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ABSTRACT

Techniques for modeling induced strain actuation of beam- and plate-
like components of intelligent structures are developed. The specific
characteristics of one type of induced strain actuator, piezoceramic materials,
are discussed, and implications for practical use of piezoceramic actuators are
outlined. The presentation is based on a series of tests conducted to
characterize piezoceramic actuation strain. Two analytical models and one
numerical mode!l describing the detailed mechanics of general induced strain
actuators bonded to and embedded in one-dimensional structures are
presented. The models illustrate the extension, bending, and localized
shearing deformations induced. The range of parameters for which the
simpler analytical models are valid is established, based on finite element
models and experimental results. The one-dimensional models are extended
to two-dimensional structures. Integration of induced strain actuation with
laminated plate theory is illustrated. A general model for two-dimensional
plate structures is formulated in terms of energy expressions. An
approximate Rayleigh-Ritz model, based on the energy formulation, is used
in conjunction with experimental results to verify the two-dimensional
model.
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CHAPTER ONE: INTRODUCTION

One possible approach tc controlling structural deformation is to
incorporate into the structure distinct elements in which strain can be regulated.
The strain component which can be regulated will be defined the actuation
strain, i.e., that component of the strain due to stimulus other than mechanical
stress. Actuation strain occurs in piezoelectric materials (Forward and Swigert,
1981, Hanagud et al., 1987, and Burke and Hubbard, 1987), electrostrictive
materials (Uchino, 1986, and Cross, et al., 1987), magnetostrictive materials
(Butler, 1988), shape-memory metal alloys (Schetky, 1979, Shimizu, et al., 1986,
and Rogers, 1989), and thermally controllable materials (Edberg, 1987). It is
possible to model the constitutive properties of these materials by incorporating
into the constitutive equations a generalized actuation strain, which will be
denoted A. The total strain is

E=€,+ A (1.1)
(total strain = mechanical strain + actuation strain)

When a material in which actuation strain can be regulated is coupled to a
structure, the induced strain which results in the structure can be modeled
irrespective of the details of the actuation strain mechanism.

The study of induced strain actuation is driven by an increasing number of
applications involving control of flexible structures and an increasing emphasis
on control/structures interaction. In a rational controlled structure design, the
inherent dependence of the control system on the structural configuration is
recognized early in the design process. The traditional types of actuators
normally conceived of or used for active structural control (proof-mass dampers,
gas jets) are however not integrated with the structure. They are separate
elements attached after construction, which may change overall structural
properties such as frequencies and mode shapes. In contrast, induced strain
actuators may be built into the structure. Induced strain actuators are appealing,
because they directly influence the strains, curvatures, and strain energy of the
structure.
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The potential applications for induced strain actuators include their use as
the highly distributed actuators in intelligent structures (Crawley, et al. 1988).
With such distributed actuators, it is possible to design structures with intrinsic
vibration and shape control capabilities. A highly distributed network of
actuators, sensors, and microprocessors allows a structure to be reconfigured to
meet various requirements. This provides the structure with the inherent
capability to adjust to uncertainties or to compensate for partial failure.

With increasing use of induced strain actuators likely, it is necessary to
address the unique structural and material issues associated with this form of
actuator. In control applications it is desirable to have accurate models of the
mechanics of induced strain actuation, as well as a realistic understanding of the
limits in actuation strain which can be achieved with real materials. For a given
thermal, electrical, magnetic, or other input to a material, the nature of the strain
which results must be described with a high degree of certainty and perhaps
linearity. This is both a material question and a structural and control one.
Other structural issues include basic models of induced strain actuation, as well
as concerns over the effect of the introduction of actuators on overall structural
performance in terms of strength, stiffness, and longevity.

The objective of this study is to develop accurate detailed models of the
interaction between induced strain actuators and one and two-dimensional
structures to which they are bonded, or in which they are embedded. The
models are derived so as to be expressed in terms of the generalized actuation
strain and therefore to be applicable to any type of induced strain actuation. In
addition, the detailed nature of the actuation strain of one commonly used type
of induced strain actuator, piezoceramic material, will be presented.

The previous work on induced strain actuation is limited. However, this
area is one of much current research. Of the known methods for accomplishing
induced strain actuation, piezoelectric materials have been utilized most often.
These materials convert electrical to mechanical energy and vice versa. In the
linear piezoelectric relations, the electric charge generated is proportional to the
imposed stress. Conversely, the piezoelectric actuation strain is directly
proportional to the applied electric field. Thus, piezoelectrics, like other induced
strain actuators, may be used as both sensors (Hzou and Pandita, 1987) and
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actuators in beam (Fanson and Caughey, 1987), plate (Crawley and Lazarus, 19£9)
and truss (Hagood and Crawley, 1988) applications. Both piezoceramics and
piezoelectric films have been used as sensors in structural vibration problems.
Piezoceramics, particularly lead zirconate titanate (PZT), have most often been
used in actuation applications.

Electrostrictive materials, which also produce strain due to electrical input,
have been used less frequently. = With an actuation strain approximately
proportional to the square of the applied electric field, there is potential for high
strains. Electrostrictive actuators have been developed, and this area is the
subject of materials research which is likely to lead to more effective actuators in
the near future (Uchino, 1986). Electrostrictive materials have some potentially
undesirable temperature-depencent properties (Cross, 1980). Less well developed
are actuation due to magnetostriction, shape memory alloys, and thermal
gradients. Of these, shape memory alloys are capable of high actuation strains
(up to 8%), but are limited in bandwidth, and require rapid heat dissipation for
high bandwidth operation.

Piezoelectric materials have been used in applications other than as
induced strain actuators for several decades. These include sonar transducers,
phonograph pickups, tweeters for audio speakers, and accelerometers. In many
of these applications, piezoceramics have been utilized. In the earliest uses of
piezoceramics, barium titanate, BaTiO;, was employed most often. Lead
zirconate titanate (PZT) is used in the majority of current applications. In
addition, there is work underway to further develop piezoelectric-electrostrictive
hybrid materials.

The moderately strong nonlinear behavior of piezoceramics, for example
in the actuation strain due to an applied field, has been tolerated because of other
inherent advantages. This behavior is not addressed in most studies which have
used piezoceramic actuators. But the real piezoceramic behavior has been
apparent to experimenters in the field (Berlincourt, et al., 1964 and Jaffe, et al.,
1971). A few have attempted to model (Martin, 1974) or correct for that behavior
(Newcomb and Flinn, 1982, Bryant and Keltie, 1986). A characterization of the
nonlinearities allows for an improved understanding of piezoceramic actuation
strain.
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In this study, all structural models incorporating induced strain actuation
are derived for general actuation strain. Experiments conducted in order to test
the validity of the models were conducted using piezoceramics. This means of
induced strain actuation was chosen because of material availability and ease of
use. In order to properly integrate piezoceramics with structures it was necessary
to characterize accurately the nature of the piezoelectric actuation strain. Thus,
Chapter 2 contains a description of the traditional linear constitutive relations
for piezoelectric and piezoceramic materials, and details the limits of these
simple relations through a macromechanical study of the actuation strain. The
results of a series of experiments illustrating the nonideal behavior of
piezoceramics are presented. Implications of the real piezoceramic actuation
strain characterization are discussed and practical guidelines for addressing the
problems are outlined.

In Chapter 3, analytical and finite element models are developed for
general induced strain actuation of one-dimensional structures. The results
from the models of Crawley and de Luis (1987) are presented and compared to
the results obtained for finite element and alternative analytical models. The
real piezoceramic properties are used in analyzing experimental data from static
and dynamic induced strain experiments on cantilevered beams. The
comparison of the models and experimental results lead to the conclusion that a
simple analytical model, coupled with an awareness of real piezoceramic
behavior, is adequate for most applications where actuators are either embedded
or surface mounted.

In Chapter 4, models are derived for induced strain actuation of two-
dimensional structures (plates) for arbitrary laminates with actuators embedded
or surface-mounted. Specialization to the one-dimensional models is
demonstrated. An energy formulation and approximate solution technique are
described. Models are again correlated with experimental results. Finally, the
study is summarized, with guidelines developed for the use of simple or more
complex models, incorporation of nonideal actuator strain, and
recommendations for future study of induced strain actuation.
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CHAPTER TWO: PIEZOCERAMIC ACTUATION STRAIN

2.0 INTRODUCTION

The physical effects which cause actuation strain may be based on
piezoelectricity, electrostriction, magnetostriction, or thermoelasticity. However,
while the method of inducing strain differs, all strain actuators share common
mechanical features. This commonality allows for a general treatment of
induced strain, presented in Chapters 3 and 4. In the current study, all
experimental results are based on tests in which piezoelectric materials were
used as actuators. The manner in which the physical property of piezoelectricity
is harnessed to induce strain and the nonlinearities and nonidealities of that
piezoelectric actuation strain are the focus of this chapter.

Piezoelectric properties are found in range of materials, including natural
piezoelectric crystals, polymeric films, and ceramics. Piezoceramics (see note on
material hierarchy in Appendix A) were used exclusively in the experiments
conducted in this investigation. Some of the undesirable nonlinearities
associated with the ceramics are not as prevalent in natural crystals. However,
ceramics are much easier to shape and are commercially available in a
convenient range of sizes. The relative sparseness of the piezoelectric
electromechanical coupling matrix d (Section 2.1) is another advantage of
ceramics over crystals. Ceramics were chosen over polymers because they can
transfer more strain energy for a given field due to their relatively high
modulus. While not critical in this study, piezoceramics also have a much
higher Curie Point - the elevated temperature at which a material loses its
ferroelectric properties. Crawley, et al. (1988) includes a more complete
comparison of the relative merits of several piezoelectiic materials.

In this chapter, some of the advantages and concerns associated with the
use of piezoelectric ceramics as induced strain actuators are described. A
macromechanical representation of piezoceramic properties is presented and the
basic linear piezoelectric constitutive relations for piezoceramics are discussed.
The remainder of the chapter is then devoted to discussion of "nonidealities" in
piezoceramic actuation strain. If a field-strain relation which may be represented
by a single constant is considered "ideal," departures from that may be described
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by the general label "nonidealities.” Experimental data indicate the presence of
field-strain nonlinearities, hysteresis, and creep. Frequency dependence of the
field-strain relationship is investigated. High field behavior and depoling are
also discussed. In addition, the departure from isotropic inplane strain response
and the effect of large mechanical strain on piezoelectric properties are
documented. The chapter concludes with a discussion of the implications of the
observed nonideal behavior for piezoceramic induced strain actuators.

2.1 MACROMECHANICAL MODEL OF PIEZOELECTRIC BEHAVIGR

Approaches to Characterization

There are several ways to characterize the constitutive behavior of
piezoelectric materials and piezoelectric behavior. These include electrical,
micromechanical, thermodynamic, and macromechanical approaches. Each has
advantages that make it appropriate for different applications.

The first practical studies of piezoelectric crystals were carried out by
electrical engineers, who used equivalent electrical circuit models to represent
the piezoelectric properties. This method is still extensively employed in the
electrical engineering community and elsewhere. It is the preferred way of
characterizing piezoelectric behavior when the primary objective is to consider
the influence of a piezoelectric on an electrical system. The approach was not
used in this study because the primary concern is with mechanical effects. When
dealing with piezoelectricity, electrical effects must be addressed, but appropriate
mechanical models which implicitly incorporate accurate dielectrical models can
be used instead of a full electrical representation. Appendix B contains a
description of some common electrical circuit and impedance models.

A second approach takes a materials science or micromechanical
perspective. The chemical composition and microstructure of the material are
studied. Such a micromechanical view of piezoelectric crystals has been taken by
crystallographers and materials scientists. This approach is primarily applicable
in the development of new and better materials where, for example, a small
amount of another element or compound is added to the common piezcceramic
lead zirconate titanate (PZT) to achieve a desired effect. The material mechanism
of poling a ceramic so it gains a permanent polarization and thus acquires

16



piezoelectric properties is a fundamental process for all piezoceramics.
Micromechanics provides insight on poling and depoling, as well as on possible
material loss mechanisms. In general, however, micromechanics is usually not
of primary concern to a structural or control engineer because the information
provided about the mechanics of the material is too detailed.

A third method involves the use of thermodynamic state formulation
(see Appendix C). This method is general and can easily incorporate mechanical,
electrical, thermal, magnetic, and other effects in materials and systems. The
thermodynamic description is especially useful in representing interactions
between physical effects as well as in determining appropriate boundary
conditions for the solution of compiex coupled problems. While it has been and
continues to be employed in many theoretical studies (Tiersten, 1969 and Adam,
et al., 1988), it sometimes unnecessarily complicates relatively simple problems.
When one set of physical effects is of primary concern, a less general approach
can be substituted.

The fourth approach, and the one taken in this study, is a
macromechanical one. It is a simplification and linearization of the
thermodynamic approach. A proper macromechanical model is sufficiently
general because it incorporates electrical effects and sufficiently specific because
mechanical behavior is clearly highlighted. This is the most useful way of
studying general induced strain actuation because it is concerned primarily with
and formulated in terms of mechanical quantities such as strain. If a model of
the behavior of piezoelectric materials is macromechanical, the mechanical
interaction between a piezoelectric and a structure, including the strain induced
in the structure by the piezoelectrics, can be described easily. The
macromechanical approach will be developed in the remainder of the chapter.

Piezoelectric Constitutive Relations

In this section, the mechanical and electrical variables relevant in the
macromechanical study of piezoelectricity will be presented. The general linear
relationships between those variables, termed the "piezoelectric constitutive
relations,” will be shown, and specialized to the case of piezoceramics. The
piezoceramic constitutive matrix will then be discussed and important features
of the matrix will be highlighted.
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The macromechanical description of piezoceramic behavior begins with
the four quantities of concern in piezoelectricity. There are two mechanical and
two electrical variables involved in the characterization. The mechanical
variables are stress (T) and strain (S) and the electrical are field (E) and electric
displacement (D). Electric displacement is sometimes called "electric flux
density.” It is a vector with direction which, on the flat surface of a dielectric
material, may be thought of as the charge density. Stress and strain are second
order tensors, while field and electric displacement are first order.

When there is no electromechanical coupling, the electrical (or dielectric)
and mechanical problems are uncoupled. In the mechanical problem, stress and
strain are related by the elastic modulus or stiffness matrix (c) or, its inverse the
elastic compliance matrix (s). In the electrical problem, the electric field and
displacement are related by the permittivity or dielectric mairix (€) or its inverse
the impermittivity matrix (B)

T=¢S S=sT
E=fD % D=¢E @.1)

Piezoelectricity connects the mechanical and electrical problems. The coupled
electromechanical constitutive relations for a piezoelectric are

D=¢"E+dT
S=d'E+¢fT (2.2)

These are just the uncoupled relation from (2.1) with the piezoelectric coupling
terms d and d' added. The ()’ indicates transpose. The superscripts T and E
signify that these are quantities taken at constant (or zero) stress (also known as
"free”) and constant (or zero) field (also known as "short circuit"). In the
uncoupled mechanics problem, there is no distinction between the short and
open circuit compliances or stiffnesses. Similarly, in the uncoupled dielectric
problem, there is no difference between clamped and free permittivity or
impermitivitty. However, it is important to include these qualifications when a
problem is electromechanically coupled.

Equation 2.2 is one of four possible ways of representing the coupling
between the four variables of interest. The format for writing the relations
depends on which two variables are considered independent and which two are
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considered dependent. There are four possible forms of the equations and
therefore four piezoelectric coefficient matrices (d,e,g,h). Likewise, there are two
forms of the mechanical (c,s), and two forms of the electrical (g,B) coefficients.
Appendix C presents the various arrangements of electromechanical coupling in
tensor form and details the relationship between the piezoelectric, mechanical,
and dielectric coefficients. The focus in this study is on d, which relatec strain to
applied field and is therefore most relevant in induced strain actuation. A high
d coefficient implies a larger amount of strain per field can be achieved.

Constitutive Relations Specialized to Piezoceramics

For the special case of a piezoceramic, the full matrices for the form of the
constitutive equations in Eq. 2.2 are

[ T
PREE 0 0 0 0 0 0 4, 0 | E -
T
D2 0 81 0 0 0 0 15 0 0 E2
Da 0 e;r 31 31 33 0 O 0 E3
y E E E
S, B 0 0 d, S, S2 S, 0 0 0 T,
S, |70 0 d, st & 50 0 0 T,
E E E
":3 0 0 d, st & s£0 0 o© ;3
. 0 d_ o0 0 0 0 s 0 O 4
S . T,
5 d. 0 0 0 0 0 0 6
S J 16 b6b T J
- 710 0 o0 0 0 0 0 sg |- °

(2.3)

where the 9x9 matrix is a block matrix made up of eT, d, d', and sE, and field and
stress are put on the right hand side as the independent variables. The
condensed notation for stress, strain, and compliance, with subscripts 1-6 is used.

The constitutive matrix in Eq. 2.3 contains a great deal of information. It is
worth discussing in more detail some of the significant points. Figure 2.1 defines
the coordinate system used in defining the entries in the matrix above and in the
discussion which follows.

First, the x3 axis is assigned to the direction of the initial polarization of the
piezoceramic. The x; and x, axes are arbitrarily defined in the plane
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perpendicular to the x3 direction. In an actual specimen, the x; and x, directions

are usually defined so they align with the principal or physical axes of symmetry
of the manufactured ceramic.

P
>
)

w ¥

poling ]
direction

Figure 2.1: Coordinate System for Piezoceramics

Second, there are three dielectric and six mechanical variables. The '1,' '2,'
and '3' subscripts correspond to properties along the x;, x5, and x3 axes. The '4,'
'5,' and '6' subscripts correspond to shear properties in the x,-x3, x3-x7, and x;-x,
planes (Jones, 1975). The mechanical part of the problem includes shear
coupling. There is no analogous behavior with the dielectric variables. In fact,
the dielectric matrix block €' is diagonal, indicating that there is no dielectrical
coupling between properties in different directions.

It is a convention in the piezoelectric matrices, including the d matrix, to
write the subscript corresponding to the electrical variable first. This convention
is based on the more common reference to the direct piezoelectric effect, as the
electric charge developed upon application of a mechanical stress. In induced
strain applications, the less commonly utilized converse effect, in which a
mechanical strain is developed due to an applied electric field, is important. By
common convention the strain in x; due to field in x3 is written

Sl ocd mEa not S1 ocd l:,Ea (2.4)
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Ideally, piezoceramics are transversely isotropic with respect to electrical,
mechanical, and piezoelectric properties. That is, the properties are modeled as
being identical in any direction in the x;-x, plane. Prior to polarization, the
ceramic is completely isotropic. The process of poling distinguishes the x;
direction from the others. Because of the transverse isotropy, the subscripts 'I'
and 'S' are substituted for '2' and '4.' Shear strain in the x;-x, plane,
perpendicular to the x3 poling direction (S¢), cannot be piezoelectrically induced
in a pieznceramic.

As a result of these features, there are only 10 independent material
coefficients (2 electrical, 5 elastic, and 3 piezoelectric) listed in the 9x9 matrix of Eq.
2.3. Six compliances are listed, but for a transversely isotropic material, there is
one additional constraint

Se6 = 2(811 B 812) (2.5)

The matrix is sparsely populated compared to constitutive matrices for some
natural piezoelectric crystals. This feature is a desirable one. The degree of
coupling between strains, for example, adds to the complexity when a model of
piezoelectric strain actuators as part of a larger structure is constructed.

Thus far, the basic framework of the linear macromechanical model has
been presented. The format necessary to describe any linear electromechanically
coupled problem is contained in Eq. 2.3. We now focus briefly on the specific part
of the piezoelectric coefficient matrix most relevant to induced strain actuation -
the strain-field relation contained in the d matrix block.

Piezoelectric Strain Coefficients

Because of the symmetries inherent in a piezoceramic, there are only three
independent coefficients in the d matrix. As a group, d33, d3;, and d,5 are often
termed "piezoelectric strain coefficients." There are no commonly used
descriptive terms for each of the coefficients. Occasionally, the words
"longitudinal," "transverse," and "shear" are applied to the three respective
strain coefficients. However, because these terms have other implications in
mechanics, they will be avoided. Some typical numerical values of the d
coefficients (reported in m/V) are given in Appendix D.
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A Polarization direction

T Applied field direction

w( 1-S1)

Figure 2.2: Tllustration of d,; and d,,Coefficients

The coefficient with the most straightforward definition is d;;. When a
field is applied parallel to the x3 direction, the piezoceramic strains in that
direction as well. Figure 2.2 illustrates the results of applied fields. Thin
electrodes cover the top and bottom faces of the piezoceramics. When a voltage
is applied across the two surfaces, the differential produces an electric field. The
field is assumed to be constant between the two electrodes, and thus throughout
the piezoceramic. A field aligned with the polarization direction gives a positive
strain S3. An opposite field of the same magnitude gives a compressive strain Sj;.
The total displacement is the strain multiplied by the thickness. The strain is
defined by

T "% or S =dFE (2.6)

The thickness of a single piezoceramic is limited by two concerns. First,
the manufacturer must be able to initially polarize the ceramic. This requires a
large field, typically at least 1000V/mm. Second, even if the manufacturer has
the capability to apply large fields, in actual use it will still be necessary to apply
fields nearly as high to obtain maximum strains from the ceramic. That may not
be achievable or practical in an application. This motivates the use of stacked
piezoceramics, in which a number of individual ceramic pieces are placed in a
stack. Their displacements add, but when the individual ceramics are electrically
connected in parallel, large fields are not necessary because the same voltage is
épplied across each component.




The d3; coefficient characterizes strain perpendicular to the poling
direction (that is, in the x; and x, directions) due to an electric field (E;) aligned
with the poling (x;) direction. It is often reported as a negative value because it is
considered a secondary, Poisson-like effect which results when there is strain due
to d33. Under a positive Ej, there results a positive S3 and negative S; and S,.
Figure 2.2 also shows the strain attributed to d3; as the piezoceramic thickness
changes due to d33. The strain in the x; (or x,) direction is

\%
- Aw
—w =dy3 or S=dpE, 2.7)

Just as with d33, the displacements which can be obtained when d3; is used
are relatively small. In order to amplify the effect of the strain in induced strain
actuation, the piezoceramics are typically provided with a mechanical advantage.
Figure 2.3 shows an arrangement used for inducing bending strain in beams and
plates. By expanding one ceramic and contracting the other, bending can be
induced in a structure. The actuators in the figure are shown mounted on the
surface of the structure. They may also be embedded within it. By extending or
contracting both ceramics, extensional strain can also be induced. In the case

Induced Bending in Beam

Bimorph (t e 0)

Figure 2.3: Induced Bending Using d,,Coefficient

where the thickness of the structure, t;, approaches zero, the resulting actuator is
called a "bimorph" or "bender." A bimorph consists of two flat sheet ceramics
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separated by a thin metal shim. Typically, one end of the bimorph is clamped
and the other left free, or both ends are pinned on hinges. A relatively large
deflection of many times the thickness of the bimorph is possible with proper
mounting. Bimorphs were used in a low frequency aeroelastic application by
Spangler (1989).

