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Abstract

Since the moon landing in 1969 sounded the proverbial shotgun inciting efforts to
expand the frontiers of space exploration, there has been unparalleled effort to enhance
the technologies for doing so. While human presence in Earth orbit has boomed over
the past decade, crewed planetary missions have yet to reach desired goals. Set
by NASA as the future destinations beyond Earth orbit, Mars presents significant
challenges to the entry, landing and descent sequence. Missions including sample
return and human exploration require precise landing accuracy. Additionally, entry
vehicle dynamics and atmospheric parameters at time of flight are hard to predict.
This along with the advancement of mission objectives invoke the need for a reliable,
robust, and computationally reasonable method with certifiable guarantees of safe
landing.

Therefore, this paper presents a closed-loop trajectory optimizer capable of incor-
porating the atmospheric models and navigational data uncertainty for the nonlinear
dynamics of hypersonic entry by applying an iterative Linear-Quadradic-Regulator
(iLQR). iLQR is an efficient and powerful method for trajectory optimization derived
from Differential Dynamic Programming (DDP) principles, which have been applied
successfully in cases of robotic movement to locally improve upon a single trajec-
tory through second-order convergence for a local optimal trajectory. iLQR takes
this method a step further by iteratively linearizing the system dynamics, converg-
ing to determine an optimal trajectory by minimizing the performance cost and the
uncertainty in the dynamics model.

To demonstrate its effectiveness, the algorithm will be tested against a series of re-
alistic simulations to test the model performance against mission requirements, such
as high altitude and precision landing. Results show an efficient data-driven algo-
rithm capable of learning how to successfully control a 40 ton crewed-scale spacecraft
for Mars entry under dynamical uncertainties in the state model. Additionally, given
system performance parameters, the covariance, or landing accuracy, of the final po-
sition can be determined from the algorithm and the results can be used to determine
safe parameter ranges that achieve the desired accuracy.
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Chapter 1

Introduction

1.1 Motivation

The future of advancing missions to Mars will require 1) greater precision landing

accuracy, 2) higher elevation landing ability (+ 1 - 4 km MOLA1), and 3) larger

entry mass capability ≥ 40 mT [6, 9]. While achieving these objectives alone is a

challenging task, the inherent limitations to Mars entry, descent, and landing (EDL)

apply additional strain on achieving goals for future exploration.

Detailed in Fig. 1-1, entry is the primary and most critical stage of the EDL

sequence. Entry flight takes place once the spacecraft interfaces with the planetary

atmosphere, taken as approximately 125 km above the Martian surface for this appli-

cation. The main challenge lying at the foundation of any atmospheric entry problem

is managing hypersonic flight, typically categorized by the vehicle achieving Mach

numbers greater than 5. During hypersonic flight, the aerodynamics and gas dynam-

ics exhibit physical flow phenomena that generate concerns for acceleration, pressure,

and heating levels of the vehicle,2 increasing as the Mach number increases. These

concerns based on atmospheric conditions establish inherent limitations to the entry

phase, particularly for Mars.
1MOLA stands for Mars Orbiter Laser Altimeter, an instrument used to measure Mars topogra-

phy in 2001. This is used to indicate surface elevation with respect to a nominal reference defined
by the topography. Approximate range taken from Ref. [6] and [29].

2See Ref. [1] for a more detailed explanation on hypersonic flow
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Figure 1-1: Transition and Entry Phases for MSL EDL [29]
3

The Martian atmosphere is known for its considerably low density, with approx-

imately 1/100𝑡ℎ of Earth’s atmospheric thickness [6], causing vehicle deceleration to

occur at critically low altitudes. This presents concerns for having enough altitude

above the surface to complete the following descent and landing stages of the EDL se-

quence without crashing and terminating the mission. For context, the Mars System

Laboratory (MSL) mission, which landed in 2011 and was one of the largest scale

missions to date, saw an entry Mach of 24 [46]. This vehicle had to be slowed to

Mach 2 prior to initiating the descent phase of the EDL sequence using parachute

deployment. Standard Newtonian physics indicate that with increased entry mass,

this entry speed will be larger and more difficult to slow at an altitude above the

critical 10 km region. However, while the atmosphere on Mars is thin in comparison

to the well-charted Earth atmosphere, it is still thick enough to cause concerns for

the heating and pressure levels seen during entry flight [6]. This limitation becomes

significantly more concerning when considering a crewed flight.

Additionally, the mountainous Martian terrain establishes landing limitations on

the mission. Previous Viking and Mars Exploration Rover (MER) missions landed
3Full sequence shown in Appendix A, Fig. A-1, A-2, and A-3
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at low elevation sites no greater than -1.3 MOLA [6]. MSL was the first mission

to demonstrate a high elevation landing, followed by Mars 2020 [32]. For advanced

scientific missions expected to explore other locations on the surface and considering

the sensitivity of safely landing a crewed mission, future technology must demonstrate

higher elevation landing capability of at least +1 MOLA given the terrain of targeted

landing locations. This compounded with the thin atmosphere condition advances

the constraints of the problem.

Figure 1-2: 3D Representation of MSL Landing Site
4

Further inhibiting the goals for successful entry are the uncertainties impacting the

guidance and control. These uncertainties stem from potential wind and dust storms

threatening to cause severe deviations in trajectory from a nominal sequence, as well

as uncertain aerodynamic coefficients and atmospheric modeling within the guidance

and control system [24]. Coinciding with these uncertain elements, simulating hy-

personic flight conditions for ground-based testing is an extremely challenging task.
4MRO image of Gale Crater. Credits: NASA/JPL, illustration, T.Reyes. Source:

https://www.universetoday.com/138424/curiosity-lasted-2000-days-mars-triple-original-mission-
plan/

13



The characteristics of hypersonic flow are dependent on how fast a vehicle is traveling

within a given flow medium based on Mach number, which makes it impossible to

duplicate all aspects of the flight environment during one test. Limitations based on

high enthalpy5 levels, accurate air chemistry and test times on the order of projected

flight times have required test facility designs based on targeting certain knowledge

points than the entire breadth of the flight envelope.6 This limitation adds to the gap

of accurate modeling and computation of vehicle conditions such as coefficients of lift

and drag. Furthermore, simplifications such as the linearization and discretization of

equations of motion made as part of the mathematical model create deviations from

the true system causing added uncertainty [24].7

The competing objectives of properly managing the problem uncertainty while

adhering to the necessary constraints for successful future missions lies at the center of

this work’s motivation for developing a robust guidance system capable of addressing

these challenges.

1.1.1 Guidance Methods

The Mars entry guidance problem is that of motion planning in that the goal is

to get the spacecraft from initial atmospheric entry to proper terminal conditions

for initiating the next phases of the EDL process. Given spacecraft communication

during entry is lagged beyond the ability of human intervention and conditions are

severe enough to render a failed mission if guidance is not executed properly, the

chosen method to get the spacecraft from planetary capture to arrival at the target

landing site becomes as critical as the mission itself. As a result, guidance methods

take on the approach of aerodynamically maneuvering the entry vehicle to achieve

optimal flight conditions, or in other words, optimal control. To instruct the execution
5Enthalpy is a thermodynamic quantity representing the heat content of a system based on

chemical processes
6NASA Ames Arc jet facility typically used to test thermal protection systems (TPS) for entry

vehicles and NASA Langley Research Center wind tunnels are capable of reaching hypersonic con-
ditions, but not on the order of the Mars entry interface. See Ref. [1] for more details on hypersonic
testing and facilities.

7Discussed in greater detail in Ch. 2

14



of in-flight control, trajectory planning can be done through [18, 44]:

1. Reference tracking where nominal trajectory conditions are planned offline and

the on-board controller attempts to retain the nominal path by correcting tra-

jectory deviations.

2. Path planning where the trajectory is computed online from the current state

to the desired target state or state range by applying a predictive model

Prior to MSL, Viking and subsequent lander missions (1997 Mars Pathfinder, 2004

Mars Exploration Rovers and 2008 Pheonix) conducted unguided ballistic trajectories

with zero lift [29]. As part of demonstrating improvements in landing accuracy, higher

elevation landing, and other advancements in mission capabilities, MSL was the first

mission to utilize bank angle controlled entry guidance for reference tracking inherited

from Apollo mission designs [7, 32].

Figure 1-3: Bank Angle Control Forces [37]

As shown in Fig. 1-3, control input commands through bank angle orient the

vehicle around the velocity vector to control the cross range of the entry trajectory.

For bank angle control, the goal is to manipulate the bank angle to guide the vehicle

along a trajectory terminating at conditions suitable for descent and landing.

These methods have allowed for Mars mission success to-date; however, building

up to a crewed-scale mission, or even more elaborate robotic and scientific missions,

will undoubtedly require advancements beyond the current state-of-the-art. Thank-

fully, advances since the dawn of the space age in fields such as robotics, control theory
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and machine learning have allowed for optimal control techniques with capabilities to

address critical needs for Mars entry, and planetary entry at large.

1.1.2 Robust Entry Guidance

Since the late 1950s, optimal control theory has been explored and developed with

great prominence [22]. Starting with the robotics field, many techniques have filtered

through to aerospace operations such as hypersonic aircraft, reusable rocket recovery,

satellite constellations, and more. Optimal control has become particularly beneficial

to advancing technological capabilities of mechanical systems due to its ability for

handling robust operation.

