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The elasticity of taxable income is vital when predicting the effect of
taxes. Bunching at kinks/notches has been used to estimate this elas-
ticity. We show that when the preference distribution is unrestricted,
bunching at a kink or a notch is not informative about the size of
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bunching and identification of taxable income elasticity 2321
the elasticity, and neither is the entire distribution of taxable income.
Bunching identifies the taxable income elasticity when the preference
distribution is correctly specified across the kink and provides bounds
under restrictions on the preference distribution. We find wide bounds
in an empirical example based on upper and lower bounds for the pref-
erence density.
I. Introduction
The elasticity of taxable income with respect to the net of tax rate is a key
parameter when predicting the effect of tax reform or designing an in-
come tax. A large literature has developed over several decades that at-
tempts to estimate this elasticity. However, because of a large variation
in results between different empirical studies, there is still some contro-
versy over the size of the elasticity. A common way to estimate the taxable
income elasticity has been to use variation in budget sets often from data
for several tax systems at different points in time. More recently, kinks
andnotches for a single budget set have beenused to estimate the taxable
income elasticity.
We show that when the distribution of preferences is unrestricted, the

amount of bunching at a kink or a notch is not informative about the size
of the taxable income elasticity. We also show that the entire distribution
of taxable income for a convex budget set is not informative about the
size of the elasticity. The problem is that a kink or notch probability
may be large or small because of the size of the elasticity or because more
or fewer individuals like to have taxable income around the kink or
notch. Intuitively, for a single budget set, variation in the tax rate occurs
only with variation in preferences. The conjoining of variation in the tax
rate and preferences makes it impossible to distinguish the taxable in-
come elasticity from the preference distribution with a single budget
set. Small kinks do not solve this problem. Whether the kink is large or
small, it is possible to match the distribution of taxable income to any
elasticity by specifying the distribution of preferences in a certain way.
This lack of identification can also be understood as a failure of the or-

der condition for identification: that there be as many distinct equations
relating reduced form and structural parameters as there are structural
parameters. There is one equation giving the kink probability as a func-
tion of two structural parameters, the elasticity and the preference distri-
bution.One equation is not enough to identify two structural parameters.
Similarly, there is one equation at each taxable income value that relates
the distribution of taxable income to the distribution of preferences, and
the taxable income elasticity is an additional structural parameter that
t those of the Federal Reserve Bank of Dallas or the Federal Reserve System. Data are
ded as supplementary material online.
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2322 journal of political economy
cannot be separately identified from any of these equations or from all of
them together.
Kinks do provide information about the size of the elasticity when a pri-

ori restrictions are placed on the preference distribution. The elasticity
can be identified when the preference distribution is completely and cor-
rectly specified across the kink for isoelastic utility.We also give bounds on
the elasticity based on bounds on the preference density. These bounds
can be viewed as measures of sensitivity of the taxable income elasticity
to assumptions about the preference distribution.We find in an empirical
example using data like Saez (2010) that the taxable income elasticity can
be quite sensitive to the bounds on the preference distribution.
In this paper, we set aside the issue of statistical inference and focus on

identification. This allows us to clarify fundamental issues of what can be
learned about taxable income elasticities from data. The bounds we give
can be estimated from data, and we do so. It is straightforward to derive
confidence intervals based on these bounds, as in Imbens and Manski
(2004) or Chernozhukov, Hong, and Tamer (2007). To avoid additional
notation and detail, we omit these derivations.
Bunching estimators of the taxable incomeelasticity were developed and

extended in influential work by Saez (2010), Chetty et al. (2011), and
Kleven andWaseem (2013).1 The Saez (2010) estimator can be interpreted
as combining density values at the edges of the bunching interval with as-
suming that the density is linear across the kink to estimate the elasticity.
Chetty et al. (2011) assume that the density is a polynomial near the kink.
These results impose a known preference distribution across the kink. Im-
posing a known distribution of preferences seems unusual in the literature
on identifying the effects of changing the slope of a budget set.
The rest of this paper is organized as follows. In the remainder of this

section, we give a brief literature review. Section II lays out the model of
individual behavior we consider and shows nonidentification from a sin-
gle budget set. Section III gives bounds on the taxable income elasticity
based on a single budget set and bounds on the density of preferences.
Section IV applies these results to data like that used in Saez (2010).
Proofs are given in the appendix.
Nonparametric nonidentification of compensated tax effects from a

kink was shown and bounds provided in Blomquist et al. (2015). The non-
identification results we give for parametric isoelastic utility imply those
for the more general nonparametric model. McCallum and Seegert (2017)
give identification results when covariates are present and preferences
have a Gaussian distribution. Blomquist and Newey (2017) showed that
for a parametric isoelastic utility function, the distribution of taxable
Marx (2012), Le Maire and Schjerning (2013), Bastani and Selin (2014), Seim (2017),
Gelber, Jones, and Sacks (2020) are a few of the recent papers that apply the bunching

thod.
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income for one convex budget set provides no information about the elas-
ticity, provided bounds, and showed identification from budget set varia-
tion holding the preference distribution fixed. These nonidentification
and bounds results are incorporated in sections II and III. Bertanha, Mc-
Callum, and Seegert (2017) consider nonidentification results and give
bounds based on variability of the preference density.
Blomquist and Newey (2002) used variation in budget sets to non-

parametrically estimate the average labor supply effect of the Swedish tax
reform of 1990–91 for scalar preferences with optimization errors. Blom-
quist et al. (2015) showed that these results are valid with general prefer-
ences and demonstrated how to impose all the restrictions of utility maxi-
mization in estimating taxable income effects. Manski (2014) and Kline
and Tartari (2016) nonparametrically identified and estimated bounds on
important effects. Einav, Finkelstein, andSchrimpf (2017)provided recent
empirical evidence on the sensitivity of policy effects to kink modeling as-
sumptions for the elderly in Medicare Part D, where there is substantial
bunching around the famous donut hole. Van Soest (1995), Keane and
Moffitt (1998), Blundell and Shephard (2012), and Manski (2014) have
considered labor supply when hours are restricted to a finite set.
Before the development of bunching methods, following the seminal

