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ABSTRACT 

Once a firm has a targeting policy, the firm incurs an opportunity cost when varying its 
action to learn how to improve that policy. This results in what is classically considered 
an exploration vs. exploitation tradeoff. This tradeoff is widely studied in online learning 
domains. However, firms are forced to learn in batches that occur infrequently in many 
marketing channels, such as seasonal marketing campaigns and salesperson marketing. 
For example, when demand is seasonal, marketing campaigns often occur annually, with 
retailers using data from last year to train this year’s policy. This essay identifies an 
information externality when assigning actions to customers in the same batch: the 
incremental information contributed by the focal customer depends upon the assignment 
decisions foe other customers. This essay investigates how to optimally rebalance 
exploration (more variation) and exploitation (direct implementation) in these settings 
leveraging this externality. The algorithm this essay proposes balances the expected value 
and opportunity cost of new information from each new batch. This essay validates the 
findings using data from a field experiment.1 

Thesis Supervisor: Juanjuan Zhang 

Title: John D. C. Little Professor of Marketing 

 

  

 
1 This essay is based on joint work with Duncan Simester. 



Page | 4 

 

  



Page | 5 

1 Introduction 

Many retailers send a Holiday catalog to a targeted set of customers each fall. Every year 

they have to decide who should receive the catalog, which is an adaptive problem. After 

each year’s campaign, the firm can use the information from that campaign to improve 

the policy it uses next year. This introduces an exploration-exploitation tradeoff. For the 

customers in this year’s campaign, the firm needs to balance making more money this 

year (exploiting), with learning more this year (exploring) in order to make more money 

next year. While exploration-exploitation tradeoffs are not unusual, seasonal marketing 

campaigns exhibit two features that distinguish them from traditional exploration-

exploitation problems.  

First, the firm learns with a batch of heterogeneous customers each year. Firms choose a 

marketing action for every customer simultaneously before the Holiday season, and 

customers’ responses only arrive after the end of the season. The firm cannot learn from 

any one customer before making decisions for all other customers in the same batch. This 

batch feature of the learning process has an important implication: the incremental 

information you learn from one customer depends upon the actions you take with similar 

customers. When resolving the exploration-exploitation tradeoff with one customer the 

firm has to consider the externalities to other customers (within the same time period). 

Second, there is often a long interval between campaigns; the Holiday catalog operates in 

12-month cycles. One reason for this is seasonality – the holiday season only occurs once 

each year. A second reason is that non-digital channels marketing campaigns, often 

require long lead times for planning, implementation and measurement, with a complete 

cycle up to six months. 2  This second feature of the problem also has an important 

implication. The long interval between batches means that it is reasonable to approximate 

the problem by assuming that the firm only looks one-step ahead. We will show that this 

approximation allows an exact solution to the problem. 

 
2 The implementation cycles are particularly long when the campaigns rely on human interactions, with 
capacity constraints for implementation. Measurement cycles may also be long if treatment effects persist; 
the Direct Marketing Association reports that treatment effects for direct mail typically extend for up to 
fifteen weeks (DMA 2001, page 89). 
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We call this learning environment “adaptive batch learning”. Besides Holiday catalogs, 

seasonal campaigns that use email, direct mail, and in-person or telephone 

communications often share these two features. Before discussing the features in greater 

detail, it is helpful to explicitly define the problem. There are three stages: 

1. Last Year: The firm implements a targeting experiment and trains an initial policy. 

In practice, this initial policy may be trained using data from multiple prior years. 

We could think of last year as “prior years” collectively. 

2. This Year: The firm balances collecting additional training data and exploiting the 

initial policy. 

3. Next Year: The firm will update the initial policy using data from this year, and 

exploit this new policy. 

The exploration-exploitation tradeoff arises this year; the firm has an initial policy, and is 

deciding whether to exploit it or improve it (through additional experiment). We next 

discuss how the two features of the problem that we have identified distinguish the 

problem from other exploration-exploitation problems, and describe how this influences 

the solution to adaptive batch learning problems.  

Learning with a Batch of Customers Each Year 

A typical online learning problem considers a sequence of individual customers, with a 

short interval between customers. Because in each period the firm only considers a single 

customer, there are no externalities between multiple customers within a time period. 

Instead, the externalities occur across time periods; this period’s decisions affect the 

outcomes of futures periods. 

The first important insight is that the batch nature of adaptive batch learning means that 

there are important externalities between customers within each period.  Consider a 

segment of customers and two scenarios. In one scenario we are exploring with few 

customers in the segment, and in the other scenario we are exploring with many 

customers in the segment. The incremental value of exploring with an additional one 
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customer is lower in the second scenario. This is what we describe as an information 

externality; the amount of information we obtain when exploring with one customer 

depends upon how many other customers we are exploring with in the current time 

period (i.e. in the current batch). 

Conventional methods for resolving the exploration-exploitation tradeoff ignore this 

information externality. For example, the widely used Thompson sampling method 

(Agrawal and Goyal 2017) treats customers in the same batch independently. This is fine 

in a typical online learning problem, where there is only a single customer per time period. 

However, for an adaptive batch learning problem, this results in Thompson sampling 

over-exploring similar customers with limited existing knowledge, and under-exploring 

(by oversampling the seemingly good action) otherwise.  

A Long Interval between Campaigns 

The second important insight in the paper is that the long interval between batches can 

justify an approximation that helps to solve the problem. The approximation is that firms 

look one-step ahead when making decisions this year. 3 Specifically, the firm behaves as if 

when next year arrives, the firm will only exploit and will not further explore. Critically, 

this implies that the firm does not anticipate how the exploration-exploitation tradeoff 

this year impacts the solution to next year’s exploration-exploitation tradeoff.  

With this approximation, we can find an exact solution for this year’s decisions. That 

solution can explicitly account for the information externality we have highlighted: the 

incremental information obtained from each of this period’s customers depends upon 

how many similar customers receive the same action (the information externality). 

Because we only look one-step ahead, the solution also avoids the magnification of errors 

that can arise when dynamic problems are recursive.  

 
3 In the literature, most Bayesian optimization (BO) papers are based on one-step look ahead heuristics, and 
we are considering a more complex problem than theirs; it is also widely adopted in marketing. We provide 
a summary in the literature review. 
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In the absence of this approximation, the firm anticipates an exploration-exploitation 

tradeoff in future periods as well. The future exploration-exploitation tradeoffs depend 

upon the actions in the current period. This results in a dynamic recursive problem, which 

dramatically increases complexity, and makes it infeasible to find an exact solution.  

Organizational economics offers a perspective that can help to justify the look one-step 

ahead approximation. In practice, many marketing managers are likely to recognize that 

the value of additional exploration changes over time. The more profitable the current 

policy is, the larger the expected opportunity cost of deviating from that policy, and the 

smaller the expected incremental benefit of continued exploration. Both dynamics make 

it more likely that the firm will fully exploit in future years, particularly if the managers’ 

performance goals (KPIs) are adjusted each year in anticipation of the higher profits 

yielded by the current policy, providing them little incentive to look into distant future 

years.4 

An Exact Solution to an Approximate Problem vs. an Approximate Solution to an 

Exact Problem 

As we have discussed, by assuming that firms only look one step ahead, we can find an 

exact solution to the problem that the firm considers. Without this approximation, there 

are externalities that affect the exploration-exploitation problems between customers 

within the period (the information externality), and externalities that affect the 

exploration-exploitation tradeoff between customers across (distant) periods. Both 

interactions are complex, and practically we cannot solve both. 

 
4 The approximation is also consistent with what we have observed in practice. We conduct research with 
a large luxury goods retailer. The retailer designed its first ever targeting policy for its Holiday catalog in 
2019. The policy was trained using an experiment conducted with the 2018 Holiday catalog. In 2019, the 
firm randomly assigned some customers to an experiment sample, and for the remaining customers it used 
the policy trained using the 2018 data. When deviating from its current policy with customers in the 
experiment sample, the firm incurred an estimated opportunity cost of several hundred thousand dollars 
in lost profit. Consistent with our approximation, the firm fully exploited in 2020. In 2020 it did not collect 
any additional experimental data. The expected performance of the improved policy was so good that the 
managers did not want to continue conducting experiments.  
While this example is consistent with our approximation, not all retailers will stop exploring so quickly. For 
this reason, our assumption is an approximation. However, for these types of problems, the benefits of this 
approximation are high, and the costs are low. 
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For some problems, the exploration-exploitation tradeoff between customers across 

distant periods is of primary importance. If there is only a single customer per period, an 

information externality does not arise within each period, while a large sequence of 

periods occurring close in time accentuate the importance of accounting for interactions 

across multiple periods. This is a typical problem that multi-armed bandits are designed 

to address.5   They are fully forward-looking (accounting for the interactions between 

periods), but do not account for the information externality within a period. This 

approach is well-suited to problems such as digital advertising, where customers arrive 

sequentially within a short time interval. 

However, in the batch adaptive learning problems that we consider (recall the Holiday 

catalog example), the large number of customers in each batch magnifies the importance 

of the information externality. Moreover, the long-time between batches reduces the 

practical importance of the interactions between periods. This makes the look one-step 

ahead approximation that we propose well-suited to these types of problems.  

Proposed Solution 

We formalize the solution procedure as an algorithm, which we label “One-step Look 

Ahead Targeting” (OLAT). We estimate the information values of exploration using a 

Bayesian approach, modelling the response function with Gaussian processes. The 

algorithm can in theory provide an exact solution to our approximation of the one-step 

look ahead Holiday catalog problem. However, in practice, the solution may include other 

approximations. In particular, to speed up computation time, we use a heuristic to solve 

the combinatorial problem of choosing the optimal actions. Another potential concern is 

selection; this year’s assignments vary with noise in last year’s outcomes, and are not 

purely random. We show that when using the proposed framework, the solution does not 

introduce selection problems. 

 
5 Parallelized bandits consider problems with multiple customers in a batch, but they only consider a policy 
where every customer receives the same marketing action. The restriction to uniform policies greatly 
simplifies the problem of optimizing marketing actions. We discuss parallelized bandits in more details in 
the literature review. 
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Summary 

We study a common, but overlooked, marketing problem: targeting in an adaptive batch 

setting where the batches occur infrequently. We call this problem “adaptive batch 

targeting.” It is a different problem from the common learning settings. Our first 

contribution is to identify an information externality among customers in the same batch, 

which leads to a combinatorial problem of jointly optimizing firm decisions across all of 

these customers. The second contribution is to approximate the problem as a one-step 

look ahead problem. By recognizing that the long interval between batches means that 

this approximation is often reasonable, we develop a solution framework that explicitly 

incorporates externalities between customers. The framework has several important 

features. It resolves the exploration–exploitation tradeoff, while avoiding potential 

selection risks that can arise when assignments are not random. Moreover, rather than 

just minimizing errors in the prediction of treatment effects, the solution maximizes 

expected profit across all customers in both the current and subsequent periods. The third 

contribution is to derive an algorithm, OLAT, that implements this solution. We use data 

from a direct mail experiment to validate this algorithm. 

The paper proceeds as follows. Section 2 reviews the literature. We highlight how 

adaptive batch targeting is different from other targeting problems, including static batch 

learning, online learning and parallelized bandit models. Section 3 sets up the adaptive 

batch targeting problem, and proposes a framework for valuing future information to 

resolve the explore-exploit tradeoff. Section 4 introduces a model of uncertainty, and 

discusses selection issues. Section 5 presents the proposed algorithm. Section 6 provides 

empirical evidence to validate the algorithm, using field experiment data. 

 

2 Literature Review 

We contrast the adaptive batch learning environment that we study with related 

problems, including static batch learning, online learning, and parallelized bandit models. 

We summarize these comparisons in Table 1, and begin the discussion by distinguishing 

adaptive batch learning from static batch learning. 
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Static batch learning shares some features with adaptive batch learning. There are a large 

number of customers in the batch, and the goal is to use a training sample of customers to 

construct a personalized policy for each customer in an implementation sample (which 

may or may not be the same as the training sample). Recent examples include (Dubé and 

Misra 2017) who propose a method for personalizing prices, (Rafieian and 

Yoganarasimhan 2020) who study personalization of mobile advertisements, and 

(Simester et al. 2020a, b) who study how to personalize promotions for prospective 

customers. The key difference between the two problem is that in static batch learning, 

the planning horizon only includes two periods: the period of experimental data collection, 

and the period of trained policy implementation. There is no prior period. Using the “last 

year”, “this year” and “next year” labels from the Introduction, there is no “last year’ and 

so the firm does not begin with a current policy trained using last year’s data. Without a 

current policy, the firm does not face an exploration-exploitation tradeoff. In contrast, in 

adaptive batch learning, when making decisions this year the firm has a current policy, 

which requires that it trades off exploration and exploitation.  

The second learning problem that we consider is online learning (Li et al. 2010), where 

the sequential arrival of customers effectively results in a problem with a single customer 

each period, but the planning horizon includes many periods occurring in a small time 

window. In contrast, in adaptive batch learning, there are multiple customers per period 

and the time between batches is long. Examples of common online learning problems 

include online advertising or search advertising. The exploration-exploitation tradeoff for 

this problem is generally solved using multi-armed bandit approaches, which describe a 

broad class of problems. These problems can be addressed using numerous heuristics or 

solutions, including the Gittins index (Gittins 1979), Upper Confidence Bound algorithm 

(UCB) (Krause and Ong 2011, Lai and Robbins 1985), and Thompson sampling (Agrawal 

and Goyal 2017). These approaches have demonstrated good performance on many 

online learning tasks. Examples within marketing include (Lin et al. 2015), who study how 

customers can use index strategies to learn through sequential consumption experiences. 

(Schwartz et al. 2017) consider a firm that has multiple versions of an advertisement and 
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wants to decide which versions to use. Their proposed algorithm uses an adaptation of 

Thompson sampling.6  

Also note that there is a branch of online learning literature that uses batch data, and this 

logged data was generated from a unobserved sequential process (Si et al. 2020). 

Although some of these papers learn contextual policies with online learning algorithms, 

they use only a single static batch of data and do not have new information after the policy 

is learned from the current batch. Our work does not belong to this category: our learning 

environment deals with multiple batches of data and allows new information coming in 

after learning a policy. 

Recall from our earlier discussion that multi-armed bandit models prioritize interactions 

between periods over information externalities between customers within a period. In 

(Lin et al. 2015)  the focus is on learning by a single customer from a single experience 

each period, and so there are no information asymmetries within a period. In the problem 

studied by (Schwartz et al. 2017), there are multiple customers within a period (within a 

batch) and so information externalities do arise. However, the Thompson sampling 

approach does not account for these externalities. 

The (Schwartz et al. 2017) problem is an unusual bandit problem as there are multiple 

customers each period and the decision-maker personalizes a policy for each customer. 

Most bandit problems have a single customer each period, although (Schwartz et al. 2017) 

is not the only exception. A small class of papers study parallelized bandit problems in 

which the decision maker solves a bandit problem with multiple observations each period 

(Desautels et al. 2014, Gao et al. 2019, Perchet et al. 2016). However, parallelized bandit 

problems focus on the design of a uniform policy, in which every customer receives the 

same action within a given period, while we design personalized targeting policies.7 This 

distinction is important as our setting leads to a combinatorial problem of choosing the 

 
6 Other examples of multi-armed bandit models in marketing include (Hauser et al. 2009, Lin et al. 2015, 
Misra et al. 2019). 
7 Other examples of policies that are not personalized, and instead train a uniform policy, include (Hadad et 
al. 2019) and (Tabord-Meehan 2020). 



Page | 13 

optimal experimental action for each heterogeneous customer, but parallelized bandit 

does not deal with it.8  

Table 1. Comparison of Learning Problems 

 Customers 

in a Period 

Start with 

a Current 

Policy? 

Future 

Periods  
Type of Policy Examples 

Adaptive batch 

learning 

Many Yes 1 Personalized  

Static batch learning Many No 1 Personalized (Dubé and Misra 
2017); (Simester et 
al. 2020a, b); 
(Rafieian and 
Yoganarasimhan 
2020);  

Online learning Few Yes Multiple Personalized (Lin et al. 2015); 
(Schwartz et al. 
2017) 

Parallelized bandit Many Yes Multiple Uniform Desautels et al. 
(2014); Gao et al. 
(2019); Perchet et al. 
(2016) 

 

Within the parallelized bandit literature, there is a stream of papers that uses a very 

similar estimation approach to the approach we propose in this paper. These papers rely 

upon Bayesian Optimization (BO), and use Gaussian processes to quantify uncertainty and 

forecast future outcomes (Wang et al. 2017, Wu and Frazier 2016). Like other parallelized 

 
8 We solve a (batched) contextual bandit problem; the targeting policy design problem: max

𝑎∈𝒜
𝑟(𝑥, 𝑎) , ∀𝑥 ∈

𝒳. It is a combinatorial problem. Parallelized bandit (PB) solves max
𝑎∈𝒜

𝑓(𝑎) sequentially; it can be used to 

select either the next actions or the next covariate points for evaluation, but not both. Thus, PB cannot 

learn a personalized targeting policy. Specifically, if using PB to select next actions, PB only linearly ranks 

the incremental value of each action: it ranks the value of each covariate-action pair against the fixed 

benchmark (𝑥0, 𝑎0), but it cannot rank (𝑥, 𝑎) against a varying benchmark (𝑥, 𝑎0). Alternatively, if using PB 

to select the next covariate points to learn, PB fails to answer which action to experiment with. PB also 

gets no information from the unselected points. 
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bandit problems, they optimize uniform policies rather than personalized targeting 

policies. Like this paper, these papers also consider a one-step look ahead approximation. 