The third piezoelectric strain coefficient, d;;, is the least utilized. The
electrode faces used to pole the ceramic are not used for actuation. Instead,
electrodes are placed on the other surfaces, perpendicular to the poling direction,
and an electric field is applied in the x; or x, direction. Shear strains in the x;-x;
or x,-x3 plane result. Figure 2.4 shows the physical deformation due to d;s. The
shear strain is

T d15t_ or S =dE (2.8)
The value of djsis higher than d3; and d3;, but in order to induce large net
displacements, a large voltage is required. This is particularly true of d;5 use
because a large polarization field must be applied initially during manufacture,
then a large field must be applied to obtain a perpendicular strain. Thus, the
overall size of the piezoceramic is severely limited. A stack of piezoceramic
elements using d;5 can increase the total displacement.

A Polarization direction

—® Applied field direction

E,

Figure 2.4: Illustration of d,; Coefficient

The basic equations of piezoelectric actuation have been described in linear
macromechanical terms with important features highlighted. The piezoelectric
strain coefficients have been described and some methods for amplifying the
piezoelectric effect were noted. The remaining portion of this chapter will focus
on quantifying the effects associated with the d3; coefficient and several features
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not captured by the simple linear model where d3; is represented by a single
constant will be presented.

2.2 STRAIN IN PIEZOCERAMICS

The behavior of piezoceramic materials, specifically the strain response to
an applied field, departs from being ideal. Instead of modeling ideal performance
and ignoring departures from it, it is important to address the nonidealities and
examine them more carefully. The term "nonideality" is used here to refer to a
broad range of phenomena in which the linear relationship (Eqs. 2.3 and 2.7)
between two variables of interest (strain and field) cannot be represented by a
single constant for all values of those variables. Some of the phenomena
discussed may be termed nonlinearities. All are properties not represented by a
single d3; constant.

After this brief intreduction, the remaining portion of this chapter is
organized as follows. One nonideality, such as the field-strain relation, will be
introduced. A simple test to determine the degree of nonideality will be
described and results presented. The results will then be analyzed for their
significance. Then the next nonideality will be similarly treated. There are six
separate properties addressed. These are: the basic field-strain relation;
hysteresis; strain rate dependence and creep; depoling; orthotropic inplane
response; and the effect on piezoceramic performance of imposed mechanical
strain. When the nonidealities are characterized and understood, their relative
importance and the limits they impose on the performance of the piezoceramics
can be understood as well.

Most of the modeling presented in the literature on piezoelectrics makes
use of simple linear models of behavior. In the IEEE Standard on Piezoelectricity
(1978) and many earlier texts and articles (Mason, 1950, Cady, 1964, and
Berlincourt, ef al., 1964) dealing with piezoelectrics the theoretical focus is mainly
on piezoelectric crystals. Prior to the publication of the Standard, and since, a few
authors have addressed some of the nonlinear behavior of piezoceramics.
Piezoelectric Ceramics (Jaffe, et al., 1971) presents some data which illustrate the
real properties of all piezoceramics. Several have recognized the presence of
some nonlinear relations and have employed a complex representation of
mechanical, dielectric, and piezoelectric properties. A brief outline of that

25



many nonidealities, to a somewhat greater extent.

(IEEE, 1978) they state

All results are based on linear Piezoelectricity in which the
elastic, piezoelectric, and dielectric coefficients are treated as
constants independent of the magnitude and frequency of the
applied mechanical stresses and electric fields.
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value previded for d3; does not capture the full field-strain relationship over the
entire range of applied field, often up to 1000V/mm or more.

A plot of the field vs. strain is analogous to the mechanical "stress-strain
curve." Just as the mechanical relationship is determined by loading a specimen
and measuring the stress and strain, the piezoelectric one is found by applying a
known field and measuring the strain. For materials which are not perfectly
elastic, a single modulus or compliance is not adequate to describe the stress-
strain relationship. For real piezoceramic materials, field and strain are not
related by a constant.

A set of field-strain tests was conducted to characterize the actual
relationship of field to strairi. The results are shown in Fig. 2.5. In the tests, a
single piezoceramic plate, with silver-nickel electrodes completely covering its
upper and lower faces, was placed on a electrically grounded aluminum jig plate.
The x; and x, axes were defined in the same plane as the piezoceramic sheet. A
single electrical connection was made with the top of the piezoceramic and an
electric field (E;) was applied across the PZT material. The field was assumed to
be constant throughout the piezoceramic. It was further assumed that the
piezoceramic was stress-free. The inplane strain in the x; direction was
measured with a strain gage mounted on the upper surface. Unless otherwise
noted, all tests were carried out on 63.5mm x 25.4mm x .254mm plates of G-1195
ceramics.

In plotting a field-strain curve, the directions of field and strain are
defined in order to make d3; a positive quantity. This reduces confusion in

presentation of the data and allows easy analogy to the stress-strain relation.

The field-strain behavior for different specimens of the same material was
found to be nearly identical. Although a thorough statistical study was not done,
the majority of the samples had curves which varied by a total of less than 5
percent in strain for a given field. Figure 2.5 shows the field-strain curve for a
typical G-1195 piezoceramic with measurements taken at a frequency of 0.1Hz.
Peak values of the field and strain are reported. The strain shown is referred to
as the actuation strain, defined as the strain in response to an applied field when
the material is not mechanically constrained and, therefore, is stress free. Field
and strain values were recorded at each of the indicated data points and the data
were fit with a cubic function shown. Also shown is the linear small-signal
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model with a constant slope. The maximum field which may be applied limits
the maximum strain and is goverzied by the value of the breakdown field.
Breakdown will be discussed in the section on depoling (2.2.4). In this test, the
maximum field used was roughly 90% of the breakdown value.

Small signal
linear model

Field (V/mm)

0 100 200 300 400 500
Strain (microstrain)

Figure 2.5: Field-Strain Curve (E3 vs. S§p) for Unconstrained G-1195 (0.1Hz)

The field-strain plot for a piezoceramic is analogous to the stress-strain
curve for a material which softens as stress (or strain) is increased. In this case,

while the nonlinearity complicates modeling, simply extending the linear
relation with constant dj; to higher fields could underestimate the strain

achievable at higher fields by a factor of two or more. In induced strain actuation
applications, this extra strain could be beneficial.

From Fig. 2.5, it is obvious that d3; is not in fact a constant. We therefore
will use the symbol d*;; to indicate that the coefficient can take on different

values depending on the amplitude of the field and strain. The d5; coefficient is

defined as the total strain divided by the total applied field. It is similar to the
"secant compliance” in mechanics. A "tangent " d3; based on the local slope of

the field-strain curve could also be defined. The definitions are written

.5
a1 -Ea“

secant definition: d
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B,
a

tangent definition: Ja .
3 (2.10)

»
The secant definition of d 3; is used in this study.
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Figure 2.6: d 37 vs. Field (Ej) for Uncontrained G-1195 (0.iHz)

* *
Figure 2.6 shows the d 3, coefficient as a function of field. The d 3; values

were determined directly from the data in Fig. 2.5 then again fit with a cubic. For
reference, the constant d3; of the small-signal linear model is shown.

-
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Figure 2.7: d 37 vs. Strain (S;) for Unconstrained G-1195 (0.1Hz)

29




An alternative to the d*31 vs. field of Fig. 2.6 is to plot d *31 as a function of
piezoelectric strain (Fig. 2.7). This distinction proved important in predicting the
strain response with the piezoceramic no longer stress-free, but elastically
constrained, as will be discussed.

With the field-strain behavior of a stress-free piezoceramic characterized
by the figures above, the next step is to determine whether that behavior is the
same when the piezoceramic is free or elastically constrained by being
incorporated into an elastic structure.

The simplest "structure” possible which involves a single piezoceramic
and uncouples extension and bending is a sandwich structure. A test article
comprised of a single sheet of 63.5mm x 25.4mm x .254mm G-1195 was bonded
with Devcon cyanoacrylate adhesive between two similarly-sized sheets of
aluminum. Electrical contact was made with both faces of the ceramic.

The expected induced strain in the sandwich by the piezoceramic depends
on two things. These are the relative stiffnesses and geometry of the actuators
and structure, and the commanded actuation strain. The stiffness/geometry
influence can be thought of as a knockdown factor which is always less than
unity. In this case, it is assumed that the epoxy layer provides a "perfect” bond
between components (see Section 3.1), and the strain is

S &Y,

= = E

1 (EA), +(E4), ™ 2.11)

where (EA), is the extensional stiffness of the actuator, (EA), the extensional
*

stiffness of the aluminum structure, and d 3;E3 the piezoelectric actuation sirain.

In this case, with the structure having twice the cross-sectional area and elastic
moduli of 63 GPa and 70 GPa for the PZT and aluminum, the stiffness/ geometry
term is equal to .310.

It is obvious that d*31 in the term representing actuation strain is not
constant. In view of the nonlinear field-strain behavior of Fig. 2.5, it might be
postulated that the d*31 is a function of field, as would bhe suggested by Fig. 2.6, or
of strain as would be suggested by Fig. 2.7. Using the field-dependent approach
the predicted induced strain in the sandwich structure is
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(EA)a .
5= Ea)_+ & W(EB)E 2.12)

where the appropriate d*31 is found from a stress-free d*31 vs. E plot similar to
Fig. 2.5. This method was used to predict the induced strain in the sandwich
structure. The result is plotted in Fig. 2.8 and labeled the 'prediction (field
level)."” When compared to the test results, the prediction consistently
overestimates the measured strain data, by an increasing percentage as a larger
field was applied.

From this result it can be inferred that d‘31 is not dependent on field. If
however, the micromechanics of the situation are considered, it might be
concluded that correlating d*31 with the strain is more logical. The fundamental
nonlinearity depends more on the deformation of microstructure of the
piezoceramic than the externally applied stimulus.

300 -
,0
E 200
=
=
S 100 -
e Predicted (field level)
{i L  |m=——-- Predicted (strain levei)
l o Data
0 L | Al | v 1 v 1 L L
0 5 10 15 20 25

Strain (microstrain)

Figure 2.8: Induced Sandwich Strains

»
Thus, the alternative expression for predicted strain has d 37 as a function
of strain

(E4),
5= (EA), +(EA), % (S)E, (2.13)
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Unfortunately, the value for d*31 depends on strain, which is the unknowi of
the problem. There are two basic ways to overcome this implicit description.
One alternative is to fit a function to the d*31 vs. strain data and solve the
resulting algebraic relation for S;. The cther is to start with an assumed value for
S; and then iterate to find the correct strain. The latter method was used for the
prediction in this report.

Figure 2.8 shows the correlation between predicted strain using the strain-
dependent d'31 and data. The deviation between prediction and data is within
2%, approximately the measurement error (.25 uS) for the strain. This strain-
based approach is used to determine the correct d‘31 for the beam and plate
structures in Chapters 3 and 4 and agrees with results found by Lazarus (1989).

It is believed that part of the reason for the discrepancy between the
predictions and results for the glass/epoxy beam with embedded piezoceramics
in Crawley and de Luis (1987) was the use of a d3; which was too high. The d3;
coefficient for the piezoceramics used in experiments was tested stress-free at one
field level at which many of the beam experiments were conducted. The value
used for d3; was 50% higher than the manufacturer's reported value. However,
the structure did not allow strains near the free level, so a lower d*31, still greater
than the manufacturer's value, but based on the actual strain level should have
been used in the prediction.

The use of a d*31 dependent on the strain instead of a constant d3; is a
significant step towards accurately representing strain in piezoceramics and
should be considered in any model for piezoceramics inducing strain in
structures.

2.2.2 Hysteresis

Hysteresis is a mechanical effect encountered in cyclical stress-strain
relationships of plastic materials. Usually, an initially linear elastic relationship
becomes plastic at a certain stress (or strain) level. If the material is returned to a
stress-free state, a residual strain remains. Upon application of a stress in the
opposite direction, the material deforms elastically, then the plastic deformation
eventually begins. When the stress is again returned to zero, a residual strain in
the opposite direction remains. When the cycle is repeated, the resulting locus
forms a hysteresis loop.
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The previcus section discussed only the peak amplitudes of field and
strain measured. If the commanded field and resulting strain response are
plotted over one cycle, the resulting plot shows hysteresis. Figure 2.9 illustrates
the real free field-strain relationship for three different levels of applied field.
The data is taken from the same experiment which yielded the peak values of
Fig. 2.5. Again, the reported strain is free strain in the x; direction in the
unconstrained piezoceramic material due to a field in x; (Ej).

There are several important points to note regarding the hysteresis loop.
The loops, as shown in Fig. 2.9, are traversed in a clockwise direction, and the
same path is duplicated for repeated cycles at the same field level. Hysteresis was
found to be present at all frequencies, including DC, and at all measurable ranges
of field or strain. The hysteresis was observed at field strengths as low as
20V/mm and peak strains as low as 2 uS. For all tests conducted, the loop
appeared to be very close to symmetric. The inverse slope of the hysteresis
curve, measured by peak-to-peak strain divided by peak-to-peak field, is the
value of d*31 reported previously for the corresponding peak fields and strains.
The slope of the loops decreases with amplitude, consistent with the increase in

d*31 with higher strains (Fig. 2.7).
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Figure 2.9: Field-Strain Hysteresis for Unconstrained G-1195 (0.1Hz) Nlustrating Difference
in Phenomenon for Three Different Peak Strain Levels

It is also apparent from Fig. 2.9 that the relative width or "aspect ratio" of
the hysteresis loops increases with higher strains. The aspect ratio is defined as
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the difference in the two strain values corresponding to zero applied field (the
residual strains) divided by the peak-to-peak strain. Figure 2.10 shows how the
aspect ratio grows with the amplitude of the peak strain. A cubic curve is fit to
the data. The basic shape of the loop at all strain amplitudes is similar. The
field-strain behavior can therefore be characterized reasonably well by d *31 (the
inverse slope) and the aspect ratio.

Aspect Ratio

v I v ¥ v 1 1
200 300 400 500
Strain (microstrain)

1
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Figure 2.10: Field-Strain Hysteresis Loop Aspect Ratio vs. Peak Strain for Unconstrained
G-1195 (0.1Hz)

Although hysteresis is present at all frequencies, it was found to be a
particular problem for static tests. It was established that all experiments to
determine the static capability of the actuators had to be carried out as hysteresis
loops in order to capture all the relevant information. There are two specific
problems for static operation brought about by the hysteresis: the presence of
residual strains and the apparent "directionality" of d*31. From Fig. 2.9 it is
apparent that on each loop there is a range of possible strain states for zero field.
In the worst case (largest loop) shown in Fig. 2.9, when the applied field is zero, a
strain variation of up to *90uS can result. The presence of residual strain is a
greater problem when operating at higher strain levels.

The apparent "directionality” of d*31 can also lead to confusion. By again
considering the largest loop in Fig. 2.9, in changing the field from 0 to
+750V/mm, the change in strain can range from 305uS to 215uS. Hence, the
apparent d*31 depends on the residual strain state. These are valid concerns in
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static applications, since a full loop will not always be completed. An application
may require one-way actuation, followed by an actuation in the opposite
direction some time later. Therefore, in static applications, care must be taken to
note the residual strain state.

In vibration problems, recognition of the hysteresis is important, but is not
as great a concern. The d*31 coefficient, which represents the inverse of the
(nonconstant) slope of the loop, can be used to adequately describe the field-strain
behavior. However, the hysteresis appears as a small and variable phase lag
whose presence may disrupt control functions. At very high frequencies, energy
from the related mechanical losses can generate enough heat to affect the
operation of the actuators (by heating epoxies or surroundings or possibly even
depoling the piezoceramic). In general, however, the designer working at typical
structural frequencies in applications which are not highly temperature sensitive
can be less concerned about hysteresis.

Several studies (Martin, 1974, Smits, 1976, and Bondarenko, et al., 1982)
have tried to model the nonlinear hysteretic behavior of piezoceramics by using
complex quantities to represent the mechanical, dielectric, and piezoelectric
coefficients. These studies do not generally use the word "hysteresis" to describe
the behavior, but instead refer to "loss parameters." Equation 2.14 shows a
typical representation used by these authors

E _ _E(Re) , .E(Im)
5= Su + IS
_ T(Re) , . T(Im)
£ =g 4+ E,
(Re) . _(Im)
d:n= d31 +Jd31 (2.14)

The first two equations are commonly used in the study of mechanics or
dielectrics. The complex compliance is often used to represent mechanical losses
or damping in a material. Because the mechanical damping has been measured
and is not exceedingly high (approximately 1%) for the piezoceramic, the
mechanical compliance is only slightly complex. The complex dielectric constant
is usually referred to by the loss tangent, tand = (Im(€) /Re(¢€)). It can have values
of 0.1 or higher at high fields where dielectric losses increase.

The complex coefficient models are convenient, but do not capture all the
details of the hysteresis phenomena. They should at least be augmented to
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include a d*31 which changes with amplitude. In addition, the apparent phase
lag is actually variable with respect to amplitude because the hysteresis loop is
not a pure ellipse. Best suited for vibration applications, it is difficult to apply
such complex analysis to static problems.

A description of the hysteretic behavior based on the rate of domain
switching (Chen and Montgomery, 1980) provides a better physical explanation
for the phenomenon. Such a description, which includes time- and field-
dependent dipole realignment is useful for modeling both hysteresis and the
creep phenomenon discussed below.

Without physically changing the field-strain hysteresis behavior it is
possible to obtain a significant reduction in the apparent hysteresis by
commanding charge versus strain (Comstock, 1981, and Newcomb and Flinn,
1982). The nonlinearities of the field-charge and field-strain relations are
roughly proportional because they are due to the same phenomena. Bryant and
Keltie (1986) show evidence of this for an actuator which uses a piezoceramic
cylinder for axial force and displacement. In applications, the charge on the
actuator can be required to be proportional to a charge which corresponds to the
input signal magnitude. This "charge control" may reduce possible multi-
valued strains encountered in static operation. A simple version of this scheme
was easily implemented in the laboratory in conjunction with this study.

For vibration problems, if the variable slope of the field strain curve is
used, the hysteresis effect can present itself as small phase lag between the field
commanded and the resulting strain. "Charge control” will significantly reduce
the lag. The underlying hysteresis is still present and can still cause heating at
high frequencies and amplitudes, but its presence is conveniently masked. Other
control methods for "flattening" the loop are also possible. Such schemes may be
necessary in applications with very tight performance requirements. Discussion
of them is beyond the scope of this study. General recommendations for dealing
with hysteresis are presented in Section 2.3.

2.2.3 Strain Rate Dependence and Creep

In using piezoceramics as induced strain actuators for structural control it
is important to know if the actuation strain produced by the actuators for a given
field shows any strain rate or frequency-dependent effects. Closely related is
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another phenomenon encountered in very low frequency and static situations,
creep. Both effects will be discussed in light of experimental results.

There is no known model which explicitly addresses the strain rate-
dependence of d‘31. It is recognized in the IEEE Standard on Piezoelectricity
(1978) that "nonlinearities are most pronounced under static and quasistatic
conditions." Chen and Montgomery (1980) present a model which includes rate-
dependent properties. But, much of the literature is concerned with high
frequency applications where frequency-dependence is not characterized.

In order to measure the level of strain-rate dependence, a series of stress-
free actuation strain tests was conducted. Three free strain measurements per
decade of frequency were made on 63.5mm x 25.4mm x .254mm piezocerarnics
over the frequency range of .01Hz-100Hz. The tests were conducted at peak field
levels of 278V/mm and 557V/mm, and d*31 was calculated. The test could also
have been done at two strain levels. But, it is more convenient to command
field in the laboratory, especially in low frequency applications.
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Figure 2,11: Variation of d‘3 1 V8. Frequency Illustrating the Influence of Creep in
Unconstrained G-1195

Figure 2.11 shows the results of the two separate tests. The piezoelectric
*
coefficient d 3; is plotted against frequency for the two levels of applied field.

*
The variation in d 3; is relatively small over the four-decade frequency range.
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However, the coefficient clearly shows some rate dependence. The d*” value at
.01Hz is within 5% of the static (DC) value for the same field level.

The phenomenon of piezoelectrically-induced creep is the cause of the
variation in d'31 with frequency. Creep in piezoceramics has been recognized by
the manufacturers, and several previous investigations (Jaffe, et al., 1971 and
Chen and Montgomery, 1980), but is generally not dealt with in thecretical
studies. In experimental studies, especially those which utilize piezoceramics
under static fields, creep is readily apparent.

Instead of the prolonged stress which induces conventional mechanical
creep, it is the prolonged application of an electric field which causes the
piezoelectric strain to grow with time. It is surmised that the large strains at large
fields cause a physical realignment of the domain microstructure and a change in
the polarization of the parallel dipoles which make up each domain.

In order to determine the relative levels of creep at various field strengths
and strain levels, a series of simple tests was conducted. The test specimen was
once again a 63.5mm x 25.4mm x .254mm G-1195 sheet. Accurate measurement
of creep required that residual strains on the test ceramic be brought to zero
before the test was begun. To find the true zero residual strain, a hysteresis loop
was executed prior to testing. The center of the loop was then considered the
actual zero strain point. Creep was observed at room temperature in stress-free
piezoceramics, both when the field was applied in the same direction and against
the direction of polarization.

Beginning from a condition of "true" zero strain and zero field, a step
increase in field against the direction of polarization was applied and the inplane
strain response of the ceramic sheet was measured with a strain gage and
recorded on a Nicolet digital oscilloscope. Several different step values of field
were applied. The step in field was both rapid (less than 0.1 second rise time) and
free from bounce. From Fig. 2.12 it is clear that the initial step response in strain
is rapid. In less than 1 second the majority of the change in strain is achieved.
When the response is considered over a longer time scale however, the creep
becomes apparent.

The basic nonlinear field-strain relationship discussed previously can be
seen in the step responses. Although 787V/mm is four times the field strength
of 197V/mm, it produces within 1 second a strain of 340uS, more than six times
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the strain of 55uS produced by the 197V/mm field. This corresponds closely with
the .1Hz data shown in Fig. 2.5. The subsequent increase in strain over time
represents the effect of the creep. There is significant additional strain due to
creep, especially at the higher applied field levels. For example, for fields of
197V/mm and 787V/mm, the strains at 400 seconds are 60uS and 430uS. This
represents increases due to creep of 9% and 26%. The effect of creep is clearly
more important at higher field and strain levels.
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Figure 2.12: Strain Response to Steps in Applied Field lustrating Piezoelectric Creep for
Unconstrained G-1185

Thus, for static operation, there is some ambiguity in the final value of
strain achieved. For the static tests conducted in this study, the strain was
allowed to attain a near constant level before measurements were taken. A
settling time of 300 seconds was used. Where one-way actuation is used, as
represented by the step responses in Fig. 2.12, the creep can cause drift in the
induced strain of a structure. For this reason, strategies discussed in Section 2.3
to account for creep strain may have to be adopted.