work by Feldstein (1995), the elasticity of taxable income was typically es-
timated by difference-in-differences. Saez, Slemrod, and Giertz (2012)
provided a review of this literature. Whereas early studies mostly found
elasticities between 1 and 3, the subsequent literature found elasticities
between 0 and 1, with the benchmark estimate of approximately 0.4 by
Gruber and Saez (2002) being frequently cited. Blomquist and Selin
(2010), Weber (2014), Burns and Ziliak (2017), and Kumar and Liang
(2020) provided recent estimated elasticities between 0.2 and 1.0.
II. Nonidentification from Bunching
We consider individuals with preferences defined over after-tax income c
(value of consumption) and before tax income y (cost of effort). After-
and before-tax income are related by c 5 AðyÞ, where AðyÞ 5 y 2 T ðyÞ
for taxes T(y). The utility function of an individual will be

U ðc, y, hÞ,
where h represents unobserved heterogeneity in preferences.
Figure 1 illustrates a budget set that has two linear segments with slopes

(net of tax rates) r1 > r2 and a kink at K. An individual with preferences of
typehwill choose thepoint on thebudget set where utility is highest for that
h. Different individualsmayhave different h and so choose different taxable
incomes. In this utilitymaximizationmodel, the variation in taxable income
for one budget set comes from variation in preferences. Heterogeneity of
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preferences is necessary in order to have a distribution of taxable income
for a single budget set. If all individuals had the same preferences, we
would observe only one taxable income choice and no inference about
preferences could be drawn from that.
Bunching estimators estimate the taxable income elasticity from the

proportion PK of individuals at K. We follow Saez (2010) as we describe
the general idea behind this approach but omit some details that are
not important for our analysis. Saez (2010) considers a counterfactual hy-
pothetical change in a budget constraint. In figure 2, we consider individ-
uals maximizing their utility for a linear budget set with slope r1. Suppose
next that a kink is introduced, and the slope of the budget constraint af-
ter the kink is r2 < r1. Suppose that individuals who would have been in
the interval ðK , K 1 DY � along the first segment now choose the kink
point. We refer to the individual who would have chosen K 1 DY when
there is no kink as the marginal buncher. In figure 2, we have drawn
two indifference curves for the marginal buncher. Before the (hypothet-
ical) change in the budget constraint, the individual had a tangency on
the extended segment at K 1 DY . After the change in the budget con-
straint, the individual has a tangency on the second segment at K. The
discrete (e.g., arc) taxable income elasticity of the marginal buncher is

e 5
DY =K

ðr1 2 r2Þ=r1

: (1)
FIG. 1.—Heterogeneity in taxable income. A color version of this figure is available
online.
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With a kink in place we cannot observe incomes at the individual level
on the extended first segment that goes beyondK and has slope r1, so that
we do not know DY. From the data we identify the proportion PK of indi-
viduals located at the kink. Then we have

PK 5

ðK1DY

K

f1ðyÞdy, (2)

where f1ðyÞ is the density of taxable income along the extended first seg-
ment. If f1ðyÞ were identified, we could identify DY from this equation.
The problem is f1ðyÞ is not identified, because it is the density for those
grouped at the kink. Thismeans that there are two structural parameters,
the DY and the density f1ðyÞ, but only one equation involving the reduced
form parameter. It is impossible to identify two structural parameters
from one equation. An order condition of having as many identifying
equations as structural parameters is not satisfied.
This nonidentification problem does not go away as the bunching

probability becomes smaller. No matter how small PK is, there are still
two unknown structural parametersDY and f1. For every positive PK, there
will be multiple values of DY and f1 such that equation (2) is satisfied.
An important preference specification is the isoelastic utility function

considered by Saez (2010):

U c, y, hð Þ 5 c 2
h

1 1 1=b

y

h

� �111=b

, h > 0, b > 0, (3)
FIG. 2.—Marginal buncher with kink. A color version of this figure is available online.
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where h is a scalar. Maximizing this utility function subject to a linear bud-
get constraint AðyÞ 5 ry 1 R with slope (net of tax rate) r and intercept
(nonlabor income) R gives the taxable income function for a linear bud-
get constraint

Y ðr, b, hÞ 5 rbh:

The taxable income elasticity ∂ ln Y ðr, b, hÞ=∂ ln r 5 b is constant for this
specification, and there is no income effect of changing R. The variable h
is a scalar that represents unobserved individual heterogeneity in prefer-
ences with each h corresponding to a type of individual. We note that
Y ðr, b, hÞ is increasing in h and r.
We can see nonidentification evenmore clearly for the isoelastic utility

function. As h increases from zero, the choice of taxable income will
move along the first segment of the budget set. The highest value h‘ giv-
ing a tangency solution on the first segment satisfies K 5 h‘r

b
1. As h in-

creases beyond h‘, each individual will choose the kink until h equals
the lowest value hu giving a tangency solution on the second segment,
which satisfies K 5 hur

b
2. Thus, the set of h where an individual will

choose to be at the kink is ½h‘, hu� 5 ½Kr2b
1 , Kr2b

2 �, which we refer to as
the bunching interval. Therefore, the kink probability satisfies

PK 5 PrðY 5 K Þ 5
ð
hu

h‘

f hð Þdh 5

ðKr2b

2

Kr2b

1

f hð Þdh, (4)

wherefðhÞ is the probability density function (pdf) of h. Here we can clearly
see the problem with trying to identify b from the kink. The kink proba-
bility PK is one reduced form object that is identified from the data. There
are two structural parameters that appear in this equation, the taxable in-
come elasticity b and the pdf fðhÞ of h, but only one equation (4) relating
structural parameters to reduced form parameters. It is true that as b in-
creases, the right side of this equation increases. However, it is also true that
for a given taxable income elasticity, the larger the mass of the preference
distribution located in the bunching interval ½h‘, hu�, the larger the bunch-
ing will be. It is not possible to separate those two effects using one kink
equation, and so the taxable income elasticity is not identified from a kink.
Usingmore information about the distribution of taxable income than

the kink probability does not help to identify the taxable income elastic-
ity. The next result shows that for any distribution of taxable income with
positive kink probability and any b > 0, there is a distribution of h that
generates the distribution of taxable income.
Theorem 1. Suppose that the cumulative distribution function (CDF)

