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ABSTRACT -

Excitation control systems are an important source of
dynamics in power systems so their modeling is critical for the
understanding of power system behavior and control. Modeling
techniques are developed here for exciter-alternators with
output rectifiers, These are feedback systems of nonlinear
characteristics. The modeling technigues described here are
specifically applied to the Alterrex® excitation control
system.. The mathematical model developed for this system is of
such a nature as to include some of the effects neglected in
past models of this device. The form of this model has been
chosen so that there is a correspondence between the model
structure and the actual device and so that model parameters
can be obtained from a knowledge of the parameters and settings
of the physical system. The model developed in this thesis is
complex and represents the properties of the Alterrex
excitation control system in considerable detail. The degree
of complexity is greater than that which would normally be
considered necessary for a transient or dynamic stability
study. However, the object of this thesis is to develop an
accurate model directly from the physical device. This model
can then be used to study Alterrex performance in detail or as
a basis for exploring simpler, lower order models.

Thesis Supervisor: Dr. Stephen D. Umans
Title: Research Associate

* Registereu trademark of the Generel Electric Co.



Acknowledgement

First I would like to thank Dr, S, D, Umans for suggesting
‘the research topic, Many of the ideas discussed in this thesis
have arisen out of discussions with him and without his
criticisms and suggestions this thesis would be of greatly
reduced value, In addition I would also like to thank the
members of the Electric Power System Engineering Laboratory at
the Massachusetts Institute of Technology for their willingness
to help and make useful suggestions, I am particularly
grateful to Karl Wyatt, Patrick Usoro and Art Radun.

I am grateful to the Bell Telephone Laboratories for
allowing me to participate in the One Year On Campus program
at the Massachusetts Institute of Tecﬁnolcgy. I am also
grateful to the American Electric Power Co. for providing the

necessary data and information for this thesis,



To My Parents



TABLE OF CONTENTS

Page
List of Figures . . . . . . . « .« . o . 000w e .. 8
List of Tabdes .+ 3 3+ & & s w % % & & & 8 3 § ® ® & & % 10
Chapter I: INTRODUCTION
1.1 Basic Background . . . . . . + v + 4 4 4 4 e . . . 11
1.1.1 Power System Stability and Excitation
Control SYystems ; = « « % % & s & & & & & o 11
1.1.2 I.E.E.E. Models for Excitation Control
Systems . . . . . . . 0 e e e e e e e 14
1.2 Purpose of this Thesis . . . . . . . . « « « . . . 17
1.2.1 The New Approach . . . . . . . « « « « . . 17
1.2.2 The Alterrex Excitation Control System . . 18
1.2.3 oOrganization and Scope of the Thesis . . . a2
Chapter II: MODEL OF SEPARATELY=EXCITED EXCITER-
ALTERNATOR WITH OUTPUT RECTIFIER
2. THETOHUBELON « o o » » 9w @ & § 3 ® @ ® ® 4§ & & 24
2.2 Derivation of the Model Equations . . . . . . . . 25
2.3 Solution Technigues . . . . v v v v « v v v v . . 36
2.3.1 Steady - State Solution . . . . . . . . . . 36
2.3.2 Transient Solution . . . . . . . . . . .. 38
2.4 Solution Example . . . . . . . « .+ v 4 e ou ... 43
2.5 SUMMATY . . . 4 e e e e e e e i ¥ 49

Chapter III: MODEL OF SELF-EXCITED EXCITER-ALTERNATOR
WITH OUTPUT RECTIFIER

5.4 TREPDHUBRIERS + , & 4 4 © & v ® ® & § 3 b 5 & ¥ & & 56



.

- F

4

5

Modifications to Exciter-Alternator Model of

Chapter II to Include Effects of Self Excitation,

Saturation and the Current Boost System in the
Model Equations . . . . . .+« 4 4 0 e e e e e .

Solution Technigues . . . . . . . « « « « + « .
3«3:1 Stesdy - State Salutlon . . & &« » « « = &
3.3.2 Transient Solution . . . . .

