automated Planning
and Scheduling, 2018.

[61] Matthew Grounds and Daniel Kudenko. Combining reinforcement learning with
symbolic planning. In Adaptive Agents and Multi-Agent Systems III. Adaptation
and Multi-Agent Learning, pages 75–86. Springer, 2005.

[62] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Ef-
ficient solution algorithms for factored MDPs. Journal of Artificial Intelligence
Research, 19:399–468, 2003.

[63] Isabelle Guyon and André Elisseeff. An introduction to variable and feature
selection. Journal of machine learning research, 3(Mar):1157–1182, 2003.

[64] Dylan Hadfield-Menell, Edward Groshev, Rohan Chitnis, and Pieter Abbeel.
Modular task and motion planning in belief space. In 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 4991–4998,
2015.

[65] Patrik Haslum et al. Reducing accidental complexity in planning problems.
In International Joint Conference on Artificial Intelligence, pages 1898–1903,
2007.

[66] Malte Helmert. The fast downward planning system. Journal of Artificial
Intelligence Research, 26:191–246, 2006.

[67] Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstrac-
tions: what’s the difference anyway? In Nineteenth International Conference
on Automated Planning and Scheduling, 2009.

[68] Natalia Hernandez-Gardiol. Relational envelope-based planning. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 2008.

[69] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. In The Collected Works of Wassily Hoeffding, pages 409–426. Springer,
1994.

[70] Jesse Hoey, Robert St-Aubin, Alan J. Hu, and Craig Boutilier. SPUDD:
Stochastic planning using decision diagrams. In UAI, 1999.

152

[71] Jörg Hoffmann. FF: The fast-forward planning system. AI magazine, 22(3):57–
57, 2001.

[72] Steven James, Benjamin Rosman, and George Konidaris. Learning portable
representations for high-level planning. In International Conference on Machine
Learning, pages 4682–4691, 2020.

[73] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey
Lynch, Sergey Levine, and Chelsea Finn. BC-Z: Zero-shot task generalization
with robotic imitation learning. In Conference on Robot Learning, pages 991–
1002, 2022.

[74] Nikolay Jetchev, Tobias Lang, and Marc Toussaint. Learning grounded rela-
tional symbols from continuous data for abstract reasoning. In Proceedings of
the 2013 ICRA Workshop on Autonomous Learning, 2013.

[75] Nan Jiang, Alex Kulesza, and Satinder Singh. Abstraction selection in model-
based reinforcement learning. In International Conference on Machine Learn-
ing, pages 179–188, 2015.

[76] Sergio Jiménez, Javier Segovia-Aguas, and Anders Jonsson. A review of gener-
alized planning. The Knowledge Engineering Review, 34:e5, 2019.

[77] George H John, Ron Kohavi, and Karl Pfleger. Irrelevant features and the
subset selection problem. In Machine learning proceedings 1994, pages 121–
129. Elsevier, 1994.

[78] Nicholas K Jong and Peter Stone. State abstraction discovery from irrelevant
state variables. In International Joint Conference on Artificial Intelligence,
volume 8, pages 752–757, 2005.

[79] Michael Katz, Shirin Sohrabi, Octavian Udrea, and Dominik Winterer. A novel
iterative approach to top-k planning. In Proceedings of the Twenty-Eigth In-
ternational Conference on Automated Planning and Scheduling (ICAPS 2018).
AAAI Press, 2018.

[80] Michael Kearns, Yishay Mansour, and Andrew Y Ng. A sparse sampling algo-
rithm for near-optimal planning in large Markov decision processes. Machine
learning, 49(2-3):193–208, 2002.

[81] Beomjoon Kim, Leslie Kaelbling, and Tomás Lozano-Pérez. Guiding search in
continuous state-action spaces by learning an action sampler from off-target
search experience. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2018.

[82] Beomjoon Kim, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning to
guide task and motion planning using score-space representation. In Robotics
and Automation (ICRA), 2017 IEEE International Conference on, pages 2810–
2817, 2017.