The strain rate dependence of d*31 (Fig. 2.11) is related to creep. At lower
frequencies, enough time is spent per half cycle for some creep to occur. In
higher frequency applications, the field and strain change rapidly so that no
significant creep strain occurs. For dynamic operation, the dependence of d *31 on
frequency can be used.
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2.2.4 Depoling

Many applications which use piezoceramic actuators require large
deflections or strains. It is therefore desirable to utilize the full potential of the
piezoelectric effect. However, in an effort to obtain the greatest achievable strain,
the net polarization of the ceramic and thus, its piezoelectric properties, can be
severely degraded. In the section on basic field-strain behavior, a limiting field
level was mentioned. In this section, that concept will be expanded on and the
depolarization (or depoling) process as well as the operating limits imposed by
high fields will be discussed.

During the manufacture of piezoceramics, a large (>1 kV/mm) field is
applied across the ceramic material to initially orient the the previously
randomly-oriented crystallites toward the direction of the polarizing field. The
polarization of the ceramic is not permanent. If a large static field is applied in
the same direction as the polarization, no depoling will occur. Static tests
conducted elsewhere (Lazarus, 1989) have shown that d '31 does not continue to
grow at substantially higher field levels in the poling direction, in contrast to the
trend reported earlier in this section. The real limit on the field which may be
applied in the poling direction will be imposed by one of two things. Either the
field will breakdown by arcing between the electrodes or the ceramic will crack
due to the high strain. The former situation can be avoided by careful electrical
isolation. The latter implies that, since actual induced strain will be limited in a
structure, a larger field may be applied to a piezoceramic which does not achieve
its free strain. If a large enough field is applied opposite to the polarization
direction, the ceramic will be depolarized or depoled. The field which causes
depoling is called the coercive field, and is often designated E.. A piezoceramic
may also be depoled if an extremely large stress is applied or if its temperature
exceeds the Curie point for that material.

If the coercive field is applied for a period of time, the piezoceramic will be

repoled in the direction opposite to the original poling. If the opposing field is
only slightly less than E, the ceramic may still depole and repole in the opposite

direction, but much more slowly.
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Figure 2.13: Strain Response to High Applied Fields Illustrating Depoling in Unconstrained
G-1195

Figure 2.13 shows the strain resulting from step inputs in field opposite to
the poling direction. The test conditions were the same as those used to
investigate creep, but higher fields were applied. For both applied fields, a strain
of 450-500uS occurs within 1 second. The slow depoling and repoling from a
984V/mm field occurs over several minutes. The result is a strain of comparable
magnitude and opposite direction to the original strain. Figure 2.13 can be
contrasted with the strain responses of Fig. 2.12. In both cases the initial strain
response is in the direction expected. The first few seconds of the slow depoling
show behavior similar to that seen in Fig. 2.12. The strain during rapid depoling
follows a path similar to the ones in Fig. 2.12 for cnly the first fraction of a
second. The rapid depoling and subsequent repoling resulting from the
application of a field of 1181 V/mm takes place over a time of roughly 2 seconds.
The repoling is followed by some creep.

Degradation effects from the depoling-repoling cycle were also
investigated in a separate test. In that test, a field of 1400V/mm was applied to a
piezoceramic sheet opposite to the original polarization direction for 30 seconds,
depoling the ceramic. The 1400V/mm field was then reversed to repole the
ceramic in the original direction. This repoling field was applied for 180 seconds.
Subsequent to the depole/repole cycle, the strain response of the ceramic was
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measured for fields up to 400V/mm. The cycle and measurement was repeated
25 times. There was no measurable loss in piezoelectric properties.

In higher frequency applications, the coercive field also limits the amount
of strain which can be achieved. However, an oscillatory field greater than the
static coercive field is necessary to depole the ceramics. If the field is of sufficient
strength, depoling will occur when the direction of the time-varying field is
opposite to polarization. The coercive field thus depends on frequency. It is
often reported as two separate values - one static and one at 60Hz.

In general practice, operation against the poling field direction should be
limited to some fraction, perhaps 80% or 90% of the coercive field. But no
similar limit is imposed in the poling direction. In order to achieve larger
strains, the depoling limit can be circumvented. This is usually accomplished by
applying a large bias field to insure that the net applied field remains either
always in the poling direction or at least well below the coercive field in the
antipoling direction. For example, if the coercive field is 1000V/mm, a
1500V/mm static field could be applied in the poling direction. The range of
oscillatory operation would then be extended from near 1000V/mm peak to near
2500V/mm peak. Alternatively, a field of 1500V/mm peak could be applied and
operation kept below 1500V/mm in order to maintain the net applied field
aligned with the poling direction.

2.2.5 Orthotropic Inplane Response

The objective of this subsection is to determine whether the orientation of
the x; and x, axes is indeed arbitrary as the linear transversely isotropic
piezoceramic mode! (Eq. 2.3) suggests. According to the assumptions of the
model, the ceramic is made up of randomly oriented crystallites. Prior to the
application of the poling voltage, the net polarization is zero and there is no
distinction between the physical structure in any direction. The material is
mechanically and electrically "isotropic." Upon poling, the x3 direction is
distinguished from the directions perpendicular because of the reorientation of
the crystallites. But the ceramic is still transversely isotropic. The inplane
orientation of the x; and x, axes should be arbitrary.

In the piezoceramic constitutive matrix representing the ideal linear
model (Eq 2.3) only three independent piezoelectric coefficients (d3;, d33, and dy5)
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are included. In the x;-x, transversely isotropic piezoceramic it is assumed that
d24 = d15 and d32 = d31.

A test was conducted to discern whether the piezoelectric behavior in the
X1-X, plane is indeed isotropic, particularly if d*32 is equal to d*31. Two different
material types were investigated: G-1195 and PZT-5H, manufactured by
Vernitron. The test specimens were stress-free 63.5mm x 25.4mm x .254mm G-
1195 and 45.7mm x 22.9mm x .254mm PZT-5H. A BLH 45 degree strain rosette

was mounted cn the center of the upper surface of each of the ceramic sheets and
a field (E;) was applied across the ceramic. From the rosette measurements the
strain in every direction in the x;-x, plane could be calculated. In the ideal case,

the inplane strain does not change with orientation.

An electric field of from 0 to 550V/mm peak was applied to the ceramics.
The test was conducted at several different frequencies, with no significant
frequency variation in results other than the strain rate effects discussed in the
previous section. Figure 2.14 shows the peak field-strain results for G-1195 and
PZT-5H piezoceramics for tests conducted at 50Hz. The three curves represent
strain measurements in 3 directions separated by 45 degrees. The basic nonlinear
field-strain behav1or is consistent with what was described previously. Over this
field range d 31 is slightly g'eater for the PZT-5H material. In both materials,
there is a clear difference in the strain in the three directions, but the relative
values of the strains remain roughly the same as the field level is increased. In
the ideal inplane isotropic model all three curves would coincide.

The same data can be thought of in a different way by making use of the
concept of principal strains. From the rosette data the principal directions and
strains can be calculated by standard methods. The two principal strain values
put a bound on the possible strain levels. This approach assumes that there is no
strain variation with location in the plane.

For example, for G-1195, compared to the strain in the x; direction
corresponding to a 550V/mm field, the -45 degree strain was 7.0% less and the 45
degree strain 10.2% greater. The calculated principal strains were 11.0% greater
and 7.2% less than the x; strain. The principal directions for the two materials
are shown in Fig. 2.15. It is clear that d *32 does not equal d '3, for free strain of the

piezoceramics tested. Although it was not measured, it is possible that the elastic
cempliances (st 11and s 22) are different as well.
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Figure 2.14: Inplane Strain Response to Applied Field from 45-degree Strain Rosette
Tlustrating Orthotropic Strain Coefficient (50Hz)

Three possible explanations for the observed orthotropic phenomenon
were considered: manufacturing/processing effects, the shape of the ceramic
sheet, and the spatial separation of the three strain measurements. The
manufacturing effect explanation proposes that the introduction of the
orthotropy could have taken place during the process where the ceramic is



spread out and rolled under a knife edge to obtain an even thickness. It is
common to introduce orthotropy in similar processes where, for example, a
metal is rolled. The manufacturer suggested this possibility.

1
I 1

1 \
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Figure 2.15: Principal Piezoelectric Strain Directions Determined from Strain Rosette Data

The second explanation is that the manner in which each sheet is cut
influences the inplane strains through three-dimensional effects from the sheet
boundaries. When the shape of one PZT-5H specimen tested was changed from
rectangular to square by cutting off a large portion of the ceramic, no difference in
results was found. Based on this and other tests, no clear relationship between
the directions of principal strain and the shape of the piezoceramic sheets has
been found.

The third explanation is that the spacing of the three gages on the rosette,
though small, meant that the strain was actually measured in three places,
separated by approximately 2mm, compared to specimen widths of about 25mm.
This idea was discarded on the basis of extensive field-strain data from different
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specimens of the same material which match to within a few percent even
though the locations of measurement were not precisely controlled.

None of the explanations provides a definitive reason for the observed
behavior. Although the orthotropy was significant for free piezoelectric strain,
under elastic constraints, it was found that the orthotropic effects tend to blur.
When a piezoceramic sheet was sandwiched between two similarly-sized pieces
of aluminum there was no longer any measurable orthotropy associated with the
strain (Lazarus, 1989).

In one-dimensional applications, such as the beams discussed in Chapter
3, the field-strain behavior in the single direction of interest can be measured and
used to predict structural deformation. Strain in only one direction was used for
correlating the beam experiments in Chapter 3. The same is the case for the
plates in Chapter 4. It is unrealistic to expect that the piezoceramic strain has to
be completely characterized as a function of inplane orientation. In view of
other, more significant nonidealities, a single measurement, along the direction
of primary interest, should be adequate.

2.2.6 Effect of Imposed Mechanical Strain

It was shown previously in this section that the piezoelectric coefficient
d*_;] exhibited a significant dependence on the level of piezoelectrically-induced
strain. Piezoceramics which are part of structures will experience a variety of
mechanically-induced strains as well. It would be undesirable for actuator
performance to depend strongly on the mechanical stress and strain of the
structure because prediction of strain behavior would then be greatly
complicated. The level of dependence of the piezoelectric coefficients on the
imposed mechanical strain is therefore a concern.

It is known that a large stress can depolarize a piezoceramic. Short of
depolarization, an applied stress can degrade piezoelectric properties (Jaffe, et al.,
1971 and Doroshenko and Ugryumova, 1978). The purpose here is not to
establish the depoling stress level, but to determine the effect of lower magnitude
stresses typically encountered in structural control.

In Doroshenko and Ugryumova (1978), a compressive stress of ;=2C0MPa
produced a loss in d3; of from 5-30% for the six different PZT compositions

tested. In Jaffe, et al. (1971), application of a large uniaxial compressive stress was
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found to cause an anisotropy. A loss of 50% in dj; and a corresponding 80%
increase in dj3, is reported under 150MPa of compressive stress with less than 2%
loss in d3; and 7% increase in dj, for stresses under 35 MPa. The manufacturer of
the ceramics used in this study (Piezoelectric Products) reports in the material
data that there is 0% change in d33 at 3000psi (21MPa) and 13% decrease at 5000psi
(35MPa). Data were not available for changes in d3;, which is the concern here.

An experiment was carried out to confirm that a low level imposed
mechanical tensile stress (o7) had little influence on piezcelectric performance.
A 25.4mm by 76.2mm sandwich of PZT G-1195 between 2 sheets of aluminum
was used as the test structure. The three .254mm thick layers were bonded
together with Devcon cyanoacrylate adhesive. A sandwich structure was used
for the tests because the load was more easily applied to it than to a single free

Direction of
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| I l I l Slits
3 Aluminum
25.4mm
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63.5mm A Strain PZT
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@ + —>
Applied
....... field
I '

Figure 2.16: Experimental Configuration for Mechanical Loading of Sandwich Specimens
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ceramic.

The strain response of the piezoceramic was tested at 0.1Hz prior to
bonding between the aluminum. The sandwich was then tested, again at 0.1Hz,
under no external mechanical load.

An attempt was made to load the sandwich in the x; direction, without
changing the stiffness of the constraining layers in x,. Figure 2.16 shows the
experimental setup for loading the sandwich. Aluminum loading tabs were
bonded to the sandwich. The vertical (longitudinal) slits were an attempt to
limit the transverse restriction imposed by the tabs. The lower tab was clamped
to a rigid base. The lcad was applied to the upper tab with a winch and steel cable
mechanism and measured with a load cell. The tabs caused a slight reduction in
the strain induced in the sandwich. For the tests, the "zero stress" value was
measured while the sandwich was in the clamp, but with no external load
applied.

Mechanical stresses up to 13MPa were applied to the sandwich. A
550V/mm field was applied at each stress level, and peak-to-peak strain was
measured. Figure 2.17 shows the results with peak piezoelectric strain
normalized by peak piezoelectric strain at zero load. This normalized strain is
also a measure of normalized d*31. The variation in d*_;, for these levels of bias

»
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Figure 2.17: Change in d'3; with Mechanically-imposed Strain




seen by Jaffe, et al.

It can be concluded that the level of piezoelectrically-induced strain

determines the piezoelectric properties. The externally imposed mechanical
®

strain does not affect d 3; to a degree comparable to the piezoelectrically-induced

*
strain. For 100uS of mechanically-induced strain, the apparent change in d 3 is
roughly 1%. Yet the basic stress-free field-strain data in Fig. 2.7 shows that 100uS

*
of piezoelectrically-induced strain increases d 3; by more than 50%. From this it

can be concluded that d*31 variation is much more dependent on
piezoelectrically-induced than mechanical strain. For stiffness-driven problems,
where high stresses are not encountered, it is therefore not necessary to account
for mechanically-induced changes in piezoelectric properties. For high stress
problems the piezoelectric performance is known to decline and should be a
concern.

2.3 IMPLICATIONS OF NGNIDEALITIES FOR USE

In the previous section, experimental evidence of several nonideal
phenomena present in piezoceramics was detailed. It is obvious that the model
of Section 2.1 is both a linearization and simplification of actual behavior. In this
section, the implications of the nonidealities for the use of piezoceramic induced
strain actuators will be discussed. Techniques for either avoiding, modeling, or
otherwise dealing with the real phenomena will be presented.

Of the six phenomena illustrated (the dependence of a"_;; on strain, field-
strain hysteresis, frequency dependence and creep, depoling, orthotropy, and
response to mechanical strain) the last two are of least concern. As was stated
previously, an isotropic model is believed to te adequate when piezoceramics are
part of larger structures. Also, although it is known that extremely high imposed
stresses will degrade performance, even to the point of depolarization or tensile
failure of the ceramic, the lower imposed mechanical strains more typical of
stiffness-limited structures do not significantly influence piezoelectric properties.

Depoling and Coercive Field

Before addressing the other three nonlinearities, depolarization limits will
be discussed. As a general rule, the user of piezoceramics should attempt to
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design so as to apply electric field in the polarization direction. Several other
steps are necessary in considering the possibility and effects of depoling. First, the
coercive field, E., should be established for the frequency of interest. The
variation in E_ for different specimens of the same material was found to be
small, but there may be several weakly poled pieces in a large lot. The static E,

will always be lower than the dynamic values.

Second, the operating range of field must be established. The field against
the poling direction should be limited to some fraction of the coercive field
(perhaps 80%). It may be desirable to set a voltage limit on amplifier output. If
higher strains are required, a bias field may be applied in the poling direction to
shift the operating range of the net applied field. The net field opposite to the
poling direction must still be kept below E..

Third, a piezoceramic may partially or fully depole when in operation.
There is often difficulty in recognition of the depoling. This typically will be the
case when the actuator is either one of a large network or is only partially
depoled. The actuator strain should be compared periodically with a baseline
performance to determine if full or partial depoling has occurred. Clearly, the
depoling of single or multiple ceramics due to a field exceeding E_, an overstress,
or a temperature above the Curie point cannot be allowed to cause a system
instability. The likelihood of depoling and subsequent detection should be
considered prior to the start of operation as part of an overall fault tolerance
strategy.

Finally, if a piezoceramic is depoled, it is desirable to have the capability to
repole it. In some applications, especially during operation, it may not be feasible
to repole. It was found that the piezoceramics tested were able to withstand
depoling and repoling 25 times without subsequent measurable loss in
performance. Thus, repoling capability is an easy way to help insure long term
utility of an actuator.

Nonlinear Field-Strain, Hysteresis, and Creep

We are left with three (related) phenomena of concern: the nonlinearity
in the field-strain relation, hysteresis, and creep. It is true of all three that lower
strains cause less nonlinearity. When the piezoceramics are used as induced
strain actuators, the elastic constraint of a substructure will cause induced strains
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lower than the piezoceramic actuation strain. Therefore, the nonlinear effects
will be lessened. In relatively low strain precision applications, this reduction of
nonlinearities can be exploited.

However, in many applications it is desirable to induce the highest strain
possible. By extending the field operating range with a large bias field, the
achievable induced strain and therefore the nonidealities, will be of the order of
the free actuation strain effects shown here. The behavior can therefore not be
avoided.

Unlike depoling, where limits on applied field can guarantee safe
operation, the fundamental field-strain nonlinearity must be confronted. The
degree of this nonlinearity differs with material, but it is present in all
piezoceramics. The field-strain behavior, independent of the associated
hysteresis, may be represented in two basic ways: a model which attempts to
accurately represent the full extent of the nonlinearity; or a linearized model.

In the case where the full nonlinear behavior is modeled there are
*
options. Either the field-strain or the d j3;-strain relation can be modeled. A

d*sl-strain fit provides the advantage that the correct value for d*31 for any level
of induced strain can be found. In the presentation of the data in the previous
section, the accuracy of the analytical curve fits was not emphasized. However,
for low strain levels, simple polynomials provide accurate fits. For the range of
fields and strain tested (up to 90% of E.) with a quadratic fit, correlation
coefficients of R?=.998 for field as a function of strain and R%=.994 for d*31 as a
function of strain were achieved. For higher fields (in the poling direction) and
strains, the fit is likely to be less accurate. A higher order polynomial may be
used, or the data may be stored in tabular form and accessed when necessary.

Alternatively, if it is felt that the basic field-strain nonlinearity adds too
much complication to a model, the relationship might be linearized around a
specific amplitude with deviations treated as disturbances. This simplified
approach uses a single value, which may or may not be chosen to be equal to the
small signal dj; to represent d'3;. This technique simplifies control design but
sacrifices some accuracy. de Luis (1989) uses a single value for d’;; in an
application where induced strains never exceed 25 microstrain. A single dj; is
also used in Chapter 4, where induced strains are below 5 microstrain.
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In most cases, the manner in which the field-strain nonlinearity is
addressed should recognize hysteresis. This is especially true in high strain and
static situations. As a first step, a piezoceramic material with a small amount of
hysteresis can be chosen. G-1195 is believed to exhibit more hysteresis than
several other piezoceramic compositions. Beyond material improvements, there
are three ways to deal with hysteresis. It may be ignored, modeled to varying
degrees, or controlled and linearized.

For vibration problems the simplest approach is to use only the relative
amplitudes of the field and strain with hysteresis not explicitly represented in the
model. The hysteresis can then be considered as an unmodeled phase lag whose
presence will not cause instability if a positive phase margin is maintained. This
approach is not applicable to static problems.

If hysteresis is explicitly modeled, vibration and static problems must be
treated differently. For oscillatory strains, because the phase lag between strain
and field varies both within each cycle and with changes in strain amplitude,
there may be difficulty in representing the phase lag by a complex d *31 coefficient.
A transfer function representation of the hysteresis is also not broadly valid
because of the nonlinearity of d*31 with strain amplitude, and to a lesser extent
the variable lag .

For static applications, a pure phase lag representation is definitely not
satisfactory. Because static operation does not follow a repeating path on a field-
strain plot, a static model of hysteresis must be more explicit. It is necessary to
recognize and account for residual strains as well as the history and direction of
operation. However, a model which includes explicit representation of a
hysteresis loop with one or two equations is valid only for operation along that
loop. For example, if the hysteresis loop corresponding to a 200uS peak strain is
modeled, and actual operation uses strains from 0 to 150uS, the model will not be
adequate. This difficulty results from the dependence of d *31 and the aspect ratio
of the hysteresis loop on induced strain.

A final approach to hysteresis is to effectively close the hysteresis loop
through a control system. This requires some basic knowledge of the hysteretic
behavior, and is more easily accomplished for oscillatory systems. Methods such
as charge control which reduce the apparent hysteresis between input and output
are easily implemented and can render the response more predictable. For static
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problems, a simple control system designed with at least an awareness of
hysteresis, to monitor strain and apply field can adequately deal with hysteresis.
If hysteresis is not recognized in the design, performance may suffer. Methods for
dealing with the hysteresis loop in control design will be the object of further
study.

In most cases, creep will cause less difficulty than hysteresis. At high
frequencies creep is not important. For vibration control applications creep can
thus either be ignored, or, if frequencies are low (<10Hz), its presence may be
allowed for in a stabilizing control system which is likely to be present. Creep is
most prevalent under high static fields. If a large bias field is used to extend the
achievable strain, significant creep may result. For precision static problems, a
control system should be designed to specifically address creep. When a high
field is applied, such a system will reduce the field magnitude with time to offset
creep strain, keeping net strain constant.

Summary

If piezoceramics are to be used as induced strain actuators to achieve high
strains, their inherent nonidealities will be significant. It is recognized that
precisely modeling each eccentricity in behavior requires a great deal of effort and
an unwarranted complexity in design. However, a recognition of the real
piezoceramic properties will lead to a design which produces a more robust
system.

We can conclude with the following statements concerning the use of
piezoceramics as induced strain actuators. Steps to avoid depoling, as well as
inclusion of repoling capability are straightforward and can be easily addressed in
design of a system. Recognition of the real field-strain relation is necessary for
most applications. A knowledge of hysteresis allows for better prediction of static
performance. In vibratory applications, awareness of the variable lag in strain in
response to field will allow for inclusion in the stability margins. Control and
linearization of the hysteresis loop can be accomplished. In static applications,
the ability to compensate for creep can be easily included with considerable
benetits.

A characterization of the real piezoelectric strain behavior of
piezoceramics can be achieved through simple laboratory tests. Such recognition
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of real properties will aid in design of components using piezoceramic actuation
strain as well as in diagnosing unmodeled or otherwise inexplicable actuator
performance.



CHAPTER THREE: ONE-DIMENSIONAL INDUCED STRAIN
ACTUATION

3.0 INTRODUCTION

The objectives of this chapter are to develop increasingly detailed models
of the interaction between piezoceramics and beam-like substructures to which
they are bonded or in which they are embedded, and to judge the accuracy of the
models by comparison with experimental results. Three different models of
increasing fidelity are presented. The models are compared to determine under
what circumstances the higher fidelity ones are needed.

Piezoceramics are only one of a number of types of induced strain
actuators. But while the method of inducing strain differs, all strain actuators
share common mechanical features. When they are bonded to or embedded in a
beam-like structure, both the actuators and structure extend, bend, and shear,
depending on the magnitude of the actuation strain and the geometry and
relative stiffnesses of the actuators, substructure, and bonding layers. The
models developed in this chapter are therefore generally applicable to all induced
strain actuators. In addition, they will be specifically applied to piezoelectric
actuation. The realistic properties of the piezoceramics from the previous
chapter are included in the analytical comparison with experimental results.