Solution Example

SUNMEBTY & 5 s @« ® «  ® s & % & @

Chapter IV: MODEL FOR THE CONTROL SYSTEM

4.
4.

4.

4.

2
.3
4

1

6

7

IDETOAUEBELION & & « « w = ¢ 4+ & @ = @ w

Flring Angle System . & & & & & % © @ w % x &
Automatic Regulator . . . . . . . .+ .+ o o o . .
Active - Reactive Current Compensator . . . . .
Limiting Systems . . . . . . . . . . .

4.5.1 The Current Limit System . . . . . .
4.5.2 Underexcited Reactive Ampere Limit System
4.5.3 The Exciter Minimum Voltage Limit System
4.5.4 Phase Limit System . . . . . .

Manual Regulator . . . . . . . . .+ . .+ . .

Equations for the Control System Model . .

Chapter V: COMPLETE MODEL OF THE ALTERREX EXCITATION

CONTROL SYSTEM

B
5

1

2

Inkrodoetlon o « & 2 % & & % 4 ¥ 5 w & #

Governing Equations for the Complete Model . .

5.2.1 Governing Equations for the Self-Excited
Exciter-Alternator with Main Generator
Connected to an Infinite Bus . . .

5.2.2 The Control System Eguations . . . . . .

Page

58
72
72
76
83
88

96

99
103
109
110
113
118
123
125
126
128

141
143

143
143



5.3 Solution Technique for the Self-Excited Exciter-
Alternator with Main Generator and Automatic
Regulator . . . .« « « « « « 4 4 4 e . e e

5.4 Demonstration of the Model for the Self-Excited
Exciter-Alternator with Main Generator and
Automatic Regulator . . . . . . . .

5.4.1 Tests on the Model

5.4.2 Comparison with the I.E.E.E. Type I Model

Chapter VI: CONCLUSION AND SUGGESTED FURTHER WORK

6.1 Summary and Conclusions . . . . . . .
6.2 Suggestions for Further Work

Appendix A: DERIVATION OF THE EQUATIONS USED 1IN
CHAPTER T1I

A.l1 Steady - State Equations . . . . . . . . .
A.2 Auxiliary Equations . . . . . ¢ ¢ ¢ ¢ o o 4 e
A.3 Linearized Equations about Equilibrium Point

A.4 Linearization of Equations (2.1) through (2 18)
(without Damper Windinmngs) . . . . . . . .

Appendix B: DERIVATION OF THE EQUATIONS USED 1IN
CHAPTER III

B.1 Current Boost System . . . . . .
B.2 Steady - State Equations . . . . . . . . . .
B.3 Auxiliary Equations

B.4 Linearization of the Governing Equations (without

Damper Windings, Potential Transformer and Current

Boost System) . . & & 5 % % & & & & ¥

Appendix C: DATA AND EXPRESSIONS USED IN CHAPTER V

C.,1 Tables . w % &« 5 5 % &# @ & % @ 5% & s % % w o

C.2 variables Cj through rg for the Auxlllary
Equations used in Chapter Vv . . . . . .

Bibliography . . .+ « « « ¢ « ¢« o o o & « o

Page

144

151
151
161

166
167

169
172
174

175

180

194
201

202

207

208
212



List of Figures

Figures Page
1.1 Block Diagram of Generating uUnit . . . . . . . 13
1.2 Block Diagram of Excitation Control System . . 13
1.3 Block Diagram of IEEE Type I Model . . . . . . 16
1.4 Schematic of Alterrex System . . . . . . . . . 19
1:5 Block Diagram of Control System . . . . . . . 21
Z,1 Schematic of Separately-Excited

Exciter-BAlternator « + 5 o o = 5 = « § & 5 5 & 26
2+ Schematic Showing the 3-Phase Rectifier

Waveforms forB =0 andB=B, . . . . ... .. 28
2.3 Computer Plot of the Load Current iL 45
2.4 Computer Plot of the Load Current iL L7
2.5 Flowchart for the Method Described in Seetion 2.3.2 55
3.1 Schematic of self-excited exciter-alternator, . 57
3.2 Phasor Diagram for Self-Excited