153

[83] Beomjoon Kim and Luke Shimanuki. Learning value functions with relational
state representations for guiding task-and-motion planning. In Conference on
Robot Learning, pages 955–968, 2020.

[84] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[85] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[86] Sven Koenig, Maxim Likhachev, Yaxin Liu, and David Furcy. Incremental
heuristic search in AI. AI Magazine, 25(2):99–99, 2004.

[87] Ron Kohavi and George H John. Wrappers for feature subset selection. Artificial
intelligence, 97(1-2):273–324, 1997.

[88] Harsha Kokel, Arjun Manoharan, Sriraam Natarajan, Balaraman Ravindran,
and Prasad Tadepalli. RePReL: Integrating relational planning and reinforce-
ment learning for effective abstraction. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 31, pages 533–541,
2021.

[89] Daphne Koller, Nir Friedman, Sašo Džeroski, Charles Sutton, Andrew McCal-
lum, Avi Pfeffer, Pieter Abbeel, Ming-Fai Wong, David Heckerman, Chris Meek,
et al. Introduction to statistical relational learning. MIT press, 2007.

[90] George Konidaris. Constructing abstraction hierarchies using a skill-symbol
loop. In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, pages 1648–1654, 2016.

[91] George Konidaris and Andrew Barto. Efficient skill learning using abstraction
selection. In Twenty-First International Joint Conference on Artificial Intelli-
gence, 2009.

[92] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From skills
to symbols: Learning symbolic representations for abstract high-level planning.
Journal of Artificial Intelligence Research, 61:215–289, 2018.

[93] James J Kuffner and Steven M LaValle. RRT-connect: An efficient approach
to single-query path planning. In Proceedings 2000 ICRA. Millennium Confer-
ence. IEEE International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No. 00CH37065), volume 2, pages 995–1001, 2000.

[94] Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J Russell, and Pieter Abbeel.
Learning plannable representations with causal infogan. Advances in Neural
Information Processing Systems, 31, 2018.

154

[95] Tobias Lang, Marc Toussaint, and Kristian Kersting. Exploration in relational
domains for model-based reinforcement learning. Journal of Machine Learning
Research, 13(Dec):3725–3768, 2012.

[96] Steven M LaValle. Planning algorithms. Cambridge University Press, 2006.

[97] Nada Lavrac and Saso Dzeroski. Inductive logic programming. In Logic Pro-
gramming Workshop (WLP), pages 146–160, 1994.

[98] Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory
of state abstraction for MDPs. ISAIM, 4(5):9, 2006.

[99] Nir Lipovetzky and Hector Geffner. Width and serialization of classical planning
problems. In ECAI 2012, pages 540–545. IOS Press, 2012.

[100] Joao Loula, Kelsey Allen, Tom Silver, and Josh Tenenbaum. Learning
constraint-based planning models from demonstrations. In 2020 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages 5410–
5416, 2020.

[101] João Loula, Tom Silver, Kelsey R Allen, and Josh Tenenbaum. Discovering a
symbolic planning language from continuous experience. In Annual Meeting of
the Cognitive Science Society (CogSci), page 2193, 2019.

[102] Tengfei Ma, Patrick Ferber, Siyu Huo, Jie Chen, and Michael Katz. Online
planner selection with graph neural networks and adaptive scheduling. In AAAI,
pages 5077–5084, 2020.

[103] Aditya Mandalika, Sanjiban Choudhury, Oren Salzman, and Siddhartha Srini-
vasa. Generalized lazy search for robot motion planning: Interleaving search
and edge evaluation via event-based toggles. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 29, pages 745–753,
2019.

[104] Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte Schwarzkopf, and Mo-
hammad Alizadeh. Variance reduction for reinforcement learning in input-
driven environments. arXiv preprint arXiv:1807.02264, 2018.

[105] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jia-
jun Wu. The neuro-symbolic concept learner: Interpreting scenes, words, and
sentences from natural supervision. arXiv preprint arXiv:1904.12584, 2019.