Robust optimal control approaches to entry guidance have been studies extensively

with the dawn of NASA’s Artemis program and ambitions for sending humans to Mars

[6, 35]. The idea is to generate a guidance and control solution adaptable enough

to handle multiple sources of uncertainty while still ensuring guaranteed success in

completing mission objectives. For classification, this topic is represented in the form

of open-loop and closed-loop.

Figure 1-4: Nominal Deviation Sources for Entry Guidance taken from [10]

In the previous section, it was noted that trajectory planning for entry could be

classified by reference tracking (offline planning) and path planning (online planning).

Open-loop solutions for entry guidance typically fall under the category of reference

tracking where the developed nominal trajectory is based solely on initial conditions

and optimized around a cost function. As part of making these solutions robust
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against uncertainty, constraints on flight conditions and terminal bounds can be ap-

plied to further optimize the nominal path. Closed-loop solutions, however, can be

applied to both reference tracking and path planning methods and are more widely

used for optimal control of complex systems given their adaptability. Also classified

as dynamic programming, closed-loop optimization apply stability and convergence

guarantees necessary for highly uncertain systems. These solutions also allow for

building on the robustness of the model with probabilistic constraints [10]. It has

been noted in literature [18] that closed-loop guidance will be required to achieve

landing accuracy within ± 10 km of the target for advanced robotic and crewed mis-

sions. For EDL analysis and design, pre-flight identification of potential deviations

from expected flight conditions becomes essential to verifying mission success. Aside

from making systems adaptable through closed-loop guidance, additional computa-

tional measures of developing an expected trajectory envelope provide performance

guarantees necessary for the nature of the problem. This concept is known as reach-

able sets.

Reachable sets establish bounds and provide verification on terminal entry condi-

tions including the landing uncertainty ellipse. Additionally, these sets help predict

potential real-time performance amid potential error to the modeled nominal con-

ditions. To determine these sets for error analysis, uncertainty quantification (UQ)

methods can be applied.

There are several methods to performing UQ. Among these methods, there is

a trade-off between computational expense and quantification accuracy [10]. Par-

ticularly, linear covariance lies on the more efficient side of the spectrum; however,

its performance scales inversely with the nonlinearity of the system dynamics. Al-

ternatively, Monte Carlo (MC) simulation is known for its precise computation of

uncertainty bounds, but is computationally taxing to perform. Other methods have

been developed to strike balance between the two extremes [26, 14, 10].

Numerous work has been presented in literature to address robust entry guidance

for Mars entry. Lu et al. [24] presents a robust, closed-lop control approach by track-

ing a reference drag versus velocity profile, similar to space shuttle guidance, where
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both angle of attack and bank angle are controlled. Similarly, Cianciolo et al. [9] per-

forms dual direction control by modulating the angle of attack and bank angle and

applying the control method to a crewed-scale mission design. However, this method

only targets reducing errors in the open-loop formulation. Kluever [18], however,

investigates closed-loop guidance in comparison to developing open-loop nominal tra-

jectory solutions. In doing so they propose an adjustable altitude profile for online

predictive guidance based on MSL design. Ridderhof [37] also targets a closed-loop

guidance method for addressing external disturbances and model uncertainties by im-

plementing a stochastic-based control approach for an MSL-like entry scenario. Work

also has been done to improve reference trajectory planning through uncertainty

modeling for analysis on large-scale, crewed mission design potential [10, 15, 29].

1.2 Contributions of Thesis

Adequately addressing the challenges of entry, particularly that of Mars, involves

methods of both optimization and uncertainty analysis to construct a guidance method

robust enough to ensure a safe and successful landing.

While several approaches specialize in one of the major domains in Fig. 1-5 with

even some cross-disciplinary work, few approaches straddle all three of these domains

to express operational guarantees for more extreme entry cases with high-mass and

precision landing needs while respecting the strict constraints of the problem. Major-

ity of the proposed optimal control approaches focus on enhancing flight capabilities

for crewed design in the open-loop, reference trajectory formulation or seek to demon-

strate adaptability to uncertainty and potential disturbances by applying closed-loop

techniques to previously flown mission deigns. To the author’s knowledge, demon-

stration of an open- and closed-loop optimal guidance method to generate a reference

trajectory with adaptive capabilities has yet to be shown with a large-scale crewed

mission design.
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Figure 1-5: Outline of Topics Related to Thesis Work

Inspired by the computational structure in [12] and the approach outlined in [39],

this approach performs two-tiered reference trajectory optimization to improve on the

uncertainty bound range at terminal conditions and therefore, demonstrate greater

capabilities in precision landing amid strict state and control constraints and highly

nonlinear system dynamics. The goal is to present a computational infrastructure

capable of supporting an autonomous, decision-making spacecraft operating large-

scale, critical missions in the dynamic Mars entry environment.
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1.3 Thesis Organization

Ch. 2 will start by backtracking through some of the major topics addressed in this

introduction to provide an overview of considerations for motion planning, trajectory

optimization and control theory.

Ch. 3 provides a more detailed look at optimal control methods and explores

information-aware optimization as a form of robust optimal control by reviewing

methods pertinent to the approach for this work.

Ch. 4 breaks down the methodology adopted for the presented work detailing the

necessary equations, system modeling, and computation considerations.

Ch. 5 presents the generated results outlining performance capabilities with the

applied method along with supporting discussion.

Ch. 6 concludes by reflecting on the impact of the presented work and important

takeaways. This chapter also outlines considerations for extending this work to future

applications
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Chapter 2

Literature Review

2.1 Planning

Planning is an essential process to nearly all aspects of life. From everyday scheduling

tasks to more complicated jobs such as organizing air traffic through a major city

and even determining the trajectory of a spacecraft (which, ironically, is what this

thesis covers). The more complex the task, the more involved the planning must be.

However, what happens when plans must be completed and executed without human

intervention? While not a concern for most planning needs, this is a question widely

explored by the robotics field.

Many robotic applications investigate methods for developing automated mechan-

ical systems with sensing, operational, and computational capabilities [20]. In other

words, autonomous systems. This form of planning involves converting a high-level

request (i.e. take the garbage to the trash) to low-level motion instructions that can

be computationally implemented (i.e, move to trash location, pick up trash, carry

trash, move to trash can, etc.) [20]. In doing so, this provides opportunity to extend

solving problems beyond human capability through developing comprehensive and

efficient algorithms for robust implementation [20, 41].

This chapter will start by giving an overview of topics addressed in this thesis

(motion planning, trajectory optimization, and control theory) and then go on to

address pertinent work related to these subjects.
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2.2 Motion Planning

As mentioned previously, planning comes in all forms and is especially important

when involving motion. In most cases, our brains exist as an essential component to

determining basic movement strategy. To navigate from home to work, or even from

the kitchen to the bathroom, there must be some decision process to get from point

A to point B. While supporting equipment may aid in the completion of the task

(i.e., car, feet, GPS navigation, eye sight, etc.), there must be some direct human

intervention to determine the path and the method of execution. Therefore achieving

autonomous movement of a mechanical system (robot, vehicle, spacecraft, etc.) re-

quires establishing some internal guidance for moving from one position to the next

based on its capabilities. This need promotes the discipline of motion planning.

The motion planning process can be best understood by looking at a basic grid-

world scenario (see Fig. 2-1) explored widely in the robotics field.

Figure 2-1: Grid World Motion Planning Scenario

While the basic goal is to progress from the start to goal location, based on the

developed algorithm, motion planning allows mechanical systems to handle environ-

ments with varying levels of uncertainty, obstacle avoidance, unknown initial condi-

tions, disturbances, and more, without requiring direction from an external operator.

Subsequently, proper motion planning is an essential piece to developing autonomous
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function.

As discussed by LaValle [20], There are five key ingredients to setting up any

motion planning problem:

1. State space: A state space captures all the possible scenarios of the agent.

When considering a robot operating in a simple grid world, for example, the

state space would include all the available grid locations. However, if the system

allowed for information on the robots location, where it’s facing and how fast

it’s going, the state space would be expanded to include all available positions,

orientations and velocities. As a result, state spaces can be discrete (finite or

countably infinite) or continuous (uncountably infinite).

2. Time: Time is used to guide all motion planning decisions. This can be done

explicitly by defining the system in terms of time or implicitly by matching time

the the succession of the motion sequence.

3. Action space: The action space sets the actions to alter the state. In subjects

of control theory and robotics, the terms inputs and controls are used to identify

the actions and operator that executes the plans, respectively. In this case, a

controller or control system is what drives the changes in state of the trajectory

and a control sequence is a specified set of inputs that produce a given trajectory.

These terms will be addressed throughout the thesis as optimal control is covered

in greater depth. Additionally, methods of selecting actions include random

sampling to build a value function or selecting from nature.

4. Initial and Goal State: Planning problems typically involve navigating from

a set initial state to a specified goal state or goal state within a set of desired

goals.

5. Criteria: The criteria of a motion planning problem involves some objective

to guide the motion form the initial to goal state. This criteria includes 1)

feasibility - is it possible to find a plan, and 2) optimality within the feasible

plans - is there a plan that improves the performance in a defined way.
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The following sections of this chapter will review motion planning as it relates to

trajectory optimization and control theory.