Exclter-Alterpator « « s & s # 5 5 & & 4 & & 3 65
3.3 Schematic of equivalent circuit for the

Current Boost system in Mode II of

Operation . . . . .+ « ¢ ¢ 0 e e e e e e e e 68
3.4 Sketch of Saturatien Curve for current

TTansfOTmMET o & ¢ & « & « ¢ &« « « o 5 « = s = 68
3.5 Sketch of Exciter-Alternator and Load

Characteristics . . . . . . . . . . . . . . . 4
3.6 Computer Plot of the Load Current iL 86
3.7 Computer Plot of the Load Current iL 89
3.8 Flowchart for the Method Described in

SBeLIen 3.3.7 5 & 5o ow ow o8 5 % o v B & 95
4.1 Block Diagram of Control System . . . . . . . 97

Block Diagram of Firing Angle System . . . . . 100

Automatic Regulator . . . . . . . . . . . . . 104
4.4 Active Reactive Current Compensator . . . . . 112
4.5 Block Diagram Representing Functions

h L

C and C S o o 1w .

. . e s 8 o owm E W 115
4.6 Block Diagram of Current Limi

t System . . . . 117



Figures Page

4.7 Graphical Representation forU.R.A.L.

Limiting Fumetlon & « « « ¢ & 5 o & 5 5 & = . 121
4.8 Under Excited Reactive Ampere Limit

System . . . . . . 4 b 0 e e e e e e e e e 122
4.9 Exciter minimum voltage Limit System . . . . . 124
4.10 Block Diagram for Phaselimit System . . . . . 127
.11 Block Diagram of Manual Regulator . . . . . . 129
4.12 Block Diagram of Control System . . . . . . . 151
5.1 Schematic of the Model for Alterrex

Excitation Control System . . . . . . . . . . 142
5.7 Computer Plot of the Generator Terminal

Voltage for a Step Change in a; . . . . . .. 154
5.3 Computer Plot of the Control Input o for a

Step Change ina; . . .. .. s B @ B8 L53
5.4 Computer Plot of the Exc1ter-Alternator

Terminal Voltage for a Step Change in a, . . . 155
545 Computer Plot of Signal Vag for a Step

Changedina; . . . . . . 7. . ... ... .. 156
5.6 Computer Plot of Nonlinear Rate Feedback

STAPBl Vupn « 5 4 s 2w B ow o 156
5.7 Computer Plot of Generator Terminal voltage

for Fault-Test without Excitation Control

System . . . . . . . . . e e e e e e e 158
5.8 Computer Plot of Load Angle for Fault-Test

without Excitation Control System . . . . . . 152
5.9 Computer Plot of Generator Terminal voltage

for Fault-Test with Excitation Control

SYysbem » o« s 5 v » % » 8 W o oW E owm & 3 B ¥ @ 159
5.10 Computer Plot of Load Angle for Fault-Test

with Excitation Control System . . . . . . . . 159
5.11 Computer Plot of Generator Field Current for

Fault-Test with Excitation Control System . . 160
5.12 Computer Plot of Generator Field Current for

Fault-Test without Excitation Control System . 160
Bl Computer Plot of Generator Terminal Voltage

for Step-Test using Type I Model . . . . . . . 164
5.14 Computer Plot of Generator Terminal Voltage

for Fault-Test using Type I Model . . . . . . 165

5:15 Computer Plot of Load Angle for Fault-Test
using Type I Model . . . . . . . . « « « . . . 165



10

Figures Page

- T« Steady-State Phasor Diagram for the

Exciter-Altermator . . . . . . .+ .« .+ . o« .« . . 170
B.1 Schematic of Current Boost System . . . . . . 181

Schematic of Current Boost System

with Time varying Current Sources . . . . . . 183
B.3 Sketch of the Current Waveforms for the