Previous models of surface bonded piezoceramic actuators (Crawley and
de Luis, 1987, and de Luis and Crawley, 1985) considered the actuators as separate
mechanical elements exerting forces on a rectangular beam-like substructure.
The current models more accurately describe the full mechanical behavior of the
actuators, allow for more general cross-section beam substructures, and are
suitable for dynamic (vibration control) as well as quasisteady (shape control)
applications.

Three different mechanical models of induced strain actuation are
presented. In Fig. 3.1, the actuators are shaded, and the bold lines represent the
strain distribution implicit in each model. The first includes only uniform
extension in the actuators and is designated the uniform strain model (Fig. 3.1
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Figure 3.1: Induced Strain Distributions in Models



a,b). The second model includes extension and bending in the actuators, and is
called the Bernoulli-Euler or consistent strain model, in the sense that the strain
assumption in the actuator is consistent with the Bernoulli-Euler assumption
(c,d,ef). The third, a finite element model, implicitly includes extension,
bending, and shear in the actuator (g/h). In addition, the analytical models are
developed for the general case which includes shear in the actuator/beam
bonding layer, and for the limiting case of an ideal bond at the actuator/beam
interface. The analytical results are compared for quantities such as induced
strain and total displacement for typical substructures. The models are then
correlated with oscillatory and quasisteady experiments.

In Chapter 2, the symbols 'S' and 'T' were used to designate strain and
stress, in order to comply with the IEEE Standard on Piezoelectricity (1978)
definitions. The symbol '€’ was used to represent the dielectric coefficient. In
this and subsequent chapters, the dielectric coefficient does not appear. In the
mechanical derivations and models which follow, the symbol '¢' will be used for
strain and the symbol '¢’ for stress.

3.1 UNIFORM STRAIN MODEL

In this section, analy*'cal models based on an assumed uniform strain in
the actuator will be presented. The derivation of the perfectly bonded surface
mounted actuator model for induced bending and extension in beams of
arbitrary cross-section will be shown. The specialization of the bending model to
rectangular cross-section beams will also be presented. Finally, the results of a
model which incorporates shear lag in a bonding layer will be summarized.

Uniform strain is the designation given to the series of models developed
by Crawley and de Luis (1987). This term is used because of the assumption that
the strain in surface mounted actuators is uniform or constant through their
thickness. The uniform strain model is accurate for the case of actuators
inducing extension (Fig. 3.2a) in a one dimensional rod or beam. Neglecting
shear in the beam, actuator, or bond layer, the strain in such elements is uniform
across the cross-section. For strain-induced bending (Fig. 3.2b), the assumption
that strain is uniform in the actuators (i.e. the actuators themselves extend or
compress only) is a good approximation when the structure is much thicker than
the actuators. However, for relatively thin structures, the approximation breaks
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down. The uniform strain models will be compared with other more general
models in Section 3.4.

Perfectly Bonded Surface Models

As an example of the uniform strain approach, the derivation for the
uniform strain model for induced bending with perfectly-bonded surface
actuators acting on a beam with no external loads will now be summarized, after
Crawley and de Luis (1987). The subscripts 's' and 'a’ will be used to refer to
structure and actuator quantities. When a bonding layer of finite stiffness is
present between the actuators and structure, the forces created by the strain
actuator are transmitted by a shear stress which varies along the length of the
actuator, but tends to be concentrated at the ends. In the limit, when there is a
"perfect” bond at the actuator/structure interfaces, the forces created by the
actuators are transmitted to the structure at concentrated points at the end of the
actuator, which can be modeled as "pins." Examining the equilibrium of the
structure of Fig. 3.2b, the forces F at the "pins" cause a moment to be applied to
the structure of magnitude

M =-Ft, 3.1)
The beam, which is assumed to be in pure bending, has stress

&
0, (2)=- (MﬁE)_
. (3.2)
where the superscript 'k’ refers to the kth layer of a symmetric beam and (EJ),

includes only the bending stiffness of the beam. If the beam is symmetric, then
the stress at the top surface of the beam (z=t,/2) is

2, wurf
surf _ F‘tlEl

o, =—
2(ED), (3.3)

The actuator is assumed to uniformly extend without bending. Thus, the stress
in the actuator is

o- P _1
a (3.4)

59



The stress-strain relationships for the structure and actuator may be written

o
g = Y
E, (3.5)
%a + A
£ =5
E, (3.6)

where A is the actuation strain caused by thermoelasticity, piezoelectricity,
electrostriction, or another physical phenomenon. By requiring displacement
compatibility at the upper actuator/structure interface, the strains there may be
equated. Thus, if Eqs. 3.3 and 3.4 are inserted into Eqs. 3.5 and 3.6, and the latter
two expressions are equated, the result for the pin force F is
A

2

b 1
2AED, " (EA),

F=-

(3.7)

and the induced strain in the upper actuator and the upper surface of the
structure is

surf __ _ 1
g =g = 2(EI). A
1+— 2
(EA) at. (3.8)
which can be written
e:urf = 80 = 6A
6+ v, (3.9)
where
12(ETI ),
Vo= 2,0
t,(EA), (3.10)

is a measure of the relative stiffnesses of the structure and one actuator. When
the cross-section of the beam is rectangular
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and the relative stiffness parameter y,, for a rectangular beam is

(EA),
s = (EA),

The lower actuator and beam lower surface have induced strains
£;:ur-," — Ea - 6?-/\

Y
The curvature induced in the structure is

_2_ 64
t, 6+ y,

(3.11)

(3.12)

(3.13)

(3.14)

In Fig. 3.3, the predicted normalized induced curvatures, xt;/2A, are
plotted as a function of the structure-actuator thickness ratio, T=t/t,, for three
different modulus ratios (E;/E, = 1.0, 1.5, and 2.0). It is assumed that the

rectangular beam and actuator widths are identical (bs=b,).
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Figure 3.3: Normalized Induced Curvature for Uniform Strain Bending Model
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The curvature is nondimensionaiized so that it measures the induced
beam surface strain as a fraction of the actuation strain. Examining Fig. 3.3, it is
clear that for a fixed T, less strain can be induced in a structure with higher
modulus. Based on the uniform strain model, it can be inferred that for
maximum induced curvature, the ratio of structure-to-actuator thicknesses
should be made small. For effective induced bending, the thickness ratio should
be kept below the "knees" in the curves at about y,=6. The results of Fig. 3.3 are
at variance with the more accurate results of the Bernoulli-Euler model shown
in Fig. 3.5 in Section 3.2.

The case of induced extension in a uniform strain model may be derived
in a similar tashion (Crawley and de Luis, 1987). The resulting induced strain is

S T (3.15)
where
(EA),
%= (Ea), (3.16)

This result is valid for an arbitrary structure cross-section.

Surface Mounted Models with Bonding Layer

The results of the extension and bending models which include a finite
stiffness bonding layer between the structure and actuators will now be
summarized. An interpretation of those induced strain predictions will be used
to determine losses in net displacements due to shear lags in the bonding layer.

In all cases, it is desirable to have a bond which is as stiff as possible when
using surface-bonded actuators to induce strain in a structure. The potential
losses due to shear lag in the bonding layer will be most significant if a
particularly soft or thick adhesive layer is used. Because of the uniform strain
assumption, Crawley and de Luis (1987) were able to treat the bonded extension
and bending cases in the same manner. The predicted induced strains with the
bonding layer included are
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€, «a (1+'I’cosh(1":ic'))

AT a+y("7 @ cosh( D) (3.17)
& __« (l_cosh(l"f))
A~ a+ y\ cosh () (3.18)

where x is the nondimensional coordinate along the length of the actuators,
ranging from -1 at one end to +1 at the other, =6 for bending and a=2 for
stretching, and y=y, or y,, as appropriate. The meaning of g is the strain in the
bar for the case of induced extension, and on the surface of the beam for induced
bending. The shear lag parameter I"is

2 [%;i)(%)[a + 'If)

I" = k

G
L (3.19)

where 'bl' indicates a bonding layer quantity and a and y are chosen to be

appropriate for extension and bending. The shear parameter gets larger when
the bond has a greater shear modulus (G,), a smaller thickness (t;), or if the
actuator length (1) is large. At the center of the actuators (x = 0) the strains in
the structure and actuator are nearly equal and identical to the perfect bond
value. At the actuator edges (x = 1), the actuator strain is equal to the actuation
strain, A, and the strain in the structure is zero. For the limiting case of large I
(nearly a perfect bond), the predicted strains in Egs. 3.17 and 3.18 approach the
perfect bond strains of Egs. 3.9 and 3.15.

When the strain in the structure (Eq. 3.18) is integrated from ¥ =-1to ¥ =
1, for the case of induced extension, the total displacement u induced in the
structure may be obtained

u___2 (;__1sin(l)
A 2+ 0y I, cosh(T})

(3.20)

where T, is the value of Eq. 3.19 evaluated for extension («=2). This expression
provides a means of judging the net etfect of shear layer losses. A similar result
may be derived for the change in slope over the length of the actuator, when
actuation is in bending
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tl dw — 6 (1_ 1 Sinh( rb)
2l,Adx ~ 6+ y, T, cosh(r))

(3.21)
which has the same form as Eq. 3.20. Equations 3.20 and 3.21 also give the net
extension and slope change for a perfectly bonded actuator in the limit as I" goes
to zero.

The assumptions and derivations of surface-bonded actuators with
uniform strain, under the conditions of both perfect and deformable bonds have
been presented. These results will be used in comparisons with the other models
in Section 3.4.

3.2 BERNOULLI-EULER MODEL

In this sectior, the strain induced in a beam by actuators undergoing
Bernoulli-Euler like deformations will b2 derived. In this model, it is assumed
that the entire cross-section, both structure and actuators, undergoes consistent
Bernoulli-Euler strains, uniform for extension, and linear with z for bending.
Models for induced stretching and bending with embedded actuators will be
derived first. Then, the embedded models will be specialized to the case of
surface bonded actuators. Finally, the finite bonding layer solution developed by
Crawley and de Luis (1987) for the uniform strain model will be adapted for the
Bernoulli-Euler model.

Embedded Actuator Models

The induced strain due to actuators embedded in a beam will now be
derived. It is assumed that the actuators are perfectly embedded, i.e. there are no
shear losses in transferring strain from actuator to substructure. It is further
assumed that cutouts are made in the structure to physically accommodate the
actuators, implying a change in the local stiffness.

Under these assumptions, the embedding of an actuator in a beam can be
treated analogously to a beam with internal forces and moments generated by
thermal strains (Rivello, 1969). Thermal strains are in fact just a special case of
actuation strain. The geometry for a typical embedded actuator arrangement is
defined in Fig. 3.4.
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Figure 3.4: Geometry for Bernoulli-Euler Model with Symmetric Embedded Actuation

In beam notation, the assumed Bernoulli-Euler strains are

E=¢g— 2K (3.22)
and the constitutive property of the material in the cross-section is
E(z)e(z)= o(z)+ E(2)A(z) (3.23)

where, with reference to Fig. 3.4, the properties are those of the actuator when
d<|zl<d+t,, and those of the structural material elsewhere. Substitution of Eq.

3.22 into Eq. 3.23, and integration with respect to z yields

(EA) Total 80_ (m )To!al k= Pm + PA (324)

or substitution, premultiplication by z, and integration yields

(ES )Totaleo— (EI)Tolal K= M, + M, (3.25)

where
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(BA) = IZE(z)b(z)dz

(3.26)

(ES) =|E(2)b(z)zdz
Total I (3.27)
(ED) = jE (2)b (2) 2%dz 628

are the total area stiffness, first and second moment of inertia respectively. The
terms P, and M,, are the resultants in equilibrium with the externally applied

forces and moments

Pm=jo(z)dz and M,,,=Ia(z)zdz
z z (329)

The terms P, and M, are the internal forces and moments created by the

actuation strain.

P.= [E(2)Az)b(2)dz
: (3.30)

M, =[E@2)AG)b(z)z dz
. (3.31)

Thus far, the derivation is applicable for arbitrary beam and actuator cross-
sections. In the general case, the total strain energy, U, may be written

U =%J:([*’o ”l[g 5 ][?]'Z[PA MA][E Ddx (3.32)

For the idealized rectangular cross-section geometry of Fig. 3.4, in which
both the beam and actuation are symmetric about the neutral axis, the extension

and bending are uncoupled. Solution of the extension problem with no applied
loads (P,, = M,, = 0) gives

(EA) = E(b1,-2b.t,)+2E,bgt, (3.33)

PA=2EabataA (334)
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and the induced extensional strain is

_ 2Ebt. A __2A
&= E(bt,—-2b,t)+2E.b,t, T2+ v, (3.35)

where as before (Eq. 3.16)

(EA), E,(bt,-2bt)
Ve = (EA)a - Ebt, -

(3.36)

and account has now been taken for the removal of the material of the actuator
in calculating (EA);.

Under the same conditions, the solution to the bending problem is

bt!
EI =E("—2I)+2EI
(ED) Total "\ 12 . o (3.37)
t3
I,= Aa(d2 + dt, + —“]
3 (3.38)
M, =-2(EA (d t"')A
AT a\® "2 (3.39)
and the induced bending strain is
ta
2(EA)a(d + 'E')A
E=-K2z= 3 z
E(b't‘ -2I )+2E I
‘N 12 “ aa (3.40)

The induced bending strain in any part of the structure (or actuators) can be
found by simply using the appropriate value for z. This equation is not
consistent with the derivation by Crawley and de Luis (1987) which assumed
Bernoulli-Euler bending but simplified the problem by counting both the
actuator stiffness and the structural stiffness at the location of the material cut
out for the actuator.
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Surface Mounted Models

Perfectly-bonded surface actuators inducing extension and bending strain
are special cases of the Bernoulli-Euler model. In specializing the embedded
model to the surface-bonded case, care must be taken to properly address the lack
of a "cutout” when the actuators are mounted on the surface.

For the case of extension, the specialization is straightforward. The
induced extensional strain is still

_ 24
g =
2+ vy, (3.41)
where vy, is now
(EA), Ebt,
V= (4 T Enbgk, (3.42)

These expressions are identical to Eqs. 3.15 and 3.16, which were derived using
the uniform strain model.

For the case of bending, the specialization is less obvious. The distance of

the inner face of the actuator from the neutral axis becomes

t

a=3 (3.43)

and the term in the denominator of Eq. 3.40 is altered because there is no loss in
bending stiffness due to a cutout in the structure. The induced bending strain is
then

2EA) (5 + 2 a
r4

=— K2 = b 3
.t.)
E‘(lz ’+2E°Ia

(3.44)

The correct moment of inertia for each of the surface-mounted actuators is

2 2
L, Lt i,

(3.45)
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Putting Eq. 3.45 into Eq. 3.44, the induced strain becomes

12, +t)A

E=—Kz2 = 4

(ED, Y, :
+6 |, +12¢¢, + 8¢,

(EA) (3.46)

This expression can be further simplified if the stiffness ratio y (Eq. 3.12) and the
thickness ratio, T=t,/t, , are used. For a rectangular cross-section beam, y,=v,,

dy,.(2
6(1+ = )A(t')z
12 8
6+ vy) ot

T (3.47)

and the induced strain is

E=— K2 =

The similarity to the solution for the induced curvature or bending strain in the
beam in the uniform strain model (Eq. 3.14) is obvious. Equation 3.47 however
includes additional terms due to bending in the actuators. The additional terms
in this equation are proportional to (1/T). They become significant as T
approaches zero, and are less significant when the beam is much thicker than the
actuators. Figure 3.5 shows the surface strain for three different relative moduli
(E4,/E,=1.0, 1.5, 2.0). For convenience it is assumed that the structure and
actuators have identical widths (b,=b,).
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Figure 3.5: Normalized Induced Curvature for Bernoulli-Euler Bending Model
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Surface Mounted Models with Bonding Layer

Crawley and de Luis (1987) developed a model which incorporated
bonding layer shear lag into a bending model which assumed uniform strain in
the actuators. The results were presented in Section 3.1.

In extension, the Bernoulli-Euler model is identical to the uniform strain
model. Thus, the strains in the actuator and structure have the same form as
Egs. 3.17 and 3.18

T A X0ka)

A7 2+y, "7 2 cosh () (3.48)
& __ 2 (l_cosh(l“x))
AT 2+ Wek cosh(F) (3.49)

where % is defined along the length of the actuators and goes from -1 to +1. The
"shear lag parameter” I, for stretching is

= [%)Gi)( 2+ we)

&)
L (3.50)

where I, is the length of the actuator and 'bl' refers to the bonding layer.

For the case of bending, if the bonding layer is assumed to contribute no
bending stiffness and is thin enough that it doesn't significantly change the
distance of the actuators from the neutral axis, its effect is to reduce the overall
curvature and add a component of pure extensional strain to the actuator. The
strains are inferred to be

(24

6+ y, +

A =(12 ¥ cz:;f(rrx)))

1 (1_ cosh(I“bx‘))

i cosh( r,)
T’ (3.51)

e]s 'ﬂ|...
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1 _

& _—2x _12 (1+T)z 1_°°3h(r;x)
8 cosh(l“b)

T (3.52)

reflecting the different strain distribution in the Bernoulli-Euler model, where T} b
is now

(3.53)

Expressions for net extensional displacement and net slope change
analogous to Egs. 3.20 and 3.21 may also be written for this model. The effect of a
finite bond layer, as measured by the strain distribution along the actuator length
as well as the net displacements, will be illustrated in Section 3.4.

Results for the Bernoulli-Euler models of embedded and surface-mounted
actuators have been presented. The models were developed for both induced
extension and induced bending. The results for the finite bonding layer shear lag
model presented by de Luis were adapted to the Bernoulli-Euler model.
Following the presentation of the finite element model in the next section, the
results from the three models (uniform strain, Bernoulli-Euler, and finite
element) will be compared in Section 3.4.

3.3 FINITE ELEMENT MODEL

The finite element model developed was the most detailed of the three
models of induced strain actuator/structure interaction. It was used to model
surface-mounted actuators both with and without explicit modeling of an elastic
bonding layer. No additional insight is gained from the finite bonding layer
model beyond that from the analytical models. Therefore, only the perfect bond
model will be discussed. This model highlights the transfer of strain from
actuator to structure and illustrates losses due to shear in both the actuators and
structure. In Section 3.4, the finite element results will be compared with the
results of the uniform strain and Bernoulli-Euler models. A description of the
finite element model follows.
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Details of the Model

A detailed two-dimensional finite element model of one half of a
symmetric surface-mounted actuator/beam system was developed. The model
was developed in ADINA (Automatic Dyramic Incremental Nonlinear
Analysis) and executed on a Microvax. The actuators were each modeled with 40
(2x20) elements and the beam structure by 120 (4x30) or more depending on the
beam thickness. A typical model is shown in Fig. 3.6. A finer mesh was used
near the edges of the actuator in order to highlight the shear lag in the transfer of
strain.

A

Figure 3.6: Typical Grid for ADINA Model (T=6.25)

Two-dimensional solid plane stress eight-node isoparametric elements
were used. All the quadrilateral elements were rectangular. In the model, the
elements used allowed only two degrees of freedom (x and z translation) per
node. The left edge of the model was constrained in the x direction. Point Q at
the center of the left edge was constrained in both the x and z directions.

The same basic model was used for induced bending and extension. The
structure modeled was an aluminum beam (Eg = 70 GPa) with Piezoelectric
Products G-1195 piezoceramic actuators. Beams of variable thickness were
modeled. The actuator thickness was most often 10 mils (.254 mm),
corresponding to the actuators used in the experiments (Section 3.6). The length
of the actuator was 0.2 to 1.5 inches and the length of the structure 0.4 to 2.0
inches. Since an element with idealized piezoelectric properties was not
available, the induced strain actuators were modeled with an isotropic
therimoelastic material type. When a temperature (AT) was applied to the
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structure and actuators, the actuators experienced a thermal actuation strain
equal to

A= aAT (3.54)

where a is the prescribed coefficient of thermal expansion and the actuation
strain was uniform in the x and z directions. Since the model was linear, a single
value for actuation strain (A=100uS) was used.

Because of the unavailability of a piezoelectric element, several modeling
simplifications had to be made. The difference between the Young's modulus in
the poling (z) direction and in the x direction of a piezoceramic could not be
included in a thermoelastic material type. The material properties for a G-1195
piezoceramic are ch = 63 GPa and cE33 =49 GPa In the isotropic finite element, a
value of 63 GPa, corresponding to the inplane modulus, was used. In addition,
the thermoelastic element allowed for only a single value for the coefficient of
thermal expansion. Thus &, = a,= ¢. In real piezoceramics, the analogous dj;
and d3;3 strain coefficients are not identical. They have both different magnitudes
and different signs. However, the purpose of the model was to observe
phenomena related to strain in the x direction. Because the actuators were thin
and free to expand or contract in the z direction, it was believed that the
inaccurate modeling of the piezoelectric effect in z would not significantly alter
the results.

Extension was induced in the structure by specifying identical coefficients
of thermal expansion for the upper and lower actuators. Bending was induced by
specifying coefficients of thermal expansion equal in magnitude, but of opposite
sign. In the next section, results from the finite element model will be compared
with analytical results from the previous two sections.

3.4 COMPARISON OF MODELS

Three different models of induced strain actuation have been presented.
The results for the uniform strain, Bernoulli-Euler, and finite element surface-
mounted actuator models will now be compared for both induced extension and
induced bending. The aim of the comparison is to determine over what range of
parameters the simpler analytical models are valid.
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The comparison of the surface-mounted models is organized tc highlight
the basic differences in the deformation of the structure predicted by each model.
First, the actual strain induced in the structure, far from the edge of the actuator;
(Fig. 3.6, section A-A), will be compared. This is the most basic means of
evaluating induced strain actuators. For this comparison, a perfect bond is
assumed, and the influence of material shear is not significant because
comparisons are made for strain far from the actuator edges.

Second, the influence of a finite stiffness bonding layer between actuators
and structure will be highlighted. The strain distributions along the length of
the actuators and structure will illustrate the shear lag introduced by the bonding
layer. In addition, the reduction in net extension or change in slope due to the
inclusion of finite bonds will be shown.

Third, the influence of a fini_tw}aterial shear will be highlighted. The
analytical models, which include ﬁplyaeﬁénsion and bending, will be compared
to the finite element model, which also allows actuator and structure shear. The
deformations and strains through the actuator and structure, as well as the total
extensional or bending displacement, will be used to show the net loss due to
material shear.

3.4.1 Induced Strain

The amount of strain induced in a structure is clearly a primary concern in
induced strain actuation. The basic differences in strain distribution in the three
perfect bond extension and bending models for the case of perfectly-bonded
actuators were illustrated in Fig. 3.1. In the uniform strain model, it is assumed
that the actuators strain uniformly. In the Bernoulli-Euler model, the actuators
bend as well as extend. The finite element model allows extension, bending, and
shearing in the actuator and structure.