2.3 Trajectory Optimization

Trajectory optimization is a powerful motion planning tool applied to goal-oriented

robotic motion [40] with a focus on optimal solutions for nonlinear and continuous dy-

namical systems. Seeking to to find a state-control sequence that reduces an applied

cost function, this type of optimization can be considered a form of finite-horizon

optimal control that focuses on problems with high dimensional systems, large state

spaces, or the need to be very accurate [41, 17]. These problems typically include sys-

tems with many degrees of freedom (DOF) (i.e., robotics and vehicle control) invoking

highly nonlinear dynamics and therefore, requiring stronger computational tools to

address the complexity of the system while utilizing a motion planning algorithm to

chart a path from an initial point to final states.

Unlike optimization in the parameterized world (such as the grid-world environ-

ment discussed in the previous section), trajectory optimization focuses on minimizing

the cost function, 𝐽 , for an arbitrary vector function, f(𝑥(𝑡), 𝑢(𝑡)). This significantly

expands the state space making these type of problems more challenging to solve [17].

This thesis focuses on continuous dynamical systems where the time, state space, and

control is continuous. This form is commonly seen in robotics and aerospace applica-

tions.

To better understand the set-up of these types of problems, we can define them

in terms of the five key components to motion planning.

1. State Space (x): Defined by a system of differential equations, ẋ = 𝑓(x,u)

known as the dynamics, to implicitly represent the continuous state space.

2. Control Sequence (U): Set of control inputs to the system dynamics. The

optimal control sequence is the set of inputs, U*(x), that minimizes the total

cost.1
1This is what allows trajectory optimization solutions to address optimal control problems. More
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3. Goal: Guiding from initial state to goal state or goal within set of goals states.

4. Optimization: Minimize the cost provided by a specified function 𝐽 (𝑥, 𝑢).

These systems can be discretized to form an approximation to the continuous-time

form

x𝑖+1 = 𝑓(x𝑖,u𝑖)

to expand on modeling and implementation capabilities. The above formulation mod-

els propagating the state space of the dynamics forward in time through incremental

time steps.

Basic trajectory optimization tends to be an open-loop planning system produc-

ing a locally optimal solution in which there are no convergence guarantees for every

formulation of the problem. This becomes a concern for situations in which a solu-

tion must be found given the provided input and problem constraints. This is what

dynamic programming addresses.

Dynamic Programming

Unlike standard optimization techniques, dynamic programming focuses on devel-

oping an optimal policy. Rather than computing the control for a single optimal

trajectory, this technique computes the optimal control for every point in the state

space for a more considerable approach to determining an optimal trajectory (see Fig.

2-2). This process is what drives closed-loop solutions for trajectory optimization.

Figure 2-2: Open-loop vs. Closed-loop Trajectory Optimization Solutions [17]

on this in Sec. 2.4
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In part of developing formulations for locating an optimal trajectory, these meth-

ods can also be applied to design control input.

2.4 Control Theory

Control theory is the study of designing inputs to physical systems defined by differ-

ential equations. Its applications are expansive and include mechanical systems (cars,

aircraft, automatic machinery, etc.), electrical systems (circulation pumps, noise fil-

ters, compressors, etc.), and even reaching to fields of chemistry and sociology [20].

Typical representations include feedback design which enables a controller to build its

performance off of the system response, otherwise known as a feedback controller.

Feedback Control

Aligned with dynamic programming, feedback controllers use some form of sensor

capability onboard the mechanical system to measure the system output and compute

the control input. See Fig. 2-3 for standard block diagram.

Figure 2-3: Feedback Controller Structure
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While feedback controllers are challenging to implement and adapt to complex

problem formulations, they provide greater stability to the overall control design by

executing based on system response. However while robust to disturbances, standard

control design does not implement optimality goals for strategically selecting the

control input to improve system response. Combining goals of trajectory optimization

and control theory leads directly to the discipline of optimal control.
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Chapter 3

Optimal Control

The limitations of space, and the human navigation thereof, leads to problems re-

quiring constrained optimization solutions [5]. These solutions typically generate a

nonlinear program problem where either the constraints or the objective function are

nonlinear. Optimal control solutions can then be applied to extend nonlinear pro-

gramming (NLP) to an infinite number of variables [5] for solutions with mandatory,

verifiable, and sufficient [25].

The overall goal of optimal control is to develop a controller capable of taking a

system from some initial state to some desired final state while also providing the best

possible performance based on some targeted measure of performance, defined by a

cost function, 𝐽 , for this work. Most problem involving motion planning and control

theory, especially for robotics applications, tend to focus on the optimal criteria.

Trajectory optimization takes part in control theory through developing optimal

control solutions. The dynamics, modeled as a set of differential equations for dy-

namical systems, determine how the system changes in response to applied control.

Therefore, for optimal control solutions, trajectory optimization not only optimizes

the plan, but also the control input which informs the optimal plan.

Additionally, taking trajectory optimization from a planning method to an online

control method introduces the domain of Model-Predictive Control (MPC), known for

its dominant capabilities in developing real-time optimal control solutions. MPC has

the capability of working with complex problems while avoiding the computational
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issues known to dynamic programming for problems with large state spaces.

3.1 Information-Aware Planning and Control

As part of NLP and optimal control, information-aware planning considers trajectory

optimization of the closed-loop form or dynamic programming.1 This topic includes

machine learning techniques from artificial intelligence (such as reinforcement learn-

ing) which improve on a problem or scenario through building a data knowledge

base, as well as Markov decision processes (MDPs) for partially observable states

(POMPDPs).2 To expand on the topics surrounding this thesis, we will start by re-

viewing methods for information-aware planning and their trade-offs in computation

and performance.

3.1.1 Direct vs. Indirect Methods

Methods for solving trajectory optimization problems can mostly be categorized as

direct or indirect. While direct methods discretize the entire continuous-time trajec-

tory optimization problem (dynamics, constraints, etc.) to convert to a NLP prior

to optimization, indirect methods find the optimal solution first, then discretize the

resulting conditions [17]. As with any computational technique, there are trade-offs

related to the optimization goals. Indirect methods stand out mainly for their ac-

curacy and reliable error estimate [17]. However, in comparison to direct methods,

indirect methods have reduced convergence guarantees and require more precise initial

guesses [17].

As an extension to indirect and direct trajectory optimization, shooting methods

simulate an approximate trajectory to optimize around [17]. This form tends to work

best for problems where dynamics must be calculated accurately but the control

space is fairly simple [5]. This applies directly to trajectory optimization for entry

spacecraft given the complex, nonlinear dynamics yet low order of control inputs (i.e.,
1Discussed at length in Sec. 2.3 of this thesis
2See Ref. [12] for more information on information-aware planning techniques
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only firing thruster for control execution) [17].3

3.1.2 Differential Dynamics Programming

Differential Dynamic Programming (DDP) is a form of direct shooting that com-

putes the optimal trajectory through backwards propagation of the optimal control

[17]. Due to computation of 2𝑛𝑑-order and cross partial derivatives, NLP’s tend to

grow quadratically with the number of decision variables creating a computationally

expensive solution method [3]. In response, DDP has demonstrated strong quadratic

convergence abilities compared to standard Newton’s method4 [40] allowing for a NLP

method capable of operating on the exact value of the state as opposed to a linear

approximation [31].

For this method, dynamic constraints do not need to be specified given the dy-

namics model is integrated within the optimization. However, for these formulations

control is inherently unconstrained [40]. While this is beneficial to allowing for real-

time, fast computation (given that the controller has full range of the search space

for devising an optimal solution), it presents an issue for problems where the control

can only operate within specified bounds. Tassa’s approach in Ref. [40] seeks to

expand on this limitation by applying control boundary constraints expanding the

application to problems where the control is limited in kinematics such as steering a

vehicle or joint rotation of a humanoid robot.

3.1.3 Iterative Linear-Quadratic Regulator

As part of the family of DDP principles, iterative Linear-Quadratic Regulator is a

Gauss-Newton approximation that takes the optimization a step further by only re-

quiring computation of the first-order derivatives as opposed to classic DDP methods

that require up to second-order derivatives [40, 39]. This allows the computational

cost of this optimal controller to be more efficient and applicable to systems with

nonlinear dynamics models (as with the model for this application).
3See Ref. [17] and [5] for more information on trajectory optimization methods.
4See Ref. [25] and [5] for a more in-depth description on Newton’s method
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iLQR bases its operation off the Linear-Quadratic Regulator (LQR); a respected

concept in optimal control with far-reaching application for trajectory optimization

and widely used in robotics. LQR functions as a common feedback controller that

operates based on two major assumptions:

1. Known, linear system dynamics expressed in the form:

ẋ = Ax + Bu

Where x and ẋ are the state and state time derivative, u is the control input,

and A and B are matrix coefficients that contain the effects of state and control

input on the derivative of the state.

2. Quadratic cost function of the form:

𝐽 =

∫︁ ∞

0

(︀
x𝑇Qx + u𝑇Ru

)︀
𝑑𝑡

Where Q and R are weights applied to the cost function (penalties) for note

being at the target state while applying some control signal. A high Q value

prioritizes getting to the target state ASAP, and a higher R prioritizes a small

control input for getting to the target state.