Current Boost System . . . . . . . . . . . 184
B.4 Steady-State Phasor Diagram for Self-Excited

Excitar-Alternator . « + & 5 % % & s 8 5 8 @ 197

List of Tables

2wl Parameters for Solution Example of Section 2.4 L8
- System variables, Input Variables, Parameters 52
Sl Parameters, Steady-State Vvalues and Input

for the solution Example of Section 3.4 . . . 84
3.2 System variables, Input Variables and

Parameters . . . . . . « « ¢ ¢ o 0 0 0. . 93
4.1 Control System Parameters . . . . . « « « .+ . 137
5.1 Parameters for the IEEE Type I Model . . . . . 163
C.1 Parameters for the Main Generator . . . . . . 207
C.2 Parameters for Step-Test . . . . . . . .« . . . 208
e Parameters for Fault-Test . . . . . . . ¢« .« . 209



11

Chapter I: INTRODUCTION

1.1 Basic Background

1.1.1 Power System Stability and Excitation Control Systems

In a world more dependent on electric energy than ever,
the reliability of power systems has become one of the major
concerns of utilities. As far as reliability is concerned the
stability of electric power systems is the most important
criterion since a system cannot operate effectively under
unstable conditions. 1In particular the behavior of the
excitation control system can aid stability by regulating the
generator terminal voltage as well as other parameters of the
system. With the arrival of new technologies, excitation
control systems have become faster and more reliable, thus
improving the stability of the system. One type of excitation
control system in current use employs an exciter-alternator
with output rectifier . Modeling of the excitation control
system is of vital importance for the understanding of the
stability problem in a power system.

Stability in a power system is determined by its
transient and dynamic characteristics. Dynamic characteristics
describe the behavior of the power system during normal
operation. 1In this mode of operation small changes in load
change the operating conditions of the generating unit.
Transient characteristics describe the behavior of a power

system after a major change has occurred. Major changes
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or disturbances occur because of faults in the lines and
opening of breakers. These abrupt changes create new
conditions in the power system to which it must adjust.
Instability can be observed in a power system by observing the
phase angles of the generators. Oscillations of these angles
or the loss of synchronism in an extreme case is the sign of
instability. Also instability can be observed by observing the
abnormal behavior of other parameters such as voltages,
currents or output power.

The generating unit serves to transform the fuel into
useful electric energy. The three fundamental parts of a
generating system are the boiler, the turbine and the generator
with their respective control mechanisms (see Figure 1.1). The
excitation control system is designed to control the terminal
voltage of the main generator. This is achieved because the
excitation control system provides power to the field winding
of the main generator.

A simplified picture of an excitation control system is
given in Figure 1.2. The regulator is designed to regulate
terminal voltage. Regulation of terminal voltage is not
sufficient to guarantee stability. 1In fact, for very high
values of regulator gain the regulator might actually result in
instability. This instability could occur in the dynamic range
of operation when only small disturbances are involved and also
as a result of a transient disturbance following which growing
oscillation might occur as the result of the regulator effect.

In order to avoid this problem, lower regulator gain might be
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used but also the use of additional regqulating signals is a
good measure. A signal often used is the exciter generator
output voltage in order to introduce a rate feedback signal in
the system. This signal is indicated as "rate feedback
signal" on Figure 1.2. 1In general, we want a fast response for
the regulator system since this is useful when large
disturbances are involved and it becomes necessary to react
against the decay of flux linkage by increasing the field
current in the main generator.

In order to find out how a power system will respond in
steady-state or transient conditions, computer simulations are
done. Since the behavior of the generating unit against the
power system and against other generating units is the
principal factor that determines stable operation, modeling of
this piece of the power system is of great interest for
stability study purposes. More detailed information on this

subject can be found in Reference [1] and [2].

1.1.2 I.E.E.E. Models for Excitation Systems

Present day models [3] of excitation control systems
were developed assuming very simple structures for the
systems. Hence, when applied to complex modern excitation
control systems they may become a black-box type of
representation with little correlation between the parameters
of the model and the actual physical device. This lack of

similarity manifests itself in the difficulty of finding
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parameters for the model appropriate for representing the
actual system. These models are given in Reference [3].