F ðyÞ of taxable income y is continuously differentiable of order D > 0 to
the right and to the left at K, with pdf bounded away from zero in a neigh-
borhood of K, and PK 5 PrðY 5 K Þ > 0. Then for any b there exists a
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CDF FðhÞ of h such that the CDF of taxable income obtained by maximiz-
ing the utility function in equation (3) equals F ðyÞ and FðhÞ is continu-
ously differentiable of order D.
Theorem 1 shows that for any possible taxable income elasticity, we can

find a preference distribution such that the CDF of taxable income for
the model coincides with that for the data. Furthermore, we can do this
with a preference CDF that is differentiable to the same order as the tax-
able income CDF. Thus, we find that the entire distribution of taxable in-
come for one budget set with one kink has no information about the size
of the taxable income elasticity when the distribution of preferences is
unrestricted. The same result can be shown for any continuous, piecewise
linear budget frontier with nondecreasing marginal tax rates and each
kink having positive probability.
Theorem 1 implies nonidentification of the average taxable income

elasticity, averaged over any income range and over preferences, for any
class of utility functions that includes isoelastic utility as a special case. This
wider implication of theorem 1 occurs because it is more difficult to iden-
tify a parameter in amore general model, so that nonidentification in the
more restrictive isoelastic model implies nonidentification in the more
general model. For example, theorem 1 implies the nonidentification
of the average compensated taxable income elasticity for individuals lo-
cated at a kink that was shown in Blomquist et al. (2015).
Figure 3 illustrates thenonidentification result in theorem1. Inpanel A,

we present a pdf for taxable incomewhenutility is isoelastic, the budget set
is piecewise linear with one kink at K 5 $20,000, r1 5 1, r2 5 0:84, and
b 5 0:4. Above the kink, the distribution of taxable income is Gaussian
and calibrated to the histogram of observed taxable income in figure 6A
in Saez (2010), having the same mode of $40,000 and the same quantile
at $60,000. We also assumed that the distribution of h is Gaussian before
the kink. Because our purpose here is just to illustrate nonidentification,
we did not attempt to find a preference distribution below the kink that
matches well the taxable income distribution there.
In panel B of figure 3, we graph the density of three differentiable

pdf’s, all of which produce the same distribution of taxable income but
with three different values of the taxable income elasticity at b 5 0:2,
b 5 0:4, or b 5 0:8. Below the kink, the preferences densities are the
same because r1 5 1. To highlight the differences between these pdf’s,
we choose the density to be nearly constant in the bunching interval, ap-
proximately equal to the value that makes the integral over the bunching
interval equal to PK. We see that choosing b 5 0:2 well below the value
b 5 0:4 leads to a preference density that is large over the bunching inter-
val, while choosing b 5 0:8 well above b 5 0:4 leads to a preference den-
sity that is low over the bunching interval. This pattern occurs because
the length of the bunching interval ½h‘, hu� 5 ½Kr2b

1 , Kr2b
2 � is monotonic
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increasing in b. In order to make the integral of the preference density
over the bunching interval be equal to PK, for each b wemust have a large
preference density across the bunching interval when b is small and a
small preference density when b is large.
The taxable income elasticity is not identified nomatter how close r2 is

to r1. As long as PK > 0, then for any b there will be a density of h over the
bunching interval that satisfies equation (4). It is true that large values of b
will require that the density of h be small and small values of b require that
the density be large. Nevertheless, such preference densities are allowed
when there is no a priori information on the distribution of preferences.
FIG. 3.—Nonidentification: multiple combinations of elasticity and heterogeneity distri-
bution give the same taxable income distribution. A color version of this figure is available
online.
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In section III, we will consider what can be learned if there are bounds on
the preference density.
The proof of theorem 1 relies entirely upon nonidentification from a

kink. For any particular b, there is only one preference density that is con-
sistent with the taxable income distribution away from the kink. This oc-
curs because taxable income Y 5 rbh is a scalar multiple of h away from
the kink, where r is the slope of the budget frontier on a segment away
from the kink. Therefore, for any possible b, we have freedom to choose
only the preference density over the kink, that is, in the bunching interval
½h‘, hu�. Over the bunching interval, any pdf fðhÞ such that equation (4)
holds will do. To show theorem 1, we choose such a pdf with D derivatives
withDth derivative equal to that of taxable income at h‘ and hu. In this way,
for any b > 0 we can find a preference density such that the implied dis-
tribution for taxable income is the actual distribution of taxable income.
A kink having positive probability does identify that b > 0 when h is con-

tinuously distributed. If b 5 0, then Y 5 h, so Y is continuously distrib-
uted by h being continuously distributed and hence PK 5 PrðY 5 K Þ 5 0,
so PK > 0 implies b > 0. For the isoelastic utility model, a positive kink
probabilitymeans that we know that individuals respond to incentives, that
is, to changes in the tax rate. However, theorem 1 shows that the size of b is
not identified from a single tax schedule. Since the size of the taxable in-
come elasticity is the key parameter determining important policy ques-
tions, such as predicting the effect of tax reform or designing an income
tax, theorem 1 shows that the distribution of taxable income for a single
tax schedule is not informative about these policy questions when the dis-
tribution of preferences is unrestricted.
Notches have also been used to estimate the taxable income elasticity,

beginning with Kleven andWaseem (2013). A notch occurs at an income
value where there is a discontinuity in the budget set so that the average
tax rate changes. Figure 4 illustrates such a budget set with a drop in the
average tax rate at the notch point K. The marginal tax rate could also
change at a notch, though for notational convenience figure 4 includes
no change in the marginal tax rate. Figure 4 shows how bunching at a
notch can occur for isoelastic utility. As h increases from zero, the choice
of taxable incomewillmove along the first segment of the budget set. The
highest value h‘ giving a tangency solution on the first segment satisfies
K 5 h‘r

b
1. As h increases beyond h‘, each individual will choose the kink

until h equals the value hg ðbÞ, where the indifference curve passing
through the notch point on the first segment is tangent to the second seg-
ment. The notch probability is