LQR plans an optimal trajectory sequence (for both state and control) where

controller 1) linearizes the dynamics, 2) evaluates the cost function around a current

point in space, and 3) computes the feedback gain. This drives the system from an

initial state to a target state based on the system model and cost function. However,

the assumption that the dynamics are linear and consistent for all states causes LQR

to optimize assuming the approximated linear dynamics computed at the current time

hold for all time [16].

To avoid this locally linear assumption That causes LQR solutions to only be valid

at the current point in time when the system dynamics are nonlinear, iterative LQR

(iLQR) expands on the LQR method to optimize at each time step by iteratively
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reusing LQR to refine the trajectory and eventually, converge to an optimal solution

[38, 39, 41].

Each iteration of the iLQR controller can be categorized by the following three

steps:

1. Dynamics Rollout and Derivatives: To establish a starting reference tra-

jectory, a dynamics rollout is completed by integrating over the system of equa-

tions. For this work, Runge-Kutta integration is applied to obtain this tra-

jectory starting from an initial state x0. Then, with the reference trajectory,

{x, u}, the first-order derivatives for the state space and cost function are com-

puted.

2. Backward Pass: From the reference trajectory, starting from the last state

and iterating backwards, the controller determines the optimal control sequence

for this trajectory. This is performed continuously until a successful sequence

is found.5

3. Forward Pass: The control sequence from the backward pass is then propa-

gated forward in time to develop the optimal trajectory.

By running this sequence over an iteration and continuously recomputing the dy-

namics, the solution is simultaneously refined allowing for nonlinear dynamics and a

non-quadratic cost function for this implementation. This method allows for closing

the loop on the trajectory optimization sequence while still permitting performance ef-

ficiency and control of a system with complex nonlinear dynamics making this method

aptly beneficial to the Mars entry problem.

The iLQR closed-loop optimizer has found great success in optimizing and prop-

erly emulating the movement of humanoid robotics and other complex systems with

many degrees of freedom and highly nonlinear dynamics such as unmanned aerial

vehicles (UAV). Several approaches, and formulations thereof, have applied iLQR to

improve on the trajectory optimization capabilities for these systems.
5See Ch. 4 for details on how the success of the backwards pass is gauged.
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Li et al. [22] explores improving biological movement capabilities for robotic sys-

tems by applying iLQR to a 2- and 6-link muscle arm model. Results demonstrated

improvements on efficiency and accounting for variations and disturbances in the

movement compared to other existing optimal control algorithms applied to similar

problems.6 To more explicitly model these disturbances within the optimizer, iterative

Linear-Quadratic Gaussian (iLQG) methods which incorporate control-dependent

noise to achieve similar effects of an energy cost [42, 43]. This method has shown

success for humanoid robotics completing complex tasks such as transitioning from

positions of sitting on the ground to standing [39].

Additionally, over the past five years there has been demonstrated success applying

iLQR to autonomous driving vehicles [34, 45] where, similar to Mars entry, there are

strict control constraints and high levels of uncertainty. Solutions have addressed

model predictive capability for obstacle avoidance with uncertainty awareness for the

dynamic environment.

Chen et al. [8] also applies Neural Networks to demonstrate a reinforcement

learning architecture capable of refining iLQR optimization without prior information

on the dynamics model, a scenario more representative of real-world applications

(autonomous driving, computer vision, etc.).

In [10], Noyes explores closed-loop reference trajectory optimization for Mars entry

as part of their doctoral thesis. In this approach, a closed-loop optimizer is overlaid

with an open-loop optimizer to achieve stronger stability and convergence guarantees

on the reference trajectory while maintaining the problem constraints. Alternative

to the methods presented in Ch. 1, Noyes focuses on expanding the control-limited

DDP approach presented by [40] to demonstrate robust entry performance for MSL-

( 3 mT in mass) and SRL-class (5 mT in mass) missions. The improvements made on

the DDP algorithm demonstrate improved entry flight path angle as well as reference

control and feedback gains presenting this as a viable approach to closing the loop on

entry trajectory optimization.
6See ref. [19], [13], and [4] for more work on applying iLQR for improving bio-inspired robotic

performance.
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While this thesis takes a similar approach of stacking open- and close-loop opti-

mization to develop a stronger reference trajectory, and therefore, more robust entry

guidance, this work focuses more on directly implementing iLQR to avoid the com-

putational cost of taking second-order derivatives of the nonlinear dynamics. Addi-

tionally, to build on Noyes’s results, this work extends the reference trajectory opti-

mization for guidance assessment to more challenging mission scenarios with greater

mass requirements (20-40 mT) while still adhering to strict terminal conditions. For

more detail on how iLQR is implemented for this approach, see Ch.4 of this thesis.
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Chapter 4

Methodology

As mentioned in Ch. 1, the competing objectives of adhering to mission constraints

while accounting for uncertain model and flight conditions makes Mars entry guidance

a challenging problem to solve. Additional goals of advancing mission scale to incor-

porate high-mass and low-lift entry vehicle design for precise, high-elevation landing

invokes the need for a powerful guidance method capable of meeting these challenges.

The presented approach targets reference trajectory optimization to build a mo-

tion planning model robust against strict formulation constraints and adaptable nom-

inal deviations. To achieve these capabilities, this program utilizes a two-tiered, open-

and closed-loop trajectory optimization approach with uncertainty analysis on reach-

able terminal states to address feasibility in landing future large-scale missions on

Mars. The structure of this program is presented as:

1. Open-loop nominal trajectory for reference tracking using NLP solver.

2. Closed-loop trajectory optimizer that builds off the open-loop solution using an

iLQR controller tailored to this problem.

3. Reachable set analysis performed via Monte Carlo (MC) simulation to compute

error estimation on terminal states.

Applying an open-loop solution allows for a baseline nominal trajectory con-

structed within state and control bounds to build the closed-loop solution off of.
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Unlike most reference tracking methods which only compute an open-loop solution,

this approach overlays a closed-loop, iLQR optimizer for enhanced performance. Ad-

ditionally, optimization through a closed-loop formulation provides benefits of per-

formance stability and convergence guarantees no provided in the open-loop. Finally,

uncertainty quantification on reachable terminal states based on deviations from the

nominal model conditions allows for better understanding of performance capabilities

for such high-stakes missions.

The following sections will review the problem formulation in detail including

considerations for the dynamics model, entry guidance conditions and modeling of

vehicle conditions as well as environmental conditions. This chapter will also review

methodology for constructing solutions in the open- and closed-loop forms along with

the MC simulation setup.

4.1 Problem Formulation

4.1.1 Atmospheric Model

Table 4.3 below outlines the necessary constants related to Mars used in this work.

Mars Parameters
Surface Acceleration due to Gravity, 𝑔0 [m/s2] 3.71

Surface Density, 𝜌0 [kg/m3] 0.0158
Equatorial Radius, 𝑅𝑀 [km] 3396.2

Gravitational Constant, 𝜇𝑀 [km3/s2] 42,840
Scale Height, 𝐻 [km] 9354

Table 4.1: Martian Planetary Conditions

An exponential atmospheric model shown in the following equation was used to

map the density of the Martian atmosphere.

𝜌 = 𝜌𝑟𝑒𝑓 exp

(︂
ℎ𝑟𝑒𝑓 − ℎ

𝐻

)︂
(4.1)
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In this model, the reference altitude is taken at the surface (ℎ𝑟𝑒𝑓 = 0 km) and a

reference surface density of 𝜌𝑟𝑒𝑓 = 0.0158 kg/m3. The results of this model over the

entry altitude are presented in Fig. 4-1. As mentioned in the introduction of this

Figure 4-1: Martian Density Profile

thesis, the Martian atmosphere is significantly thinner than that of Earth making

entry vehicle deceleration far more difficult than previous crewed missions. This

phenomenon is represented in Fig. 4-2.
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Figure 4-2: Earth and Mars Atmospheric Density Comparison

However, given that thermodynamic and fluid dynamic effects cause the atmo-

sphere to be nonuniform, a more representative model provided by NASA based on

the temperature and pressure calculations for the stratosphere and troposphere, re-

spectively, are used for this approach.1

For ℎ > 7000 m:

𝑇 = −23.4− .00222 * ℎ (4.2a)

𝑝 = .699 * exp (−.00009 * ℎ) (4.2b)

For ℎ < 7000 m:

𝑇 = −23.4− .00222 * ℎ (4.3a)

𝑝 = .699 * exp (−.00009 * ℎ) (4.3b)

In this case, density was calculated with the following equation:

𝜌 =
𝑝

0.1921 * (𝑇 + 273.1)
(4.4)

1Equations 4.2 and 4.3 are provided by NASA Glenn Research Center website:
https://www.grc.nasa.gov/www/k-12/airplane/atmosmrm.html
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4.1.2 Entry Equations of Motion

For this paper the Mars EDL sequence is defined as an entry vehicle entering the

Martian atmosphere at an altitude of 125 km and terminating prior to the terminal

descent phase where a parachute, inflatable deployment, or some other terminal de-

scent strategy is enacted. The 3-DOF dynamics that correspond with this sequence

are listed below [21].