A typical model proposed by the I.E.E.E. committee in
Reference [3] is given in Figure 1.3. This is the Type I model
which is used to model excitation control systems such as the
Alterrex excitation control system. The block diagram with
time constant Ts represents the regulator's input filter.

The main regulator transfer function is represented as a gain
Ky, and a time constant T,. Following this, the maximum and
minimum limits of the regulator are imposed so that large input
error signals cannot produce a regulator output which exceeds
practical limits. The exciter-alternator is modeled by the
time constant Te, the constant Ke and the feedback loop

Se which represents the exciter's magnetic saturation. The
major loop damping is provided by the feedback transfer
function with scale factor Ke and time constant T from
exciter output Efg to the first summing point. The signal
coming from the power system stabilizer into the regulator
would be considered under the heading of "other signals" which
are added to one of the summing points. A power stabilizing
signal is usually derived from rotor speed. One problem with
this model is that there is no clear correlation between the
parameters of the model and the parameters of the real system.

This is particularly true for the exciter-alternator. There

are also other effects that this model doesn't represent.
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1.2 Purpose of this Thesis

1.2.1 The New Approach

The purpose of thiswork was to develop new modeling
techniques for modern excitation control systems. 1In
developing these models extremely simplified functional
black-box types of relationships were avoided in favor of a
representation based on the internal physical properties of the
devices in guestion. Thus, the end result was a model in which
a correspondence can be estabished between the important
parameters of the real system and those of the model.

Creating a generalized technigue for every possible
excitation control system would had meant a monumental if not
impossible job. The approach chosen in this thesis is to
concentrate on the modeling of a specific system: The
Alterrex excitation control system. The Alterrex excitation
control system possesses the characteristic typical to most
modern excitation control systems. Therefore the technigues
developed here could be utilized with modifications for other
modern excitation control systems.

Modern excitation control system is understood in this
thesis tomen systems that provide power to the field winding of

the main generator by means of an ac power source with output

* Registered trademark of the General Electric Co.
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rectifier. Sometimes the ac power source is obtained from the
same output voltage of the main generator as in the case of the
Generrex* system.

The model developed in this thesis is complex and
represents the properties of the Alterrex excitation control
system in considerable detail. The degree of complexity is
greater than that which would normally be considered necessary
for a transient or dynamic stability study. However, the
object of this thesis is to develop an accurate model directly
from the physical device. This model can then be used to study
Alterrex performance in detail or as a basis for exploring

simpler, lower order models.

1.2.2 The Alterrex Excitation Control System

The Alterrex excitation control system is shown
schematically in Figure 1.4. Notice that the output of the
exciter=alternator is rectified by the output rectifier feeding
the field winding of the main generator. The exciter-alternator
itself is self=excited by using a potential transformer
connected from its output voltage to an SCR controlled 3 phase
rectifier. There is also another excitation loop consisting of
the current transformers with the current boost bridge. During
normal conditions the power input to the field winding comes

from the SCR bridge and the diode bridge is forward biased

* Registered trademark of the General Electric Co.
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without contributing any current to the exciter-alternator. 1In
case the voltage of the exciter-alternator goes low the diode
bridge then supplies power to the exciter-alternator's field
winding.

In order to obtain this type of behavior the turns
ratios of the potential and current transformers are properly
adjusted. The saturation characteristics of the current
transformers are also important.