More generally, within the learning literature, BO is often implemented using a one-step 

look ahead structure (Wang and Jegelka 2017, Wu and Frazier 2016), with some recent 

work attempting to develop two-step ahead acquisition functions (Wu and Frazier 2019). 

In the marketing literature, there are other papers adopting one-step (or two-step) look 

ahead heuristics to analyze customer dynamics, including (Lin et al. 2015, Urban and 

Hauser 2004)). Most of these papers find that myopic solutions usually perform as well 

as complete forward-looking solutions (Lin et al. 2015).9 

The focus of our problem is learning in batches, and we focus on maximizing firm profit. 

Other research studying sequential learning with batches has focused on online 

advertising (Schwartz et al. 2017), conjoint analysis (Joo et al. 2019), and policy selection 

(Hadad et al. 2019, Kasy and Sautmann 2019, Tabord-Meehan 2020). Notably, except 

(Schwartz et al. 2017), all of these papers focus on accurately estimating treatment effects 

rather than maximizing profit. While accurate estimation of treatment effects can 

contribute to higher firm profits, the two things are not the same. Notably, if we consider 

two policies, it is possible that the policy that yields more accurate estimates of treatment 

effects will not be the policy that maximizes expected profits (Elmachtoub and Grigas 

2017). 

In the next section we formally define the adaptive batch targeting problem, and 

decompose the learning component into two elements; the expected cost of information, 

and the expected value of information. 

 

3 Adaptive Batch Targeting Problem 

 
9 In our problem, the firm looks forward, but customers do not. This is somewhat standard approach in 
marketing, where applications include designing conjoint experiments (Toubia et al. 2003), adapting 
website design (Hauser et al. 2009), ad sequencing (Rafieian 2019), eliciting consumer risk preferences 
(Toubia et al. 2013), modelling consumer experiential learning (Lin et al. 2015), and optimizing catalog 
mailing (Simester et al. 2006). However, there have been studies that explicitly consider forward-looking 
consumers. A notable early example is (Gönül and Shi 1998), who study direct mail targeting.   
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Suppose a retailer conducts a marketing campaign each season. Wave 1 took place last 

year; Wave 2 needs to be designed for the current year; Wave 3 will happen next year. In 

each wave, the retailer faces a new sample of customers, and can assign a marketing action 

to them. For instance, it can decide whether to “mail” or “not mail” a catalog to a customer. 

The retailer’s action space, denoted by 𝒜, is assumed to be a finite set and the same across 

all three waves.  

We start with the simplest three-year example, in which the year (time) is denoted by 𝑡 ∈

{𝑙𝑎𝑠𝑡, 𝑡ℎ𝑖𝑠, 𝑛𝑒𝑥𝑡} . We discuss the generalization to any finite horizon problem of our 

results at the end of this section. 

The set of customers in year t is denoted by 𝒩𝑡  and for each customer 𝑖 ∈ 𝒩𝑡  the firm 

observes some characteristics (such as income level). We summarize the information that 

we observe about customer 𝑖  using a vector of targeting covariates, 𝒙𝑖,𝑡 . The action 

assigned to customer 𝑖 in year 𝑡 is 𝑎𝑖,𝑡 , and the single period outcome for customer 𝑖 is the 

realized individual profit: 𝜋𝑖,𝑡 .10 In a given year there are 𝑛𝑡 customers, and we use history 

𝐇𝑡 to denote the information available at the start of the year:   

𝐇𝑡ℎ𝑖𝑠 = {𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡 , 𝝅𝑙𝑎𝑠𝑡 , 𝒙𝑡ℎ𝑖𝑠, 𝒙𝑛𝑒𝑥𝑡} 

𝐇𝑛𝑒𝑥𝑡 = {𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡 , 𝝅𝑙𝑎𝑠𝑡 , 𝒙𝑡ℎ𝑖𝑠, 𝒂𝑡ℎ𝑖𝑠, 𝝅𝑡ℎ𝑖𝑠, 𝒙𝑛𝑒𝑥𝑡} 

Our notation convention uses italics for both data variables and functions (e.g. 𝑎𝑖,𝑡), bold 

to denote vectors and matrices (e.g. 𝒙𝑖,𝑡), and script to identify sets (e.g. 𝒩𝑡). We can use 

this notation to summarize the timeline as follows: 

Last Year: the firm implements a policy on last year’s customers and observes their 

outcomes 𝝅𝑙𝑎𝑠𝑡 . The policy could be a randomized experiment, or a trained policy 

where the underlying model is known and depends only upon the characteristics of 

last year’s customers 𝒙𝑙𝑎𝑠𝑡 . 11 

 
10 The cost of each action is reflected in 𝜋𝑖,𝑡 . 
11 A separate question, which we do not address, is how large an experiment to implement last year. If the 
firm already has a targeting policy before last year, the amount of exploration to engage in at that stage is 
equivalent to the question we ask this year. In contrast, if the firm does not have a targeting policy last year, 
then the firm’s optimal policy is to either treat everyone or treat no one. Randomly assigning treatments is 
a departure from this uniform policy, which again introduces an exploration vs. exploitation tradeoff. For 



Page | 16 

This Year: the firm uses 𝐇𝑡ℎ𝑖𝑠  to design an assignment policy that trades off 

exploration and exploitation. The firm implements this policy on this year’s customers 

and observes their outcomes 𝝅𝑡ℎ𝑖𝑠. 

Next Year: the firm uses 𝐇𝑛𝑒𝑥𝑡  to design an assignment policy that exploits next year’s 

customers. It then implements this policy on next year’s customers and observes their 

outcomes 𝝅𝑛𝑒𝑥𝑡 . 

There are two types of dynamics that are commonly considered in the marketing 

literature. Customer behavior could be dynamic, either due to changes in individual 

customer behavior, or through changes in the composition of the customer population. As 

a result, customers’ responses to the same firm action may vary over time. Alternatively, 

the firm may face an adaptive learning problem, so that changes in the firm’s information 

change the optimal firm action over time. In this paper, we do not consider any dynamics 

on the customer side. Instead, we focus solely on the dynamics introduced by the firm’s 

adaptive learning problem. 

We assume that there are no dynamics from the customer side. As a result, the action 

taken this year does not directly affect the customer’s response next year, and so the 

targeting problem itself is static.12  

Although the targeting problem is static, optimizing this year’s action assignments is a 

“dynamic” problem, because the actions assigned this year will influence the actions 

assigned next year. Different actions this year lead to different knowledge next year, 

which will lead to a different targeting policy next year. To handle the (static) targeting 

problem and the (dynamic) action assignment problem in the same framework, we use 

two classes of policies, the (static) targeting policy and the assignment policy, as learning 

targets, defined as following. 

 
this reason, the size of the experiment to implement last year can again be seen as a special case of the 
question we ask this year.   
12 In this respect, the targeting problem itself is a purely batch targeting problem, as in (Dubé and Misra 
2017), (Rafieian and Yoganarasimhan 2020), and (Simester et al. 2020a, b). 



Page | 17 

First, the optimal (static) targeting policy with information in 𝐇𝑡 , denoted by 𝑝𝑡
𝑆 

(superscript 𝑆 stands for “static”), is a mapping from the covariate space to the action 

space. In other words, the targeting policy personalizes the marketing action based on 

each customer’s own covariates. 

Second, the assignment policy is the actual assignment rule that the firm employs to 

assign marketing actions to customers in a campaign. We denote the assignment policy 

that the firm implements in year 𝑡’s campaign as 𝑝𝑡 . Because last year’s assignments (𝑝𝑙𝑎𝑠𝑡) 

occurred in the past, these assignments are not decision variables this year. Instead, the 

retailer’s objective this year is to design this year’s ( 𝑝𝑡ℎ𝑖𝑠 ) and next year’s ( 𝑝𝑛𝑒𝑥𝑡 ) 

assignment policies to maximize expected total profit from both years. The firm has two 

competing concerns. On the one hand, it has a myopic interest in maximizing this year’s 

profit (𝝅𝑡ℎ𝑖𝑠) by directly implementing the existing targeting policy. On the other hand, it 

knows that more exploration can improve the policy, which leads to higher profits next 

year ( 𝝅𝑛𝑒𝑥𝑡 ), although it compromises this year’s profits. The firm uses backward 

induction, and when looking forward to next year it assumes that it will fully implement 

the policy trained using 𝐇𝑛𝑒𝑥𝑡 , and will not continue to explore. 

We can formally state the firm’s objective this year as:  

𝑉𝑡ℎ𝑖𝑠(𝑝𝑡ℎ𝑖𝑠) ≡ ∑ 𝔼[𝜋𝑖; 𝑝𝑡ℎ𝑖𝑠|𝐇𝑡ℎ𝑖𝑠]

𝑖∈𝒩𝑡ℎ𝑖𝑠

+ ∑ 𝔼[𝜋𝑗; 𝑝𝑡ℎ𝑖𝑠, 𝑝𝑛𝑒𝑥𝑡(𝑝𝑡ℎ𝑖𝑠)|𝐇𝑡ℎ𝑖𝑠]

𝑗∈𝒩𝑛𝑒𝑥𝑡

. (3.1) 

Since next year is the terminal year, then the optimal policy next year is to fully exploit by 

implementing the optimal static targeting policy trained using the information available 

at the start of next year (𝐇𝑛𝑒𝑥𝑡). In the second term of Equation (3.1), this implies that 

𝑝𝑛𝑒𝑥𝑡(𝑝𝑡ℎ𝑖𝑠)= 𝑝𝑛𝑒𝑥𝑡
𝑆 (𝑝𝑡ℎ𝑖𝑠). This severs the relationship between the policy that the firm 

will implement next year and the firm’s actions in any future years (beyond next year). 

The objective function in Equation 3.1 assumes that the firm is optimizing a 3-year 

problem, (last year, this year, and next year). In practice, firms will often have a horizon 

that extends beyond next year. In these settings, the objective function in Equation 3.1 is 

still appropriate if the firm only looks one-step ahead when making decisions this year. 

We discuss this assumption next. 
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3.1 Look One-Step Ahead  

To illustrate the importance of the look one-step ahead assumption, let’s assume the firm 

is facing 𝑇-period problem, where 𝑇 > 3. If the firm does not anticipate that next year will 

be terminal when making decisions this year, it can no longer assume that it will fully 

exploit next year. Specifically, when making decisions this year, the firm can no longer 

assume it will implement  𝑝𝑛𝑒𝑥𝑡
𝑆  next year. Instead, anticipating how next year’s 

assignments will vary according to this year’s outcomes becomes a recursive fixed-point 

problem that will be very difficult to solve in practice.13 

However, the look one-step look ahead assumption overcomes this problem. We formally 

state the look one-step ahead assumption as Assumption 1: 

Assumption 1 (One-step look ahead) When making decisions this year, the firm 

assumes that next year will be the terminal year regardless of the actual horizon. 

By assuming there are no future years beyond next year, the firm does not need to 

consider how this year’s actions will affect an exploration-exploitation trade-off next year. 

Notice also that a generic 𝑇 -horizon adaptive batch targeting problem can always be 

transformed into a rolling sequence of three-year problems. Under the one-step look 

ahead assumption, when solving any focal year’s problem, we can always limit attention 

to three years, i.e., the last year, the focal year (this year), and the next year.14  All of our 

results can be generalized to this rolling three-year problem, and the solution represents 

a lower bound to the solution to the generic problem. 

While the objective function in Equation 3.1 illustrates the firm’s objectives, it does not 

demonstrate the tradeoffs that the firm faces in optimizing this function. Taking an 

information value of experimentation perspective, we next introduce a model of these 

tradeoffs, and show that an assignment policy that optimizes these tradeoffs also 

optimizes the firm’s objective in Equation 3.1. At the core of the tradeoff are two quantities. 

The opportunity cost of information is the expected opportunity cost of deviating from the 

 
13 It is theoretically possible to solve this problem by backward induction. 
14 The targeting policy learned using information from year 𝑡 − 1 summarizes all the knowledge from years 
prior to year 𝑡 − 1, and so we do not need to consider years prior to year 𝑡 − 1. 
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current targeting policy. The expected value of information is the additional profit 

expected next year, due to the additional information learned this year from this deviation. 

We start by discussing the cost of information and then turn to the value of information. 

3.2 Opportunity Cost of Information  

For an individual customer 𝑖, an expected opportunity cost arises if the firm deviates from 

the policy that is optimal given the current information. Recall that 𝑝𝑡ℎ𝑖𝑠
𝑆  is the optimal 

(static) targeting policy given the information available at the start of this year (𝐇𝑡ℎ𝑖𝑠), 

and 𝑝𝑡ℎ𝑖𝑠
𝑆 (𝒙𝑖)  is the assignment under this policy for a customer with covariates 𝒙𝑖 . 

Although we describe the policy as optimal, in practice the firm can use any supervised 

learning model to train this policy (the optimality of this training process is outside the 

scope of this paper). For example, we can apply off-policy evaluation (OPE) methods to 

more efficiently evaluate the static targeting policy.15  

The opportunity cost of deviating from 𝑝𝑡ℎ𝑖𝑠
𝑆  by assigning action 𝑎𝑖 (𝑎𝑖 ∈ 𝒜) to customer 

𝑖  ( 𝑖 ∈ 𝒩𝑡ℎ𝑖𝑠 ) is described by the following function, which we label the IC-function 

(information cost function): 

𝐼𝐶𝑡ℎ𝑖𝑠(𝒙𝑖 , 𝑎𝑖) ≡ 𝔼 [𝜋 (𝒙𝑖 , 𝑝𝑡ℎ𝑖𝑠
𝑆 (𝒙𝑖)) − 𝜋(𝒙𝑖 , 𝑎𝑖)|𝐇𝑡ℎ𝑖𝑠]  ≥ 0. (3.2) 

The expectations are over the outcomes we observe this year for customer 𝑖, given the 

action taken this year with this customer. Since we defined 𝑝𝑡ℎ𝑖𝑠
𝑆  as the optimal targeting 

policy under 𝐇𝑡ℎ𝑖𝑠 , we know that the information cost is non-negative: 𝐼𝐶𝑡ℎ𝑖𝑠(𝒙𝑖 , 𝑎𝑖) ≥ 0. 

If the assignment for customer 𝑖 is the action assigned under 𝑝𝑡ℎ𝑖𝑠
𝑆 , then 𝑎𝑖 = 𝑝𝑡ℎ𝑖𝑠

𝑆 (𝒙𝑖), and 

the IC-function equals zero.  

It is important to recognize that the IC-function measures the opportunity cost for a single 

customer 𝑖, and is not the total opportunity cost across all customers this year.  Notice 

 
15  In an OPE problem, an agent wants to evaluate an “evaluation policy” (off-policy) but has to use a 
“behavior policy” (on-policy) to sequentially interact with the environment to generate evaluation samples. 
In our context, the off-policy for evaluation is the optimal targeting policy 𝑝𝑛𝑒𝑥𝑡

𝑆 , while 𝑝𝑡ℎ𝑖𝑠 is the on-policy. 
This inconsistency in learning path and learning target causes difficulty in learning the evaluation policy 
properly; to improve the learning efficiency and reduce variance, there are modern approaches like the 
doubly robust estimator. For a summary of classic algorithms, see Thomas (2015), chapter 3. See also Dudik 
et al. (2012) and Dudík et al. (2014) for the doubly robust estimator. 
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also that the IC-function for customer 𝑖  is independent of this year’s actions and 

covariates for other customers. We next consider the expected value of information. 

3.3 Expected Value of Information  

As we discussed in the Introduction, measuring the expected value of information 

involves some externalities. First, exploring with one customer this year can improve the 

targeting policy for many customers next year. This externality is widely recognized in 

the exploration exploitation tradeoff. Second, exploring with one customer this year 

changes the expected value of exploring with neighboring customers this year. We label 

this novel externality as the “information externality”. We will first define these terms, and 

next establish that, when estimating the expected value of information, the firm needs to 

incorporate both of these externalities.16 

Recall that 𝑝𝑛𝑒𝑥𝑡
𝑆  is the optimal (static) targeting policy given the information 𝐇𝑛𝑒𝑥𝑡 . For 

customer 𝑖, next year’s profit is affected by the marketing action assigned to her this year, 

because her information, (𝑥, 𝑎, 𝜋), contributes to improving next year’s targeting policy. 