ℎ̇ = 𝑣 sin 𝛾 (4.5a)

𝑣̇ = −𝐷
𝑚

− 𝑔 (ℎ) sin 𝛾 (4.5b)

𝛾̇ =
𝐿

𝑚𝑣
cos𝜎 +

(︂
𝑣

𝑟
− 𝑔(ℎ)

𝑣

)︂
cos 𝛾 (4.5c)

𝜃 =
𝑣 cos 𝛾 sin𝜓

𝑟 cos 𝛾
(4.5d)

𝜆̇ =
𝑣

𝑟
cos 𝛾 cos𝜓 (4.5e)

𝜓̇ =
𝑣

𝑟
sin𝜓 cos 𝛾 tan𝜆+

𝐿

𝑚𝑣 cos 𝛾
sin𝜎 (4.5f)

Although 3-DOF dynamics are formulated with assumptions such as stationary

atmosphere and non-rotating planet, this method is suitable for system analysis and

design given that most entry guidance relies on translational motion [21]. Addi-

tionally, given the instantaneous nature of the entry sequence these assumptions are

acceptable for this work.

Furthermore, by simplifying the equations of motion to a longitudinal model, the

target state is formulated in terms of downrange replacing the longitude and latitude

integration shown with the following equations [21]. This is best suited for dynamical

analysis.

ℎ̇ = 𝑣 sin 𝛾 (4.6a)

𝑣̇ = −𝐷
𝑚

− 𝑔 (ℎ) sin 𝛾 (4.6b)

39



𝛾̇ =
𝐿

𝑚𝑣
u +

(︂
𝑣

𝑟
− 𝑔(ℎ)

𝑣

)︂
cos 𝛾 (4.6c)

𝑠̇ = cos 𝛾 (4.6d)

The above longitudinal dynamics are formulated with bank angle, 𝜎 being the con-

trol input (u = cos𝜎) and using the following aerodynamic expressions representing

gravitational, drag, and lift forces, respectively:

𝑔(ℎ) =
𝜇

(ℎ+𝑅𝑀)
(4.7a)

𝐷 =
1

2
𝐶𝐷𝜌𝑣

2𝐴 (4.7b)

𝐿 =
1

2
𝐶𝐿𝜌𝑣

2𝐴 (4.7c)

4.1.3 Entry Guidance Considerations

As discussed in literature [23], entry guidance in the aerospace field is the process

of steering a hypersonic vehicle through a planetary atmosphere by providing initial

conditions to achieve the terminal conditions. For the purposes of this paper, entry

guidance takes place from atmospheric entry on Mars (h = 125 km) to the point

of parachute or inflatable deployment, defined by a Mach number ∈ [1.4, 2.2] which

translates velocities ∈ [320, 540] m/s at termination of the entry phase.

Provided the Martian atmosphere is thick enough to induce significant heating

levels on an entry vehicle while thin enough to not provide adequate terminal descent

velocity from drag alone [6], entry guidance techniques must consider maximizing the

terminal altitude while still reducing velocity to terminate within the specified entry

limits.

Of the closed-loop, optimal control work applied to Mars entry trajectories, few

studies investigated the capabilities for large entry vehicle design with significantly

higher ballistic coefficients and lower lift-to-drag ratios in comparison to previously

flown payload landings on the Martian surface.
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Vehicle Model

To verify the optimization setup, this study will use conditions from the Mars Science

Laboratory (MSL) mission. MSL successfully landed the largest payload on Mars

using bank angle control, making way for greater capabilities for successfully landing

future missions including the most recent Mars 2020 lander mission which takes after

the MSL entry design [32]. The MSL vehicle design is standard with blunt-body,

70𝑜 cone aeroshell designs (shown in Fig. 4-3) flown on the Apollo missions previous

Mars lander missions. Therefore, the MSL vehicle configuration, standard with the

blunt-body aeroshell design, along with the initial and terminal entry conditions will

be used to confirm a proper optimization setup.

Figure 4-3: MSL Vehicle Design

Building off the MSL verification, a 40 mT (40,000 km) blunt-body vehicle design

consistent with parameters projected by Mall et al. [27] will be applied to the pre-

sented computational framework to test the limits of the approach by implementing

this large-scale design. Specifics on vehicle parameters are presented in Table 4.2.

Constraints

As part of determining the success of the calculated trajectory, values for dynamic

pressure 𝑞, heat rate 𝑄̇, and peak acceleration 𝑎𝑛 (in Earth g’s) were computed with

equations 4.8a-c:
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Vehicle
Parameter MSL Blunt Body

Mass, 𝑚 [kg] 3151 40,000
Nose Diameter, 𝐷𝑛 [m] 4.5 10
Surface Area, 𝐴 [m2] 15.9 78.54

Ballistic Coefficient, 𝛽 [kg/m2] 121 300
Lift-to-Drag Ratio, 𝐿/𝐷 0.24 0.6

Table 4.2: Vehicle Parameters [9, 27, 30]

𝑞 =
1

2
𝜌𝑣2 (4.8a)

𝑄̇ = 𝐾𝑞

(︂
𝜌

𝑟𝑛

)︂𝑁

𝑣𝑀 (4.8b)

𝑎𝑛 =

√
𝐿2 +𝐷2

𝑚 * 𝑔0,𝐸
(4.8c)

Where 𝑚 is the vehicle mass and 𝐿 and 𝐷 are lift and drag forces, respectively.

All remaining constants are outlined in Table 4.3.

𝐾𝑞 1.903E-07
𝑟𝑛 0.6
𝑁 0.5
𝑀 3

Earth Gravitational Const. 𝑔0,𝐸 [m/s2] 9.81

Table 4.3: Entry Flight Parameter Constants

Values
Condition Nominal Min. Value Max. Value

Dynamic Pressure, 𝑞 [kPa] 12 14.1 16.0
Heat rate, 𝑄̇ [km] 1000 1950 2339
G-loading, 𝑔𝑠 [km] 5 11.9 13.4

Table 4.4: Entry Flight Parameter Bounds [46]

For the flight parameter constraints presented in table 4.4, nominal values are

taken as the set limits for a crewed-scale entry presented in literature [6, 10]. However,

the minimum and maximum values shown in the table reflect peak ranges seen during
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the MSL lander mission, reflecting realistic ranges seen during an executed flight of

maximum scale.

Boundary Conditions

Boundary constraints on the state variables allow for proper nominal reference trajec-

tory modeling in the open-loop as well as analysis on acceptable generated trajectories

in the closed-loop. Table 4.5 outlines the standard state constraints used in this ap-

proach along with the initial entry values.

Values
State Initial Min. Terminal Max. Terminal

Altitude, ℎ [km] 125 4 –
Velocity, 𝑣 [m/s] 5500 320 540

Flight Path Angle, 𝛾 [deg] -15 – –
Downrange, 𝑠 [km] 0 0 900

Table 4.5: Entry Boundary Conditions [33, 37]

4.2 Open-Loop Formulation (CasADi)

The goal of the open-loop optimizer is to directly apply the boundary conditions and

problem constraints required for this problem for the closed-loop optimizer to track

and improve upon. This avoids having to explicitly develop a non-quadratic cost

function that incorporates several constraints and performing complex derivatives on

a highly non-quadratic cost function which is computationally more expensive.

4.2.1 Cost Function

Given that high-mass mission designs will cause a significant challenge for reducing

vehicle speeds at high enough altitudes for parachute deployment, the open-loop for-

mulation models these constraints by optimizing around maximum terminal altitude

while constraining the terminal velocity and altitude limits
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max ℎ(𝑡𝑓 ) (4.9)

Subject to:

ℎ(𝑡0) = ℎ0 (4.10a)

𝑣(𝑡0) = 𝑣0 (4.10b)

ℎ(𝑡𝑓 ) ≥ ℎ𝑚𝑎𝑥 (4.10c)

𝑣(𝑡𝑓 ) ≤ 𝑣𝑚𝑎𝑥 (4.10d)

It is important to note that for the formulation of the open-loop solution for this

approach, entry flight constraints presented in Table 4.4 were not directly applied to

the model, but instead overlaid on solutions to analyze the feasibility of the method

based on the results.

4.2.2 Nonlinear Program Solver

CasADi is an open-source tool that permits nonlinear optimization and algorithmic

differentiation making it suitable for this type of optimal control problem10. Given

that the Opti modeling class works in discrete time, the Runge-Kutta method is

implemented to solve the equations of motion given the set constraints [2]. Table 4.6

shows a full breakdown of the CasADi setup.

Parameter Value

NLP Solver iPOPT
Modeling Class Opti
ODE Method Runge-Kutta

Discretized Points 50
Max Iterations 8000

Table 4.6: CasADi Solver Setup
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4.3 Closed-Loop Formulation (iLQR)

Discussed at length in Ch. 3, iLQR has demonstrated notable success in robotics and

other fields as a closed-loop method for optimizing trajectories of mechanical systems

with highly nonlinear dynamics while respecting control bounds. To understand

how this method generates optimal solutions, the formulation implemented for this

approach is outlined in the following section.

4.3.1 iLQR Structure

System Model

Following the trajectory optimization set-up outlined in Ch. 2, the state space is

defined by discrete-time dynamics modeled by a generic function f,

x𝑖+1 = f (x𝑖,u𝑖) (4.11)

models the progression of the state space x ∈ R𝑛 from 𝑖 to 𝑖+1, in the discretized

time sequence, given some control input u ∈ R𝑚. Simultaneously, a cost value is

computed summing over the running cost, 𝑙 (or cost at each time step), and adding

the final cost, 𝑙𝑓 . This develops from starting at some initial state x0 and applying a

control sequence U ≡ {u0,u1, ...,u𝑁−1} in the form:

𝐽0 (x,U) =
𝑁−1∑︁
𝑖=0

l (x𝑖,u𝑖) + l𝑓 (x𝑁)

Where x𝑖 for 𝑖 > 0 is computed via equation 4.11 and some specified x0 when

𝑖 = 0. The goal is to develop some optimal control sequence that minimizes this

overall cost and optimizes the solved trajectory.
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Dynamics Rollout

With initial state, 𝑥0, and an initialized control sequence, U, simulate the system by

performing a rollout of the dynamics to obtain the trajectory through the state space,

X, for a complete trajectory {X,U}.