PK 5

ð
hg ðbÞ

Kr2b

1

fðhÞdh, (5)

and the bunching interval is now ½Kr2b
1 , hg ðbÞ�.
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The probability of bunching at a notch is not informative about b for
similar reasons that the probability of bunching at a kink is not informa-
tive. For PK > 0 and any b, we can choose fðhÞ such that equation (5) is
satisfied. Thus, the probability of bunching at a notch provides no infor-
mation about the size of b. Unlike a kink, for isoelastic utility the entire
distribution of taxable income does identify b from the size of the gap
between K and yg ðbÞ, where no taxable income is observed, as shown in
Bertanha, McCallum, and Seegert (2018) and Blomquist and Newey
(2018). However, this identification result for b depends crucially on
the isoelastic utility specification and seems not relevant for applications
where gaps are generally not present.
Saez (2010) and Chetty et al. (2011) do estimate the taxable income

elasticity from a kink. By the order condition for identification, we know
that to identify b from the kink, nothing else—other than b—must be un-
known. In particular, any information about the density of h across the
kink must come from somewhere else. The Saez (2010) estimator can
be obtained by assuming that the density fðhÞ is linear over the bunching
interval ½h‘, hu� and is continuous from the left at h‘ and from the right at
hu. To demonstrate, let f 2ðK Þ and f 1ðK Þ denote the limit of the density
of taxable income at the kink K from the left and from the right, respec-
tively. Accounting for the Jacobian of the transformation y 5 hrb

1, we have
fðh‘Þ 5 f 2ðK Þrb

1 and fðhuÞ 5 f 1ðK Þrb
2. Assuming that fðhÞ is linear on

the bunching interval, we then have
FIG. 4.—Gap region with notch. A color version of this figure is available online.
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PK 5

ð
hu

h‘

f hð Þdh 5
1

2
f h‘ð Þ 1 f huð Þ½ � hu 2 h‘ð Þ

5
1

2
f 2 Kð Þrb

1 1 f 1 Kð Þrb
2

� �
Kr2b

2 2 Kr2b
1

� �

5
K

2
f 2 Kð Þ 1 f 1 Kð Þ r1

r2

� �2b� 	
r1

r2

� �b

2 1

� 	
:

(6)

This is the formula for b found in equation (5) of Saez (2010).
Here we see that the Saez (2010) formula of b can be obtained by im-

posing linearity of the preference density over the bunching interval
½h‘, hu�. More generally, equation (6) imposes the trapezoid assumptionðhu

h‘

f hð Þdh 5
1

2
f h‘ð Þ 1 f huð Þ½ � hu 2 h‘ð Þ

and will be valid under this condition. We could obtain other formulas
for b by making other assumptions about fðhÞ on ½h‘, hu�, for example,
those of Chetty et al. (2011). The elasticity that is implied by a distribu-
tion of taxable income will generally vary as

Ð hu

h‘
fðhÞdh varies with the

choice of fðhÞ in the bunching interval.
It is argued in Saez (2010, sec. IB) and Kleven (2016, 440) that the use

of a linear pdf fðhÞ in the bunching interval should not be seen as a re-
strictive functional form assumption but as an approximation that works
well if the kink is sufficiently small. The idea is that if the bunching inter-
val is very small, any smooth density will look linear in this very small in-
terval. However, for this to be a meaningful idea, we must have some way
to determine whether a given kink (bunching interval) is small. We can
see from equation (4) that the bunching interval depends on the loca-
tion of the kink, the slope before and after the kink, and the taxable in-
come elasticity. We donot know the taxable income elasticity, whichmeans
that we have no operational way to tell whether a given kink (bunching in-
terval) is small, so this reasoning is circular. Since, in the absence of knowl-
edge of the taxable income elasticity, we cannot tell whether a given kink
(bunching interval) is small, the idea that the approximation works well
for small kinks is vacuous.
It is also thought (e.g., Chetty et al. 2011; Kleven 2016, 450) that a poly-

nomial fit to the observed distribution of taxable income, excluding data
in a range around the kink point, can be used to predict a counterfactual
distribution of taxable income in the kink region. However, what one is
actually doing here is completely specifying the exact value of the prefer-
ence density over the bunching interval to be that implied by the polyno-
mial that fits the data away from the bunching interval. Instead of speci-
fying a linear pdf in the bunching interval, one is specifying that the pdf
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in the bunching interval has the polynomial form that fits the distribution
of earnings outside the excluded range. If this polynomial specification is
incorrect, then the elasticity may be incorrect. There is no information in
the data about the value of the density over the bunching interval. The
polynomial approach gives just one specification of the preference den-
sity over the bunching interval, but there are many specifications consis-
tentwith thedata that one could choose. Theorem1 shows that any taxable
income elasticity is consistent with some specification of the preference
distribution over the bunching interval.
Any choice of fðhÞ in the bunching interval, such as a linear or polyno-

mial density, is extrapolation, meaning an assumption about the prefer-
ence distribution that is not based on data. The bunching probability is
jointly determined by b and the preference density fðhÞ in the bunching
interval, so there is no information in the bunching probability about the
density fðhÞ. This information must come from a source other than the
observed distribution of taxable income, that is, from extrapolation.
Identification of b from bunching should not be thought of as nonpara-