The information value (IV) function measures the incremental profits expected next year 

because of the additional information gained by deviating from the current optimal 

targeting policy 𝑝𝑛𝑒𝑥𝑡
𝑆  this year: 

𝐼𝑉𝑡ℎ𝑖𝑠(𝒙𝑖 , 𝑎𝑖|𝒂−𝑖) ≡ ∑ 𝔼 [𝔼𝑛𝑒𝑥𝑡 [𝜋 (𝒙𝑗 , 𝑝𝑛𝑒𝑥𝑡
𝑆 (𝒙𝑗)) |𝑎𝑖; 𝒂−𝑖] |𝐇𝑡ℎ𝑖𝑠]

𝑗∈𝒩𝑛𝑒𝑥𝑡

− ∑ 𝔼 [𝔼𝑛𝑒𝑥𝑡 [𝜋 (𝒙𝑗 , 𝑝𝑛𝑒𝑥𝑡
𝑆 (𝒙𝑗)) |𝑝𝑡ℎ𝑖𝑠

𝑆 (𝒙𝑖); 𝒂−𝑖] |𝐇𝑡ℎ𝑖𝑠]

𝑗∈𝒩𝑛𝑒𝑥𝑡

. (3.3)
 

Notice that 𝐇𝑛𝑒𝑥𝑡  depends upon the action we assign to customer 𝑖  this year (𝑎𝑖 ). In 

particular, two components of 𝐇𝑛𝑒𝑥𝑡  depend upon 𝑎𝑖: the change in this year’s action 𝑎𝑖 

itself, and also this year’s outcome 𝜋𝑖 . In turn, changes in 𝐇𝑛𝑒𝑥𝑡  will lead to changes in the 

 
16 Some papers (Desautels et al. 2014; Gao et al. 2019) with the parallelized bandit setting point out that, if 
required to sample multiple arms in each period, the algorithm’s selections have little variance, because the 
algorithm is not updated yet to reflect the existing selections in the same period. They solve this issue by 
heuristically increasing the variance of the selections. Not explicitly formalized or analyzed, this idea of 
“under-exploration” shares a similar spirit to the information externality in our paper. We discussed other 
distinctions of our paper and this literature in Section 2 (literature review). 
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policy implemented next year 𝑝𝑛𝑒𝑥𝑡
𝑆 . Therefore, the inner expectations in the IV-function 

are over 𝐇𝑛𝑒𝑥𝑡 , and are of the outcomes we observe for each of next year’s customers (𝑗 ∈

𝒩𝑛𝑒𝑥𝑡), which depend upon the action selected by the optimal targeting policy next year 

𝑝𝑛𝑒𝑥𝑡
𝑆 . These expectations are nested; expectations of the outcomes for next year’s 

customers are with respect to the realization of  𝐇𝑛𝑒𝑥𝑡  (inner expectations), the 

expectations of which are driven by 𝐇𝑡ℎ𝑖𝑠  (outer expectations). We will explain in the next 

section how we will evaluate these expectations. 𝐼𝑉𝑡ℎ𝑖𝑠(𝒙𝑖 , 𝑎𝑖|𝒂−𝑖) is positive when 𝑎𝑖 is 

more informative than 𝑝𝑡ℎ𝑖𝑠
𝑆 (𝒙𝑖), negative when 𝑎𝑖 is less informative than 𝑝𝑡ℎ𝑖𝑠

𝑆 (𝒙𝑖), and 

zero when 𝑎𝑖 = 𝑝𝑡ℎ𝑖𝑠
𝑆 (𝒙𝑖). 

As with the IC-function, this function focuses only on customer 𝑖. It represents the value 

of the information obtained by varying this year’s action for customer 𝑖 . It does not 

measure the aggregate information from varying the actions for other customers this year. 

However, unlike the IC-function, which is completely separable (and independent) 

between this year’s individual customers, the IV-function is not separable. In particular, 

𝑝𝑛𝑒𝑥𝑡
𝑆  depends upon not just the action assigned to customer 𝑖 this year, it also depends 

upon the actions assigned to other customers this year. This is because the incremental 

information contributed by the focal customer 𝑖 depends upon the action assignments for 

other customers. This is the information externality that we discussed in the Introduction. 

3.4 Explore-Exploit Function 

To balance the trade-off between exploring and exploiting for each individual customer 

this year, we can simply calculate the difference between the IC and IV-functions. We label 

this the EE-function (Explore-Exploit Function): 

𝐸𝐸𝑡ℎ𝑖𝑠(𝒙𝑖 , 𝑎𝑖|𝒂−𝑖) ≡ 𝐼𝑉𝑡ℎ𝑖𝑠(𝒙𝑖 , 𝑎𝑖|𝒂−𝑖) − 𝐼𝐶𝑡ℎ𝑖𝑠(𝒙𝑖 , 𝑎𝑖) (3.4) 

for which the optimal firm action for customer 𝑖 is given by: 

𝑎𝑖
∗ ∈ argmax

𝑎𝑖∈𝒜
max
𝑝𝑡ℎ𝑖𝑠

′
𝐸𝐸𝑡ℎ𝑖𝑠(𝒙𝑖 , 𝑎𝑖|𝒂−𝑖; 𝒂−𝑖 ∈ 𝑝𝑡ℎ𝑖𝑠

′ ) . (3.5) 

The IV-function and the IC-function are both individual-level functions for a particular 

customer 𝑖, and so the EE-function is also an individual-level function. Moreover, because 
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the IV-function is not separable between this year’s customers, the EE-function is also not 

separable. Recall that the actions assigned to all of this year’s customers can contribute to 

next year’s policy 𝑝𝑛𝑒𝑥𝑡
𝑆  due to information externalities. Given all other customers are 

assigned their respective optimal actions, and the IC-function is minimized when 𝑎𝑖 =

𝑝𝑛𝑒𝑥𝑡
𝑆 (𝒙𝑖), we know that the firm will only deviate from 𝑝𝑛𝑒𝑥𝑡

𝑆  for customer 𝑖  if the IV-

function is strictly positive. 

We also note that if there is no next year (this year is the terminal year) then the IV-

function is equal to zero for all customers. The current policy 𝑝𝑡ℎ𝑖𝑠
𝑆  will be the optimal 

assignment for all of this year’s customers. This also explains why the firm anticipates 

implementing 𝑝𝑛𝑒𝑥𝑡
𝑆  next year when designing policies this year. If next year is the 

terminal year, it is optimal to implement the optimal (static) targeting policy trained using 

𝐇𝑛𝑒𝑥𝑡 .  

Our first result recognizes that optimizing the EE-function jointly across all of this year’s 

customers will also maximize the firm’s total expected profits.  

Result 1 (Value function maximization) 

Any solution that jointly optimizes the EE-function according to Equation (3.4) also 

optimizes the firm’s total expected profits across this year and next year: 

𝑉𝑡ℎ𝑖𝑠(𝑝𝑡ℎ𝑖𝑠), given in Equation (3.1). 

 Proof. See Appendix C. 

We can consider two alternative approaches to optimizing the EE-function. The firm could 

optimize individually for each of this year’s customers, or it could optimize jointly across 

all of this year’s customers. By “optimizing individually”, we mean that the IV-function 

(information value) for each customer is evaluated under the assumption that firm’s 

assignments to other customers from this year are neglected. 17  In other words, this 

individual version evaluates a customer’s information value as if she were the only 

 
17 Notice that the individually optimal action for a customer is conceptually different from the action given 
by this year’s optimal targeting policy 𝑝𝑡ℎ𝑖𝑠

𝑆 . We provide a formal definition of this individual optimization 
approach in Appendix A. 
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customer for this year. By “optimizing jointly”, we mean that the IV-function for each 

customer is evaluated using the optimal assignment for each customer this year.18 This 

joint optimization approach requires finding a “fixed point,” in which the assignment for 

each customer is optimal given the optimality of assignments for other customers this 

year. The central difference between those two approaches is that the information 

externality is only considered by the joint optimization approach. 

We can illustrate the intuition behind the information externality using an example. 

Suppose there are three customers in this year’s batch, and the existing knowledge is 

intermediate. With an individually optimal assignment policy (think of Thompson 

sampling), the optimal actions recommended for all three customers are mail. However, 

if mail is assigned to Customers A and B in an assignment policy, and Customer C is 

similar to Customers A and B, the firm will learn information about Customer C’s response 

to mail from A and B. As a result, the firm could be better off assigning not mail to 

Customer C to learn customers’ responses to it; otherwise, the firm is susceptible to under-

exploring the action not mail.  

As a result of the information externality, it is more profitable for the firm to jointly 

optimize the EE-function for all of this year’s customers (𝑖 ∈ 𝒩𝑡ℎ𝑖𝑠), instead of individually 

optimizing it for each customer. This can be easily understood by recognizing that the 

solution to optimizing individually is a possible solution to the joint problem. If a 

profitable deviation is possible from the individual solution (e.g., the under-exploring 

example considered in Table 2), then the solution to the joint problem strictly dominates 

the solution to the individual problem. The difference between the individual and joint 

solution only arises because of the information externalities in the IV-function. If this 

function was completely separable between customers (like the IC-function), then 

maximizing the EE-function individually or jointly would yield the same outcome. 

 
18 We provide a formal definition of this joint optimization approach in Appendix A. 
 



Page | 24 

We can show that the joint optimization approach strictly dominates the individual 

optimization approach in terms of expected profits, under mild and realistic assumptions. 

We begin by introducing two additional assumptions: 

Assumption 2 (Targeting is relevant) There are at least two marketing actions that 

yield different outcomes for at least some customers.  

Assumption 3 (Information is relevant) in the best case, this year’s actions and 

outcomes change next year’s optimal (static) targeting policy; in other words, there 

is opportunity to change the targeting policy between this year and next year. 

Both assumptions are easy to justify. Assumption 2 requires that there are at least two 

marketing actions that yield different expected outcomes for at least one customer. If all 

marketing actions yield the same expected outcomes for all customers, there is no point 

in learning a targeting policy. Assumption 3 requires that the optimal action next year 

depends upon the information learned this year. If this year’s information is not relevant, 

then this year’s and next year’s optimal policies are the same. Specifically, the optimal 

policy both this year and next year would be to simply implement 𝑝𝑡ℎ𝑖𝑠
𝑆 , which is not an 

interesting case given the scope of our paper. Under these two assumptions, we can prove 

that jointly optimizing this year’s actions for all customers strictly dominates the 

alternative of optimizing the actions for this year’s customers individually.  

Result 2 (Strict dominance of joint optimization) 

Suppose assignments 𝒂𝑡ℎ𝑖𝑠
∗  are given by the joint assignment policy 𝑝𝑡ℎ𝑖𝑠

∗ ∈

𝒮(𝑝𝑡ℎ𝑖𝑠
∗ ), where 𝒮(𝑝𝑡ℎ𝑖𝑠

∗ ) is the set of optima to Equation (3.5). Under Assumptions 

2 and 3, the joint assignments 𝒂𝑡ℎ𝑖𝑠
∗  strictly dominate the individual assignments 

𝒂𝑡ℎ𝑖𝑠
𝐼  in terms of the expected total profits defined in Equation (3.1): 𝑉𝑡ℎ𝑖𝑠(𝒂𝑡ℎ𝑖𝑠

∗ ) >

𝑉𝑡ℎ𝑖𝑠(𝒂𝑡ℎ𝑖𝑠
𝐼 ). 

 Proof. See Appendix C. 

Intuitively, when optimizing the EE-function, it is only profitable to deviate from 𝑝𝑡ℎ𝑖𝑠
𝑆  this 

year for the focal customer, if the value of the information obtained outweighs the cost of 

that information, given all other customers receive their optimal actions (under the joint 
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optimization approach). Thus, the EE-function explicitly measures the trade-off between 

the new information (exploration) and the old knowledge (exploitation). By jointly 

maximizing the EE-function across this year’s customers, we identify the combination of 

deviations from 𝑝𝑡ℎ𝑖𝑠
𝑆  that maximize the total expected profits earned this year and next 

year, given in 𝑉𝑡ℎ𝑖𝑠(𝑝𝑡ℎ𝑖𝑠
∗ ) , and this combination of deviations is this year’s optimal 

assignment policy 𝑝𝑡ℎ𝑖𝑠
∗ .  

Table 3. Table of Notations Introduced in Section 3 

Notation Meaning 

𝑡 Subscript identifying time: last year, this year, and next year 

𝑖 Subscript identifying customers 

𝒩𝑡 The set of customers in year 𝑡 

𝑛𝑡 The number of customers in year 𝑡 

𝒜 Action space (finite and fixed across years) 

𝑎𝑖,𝑡 Action implemented for customer 𝑖 in year 𝑡 

𝒂𝑡 Vector of actions implemented for customers in year 𝑡 

𝒙𝑖 , 𝒙𝑡 Vector of covariates for customer 𝑖; covariates for customers in 

year 𝑡 

𝜋𝑖  The single period profit earned (outcome) from customer 𝑖  

𝐇𝑡 History of data observed at the start of year 𝑡 

𝜋(𝒙𝑖 , 𝑎𝑖) The profit of customer 𝑖 with covariates 𝒙𝑖 and assigned action 𝑎𝑖  

𝑝𝑡 The assignment policy in year 𝑡  

𝑝𝑡
∗ The optimal assignment policy in year 𝑡  

𝑝𝑡
𝑆 The optimal (static) targeting policy given 𝐇𝑡 

𝑝𝑡
𝑆(𝒙𝑖) The assignment under 𝑝𝑡

𝑆 for a customer with covariates 𝒙𝑖 

𝐼𝐶𝑡 Information cost function given 𝐇𝑡 

𝐼𝑉𝑡 Information value function given 𝐇𝑡 

𝐸𝐸𝑡  Explore-exploit function given 𝐇𝑡 

We use italics for both data variables and functions (e.g. 𝑎𝑖,𝑡), bold to denote vectors and matrices (e.g. 
𝒙𝑖,𝑡), and script to identify sets (e.g. 𝒩𝑡). 

 

3.5 Summary 

In this section we introduced the EE-function to reconcile the exploration-exploitation 

tradeoff by measuring the expected (information) value of deviating from the current 

targeting policy. The EE-function quantifies the expected value of information together 
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with the expected cost of this information. The expectations reflect uncertainty about the 

way customers will respond to the firm’s actions. We introduce a model of this uncertainty 

in the next section and show how it can be used to compute the EE-function. 

 

4 Uncertainty and Unobservables 

4.1 Uncertainty Model: Gaussian Process 

We use a nonparametric Bayesian approach to model uncertainty in the targeting 

response function. Specifically, for customer 𝑖 in year 𝑡, we assume that the realized profit 

𝜋𝑖,𝑡 is determined by the following equation: 

𝜋𝑖,𝑡 = 𝑟(𝒙𝑖,𝑡 , 𝑎𝑖,𝑡) + 𝜖𝑖,𝑡 ,   𝜖𝑖,𝑡|𝒙𝑖,𝑡 ∼ind. ℕ(0, 𝜏2). (4.1) 

In this expression, 𝑟  is the (targeting) response function, and 𝜖𝑖,𝑡  is a zero-mean 

unobservable term, which is normally and independently distributed across customers 

and years. This noise term recognizes the unobserved information that is not captured by 

the individual covariates. Note that the existence of this unobservable terms may raise 

endogeneity concerns, which we will address later in this section. 

We assume that the response function 𝑟(𝒙𝑖,𝑡 , 𝑎𝑖,𝑡) is stationary across years and has a 

Gaussian process (GP) prior.19 The GP prior offers many benefits. First, GP takes a function 

space view, and directly imposes a prior distribution on the function 𝑟. This quantifies 

uncertainty at each covariate value with a posterior distribution. In comparison, a 

standard parametric model only estimates standard errors for parameters, and fails to 

measure the uncertainty of customers with different covariate values. In addition, GP also 

allows for easy quantification of uncertainty, which will be critical for evaluating the EE-

function. It has a conjugate prior and parsimonious representation, which generates 

reasonable computational efficiency.  

 
19 For a comprehensive introduction to Gaussian processes see (Williams and Rasmussen 2006). 
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More generally, there are many benefits of taking a Bayesian perspective. First, the Bayes 

decision function is admissible and constitutes a complete class (Robert 2007), which 

essentially means that the Bayesian framework has an attractive theoretical guarantee for 

decision making. Second, Bayesian inference has an embedded regularization in the 

likelihood, which helps to avoid overfitting. Finally, in Subsection 4.2, we will also show 

that Bayesian inference helps to address a selection problem. 