Backward Pass

To initiate the backwards pass, the following expansion coefficients are computed in

the model.

𝑄x = ℓx + f⊤x𝑉
′
x (4.12a)

𝑄u = ℓu + f⊤u𝑉
′
x (4.12b)

𝑄xx = ℓxx + f⊤x𝑉
′
xxfx + 𝑉 ′

x · fxx (4.12c)

𝑄uu = ℓuu + f⊤u𝑉
′
xxfu + 𝑉 ′

x · fuu (4.12d)

𝑄ux = ℓux + f⊤u𝑉
′
xxfx + 𝑉 ′

x · fux (4.12e)

With the expansion coefficients in equation 4.12, the open-loop term and feedback

gain term are computed as k = −𝑄−1
uu𝑄u and K = −𝑄−1

uu𝑄ux, respectively. From

the expansion coefficients, the quadratic value of the model at time 𝑖 is given by the

following set of expressions:

∆𝑉 (𝑖) =
1

2
𝑄u𝑄

−1
uu𝑄u (4.13a)

𝑉x(𝑖) = 𝑄x −𝑄u𝑄
−1
uu𝑄ux (4.13b)

𝑉xx(𝑖) = 𝑄xx −𝑄xu𝑄
−1
uu𝑄ux (4.13c)
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Forward Pass

After completing the backward pass, a new trajectory is computed by a forward pass

through discretized time, 𝑖:

x̂(1) = x(1) (4.14a)

û(𝑖) = u(𝑖) + k(𝑖) + K(𝑖) (x̂(𝑖)− x(𝑖)) (4.14b)

x̂(𝑖+ 1) = f (x̂(𝑖), û(𝑖)) (4.14c)

A regularization term 𝜇 is applied to the local cost to account for the non positive-

definite second-order Hessian’s computed on the cost:

𝑄̃uu + 𝜇I𝑚 (4.15)

Following the regularization, modifications via a Levenberg-Marquardt parame-

ter adds a quadratic cost around the control sequence for more conservative steps.

However, regularization can apply unnecessary to control deviations. The follow-

ing equations are implemented to penalize deviations in the state as opposed to the

control:

𝑄̃uu = ℓuu + f⊤u (𝑉 ′
xx + 𝜇I𝑛) fu + 𝑉 ′

x · fuu (4.16a)

𝑄̃ux = ℓux + f⊤u (𝑉 ′
xx + 𝜇I𝑛) fx + 𝑉 ′

x · fux (4.16b)

k = 𝑄̃−1
uu𝑄̃u (4.16c)

K = 𝑄̃−1
uu𝑄̃ux (4.16d)

The impact of this approach with respect to other control-based regularization is

that K forces the new trajectory closer to the old trajectory improving on robustness

[39].
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Finally, value updates from equations 4.13a-c are performed with the following

calculations:

∆𝑉 (𝑖) =
1

2
k⊤𝑄uuk + k⊤𝑄u (4.17a)

𝑉x(𝑖) = 𝑄x + K⊤𝑄uuk + K⊤𝑄u +𝑄⊤
uxk (4.17b)

𝑉xx(𝑖) = 𝑄xx + K⊤𝑄uuK + K⊤𝑄ux +𝑄⊤
uxK (4.17c)

As part of the formulation developed in [39], a line-search parameter is, 0 < 𝛼 ≤ 1

introduced to better tune the solution. This parameter is integrated with the control

update as follows:

û(𝑖) = u(𝑖) + 𝛼k(𝑖) + K(𝑖) (x̂(𝑖)− x(𝑖)) (4.18)

4.3.2 Cost Function

For the closed-loop formulation, the cost function is modified from that applied to the

open-loop solution to incorporate a running cost term represented in the following

form:

𝐽𝑖 =
𝑁−1∑︁
𝑗=𝑖

ℓ(x𝑗,u𝑗) + ℓ𝑓 (x𝑁) (4.19)

where at each iteration,

ℓ(x𝑗,u𝑗) = (x − x*)⊤𝑄 (x − x*) + u⊤𝑅u (4.20)

And the x* term denotes the reference trajectory tracked from the open-loop

solution.
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4.4 Uncertainty Quantification (MC Simulation)

To understand the robustness of the proposed computation program against inevitable

uncertainties to nominal modeling, MC simulation are implemented to determine

reachable sets from a uniform initial condition distribution. This approach was chosen

given the fairly high frequency of the closed-loop optimizer (1 sec - 45 sec depending

on the implementation), ease of computational implementation, and error estimation

accuracy. Table 4.7 outlines the max disturbance to the distribution determined from

previous modeling in literature [33, 37, 46].

Initial State 𝜎

ℎ0 1000 m
𝑣0 50 m/s
𝛾0 0.1𝑜

𝑠0 1500 m

Table 4.7: MC Simulation 𝜎 Values Applied to Normal Distribution
2

2The 𝜎 symbol used here represents standard deviation consistent with statistics representation.
This should not be confused with the 𝜎 symbol used to represent the bank angle control input
applied to the entry equations of motion expressed in Sec. 4.1.2 of this chapter.
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Chapter 5

Results

5.1 MSL Verification

To demonstrate the capabilities of the guidance approach presented in this work prior

to scaling to a crewed design, the system was tested against MSL-derived flight con-

ditions outlined in literature [6, 35, 46] to establish performance capabilities against

the current state-of-the-art.1

As outlined in Ch. 4, this system constitutes a tiered approach to reference

trajectory optimization by establishing a baseline open-loop solution and building-up

using a closed-loop formulation. The following sections outline results from tier 1 -

implementing the open-loop NLP solver in CasADi, and then tier 2 - referencing the

open-loop solution to construct closed-loop trajectory optimization using the iLQR

method.

1While Mars 2020 is the most recent and highest-performing Mars mission to date, MSL condition
were used for this work given that literature on MSL is more extensive and the achieved mission
objectives are comparable.
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5.1.1 Tier 1: Open-loop Solution

For NLP solvers, establishing reasonable and predictive initial guesses is just as im-

portant as the formulation itself. Table 5.1 compares the initial guesses to the final

conditions solved by the programmer.2

State Initial Guess Final Condition

ℎ 11.8 km 12.8 km
𝑣 854 m/s 488 m/s
𝛾 360𝑜 346𝑜

𝑠 616 km 626 km
𝑡𝑓 – 231.1 sec

run time 7.6 sec

Table 5.1: Open-Loop NLP Solver Values for MSL Design

The final state values demonstrate considerable adherence and improvement on the

initial guesses formulated for the problem with velocity terminating at 488 m/s (Mach

2) and altitude at 17.1 km, both of which are sufficient for parachute deployment.

Additionally, from the flight profile for each state, shown in Fig. 5-1, the trajectory

does not dip below 12.9 km avoiding interference with the surface.

From the state and control response in Fig. 5-1 and 5-2, the system switches to

full-lift control (𝜎 = 0𝑜) around 100 seconds causing the g-load 18 g’s, 2 g’s above

recorded MSL conditions [46].

2Guesses are established as a combination of terminal entry conditions recorded for MSL and
Mars 2020. Additionally, some modification, particularly for expected velocity, were made to allow
for feasibility of the solution and set constraints
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Figure 5-1: Open-Loop State Dynamics for MSL Conditions

Figure 5-2: Open-Loop Control for MSL Conditions

5.1.2 Tier 2: Closed-Loop Solution

Building off of tier 1 by tracking the reference trajectory through the energy optimal

cost function, the following results demonstrate performance of the closed-loop iLQR
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optimal controller.

Figure 5-3: iLQR Closed-Loop State Dynamics for MSL Conditions

Fig. 5-3 and 5-4 demonstrate the state and control performance, respectively.

For this closed-loop performance, tuning of the cost function and alpha parameter

became extremely important to ensure adequate tracking of the reference trajectory.

For this and the following test case, tuning was selected by trial and error based on

values that provided the most optimal performance.

As seen from the results in Table 5.2, terminal conditions deviate from the refer-

ence trajectory causing mainly altitude and velocity values to fall outside of required

ranges for parachute deployment. It is important to note that position landing ac-

curacy for this and subsequent cases is determined from the approximate terminal

downrange from the MSL mission.

While the results do not precisely track the terminal conditions from the open-loop

optimizer, they do however demonstrate smoothing on the overall trajectory (each

of the states) improving on the flight conditions presented in Fig. 5-5 and outlined

in Table 5.3. This effect can also be seen from Fig. 5-6 which maps the entry
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Figure 5-4: iLQR Closed-Loop Control for MSL Conditions

altitude against the velocity. This graph shows that the trajectory relies heavily

on low-altitude conditions to slow the vehicle over 4000 m/s. However, the work

still demonstrates significant capability in establishing an optimal trajectory with

improved performance for heat rate, dynamic pressure, and g-loading all maximizing

below the lower-bound limit derived from MSL.