For the case of extension induced by perfectly-bonded actuators, the
formulas for induced strain for the uniform strain (Eq. 3.15) and Bernoulli-Euler
(Eqg. 3.41) models are identical

s _ BE _ 2A
= 6.  —
2+ vy, (3.55)

~
8
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There is no analogous formula for the finite element model. The predicted
induced strain is shown in Fig. 3.7 for the analytical (Eq. 3.55) and finite element
models for an aluminum structure and G-1195 actuators (E,/E,=1.111) with
identical widths and a range of structure to actuator thickness ratios, T=t,/t,. For
the finite element model, the strain away from the actuator edge at section A-A
in Fig. 3.6 is used. In Fig. 3.7, the six points representing the finite element
results coincide with the curve representing the analytical prediction. The
difference between the analytical and finite element models is less than 0.1%.
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Figure 3.7: Comparison of Induced Extension Strains From Analytical and Finite Element
Models

For the case of induced bending, the two analytical models are different.
The predicted induced strains in the structure for the uniform strain (Eq. 3.9) and
Bernoulli-Euler models (Eq. 3.47) with surface-bonded actuators are

US 6A 2
E = — zZ = i
§ 8 6 + t
Vo s (3.56)
6(1+l)A
BE __ BE, __ T 2,
’ ’ 6+ wb+—172,—+%ts
T (3.57)
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For the Bernoulli-Euler model the predicted induced strain depends on
both the relative stiffness, y;, and the thickness ratio, T. The 1/T term in the
numerator represents the additional moment arm from the structure surface
(where the "pin forces" of the uniform strain model are located) to the midpoint
of the actuators. The extra terms in the denominator are due to the inclusion of
the full bending stiffness of the actuators. For the purpose of comparison, the
assumption is made that the widths of the structure and actuators are equal.
That is,

A
A

e
e a (3.58)

The induced strains are then

PSS, 64 2,

6+ ET t; (3.59)
1
BE __ BE _ G(HT)A 2,
) ’ 6+ ET +%+i2 L
T (3.60)

where E =E//E,. Thus, for given actuator and structure moduli, the predicted
strain for each model depends only on T. For the case of an aluminum structure
and G-1195 actuator, (E =1.111), the predicted curvatures are compared to the
curvatures predicted by the finite element modei far from the actuator edges. In
Fig. 3.8, the curvatures are normalized so they represent surface strain in the
beam.

The difference between the Bernoulli-Euler and finite element model is
less than 0.1% over the entire range. For large T, all the models give nearly the
same result, but agreement of the uniform strain model is not precise. For
example, for a thick beam (T=20), the uniforin strain model predicts a curvature
2.7% below the others. For small T, as the structure becomes vanishingly thin,
the Bernoulli-Euler and finite element models predict structure surface strain
which approaches 0, while the uniform strain model incorrectly predicts
structure surface strain approaching the actuation strain. The uniform strain
model significantly overestimates the strain because it does not correctly
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represent the full actuator stiffness. For stiffer structures (i.e. E larger than 1.111)
the uniform strain model matches the Bernoulli-Euler model better, but remains
inaccurate for very small T. Based on the comparison of predicted induced
strains the Bernoulli-Euler model appears to be accurate over the practical range
of thickness ratios. The uniform strain model is nearly as accurate for large T,
but is not adequate for thin structures.
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Figure 3.8: Comparison of Induced Bending Strains From Analytical and Finite Element
Models

In most cases, the strain or curvature in the structure is of primary
concern. If the strain at the surface of the actuator is important, the Bernoulli-
Euler model should be used, with the appropriate value for z placed in Eq. 3.47.
The uniform strain model is not adequate in predicting actuator surface strain
(Fig. 3.1), especially for thin structures.

3.4.2 Influence of Finite Stiffness Bonding Layer

Inclusion of a finite stiffness bond between actuators and structure will
reduce the effectiveness of induced strain actuators mounted on the surface of a
structure. In Sections 3.1 and 3.2, the results for the uniform strain and
Bernoulli-Euler models with a finite bonding layer were presented. Here, the
extension model (identical for uniform strain and Bernoulli-Euler) and the
Bernoulli-Euler bending model with finite stiffness bond layers will be compared
to the corresponding perfect bond models. The extension case provides a more
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straightforward illustration of the bonding layer shear lag phenomenon, and will
therefore be the primary focus. Explicit expressions for the importance of the
finite bond effect will be developed.

The induced extension and bending strains for the Bernoulli-Euler model
with finite bonds from Egs. 3.18 and 3.52 are

E, 2 (1 cosh(ﬂf))

7 2+ I]Iek - cosh(l‘,) (3.61)
1) 2
o - S(rT)EE w0
A 6+Wb+%+ %k °°Sh(rb)
T (3.62)
where
(GMJ(t_H)
E, \t, )[2+ vy,
== ( ww)
#)
L (3.63)
Ga t 12 8
6 s ae
b 2 -
(fa) | wle7)
(3.64)

and x is the nondimensional coordinate along the length of the actuator,
ranging from -1 at one end to +1 at the other. When the shear lag parameter, I,
becomes large, the second terms of Egs. 3.61 and 3.62 become small and strains
nearly equal to those which are obtained with a perfect bond are achieved. The
parameter increases for a longer actuator and a thinner and higher shear
modulus bond layer. In addition, a stiffer actuator (larger E,t,) or a stiffer
structure (larger E,t;) will decrease I For given adhesive properties, the effect of
the finite bond is greatest when the most strain energy is being transferred (see
Section 3.5). This occurs at y/,=2 for the extension case and depends or E for the
bending case.
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Relative to Free Actuator Strain, €/A

Actuator and Structure Strain

Figure 3.9: Extensional Strain Induced in Structure and Actuator with Finite Bonding Layer
Stiffness Characterized by Shear Parameter, I'

Figure 3.9 shows the extensional strain given by Eq. 3.61 for induced
extension. A value of y,=4.444, corresponding to E =1.111 (aluminum structure
and G-1195 actuator) and T=4 is used. Three different values of I, (5, 10, and 20)
are shown. The upper curves represent the strain in the actuator. The lower
curves, representing induced strain in the structure, illustrate the reduction in
strain near the actuator edges. The perfect bond model predicts a constant
normalized strain of .310 along the actuator length. An analogous plot of the
bending case would appear nearly identical. For x =0, the strains in the structure
and actuator are nearly identical to those for the perfect bond value. At the
actuator edges ( x = £1), the strain in the actuator is equal to the actuation strain,
A, and the strain in the structure is zero.

While the induced strain distribution is informative, the net induced
displacement may be a more indicative measure of shear losses, because the net
displacement sums strains over the full length of the actuators. When the strain
in the structure (Eq. 3.16) is integrated from x = -1 to x = +1, the total
displacement u induced in the structure may be obtained (Eq. 3.20), where I', is
given by Eq. 3.63. In contrast, the normalized induced displacement obtained by
integrating the perfect bond strain (Eq. 3.15) is

U _ 2
A vy +2 (3.65)
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By dividing Eq. 3.20 by Eq. 3.65, the fraction of the perfectly-bonded displacement
achieved in the case of a finite bonding layer stiffness is obtained, and is plotted
in Fig. 3.10. For large I, the effect of the bond is minimized. The difference from
1 on the curve is due to less than ideal strains induced in the beam, as indicated
in Fig. 3.9, integrated over the actuator length.
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Figure 3.10: Effect of Shear Lag in Finite Stiffness Bonding Layer on Net Induced
Displacement

A similar result may be derived for the change in net slope over the
length of the actuator, when actuation is inducing bending. For simplicity and
easy analogy with the extension case, the uniform strain model is used, and Eq.
3.21 may be obtained. Dividing Eq. 3.21 by the normalized induced change in
slope for a perfectly bonded actuator,

tl dw — 6
2,Adx y +6

(3.66)

The same functional form shown in Fig. 3.10 is obtained.

For even moderate values of I, it can be assumed that cosh(I') = sinh(I")
(they agree within 0.5% for I'=3 and 0.01% for I'=5). The fraction of the perfect
bond displacement or slope change achieved is simply

1.1
Ny = 1= T (3.67)
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where either I', or I, is used. By integrating the square of the induced strain

over the actuator length, the efficiency of strain energy transfer may be obtained.
Assuming I'>5, the energy transfer efficiency is

T’energy =

2
1-T (3.68)
where the efficiency is again 1 for a perfect bond. Thus, for example, 95% of the
perfect bond displacement and 90% of the perfect bond strain energy transfer can
be achieved for I'=20.

3.4.3 Influence of Finite Material Shear

Finite shear in the actuators and structure will also reduce the
effectiveness of the actuation, but due to assumed deformations, is not included
in the analytical models. In the finite element model, however, shear in the
actuators and structure is implicitly included. In this subsection, a perfect bond is
assumed.

The shear is evident in Fig. 3.11, which shows the deformation of the
finite element model in the region near the actuator edge for extension induced
by a perfectly bonded actuator. The results shown are for a thickness ratio,
T=6.25. Initially, the elements are all rectangular. The deformed elements
shown illustrate the exaggerated displacement in the x direction only. Near the
actuator edge, the actuator strains more than the structure. There is a shear lag
in transferring the strain both from the actuator to the structure and then
through the thickness of the structure. Away from the edge, the strain across the
section is nearly uniform, as would be predicted by the analytical models.

Figure 3.12 shows the strain at the midline and upper surface of the beam,
and at the upper surface of the actuator. For induced extension (a), the strains are
normalized by the actuation strain, A, and are plotted versus the x distance from
the edge of the actuator normalized by the actuator thickness, t,. For induced
bending (b), the abscissa is the same, but the ordinate shows the curvature
normalized by the actuation strain, A, and the z location of the beam surface, t,/2.
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Figure 3.11: Deformation of Finite Element Model in Induced Extension Showing Evidence of
Shear Through Actuator and Structure

In Fig. 3.12a, at the free edge of the actuator (x/¢,=0), the upper surface of
the actuator deforms with a strain equal to the actuation strain. Away from the
edge (x/t,>0), the actuator surface strain rapidly approaches the value of the
perfectly-bonded induced strain of Eq. 3.15. The midline of the structure begins to
strain before the edge of the actuator, and also approaches the analytical induced
strain within several actuator thicknesses. The beam surface strain actually has a
small compression spike near the edge of the actuator before reaching the
induced strain. Figure 3.12b shows normalized curvatures for induced bending.
It has the same form as the induced extension curves (a), with shear lags in both
the actuator and beam structure possessing comparable characteristic lengths.
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Figure 3.12: Strains in Actuator and Structure Along Actuator Length Predicted By Finite
Element Model (T=6.25)

The strain information illustrates local shear effects, however, the axial
displacement u for a point far from the actuator can once again be used as an
indicator of the net effect of the actuation. Figure 3.13 shows the axial deflection
u for the finite element model (point P in Fig. 3.6), divided by the displacement
for the perfectly-bonded model (Eq. 3.65). Results were obtained for actuator
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aspect ratios (AR=1,/t,) of 40, 100, 150, and 250, and for a range of thickness ratios

(T=t//t,).

Displacement Normalized by
Displacement with No Material Shear
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Figure 3.13: Normalized Net Induced Displacement for Variable Actuator Length and Beam
Thickness

The fraction of the perfectly-bonded uniform strain model displacement

achieved decreases for thicker beams (larger T) and shorter actuators (smaller

AR). But for typical actuator geometries, the fraction of the ideal displacement

achieved is near unity.
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For the bending case, a representative measure is the net change in the
slope of the beam. That change in the slope (dw/dx) is determined by integrating
the induced curvature over the length of the actuator. For the case of a perfect
bond where the curvature is assumed constant over the length of the acluator,
the change in slope is given by Eq. 3.66, which depends directly on the single
value for curvature (or induced bending strain).

There was no discernable difference between the finite element and
Bernculli-Euler predictions for induced strains in Fig. 3.8 because a comparison
of strains {ar from the edge was used. In the net slope change measure, there is a
clear difference. Fig. 3.14 shows the results for typical aspect and thickness ratios.
The same trends as in Fig. 3.13 are apparent, but the overall effect of the shear
losses is less significant in bending (roughly half the reduction of the extension
case). This is due in part to the more efficient strain energy transfer in bending
for this particular geometry (see Section 3.5). Also, in bending, larger normal
strains are induced, and thus, the shear is a smaller factor.

In summary, four comparisons among the models were made. For
extension induced by perfectly bonded surface actuators, al' three models predict
nearly identical extensional strains away from the edges of the actuator. For
induced bending, the Bernouili-Euler and finite element models predict nearly
identical curvature, while the uniform strain model overpredicts the curvature
for thin beams. Actuators bonded with layers of finite stiffness yield more than
95% of the net displacement of the perfectly-bonded model, provided the shear
lag parameter I' exceeds 20. For realistic thickness ratios, and actuator aspect
ratios in excess of 100, the consideration of actuator and beam material shear still
yields net displacements within 5% of the idealized model. This implies that for
practical engineering analysis, the perfectly bonded Bernoulli-Euler model is
sufficient. Results of experiments will be correlated using the Bernoulli-Euler
bending model. In addition, evidence of the finite bond layer will be presented.
In the next section, guidelines for achieving the greatest efficiency with induced
strain actuators will be developed.
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3.5 EFFICIENT INDUCED STRAIN ACTUATION

An objective of this section is to provide a means of judging the relative
"efficiency" of various actuator/structure combinations. At least two measures
of efficiency are available. The induced strain energy may be used as a general
measure of efficiency. The maximum strain energy which can be transferred
from actuators to structure depends on relative stiffnesses and geometry. The
total deformation was used in the previous section to determine effectiveness.
In the present section, it will be the basis for another comparison - the relative
merit of embedded versus surface-mounted actuators.

In this section, results for maximizing effectiveness of induced strain
actuators will be presented. The surface-mounted Bernoulli-Euler models will
be used to illustrate the efficiency of strain energy transfer. Then, the relative
effectiveness of embedding actuators for shape control applications will be
discussed.

Strain Energy Transfer

The induced strain is a means of evaluation which is often of concerrn, but
the efficiency of strain energy transfer is in some ways more indicative of the
effectiveness of the actuator. In a vibration control problem for example, the
total energy of the system must be minimized. The strain energy transfer will be
compared for the analytical models only.

The efficiency of strain energy transfer is defined as follows:

induced strain energy instructure
maximum available energy

For actuators inducing extension the strain energy in the structure is

U, =3) 0,(x )g,(x)dV, = [ E ex)av,
1) 3 569

where the strain in the structure is given for a pair of perfectly bonded actuators
by Eq. 3.15. Inserting the correct strain, the strain energy becomes
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2
U ,=2(EA 1 —24 _
(2+ ) (3.70)

where ! is the length of the actuators.

The maximum available energy occurs if the full actuation strain is
achieved in the presence of stress. That is

U, =2(,_7‘_"(E,,A)A dV,):(EA)alAz a7

where the factor of 2 is present to account for both actuators. The efficiency in
extension is then just Eq. 3.70 divided by Eq. 3.71, or
2 e
n.= — Ve 2
(2+ y.) (3.72)

Figure 3.15 shows this efficiency as a function of y, (Eq. 3.16). Fur the perfectly-
bonded extension models, a relative stiffness of 2 transfers the maximum energy.
Strain energy transfer drops off rapidly for lower y,, but slowly for stiffer
structures (larger y,). If an induced strain actuator with low modulus such as
PVDF piezoelectric film is used, y, will be very high and little strain energy can

be transferred.
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Figure 3.15: Efficiency of Strain Energy Transfer for Extension Induced by Surface-mounted
Actuators
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For the case of bending, the amount of available energy (Eq. 3.71) remains
the same. The strain erergy in the structure is still represented by Eq. 3.69, but Eq.
3.47 is now substituted for the strain, with the result

A2
U, =72(EI) | —4—
(6+v,) 3.73)

Dividing Eq. 3.73 by Eq. 3.71, the resulting efficiency for bending is

ovfi+ )

2
., 12 8
(6+_+_2+ !Ilh)

(3.74)

where vy, is defined in Eq. 3.10. This expression depends rot only on the relative
stiffness, y,, but also on the relative moduli of the materials, E . Figure 3.16
shows the large variation in efficiency depending on the modulus ratio,

assuming identical actuator and structure widths and a rectanguiar cross-section.
For high modulus structures, the peak efficiency occurs at a larger value of y,.

The efficiency for bending does not drop off for large T as rapidly as the extension
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Figure 3.16: Efficiency of Strain Energy Transfer for Bending Induced by Surface-mounted
Actuators
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efficiency. However, for small y,, where the maximum curvature is induced,
the efficiency of strain energy transfer is drastically reduced.

The efficiency of strain energy transfer has been shown to be a means of
determining the overall effectiveness of an actuator-structure combination. The
analytical formulations provide clear information on both the configuration of
maximum energy transfer and the change in effectiveness for different
geometries and stiffnesses. In vibration control problems, where total energy is
minimized, the effectiveness of strain energy transfer may be a useful guideline
for setting the configuration.

Comparison of Embedded and Surface-Bonded Curvatures

In some applications, such as shape control, it may be desirable to induce
the largest possible displacements, regardless of energy efficiency. Thus, instead
of maximizing strain energy, the strain or displacement is maximized. As an
example of the use of a displacement-based comparison, the relative efficiency of
embedding and surface bonding actuators will be determined. This comparison
will provide guidelines for when the actuators should »e embedded and when it
is desirable to mount them on the surface of the structure if, in a shape control
problem for example, the maximum curvature is desired.

The comparison is specialized to rectangular cross-section beams with a
uniform modulus and a pair of actuators an equal distance from the neutral axis.
For surface-mounted actuators the induced curvature from Eqs. 3.47 is

142
6(1+T)A(t,)
2 8
(6+y)+F+—

T (3.75)

and for embedded actuators the curvature from Eq. 3.39 is

2(EA) a(d + Eﬂ) A

e 2
bt
£[ 2

—21) 9F I
a) ¥ 48ala (3.76)
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where I, is given by Eq. 3.38. The depth of the embedded actuators is measured
with the distance h as shown in Fig. 3.4. Thus,

t
h==-d -t
2 e (3.77)
and as a fraction of the total structure thickness
_h_1_d 1
., 2 t, T (3.78)

When the expression for curvature in Eq. 3.76 is written with H, T, and ¢, as
variables, for H>0 it becomes

t(EA) (1-7--2H )A

K=-— I
E (—t —ZIa)+2EaIa

'\ 12 (3.79)

where I, is now

t: ¢
Ia=Aa(—’—— t.h+h'+ ht, + 3)

4 (3.80)

If the further assumption that the structure and actuators have identical moduli
and widths is made, the curvature is ‘

K=—_}S‘(1‘TL_2H)A(£—) (3.81)

Under similar assumptions, the curvature for the surface-mounted case is Eq.
3.75 with

E,
v,=% T
* E (3.82)
For a given depth of embedding, H, the curvatures induced by embedded
actuators (Eq. 3.81) can be normalized by the curvature induced by surface-bonded

actuators (Eq. 3.75) to show the merits of embedding. Such a result is shown in
Fig. 3.17.
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The curves do not begin at T=0. Physically, H can change from 0, an

1 1
actuator flush with the surface, to 9~ T, in which case the actuators are

touching each other on the neutral axis. The minimum thickness ratio for
embedded actuators is T=2 for H=0, T=2.5 for H=.1, etc.

Embedded Curvature/
Surface Bonded Curvature

Thickness Ratio, T

Figure 3.17: Comparison of Induced Curvature for Embedded and Surface-mounted Actuation

Several points are apparent from the figure. As the actuators are
embedded deeper in the structure they produce significantly less curvature. As
the thickness ratio increases, the curvature from all embedded actuator
configurations declines with respect to the surface-bonded curvature. Also, a
shallow embedding of less than H=.1 will yield more curvature than surface-
mounted actuators for moderate values of T. This implies that more bending
strain is induced by an actuator embedded just below the surface than one on the
surface. The physical explanation for this effect is that when actuators are moved
away from the neutral axis, the bending stiffness increases with the square of the
distance and the actuation moment directly with the distance. In addition, when
the material cutout is filled, additional stiffness is added.

It has been shown, by comparison of induced curvatures, that embedded
actuators may be preferable to surface-mounted ones. In addition, it was shown
that, based on a criterion of maximum strain energy transfer, the relative
stiffnesses and moduli may be chosen to yield efficient operation. The choice of
evaluation depends on the problem of concern. It is clear that for the case of
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induced extension, the maximum strain or displacement is induced for a
vanishingly thin structure, regardless of the relative moduli of structure and
actuator, yet very little energy is transferred. These criteria do however, provide
two means of evaluation. In additicn, from the previous sections, it is apparent
that the effects of the finite bond layer and actuator and structure shear act to
reduce both induced displacements and strain energy.

The analytical results found in the chapter to this point will be applied to
experimental results in the following section.

3.6 EXPERIMENTS AND RESULTS

A series of tests was conducted with piezoceramic actuators in order to
verify the accuracy of the surface-mounted bending models of induced strain
actuation. In addition it was expected that observation of the shear lag between
the actuator surface and structure surface would be possible. It was not the
purpose of these experiments to use the piezoceramics in an active vibration or
shape control system.

Bending was induced in two beam test specimens. Because induced strain
was the means of actuation, the actuators were placed near the root of the test
beams, where strain levels were highest. Both beams were statically deformed
and driven dynamically in steady state with the piezoceramic actuators, and the
strain in the beam and the ceramics was measured. This section includes
descriptions of the manufacture of the two test specimens, the testing procedure,
and the test results.

Manufacture of Test Specimens

Two aluminum test specimens were constructed. They had thicknesses of
3.21mm and 1.59mm, or thickness ratios of T=12.65 and T=6.25. In all respects
except the thickness, the two specimens were identical. Each was constructed
from 2024 aluminum 356mm in length (457mm including the portion of the
beam which was clamped) and 51 mm wide.

The piezoceramics used were G-1195 lead zirconate titanate (PZT) with
dimensions 63.5mm x25.4mm x.254mm (2.5in. x 1.0in. x 0.01in.). All ceramics
were tested prior to bonding to the beam to insure uniformity in actuation strain
output for a commanded field. Tests to determine actuation strain were
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conducted in the manner outlined in the previous chapter. The free
piezoelectric strain was measured for application of a static field and for a field
with frequency 10Hz.

Aluminum Beam

Piezoceramics

.

/ Strain Gages

+V \
, B
= \\\\\K\\

Figure 3.18: Beam Test Specimen

The complete instrumented specimen pictured in Fig. 3.18 illustrates the
location of the ceramics. They were bonded 25.4mm (1 inch) from the base of the
beam to form two actuator pairs. Amicon, a 24-hour room temperature curing
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epoxy manufactured by Emerson Cuming, was used to bond the actuators to the
beam surface. First, two ceramics were bonded to one face, then two others were
bonded to the opposite face in a separate cure. In order to allow for measure-

I

Figure 3.19: Strain Gage Locations on Beam Test Specimens
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ment of the strain on the beam surface, the actuators were placed so that a gap of
6mm remained on the surface of the structure between them. The ceramics
overhang the edge of the beam by 3mm, allowing for easy electrical connection to
both the upper and lower faces of all four ceramics. Eleven strain gages were
mounted on the structure and actuator in order to measure the strain on both
the beam and ceramic surface (Fig. 3.19). Each gage had dimensions of 4.8mm by
7.2mm with an active gage length of 1.57mm. The lowermost gage was used to
measure overall beam motion. The other 10 gages measured the relative surface
strains in the beam and ceramics.