Formally, allowing for covariance between outcomes associated with different actions, 

the response function is distributed according to a Gaussian process prior: 

𝑟 ∼ 𝒢𝒫(𝜇, 𝑘), 

where 𝜇  denotes the mean function, and 𝑘  is the covariance (kernel) function that 

controls the curvature of GP. Formally, for any two sets of inputs (𝒙, 𝒂), (𝒙′, 𝒂′), the mean 

function (taken to be zero, for notational simplicity) and covariance function are defined 

as: 

μ(𝒙, 𝒂) ≡ 𝔼[𝑟(𝒙, 𝒂)] = 𝟎 

𝑘((𝒙, 𝒂), (𝒙′, 𝒂′)) ≡ 𝐶𝑜𝑣(𝑟(𝒙, 𝒂), 𝑟(𝒙′, 𝒂′)), ∀ 𝒙, 𝒂, 𝒙′, 𝒂′ ∈ 𝒳 × 𝒜. 

Conditional on having observed some history, we can directly use the GP model to 

characterize a posterior distribution of the profit function. With this distribution, we 

know the mean value and the level of uncertainty (pointwise) for any inputs. Since a 

Gaussian process evaluated at any point is a Gaussian distribution, the posterior 

distribution of the profit function evaluated at a focal covariate and action pair also 

follows a Gaussian distribution. Both the mean and the variance of a known Gaussian 

distribution have closed-form expressions and are easy to compute. Therefore, by 

modelling the response function 𝑟 using GP, we now can easily quantify the uncertainty 

at any point on the function. 

Formally, the history this year consists of two parts: inputs and outcomes. We represent 

the inputs (targeting covariates and assigned marketing actions) as (𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡), and the 

outcomes (individual profits) as 𝝅𝑙𝑎𝑠𝑡 .  
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In addition, the outcome evaluated at a new input value (𝒙0, 𝑎0) is expressed as 𝜋0 =

𝑟(𝒙0, 𝑎0) + 𝜖0. For compact representation, we define some useful covariance matrices, 

evaluated at specific inputs, as 

𝐾00 ≡ 𝑘((𝒙0, 𝑎0), (𝒙0, 𝑎0)), 𝐾0𝑙 ≡ 𝑘((𝒙0, 𝑎0), (𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡)), 

𝐾𝑙𝑙 ≡ 𝑘((𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡), (𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡)). 

The predictive posterior distribution of the new outcome 𝜋0, corresponding to this new 

input (𝑥0, 𝑎0), is denoted by 𝑃(𝜋0|(𝒙0, 𝑎0), (𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡), 𝝅𝑙𝑎𝑠𝑡) , and expressed as 

𝜋0|(𝒙0, 𝑎0), (𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡), 𝝅𝑙𝑎𝑠𝑡 ∼ ℕ(𝜇0, 𝛴0). (4.2) 

The mean and variance of this predictive distribution can be analytically given by, 

𝜇0 ≡ 𝐾0𝑙(𝐾𝑙𝑙 + 𝜏2𝐼)−1𝝅𝑙𝑎𝑠𝑡 

𝛴0 ≡ 𝐾00 − 𝐾0𝑙(𝐾𝑙𝑙 + 𝜏2𝐼)−1𝐾0𝑙
⊤ + 𝜏2𝐼. 

A direct observation is that the posterior variance only relies on the inputs but not the 

outcomes. This feature is particularly helpful for this year’s assignment decisions. 

Sometimes, we know the covariates of this year’s customers (𝒙𝑡ℎ𝑖𝑠 ), and then we can 

estimate the uncertainty about next year before observing this year’s outcomes.  

This predictive posterior distribution can be used to construct a generative model of 

individual responses 𝑅(𝜋), which we can use to simulate outcome samples. Formally, 

𝑅(𝜋|𝒙, 𝑎) ∼ 𝑃(𝜋|(𝒙, 𝑎), (𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡), 𝝅𝑙𝑎𝑠𝑡), ∀𝑥 ∈ 𝒳, 𝑎 ∈ 𝒜. (4.3) 

Finally, we add a few remarks on the inference. First, to estimate the profit function, we 

need to use the marginal likelihood of observed outcomes. This marginal likelihood is 

given by 

𝑃(𝝅𝑙𝑎𝑠𝑡|𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡) = ∫ 𝑃(𝝅𝑙𝑎𝑠𝑡|𝐑, (𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡))𝑃(𝐑|𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡)d𝐑. 
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In this expression, 𝐑 ≡ 𝑟(𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡)  represents the (predicted) targeting response 

function values at training inputs from last year. 20  Both the likelihood 

𝑃(𝝅𝑙𝑎𝑠𝑡|𝐑, (𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡))  and the prior 𝑃(𝐑|𝒙𝑙𝑎𝑠𝑡 , 𝒂𝑙𝑎𝑠𝑡)  follow Gaussian distributions, 

𝒩(𝐑, 𝜏2𝐼)  and 𝒩(𝟎, 𝐾𝑙𝑙) , by their respective constructions. Moreover, following the 

applied GP literature, we use a square exponential (SE) function, as the covariance 

function.21 To find the optimal hyperparameters, we follow the convention in Bayesian 

inference literature and use empirical Bayes to optimize the likelihood function. It is also 

possible to generalize our current profit function inference procedure to allow for doubly 

robust inferences; 22  in the importance sampling procedure for computing marginal 

likelihood, we can use the inverse action assignment probabilities as weights (see for 

example, (Saarela et al. 2016). 

4.2 Selection on Observables 

A targeting policy recommends actions conditional on covariates. To design a targeting 

policy we must understand the causal relationship between covariates and actions on 

outcomes. Selection on unobservables is a common endogeneity problem that jeopardizes 

identification of this causal relationship. In particular, there cannot be an unobserved 

variable that affects both the treatment variable and the outcome variable. Specifically, in 

our setting, it implies that the firm’s choice of marketing actions this year and next year 

(𝒂𝑡ℎ𝑖𝑠, 𝒂𝑛𝑒𝑥𝑡)  cannot be influenced by any unobservables that may also affect the 

outcomes. 

Related concerns sometime lead firms, to design policies using only customers who were 

set aside in an experiment sample, and to omit customers who received actions 

recommended by past policies. This can result in a considerable loss of information. 

 
20 We need parametrized variables here in the distributions to denote the predicted responses. However, 
we use a GP framework, which is nonparametric. Therefore, we use the predicted response values evaluated 
at inputs for parametrization. 

21 For an input (𝒙, 𝑎), the SE function is given by 𝑘((𝒙, 𝑎), (𝒙′, 𝑎′)) = exp (−
|(𝒙,𝑎)−(𝒙′ ,𝑎′)|

2

2𝑙2 ). 

22 Doubly robust estimators can enhance the efficiency of evaluating the optimal (static) targeting policy, as 
discussed in Subsection 3.1. 



Page | 30 

Formally, to ensure identification of the profit function 𝑟(𝑥, 𝑎), we need to satisfy the 

selection on observables condition.23 For example, if the firm is choosing between two 

actions, mail or not mail, we need the potential outcome for mail and the potential 

outcome for not mail to be independent of the actual assignment (after conditioning on 

the covariates 𝒙).This needs to hold for all customers of any year, and we will discuss each 

separately.24  

If last year’s assignment decisions were randomized (as in our empirical application), 

then the assumption is clearly satisfied (for that year). However, it is also satisfied if last 

year’s assignment was made based upon the observed covariates and no other 

unobserved covariates. In contrast, if the assignments were based on unobserved 

covariates, then the variation in the observed outcome may be caused by variation in that 

covariate, rather than the assignment.25  

This year, the assignments are clearly not randomized (by construction). Instead, the 

assignment policy is designed based on the observed covariates. Fortunately, the 

condition allows for selection on observed variables, and only requires independence 

conditional on covariates included in the model. In our case, the variables used in 

determining assignments are known to the firm. Therefore, conditional independence is 

satisfied, because all of the variables that influence the assignment design can be included 

as covariates when estimating the profit function. 

When training a model next year, we use data pooled from this year and last year. This 

may introduce a different (though related) concern. This year’s data depends upon last 

year’s outcomes (𝝅𝑙𝑎𝑠𝑡), which is a function of observables (𝒙𝑖 , 𝑎𝑖) and unobservables (𝜖𝑖): 

 
23 We also need to satisfy Overlapping, which states that a customer of any covariate type has strictly 
positive probability of receiving any action assignment. We can easily verify that this assumption is satisfied 
by recalling the intuition of our assignment policy design. It is designed to balance exploration and 
exploitation. That is, for any covariate that we are uncertain about the outcome associated with some action, 
there is also a positive probability of assigning that action to it.  
24 It was this concern that prompted the luxury goods retailer (that we referred to in the Introduction) to 
train targeting policies only using data from randomized experiments. It does not use customers who 
received the recommended actions from policies in past years. This ensures that the training data is free of 
selection problems. 
25 It is for this reason that in Section 3 we stipulated that last year’s assignments could be made using either 
a randomized experiment, or a trained policy where the underlying model is known and depends only upon 
the characteristics of last year’s customers 𝒙𝑙𝑎𝑠𝑡 . 
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𝜋𝑖 = 𝑟(𝒙𝑖 , 𝑎𝑖) + 𝜖𝑖  

The unobservable features from last year contribute to the outcomes last year and the 

assignments this year, which could introduce autocorrelation in the data (see for example 

(Hauser and Toubia 2005, Liu et al. 2007). Our Bayesian perspective resolves this risk. In 

Bayesian inference, the learning object is regarded as a random variable. Based on the 

Likelihood Principle (Hauser and Toubia 2005, Liu et al. 2007),  inference is based upon 

the likelihood of data conditional on that object. In our case, we estimate this likelihood 

using a Gaussian process to characterize profit function 𝑟. Since the prior is external and 

does not contribute to selection, we only need to ensure that there is no selection risk in 

the likelihood. 

In Result 3 we formally prove that our Bayesian approach is not susceptible to selection. 

We prove this result in a generic 𝑇-wave setting, which is more general than we need for 

our three-year setting.  

Result 3 (Free from Selection). 

When learning the response function (𝑟) in an adaptive batch targeting problem using 

Bayesian inference, the selection on observables condition is satisfied.  

Proof. See Appendix C. 

4.3 Discussion 

In Section 3, we proposed using the EE-function to solve the tradeoff between the 

opportunity value of old knowledge and the expected value of new information. We also 

establish the relationship between the EE-function and this year’s optimal assignment 

policy. In Section 4, we introduce a Bayesian inference framework using Gaussian 

Processes to model the firm’s information and uncertainty. We also discuss an important 

identification issue; we show that our Bayesian inference approach overcomes potential 

selection issues. In the next section we develop an algorithm that allows the firm to 

tractably evaluate and optimize the EE-function.  
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We also acknowledge that, although the current (Bayesian) Gaussian Process framework 

is theoretically well founded and empirically tractable, it is still computationally relatively 

intensive and costly. However, our EE-function and the related constructs are fully 

compatible with almost any nonparametric supervised learning methods, which 

potentially allows opportunity for efficiency improvement. For example, with random 

forest, one can bootstrap to get the uncertainty estimates at any covariate values that are 

comparable to those from the GP model. 

 

5 E-function Evaluation and Optimization 

In this section, we discuss how to put our framework to work. We describe how to both 

evaluate the EE-function and find the optimal assignment policy. Because of the 

information externality between similar customers, the evaluation and optimization of 

the E-function are two interdependent tasks. The optimal assignment for each customer 

this year depends upon the assignments for other customers. As a result, the optimization 

is not separable across customers. Instead, the firm must solve a combinatorial problem 

and jointly optimize this year’s assignments for every customer. We formalize this 

procedure as an algorithm. 

We begin the section by first discussing the characterization and quantification of 

externalities. We then propose an algorithm to estimate the EE-function. Finally, we show 

how to use this algorithm to find this year’s optimal assignment policy. We conclude the 

section by discussing how to extend the algorithm beyond three waves.  

5.1 Externalities and Externality Metrics 

In this subsection, we discuss how to incorporate externalities when making assignment 

decisions for this year’s customers. The most straightforward method is to take an 

“enumeration” approach; we fully enumerate the interim assignments 𝒂𝑡ℎ𝑖𝑠, and iterate 

over combinations until converging to a fixed point that yields the desired policy.  For 

problems with a small covariate space, this approach can be both efficient and exact. We 

discuss the details of this approach in Appendix A. 
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However, this enumeration approach has two issues. First, it does not allow for 

meaningful interpretation of the externalities. Specifically, for any two customers this 

year, we do not see how the assignment to one affects the other.26  Second, since the 

optimization is a combinatorial problem, this enumeration approach becomes 

computationally infeasible when covariates are continuous, when there are many 

covariates, or when the action space is large. Without a clear spatial map of this year’s 

customers, it is hard for the fixed-point algorithm to reach meaningful convergence. 

To address these issues, we propose a clustering approach. We detail the formulation of 

the clustering approach, including an illustrative example, in Appendix A. With this 

approach, a customer 𝑖 is clustered to Cluster 𝑔. The interim assignment vector of Cluster 

𝑔  is given by an externality metric 𝒆𝑔 , which is a vector of length |𝒜| − 1 . The 𝑎 -th 

element of 𝒆𝑔  represents the number of Cluster 𝑔 customers assigned action 𝑎 under the 

interim assignments. We use 𝒆𝑔  to replace the enumerated assignments 𝒂𝑡ℎ𝑖𝑠  in the 

action optimization iteration; the iteration of the former is much easier. In the evaluation 

steps, we still use customers’ own covariates 𝒙𝑡ℎ𝑖𝑠
𝑔

 as their covariate inputs, including the 

inference of the posterior distributions and the estimation of the expected value of 

information. 

The benefits of clustering (gridding) are two-fold. First, it quantifies externalities from 

different sources, and provides a clear interpretation of how these externalities affect 

action assignment. The firm also knows the extent to which customer similarity affects 

each other’s assignments. Second, it breaks down the joint optimization problem among 

all of this year’s customers to many smaller joint optimization problems among similar 

customers, making the algorithm more tractable. Specifically, the firm does not need to 

jointly optimize the assignment decisions for all of this year’s customers. Instead, it can 

jointly optimize across the subset of customers in the same cluster. Moreover, this 

optimization can be parallelized (across clusters) during computation. 

 
26 This can be partially addressed by separately solving the problem with the joint optimization approach 
(across all of this year’s customers) versus the individual optimization approach (see the earlier discussion 
in Subsection 3.4). In particular, it indicates how much similar information has been explored or under-
explored, and the relative importance of information from the focal customer. 
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5.2 EE-function: Evaluation 

To find the optimal assignments for this year’s customers we need to evaluate the EE-

function. The IC-function can be directly estimated from the posterior means of the 

response function. For the IV-function, one difficulty is that the firm does not observe the 

outcomes for this year’s customers before making these assignments, yet these outcomes 

will contribute to the assignments for next year’s customers and need to be estimated to 

evaluate the IV-function. Therefore, the firm needs to extrapolate one step ahead to 

anticipate how its assignments will change next year depending upon this year’s 

outcomes.   

To solve this extrapolation challenge, we construct artificial trajectories and leverage the 

pointwise normality property of our GP framework, which largely alleviates the 

integration challenge when computing the expectations. In addition, we use a simulated 

estimator for computing the expectations in the IV-function (Equation (3.3)). We defer 

the detailed construction of this simulated estimator to Appendix A. 

The simulation samples (artificial trajectories) are drawn from the posterior distribution 

of the most recently learned profit function 𝑟(𝒙, 𝑎). An important feature of the GP model 

is that it allows us to easily draw samples from its exact posterior distribution. Notably, 

we do not require an MCMC model, which reduces computation requirements (and would 

introduce an additional approximation).   

The information gain from this procedure is twofold: first, GP inference gives a predictive 

posterior distribution for any covariate location. With this simulated estimator, we 

directly leverage the quantified uncertainty in the GP model to guide this year’s 

assignments. Second, we make use of the information in next year’s covariate values 𝒙𝑛𝑒𝑥𝑡 

by directly evaluating our projections of next year’s assignment policy and projected 

outcomes at these covariate values; knowing these values also helps to reduce variance in 

the uncertainty prediction.27 We use clustering to simplify these projections. In particular, 

 
27 That being said, our framework is perfectly compatible with the case in which the firm has only partial or 
no information a priori of the next year’s covariate values. 
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we evaluate the EE-function for customer 𝑖  in Cluster 𝑔  when restricting attention to 

Cluster 𝑔 customers.  

We label the E-function evaluation algorithm “EE-Evaluation” and summarize the 

algorithm in Figure 1. We provide detailed pseudo-code for the algorithm in Appendix B. 

Figure 1.  Summary of EE-Evaluation Algorithm 

E-function evaluation for a cluster of customers 

1 Compute the opportunity cost of information directly from the existing profit 

function. 

2 Compute the expected value of information for the two scenarios respectively: 

  (a) Assign the focal customer with an experimental action. 

(b) Exploit the focal customer with the current targeting policy. 

 It is computed using Step 3 through 9. 

3  repeat the simulation many times, and for each round of simulation: 

4   From the posterior distribution of profit function, simulate artificial 

outcomes. 

5   Re-learn the profit function using data containing the artificial outcomes for 

this year. 

6   Derive an artificial targeting policy from optimizing the newly learned profit 

function. 

7   Assume, that next year the firm will assign actions according to the new 

artificial targeting policy. 