State Initial Condition Final Condition Nominal Final Condition

ℎ 125 km 5.8 km > 6 km
𝑣 5500 m/s 788 m/s < 520 m/s
𝛾 -15𝑜 (345 𝑜) 345𝑜 –
𝑠 0 km 773 km 616 km
𝑡𝑓 – 231.1 sec –

run time 2.28 sec

Table 5.2: Initial and Terminal Conditions for iLQR Closed-Loop Solution with MSL
Design

Overall, the two-tiered optimization approach for Mars entry trajectory demon-

strates capabilities on developing proper trajectory design. While the MSL verifi-

cation test showed deviations from expected terminal conditions, these values still

lie within the same order of magnitude without considering maneuvering techniques
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Figure 5-5: iLQR Entry Flight Conditions for MSL

Figure 5-6: iLQR Entry Profile for MSL Conditions

applied to MSL entry guidance to achieve those values. Additionally, the significant

reduction of entry flight conditions below prompts further investigation on how this

approach approach matches up with a larger scale mission on the order of a crewed

mission design.
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Open-loop Closed-loop
𝑞 [kPa] 21.4 13.4

𝑄̇ [kW/m3] 1057.7 944.6
𝑎𝑛 [g0] 18.5 11.6

Table 5.3: Max Flight Conditions from NLP Solver

5.2 Crewed-Scale Design

Part of the motivation for this thesis is to build up capabilities in entry guidance to

establish a viable method for potential crewed-landing missions. Detailed extensively

in Ch. 1 of this thesis, the prospect of landing humans or even larger-scale missions

on the Martian surface will require guidance technology robust to uncertainty and

disturbances from nominal guidance schemes. The results presented in the following

sections reviews performance of the proposed method with respect to a large-scale,

crewed entry vehicle design. The objective is to demonstrate viable performance that

significantly slows the entry vehicle while maintaining high altitudes.

To address the objective, the following results apply the same approach analyzed

in the previous section to a mission design of crewed scale. The major indicators for

a mission of this caliber rely on stronger limitation to maximum levels for entry flight

conditions along with more restricting terminal altitude and landing location error.

5.2.1 Tier 1: Open-loop Performance

To formulate the nominal trajectory in the first tier of the program, the NLP solver

developed and demonstrated in the MSL verification analysis is applied with modified

constraints. Working off the same initial guesses established for the MSL verification

test, Table 5.4 compares these guesses to the terminal conditions for this crewed case.

While terminal velocity increased to the upper-bound of accepted parachute de-

ployment demonstrated in Fig. 5-7, all calculated nominal values lie within the desired

ranges expressed in Table 4.5 and improve on the initial guesses demonstrating va-

lidity in the first tier of the approach. Additionally, open-loop control shown in Fig.

5-8 is consistent with bank angle modulation constraints between 0 and 90 degrees.
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Figure 5-7: Open-loop State Dynamics for Crewed Design

State Initial Guess Final Condition

ℎ 11.8 km 17.1 km
𝑣 854 m/s 520 m/s
𝛾 360𝑜 357𝑜

𝑠 616 km 662 km
𝑡𝑓 – 247.93 sec

run time 44.5 sec

Table 5.4: Open-Loop NLP Solver Values

However, the abrupt change in lift vector direction causes high g-loading, plotted

against the control in the same figure.
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Figure 5-8: Open-loop Control for Crewed Design

5.2.2 Tier 2: Closed-loop Performance

Building up to the second tier of the approach, state and control weights were tuned

in the energy optimal cost function to better constrain the closed loop terminal values

and perform better tracking of the boundaries set in the open-loop formulation.

State Initial Condition Final Condition Nominal Final Condition

ℎ 125 km 5.82 km > 6 km
𝑣 5500 m/s 621.5 m/s < 520 m/s
𝛾 -15𝑜 (345 𝑜) 340.2𝑜 –
𝑠 0 km 635.3 km 616 km
𝑡𝑓 – 247.93 sec –

run time 45.67 sec

Table 5.5: Initial and Terminal Conditions for iLQR Closed-Loop Solution with
Crewed-Scale Design

The results outlined in Table 5.5 demonstrate close tracking to nominal conditions.

By finely tuning the line-search parameter, 𝛼, for the backward pass search of the

iLQR method, results for the crewed design were able to track nominal bounds more

consistently producing a terminal velocity over 100 m/s less than the computed value
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Figure 5-9: iLQR Closed-loop State Dynamics for Crewed Design

Figure 5-10: iLQR Closed-loop Control for Crewed Design
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for MSL verification shown in Fig 5-9. Additionally, the control input shown in

Fig. 5-10 is able reduce g-loading for a less abrupt modulation of the lift vector.

Finally, the entry profile presented by Fig. 5-12 demonstrates that the trajectory was

capable of remaining at higher altitudes, closer to 20 km, for longer periods of time

while the vehicle slowed to terminal conditions. While these improvements came at

the computational expense of run time increasing the length an order of magnitude

over that for MSL verification, these results strongly demonstrate the iLQR optimal

controller’s ability to apply stable, closed-loop control to complex nonlinear systems.

Open-loop Closed-loop
𝑞 [kPa] 39.7 25.6

𝑄̇ [kW/m3] 1397.5 1067.4
𝑎𝑛 [g0] 15.7 10.2

Table 5.6: Max Crewed Flight Conditions from NLP Solver

Figure 5-11: iLQR Entry Flight Conditions for Crewed Design

Furthermore, dynamic pressure, heat rate and g-loading entry flight conditions

were significantly improved upon from the open-loop formulations seen in Fig. 5-

11. While the overall maximum values are too large to conduct a crewed mission,

60



all except for dynamic pressure were reduced below MSL limits. This demonstrates

potential for improvement on flight conditions with the provided approach. More

work on respecting these flight limitation should be done by looking into potential

vehicle material and other design characteristics.

Figure 5-12: iLQR Entry Profile for Crewed Design

5.2.3 Reachable Set Analysis

As presented in Ch. 1 Reachable Sets are a form of uncertainty analysis commonly

applied to trajectory design. Understanding the potential terminal states from vari-

ations to nominal initial conditions is imperative for ensuring flight readiness of the

approach given that at any point during Mars Entry wind gusts, dust storms and even

inaccuracies in the guidance model from true flight conditions can disturb the optimal

trajectory plan. In accordance, the following results perform analysis on reachable

sets using Monte Carlo simulation.

While the benefit of having a closed-loop solution to perform optimal control is

the guaranteed convergence capability, in the context of this formulation consisting of

strict constraints that are no explicitly set in the closed-loop setup this trait presents
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concerns for what terminal conditions are considered achievable. In terms of altitude,

not only must the solution project a trajectory that does not hit below a 0 km

altitude, but also terminate above specified altitude limits for the following phases of

EDL. This constraint is consistent with terminal velocity for parachute deployment

and terminal downrange for precision landing.

To address this concern, the reachable set formulation presented in the following

results performs rejection sampling of the Monte Carlo simulations. This allows for

an uncertainty quantification method aware of the terminal constraints to construct

the available trajectory envelope given the uncertainty distribution. The results from

this analysis are presented in the following figures.

Given the computational cost of the iLQR formulation for the crewed design,

Monte Carlo simulations scaled on this cost by the number of iterations. Additionally,

given the results would be rejecting iterations falling outside constraint bounds, it

was necessary run enough iterations to to properly construct the profile. To strike a

balance between computational cost and proper result generation, Table 5.7 outlines

the considerations adapted for this approach.
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State Target3 Min. Terminal Max. Terminal Mean Std.

Altitude, ℎ [km] 5.82 0 – 8.72 4.95
Velocity, 𝑣 [m/s] 621.5 – 1000 719.7 143.8

Downrange, 𝑠 [km] 635.3 500 700 646.7 14.8

Table 5.7: MC Rejection Sampling for the Crewed Case

The bounds for this method were determined based on simulations performed

without sampling. Although they allow for terminal conditions outside of target en-

try ranges, they lie close enough to the conditions to allow additional measures to

constrict them back to nominal while remaining broad enough to allow for a repre-

sentative set. Additionally, given the computational cost of the MC simulation, 500

samples were taken of the nominal initial conditions to form proper analysis within

a capable time-frame. The results of this approach are presented below.

Figure 5-13: Altitude Reachable Set with Rejection Sampling for Crewed Design

Fig. 5-13 represents the altitude spread from normally distributed initial condi-

tions where ℎ0 ∼ 𝒩 (0, 1000𝑚). As mentioned previously, the closed-loop form does

no account for strict state or control constraints, but instead, utilizes tuning parame-

ters to track nominal values in it’s performance. Therefore, samples for altitude that

terminated below or equal to 0 km (signifying a vehicle crash) were rejected when de-
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Figure 5-14: Altitude Terminal Range with Rejection Sampling

termining the spread. However, values below the target altitude range for parachute

deployment were kept to demonstrate, for all feasible trajectories, how many of those

trajectories are viable given the problem constraints. Fig. 5-14 represents the termi-

nal altitude spread among the accepted iterations demonstrating a large concentration

of terminal altitudes between 4 and 10 km, which is the ideal range for completing

before parachute deployment.