[106] Bhaskara Marthi, Stuart J Russell, and Jason Andrew Wolfe. Angelic semantics
for high-level actions. In ICAPS, pages 232–239, 2007.

[107] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. PDDL-the planning domain
definition language, 1998.

155

[108] Neville Mehta, Soumya Ray, Prasad Tadepalli, and Thomas Dietterich. Auto-
matic discovery and transfer of MAXQ hierarchies. In Proceedings of the 25th
international conference on Machine learning, pages 648–655, 2008.

[109] Alan Miller. Subset selection in regression. Chapman and hall/CRC, 2002.

[110] Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. Model-based
reinforcement learning: A survey. arXiv:2006.16712, 2020.

[111] Thomas M. Moerland, Anna Deichler, Simone Baldi, Joost Broekens, and
Catholijn M. Jonker. Think too fast nor too slow: The computational trade-off
between planning and reinforcement learning, 2020.

[112] Stephen Muggleton. Inductive logic programming. New generation computing,
8(4):295–318, 1991.

[113] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement
learning. In International Conference on Machine Learning, volume 1, page 2,
2000.

[114] Chanh Nguyen, Noah Reifsnyder, Sriram Gopalakrishnan, and Hector Munoz-
Avila. Automated learning of hierarchical task networks for controlling
minecraft agents. In 2017 IEEE Conference on Computational Intelligence and
Games (CIG), pages 226–231, 2017.

[115] Nils J Nilsson et al. Shakey the robot. SRI International Technical Report,
1984.

[116] Michael Noseworthy, Caris Moses, Isaiah Brand, Sebastian Castro, Leslie Kael-
bling, Tomás Lozano-Pérez, and Nicholas Roy. Active learning of abstract plan
feasibility. arXiv preprint arXiv:2107.00683, 2021.

[117] Joaquim Ortiz-Haro, Jung-Su Ha, Danny Driess, and Marc Toussaint. Struc-
tured deep generative models for sampling on constraint manifolds in sequential
manipulation. In Conference on Robot Learning, pages 213–223, 2022.

[118] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengy-
ong Zhou, and Pushmeet Kohli. Neuro-symbolic program synthesis. arXiv
preprint arXiv:1611.01855, 2016.

[119] Hanna M Pasula, Luke S Zettlemoyer, and Leslie Pack Kaelbling. Learning sym-
bolic models of stochastic domains. Journal of Artificial Intelligence Research,
29:309–352, 2007.

[120] Chris Paxton, Felix Jonathan, Marin Kobilarov, and Gregory D Hager. Do what
I want, not what I did: Imitation of skills by planning sequences of actions. In
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3778–3785, 2016.

156

[121] Chris Paxton, Vasumathi Raman, Gregory D Hager, and Marin Kobilarov.
Combining neural networks and tree search for task and motion planning in
challenging environments. In 2017 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 6059–6066, 2017.

[122] Florian Pommerening and Malte Helmert. Incremental LM-cut. In Proceedings
of the International Conference on Automated Planning and Scheduling, 2013.

[123] David L Poole. Context-specific approximation in probabilistic inference. arXiv
preprint arXiv:1301.7408, 2013.

[124] Martin L Puterman. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[125] Meng Qu, Yoshua Bengio, and Jian Tang. GMNN: Graph Markov neural net-
works. arXiv preprint arXiv:1905.06214, 2019.

[126] Miguel Ramírez and Hector Geffner. Probabilistic plan recognition using off-
the-shelf classical planners. In Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

[127] Tianyu Ren, Georgia Chalvatzaki, and Jan Peters. Extended tree search for
robot task and motion planning. arXiv preprint arXiv:2103.05456, 2021.

[128] Anton Riabov, Shirin Sohrabi, and Octavian Udrea. New algorithms for the top-
k planning problem. In Proceedings of the scheduling and planning applications
workshop (spark) at the 24th international conference on automated planning
and scheduling (icaps), pages 10–16, 2014.