Compute the expected profits next year with the newly learned profit 

function.  

8  end repeat 

9  Compute the expected value of information using a simulated estimator with 

these computed expected next year profits.  

10 return E-function values by adding together the opportunity cost and expected 

value of information. 
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5.3 EE-function: OLAT Algorithm 

In this subsection, we propose a local improvement algorithm, One-step Look Ahead 

Targeting (OLAT), to jointly evaluate the EE-function and learn this year’s optimal 

assignment policy. Because the EE-function is conditioned on an interim assignment 

policy, the OLAT algorithm is a loop that iterates between evaluation and optimization. In 

each loop, the algorithm uses the EE-Evaluation algorithm to evaluate the EE-function 

based on an interim assignment policy. It then uses this evaluation to update the 

assignment policy by jointly maximizing the current evaluation of the EE-function. The 

algorithm iteratively improves the interim assignment policy and will reach convergence. 

The output includes an estimate of the EE-function together with this year’s optimal 

assignment policy. The (local) fixed point property ensures that the (local) maximum of 

the EE-function and the (nearly) optimal assignment policy coincide.  

We summarize the OLAT algorithm in Figure 2 and provide a formal pseudo-code in 

Appendix B. We establish the convergence properties of the algorithm in Result 4. 

Result 4 (Convergence of evaluation algorithm). 

The OLAT algorithm converges to a fixed point at which this year’s assignment policy 

locally maximizes the EE-function.   

Proof. See Appendix C. 

Practically, we use directed search to always search on the direction with the highest EE-

function value improvement. Cluster information is also used to assist the search, we 

gradually sample more customers from the cluster with the highest incremental EE-

function value for faster convergence. Moreover, with an early stopping rule in the 

optimization procedure, we avoid the overfitting risk of getting too close to the theoretical 

optimum. 

By leveraging the clustering procedure, we break the joint assignment optimization 

problem for this year’s customers into smaller parallel problems (see discussion in 

Subsection 5.1). this makes the OLAT algorithm computationally very efficient. In addition, 
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the sample simulation in Line 5 of the OLAT Algorithm (Appendix B) can and should be 

done only once in a policy optimization loop (Line 6 through 10 of the OLAT Algorithm). 

As long as we preserve our assumption that the firm only looks one-step ahead 

(Assumption 1), then the OLAT algorithm is easily adapted to problems with more than 

three waves. If the firm wants to make decisions in the current period that look more than 

one-step ahead, the firm would need to apply OLAT as an “inner loop” to get the artificial 

policy for next wave customers, with another OLAT being the “outer loop” to derive the 

current wave’s policy.  Directly learning the next wave EE-function requires extrapolating 

the EE-functions for all future waves. Although this is feasible in theory (using backwards 

induction), if there is a long-time interval between waves, the incremental value of 

“looking multiple steps ahead” may not justify the additional computational complexity. 

It also increases the risk of over-extrapolation.  

Figure 2. Summary of OLAT Algorithm 

OLAT: One-step Look Ahead Targeting  

1 parallel the optimizations of each cluster 

2  while not converge or within iteration limit 

3   Evaluate the EE-function using EE-Evaluation (Figure 2), based on this year’s 

most recent interim assignment policy.  

The key steps in this procedure include: 

4    Construct artificial histories by simulating artificial outcomes from profit 

function. 

Re-learn the artificial profit function and re-optimize the artificial targeting 

policy with simulated data. 

Compute E-function values. 

5   Re-optimize this year’s interim assignment policy with the updated EE-

function. 

6  end while 

7 end parallel 
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5.4 Summary   

We have proposed a nested combination of two algorithms that jointly estimate the 

expected costs and benefits of the explore-exploit tradeoff, and iteratively optimize this 

year’s assignment policy. In the next section we implement the algorithm using data from 

a large field experiment conducted to help a membership wholesale club prospect for new 

customers.  

 

6 Empirical Validation 

6.1 Data Description 

In this section, we provide empirical evidence to validate the OLAT algorithm, using data 

from a field experiment. This data is due to a single large scale direct mail targeting 

experiment, conducted by (Simester et al. 2020a) in collaboration with a major retailer. 

This experiment was conducted in spring 2015 with a wholesale membership club, and 

was designed to recruit new members. The experiment involved approximately 1.2 

million prospective households. Households were randomly assigned to one of three 

marketing actions: $25 paid membership ($25 Paid), free 120-day trial (120-day Trial), 

and not mail (No Mail).  

We observe the treatment assignments, 13 targeting covariates, and an outcome variable 

measuring the profit earned from each household in the 12-months after the treatments. 

The profit measure includes mailing costs, membership fees, and profits earned in the 

membership club. The targeting covariates were purchased by the retailer from a third-

party data provider. As a preliminary step, we regressed the outcome measures on the 

covariates and identified three covariates that are significant at the 5% level: Age, Past 

Response Rate, Single Family Home.28 We will restrict attention to these covariates in our 

 
28 The outcome of this regression is reported in Table D.3 in Appendix D. 

8 return  This year’s assignment policy 
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analysis. The definitions and summary statistics of these variables are reported in Tables 

D.1 and D.2 in Appendix D. 

6.2 Three-Wave Experiment Construction 

We assume that all customers within a carrier route will receive the same marketing 

action. Carrier routes are created by the USPS and literally represent the routes used by 

individual mail carriers. Each carrier route includes approximately 400 postal mailing 

addresses, located in the same neighborhood. Because all customers with a carrier route 

receive the same action, we aggregate the household level data to the carrier route level. 

More precisely, within the same carrier route, we separately aggregated the outcomes and 

covariates across households that received a specific treatment (using a simple average). 

Aggregating and targeting at the carrier route level offers an important advantage; within 

each carrier route we observe an outcome for each of the three treatments. This allows us 

to evaluate any carrier route level targeting policy. 

The carrier route-level data consists of 5,379 unique carrier route observations. We treat 

each carrier route as a different “customer,” and randomly group the carrier routes into 

three “batches” of equal size. We treat each of these batches as a single wave of data. Using 

these batches, we can construct history exactly as given in Equation (3.1). One batch is 

assigned to represent “last year”, a second batch is assigned to “this year”, and the final 

batch is assigned to “next year”. 

We use this aggregated dataset as the “ground truth,” because the counterfactual 

outcomes are complete and known with respect to any marketing actions. During the 

validation process, we simply select the outcome (among the potential outcomes) 

associated with the assigned action.  

Notice that an important benefit of constructing our validation using a single field 

experiment is that we can abstract away from non-stationarity problems.29 This focuses 

the validation on the algorithm itself, rather than introducing external confounds. 

 
29 We can also flexibly control the amount of non-stationarity introduced into the three-wave by introducing 
(known) covariate shifts or noise. 
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6.3 OLET and Benchmark Implementations 

We separately evaluate the choice of the 120-day Trial promotion (Mail) versus No 

Mail promotion.  

We first cluster the carrier routes based on their covariate values into 10 clusters using 

K-Means. The spatial distribution of (two) targeting covariates of different clusters is 

shown in Figure 3. 

Figure 3. Distribution of Two Targeting Covariates for Different Clusters 

 
The figure reports the distribution of carrier routes from different clusters on the space of two 
targeting covariates. Each color represents a different cluster, and each dot represents a customer 
(carrier route). We use the carrier routes assigned to this year’s batch. 
 

The firm has three waves of data, and its decision problem starts from last year: it wants 

to target this year’s customers, and knows that it will target customers next year. Using 

the outcomes from the last year, the firm can learn an initial targeting policy (which we 

label the “current optimal policy”). The firm’s objective (Equation 3.1), is to maximize its 

total profit from this year and next year’s customer. The adaptive targeting design, 

detailed in Section 5, uses OLAT to find an assignment policy for this year. We implement 

the OLAT algorithm using exact enumeration to characterize externalities within each 

cluster (see Subsection 5.1). 

We also implement four sets of benchmark policies for validation purposes. All five 

policies, including our OLET policy, share a common random policy for last year’s 
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customers. Specifically, any last year’s customer receives action Mail with probability 0.5. 

Moreover, next year, they all learn a new targeting policy, and implement this policy on 

next year’s customers. The difference lies in the design of the assignment policy this year. 

The four sets of benchmark policies (for this year’s customers) are given as follows.  

Explore is a policy that only explores this year. It uses a random policy with probability 𝑞 

of assigning the focal action Mail as this year’s assignment policy. This probability can 

take any values, with 𝑞 ∈ [0,1]. Notice that uniform policies of either mailing to every 

carrier route, or not mailing to any carrier route, are special cases included in Explore.  

Exploit is a policy that only exploits current knowledge that is available this year. In 

particular, it directly uses the current optimal policy trained using last year’s data as the 

assignment policy this year.  

The IE policy is based on the individual EE-function optimization, which is the 

individually optimal counterpart of OLET. Recall that we introduced this policy in 

Equation (A.1) and Appendix A. 30  It does not consider any externalities between 

customers within the same segment. IE is used as the assignment policy for this year’s 

customer and is learned using last year’s data and this year’s targeting covariates.  

Thompson is the classic Thompson sampling (posterior sampling) algorithm (Agrawal and 

Goyal 2017).  It is a heuristic, which maximizes expected profits using parameters 

obtained through sampling. In our implementation, we use Thompson sampling to make 

this year’s policy assignments. 

6.4 This Year’s and Next Year’s Performance 

In Figure 4 we report the aggregate performance of OLAT and the four benchmark policies, 

measured by the average profit (across this year and next year’s batches) per customer. 

The Explore policy plotted in Figure 4 uses 𝑞 = 0.5 as the probability of receiving action 

Mail, and we show the performance of different algorithms implementing Explore for a 

wider range of assignment probabilities in Figure D.1 in Appendix D. 

 
30 IE is also comparable to the knowledge gradient algorithm (Frazier et al. 2008, Wu and Frazier 2016) in 
the Bayesian optimization literature. 
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The results in Figure 4 confirm that OLAT outperforms all of the benchmark policies. The 

reasons for this are better illustrated by decomposing the average profit into the average 

profits earned this year and next year (see Figure 5).  

Figure 4. Average Profit over This Year and Next Year 

 

This figure reports the total profit earned this year and next year from each method. Error bars indicate 95% 
confidence intervals.  
 

Figure 5. Decomposing Profits into This Year’s and Next Year’s Average Profits 

(a) This year’s profit     (b) Next year’s profit 

 
This figure reports the average profit earned this year and next year from each method. Error 
bars indicate 95% confidence intervals. 
 

Figure 6 compares the performance of the OLET policy with the performance of the 

individually optimal IE policy, when varying the number of customers in this year’s batch. 

As we have already seen, the OLET policy dominates the IE policy. In Figure 6, we see that 

this dominance grows as the size of this year’s batch increases. This is because the 
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information externality becomes more pronounced when the sample size in this year’s 

batch is larger. Intuitively, there is a greater likelihood that independently exploring with 

observations within a cluster will result in duplication of information, because in larger 

samples, observations tend to be closer together (in covariate space). Joint optimization 

of the information value becomes more important as the density of customers within a 

cluster increases. 

Figure 6. The Dominance of the Joint Optimization method (OLET policy) 

 
This figure reports the realized aggregated profits per customer of two policies, when varying the 
sample size in this year’s batch. Shaded regions are 95% confidence intervals.  
 

6.5 Rebalancing Exploration and Exploitation 

The EE-function allows us to directly measure how well each of the benchmark methods 

manage the exploration- exploitation tradeoff. Recall that this function is an individual 

level function, which measures the information value of taking an action, which may 

deviate from the current optimal policy, less the opportunity cost of that action (compared 

to the current optimal action). The EE-function is calculated using customers in both this 

year’s batch and next year’s batch.  

The OLET algorithm is explicitly designed to jointly maximize the EE-function. As we 

would expect this policy has the highest average EE values. Thompson sampling 

(Thompson) is also designed to balance this tradeoff. However, Thompson sampling is not 

as good at resolving the exploration-exploitation tradeoff as the OLET policy. One 
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explanation for this is that Thompson sampling does not account for information 

externalities within a cluster. This can result in too many deviations from the current 

optimal policy among similar customers, reducing the incremental information learned 

from each deviating customer. 

The individual EE-function optimization (IE) suffers from the same limitation. Like the 

policy produced by the OLET algorithm, the IE policy is explicitly designed to maximize 

the EE-function. However, the IE policy optimizes for each customer individually, and 

does not consider the information externalities between customers. This will also tend to 

result in too many deviations from the current optimal policy among similar customers. 

Figure 7 further demonstrates the perils of over-exploration. The figure reports a count 

of the number of deviations from the current optimal policy in this year’s batch. The 

Explore policy plotted in Figure 7 uses 𝑞 = 0.5 as the probability of receiving action Mail, 

and we show the number of deviation of different algorithms implementing Explore for 

a wider range of assignment probabilities in Figure D.2 in Appendix D.  

The IE and Thompson policies both deviate more often than the OLET policy. This is what 

we would expect, because neither of the IE and Thompson policies consider information 

externalities between neighboring customers, they recommend too many deviations 

among similar customers. 
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Figure 7. Number of Deviations from Current Optimal Policy 

 
This figure reports the total number of deviations of different policies, compared to the Exploit 
policy. 
 

We can further investigate the importance of information externalities by showing how 

the frequency of deviations depends upon the number of neighboring (similar in targeting 

covariates) customers. In Figure 8 we focus on the OLET and IE policies. On the X-axis we 

group customers in this year’s batch according to how many neighboring customers each 

customer has. The figure reveals that OLET explores more frequently when there are 

fewer similar customers in the same batch (fewer neighbors), while IE explores more 

frequently when there are many similar customers in the same batch (more neighbors). 

This is again what we would expect; customers with fewer similar customers offer higher 

incremental information value (when deviating), while customers with many similar 

customers offer lower information value. The OLET policy is sensitive to this, while the IE 

policy is not. 
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Figure 8. Deviations and the Number of Neighbors 

 
This figure reports association between the percentage of customers who deviate from the action 
recommended by the initial targeting policy and the number of neighboring customers they have. 
The dotted lines and shaded regions (95% confidence regions) represent fitted linear regressions 
on these two variables. 
 

6.6 Tradeoff between Existing Knowledge and New Information 

Resolving the exploration-exploitation tradeoff also depends on the amount of existing 

information.  To investigate the impact of existing knowledge, we vary last year’s batch 

size. When last year’s batch was larger, there was more existing information, and less need 

to explore this year. In Figure 9, we compare the OLET policy with the and Explore and 

Exploit policies. We see that the dominance of OLET over these benchmarks depends 

upon the size of last year’s batch.  

When we have very little existing knowledge, exploitation is barely meaningful, and the 

information externality of any customer from this year’s batch is negligible, because 

everyone looks the same, and a simple random policy works as well as any optimization 

procedure. To the other extreme (not showing in Figure 9), when we have enough existing 

knowledge, exploration is no longer needed, and the information externality of any 

customer from this year’s batch is small, because there is little space for incoming new 

information. In this case, Exploit policy is sufficient for the firm to use as the assignment 

policy this year. The relative magnitude of the information externality is the largest when 

the amount of existing knowledge is intermediate.  
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Figure 9. Varying Last Year’s Batch Size 

 
This figure reports the realized average profits (over this year and next year) per customer of 
three policies (OLET policy, Explore policy and Exploit policy), with different batch sizes of last 
year. OLET policy dominates IE policy. Shaded regions are 95% confidence intervals. 

 

7 Concluding Remarks 

In this paper, we study the adaptive targeting experimentation design problem in a batch 

environment. This is a commonly seen practical problem faced by firms organizing 

marketing campaigns in non-digital channels – these firms need to assign marketing 

actions to a large number of customers in each campaign (large 𝑁), and campaigns occur 

infrequently (small 𝑇). We advocate for an information value based approach; we suggest 

that, in any given batch, the firm factors in the information externality of one customer 

having on the information value of the other customers.  We derive an OLAT algorithm 

that solves the combinatorial assignment problem arisen from the information externality 

among the customers in the same batch. 

We have four comments on our approach in this paper. First, our approach optimizes the 

information value exactly, and does not try to optimize cumulative regret. Many papers 

(Desautels et al. 2014, Kasy and Sautmann 2019) in the parallelized bandit literature take 

a heuristic approach and are based on cumulative regret minimization. The cumulative 

regret measures how fast the regret goes to zero as the period advances; the regret as a 

gold standard works for online advertising settings, in which the horizons can be seen as 
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infinite and thus validates the regret metric. Although this regret approach has succeeded 

in the online context, its scalability to the adaptive targeting with infrequent batches 

remains unclear. We think the cumulative regret is not a good metric for bandit-like 

problems with (exogenously) small horizons. Our approach is closer related to BO, but is 

still different enough because we consider customer heterogeneity and information 

externality.31 

Second, for the adaptive batch targeting problem, it is more important to resolve any 

assignment inefficiencies within a batch than from future periods. For online advertising, 

although firms also run their online algorithms in small batches, their horizon can be 

viewed as infinite; the inefficiencies from a single period do not matter much to the firm. 