metric.We have shownhere that existing identificationmethods are based
on completely and correctly specifying the preference density over the
bunching interval. Saez (2010) implicitly specifies the preference density
to be linear (or the trapezoid formula to hold). Chetty et al. (2011) explic-
itly specifies the preference density to be polynomial. These assumptions
are more restrictive than specifying that the density over the bunching in-
terval is parametric because they specify the exact value of the density. This
is a stronger assumption than is made even in parametric models of distri-
butions, so that identification of b frombunching cannot be considered to
be nonparametric.
III. Elasticity Bounds for a Single Kink
For isoelastic utility, bounds on the preference density will imply bounds
on b. Panel B of figure 3 illustrates that in order to obtain a given probabil-
ity of bunching at a given kink, the preference density will need to be large
over thebunching interval when the trueb is small or small when the trueb
is large. This pattern suggests that prior knowledge of bounds on the pref-
erence density could lead to bounds on b. We specifically consider elastic-
ity bounds based on upper and lower bounds on the preference density.
The bounds we give will also be satisfied if the preference density is mono-
tonic on the bunching interval. We could also consider how other kinds of
information could help us bound the taxable income elasticity, but for sim-
plicity we focus on upper and lower bounds on the density.
The bounds we give here depend on the correctness of the isoelastic

utility specification, in particular, on the taxable income elasticity being
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the same for all individuals. Our purpose is to use these bounds to check
sensitivity of isoelastic estimates to assumptions about the density of pref-
erences, for which purpose the isoelastic assumption seems sufficient.
Bounds for the average elasticity over individuals located at a kink, with
nonparametric preferences and elasticities that vary over individuals,
are given in Blomquist et al. (2015).
To apply the bounds for isoelastic utility, we need to account for a com-

mon feature of data that the proportion of individuals who locate exactly
at a kink is very close to zero. Instead of a positive proportion of indi-
viduals at a kink, data tend to display a sharp increase in the density of
individuals as taxable income nears the kink. This data feature is often
explained as resulting from optimization errors, meaning variations in
taxable income away from utility maximization. Individuals who would
locate at the kink if they were maximizing utility instead locate near
the kink. The high density of individuals near the kink could also be ex-
plained by measurement error, though many modern administrative data
sets are thought to be accurate enough that measurement error is low.
In the bunching literature, optimization errors are accounted for by

specifying an excluded range ½y1, y2� containing the kink, such that optimi-
zation errors can be ignored for income outside this range, at least for
purposes of estimating the taxable income elasticity. We follow this ap-
proach by specifying bounds for the taxable income elasticity that use
only the distribution of taxable income outside an excluded range. The
idea is that the distribution of taxable income within the excluded range
is potentially contaminated by optimization errors in such a way that the
bounds for b would be incorrect, while the distribution outside the ex-
cluded range is not contaminated in this way. Sensitivity to the excluded
range can be checked by varying ½y1, y2�.
In practice, the excluded range ½y1, y2� is often chosen by picking y1 to

be a value equal to or smaller than where the taxable income density be-
gins to rise as the kink is approached from below and by picking y2 to be a
value where the density has returned back to a level that does not appear
to be related to the kink. These choices are generally made by examining
a graph of the taxable income density by eye, as we will illustrate in sec-
tion IV. This method implicitly assumes that for learning about the tax-
able income elasticity, the optimization errors are accounted for by using
only the distribution of taxable income outside the excluded range.
We consider bounds when y1 < K < y2 for the kink K. Let h1 5 y1r

2b
1

and h2 5 y2r
2b
2 denote lower and upper end points for h that correspond

to y1 and y2, respectively. Also let

f 2 y1ð Þ 5 lim
y→ y1,y<y1

f ðyÞ, f 1 y2ð Þ 5 lim
y→ y2,y>y2

f ðyÞ:

Consider the two functions



2334 journal of political economy
D2ðbÞ 5 f 2ðy1Þ y2
r1

r2

� �b

2 y1

� 	
, D1 bð Þ 5 f 1ðy2Þ y2 2 y1

r2

r1

� �b� 	
:

We have the following result:
Theorem 2. If F ðyÞ equals the CDF of taxable income obtained by

maximizing the utility function in equation (3), h is continuously distrib-
uted with density fðhÞ and there are positive scalars �j ≥ 1 and j ≤ 1 such
that

jmin fðh1Þ, fðh2Þf g ≤ fðhÞ ≤ �jmax fðh1Þ, fðh2Þf g for h ∈ ½h1, h2�, (7)

then the taxable income elasticity b satisfies

jmin D2 bð Þ, D1 bð Þf g ≤ Prðy1 ≤ Y ≤ y2Þ ≤ �jmax D2 bð Þ, D1 bð Þf g: (8)

If fðhÞ is monotonic, then these bounds hold for j 5 �j 5 1. If Prðy1 ≤
Y ≤ y2Þ < jðy2 2 y1Þminf f 2ðy1Þ, f 1ðy2Þg, then there is no b satisfying
equation (8). Otherwise, the set of all nonnegative b satisfying this equa-
tion is a nonempty subset of [0, ∞). In addition, these bounds are sharp,
meaning that for any b satisfying equation (8), there is fðhÞ such that
Prðy1 ≤ Y ≤ y2Þ 5

Ð h2

h1
fðhÞdh and equation (7) is satisfied.