[129] Bernardus Ridder. Lifted heuristics: towards more scalable planning systems.
PhD thesis, King’s College London (University of London), 2014.

[130] Pat Riddle, Jordan Douglas, Mike Barley, and Santiago Franco. Improving
performance by reformulating PDDL into a bagged representation. In Proceed-
ings of the 8th Workshop on Heuristic Search for Domain-independent Planning
(HSDIP@ ICAPS), pages 28–36, 2016.

[131] Or Rivlin, Tamir Hazan, and Erez Karpas. Generalized planning with deep
reinforcement learning. arXiv preprint arXiv:2005.02305, 2020.

[132] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2008.

[133] William Shen, Felipe Trevizan, and Sylvie Thiébaux. Learning domain-
independent planning heuristics with hypergraph networks. In Proceedings of
the International Conference on Automated Planning and Scheduling, 2020.

157

[134] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. Mastering the game of Go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

[135] Tom Silver and Rohan Chitnis. PDDLGym: Gym environments from PDDL
problems. In International Conference on Automated Planning and Scheduling
(ICAPS) PRL Workshop, 2020.

[136] Tom Silver, Rohan Chitnis, Aidan Curtis, Joshua Tenenbaum, Tomas Lozano-
Perez, and Leslie Pack Kaelbling. Planning with learned object importance
in large problem instances using graph neural networks. arXiv preprint
arXiv:2009.05613, 2020.

[137] Tom Silver, Rohan Chitnis, Joshua Tenenbaum, Leslie Pack Kaelbling, and
Tomás Lozano-Pérez. Learning symbolic operators for task and motion plan-
ning. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3182–3189, 2021.

[138] Aravind Srinivas, Ramnandan Krishnamurthy, Peeyush Kumar, and Balaraman
Ravindran. Option discovery in hierarchical reinforcement learning using spatio-
temporal clustering. arXiv preprint arXiv:1605.05359, 2016.

[139] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Rus-
sell, and Pieter Abbeel. Combined task and motion planning through an extensi-
ble planner-independent interface layer. In 2014 IEEE international conference
on robotics and automation (ICRA), pages 639–646, 2014.

[140] Irene Stahl. Predicate invention in ILP—an overview. In European Conference
on Machine Learning, pages 311–322, 1993.

[141] Kurt Alan Steinkraus. Solving large stochastic planning problems using multiple
dynamic abstractions. PhD thesis, Massachusetts Institute of Technology, 2005.

[142] Mike Stilman and James J Kuffner. Navigation among movable obstacles: Real-
time reasoning in complex environments. International Journal of Humanoid
Robotics, 2(04):479–503, 2005.

[143] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial intelligence, 112(1-2):181–211, 1999.

[144] Marco Tamassia, Fabio Zambetta, William Raffe, and Xiaodong Li. Learn-
ing options for an MDP from demonstrations. In Australasian Conference on
Artificial Life and Computational Intelligence, pages 226–242, 2015.

[145] Marc Toussaint. Logic-geometric programming: An optimization-based ap-
proach to combined task and motion planning. In International Joint Confer-
ence on Artificial Intelligence, pages 1930–1936, 2015.

158

[146] Emre Ugur and Justus Piater. Bottom-up learning of object categories, action
effects and logical rules: From continuous manipulative exploration to symbolic
planning. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 2627–2633, 2015.

[147] Elena Umili, Emanuele Antonioni, Francesco Riccio, Roberto Capobianco,
Daniele Nardi, and Giuseppe De Giacomo. Learning a symbolic planning do-
main through the interaction with continuous environments. ICAPS PRL Work-
shop, 2021.

[148] Thomas J Walsh. Efficient learning of relational models for sequential deci-
sion making. PhD thesis, Rutgers, The State University of New Jersey-New
Brunswick., 2010.

[149] Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
Learning compositional models of robot skills for task and motion planning. The
International Journal of Robotics Research, 40(6-7):866–894, 2021.