Test Procedure

Both static and dynamic tests were performed on each of the two beams.
In all cases, the actuators were oriented, and the appropriate field applied, to
induce bending of the beam. For all tests, the specimens were clamped vertically
to a .5m x.5m x.15m steel test stand. The entire test stand sat on a 15mm thick
rubber sheet for further dynamic isolation of the test article. An aluminum
clamp, consisting of two 100mm x 200mm x 50mm blocks bolted to the test stand,
held the specimens. The procedure for each type of test will be described below.

In the static tests, a DC voltage supp'y provided an identical electric field to
each of the four actuators. Voltagez of 50V and 100V were applied,
corresponding to field levels of 196.9V/mm and 393.7V/mm. After a wait of
several minutes for the effects of creep to abate (Section 2.2), strain
measureaments were made. A switching box and a digital voltmeter were used to
read the 11 strains.

In the dynamic tests, a Wavetek signal generator supplied a sinusoidal
input to a high-impedance amplifier which was used to drive the piezoceramics.
The amplifier was configured to represent a voltage source. Tesis were
conducted at frequencies frem 0.1Hz to just above the first cantilevered-free
frequency of the beams. The amplitudes of the input fields were 113V/mm and
226V/mm for the T=12.65 beam and 113V/mm for the T=6.25 beam. At each
frequency, the strains were recorded on a Nicolet 2090 digital oscilloscope. The
data were later processed to determine the amplitudes of the strains.
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The major objective of the tests was to provide comparative strain data for
evaluation of the models. In addition, the total response of the beam was
calculated to verify the basic static and dynamic models.

In order to predict the dynamic response of the beam due to the induced
strain, damping measurements were made. Immediately following the steady
state tests, the beam was excited at resonance at an amplitude slightly greater
than the highest achieved in the test. The input voltage was then cut off and the
subsequent ringdown, as measured by the strain of gage 1 (Fig. 3.19) was recorded.
The ringdown data were used to estimate damping corresponding to the
amplitude of motion of the beam achieved in the tests. Aerodynamic damping
and friction from the clamp caused increased damping at higher amplitudes. In
predicting the response, the damping level for the actual amplitude was used.

Results

The test results generally support the Bernoulli-Euler bending model.
That is, the strain through the beam and the surface-mounted actuators appeared
to have a linear variation with z. The basic strain results confirming the model
will be presented below. The effect of shear lag as well as the effect of
piezoceramic creep at low frequencies will be illustrated. Finally, the analytical
predictions of induced strain and overall beam motion will be compared to the
data.
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Figure 3.20: Typical Strain vs. Frequency Data (Gage 1)
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The typical strain data taken for the sine sweep tests is shown in Fig. 3.20.
The strain amplitude at the first bending frequency is obviously much larger
than at low frequencies or in static tests. The first bending frequencies of the two
specimens were 21.7Hz and 11.2Hz.

For perfectly-bonded actuators the Bernoulli-Euler bending model predicts
the ratio of the strain (Fig. 3.19) on the surface of the actuator (gages 11,10,9,8,7) to
that on the surface of the structure (gages 2,3,4,5,6) to be

T
E::wf —+1

_ 2 — 1. 2
e A 1+ T
2 (3.83)
which for the two test beams with T=12.65 and T=6.25 is
Easurf E;urf
o = 1158 and ——=1.32
€ €
s s (3.84)

independent of frequency. The uniform strain model predicts the ratio of the
two strains to be 1.

In Fig. 3.21 the strain ratios for the five strain gage pairs are shown as a
function of frequency. The predicted strain ratios for the perfect bond uniform
strain and Bernoulli-Euler models are shown. For both beams, the Bernoulli-
Euler prediction corresponds more closely to the data. The error of the uniform
strain model is more significant for the thinner beam (b) as would be expected
(Section 3.4). The Bernoulli-Euler model better represents the real state of strain
because it allows bending in the actuators.

The agreement of the Bernoulli-Euler model with the data is not exact.
The data are grouped in a band around the prediction, and show a slight
dependence on frequency. As expected, the strain ratios for all five strain gage
pairs converge (to values within 5% of each other) at the first resonant
frequencies for each of the beams. For the thicker beam (a) the ratios are centered
about the Bernoulli-Euler prediction. For the thinner beam, they are as much as
5.5% below the prediction.
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For frequencies above resonance, the ratios deviate from the narrow band
of values. This is due to the influence of the second beam bending mode, and
the presence of strain nodes. The low strains are difficult to measure accurately.
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Figure 3.21: Ratios of Strain on Surface of Actuator and Surface of Structure vs. Frequency

At low frequencies above DC where dynamic amplification is still small (
i.e. 3-15 Hz and 2-8 Hz for the respective specimens), the five ratios show a large
variation. For T=12.65 (a) at 10.5 Hz, the ratios vary from 1.07 to 1.33 and for
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T=6.25 (b) at 5.5 Hz they vary from 1.29 to 1.45. In both cases, the lowest ratio is
found for the gages (9/4) in the center (Fig. 3.19). For all frequencies, this ratio
remains below that predicted, indicating that the strain distribution through-the-
thickness is not precisely linear. However, the linear consistent strain
assumption is still better than the uniform strain one.

The strain ratios measured near the ends of the actuators (11/2, 7/6) are
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generally between 10 and 20% higher than the predicted ratio. This is due in part
to the lack of a constraint on the free edge of the actuators. In addition, a shear
lag in the adhesive bonding layer or actuator increases the ratios. At the
resonant frequencies, the ratios at the outer gages drop to match the others as the
global first mode strain dominates.
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Figure 3.23: Low Frequency Induced Strains at Actuator and Structure Surface
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Another way to view at the strains is to look directly at the measured
strains in the beam. Figure 3.22 shows the strain over the length of the actuators
for several frequencies up to resonance. Note that at low frequency the total
strains are small. They are highest in the middle (& =0) and drop off
symmetrically at both ends, where lags exert local influence. At higher
frequencies, overall strain levels are greater. In addition, the strains decrease
from i =-0.8to % =0.8. These measuring points correspond to 9% and 23% of
the distance from the root along the beam, and thus illustrate the imposition of
the beam first bending mode. The most useful data for examining induced strain
is found at the low frequencies (Fig. 3.23) where nearly all the strain is due to
induced strain and not dynamic/inertia effects.

The dropoff in strain may be due to the physical arrangement. Because the
beams were not entirely covered by the two actuators, it is possible that the entire
cross section does not bend as one unit - there is a lag in strain across the center
section, which is not directly covered by the actuators (Fig. 3.19). Although the
configuration may be a possible explanation, it is believed to be of secondary
significance.

Even at low frequencies, there is some dynamic amplification present. For
example, the T=6.25 actuator surface and beam surface strains based on the
Bernoulli-Euler model are predicted to be .61A and .46A, but they are actually
about 20% higher (Fig. 3.23). Even within the limited resolution of the five gages
mounted on the beam, it is apparent that the strain drops off near the edges of
the actuators. With no dominant dynamic effects, the induced strain
distribution appears to be symmetric about the center of the actuators. The
reduction in strain near the edges is believed to be due in part to the shear lag in
the transfer of strain across the bonding layer. It is rot believed to be due to the
effects of actuator shear. In the finite element model it was shown that the shear
lag of the actuator itself occurs only over a few actuator thicknesses near the edge
of the actuator. The gages at % = 0.8, located 25 actuator thicknesses from the
edges of the actuator, were not able to measure that effect.

Fig. 3.24 shows the distribution of strain in the actuators and structure for
two static tests. In plots of the static strain data, the strains show no dynamic
amplification. However, the same general shape of the curves is apparent. The
Bernoulli-Euler predictions shown will be discussed in the next subsection. The
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Figure 3.24: Static Induced Strains at Actuator and Structure Surface

static tests highlight the effect of the bonding layer. There is a clear drop in strain
near the edges ( £ = +0.8) for both beams. The bond for the T=12.65 beam is
worse as evidenced by the dropoff of strain in the structure near the edges. In
addition, in static tests there is Piezoelectric creep in the actuators. The
piezoelectric creep was evident during measurement and the data shown were
taken after several minutes at one DC field.
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Hysteresis was also in evidence. In the thicker structure, with a worse
bond, the structure did not exhibit hysteresis at nearly the same level as the
actuators. However, for the thinner beam with a better bond, the hysteresis was
present to nearly the same extent in both the beam and the actuator. The
hysteresis loop aspect ratios for the beam strains were 6% and 9.5% for the two
field levels. If the net strain in the actuators, which average 30.2uS and 67.8u5
over the length and width of the actuator, are considered, a prediction of the
aspect ratio may be made from Fig. 2.10. For those strain levels, aspect ratios of
9% and 14% are expected in free actuators. Thus, when the actuators are part of a
structure the hysteresis is still present, but to a lesser extent.

Strain Prediction

In order to confirm the basic accuracy of the model of actuation, it was
considered desirable to attempt to predict the absolute beam strains for both the
static and dynamic tests. These predictions incorporate the nonlinear strain-field
relation of the actuators discussed in Section 2.2, but do not include the effects of
adhesive layer shear lag. For the dynamic cases, the experimentally determined
damping ratio is also used in the amplitude estimation. The perfect bond
Bernoulli-Euler bending model is used for both static and dynamic predictions.

For the static tests, the strain of the beam in the center of the actuators as
measured by gage 4 was predicted. This was accomplished as follows. Equation
3.47 from the Bernoulli-Euler model is used to obtain an expression for the
surface strain. Thus for the two test beams, with E=1.111 and T=12.65 and
T=6.25, the predicted strains are

g7 =310A and g =.462A (3.85)

and with the linear assumption of through-the-thickness strain, the average
strains in the actuators are

E:Ug = 335 A and e:ug =, 536 A (386)

A value (the small signal value A=d3;E3; was used as a start point) is assumed for

the actuation strain, A, and an induced strain can be predicted in the structure.

That calculated induced strain is then used to determine a more accurate value
*

for A, by selecting the appropriate d 3; based on the level of induced strain from a
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d*31-strain plot (see Fig. 2.7). This yields a better prediction and the process may
be repeated until a value of induced strain is converged upon. For the cases here,
no more than three iterations were required for convergence. The results of the
predictions are shown in Table 3.1.

Table 3.1: Static Induced Strain Predictions and Data (Beam Specimens)
Thickness| . . Microstrain
Ratio |Field (Vmm)[d* 31pm/V) Fpeqrey Data Error
197.9 283 17.3 14.7 +17.7%
T=12.65| 3937 312 38.1 32.6 +16.9%
590.6 331 60.7 52.4 +15.8%
197.9 302 27.5 26.8 +2.6%
T=6.25
303.7 344 62.6 60.1 +4.2%

The predictions for the thinner beam are more accurate, while the predicted
strains for the thicker beam are significantly higher than the actual strains. This
is believed to be due mainly to the losses from the adhesive layer. In all cases,
the values for d*31 shown in the table are considerably larger than the small
signal value, d3;= 186pm/V.

A Bernoulli-Euler model with a finite bond was also fit to the low
frequency data to determine the value of the shear parameter, I. For beam strain
data at 0.5Hz and 0.1Hz for the T=12.65 and T=6.25 beams respectively, I" was
found to be equal to 12.5 and 9.3.

The prediction of the induced strain at the first bending resonance was
accomplished with a dynamic model. Because the motion of the beam was
greatly amplified beyond the static strain level, the total strain of the beam, as
measured by gage 4, was used to predict the performance. It was assumed, based
on the results of the previous chapter, that the mechanically-imposed strain did
not affect the correct d*31. Therefore, the predicted piezoelectrically-induced
strain level based on 10Hz free piezoceramic strain data was used to calculate the

appropriate d *31.
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The dynamic motion was modeled with a 5-mode Rayleigh-Ritz model.
Such a model is similar to the plate models of the next chapter which are
formulated in terms of kinetic and potential energy and solved approximately.
The modes used were the first five exact cantilevered-free bending mode shapes
for a uniform beam as represented by

9(%) = cosh(A,1) —cos(4,7) ~ w(sinh(A 1) —rin(4T)) (3.87)

where 1; and y; depend on the mode. Values for these coefficients are presented
in Appendix E. The modal mass of the beam is

M, =p,A,LlLl ¢¢dx
! : I'. ’ (3.88)

where p; is the density. Because the chosen modes are orthogonal, the 5x5 mass
matrix is diagonal. The modal mass of the actuators was found to be less than
1% of the beam modal mass and was ignored. The 5x& modal stiffness matrix of
the beam is

(EI)8 L
Kii = ls J-l ¢i ¢de
s " (3.89)

Again, because of the selection of modes, the beam stiffness matrix is diagonal.
The stiffness of the actuators is

2(EI)
KA, = | ¢¢dx
‘.

V 3

s (3.90)

The exact beam modes are not orthogonal over the length of the actuators.
Therefore, the actuator stiffness matrix contains off-diagonal terms. The stiffness
contribution of the actuators is 9% and 20% for the first mode for the thin and
thick beams. The predicted first bending frequencies for the two beams were
21.5Hz and 11.8Hz, and the corresponding experimentally determined values
were 21.7#0.1Hz and 11.2%0.1Hz.

The piezoelectric terms are incorporated in the modal forcing, Q. The
modal forcing term is based on the second strain energy term in Eq. 3.32

105



Jw

Q=M
A ox? (3.91)

which can be rewritten

(EA) (T +1¢, )
Qj = a ] AJI ¢jdx

(3.92)
The full width of the actuators was included in both the stiffness and forcing
terms.

The equations of motion for the system are

(K +KA)g+ Mg = Q (3.93)

This matrix equation was solved by diagonalizing the stiffness matrix and
obtaining the undamped residuals of the new 2nd, 3rd, 4th, and 5th modes at the
first resonant frequency, and adding the damped resonant modal amplitude for
the 1st mode

_19
LT K,

(3.94)

where the damping ratio { was experimentally determined to be eque! to 1.14%
for the thicker beam and 0.96% for the thinner one at the amplitudes of concern.
Thus, the model was essentially a 1-mode damped Rayleigh-Ritz model with
four additional undamped modes added to more accurately capture the actual
deflections. The surface strain at the location of gage 4 (x/L=.1607) was computed
as

= =GR, o5

where the contributions of the five modes were summed to obtain the total
strain. The predictions and data are shown in Table 3.2.

It was expected that the models would be overly stiff and would
underestimate the actual strains. This is the case for the thinner beam (T'=6.25).
The prediction for the thicker beam (T=12.65) is higher because of greater losses
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in the bond layer. In addition, because the actuators contribute a smaller fraction
of the total stiffness, the chosen modes more easily represent the actual mode
shape. The difference between the errors in the two beams is not as great as in
the static case, because the piezoelectrically-induced strains are lower, adhesive
bond layer creep is less prevalent, and some of the dynamic effect of the bonding
layer loss is accounted for in the higher damping ratio of the thicker beam.

[able 3.2: First Mode Induced Strain Predictions and Data (Beam Specimens)

Thickness| . . Microstrain

Ratio Field (V/mm)| d* 31(pm/V) Predicted Data Error
T=12.65 226 221 167.3 167.1 +0.1%
T=6.25 113 216 158.3 172.6 -8.3%

Experimental results for static and dynamic tests on two beam specimens
have been presented. Evidence of the real piezoceramic properties discussed in
Chapter 2 - nonconstant d3;, hysteresis, and creep - was found. The shear lag due
to the presence of an adhesive bonding layer was evident, particularly in the
T=12.65 beam. A Bernoulli-Euler model with a perfect bond assumption was
accurate at predicting induced strain levels under the center of the actuator for
both test specimens. The Bernoulli-Euler model with a finite bond layer
included was used to fit data illustrating the shear lag due to the finite bond.

3.7 SUMMARY

In this chapter, three separate models of induced stain actuation for one-
dimensional structures were developed. Results for the uniform strain model,
adapted from Crawley and de Luis {1987), were presented. The model was found
to be accurate in description of induced stretching, but inaccurate in description
of induced bending, particularly for thin structures. Results for the Bernoulli-
Euler model for general cross-section beams with embedded or surface-mounted
actuators were derived. The Bernoulli-Euler model results for induced
stretching were identical to those from the corresponding uniform strain model.
The Bernoulli-Euler bending model, which included the full bending stiffness of
the actuators, was judged to predict strains correctly. The results from an ADINA
finite element model correlated well with the Bernoulli-Euler results for
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vrediction of induced strain, and highlighted the presence of material shear in
the actuators and structure. This effect was judged to be significant only for low
aspect ratio (length/thickness) actuators and thick beams, where the influence of
shear on net induced displacement was greatest. The influence of a finite
bonding layer between actuators and structure was characterized by a shear
parameter, I'. The bonding layer aftected induced strain along the actuator
length, net displacement, and energy transfer.

The optimal geometry for surface-mounted actuators for maximum strain
energy transfer was derived. The relative efficiency of embedded and surface-
mounted actuators was illustrated for inducing maximum curvature in a
structure. It was shown that actuators embedded slightly below the surface of a
structure are more efficient than surface-bonded actuators. Experimental results
confirmed the accuracy of the Bernoulli-Euler bending model. Evidence of a
finite bonding layer was presented, along with the real piezoelectric properties of
the previous chapter. The static and dynamic strain amplitudes were predicted.

In the next chapter, the one-dimensional models will be extended to two-
dimensional plate structures and compared with experimental results.
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CHAPTER FOUR: TWO-DIMENSIONAL INDUCED STRAIN
ACTUATION

4.0 INTRODUCTION

Induced strain actuation may be utilized in both one-dimensional beam-
like structures and two-dimensional plate structures. In thin plate-like
structures, relatively small inplane induced strains often correspond to larger
out-of-plane deformations. In anisotropic plates, inplane extensional strains can
induce stretching, shearing, bending, and twisting. Thus, induced strain
actuators can be useful in a variety of shape and vibration control applications.

Both static and dynamic analysis of plates are well established disciplines
(Timoshenko and Woinowsky-Krieger, 1959, and Leissa, 1969). The analysis of
anisotropic (composite) plates through classical laminated plate theory is also
well understood (Jones, 1975). Further, in the study of laminated plates, the
inclusion of thermal or moisture effects is straightforward. These analytical
methods necessary for representation of induced strain actuation of plates will be
used to formulate the two-dimensional induced strain problem.

In this chapter, the objective is to extend the one-dimensional models of
the previous chapter to the more general two-dimensional thin plate case. A
more complete study, specifically devoted to both isotropic and anisotropic
plates, was undertaken separately from the current study (Lazarus, 1989). In a
third study (de Luis, 1989) focussing on strain-based control concepts, a plate-like
graphite/epoxy structure containing 32 embedded piezoceramic actuators was
constructed.

This chapter is organized in the same fashion as the previous one. In
Section 4.1, the uniform strain model of Section 3.1 is extended to plates. In
Section 4.2, a model of induced strain actuation is derived using classical
laminated plate theory. The Bernoulli-Euler model of Section 3.2 is shown to be
a one-dimensional specialized case of this model. In Section 4.3, the two models
are briefly compared. In Section 4.4, the energy formulation of the plate problem
is presented. It is shown in Section 4.5 that the energy formulation may be
solved exactly for a limited number of static cases. The approximate approaches
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necessary for most static and all dynamic problems are described. In Section 4.6,
experiments involving aluminum plates are described and results presznted.
Finally, in Section 4.7, induced strain actuation of plate structures is
summarized.

4.1 UNIFORM STRAIN MODEL

In this section, analytical models based on an assumed uniform
extensional strain in the actuators will be derived for plates of arbitrary cross-
section. The uniform strain plate model is based on the uniform strain beam
model summarized in Section 3.1, and formiulated by Crawley and de Luis (1987).
The assumed strain distribution of Fig. 3.2 can be applied to the plate problem to
model the normal strains in the x-z or y-z cross-sections. The plate geometry for
surface mounted actuators is illustrated ir Fig. 4.1.

Z

Figure 4.1: Uniform Strain Model Geometry Showing Induced Extension
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A notation similar to that used in the previous chapter will be used for
plates, where the subscript 'a’' refers to the actuators and the subscript 's' to the
plate structure. The stress resultants, N and M, defined in plate theory as

N=Ic(z)dz M=Io(z)z dz
: z (4.1)
and plate extensional and bending stiffness matrices, A and D,
A = [Q(2)dz D= [Q(z)2%dz
z z (4.2)

will be used in the derivations below. The matrix Q represents the constitutive
properties of a single layer. In the uniform strain model, it is assumed that the
actuation and stiffness are symmetrically distributed about the neutral axis, i.e.
the coupling stiffness matrix, B=0.

The solutions for uncoupled induced extensional and induced bending
strain in the absence of external forces will now be derived. The uniform strain
model is applicable only to surface mounted actuators, and the perfect bond
assumption (Section 3.1) will be used here. The uniform strain model is strictly
valid only for unconstrained plates whose surfaces are completely covered by
actuators. In Section 4.5, a method for grafting this model to more realistic plate
problems is outlined.

Extension

By analogy with the "pin forces" of the perfect bond beam model, it is
possible to construct pin forces in a plate model. For induced extension, the
distributed pin forces per unit length, N, N,,, and N,y transmitted from
perfectly-bonded surface-mounted actuators to a plate are in equilibrium with
the stress resultants in the aciuators and structure

N.=N, (4.3)

N,=-2N,

(4.4)

The plate stress-strain relations for the actuators and a symmetric structure are
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e.=A:N.+A (4.5)

1
£.=A.B].\.Tll (4.6)

where A is the actuation strain vector

\
\

\

v

Ax
A=| A4,
Ay 4.7)

Substituting Eqs. 4.3 and 4.4 into Eqs. 4.5 and 4.6, and requiring displacement

compatibility at the actuator-structure interfaces, gives a result for the pin forces

\
\ -1
\| -1 -1

N =-(2a)+A7)) A 4.8)

\
and the induced strain (Eq. 4.5 or 4.6) is
1 n
e=2A"(247+A)) A
-1
= 2(2I+ \.|I°) A (4.9)

which is analogous to Eq. 3.15, where I is the 3x3 identity matrix, and a relative
stiffness parameter matrix, comparable to Eq. 3.16, is defined as

-1
v.=A A, (4.10)

Bending

In bending, a plate derivation analogous to Egs. 3.1 through 3.14 for a beam
structure proceeds as follows. The plate is assumed to be in pure bending and the
actuators in uniform extension. The force resultants, M and N, in the structure
and actuators are in equilibrium with the pin forces

M,=-t,N, 4.11)

=N, (4.12)
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The stress resultant-strain relations for the plate and actuators are

e,=zx,=D,M 4.13)

-1
Ea=AaNn+A (4.14)
After enforcing compatibility at the actuator-plate interfaces, the pin forces are

2

a b
Np=—(AR+~—D_J A

2 (4.15)
and the strains in the structure and upper actuator are
2
€ x,= 2t D"(A'l+ Z D'I) A
=2ZK, = -
s [ 8 [ a 2 s (416)
2 D'{A'l t'zn") A
= — + —
€ & 2 [ ] a 2 s (417)
Alternatively, the induced curvature is simply
-12 -1
K, = + 6I) A
f, (Vo*6D (4.18)
where the relative stiffness parameter matrix is
12 , -1
‘I”b= _zAn D.
2 (4.19)

which is analogous to the scalar stiffness parameter of Eq. 3.10.