In comparison, with a small horizon but a large number of customers in each period, what 

happens in a given batch is very high stake for the firm. On the other hand, as discussed 

in the introduction, events in the far future may have very little impact on today’s 

decisions. Therefore, we need to solve the stage problem as exact as possible, and 

approximating the problem with the one-step look ahead heuristic is efficiency improving. 

Third, the action assignments considered in this paper is deterministic and hence is not 

explicitly compatible with randomization inference. In its defense for Bayesian 

experimental design, (Kasy 2016) argues that decision theoretically the optimal decisions 

do not depend upon randomization, and the randomization inference is not justified by 

decision theory. Moreover, we do not need to construct randomization based tests (of 

function estimates) because our pure interest is profit maximization. In practice, our OLAT 

algorithm allows for partial randomization that makes it feasible to construct these tests 

anyway. 

Forth, knowing any customer (covariate) information in next year can help with this year’s 

decision. In the typical targeting practice, although firms do not know customer responses 

from the campaign in the next period, they can know much covariate information at the 

current period; but most other papers don’t use this information at all. Our Gaussian 

process framework allows us to freely use any already known information of next year to 

 
31 We have a comprehensive discussion in the literature review (Section 2). 
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improve the assignment policy of this year. 32 This idea is closely related to the semi-

supervised learning and the transduction (Chapelle et al. 2006, Zhu 2007) in the machine 

learning literature. 

We also acknowledge some limitations of our research. First, we treat the size of batches 

as exogenously given, and do not consider the optimal design of each batch size, which 

will likely affect the expected value of information and ultimately the design of assignment 

policies. Second, we keep the methods used in each element of our OLAT algorithm as 

simple as possible, and these can be easily improved; for example, we can use more 

sophisticated directed local search algorithms, or neural networks for clustering. Third, 

we do not consider any customer dynamics in the targeting policy design, and the 

intertemporal dependent behaviors of the customers can cause the shape of the targeting 

policy to change. 

 

 
 

 
32 Our framework is also compatible with the case in which all customer information of next year remain 
unknown until next year. 
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Appendices 

A. Additional Notations and Formulations 

 

Table A.1. Table of notations used in Appendices A through Error! Reference source 

not found.  

Notation Meaning 

𝑠 ∈ {𝑡 − 1, 𝑡, 𝑡 + 1} Subscript identifying time: last wave, this wave, and next wave 

𝑖 Subscript identifying customers 

𝐇𝑡  History (all observed data) in Wave 𝑡 

𝒩𝑡+1 All customers in Wave 𝑡 + 1 

𝑎 ∈ 𝒜 Action and action space 

𝑥 Covariate 

𝜋 Individual profit (outcome) 

𝑔 ∈ 𝒢 Cluster 𝑔 and cluster space 

𝒙𝑡 
𝑔 Wave 𝑡 Cluster 𝑔 customers’ covariates 

𝑟 Targeting response function that models the individual profit 

𝑟̃ Artificial next wave profit function when assigned experimental action 

We use ∼ to represent artificial terms constructed based on simulation 

𝑝𝑡  Year 𝑡 assignment policy 

𝑝𝑡
𝑆  Optimal static targeting policy with year 𝑡’s data 

𝑝𝑡
𝑆(𝒙𝑖) Optimal action selected by the optimal static targeting policy from Wave 𝑡 

𝐸𝐸𝑡  Wave 𝑡 EE-function 

𝐼𝐶𝑡 Opportunity cost of information (IC-function) in Wave 𝑡 

𝐼𝑉𝑡 Expected value of information (IV-function) in Wave 𝑡 
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New notations and formulations 

For ease of mathematical exposition, we use slightly different notations in the Appendices; 

in this section, we only introduce the notations that are different from Section 3. Suppose 

the adaptive batch targeting problem is of 𝑇 waves, and the focal w (this year as in the 

main text) is Wave 𝑡 ; Waves 𝑡 − 1  (last year) and 𝑡 + 1  (this year) are the other two 

relevant waves in the formulation. We use 𝑟(𝒙, 𝑎)  to denote the targeting response 

function. We use 𝑟𝑡
∗ to represent the best response under the optimal action evaluated 

with the response function trained using Wave 𝑡 data, 𝑟𝑡(𝒙, 𝑎): 

𝑟𝑡
∗(𝒙) ≡ max

𝑎
𝑟𝑡(𝒙, 𝑎). 

In addition, when using GP to model 𝑟, we further denote the posterior mean of 𝑟𝑡(𝒙, 𝑎) 

and 𝑟𝑡
∗(𝒙) as: 

𝜇𝑡(𝒙, 𝑎) = 𝔼[𝑟𝑡(𝒙, 𝑎)|𝐇𝑡], 𝜇𝑡
∗(𝒙) = 𝔼[𝑟𝑡

∗(𝒙)|𝐇𝑡]. 

We use 𝑎𝑖,𝑡
𝑆  to denote the action for customer 𝑖 recommended by the existing targeting 

policy, 𝑝𝑡
𝑆(𝒙𝑖), where 

𝑎𝑖,𝑡
𝑆 ≡ 𝑝𝑡

𝑆(𝒙𝑖). 

The IC-function and the IV-function now can be written as 

𝐼𝐶𝑡(𝒙𝑖 , 𝑎) ≡ 𝔼[𝑟(𝒙𝑖 , 𝑎𝑖,𝑡
𝑆 ) − 𝑟(𝒙𝑖 , 𝑎)|𝐇𝑡]  

𝐼𝑉𝑡(𝒙𝑖 , 𝑎|𝒂−𝑖) ≡ ∑ 𝔼[𝔼𝑡+1[𝑟∗(𝒙𝑗)|𝑎; 𝒂−𝑖]|𝐇𝑡] − 𝔼[𝔼𝑡+1[𝑟∗(𝒙𝑗)|𝑎𝑖,𝑡
𝑆 ; 𝒂−𝑖]|𝐇𝑡]

𝑗∈𝒩𝑡+1

. 

 

Individual optimization approach 

An alternative assignment proposal is to find the optimal assignment for each customer 

independently, and ignore the assignment proposal to other Wave 𝑡  customers when 

estimating the focal customer’s information value. Formally, this is done by optimizing 

the individual EE-function (IE-function) of a focal customer 𝑖, given by: 

𝑎𝑖
𝐼 ∈ argmax

𝑎
𝐼𝐸𝑡(𝒙𝑖 , 𝑎) ≡ 𝐼𝑉𝑡(𝒙𝑖 , 𝑎) − 𝐼𝐶𝑡(𝒙𝑖 , 𝑎), ∀𝑖 ∈ 𝒩𝑡 . (𝐴. 1) 
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The IC-function is the same as before. Here, the IV-function, the expected value of 

individual information, is estimated by treating other Wave 𝑡 customers as independent 

from it. This is defined as: 

𝐼𝑉𝑡(𝒙𝑖 , 𝑎) ≡ ∑ 𝔼[𝔼𝑡+1[𝑟∗(𝒙𝑗)|𝑎]|𝐇𝑡] − 𝔼[𝔼𝑡+1[𝑟∗(𝒙𝑗)|𝑎𝑖,𝑡
𝑆 ]|𝐇𝑡]

𝑗∈𝒩𝑡+1

. (𝐴. 2) 

 

Joint optimization approach 

Based on the formulations (Equations (3.2) through (3.4)) given in Section 3, the 

optimization problem is to solve the below problem for each of the Wave 𝑡 customers: 

𝑎𝑖
∗ ∈ argmax

𝑎∈𝒜
max

𝑝𝑡
′

𝐸𝐸𝑡(𝒙𝑖 , 𝑎|𝒂−𝑖; 𝒂−𝑖 ∈ 𝑝𝑡
′) , ∀𝑖 ∈ 𝒩𝑡 . (𝐴. 3) 

Wave 𝑡’s assignment policy (𝑝𝑡
∗) is the optimum of the above problem. Write the set of 

optimum as 𝒮(𝑝𝑡
∗), we have 𝒂𝑡

∗ ∈ 𝒮(𝑝𝑡
∗). 

 

Formulation of the simulated estimator 

For the purpose of discussion, we focus on the action optimization for a focal customer. 

Specifically, with an interim assignment policy 𝑝𝑡 for all other Wave 𝑡 customers, we draw 

a batch of Wave 𝑡 outcome samples  𝝅𝑡̃ from the posterior distribution of the most recent 

profit function 𝑟(𝒙, 𝑎) . These draws are based on (a) inputs that are at the Wave 𝑡 

covariate values 𝒙𝑡 , and also (b) assignment to the focal customer being the proposed 

action 𝑎 . We then construct artificial history, 𝐇𝑡+1̃ , combining the observed history in 

Wave 𝑡 and these artificial samples. Finally, based on these artificial histories, we re-learn 

an artificial response function, 𝑟̃(𝒙′, 𝑎′), as if we are in Wave 𝑡 + 1. An associated Wave 𝑡 +

1 artificial targeting policy 𝑝𝑡+1
𝑆̃ (𝒙′|𝐇𝑡+1̃) is also derived. This procedure is similar to what 

was described in Section 0. We repeat the above process, and use an simulated estimator 

to compute the expectations at 𝐇𝑡+1.  

To evaluate the expected value of information, we use the clustering approach to 

characterize the information externality in this algorithm. That is, for customer 𝑖  in 
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Cluster 𝑔, we can evaluate her E-function restricting attention to all Cluster 𝑔 customers. 

Formally, the simulated estimator for the expected value of information for Year 𝑡 

customer 𝑖 in Cluster 𝑔 is given by: 

𝐼𝑉𝑡̃(𝒙𝑖 , 𝑎|𝒂−𝑖
𝑔

) ≡ ∑ 𝔼[𝔼̃𝑡+1[ 𝑟∗𝑔(𝒙𝑗)|𝑎; 𝒆𝑔]|𝐇𝑡] − 𝔼[𝔼̃𝑡+1[ 𝑟∗𝑔(𝒙𝑗)|𝑎𝑖,𝑡
𝑆 ; 𝒆𝑔]|𝐇𝑡]

𝑗∈𝒩𝑡+1

(𝐴. 4) 

In Equation (A.4), the terms under tilde (∼) are either simulated or extrapolated (based 

on simulation) quantities, using information known in Wave 𝑡 . We use 𝔼̃[⋅] to denote 

empirical expectation. We use this special notation to differentiate from the quantities 

computed based on actually observed histories in Wave 𝑡, 𝐇𝑡 . We use the notations 𝒙−𝑖
𝑔

 

and 𝒂−𝑖
𝑔

 to denote the covariates and the action assignments for other Cluster 𝑔 

customers. 

In the algorithm, we only need to estimate the first term, because the second term is 

invariant to the optimization problem. Suppose we have 𝐾 artificial trajectories, and the 

𝑘th artificial trajectory gives an artificial response function (of Wave 𝑡 + 1), 𝑟(𝑘)̃ (𝒙′, 𝑎′), 

which gives the posterior means 𝝁𝑡+1
(𝑘) (𝒙𝑖 , 𝑎) . The simulated estimator of the inner 

expectation is just the simple average of all maximal posterior means obtained from the 

𝐾 artificial trajectories: by 
1

𝐾
∑ ∑ 𝜇𝑗,𝑡+1

(𝑘) (𝒙𝑖 , 𝑎)𝑗∈𝒩𝑡+1𝑘≤𝐾 . 

 

The impact of existing knowledge on the information externality 

We offer a further observation underlying Result 2, by considering a batch of two 

customers with 𝒙1 and 𝒙2. Consider the values of incremental information each customer 

contributes: 

𝑣1(𝑎1) ≡ ∑ 𝔼𝑛𝑒𝑥𝑡 [𝜋 (𝒙𝑗 , 𝑝𝑛𝑒𝑥𝑡
𝑆 (𝒙𝑗)) |𝑎1] − 𝔼𝑛𝑒𝑥𝑡 [𝜋 (𝒙𝑗 , 𝑝𝑛𝑒𝑥𝑡

𝑆 (𝒙𝑗))]

𝑗∈𝒩𝑛𝑒𝑥𝑡

 

𝑣2(𝑎2) ≡ ∑ 𝔼𝑛𝑒𝑥𝑡 [𝜋 (𝒙𝑗 , 𝑝𝑛𝑒𝑥𝑡
𝑆 (𝒙𝑗)) |𝑎2] − 𝔼𝑛𝑒𝑥𝑡 [𝜋 (𝒙𝑗 , 𝑝𝑛𝑒𝑥𝑡

𝑆 (𝒙𝑗))]

𝑗∈𝒩𝑛𝑒𝑥𝑡
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𝑣12(𝑎1, 𝑎2) ≡ ∑ 𝔼𝑛𝑒𝑥𝑡 [𝜋 (𝒙𝑗 , 𝑝𝑛𝑒𝑥𝑡
𝑆 (𝒙𝑗)) |𝑎1, 𝑎2] − 𝔼𝑛𝑒𝑥𝑡 [𝜋 (𝒙𝑗 , 𝑝𝑛𝑒𝑥𝑡

𝑆 (𝒙𝑗))]

𝑗∈𝒩𝑛𝑒𝑥𝑡

 

 For example, 𝑣1(𝑎1) is the information Customer 1 with 𝑎1 has, and it is the difference 

between the expected next year’s profits with and without Customer 1, who is assigned 

𝑎1 . 𝑣12(𝑎1, 𝑎2) − 𝑣2(𝑎2)  is the incremental information Customer 1 contributes when 

Customer 2 (with 𝑎2) is also in the batch. Individual optimization only considers 𝑣1(𝑎1) 

when constructing Customer 1’s value, which should be 𝑣12(𝑎1, 𝑎2) − 𝑣2(𝑎2).  

When 𝑣1(𝑎1)  is small (the firm already has intermediate level of knowledge), as 

𝑣12(𝑎1, 𝑎2) − 𝑣2(𝑎2)  increases in comparison to 𝑣1(𝑎1) , it becomes more likely that 

individual optimization underestimates the value of exploring 𝑎1 with Customer 1, and 

under-explores 𝑎1. In contrast, when 𝑣1(𝑎1) is large (the firm has limited knowledge), as 

𝑣12(𝑎1, 𝑎2) − 𝑣2(𝑎2) decreases in comparison to 𝑣1(𝑎1), it is more likely that individual 

optimization overestimates the value of exploring 𝑎1 with Customer 1, and over-explores 

𝑎1. 

 

Externalities and Externality Metrics: Enumeration approach 

The most straightforward method is to take an enumeration approach. After fully 

specifying interim assignments for all of this year’s customers, the externalities are 

captured in the IV-function: 𝐼𝑉𝑡ℎ𝑖𝑠(𝒙𝑖 , 𝑎𝑖|𝒂−𝑖 ). Recall that this function measures how the 

assignment for customer 𝑖 (and hence the incremental information from her) this year 

affects the expected outcomes for all of next year’s customers, conditional on the 

assignments for other customers this year.  

Because it is conditioned on the assignments for other customers this year, this function 

relies on interim policy assignments for these customers. With interim assignments, we 

can directly estimate the EE-function featuring each {customer, action} pair (𝑖, 𝑎). We can 

then iterate and converge to a fixed point that yields the desired policy.  For problems 

with a small covariate space, this approach can be both efficient and exact. We will use 

this approach in Section  6 to validate our proposed algorithm.  
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Externalities and Externality Metrics: Clustering approach 

The clustering approach adds the following steps to the enumeration approach. First, we 

cluster customers by their covariates. Specifically, we cluster the continuous covariate 

space 𝒳 to a much lower dimensional grid space, 𝒢. Each covariate value 𝒙, it belongs to 

a grid value g  according to a clustering rule 𝐺: 𝒳 ↦ 𝒢 . Second, when deriving the 

assignment vector, we use the mean covariate value to approximate the Cluster 𝑔 

customers’ covariates. The interim assignment vector of Cluster 𝑔  is then given by a 

vector 𝒆𝑔 , which has length |𝒜| − 1. The 𝑎-th element of 𝒆𝑔  represents the number of 

Cluster 𝑔  customers assigned action 𝑎  under the interim assignments, with no mail 

being the null action. Therefore, this year’s customer 𝑖 in Cluster 𝑔 has externality metric 

𝒆𝑔 . 