[150] Andrew M Wells, Neil T Dantam, Anshumali Shrivastava, and Lydia E Kavraki.
Learning feasibility for task and motion planning in tabletop environments.
IEEE robotics and automation letters, 4(2):1255–1262, 2019.

[151] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. A comprehensive survey on graph neural networks. IEEE Trans-
actions on Neural Networks and Learning Systems, 2020.

[152] Fangkai Yang, Daoming Lyu, Bo Liu, and Steven Gustafson. PEORL: Inte-
grating symbolic planning and hierarchical reinforcement learning for robust
decision-making. arXiv preprint arXiv:1804.07779, 2018.

[153] Jihoon Yang and Vasant Honavar. Feature subset selection using a genetic
algorithm. In Feature extraction, construction and selection, pages 117–136.
Springer, 1998.

[154] Sung Wook Yoon, Alan Fern, and Robert Givan. FF-Replan: A baseline for
probabilistic planning. In ICAPS, volume 7, pages 352–359, 2007.

[155] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey
Levine. Learning invariant representations for reinforcement learning without
reconstruction. arXiv preprint arXiv:2006.10742, 2020.

[156] Nevin Lianwen Zhang and David Poole. On the role of context-specific indepen-
dence in probabilistic inference. In International Joint Conference on Artificial
Intelligence, volume 1, page 9, 1999.

[157] Tan Zhi-Xuan, Jordyn Mann, Tom Silver, Josh Tenenbaum, and Vikash Mans-
inghka. Online Bayesian goal inference for boundedly rational planning agents.
Advances in Neural Information Processing Systems, 33:19238–19250, 2020.

159

[158] Hankz Hankui Zhuo, Derek Hao Hu, Chad Hogg, Qiang Yang, and Hector
Munoz-Avila. Learning HTN method preconditions and action models from
partial observations. In Twenty-First International Joint Conference on Artifi-
cial Intelligence, 2009.

160

	Introduction
	Papers Covered in this Thesis

	Background
	Markov Decision Processes and Factored Markov Decision Processes
	Context-Specific Independence in Factored mdps
	Factored mdps with Exogenous Variables

	Relational Planning Problems

	Inventing Symbolic, Relational Abstractions for Bilevel Planning
	Motivation
	Related Work
	Problem Setting
	Relational State and Action Abstractions for Planning: Predicates, Operators, and Samplers
	Bilevel Planning with Relational Abstractions
	Algorithm Description
	Discussion: The Virtues of Abstractions in Bilevel Planning

	Learning Predicates, Operators, and Samplers
	Learning Operators
	Learning Samplers
	Inventing Predicates via Local Search over a Grammar
	Discussion: The Potential Vices of Learned Abstractions in Bilevel Planning

	Experiments
	Experimental Design
	Main Results and Discussion
	Additional Results
	More Explanation of Blocks / hAdd Results

	CAMPs: Learning Context-Specific Abstractions of Factored MDPs
	Motivation
	Related Work
	Problem Setting
	Context-Specific Abstract Markov Decision Processes (CAMPs)
	Learning to Generate CAMPs
	Approximating the Context-Specific Independences
	Learning the Context Selector

	Experiments
	Experimental Design
	Main Results and Discussion
	Additional Results

	Learning Compact Models for Planning with Exogenous Processes
	Motivation
	Related Work
	Problem Setting
	Approach
	Leveraging Exogeneity
	Objective Estimation and Simple Strategies
	Analyzing the Value Functions of Interest
	A Correlational Algorithm for Mask-Learning

	Experiments

	Planning with Learned Object Importance in Large Problems
	Motivation
	Related Work
	Problem Setting
	Planning with Object Importance
	Scoring Object Importance Individually
	Training with Supervised Learning

	Object Importance Scorers as GNNs
	Experiments
	Experimental Design
	Main Results and Discussion
	Additional Results

	Conclusion and Future Work