Unlike altitude, the reachable set for the velocity state, shown in fig. 5-15, demon-

strates concentration on the higher end of the optimal bound for parachute deploy-

ment with a distribution of 𝑣0 ∼ 𝒩 (0, 50𝑚/𝑠). While parachute deployment calls for

terminal altitudes ∈ [320, 540] m/s, terminal altitudes from the accepted MC simula-

tion concentrate between 500 and 700 m/s seen in Fig. 5-16. Nonetheless, the spread

is still tuned enough to track the nominal terminal conditions.

Downrange, however, was the more difficult of the state conditions to tune. While

altitude and velocity rejected less than half their samples, downrange had to re-

ject close to three quarters of its samples due to certain terminal condition regress-

ing away from the target. MC simulation on downrange applied a distribution of

𝑠0 ∼ 𝒩 (0, 1500𝑚). While significantly more iterations were rejected for downrange,
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Figure 5-15: Velocity Reachable Set with Rejection Sampling for Crewed Design

Figure 5-16: Velocity Terminal Range with Rejection Sampling

the spread of reachable sets shown in Fig. 5-17 track closely to projected terminal

downrange of approximately 600km from MSL and Mars 2020 missions. Additionally,

the range of accepted terminal conditions shown in Fig. 5-18 demonstrate capability

for all iterations to lie between the 600 to 700 km range.
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Figure 5-17: Downrange Reachable Set with Rejection Sampling for Crewed Design

Figure 5-18: Downrange Terminal Range with Rejection Sampling

However, the issues encountered for downrange versus altitude and velocity re-

veal the constraints to tuning in the closed-loop formulation. Numerous tested cases

revealed that any combination of tuning the state and control error, as well as the

line-search parameter, only permit true nominal tracking of one state the expense
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of other(s). Yet, even with the tuning constraint, the reachable sets demonstrated

above for the complex crewed entry scenario adequately account for constraining the

terminal conditions, through iLQR tuning and rejection sampling, for an uncertainty

range applicable to the nature of the problem.
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Chapter 6

Discussion

Overall, while the guidance method presents some restrictions to meeting mission

objectives, it still adequately demonstrates closed-loop entry guidance capability

through reference trajectory formulation and reachable set analysis. This determi-

nation becomes significantly applicable when considering the complex nature of the

crewed design highlighted in this approach. To provide an review on the explored

methods, the following sections outline considerations to the approaches based on the

achieve results.

6.1 Crewed-scale Application

A 40 mT, blunt-body and low-lift entry vehicle design was chosen as a full-scale

method for testing the limitations of this approach. As discussed in Ch. 1, few closed-

loop guidance approaches target designs beyond those for previously flown mission.

As outlined in the results, reference tracking in the closed form does not allow for

strict adherence constraints on state variables. However, iLQR high-performance

ability for nonlinear system operating in dynamic environments caused it to stand

out as a viable approach for this problem. While the results are representative of

improvements on reference trajectory design for this complex application, additional

considerations should be noted going forward.
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6.1.1 Open-loop Formulation

Constructing the open-loop NLP solver became increasingly difficult by increasing

the scale of constraints to the problem. While the solutions formulated in CasAdi

provided an adequate reference trajectory to the computational program, a program

solver such as GPOPS may be better suited to perform offline open-loop optimiza-

tion. Unlike CasADi, GPOPS is exclusively an optimal control problem that uses

a very specific algorithm (pseudo spectral methods) to solve a problem. Because

it is specialized it can easily handle all types of constraints for an optimal control

problem such as different phases where the dynamics and constraints change, general

path constraints, and specialized end constraints. This capability would be helpful

given that a crewed entry has stricter constraints that any other entry problem and

therefore requires a program that can handle strict constraints. However, the online

capability of CasADi makes it especially beneficial to potential pre-entry replanning

of the nominal trajectory.

6.1.2 Closed-loop Formulation

Overlaying the closed-loop optimizer demonstrated significant improvement on man-

aging the conditional constraints (heat rate, g-load, dynamic pressure) necessary to

the success of a crewed mission. The closed-loop solution also allowed for improve-

ments on the trajectory design achieving a higher dip limit than what was attainable

for the open-loop solution with the crewed mission design. This capability ultimately

proves that the presented method is a viable approach for optimizing the reference

trajectory for mission analysis and design.

6.2 iLQR Performance

While the iLQR controller does not present strict tracking of the open-loop con-

straints, tuning through the line-search parameter(±) in the backwards pass and cost

function weights, Q and R, for the state and control error, respectively, were applied
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to constrict the terminal states and problem conditions (heat rate, dynamic pressure,

g-loading) close if not within constrained bounds set by MSL mission. For a crewed

mission, however, more work must be done to either reduce the maximum values

or build up flight vehicle capability to address the concern. Additionally, work has

been done by [47] on optimizing the weights of the cost function to more accurately

represents the constraints of the problem. This method can be applied to future

work for better tuning and ultimately better constraining the results. For each pre-

sented scenario, the iLQR controller shows improvement on constraining the problem

conditions. While not all conditions are able to achieve values within their desired

limitations, there is still evident improvement getting the maximum conditions and

terminal states values closer to those constraints.

6.3 Reachable Set Analysis

The reachable sets derived for this approach had to be considerably constrained be-

yond the results produced from the MC simulations using tuning in the iLQR and

rejection sampling. Given that certain deviations from the nominal entry conditions

lead to crash landings, it is essential for future work on this approach to apply an

online method for uncertainty quantification to ensure control is based around guid-

ing the vehicle within a proper trajectory envelope. Work has already been done by

[36, 28, 11, 14] to address this concern as it pertains to entry guidance.
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Chapter 7

Conclusions

The computational program presented in this work builds a two-tired optimal control

method with notable performance capability for a large-scale mission design and

viable demonstration closed-loop optimal control for future entry guidance designs.

It is important to note that entry guidance of this scale will most likely require

multiple stages to adequately address all the problem constraints. This approach does

not take into account the pre-entry maneuvers that have been employed for previous

Mars missions including Mars 2020 and MSL (TCM, cruise phase, etc.). Additionally,

current investigation on potential phases to highly constrained entry scenarios on a

crewed scale (cite) could address issues with adhering to strict terminal constraints in

the closed-loop. As a result, this work can be extended to apply those considerations

for improving on the presented results.

Overall, the extraordinary contributions to advance the Mars entry guidance prob-

lem emulates the critical need for developing a viable solution to this problem. Pro-

ducing a robust and capable computational system promotes less reliance on the final

stages of the EDL sequence to get the landing right, especially for missions of critical

nature.
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7.1 Future Work

Several elements to presented results create opportunity for future study to advance

the capabilities initiated with this work. Reachable set analysis demonstrated a need

for online uncertainty quantification incorporated as part of the closed-loop guidance.

Because running Monte Carlo simulations is computationally expensive with long run

times, especially for high-order problems, this method is only viable for offline plan-

ning. Other methods such as invariant funnels [28, 11, 36, 26] have been explored in

robotics and applied to entry guidance to provide uncertainty bounds on trajectories

in real time to further enhance guidance capabilities. Other methods such as tube

MPC and polynomial chaos [14] have also been explored to better quantify and reduce

the uncertainty for critical entry flight conditions.

Additionally, to better approximate potential disturbances due to environmental

conditions, more work can be done to investigate Building uncertainty models within

some of the aerodynamic (coefficient of lift and drag) and atmosphere (density model)

constants as done with [10]. While the density model applied to this approach is

a stronger approach than the basic density model given that it accounts for the

temperature and pressure contributions at the provided altitude, there is still potential

for error due to wind storms or other atmospheric conditions at the time of flight.

Additionally, density levels are dynamic in that they change with the time of the

year. Many approaches that look into navigating the Martian atmosphere use NASA’s

Mars-GRAM model to more accurately provide data on the available density based

on the proposed time of entry [10, 29, 15].

While it is true that, as the first stage of the process, entry and the proper guid-

ance thereof is critical to the success of subsequent missions and the EDL sequence

at large, it is still important to consider advancement in the descent and landing

phases. This will ultimately help to reduce the strain on the chosen entry guidance

to complete the EDL objectives alone. Much work has been done to address the

later stages of EDL to address this major concerns including capabilities in powered

descent (retro-propulsion) and terrain relative navigation (autonomously select land-
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ing location and navigating around hazardous terrain). Additionally, range trigger

methods have proven to reduce landing ellipses by 40 percent [32] to improve the

landing accuracy required for a crewed mission and some proposed robotic missions.

As a result, while a successful and robust entry method is necessary to supporting the

later stages of EDL, it is not the only contribution to supporting the over successful

landing of the spacecraft.

It is important for the reader to note that given the importance and critical nature

of this problem with the nearing goals of NASA’s Artemis program, many approaches

have been developed, and continue to be developed, that may not be covered in this

thesis. This work focuses on those methods most pertinent to the problem and chosen

approach, but should not be regarded as a total abbreviation of the optimal control

or entry guidance field. (not sure if this is good to add? should it go at the end of

the conclusion instead?)
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Appendix A

Supporting Figures

Figure A-1: MSL Entry, Landing, and Descent Event Sequence (1 of 3)
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Figure A-2: MSL Entry, Landing, and Descent Event Sequence (2 of 3)

Figure A-3: MSL Entry, Landing, and Descent Event Sequence (3 of 3)
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