Resulis for Isotropic Plate

The results above are valid for any symmetric plate with surface-mounted

actuators. For the specific case of an isotropic plate and actuators, the stiffnesses
A, A, and Dy are
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(1 v, 0
A Et.|lv 1 0
Y 1- v,
| 00— | (4.20)
1 v, 0 ]
A = Et,|v 1 0
S P 1- v,
8 0 8
|0 2 (4.21)
1 v, 0
3
D - Et, v, 1 0
* 12(1- v’ 0 o0 Lo
2 (4.22)

where v, and v, are the Poisson's ratios of structure and actuators. The relative
stiffness parameter matrix, y,, for extension (Eq. 4.10) is

1- vy, vV, -V, 0
Y, = Ef. [v -, 1- vy, 0
* Ef(1-v) T,
a® a 8 0 0 (1 - V.)(]- + Va) (423)

which is greatly simplified when v,=v;

Ey, 100
W.=F 010
Lo 01

(4.24)

For an isotropic plate and actuators the relative stiffness parameter matrix for
bending, yy,, is identical to y,.

The actuation strain vector, A (Eq. 4.7), for a typical isotropic induced strain
actuator, cortains nc chear component and identical normal components.

A
A= [ A ]
0 (4.25)
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When Egs. 4.24 and 4.25 are placed in Eq. 4.9, the resulting induced stretching

strain is
=22 E.t, I [
€= * —Eata
0 (4.26)

or

2

£ = § 2+E‘t,A Y%y =0
Et, (4.27)

which is identical to the beam result for identical width structure and actuators
(Eg. 3.15).

For the case of induced bending, the results are also similar to the one-
dimensional model predictions. When Egs. 4.24 and 4.25 are placed in Eqgs. 4.16
and 4.17, the resulting strains are

6 2
G5, R —pA()r %=em,=0
6+
Et, (4.28)
t, 6 _bL
& =& = ".(E‘)=T/\Z Yy, = 2Kry, =0
6+ —°

Et, (4.29)

which are again identical to the beam results (Eq. 3.13) for b,=b,. It has been
shown that for isotropic plate and actuators, the solutions for induced
extensional and bending strain correctly reduce to the one-dimensional model
results. Note that for isotropic actuators and structure, the two orthogonal
induced strains, &, and gy, are uncoupled and identical.

4.2 LAMINATED PLATE MODEL

In this section, the strain induced in a plate by actuators embedded in or
bonded to the surface of the plate will be derived. The development of this
model is consistent with classical laminated plate theory and corresponds closely
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to the Bernoulli-Euler beam model of Section 3.2. It is required that the plate and
actuators are free of external loads. The solution of a problem which includes
external loading is more easily developed with energy formulations (see Section
4.4).

a

z

yx

Figure 4.2: Laminated Plate Model Geometry and Resultant Definitions

Embedded Model

The induced strain due to actuators embedded at arbitrary locations
through the plate thickness will now be developed. It is assumed that there are
cutouts made in the structure to accommodate the actuators. Further, the bonds
between actuators and plate are assumed to be 'perfect.’ Since the actuators are
set in place in the cure process, bonds of strength comparable to the interlaminar
bond should be possible.

In plate theory (Jones, 1975), the total strain is

e=¢€e"+2x (4.30)
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where

Ex 8! w 'xx
0 0
e=| & e =| g K=—| Wiyy
2w
Ly P, ez (4.31)

The generalized force-strain relations for a plate subject to actuation strain are
HITHEIM
IM]lB D]« || M, @32

where N and M are defined in Eq. 4.1, the 3x3 total extensional, coupling, and
bending stiffness matrices for the plate and actuators are

A=IQ(z)dz B=JQ(z)zdz D=IQ(z)z2dz
z z z (4.33)
and the internal force resultants, created by the actuation strain A are
N = IQ(z)A(z Ydz M = IQ(z)A(z )zdz
z z (4.34)

For the case of no external forces, the six induced strains and curvatures
are determined by setting Eq. 4.32 equal to zero

18 2] ]

From Eq. 4.35 it is clear that for unsymmetric plates (B # 0) it is possible to induce
inplane stretching and shearing by application of an actuation moment, M,, or
out-of-plane bending or twisting with an actuation force, N,. In addition, for a
symmetric but generally orthotropic laminate, it is possible to utilize extension-
shearing coupling (A;4,A76 # 0) or bending-torsion coupling (D4, Dy #0). This
coupling must be exploited to induce shearing or twisting when the actuation
strain has no shear component (Eq. 4.25). Lazarus (1989) conducted experiments
with (+453/-453) and (30,/0), laminates to induce twisting due to coupling with

extension and bending.
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Results for Isotropic Plate

In order to compare the plate and beam models, specialization to the case
of an isotropic plate with actuation symmetric about the neutral axis is required.
Extension and bending may then be treated separately. For the case of extension,
from Eq. 4.35, the inplane strain is

0 Al
e=AN, (4.36)

the total extensional stiffness is

A=A.+A. (4-37)

where A, and A, are given by Egs. 4.20 and 4.21. If it is assumed that the
structure and actuators have identical Poisson's ratios (v,=v,=Vv), A simplifies to

A=

1v 0
Es (ts - %a) + Eata v 1 0
00

1- v 1-v
: (4.38)
and the actuation force resultant, measured in force per unit length, is
1v 0
N = ZEata v 1 0 A
A 1- V2 0 0 1-v
2 (4.39)

Using an actuation strain (Eq. 4.25) which is typical, with A,=A,=A, N, simplifies
to

xy (4.40)

Thus, the x and y components of Egs. 4.38 and 4.40 are identical to Eqs. 3.32 and
3.33 except for the finite width term, b, and the 1-v and 1-v2 terms in the
denominators representing the increased stiffness in plates. Placing Eqs. 4.38 and
4.40 into Eq. 4.36, the induced extensional strain is
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o __ -1 _ 2Eata
e=AN,= E,(t,—2ta)+Eata{

© S>>

} (4.41)

or

8: = Eo = A— fy = 0
Y 2+ vy, 7})’ (4.42)
where the scalar relative stiffness parameter is
y = As_ B -2)
T4, Et, (4.43)

which is identical to the definition of y, for a beam (Eq. 3.35) except for the
absence of a finite width term.

Under the same conditions, the solution to the bending problem is

-1
D=DH+D. (4.45)
) ) 3 1 v 0
1 t, 2 t, 2 t, 1 0
= NVE, |35 - tld +dt,+ 7 ||[+2Et,|d + dt,+ -
1-— vir 12 3 3 0 0 1—-v
2
(4.46)
oF 1 v 0
t t
M, - aai(d _2¢_ v1 0 |
1- v 00 1- v
2 (4.47)
t,
2Eat,,(d+—)
2
K= 3 3 sy A
mlg ot aflomalat e a )
E, 12—t¢,d+dt,,+3 + 2E t.|d +dta+3 (4.48)

119



2Et(d +t—“\

T Bl e a omaeva)
E,]2 d+dt+§}+2Et d+dt+§

Ky =0 (4.49)

A

which is identical to Eq. 3.40, except for the exclusion of the finite width term.

Surface Mounted Models

For surface-bonded actuators, Eq. 4.42 applies for extension, with

v = Et,
*" Et, (4.50)

For bending, Eq. 4.49 applies, with d=t,/2 and
6 1 U ( )
-8

x y 12
(6+ v)+ T

2

T (4.51)

where T is the ratio of the plate and actuator thicknesses

T =

N|FO-
)

a (4.52)

The predicted induced curvature in Eq. 4.51 is identical to the predicted heam
curvatures for b;=b, (Eq. 3.46).

The laminated plate model can be viewed as a generalization of the one-
dimensional Bernoulli-Euler model of Section 3.2. It has been demonstrated that
for isotropic and symmetric structure and actuators the solutions are identical.

4.3 COMPARISON OF MODELS

From the previous two sections, it is apparent that the two plate models
correctly reduce to the corresponding beam models. Thus, the comparisons for
induced extensional strain (Fig. 3.7) and induced curvature (Fig. 3.8) which were



shown for identical width beam structure and actuators are applicable to plate
structures as well. The two plate models predict identical induced extensional
strains. The laminated plate model is more accurate than the uniform strain
model for induced bending, particularly for thin plates.

The illustrations of the effects of finite stiffness bonding layers and
material shear, shown for beams in the previous chapter, are applicable to plates
as well. Expressions similar to Eqgs. 3.61 and 3.62 may be written to predict the
effect of finite stiffness bonding layers in both the x and y directions. A more
complicated model must be used when shear or twist is induced in an elastically-
coupled plate. The finite element model with material shear included could also
be generalized to isotropic plates with surface-bonded actuators. Reductions in
net displacement in the two directions are expected to be proportionally
somewhat greater because of increased losses near corners of the actuators.

The more complicated nature of plates makes the laminated plate model
more straightforward for use in design. This is particularly true for embedded
actuators where only the laminated plate model is applicable. The extension,
bending, and coupling may be solved simultaneously using the actuation force
resultants, N,, and M,.

Either model provides an accurate description only in the absence of
external forces over a free section of plate. In reality, the effect of the actuation
strain depends strongly on the (static or dynamic) loading on and boundary
conditions of the plate. Therefore, it is necessary to couple the simple induced
strain models to more complete models which encompass the entire plate
behavior. A more general approach, which often involves approximate
solutions, is based on the energy formulations discussed in the next two sections.

4.4 ENERGY FORMULATION

In order to solve a realistic problem, the solutions for induced strain must
be integrated with a more general structural model which includes the effects of
external mechanical loading and boundary conditions. In determining
deformations in both static and dynamic problems it becomes necessary to
employ either an exact representation of global deformation or an approximate
representation. The later is required for dynamic problems.
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In the previous chapter, a five-mode Ritz model was used to predict
dynamic motion of the teams. In the present section, the formal energy
expressions for the plate problem will be derived. The consistency with the
laminated plate model will be illustrated. Finally, the derivation will be
specialized to the cases for which experimental results were obtained.

Potential and Kinetic Energy

The total energy consists of the sum of the potential energy and kinetic
energy. In static problems, kinetic energy is not present. The potential energy is

U =1 €"QedV - [e"QAdV
v v (4.53)

where Q is the lamina stiffness matrix, A is the actuation strain vector, and the
total strain vector, €, is

e=e’+2zx (4.54)

Placing the strain in the expression for strain energy and separating the
integrations over the area and through the thickness yields

U= ﬂ{e"r‘[ Qz ® + € | Qudz x + x[ Qzdze® + k[ Qz%dz lc}dA

A

_ I{E°TI QAdz + KTI QAzdz }dA

z z (4.55)
which may be rewritten
U = —;j{e" Ae® + ¢ B + k"B’ + k"D JdA
A
- I{e" N, + KTMA}dA
A (4.56)

where the extensional, coupling, and bending stiffness matrices A, B, and D (Eq.
4.33), and the actuation force resultants (Eq. 4.34), N, and M, are used. The first

integral corresponds to the strain energy found in any anisotropic plate. The
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second represents the effect of the induced strain actuation. The potential energy
formulation contains the same terms used in the laminated plate model.

The kinetic energy in a plate is in general

T=[pi adV
v (4.57)

where the velocity vector w is

u
w (4.58)
or
ou _ou’_ duw
- oxk
o _a_ Jw
o o e
ow _ dw
ot ot (4.59)

v (4.60)

where the first term, corresponding to the out-of-plane deflection, usually
dominates. The second term, representing rotary inertia, is not important for
thin plates. The third, representing time-varying inplane stretching
deformation, is likely to be important only at high frequencies. The fourth term,
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representing a coupling inertia, is only nonzero for mass which is not
symmetrically distributed about the centroidal axis.

Thus, in most cases

2

_ dw
r= pt"ﬁ(q"r) a4 (4.61)

is an adequate representation of the kinetic energy. General expressions for the
potential and kinetic energy have been presented. Solution methods for plate
problems with various loadings and boundary conditions will be discussed next.

4.5 SOLUTION OF STATIC AND DYNAMIC PROBLEMS

In general, it will be necessary to use approximate methods, based on the
energy expressions (Egs. 4.56 and 4.60). The exact equations for induced strain
from Sections 4.1 and 4.2 are applicable only in a special class of static problems.
The alternatives for solution of static and dynamic problems, particularly those
involving out of plane displacement, w, will now be presented.

Exact Solutions

For a plate which is completely unconstrained (i.e. all edges are "free"), it is
possible to use the static solutions for induced strains in Sections 4.1 and 4.2
when actuation strain is uniformly applied over the entire area of the plate. In
that case, there is no externally imposed strain. The exact solution is also valid
in cases where the edges are constrained normal to the plate but free to move
tangent to it. For induced bending or twisting, the plate must have constant
curvature in order for the exact solutions to be valid.

Approximate Solutions

In all other cases, an approximate sclution technique must be employed.
These cases include all dynamic problems and all static problems excluding the
special instances noted above. The necessary approximate solution motivates
the energy formulation of the previous section. For static problems only the
potential energy, U (Eq. 4.56), is used. For dynamic problems, the kinetic energy,
T (Eq. 4.60 or 4.61), is also necessary.
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>Actuators

Figure 4.3: Actuation Distribution Requiring Approximate Static Solution

As an example of the need for approximate solutions, consider a plate with
constant actuation strain applied over selected portions of its surface (Fig. 4.3).
The exact solutions for induced strains (e.g. Eq. 4.41) are not valid because of the
constraining effect of the uncovered plate area. The induced strain in the plate
in the area of actuation strain application will be reduced. In addition, there will
be nonzero strain iriduced in the uncovered areas, particularly near the actuation
source.

In addition to the inaccurate representation of strain near the actuation
sources, induced strain will be influenced by the boundary conditions. Thus, the
exact model, which assumes that the induced strain is either zero (in the
uncovered area) and constant (in the covered area) is not accurate. If the
boundary conditions are varied (i.e. other than "free"), further constraints will be
added, necessitating an approximate solution, even in the case of actuation strain
uniformly distributed over the entire plate.

A typical static problem may be solved approximately by employing finite
elements, boundary elements, finite differences, or an assumed modes Rayleigh-
Ritz solution. Only the fourth method will be discussed here. For a Rayleigh-
Ritz analysis, the expression for potential energy (Eq. 4.56) may be written as a
function of the displacements u, v, and w.

U=U(u’v’w) (462)
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Each displacement is then written as a summation of modes

u=ito(x,y) (4.63)
v =0,B0,y) (4.64)
w=wy(xy) (4.65)

The modal displacement vector, q, is assembled from u,v,and @. In many
cases only the out-of-plane displacement w is important. The variation of the
potential energy with respect to each of the modal displacements is required to be
zero leading to a set of equations

Kq=Q (4.66)

where the stiffness matrix, K, is the usual stiffness matrix of both the plate and
actuators, and is derived from the first term of Eq. 4.56. The modal forcing, Q,
results from the second term of Eq. 4.56, and is therefore directly proportional to
the actuation strain, A. The modal displacements, q, may be solved for and
multiplied by the mode shapes to find the displacements. The accuracy in
representation of the real induced displacements depends on both the number
and the appropriateness of the chosen modes.

For dynamic applications, the problem is formulated in the same way as
the static one with the addition of a modal kinetic energy term, so that the usual
set of (undamped) equations

Mg+Kg =Q (4.67)

is obtained. All the information relating to the actuation strain is contained in
the modal force vector, Q. A damping matrix, C, may be added, and determined
independently from the induced strain. Solution of Eq. 4.67, and assembling of
the modes will yield the temporally- and spatially-varying displacements u, v,
and w. An example of an approximate solution of the form of Eq. 4.67 is
illustrated in the next section.

Based on the discussion above, it may be concluded that the expressions
for induced strain in Section 4.2 have only limited use in predicting global
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deformation. For all dynamic problems, and most static ones, formulation of
potential and kinetic energy expressions will lead directly to approximate
solutions. In addition, in such formulations, additional external inputs may be
readily accommodated in the stiffness and mass matrices. Thus, an energy
formulation is strongly recommended.

4.6 EXPERIMENTS AND RESULTS

In order to verify analytical formulaiions, a set of simple dynamic
experiments was conducted. In this section, the design, apparatus, and results of
those experiments will be presented. The approximate method used to
determine the extent of the induced deflections in one test will be described.

Design

The design of a plate structure incorporating induced strain actuation
requires several decisions, including choice of actuator material, whether to
embed or place the actuators on the surface, and the layout of the actuators. The
actuation strain distribution depends on the intended purpose of that actuation.
For shape control, a large network of independent actuators is desirable. For
vibration control of specific dynamic modes, it is desirable to distribute the
actuation such that maximum influence is exerted on those modes.

A concept which allows modal control is that of a "modal actuator." Such
an actuator has been constructed for a beam (Lee and Moon, 1987) Unfortunately,
it is not possible to construct such an actuator for a plate. Any actuator will exert
influence over muitiple modes. In particular, an actuator which is cut to
coincide with the strain shape of the exact first bending mode of a cantilevered
plate, will only partially succeed. If it is assumed that the actuator does not
change the stiffness and mass properties of the plate, it will not affect any of the
higher spanwise bending modes, because they are by definition orthogonal.
However, when a bidirectional induced strain actuator, such as a piezoceramic, is
used, chordwise bending modes will be excited as well. If multiple modes must
be controlled, other modal actuators may be constructed, or a distributed network
of actuators may be used.

The purpose of this study was to verify the models of two-dimensional
induced strain actuation. Therefore, it was determined that a simple actuator
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arrangement could be used to exert authority on various modes. The
arrangement, consisting of two curvature actuators, allowed excitation of
spanwise and chordwise bending, and with a reversal of input to one actuator,
excitation of tcrsion.

«——— 25 in. 2.5 in.———»

Aluminum

proxnmnty sensor target.

1.0 in.—

strain gage 0.5 in. AN
A
25 5 % S N N N O O G
Figure 4.4: Plate Test Specimen =
The actuators were located near the base of the clamped plate, at points of :
highest strain in the first bending and first torsion modes, in order to exert -
maximum influence over those modes. -
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Apparatus

An aluminum test specimen with surface-mounted PZT actuators was
constructed (Fig. 4.4). The plate was cut from 2024 aluminum, and had exposed
dimensions 5 in. by 5 in. (aspect ratio = 1) by 1/32 in. thick. An additional 4 by 5
in. of material was clamped. Two pairs of Piezoelectric Products G-1195 PZT
piezoceramics, with dimensions 1 x 2 inches, were bonded to the plates with
Emerson Cuming Amicon epoxy. The aluminum plate was used as an electrical
ground in the experiments. Therefore, a small quantity of conductive epoxy
(Emerson and Cuming Eccobond 83-C) was placed at the center of the the actuator
plate interface. Two actuators were bonded to one side of the plate, then, in a
separate cure, the other two actuators were bonded to the other side of the plate.
The specimen was instrumented with a strain gage in the center (y=0) of the plate
1/2 inch from the base, and with steel proximity sensor targets near the upper
corners.

A sinusoidal input voltage was supplied to the actuator pairs in order to
induce curvature in the plate. When the actuators were strained in phase, the
net effect was to excite modes symmetric about the y=0 axis (i.e. spanwise and
symmetric chordwise bending modes). When the actuators were strained 180
degrees out-of-phase, the net effect was to excite antisymmetric modes (i.e.
torsion and antisymmetric chordwise bending). Data were measured for the first
torsion and first spanwise bending modes.

For the purpose of correlating the approximate analytical model,
measurements of deflection at the first bending resonance were made with the
two magnetic proximity sensors. In order to predict the amplitude of motion,
damping measurements were made. The plate was excited at resonance then the
excitation was cut off and the plate allowed to ring down. An amplitude-
dependent damping ratio was then determined using a least squares fitting
program. Because of nonlinear structural and air damping, the damping ratio
was higher at higher amplitudes.

The plate was excited for field levels up to 30 V/mm peak, corresponding
to peak tip deflections of approximately one plate thickness. Above this level the
amplitude of vibration approached the saturation of the proximity sensors. In
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addition, at the small amplitudes, the linear plate model could be considered
accurate.

Results

In order to accurately predict the amplitude of vibration, it was necessary
to include several mode shapes. In a Rayleigh-Ritz model, stiffness, mass, and
forcing must be represented (Eq. 4.67). For the chosen arrangement of actuators
(Fig. 4.4), all three quantities are discontinuous at the actuator locations. There-

Table 4.1: Assumed Mode Shapes for Rayleigh-Ritz Plate Model
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- 1 (sinh(}, }) ~sin(4 1)) :
(A, u,, defined in Appendix E)
6 | cosh(i,i)~cos(Af) ()

- #(sinh(4, ) - sin(4,1))

7 cosh (1,) — cos(A,1)

2
- x . x y
—u2(51nh(/12L— —sm(lzb—)) (-c-)
8 [ 0 x <a !
ll,x —al)2 a <x <a, (y )2
9 {1 - 2 -
la(a2 al) + x >a, c
1
l—a(az—al)(x ~a,) ( (: l<b,
10 L c_;(lyl—bl) blS|y|£b2

<

‘,-L’(bz _b1)2 +
L c_l’.(bz— bl)(ly l- bz)

vy |>b

2

130



fore, in an assumed modes model, it is useful to inciude some modes which are
discontinuous.

The experimental first bending mode was used to evaluate the
approximate model. A total of ten modes were assumed in the Rayleigh-Ritz
model. Table 4.1 lists the assumed mode shapes. Each mode shape consists of x
and y components

1(x,y)=9,(x)o(y) (4.68)

Since the piezoceramics produced equal actuation strains in all directions in the
plane, it was necessary to include some chordwise dependence in y through ¢;(y).

The first five modes used were the exact cantilevered-free beam modes in
x, with no chordwise variation. Modes 6 and 7 included the addition of
asymmetric, parabolic (constant curvature) chordwise deformation to the first

— X —’Y

b 0 b b

curvature curvature

-b, b0 b, b
displacement displacement
a) Spanwise Modes 8, 9, and 10 b) Chordwise Mode 10

Figure 4.5: Assumed 'Exact Static' Mode Shapes
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two cantilevered-free bending modes. Modes 8, 9, and 10 assume the exact static

mode as predicted by the laminated plate model in x. That is, a constant
curvature, K,, is assumed at the actuator locations, and zero curvature elsewhere

(Fig. 4.5a). This assumption for curvature leads to displacements which are zero
up to a;, parabolic from a; to a;, and linear from a, to the tip of the plate. In the
chordwise direction, the three assumed mode shapes in modes 8, 9, and 10 are
constant, parabolic, and the "exact static" (Fig. 4.5b) modes. The static mode
shapes were necessary to accurately represent the discontinuities in strain and
stiffness which occur at the actuator edges, particularly in the modal stiffness and
forcing.