Finally, with this metric, the expression for a focal customer’s expected value of 

information can be simplified using 𝒆𝑔 . The first term of the IV-function (Equation 3.3) 

measures the future profit when customer 𝑖 is assigned action 𝑎𝑖 , and this can now be 

written as: 

∑ 𝔼 [𝔼𝑛𝑒𝑥𝑡 [ 𝜋 (𝒙𝑗 , 𝑝𝑛𝑒𝑥𝑡
𝑆 (𝒙𝑗)) |𝑎𝑖; 𝒆𝑔] |𝐇𝑡ℎ𝑖𝑠]

𝑗∈𝒩𝑛𝑒𝑥𝑡

. (5.1) 

To solve the problem, we need to both evaluate (estimate the response function with 

respect to covariates and assigned action) and optimize (search over action combinations) 

the EE-function. An important remark is that we address the computational challenge by 

assigning actions with the derived externality metric 𝒆𝑔 , instead of the enumeration of 

action combinations (𝒂𝑡ℎ𝑖𝑠
𝑔

). As a result, the firm can optimize over possible values of 𝒆𝑔 , 

the size of which is much smaller than the action combination space for other Cluster 𝑔 

customers. However, the evaluation steps remain the same as in the enumeration 

approach; although we use the mean covariate value to construct  𝒆𝑔 , when evaluating the 

EE-function, we still use customers’ own covariates 𝒙𝑡ℎ𝑖𝑠
𝑔

 as their covariate inputs, 
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including the inference of the posterior distributions and the estimation of the expected 

value of information. 

The benefits of clustering (gridding) are two-fold. First, it quantifies externalities from 

different sources, and provides a clear interpretation of how these externalities affect 

action assignment. The firm also knows the extent to which customer similarity affects 

each other’s assignments. Second, it breaks down the joint optimization problem among 

all of this year’s customers to many smaller joint optimization problems among similar 

customers, making the algorithm more tractable. Specifically, the firm does not need to 

jointly optimize the assignment decisions for all of this year’s customers. Instead, it can 

jointly optimize across the subset of customers in the same cluster. Moreover, this 

optimization can be parallelized (across clusters) during computation. 

Illustrative example. Consider a firm that has two possible marketing actions 

{mail, not mail}, and five covariate values (𝑥1  through 𝑥5). We further assume that 

customers can be clustered into five groups using these values, and the response function 

for customers in one cluster is independent of the response function for customers in the 

other clusters. This implies that the clusters are separable, and so there are no 

information externalities between them.  

For a customer with covariate 𝑥1, the information the firm needs to exclude externalities 

from the other customers this year is the (interim) assignment vector for all of the 𝑥1 

customers. Because the total count of 𝑥1 customers is known (and constant), we only need 

one parameter to represent the number of customers that receive action mail, and the 

number of these customers that receive not mail. This count can also be thought of as a 

state variable that represents every possible state of the information externalities 

between 𝑥1 customers. In particular, if two of the 𝑥1 customers receive action mail under 

the interim assignments, it does not matter which two customers they are. The joint 

optimization problem is reduced to optimizing conditional on this state variable.  Notice 

also from this example how the size of the action space affects the complexity of the 

problem. With three possible actions, we now need two state variables to represent the 

externalities. 
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Possible extension. For example, we could further discretize the covariate values within 

each cluster.33 Alternatively, to further capture the spatial similarity between customers, 

the covariate clustering could be augmented using an embedding method. We can also 

measure distance between different clusters, and then use measured distance as a weight 

on the other cluster when evaluating the focal EE-function. However, for any focal 

covariate value, the larger the count of customers that contribute to the evaluation of the 

EE-function, the harder it is to find the optimum. 

  

 
33 If the covariate space of Cluster 𝑔  is discretized into 𝐵  cells, the assignments 𝒆𝑔  become a matrix of 
(|𝒜| − 1) × 𝐵. 
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B. Pseudo-code of Algorithms 

 

We use notations introduced in Appendix A in this section. 

Algorithm 1. EE-Evaluation: EE-function 𝐸𝐸𝑡(𝑔)(𝒙𝑖 ,⋅ |𝒂−𝑖
𝑔

) Evaluation for a Cluster 𝑔 

customer 

1 Input: data 𝐇𝑡 = {𝒙, 𝒂𝑡−1, 𝝅𝑡−1}, response function 𝑟, current targeting policy 𝑝𝑡
𝑆 , interim 

assignments for other Cluster 𝑔 customers 𝒂−𝑖
𝑔 . 

2  Compute 𝐼𝐶𝑡(𝒙𝑖 , 𝑎) for all 𝑎 ∈ 𝒜 using Equation (3.2). 

3  Construct a generative model 𝑅(𝜋 | ⋅,⋅) based on the predictive posterior distribution of 𝑟(⋅,⋅), as 

shown in Equation (4.3). 

4  repeat 𝐾 times 

5   for 𝑎 ∈ 𝒜 

6    Construct 𝝅𝑡 
𝑔(𝑘)̃

 by selecting sample 𝝅𝑡 
𝑔(𝑘)̃

 = (𝝅𝑡̃(𝒙𝑖 , 𝑎), 𝝅𝑡̃( 𝒙−𝑖
𝑔 , 𝒂−𝑖

𝑔
)). Use these to 

construct artificial history 𝐇𝑡+1
(𝑘)̃

. 

7    Re-learn artificial response function 𝑟(𝑘)̃ ← 𝑟 (⋅, 𝑎|𝐇𝑡+1
(𝑘)̃

). 

8    Optimize 𝑟̃ to get artificial targeting policy 𝑝𝑡+1
𝑆(𝑘)̃

(⋅ |𝐇𝑡+1
(𝑘)̃

~𝑎)  ← argmax𝑎 𝔼𝑟̃[𝑟(𝑘)̃ (⋅, 𝑎)]. 

9    Compute the expectation at 𝑡 + 1 using means of the posterior GP for all 𝑗 ∈ 𝒩𝑡+1, 

𝜇𝑗,𝑡+1
(𝑘) (𝒙𝑖 , 𝑎) = 𝔼𝑡+1[ 𝑟∗𝑔(𝑘)̃ (𝒙𝑗)|𝑎; 𝒆𝑔]. 

10   end for 

11  end repeat 

12  Compute the expectations of 𝐼𝑉𝑡(𝑔)̃(𝒙𝑖 , 𝑎|𝒂−𝑖
𝑔

) at 𝑡 + 1, given in Equation (A.4) with 𝜇𝑗,𝑡+1
(𝑘) (𝒙𝑖 , 𝑎) 

by the simulated estimator. 

13  return EE-function values 𝐸𝐸𝑡(𝑔)(𝒙𝑖 , 𝑎|𝒂−𝑖
𝑔

) computed using Equation (4.4) for all 𝑎 ∈ 𝒜. 
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Algorithm 2. OLAT: One-step Look Ahead Targeting Optimization 

1 Input: data 𝐇𝑡 = {𝒙, 𝒂𝑡−1, 𝝅𝑡−1}, current response function 𝑟𝑡, current targeting policy 𝑝𝑡
𝑆 . 

2  Initialize response function with 𝑟̃(0) ← 𝑟𝑡, artificial targeting policy with 𝑝𝑡+1
𝑆̃

(0)
← 𝑝𝑡

𝑆 , Year 𝑡’s 

EE-function 𝐸𝐸𝑡(𝑔)
(0)

, and Year 𝑡 assignment policy with 𝑝𝑡(𝑔)
(0)

← 𝒂𝑡(𝑔)
𝐼 . 

3  parallel Cluster 𝑔 ∈ 𝒢 

4   repeat 𝑀 global steps 

5    Simulate outcome samples 𝝅𝑡
𝑔̃(𝒜) for 𝐾 times. 

6    while not converge or below iteration limit 

7     Propose a new externality metric 𝒆𝑔(𝑛−1) ∈ 𝑝𝑡(𝑔)
(𝑛−1)

. 

8     for 𝑖 ∈ 𝒢 

9      Evaluate 𝐸𝐸𝑡(𝑔)
(𝑛)

 using algorithm EE-Evaluation, based on the assignment 

policy from the last iteration 𝑝𝑡(𝑔)
(𝑛−1)

: 

       Construct artificial history 𝐇𝑡+1̃. 

Re-learn 𝑟̃(𝑛) and re-optimize 𝑝𝑡+1
𝑆̃

(𝑛)
with artificial history 𝐇𝑡+1̃. 

Compute E-function values 𝐸𝐸𝑡(𝑔)
(𝑛)

. 

10      Re-optimize 𝑝𝑡(𝑔)
(𝑛)

 with argmax𝑎 𝐸𝐸𝑡(𝑔)
(𝑛)

(⋅, 𝑎|𝒆𝑔(𝑛−1) ∈ 𝑝𝑡(𝑔)
(𝑛−1)

; 𝑟̃(𝑛), 𝐇𝑡+1̃). 

11     end for 

12    end while 

13   end repeat 

14   Estimate standard errors by bootstrapping. 

15  end parallel 

16  return Year 𝑡 assignment policy 𝑝𝑡
∗ ← argmax𝑎 𝐸𝐸𝑡(⋅, 𝑎|𝒂−𝑖 ; 𝒂−𝑖 ∈ 𝑝𝑡

∗) 
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C. Proofs of Main Results 

 

We use notations introduced in Appendix A in this section. 

Proof of Result 1 (Value function maximization). 

The proof shows the joint maximization problem of the EE-function, given in Equation 

(3.4) is equivalent to the maximization of the value function, given in Equation (3.1). Start 

from Equation (3.4), we have 

max
𝑎𝑖∈𝒜

max
𝑝𝑡

′
𝐸𝐸𝑡(𝒙𝑖 , 𝑎𝑖|𝒂−𝑖; 𝒂−𝑖 ∈ 𝑝𝑡

′) 

= max
𝑎𝑖∈𝒜

max
𝑝𝑡

′
𝐼𝑉𝑡(𝒙𝑖 , 𝑎𝑖|𝒂−𝑖; 𝒂−𝑖 ∈ 𝑝𝑡

′) − 𝐼𝐶𝑡(𝒙𝑖 , 𝑎𝑖) 

= max
𝑎𝑖∈𝒜

max
𝑝𝑡

′
𝐼𝑉𝑡(𝒙𝑖 , 𝑎𝑖|𝒂−𝑖; 𝒂−𝑖 ∈ 𝑝𝑡

′) − ∑ 𝐼𝐶𝑡(𝒙𝑘 , 𝑎𝑘)

𝑘∈𝒩𝑡

 

= max
𝑎𝑖∈𝒜

max
𝑝𝑡

′
∑ 𝔼[𝔼𝑡+1[𝑟∗(𝒙𝑗)|𝑎𝑖; 𝒂−𝑖]|𝐇𝑡]

𝑗∈𝒩𝑡+1

− ∑ 𝔼[𝔼𝑡+1[𝑟∗(𝒙𝑗)|𝑎𝑖,𝑡
𝑆 ; 𝒂−𝑖]|𝐇𝑡]

𝑗∈𝒩𝑡+1

− ∑ 𝔼[𝑟(𝒙𝑖 , 𝑎𝑖,𝑡
𝑆 ) − 𝑟(𝒙𝑖 , 𝑎𝑖)|𝐇𝑡]

𝑖∈𝒩𝑡

 

= max
𝑎𝑖∈𝒜

max
𝑝𝑡

′
∑ 𝔼[𝔼𝑡+1[𝑟∗(𝒙𝑗)|𝑎𝑖; 𝒂−𝑖]|𝐇𝑡]

𝑗∈𝒩𝑡+1

− ∑ 𝔼[𝑟(𝒙𝑖 , 𝑎𝑖,𝑡
𝑆 ) − 𝑟(𝒙𝑖 , 𝑎𝑖)|𝐇𝑡]

𝑖∈𝒩𝑡

  

= max
𝑎𝑖∈𝒜

max
𝑝𝑡

′
∑ 𝔼[𝔼𝑡+1[𝑟∗(𝒙𝑗)|𝑎𝑖; 𝒂−𝑖]|𝐇𝑡]

𝑗∈𝒩𝑡+1

+ ∑ 𝔼[𝑟(𝒙𝑖 , 𝑎𝑖)|𝐇𝑡]

𝑖∈𝒩𝑡

 

= max
𝑎𝑖∈𝒜

max
𝑝𝑡

′
∑ 𝔼[𝔼𝑡+1[𝜋𝑗 ; 𝑝𝑡+1 

𝑆 |𝑎𝑖; 𝒂−𝑖 ∈ 𝑝𝑡
′]|𝐇𝑡]

𝑗∈𝒩𝑡+1

+ ∑ 𝔼[𝜋𝑖 ; 𝑎𝑖 , 𝒂−𝑖 ∈ 𝑝𝑡
′|𝐇𝑡]

𝑖∈𝒩𝑡

 

= max
𝑎𝑖∈𝒜

max
𝑝𝑡

′
𝑉𝑡(𝑎𝑖 , 𝒂−𝑖; 𝒂−𝑖 ∈ 𝑝𝑡

′) = 𝑉𝑡(𝑝𝑡
∗) 

𝑉𝑡ℎ𝑖𝑠(𝑝𝑡ℎ𝑖𝑠) ≡ ∑ 𝔼[𝜋𝑖 ; 𝑝𝑡ℎ𝑖𝑠|𝐇𝑡ℎ𝑖𝑠]

𝑖∈𝒩𝑡ℎ𝑖𝑠

+ ∑ 𝔼[𝜋𝑗; 𝑝𝑡ℎ𝑖𝑠, 𝑝𝑛𝑒𝑥𝑡(𝑝𝑡ℎ𝑖𝑠)|𝐇𝑡ℎ𝑖𝑠]

𝑗∈𝒩𝑛𝑒𝑥𝑡

 

The second equality is because the IC-functions are separable, and thus IC-functions of 

other customers from this year don’t affect the joint optimization problem. The fourth 

equality is because the second term in the IV-function does not concern 𝑎𝑖 , and 𝑝𝑡
𝑆(𝒙𝑖) is 
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invariant to the joint optimization problem. Similarly, the fifth equality is because the first 

term in the IC-function only concerns 𝑝𝑡
𝑆(𝒙𝑖), which is invariant to the joint optimization 

problem. 

∎ 

Proof of Result 2 (Strict dominance of joint optimization). 

The joint optimization and the individual optimization approaches are defined in 

Appendix A. 

We consider two assignment proposals, and show Result 2 under the Bayesian inference 

framework. With that, we have 𝜇𝑡(𝒙, 𝑎) = 𝔼[𝑟𝑡(𝒙, 𝑎)|𝐇𝑡], and 𝜇𝑡
∗(𝒙) = max

𝑎
𝜇𝑡(𝒙, 𝑎). Then, 

the individual assignment for the customer 𝑖 is  

𝑎𝑖
𝐼 ∈ argmax

𝑎
𝜇𝑡(𝒙𝑖 , 𝑎) + ∑ 𝔼𝑡[𝜇𝑡+1

∗ (𝒙𝑗)|𝑎]

𝑗∈𝒩𝑡+1

. (𝐵. 1) 

The joint assignment for the customer 𝑖 , conditional other same batch customers 

receiving their respective optimal joint assignments 𝒂−𝑖
∗ , can be rewritten as 

𝑎𝑖
∗ ∈ argmax

𝑎
𝜇𝑡(𝒙𝑖 , 𝑎) + ∑ 𝔼𝑡[𝜇𝑡+1

∗ (𝒙𝑗)|𝑎; 𝒂−𝑖
∗ ]

𝑗∈𝒩𝑡+1

. (𝐵. 2) 

The E-function, defined in Equation (3.4), is also the objective function of the joint 

assignment proposal. Therefore, we should have 

𝐸𝐸𝑡(𝒙, 𝒂∗) = max
𝒂

𝐸𝐸𝑡(𝒙, 𝒂) ≥ 𝐸𝐸𝑡(𝒙, 𝒂𝐼). (𝐵. 3) 

It remains to show that the following two expressions are equal only if the two (joint and 

independent) Year 𝑡 batch assignment proposals satisfy 𝒂𝐼 ∈ 𝒮(𝒂∗). And we also want to 

show that this condition implies that the Year 𝑡 + 1 assignments are the same with and 

without the Year 𝑡 batch. 

𝐸𝐸𝑡(𝒙, 𝒂∗) ∝ ∑ 𝜇𝑡(𝒙𝑘 , 𝑎𝑘
∗ )

𝑘∈𝒩𝑡

+ ∑ 𝔼𝑡[𝜇𝑡+1
∗ (𝒙𝑗)|𝑎𝑖

∗; 𝒂−𝑖
∗ ]

𝑗∈𝒩𝑡+1

, 
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𝐸𝐸𝑡(𝒙, 𝒂𝐼) ∝ ∑ 𝜇𝑡(𝒙𝑘 , 𝑎𝑘
𝐼 )

𝑘∈𝒩𝑡

+ ∑ 𝔼𝑡[𝜇𝑡+1
∗ (𝒙𝑗)|𝑎𝑖

𝐼; 𝒂−𝑖
𝐼 ]

𝑗∈𝒩𝑡+1

. 

Given the prior (or posterior after Wave 𝑡 − 1) being 𝜇𝑡(𝒙′, 𝑎′) , the evidence obtained 

from the individual assignment proposal is (𝒙𝑖 , 𝑎𝑖
𝐼), and posterior is given by 𝜇𝑡+1(𝑖)(𝒙′, 𝑎′). 