Intuitively, upper and lower bounds on the preference density provide
information about the elasticity because the length of the bunching inter-
val increases monotonically in b. The upper bound on fðhÞ rules out
small values of b that make the bunching interval so small that the pref-
erence density would have to exceed its upper bound in order to match
Prðy1 ≤ Y ≤ y2Þ. Similarly, the lower bound on fðhÞ rules out large values
of b that make the bunching interval so large that the preference density
would have to be below its lower bound to match Prðy1 ≤ Y ≤ y2Þ.
The sharpness of the bounds given here depends on using only the dis-

tribution of taxable income outside the excluded range ðy1, y2Þ. If the dis-
tribution inside the excluded range were informative about the distribu-
tion of preferences, then these bounds would not be sharp. We follow the
literature in assuming that because of optimization errors, the distribu-
tion of taxable income inside the excluded range is not informative so
that only the data outside the excluded range should be used. In the em-
pirical application, we also consider the sensitivity of the bounds to the
length of the excluded range.
The bounds given here are based on the a priori restriction in equa-

tion (7) for the preference density. For j 5 �j 5 1, this inequality imposes
the restriction that the density of h across the kink is bounded between the
maximum and minimum of the density at the end points. A monotonic
fðhÞ would satisfy this condition, and so would any other fðhÞ that is
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bounded between that maximum and minimum. Such an assumption
might be plausible if the density of taxable income appeared to be mono-
tonic increasing (or decreasing) before and after the excluded range.
Equation (7) with j 5 �j 5 1 would not be very plausible if the excluded
range was thought to include a mode in the distribution of preferences.
In that case, it might be more plausible to set �j > 1 equal to the ratio of
an upper bound on the model to maximum density at the ends of the ex-
cluded range.
The bounds will tend to be wider when f 1ðy2Þ is further from f 2ðy1Þ.

Smaller differences in f 1ðy2Þ and f 2ðy1Þ are sometimes evident on the
right side of the mode of the taxable income distribution, so that we
would expect to find tighter bounds in such locations. Note though that
if one wanted to include the possibility of a mode in an excluded range
on the right side, then one would want to choose �j > 1, which would in-
crease the width of the bounds.
It is difficult to economically motivate or justify the assumptions on

which the bounds are based. The bounds are based on assumptions
about the preference density—that is, about tastes—over a kink, where
the data provide no information about the preference density, as dis-
cussed in section II. Consequently, bounds on the preference density
must come from information other than that provided by data, that is,
are extrapolation. Extrapolation is based entirely on researchers’ views
about how identified features extend to unidentified ones.
No assumptions or extrapolations about preferences are required for

many of the bounds in the econometrics literature. For example, the
Manski (1989) selection bounds impose no restrictions on the distribu-
tion of preferences or other unobservables. Also, the Haile and Tamer
(2003) bounds for auctions do not impose such restrictions but instead
use economic behavior to bound the distribution of preferences, which
is the distribution of auction valuation. No economic behavior is used to
construct the bounds given here. Instead, they are based entirely on re-
stricting the distribution of preferences, on extrapolating from where
the data provides information to where data does not.
These bounds do depend on the restrictive isoelastic utility specifica-

tion. As discussed following theorem 1, identification is more difficult in
more general models. Consequently, because the bounds are sharp, we
know that bounds for the average taxable income elasticity would be wider
only in more general models.
One could think of these bounds as a sensitivity check on how the re-

sults are affected by allowing variation in the preference density in the
bunching interval. This could make them difficult to interpret because
different individuals might have different ideas about upper and lower
bounds on the density of preferences. Also, these bounds are correct only
if they are not affected by optimization errors outside the excluded range.
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To estimate the bounds, we can plug in nonparametric estimators
f̂ 2ðy1Þ and f̂ 1ðy2Þ to obtain

D̂2 bð Þ 5 f̂ 2 y1ð Þ y2
r1

r2

� �b

2 y1

� 	
,

D̂1 bð Þ 5 f̂ 1 y2ð Þ y2 2 y1
r2

r1

� �b� 	
:

Estimated bounds for b are b̂‘ and b̂u that solve

�jmax D̂2 b̂‘

� �
, D̂1 b̂‘

� �
 �
5 bPrðy1 ≤ Y ≤ y2Þ,

jminfD̂2 ðb̂uÞ, D̂1 ðb̂uÞg 5 bPrðy1 ≤ Y ≤ y2Þ: (9)
(9)
IV. An Application to US Data
In this section, we analyze the federal income tax application in Saez
(2010, fig. 6A) for married joint tax filers for the years 1960–69 for iso-
elastic utility. Like Saez (2010), we use Individual Public Use Microdata
files from 1960 to 1969 released by the Statistics of Income Division of
the Internal Revenue Service. We access the data through the National
Bureau of Economic Research (NBER) Unix system. The 1960–69 data
currently existing onNBER servers differ slightly from those used by Saez
(2010) but yield estimates similar to Saez (2010). These files are stratified
random samples of the entire tax filing population of the United States,
with oversampling of high-income individuals. Like Saez (2010), years
1961, 1963, and 1965 are excluded from analysis, as public use files for
these years are not available. The sample size ranges from approximately
86,000 to 100,000 in various years between 1960 and 1969. The public
use files come with some well-known limitations; for example, individual
identifiers are removed, some variables are blurred to prevent public dis-
closure, and demographic information is missing. Our definition of tax-
able income is identical to Saez (2010): adjusted gross income net of ex-
emptions and deductions. Following Saez (2010), we focus on tax returns
with taxable income (in 2008 dollars) between2$20,000 and $65,000. All
bunching estimation is based on binned data, with $100-wide bins, con-
structed using population weights.
In figure 5, we reproduced the taxable income distribution but shifted

thedomain upward by $20,000 to avoid negative values, for which the elas-
ticity is not defined.We have chosen the bandwidth to be $500, as did Saez
(2010). At the first $20,000 kink that Saez focused on, the marginal tax
rate went up from 0% to 16% (across-year average) for married tax filers
for the years 1960–69. There are additional smaller kinks after $45,000.
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See Saez (2010) for a detailed description of the institutional setting. We
think this application is important for several reasons. First, it concerns a
large part of the population. Second, the fairly low elasticity estimates that
Saez (2010) found for this application were less sensitive across specifica-
tions compared with other applications in which it was harder to plausibly
quantify the bunching probability with any precision. Third, similar low
income tax elasticities for broad population groups have been found in
other countries (e.g., Chetty et al. 2011; Bastani and Selin 2014).
FIG. 5.—Taxable income distribution for joint filing married taxpayers (1960–69). The
data contain 170,973 observations. We use bins of $500 for the histogram and a bandwidth
of $500 for the kernel. The kink at K 5 $20,000 is marked with a short-dashed vertical line.
The long-dashed vertical lines mark the excluded ranges of K ± $2,000 in panel A and
K ± $4,000 in panel B. A color version of this figure is available online.
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To help us select the excluded range, we plot in figure 5 the histogram
and kernel density estimate with vertical lines located at K 5 $20,000 and
the end points K ± $2,000 in panel A and K ± $4,000 in panel B. We look
for a sharp increase and decrease in the estimated density around the
kink. To us, it appears that there may be some effect of the kink outside
an excluded range K ± $2,000 and no effect of the kink outside an ex-
cluded range K ± $4,000. On the basis of these observations, we report re-
sults for four choices of excluded range, K ± $1,000, K ± $2,000, K ±
$3,000, and K ± $4,000.
For purposes of comparison, we compute versions of the Saez (2010)