The total modal stiffness, mass, and forcing matrices, based on the
potential and kinetic energy expressions of Egs. 4.56 and 4.61 were defined as
follows for the isotropic plate and actuators

- D v . D vy . 4D 7. .
Kﬁ— '[A{ 117""7'"+ 227""},"'”4- 667" 7 +

ey Joxy
Dl2('y'.'" yj'n + 7"-" yj.,,) }dA

(4.69)
M =) yvmydA
Y j A ! (4.70)
Q=] M(%.*7Y.,)dA
Jj IA A( J J ) @.71)

where the bending stiffness, D, mass density, m, and actuation moment, M ,, all
are discontinuous at the edges of the actuators. The integrals over the plate and
the actuators were actually done separately. A 16-point Gaussian integration in
both x and y directions was used. The same integration scheme was used for
both the plates and actuators. The number of integration points was considered
adequate. For the integration of all continuous modes and integration over the
actuators, there was no detectable difference between the numerical and exact
integrations, where the exact results were available. Since the discontinuous
modes (@g, ¢9, 70, and ¢;p) are continuous over the actuator areas, all numerical
integrations over the actuators were nearly exact. The integration of the
discontinuous modes over the late was still highly accurate. For the curvature
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of modes ¢z, ¢9, and ¢4y, for example, the numerical integration gave a result
roughly 1.5% above the exact value.

Based on the model, the predicted first mode frequency was 48.6 Hz. The
measured frequency was 44.3 Hz. The discrepancy is due in part to the exclusion
of the two proximity targets present near the tip of the plate from the model.
The effect of these masses was to lower the natural frequency of the plate, but not
alter the mode shape.

The model was run using the small-signal dj; value for G-1195, i.e.
d3;=180pm/V. The field levels applied (<30V/mm), and the values of induced
strain (<3uS) were so low that the use of d3; was justified. Since the Rayleigh-
Ritz model was linear, it was run just once, for an actuation strain of A=1pS.
Then, the A corresponding to each applied field was used to determine actual
predicted displacement.

Table 4.2: First Mode Bending Predictions and Data (Plate)
Field (V/mm) gg{ﬁ,p(% Prlzclligzzzement[()“;g Error
2.78 .656 107 .094 +14.0%
5.57 .676 207 .188 +10.2%
8.35 .697 304 286 +6.2%
11.1 718 394 .383 +2.8%
13.9 7138 479 474 +0.9%
16.7 155 562 554 +1.3%
19.5 172 641 632 +1.4%
22.3 187 718 104 +2.0%
25.1 .801 194 769 +3.4%
27.8 815 .867 .833 +4.2%

Table 4.2 shows the electric field, damping ratio used in the model, and the
predicted and measured displacements and error. The damping ratio was
determined from the ringdown data. Even for relatively small displacements in
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the test, there was significant increase in the damping ratio over the amplitude
range tested. The increased damping is believed to be due to both aerodynamic
damping and increased damping at the clamp. The displacements shown are
normalized by plate thickness. The displacements measured at the two corners
of the plate differed by no than 1.2% over the entire field range. An average
value is reported here. There is excellent agreement between the predictions and
the measured data (Fig. 4.6).

If d*31 had been used in place of d3; the predicted amplitudes would have
been slightly (<5%) higher for the larger input fields. It is believed that the shear
parameter, I" (Section 3.4) was large enough to justify the perfect bond
assumption. It is possible that the experimental amplitudes were decreased by a
few percent because of the finite stiffness bonds.

1.0

0.8 7

0.6

04

= Prediction
o Data

0.2 7

Normalized Tip Dsiplacement (w/ts)

O-Oi ¢ 1 v ] b ]
0 10 20 30
Applied Field (V/mm)

Figure 4.6: Measured and Predicted Plate Tip Displacemernt in First Bending vs. Applied
Electric Field

4.7 CONCLUSIONS

Induced strain actuation of two-dimensional plate structures is a
generalization of induced strain actuation of one-dimensional structures. It has
been demonstrated that the uniform strain and laminated plate models
presented can be specialized to the one-dimensional uniform strain and
Bernoulli-Euler models of the previous chapter. The laminated plate model is
preferred because of its greater accuracy and wider applicability.
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In order to solve realistic problems with distributed actuation and general
boundary conditions, an energy formulation is necessary. Energy terms
representing the influence of actuation strain appear in the potential energy
expression. In an approximate Rayleigh-Ritz solution to a problem formulated
in terms of energy, the actuation strain terms are included in the modal forcing.

An experiment using one cantilevered-free-free-free plate and surface-
mounted PZT actuators was conducted. Using a ten-mode Rayleigh-Ritz model
which included several discontinuous mode shapes, the tip deflection at the first
bending resonance was predicted accurately. Approximate solution of the plate
problem for arbitrarily distributed actuation and general boundary conditions is
also possible.
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CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Mechanical models of generalized induced strain actuation of one- and
two-dimensional structures have been developed without reference to the
specific actuation strain mechanism used. The actuation strain produced by one
type of material, piezoceramics, has been characterized in greater depth.

The detailed characterization of piezoceramic actuation strain highlighted
the "nonideal" features of that type of actuation strain. However, the presence of
nonidealities does not cause piezoceramics to be viewed as actuators which are
overly difficult to use. Instead, the recognition of realistic properties will reduce
uncertainty and improve performance. The significant advantages of
piezoceramic induced strain actuation, including a high bandwidth, and other
advantages associated with all induced strain actuators, such as the development
of intelligent structures, outweigh the relatively minor nonidealities presented
here.

Based on tests conducted mainly for one type of PZT piezoceramic, several
guidelines for the use of piezoceramics were established. The property of
piezoelectricity is lost when a piezoceramic depoles. Therefore, steps can be
taken to avoid high stresses and temperatures, and fields above the coercive
field. When a piezoceramic is depoled, it is possible to repole it in situ.

The basic nonlinearity in the field-strain relation causes a strain larger

than that predicted using the single strain constant, d;;. The use of a variable
*

coefficient, d 3;, which depends on induced strain, yields a more accurate

representation.

The hysteresis present between field and strain can be reduced by careful
material selection. For vibration problems, hysteresis can be mostly eliminated
by use of charge control. In static problems, hysteresis is likely to be a greater
concern.

*
Piezoelectric creep was found to be present. As a result of creep, d ;;
varied with frequency, but only by 15% over a four-decade frequency range, and
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the variation was not detectable for frequencies over 100 Hz. The influence of
creep is most important in static problems.

All nonidealities were reduced at low strain levels, which may be typical
of stiffness-limited structures and precision actuation. A careful characterization
of piezoceramic actuators is useful, and will aid in predicted performance of a
complicated system employing piezoceramic induced stain actuation.

Three separate models of induced strain actuation for one-dimensional
structures have been developed. The models are not limited to the use of
piezoceramics as the actuation. The uniform strain model, adapted from
Crawley and de Luis (1987), was found to be accurate in description of induced
stretching, but inaccurate in description of induced bending, particularly for thin
structures. Results for the Bernoulli-Euler model for generalized cross-sections,
with embedded or surface-mounted actuators, were derived. Based on
comparison with more detailed finite element models, and experiments, the
Bernoulli-Euler bending model was judged to accurately predict extensional and
bending deformations.

A series of static and dynamic experiments on two cantilevered-free beam
specimens with surface-mounted actuators was conducted. The strain-
dependent d*31 was employed to accurately predict the induced strains and
deflections. A Rayleigh-Ritz model was used in the prediction of dynamic
amplitudes. Further, some evidence of a finite stiffness bonding layer, as well as
piezoceramic creep and hysteresis was observed.

The finite element models highlighted the presence of material shear in
the actuators and structure. The deviation in net displacement from the simple
Bernoulli-Euler model was judged to be significant for shorter, thicker actuators,
and for thick beams, where the influence of material shear was greatest. The
influence of a finite bonding layer between the actuators and structure was
characterized by a shear parameter, I. The deviation from the perfectly-bonded
model was significant for shorter actuators, and for less stiff bonding layers.
Based on these models it can be inferred that if I" is greater than 20, and the
length to thickness ratio of the actuator is greater than 100, the finite shear effects
can be ignored, and the simple Bernoulli-Euler model accurately predicts the
beam deformations.
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Two-dimensional models of induced strain actuation were developed.
The uniform strain plate model, applicable only to surface-mounted actuation,
was shown to be a generalization of the one-dimensional model. Similarly, the
laminated plate model, applicable to both surface-mounted and embedded
actuation, speciaiized to the one-dimensional Bernoulli-Euler model. The
laminated plate model is preferred for design because of its greater accuracy and
ease of use. That model is consistent with an energy formulation of the plate
problem including the effect of actuation strain. It was shown that in most
practical problems, the energy formulation is required. Exact solutions to this
problem are available only for a limited number of static problems.

An experiment was conducted to validate the basic model of two-
dimensional induced strain actuation, as well as the approximate solution of the
energy formulation. A Rayleigh-Ritz model, employing several mode shapes
discontinuous in strain, provided an accurate prediction of dynamic test results.
Based on the energy formuiation, an accurate model can be developed for
arbitrary boundary conditions and actuation distribuiion.

The use of actuation strain has been shown to be easily and accurately
analyzed with simple models. Piezoceramic actuation strain was characterized in
greater detail. A similar characterization of actuation strain due to phenomena
other than piezoelectricity could also be carried out. The generalized induced
strain actuation models developed in this study are valid for any type of
actuation strain.

Recommendations

Since only a single type of PZT piezoceramic (Piezoelectric Products G-
1195) was used in most of the experiments in this study, some characteristics
which were measured may be present to a greater or lesser extent in other
materials or compositions. Therefore, a broader, more complete study of
different piezoceramic compositions is desirable.

In this study, piezoceramic actuation strain was characterized and used.
There are several other sources of actuation strain. Detailed characterizations of
electrostrictive and magnetostrictive materials, including measurement of other
properties, such as temperature dependence and power consumption, for
comparison with the piezoceramic characterization are recommended.
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Although the nonlinearities found in piezoceramic actuation strain were
not prohibitive, their presence is in general not preferred. The guidelines for
addressing the "nonideal" properties presented in this study are only a first step.
Development of comprehensive analytical modeling and electronic hardware
strategies for linearizing piezoceramic actuation strain are therefore
recommended.

The plate models presented are based on the standard plate theory for
which analysis programs have been developed. Induced strain actuation should
be viewed as part of the design of an intelligent structure, rather than an addition
after design. Therefore, models of induced strain actuation should be integrated
with a laminated plate analysis software package for use as a design tool

Although structural control was not directly addressed in this study, it is
the objective for which induced strain actuation is designed. Further
development of control formulations and strategies which make use of the
unique properties of induced strain actuation is therefore recommended.

Finally, if induced strain actuation is integrated into structures, several
unique long-term utility issues must be addressed. These include: strength,
fatigue, and fracture of actuator materials; actuator degradation due to aging; the
influence of embedded actuators on structural integrity and longevity; and
implications of actuation performance changes for control design.
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APPENDIX A: NOTE ON PIEZOELECTRIC TERMINOLOGY

The terms piezoelectric, piezoceramic, and ferroelectric are often used
interchangeably and carelessly. Occasional confusion may result. As a means
of clarification, the material hierarchy will be briefly outlined. Most of the
terminology was developed for crystals, but the word material is inserted for
generality.

The term piezoelectric is the broadest. In the linear theory, when an
electric field is applied along certain directions in a piezoelectric material, the
material is strained by an amount proportional to the applied field. A
subgroup of piezoelectric materials are those which possess a nonvanishing
electric dipole moment per unit volume and are therefore called polar.

Polar materials are pyroelectric, because of the "appearance of an
electric charge at the surface of a polar material when uniform heating or
cooling changes the polarization."* Ferroelectrics are a subgroup of the polar
materials. They are therefore both pyroelectric and piezoelectric. A
ferroelectric material "exhibits, over some range of temperature, a
spontaneous electric polarization that can be reversed or reoriented by the
application of an electric field."* This distinguishes ferroelectrics from more
general pyroelectrics. Ferroelectrics can lose that property at a temperature
called the Curie Point.

A ferroelectric ceramic is a ferroelectric material in ceramic form. It is
an aggregate of ferroelectric single crystal grains (sometimes called
crystallites). The macroscopic properties of ceramics are significantly different
from those of the constituent crystallites.

The materials used and analyzed in this study are most accurately
termed ferroelectric ceramics. The term piezoceramic, however, is no less
general, and, because of its common usage, is used throughout the text.

* ANSI/IEEE Std 180-1986, "IEEE Standard of Definitions of Primary
Ferroelectric Terms"
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APPENDIX B: IMPEDANCE AND ELECTRICAL MODELS

Equivalent impedance and electrical circuit models of piezoelectricity
are based on electrical representation of the coupled electrical and mechanical
problems. Often, an equivalent circuit mode) is used in resonant (and
ultrasonic) applications. This type of model is consistent with the basic
piezoelectric constitutive relations. It was first suggested by Mason (1935) and
has been improved on and generalized many times since.

The origin of impedance and equivalent circuit models is best seen by a
derivation of the models directly from the constitutive relations. This
derivation makes use of the wave equation. The following is based on
Berlincourt, et al. (1964) where the derivation is carried out for other
piezoelectric coefficients (e.g. strain parallel to the applied electric field, d;;) as

well.

For the case where the concern is with strain perpendicular to the
applied field (i.e. d3;), the constitutive relations (Eq. 2.3) reduce to two

equations

Sl=sET +d E

111 31 3

T
D3= d T + :zaaE3

317 1 (B.1)
The one-dimensional wave equation is
32 u aTl
p =7 dxdxdx = Wd::cldxzdx3 82

where u is the displacement in the x; direction. From the first of Egs. B.1, the
stress may be rewritten

_ 1 31
T = S_E 1 S_EEa
11 11 (B.3)

where the strain is
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aul

5= %,
1 (B.4)

With the relations of Eqgs. B.3 and B.4, Eq. B.2 may be rewritten
2
p32u1= 1 32u1_ d, JdE
E 3.2 E

o i axl i &tf (B.5)

If it is assumed that the piezoelectric is covered by a single electrode, the
electric field does not vary over the length, that is

ok
—2_-0
o, (B.6)
so the wave equation reduces to
du, 1 Fu 0" )232ul
—_ =\v _
&*  ps; oxt ox] (B.7)

where o" is the velocity of the longitudinal traveling waves for constant
electric fieid. If the electric field is assumed to be sinusoidal in time
— Ee’™

the solution for the displacement has the form

ox ax jart
= (A Si"(u_’*"l)+ B cos(v_‘;)} J (B.9)

which requires two boundary conditions for solution. For a stress-free bar
these are

£=0 x=t (B.10)

Placing Eqs. B.8 and B.9 into B.3 and applying Eq. B.10 gives solutions for the
unknowns A and B, so the displacement u; is
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e (m1)+(°°8(055)"1) ()
u = s1n COS| —%~
- L E sin(v%) ) (B.11)

v
In order to write the equivalent electrical impedance (or its inverse, the
admittance) it is necessary to write expressions for the current and voltage.
The admittance is then

w|{ Ddx
—L—L_ J.O 3
Z V- ¢
Eadz
0 (B.12)

where w is the width of the bar and the electric displacement is

l

| ((5)-)
ax v . wx Jjot
1 33(1— K:al) + gk, cos(vE )— w7y sm(v—E) JEoe
s1n(—E—)
v
(B.13)
where the electromechanical coupling coefficient is defined as
2
2 _ d31
31 E T
$11%a (B.14)

The admittance may then be simplified to

|

1. jwﬂv—erl(l k31)+k

Z

)
J (B.15)

For low frequencies (w<<I/vF) the second term can be ignored, and the
impedance is

. T . .
Joe A jaC (B.16)
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which is just the equivalent (stress-free) impedance of a capacitor.

The basic equivalent circuit for a piezoelectric is apparent from the
equations above. By solving for the unknowns A and B in Eq. B.9 in terms of
the velocities, u, and using Eq. B.1, the relevant mechanical and electrical
quantities at the three (one electrical and two mechanical) terminal ports can
be determined, for constant stress and constant field.

The equivalent circuit usually presented (first by Mason, 1935) is valid
for an unloaded piezoelectric near a mechanical resonance. where N is the
"turns ratio" of the electrical-to-mechanical transformer, and C,,, L,, and R,,,
represent the electrical equivalent of the mechanical stiffness, mass, and
damping. Flectrical and mechanical boundary conditions can be applied at
the two sides of the circuit. An alternate "lumped parameter equivalent
circuit" does not include a transformer (Fig. B.2, IEEE Std. 176-1978).
Additional RLC branches may be included for representation of closely spaced
modes.

9
0
% =

(o]

(o]

1: N

Figure B.1: Equivalent Circuit Model of Piezoelectric with Electromechanical
Transformer Valid Near an Isolated Mechanical Resonance
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C1
RS c
L1
o
Figure B.2: Equivalent Circuit Model of Piezoelectric Valid Near an Isolated Mechanical
Resonance

An even simpler electrical representation eliminates the mechanical
part of the circuit. It was shown above (Eq. B.16) that this model is valid only
at low frequencies.

o=

P —

Figure B.3: Pure Capacitance Low Frequency Model of a Piezoelectric

This representation was used for prediction of passive damping of
beams of the type in Section 3.6 when the piezoceramics provided a path for
conversion from mechanical to electrical energy. When a resistor is shunted
across the piezoelectric in Fig. B.4, energy may be dissipated in that resistor.
To first order, when the resistance of the shunting resistor is equivalent to the
impedance of the piezoceramic (Eq. B.16), the impedances are "matched" and
the maximum energy is dissipated. Hagood and von Flotow (1989) contains a
detailed analysis of both resistor and resistor plus inductor shunted structures
utilizing piezoceramics.

150




APPENDIX C: PIEZOELECTRIC CONSTITUTIVE RELATIONS

In this appendix, the full tensor piezoelectric constitutive relations will
be presented. The relations between mechanical, dielectric, and piezoelectric
coefficients will be given. An example of the thermodynamic state form of
the relations will be shown, and the importance of electrical and mechanical
boundary conditions will be illustrated. In that illustration, the
electromechanical coupling coefficient will be defined.

Piezoelectric Constitutive Relations

The full tensor piezoelectric constitutive relations can be written in the
following four ways

T
D,=d,T, +¢,E,
— oE
S; = s.u_uTu + dw E, C.1)
D,=e,S, +¢€,E,
— oE _ ;
T, = Cn S, €y E, C.2)
E=-g, T, +pB.D
i =~ Bl y +ﬁu k
Sy' = Sgu Tu + 8y Dk (C.3)
S
E =-h,S, +B,D,
— D
T, =cy Sy — hyyD, C4)
where the coefficients are
E Electric field D Electric displacement
S Mechanical strain T Mechanical stress
c Elastic stiffness s Elastic compliance
€ Permittivity B Impermittivity

(dielectric coefficient)
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d,e,g,h Piezoelectric coefficients
and the superscripts refer to electrical and mechanical boundary conditions

() constant electric field (closed or short circuit)
()P constant electric displacement (open circuit)
()T constant stress (free)

()°  constant strain (clamped)

The relations used in Chapter 2 are the contracted notation for (C.1) above.
That is

T
D,=dT, + ¢, E,

— oE
S, = S; TJ. + db.Ek

(C5)

The elastic, dielectric, and piezoelectric coefficients are not all defined
independently. The definitions are given by the following relations

Cr Ser= O chsp= 06,

ﬁi“‘ﬁ =9 ﬁieﬁ =9

cg = ctEq + ekphkq slt:: = sf!l ~a,, 8,

g =& +dye, ﬁ:=ﬂ5—g,.th,

€p= di;cfn h,p= g.-ch

8™ ﬁ:;dkp dtb = EiTI‘c Ewp (C.6)

where 6 is the Kroenecker delta.
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Thermodynamic State Representation

The thermodynamic formulation of (C.5) is written

D= (&)ET + (&)T E

or )
s (&) 7 +(5&) o

The definition of 4 as the change in electric displacement with stress at
constant field or the change in strain with field at constant stress is apparent
in the way the relations are written. It is interesting to note that elastic
modulus has the logical definition of change in strain per change in stress (for
constant field here) when considered this way. The complete set of elastic,
dielectric, and piezoelectric constants have similarly sensible definitions.

Electrical and Mechanical Boundary Conditions and the
Electromechanical Coupling Coefficient

The relations between open-circuit and closed-circuit mechanical
coefficients, and free and clamped electrical coefficients will be illustrated for
actuation using d3;. The basic relations (C.5) for field applied in the x;
direction inducing strain in the x; direction are

D dT+£E

31 1

S = suTl + d E (C.8)

If E; is eliminated from the upper equation and inserted in the lower one

dal
S = sllTl + T (Da 31 1)

3
dz
31

11[1 - ET slz«i }‘1 + g31D3

The transverse electromechanical coupling factor k3;, for a piezoelectric
material is defined as

(C.9)
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E
3 °n (C.10)

In a similar manner, the longitudinal and shear coupling coefficients are

3 3 (C.11)

15 T E
\/ € Sgs (C.12)

Making use of Eq. C.10, the strain can be written

D
Sl = sllTl + g31D3

(C.13)

where the quantity multiplying the stress, T, is the open circuit compliance,
sP, which is related to the short-circuit compliance by

D _ E 2
S = su(l k:u

(C.14)
In a similar fashion it can -2 shown that
cn=ch(1-k,) (C.15)
& =g (i-k, (C.16)
A =5 (1-k;) c17

The value for k is different in each direction and also varies with frequency.
A typical value for k3;, which couples electrical energy in the x; direction to
inplane mechanical energy is 0.3. This means, for example, that a
piezoceramic is roughly 10% stiffer when its electrodes are not electrically
connected, compared to when they are short-circuited.
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APPENDIX D: MANUFACTURER'S SPECIFICATIONS FOR G-1195

Free dielectric constants

Dielectric loss tangent
Density
Curie Temperature

Piezoelectric strain constants

Young's moduli

Tensile strength
Compressive strength

Coercive Field (60 Hz)

&, /g,

1700
11 18 1700
tan(é) 015
p 7650 kg/m’
T, 360 C
d;; 360 pm/V
d;, -180 pm/V
dys 540 pm/V
s 49 GPa
¢, 63 GPa
Css 22 GPa
F, 77 MPa
. > 500 MPa
E, 1200 V/mm
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APPENDIX E: EXACT CANTILEVERED-FREE BEAM MODE SHAPES

The first five exact cantilevered-free beam modes were used in
Rayleigh-Ritz analyses in Chapters 3 and 4. The mode shapes are represented
analytically by

¢(%) = cosh(A,7) —cos(A,1) - w(sinh(4,1) —sin(A1)) (g

where the coefficients A; and ; are given by (Blevins, 1979)

Table E.1: Cantilevered-Free
Mode Shape Parameters
Mode
Number A"' Hi
1 1.87510407 0.734095514
2 4.69409113 1.018467319
3 7.85475744 0.999224497
4 10.99554073 1.000033553
5 14.13716839 | 0.999998550
i>5 | (2 -0% | =10

The natural frequencies (in Hertz) are

2

A [EI

onl, ¥ ™ (E2)

where m is the mass per unit length, E is the Young's modulus, I is the area
moment of inertia of the beam about its neutral axis, and L is the length of
the beam.
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