For the joint assignment proposal with the same prior, one can view the posterior update 

as a two-stage process: the firm first receives evidence (𝒙−𝑖 , 𝒂−𝑖
∗ ) , and updates its 

posterior to 𝜇𝑡+1(−𝑖)(𝒙′, 𝑎′) . Then, it receives the customer 𝑖 ’s response (𝒙𝑖 , 𝑎𝑖
∗) , and 

updates to 𝜇𝑡+1(𝒙′, 𝑎′).  

When 𝒂𝐼 ∈ 𝒮(𝑝𝑡
∗), the E-function values evaluated at the two proposals, 𝒂∗ and 𝒂𝐼,  are the 

same, by the definition of the joint problem optimizer 𝒮(𝑝𝑡
∗). 

Suppose 𝒂𝐼 = 𝒂∗ without loss of generality. By construction, we have for any 𝑘 ∈ 𝒩𝑡 , 

argmax
𝑎

𝜇𝑡(𝒙𝑘 , 𝑎) + ∑ 𝔼𝑡[𝜇𝑡+1
∗ (𝒙𝑗)|𝑎; 𝒂−𝑘

∗ ]

𝑗∈𝒩𝑡+1

= argmax
𝑎

𝜇𝑡(𝒙𝑘 , 𝑎) + ∑ 𝔼𝑡[𝜇𝑡+1(𝑘)
∗ (𝒙𝑗)|𝑎].

𝑗∈𝒩𝑡+1

 

Because 𝜇𝑡 is the same common prior in both the right hand side and the left hand side, 

and 𝜇𝑡(𝑥𝑘, 𝑎𝑘
∗ ) = 𝜇𝑡(𝑥𝑘 , 𝑎𝑘

𝐼 ) holds by construction, the above equation now becomes 

argmax
𝑎

∑ 𝔼𝑡[𝜇𝑡+1
∗ (𝒙𝑗)|𝑎, 𝒂−𝑘

∗ ]

𝑗∈𝒩𝑡+1

= argmax
𝑎

∑ 𝔼𝑡[𝜇𝑡+1(𝑘)
∗ (𝒙𝑗)|𝑎]

𝑗∈𝒩𝑡+1

, ∀𝑘 ∈ 𝒩𝑡 . 

Since at least two actions are not tied, the above equation implies that the optimal Year 

𝑡 + 1  assignments derived from posteriors 𝜇𝑡+1(𝒙′, 𝑎′)  (the left hand side) and 

𝜇𝑡+1(𝑘)(𝒙′, 𝑎′) (the right hand side) are the same. 

Prior to the addition of information contributed by the customer 𝑘, the left hand side is 

evaluated at the posterior 𝜇𝑡+1(−𝑘)(𝒙′, 𝑎′), while evaluation of the right hand side is still 

at the prior 𝜇𝑡 . With the addition of customer 𝑘, the optimal choices of assignment for 

customer 𝑘 are the same evaluated at the posterior 𝜇𝑡+1(−𝑘)(𝑥′, 𝑎′) and the prior 𝜇𝑡 . Thus, 

the above equation implies that, for any 𝑘 ∈ 𝒩𝑡 , the information in 𝒂−𝑘
∗  is not pivotal 
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enough to change assignments in Wave 𝑡 + 1; combining this argument with respect to all 

𝑘 ∈ 𝒩𝑡 , it then also implies that the information in 𝒂∗  is not pivotal enough to change 

assignments in Wave 𝑡 + 1.  

Besides, the information in 𝒂∗  is induced by the weakly best possible assignments, 

according to Equation (B.3). This argument shows that the Wave 𝑡 + 1 assignments are 

the same with and without the Wave 𝑡  batch, even if the batch is assigned with best 

possible assignments. 

∎ 

Proof of Result 3 (Free from Selection). 

Formally, in any given year, we learn the profit function 𝑟 with experiment data from all 

previous waves. This results says that: 

ℓ(Θ) ≡ 𝑃(𝑨≤𝑡 , 𝚷≤𝑡(⋅)|𝑿, Θ) = ∏ 𝑃(𝑨𝑠|𝑿, Θ)𝑃(𝚷𝑠(⋅)|𝑿, Θ)

𝑡

𝑠=1

, 

where we use Θ to denote the parameter set for function 𝑟. 34 It means that the potential 

outcomes and assignments are independent, conditional on all the covariate values. 

We first discuss the roadmap. We prove this proposition in two steps, using the definition 

of conditional independence. In the first step, we show that, if firm only uses data from a 

single wave, the assignments and the outcomes are conditionally independent. That is, in 

Wave 𝑠, 

𝑃(𝑨𝑠, 𝚷𝑠(⋅)|𝑿, Θ) = 𝑃(𝑨𝑠|𝑿, Θ)𝑃(𝚷𝑠(⋅)|𝑿, Θ). (B. 4) 

In the second step, we show that, the assignments and the outcomes from each wave are 

conditionally independent. Specifically, we show the following result, 

𝑃(𝑨≤𝑡 , 𝚷≤𝑡(⋅)|𝑿, Θ) ∝ ∏ 𝑃(𝚷𝑠(⋅)|𝑨𝑠, 𝑿, Θ)

𝑡

𝑠=1

. (B. 5) 

 
34  In Bayesian inference, “parameters” Θ  are treated as random variables. In nonparametric Bayesian 
inference, the equivalent of “parameter set” is the function values (as random variables) evaluated at inputs. 
We denote the function values at Wave 𝑡 inputs as 𝐑 ≡ 𝑟(𝑿, 𝑨). That said, the reader can see Θ ≡ 𝐑. 
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Then, from Equation (B.4), 𝚷𝑠(⋅) and 𝑨𝑠  are independent conditional on Θ and 𝑿𝑠 . We 

thus have 𝑃(𝚷𝑠(⋅)|𝑨𝑠, 𝑿, Θ) = 𝑃(𝚷𝑠(⋅)|𝑿, Θ) . Finally, since 𝑃(𝑨≤𝑡 , 𝚷≤𝑡(⋅)|𝑿, Θ) ∝

∏ 𝑃(𝚷𝑠(⋅)|𝑿, Θ)𝑡
𝑠=1 , we combine it with Equation (B.4) again, and the conditional 

independence in Equation (4.5) is proved. 

Step 1. Consider firm only uses Wave 𝑠 data to learn the profit function 𝑟. The likelihood 

of assignments and outcomes, conditional on covariates, is then given by 

𝑃(𝑨𝑠, 𝚷𝑠(⋅)|𝑿𝑠, Θ) = 𝑃(𝚷𝑠(⋅)|𝑿𝑠, Θ)𝑃(𝑨𝑠|𝚷𝑠(⋅), 𝑿𝑠, Θ). 

To show Equation (B.4), it suffices to show 𝑃(𝑨𝑠|𝚷𝑠(⋅), 𝑿𝑠 , Θ) = 𝑃(𝑨𝑠|𝑿𝑠 , Θ). In our GP 

framework, Θ is the sufficient statistic for learning profit function, i.e., 𝑟 ≡ 𝑟Θ. Notice that 

𝑨𝑠 is entirely determined by history at Wave 𝑠, i.e., 𝑨𝑠 = 𝑓(𝑿<𝑠, 𝑨<𝑠, 𝚷<𝑠, 𝑿𝑠), and thus not 

directly on Wave 𝑠 outcomes 𝚷𝑠. Therefore, it remains to show that, conditional on Θ and 

𝑿𝑠 , Wave 𝑠  potential outcomes and outcomes from any wave prior to Wave 𝑠  are 

independent, i.e., 𝚷𝑠(⋅) ⊥ 𝚷<𝑠|Θ, 𝑿𝑠 .  This conditional independence holds, because 

Equation (4.1) implies the potential outcome is determined by 

Π𝑖,𝑠(𝑎) = 𝑟Θ(𝑋𝑖,𝑠 , 𝑎) + 𝜖𝑖,𝑠 , ∀𝑎 ∈ 𝒜, (B. 6) 

and 𝝐𝑠 and 𝝐<𝑠 are independent by construction. 

Step 2. We start from writing out the joint likelihood of all the action assignments and 

outcomes, conditional on covariates. It is given by 

𝑃(𝑨≤𝑡 , 𝚷≤𝑡(⋅)|𝑿, Θ) ≡ 𝑃(𝑨1, ⋯ , 𝑨𝑡 , 𝚷1(⋅), ⋯ , 𝚷𝑡(⋅)|𝑿, Θ) 

= ∏ 𝑃(𝑨𝑠, 𝚷𝑠(⋅)|𝑨1, ⋯ , 𝑨𝑠−1, 𝚷1(⋅), ⋯ , 𝚷𝑠−1(⋅), 𝑿, Θ)

𝑡

𝑠=1

 

= ∏ 𝑃(𝑨𝑠|𝑨<𝑠, 𝚷<𝑠(⋅), 𝑿, Θ)𝑃(𝚷𝑠(⋅)|𝑨𝑠, 𝑨<𝑠, 𝚷<𝑠(⋅), 𝑿, Θ)

𝑡

𝑠=1

. 

These equalities hold because of Bayes’ rule. To further simply the above expression, first 

recall that 𝑨𝑠  is entirely pinned down by history at Wave 𝑠 , that is, 𝑨𝑠 =

𝑓(𝑿<𝑠, 𝑨<𝑠, 𝚷<𝑠, 𝑿𝑠) . Therefore, 𝑃(𝑨𝑠|𝑨<𝑠, 𝚷<𝑠(⋅), 𝑿, Θ) = 𝑃(𝑨𝑠|𝑨<𝑠, 𝚷<𝑠, 𝑿, Θ) =
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𝑃(𝑨𝑠|𝑨<𝑠, 𝚷<𝑠(⋅), 𝑿), as this distribution has conditioned on the entire Wave 𝑠 history, 

and thus does not rely on Θ. 

For the second term, we know from Equation (B.6) that 𝚷𝑠(⋅) does not depend on past 

assignments or outcomes. Hence, 𝑃(𝚷𝑠(⋅)|𝑨𝑠, 𝑨<𝑠, 𝚷<𝑠(⋅), 𝑿, Θ) = 𝑃(𝚷𝑠(⋅)|𝑨𝑠, 𝑿, Θ). Then, 

𝑃(𝑨≤𝑡 , 𝚷≤𝑡(⋅)|𝑿, Θ) = ∏ 𝑃(𝑨𝑠|𝑨<𝑠, 𝚷<𝑠(⋅), 𝑿)𝑃(𝚷𝑠(⋅)|𝑨𝑠, 𝑿, Θ)

𝑡

𝑠=1

∝ ∏ 𝑃(𝚷𝑠(⋅)|𝑨𝑠, 𝑿, Θ)

𝑡

𝑠=1

. 

The last step holds, because 𝑃(𝑨𝑠|𝑨<𝑠, 𝚷<𝑠(⋅), 𝑿) does not depend on Θ, and thus have no 

impact on the learning of the likelihood. We have now proved Step 2, and finished the 

proof. 

∎ 

Proof of Result 4 (Convergence of evaluation algorithm). 

The E-function optimization algorithm, OLAT, converges to 𝐸𝐸𝑡(⋅, 𝑎|𝑝𝑡
∗) and 𝑝𝑡

∗, 𝒂∗ ∈ 𝒮(𝑝𝑡
∗), 

such that 𝑎𝑖
∗ ∈ max

𝑎∈𝒜
𝐸𝐸𝑡(𝒙𝑖 , 𝑎|𝒂−𝑖; 𝒂−𝑖 ∈ 𝑝𝑡

∗) , ∀𝑖 ∈ 𝒩𝑡;the policy 𝑝𝑡ℎ𝑖𝑠
∗  is a local maximizer of 

𝐸𝐸𝑡(𝑥𝑖 , 𝑎|𝒂−𝑖). 

The proof consists of two parts. First, we show that the evaluated E-function value always 

weakly increase after each iteration. Then, we show that the assignment policy converges 

to a (local) optimum when the new assignment proposal is as good as, but no better than, 

the old policy. 

First, consider a focal customer 𝑖  with covariates 𝑥𝑖 . Suppose the interim assignment 

proposal from the last iteration is 𝑝𝑡
(𝑛−1)

≡ (𝑎𝑖
(𝑛−1)

, 𝒂−𝑖
(𝑛−1)

).  The optimization result in 

this iteration is given by 

𝑎𝑖
(𝑛)

≡ argmax
𝑎

𝐸𝐸𝑡(𝒙𝑖 , 𝑎|𝒂−𝑖
(𝑛−1)

∈ 𝑝𝑡
(𝑛−1)

; 𝑟̃(𝑛), ℋ𝑡+1̃) . (B. 7) 

By construction of Equation (B.7), 𝑝𝑡
(𝑛)

≡ (𝑎𝑖
(𝑛)

, 𝒂−𝑖
(𝑛−1)

) weakly dominates 𝑝𝑡
(𝑛−1)

, because 

the former leads to a weakly higher EE-function value, i.e., 
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argmax
𝑎

𝐸𝐸𝑡(𝒙𝑖 , 𝑎|𝒂−𝑖
(𝑛−1)

∈ 𝑝𝑡
(𝑛)

) ≥ 𝐸𝐸𝑡(𝒙𝑖 , 𝑎(𝑛−1)|𝒂−𝑖
(𝑛−1)

∈ 𝑝𝑡
(𝑛−1)

). (B. 8) 

Therefore, the iteration in the OLAT algorithm generates new assignment policies that 

always weakly improve on the existing policy. 

Second, suppose the new assignment policy 𝑝𝑡
(𝑛)

 leads to the same value of the EE-

function as the existing interim policy 𝑝𝑡
(𝑛−1)

 for all customers. In this case, 𝐸𝐸𝑡

𝑝𝑡
(𝑛)

=

𝐸𝐸𝑡

𝑝𝑡
(𝑛−1)

. Then, for any 𝑖 ∈ 𝒩𝑡 , we have 

𝐸𝐸𝑡

𝑝𝑡
(𝑛)

(𝒙𝑖 , 𝑎(𝑛)) ≡ argmax
𝑎

𝐸𝐸𝑡(𝒙𝑖 , 𝑎|𝒂−𝑖
(𝑛−1)

∈ 𝑝𝑡
(𝑛−1)

) = 𝐸𝐸𝑡(𝒙𝑖 , 𝑎(𝑛−1)|𝒂−𝑖
(𝑛−1)

∈ 𝑝𝑡
(𝑛−1)

). (B. 9) 

And it must be the case in which 𝑝𝑡
(𝑛)

≡ 𝑝𝑡
(𝑛−1)

. In the next iteration, the values will not 

update, and hence the algorithm is converged to a local optimum. 

∎  
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D. Supplementary Tables and Figures 

 

Table D.1. Definition of outcome variables and targeting covariates 
Variable Definition 

profit: not mail profit from this carrier route without mail 

profit: $25 paid profit from this carrier route with free 120 day trial 

profit:120-day trial profit from this carrier route with $25 paid membership 

age average age of head of household 

home value average estimated home value 

income average household income 

single family percentage of single family home 

multi-family percentage of multi-family home 

distance average distance to the nearest store for this retailer 

comp. dist average distance to the nearest competitor's store 

penetration rate percentage of households in zip code that are members 

3 yr response average three year response rate to mail campaigns 

M flag whether zip code is considered to be "far" from retailer's store 

F flag whether zip code is considered to be "medium" distance from retailer's store 

past paid percentage of previously paid members in zip code 

trialist 
percentage of households in zip code that repeatedly sign up for trial 
memberships 

 

Table D.2. Summary statistics of outcome variables and targeting covariates 

Variable Obs Mean Std. Dev. Min 25% 50% 75% Max 

age 5379 0.00 1.00 -4.06 -0.57 0.13 0.65 4.66 

single family 5379 -0.00 1.00 -3.85 -0.41 0.47 0.71 0.85 

3 yr response 5379 0.00 1.00 -1.57 -0.78 -0.22 0.56 5.05 

profit: not mail 5379 0.21 0.91 0.00 0.00 0.00 0.00 20.42 

profit:120-day trial 5379 0.31 1.44 -0.35 -0.35 -0.35 0.32 20.82 

profit: $25 paid 5379 0.49 1.78 -0.35 -0.35 -0.35 0.61 26.25 
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Table D.3. Significance of Targeting Covariates 

  (1) (2) 

      

age -0.087*** -0.096*** 

 (0.016) (0.013) 

3 yr response 0.587*** 0.331*** 

 (0.016) (0.014) 

single family 0.102*** 0.098*** 

 (0.016) (0.014) 

Constant 0.491*** 0.315*** 

 (0.016) (0.013) 

Observations 10,758 10,758 

R2 0.122 0.069 

Adjusted R2 0.122 0.068 

Note: *p<0.1; **p<0.05; ***p<0.01. Standard errors are in 
parentheses. 

 

Figure D.1. Average Profit over This Year and Next Year 

 

This figure reports the total profit earned this year and next year from each method. Shaded 
regions are 95% confidence intervals. 
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Figure D.2. Number of Deviations from Current Optimal Policy 

 

This figure reports the total number of deviations of different policies, compared to the Exploit 

policy. 

 