and Chetty et al. (2011) bunching estimators for each of the excluded
ranges. We use data outside the excluded range to estimate f 2ðK Þ, f 1ðK Þ,
and the counterfactual density within the excluded range. The kink prob-
ability PK is estimated as the excess mass that is the area between the ob-
served and predicted counterfactual densities inside the excluded range.
We then plug-in the estimates of f 2ðK Þ, f 1ðK Þ, and PK to a formula for
the elasticity obtained by specifying the distribution of preferences over
the bunching interval. For the Saez (2010) method, we estimate f 2ðK Þ
as the average density in the interval to the left of y1 that is the same length
as K 2 y1 and analogously on the right. In the next step, we apply equa-
tion (6). For the Chetty et al. (2011) method, we fit a seventh-order poly-
nomial using the entire observed distribution outside the excluded range
to predict the counterfactual distribution inside the range. We then apply
equation (6) fromChetty et al. (2011), whichmakes a different functional
form assumption on the preference density inside the bunching interval
compared with our equation (6). In columns 1 and 2 of table 1, we report
the resulting Saez (2010) and Chetty et al. (2011) elasticity estimates.
We find an elasticity estimate of 0.157 for the K ± $2,000 range in col-

umn 1 of table 1, which is quite close to Saez’s (2010) preferred estimate
of 0.170 using aK ± $1,500 range. Columns 1 and 2 of table 1 reveal some
differences between estimates from the Saez (2010) and Chetty et al.
(2011)methods. Also, the elasticity estimates in columns 1 and 2 increase
as the excluded range increases.
In columns 3 and 4 of table 1, we provide estimates of the bounds on b

using equation (9). We use the same estimates of f 2ðy1Þ and f 1ðy2Þ as we
did for the Saez (2010) estimates in column 1. We set j 5 �j 5 1, which
includes the case where the preference density is monotonic. The pur-
pose of constructing these bounds is to provide information about the
elasticity under weaker functional form assumptions than those made
by previous bunching methods. The bounds are useful for assessing
the sensitivity of elasticity estimates to functional form assumptions.
When the excluded range is K ± $1,000, the Chetty estimate exceeds
the upper bound, which can occur because the Chetty elasticity estimate
uses different estimators of f 2ðy1Þ and f 1ðy2Þ than the bounds use.



bunching and identification of taxable income elasticity 2339
The estimated bounds in columns 3 and 4 of table 1 are quite wide, and
the width increases with the size of the excluded range. The estimated
bounds vary as the excluded range changes for two reasons. First, as the
excluded range widens, the observedmass inside the range becomes con-
sistent with more extreme combinations of counterfactual distribution
and excess mass. Each combination is in turn consistent with a range of
preference densities inside the bunching interval and thus with multiple
elasticities. Second, the variability of counterfactual densities inside the
excluded range is constrained by the difference between the densities at
the edges f 2ðy1Þ and f 1ðy2Þ. This difference increases as the excluded
range widens, since the taxable income density on either side of the ex-
cluded range is steeply increasing in this application, and this reinforces
the widening of the bounds.
One could construct tighter bounds by putting more restrictions on

the density of preferences. However, all such bounds are based entirely
on prior information when there is only a single budget set and data in-
side the excluded range are not informative.

Appendix

Proofs of Theorems

A1. Proof of Theorem 1

Let F ðyÞ denote the distribution function of taxable income. Let FðhÞ 5 F ðrb
1hÞ

for h < r2b
1 K , and let FðhÞ 5 F ðrb

2hÞ for h > r2b
2 K . By rbh being the choice of tax-

able income for a linear budget set with slope r and theorem 2 of Blomquist et al.
(2015), on the lower segment where y < K , the distribution of taxable incomewill
be Prðhrb

1 ≤ yÞ 5 Fðr2b
1 yÞ 5 F ðyÞ. Similarly, on the upper segment where y > K ,

the distribution of taxable income will be Prðhrb
2 ≤ yÞ 5 Fðr2b

2 yÞ 5 F ðyÞ. For
r2b
1 K ≤ h ≤ r2b

2 K , let FðhÞ be any differentiable monotonic increasing function
such that Fðr2b

1 K Þ 5 limy→ K ,y<K F ðyÞ and Fðr2b
2 K Þ 5 F ðK Þ. Then by construction,

we have

Fðr2b
2 K Þ 2 Fðr2b

1 K Þ 5 F ðK Þ 2 lim
y→ K ,y<K

F ðaÞ,

where the last equality holds by standard results for CDFs.
TABLE 1
Comparing Saez (2010), Chetty et al. (2011), and Bounds for Saez Data

Excluded Range
Saez 2010

(1)
Chetty et al. 2011

(2)
Lower Bound

(3)
Upper Bound

(4)

K ± $1,000 .088 .156 .036 .144
K ± $2,000 .157 .247 0 .385
K ± $3,000 .335 .378 0 .908
K ± $4,000 .390 .454 0 1.516
Note.—K 5 $20,000. Columns 1 and 2 are the Saez (2010) and Chetty et al. (2011) es-
timates described in sec. IV. The estimates of the bounds in cols. 3 and 4 are from eq. (9).
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Let fðhÞ 5 dFðhÞ=dh denote the pdf of h below h‘ 5 r2b
1 K and above hu 5

r2b
2 K , respectively, for the FðhÞ constructed above. By hypothesis, there is ε > 0
such that fðhÞ is bounded away from zero for

h ∈ N 5 ½h‘ 2 ε, h‘Þ [ ðhu , hu 1 ε�:
Also, let qðhÞ 5 ln fðhÞ in N and qD21ðhÞ 5 dD21qðhÞ=dhD21 be the D 2 1 deriva-
tive. Let q2 5 limh→ h‘,h<h‘

qD21ðhÞ and q1 5 limh→ hu ,h>hu
qD21ðhÞ. For h ∈ ½h‘, hu�, de-

fine qD21ðhÞ to be the height of the line connecting ðh‘, q2Þ and ðhu , q1Þ. By con-
struction, qD21ðhÞ is continuous on ½h‘ 2 ε, hu 1 ε�. Let qðhÞ be the ðD 2 1Þth
integral of qðhÞ and ~fðhÞ 5 expðqðhÞÞ. Let BðhÞ be a D order B-spline basis func-
tion with support ½h‘, hu� and

qaðhÞ 5 ½1 1 aBðhÞ�qðhÞ:
ThenqaðhÞ isD 2 1 continuously differentiable, qaðhÞ 5 qðhÞ for h ≤ h‘ or h ≥ hu ,
and lima →2∞qaðhÞ 5 2∞ and lima→1∞qaðhÞ 5 1∞ for h ∈ ðh‘, huÞ. By the domi-
nated convergence theorem,

Ð
hu

h‘
expðqaðhÞÞdh is continuous in a and

lim
a →2∞

ð
hu

h‘

expðqaðhÞÞdh 5 0, lim
a →1∞

ð
hu

h‘

expðqaðhÞÞdh 5 ∞:

Therefore, there exists a0 such that
Ð
hu

h‘
expðqa0

ðhÞÞdh 5 PK . Then by construc-
tion, a pdf satisfying the conditions of the theorem is

fðhÞ 5 expðqa0
ðhÞÞ:

QED

A2. Proof of Theorem 2

Let h1 5 y1r
2b
1 and h2 5 y2r

2b
2 be the end points of the heterogeneity bunching

interval for h corresponding to y1 and y2, respectively. The bounds on the density
are that for h ∈ ðh1, h2Þ,

jmin fðh1Þ, fðh2Þf g ≤ fðhÞ ≤ �jmax fðh1Þ, fðh2Þf g:
Also, fðh1Þ and fðh2Þ are given by fðh1Þ 5 f 2ðy1Þrb

1, fðh2Þ 5 f 1ðy2Þrb
2. Then, we

have

P 5 Prðy1 ≤ Y ≤ y2Þ 5
ð
h2

h1

fðhÞdh ≤ ðh2 2 h1Þ�jmax fðh1Þ, fðh2Þf g

5 �j½y2r2b
2 2 y1r

2b
1 �max f 2ðy1Þrb

1, f
1ðy2Þrb

2


 �
5 �jmax D2ðbÞ, D1ðbÞf g,

P ≥ jmin D2ðbÞ, D1ðbÞf g,

(A1)

where the second inequality follows similarly to the first, giving the first conclusion.
Next, note that both D2ðbÞ and D1ðbÞ are strictly monotonic increasing in b,

so both maxfD2ðbÞ, D1ðbÞg and minfD2ðbÞ, D1ðbÞg are as well. Also, at b 5 0,
Prðy1 ≤ Y ≤ y2Þ < jðy2 2 y1Þminff 2ðy1Þ, f 1ðy2Þg,

D2ð0Þ 5 f 2ðy1Þðy2 2 y1Þ, D1ð0Þ 5 f 1ðy2Þðy2 2 y1Þ:
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Therefore, if

P < jðy2 2 y1Þmin f 2ðy1Þ, f 1ðy2Þf g 5 jmin D2ð0Þ, D1ð0Þf g,
it follows that P < jminfD2ðbÞ, D1ðbÞg for all b, implying the second conclusion.

Next, consider the case where P ≥ jminfD2ð0Þ, D1ð0Þg:

P ≥ �jmax f 2ðy1Þ, f 1ðy2Þf gðy2 2 y1Þ:
Then, by strict monotonicity of D2ðbÞ and D1ðbÞ in b, there will be unique b‘ and
bu satisfying

�jmax D2ðb‘Þ, D1ðb‘Þf g 5 P , jmin D2ðbuÞ, D1ðbuÞf g 5 P ,

such that the above inequality is satisfied for all b ∈ ½b‘, bu�. If
jmin f 2ðy1Þ, f 1ðy2Þf gðy2 2 y1Þ < P < �jmax f 2ðy1Þ, f 1ðy2Þf gðy2 2 y1Þ,

then we can take b‘ 5 0.
To show sharpness, consider any b such that equation (8) is satisfied. Let h2 5

y2r
2b
2 , h1 5 y1r

2b
1 , fðhÞ 5 P=ðh2 2 h1Þ :5 �f for h1 < h < h2, fðhÞ 5 f 2ðrb

1hÞrb
1 for

h < h1 and fðhÞ 5 f 2ðrb
2hÞrb

2, h > h2. As in theorem 1, fðhÞ is constructed so that
the pdf of Y 5 hrb is f ðyÞ for y ∉ ½y1, y2�. Also, by construction,ðh2

h1

fðhÞdh 5

ðh2

h1

P

h2 2 h1

fðhÞdh 5 P :

Also, by �f 5 P=ðh2 2 h1Þ and equation (8),

�f 5
P

h2 2 h1

≤
ðh2 2 h1Þ�jmax fðh1Þ, fðh2Þf g

h2 2 h1

≤ �jmax fðh1Þ, fðh2Þf g:

It follows similarly that �f ≥ jminffðh1Þ, fðh2Þg, so that fðhÞ satisfies the bounds
on the density, showing sharpness. QED
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