The control system is shown in Figure 1.4 as a single
block. Figure 1.5 shows a more detailed version of the
different parts of the control system in block diagram form.
The control system is divided in several subsystems identified
in Figure 1.5. These are the firing angle system, the
automatic regulator, the active-reactive current compensator
(A.R.C.C.), the current limit system (C.L.S.), the exciter
minimum voltage limit system (E.M.V.L.S.), the phase limit
system (P.L.S.), the underexcited reactive ampere limit system
(U.R.A.L.S.) and the manual regulator. Switch s is either in
position 1 or 2 depending on whether the system is controlled
from the manual regulator or the automatic regulator. The
control system inputs are the exciter and generator currents

(iI,ig) and voltages (ve,v ). The output from the

g

regulator is a continuous signal v This continuous signal

R*
is the input to the firing angle system which generates the

gate signals that are used to fire the SCR's of the self-
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excited exciter-alternator. For more detailed information
about this system the reader is referred to the Alterrex manual

distributed by the General Electric Co. [4].

1.2.3 o0Organization and Scope of the Thesis

The thesis has been organized into 6 Chapters.

Chapter II through V can be considered the main body of the
thesis. Chapter VI consists of the conclusions and suggestions
for further work. 1In Chapter II a basic problem consisting of
an exciter-alternator with output rectifier and powered by a dc
source is treated. This problem allow us to introduce the
model for the exciter-alternator with output rectifier without
having to deal with the saturation and self-excitation effects
of the exciter-alternator. Chapter III then extends the
techniques developed in Chapter II to include the effects of
magnetic saturation and self-excitation thus obtaining a model
more directly related to the Alterrex excitation control
system. The current boost system is also modeled in

Chapter III.

In Chapter IV the control system is modeled. Chapter V
puts together the information in the 3 previous chapters and
adds the main generator equations in order to obtain the
complete final model of the Alterrex excitation control
system. The model is simulated without the current boost

system and the limiting systems. The results are in
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agreement with expected behavior for this system. The results
are also compared with results obtained using the I.E.E.E.
Type I model.

Methods are developed to obtained the solution for the
equations of the model. Because the model is nonlinear the
method is based on iterative numerical techniques which could
be implemented in a digital computer. The results obtained
using this method in Chapters II and III are compared to
results using a linearized perturbation analysis for the case
where the system is disturbed with small perturbations about
the steady state equilibrium points. This is done as an
approximate way of determining whether the numerical method
used is giving meaningful answers.

As a final comment it must be pointed out that this
model has been developed having in mind the effect of
excitation control systems on the dynamic behavior of the main
generator. In doing this certain effects of little
significance for dynamic analysis such as harmonic components
in the system variables have been neglected. Therefore the
user of this model should understand its limitations before
using it for purposes other than those specified in this

thesis.
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Chapter II: MODEL OF SEPARATELY-EXCITED EXCITER-ALTERNATOR

WITH OUTPUT RECTIFIER

2.1 1Introduction

In this chapter the case of a single synchronous generator
with output rectifier and with a highly inductive load is
analyzed. This system is analyzed because understanding of
this particularAproblem helps to understand the
exciter-alternator problem. The analogy between the ac
synchronous generator with rectifier and inductive load and the
exciter-alternator with rectifier and feeding the field winding
of the main generator is based on the fact that the field
winding of the main generator is also highly inductive.

However the exciter-alternator with rectifier will also be
affected by the back emf produced by the changes in the main
synchronous generator armature flux. This effect is equivalent
to having a voltage source in series with an inductor at the
load of the exciter-alternator. 1In this chapter the back emf
effect at the load of the exciter-alternator is ignored. This
effect will be included in the complete model presented in
Chapter V. Except for this, both systems are equivalent and
they will be referred to commonly as the exciter-alternator
with output rectifier. The problem of the exciter-alternator
with output rectifier can be subdivided into two basic

problems; The problem where the exciter-alternator is
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separately-excited and the problem where it is selfeexcited.
In this chapter the former problem will be treated. The latter

problem will be treated in Chapter III.

2.2 Derivation oftieModel Equations

The schematic of the separately-excited exciter-alternator
with output rectifier is shown in Figure 2.1. The field
winding of the exciter-alternator is separately-excited with a
dec voltage source Vee- This problem is not as trivial as it
might seem since the use of a rectifier at the output gives
rise to complications not encountered in the classical problem
involving a synchronous machine with an ac load. For example
in the present problem harmonics are present in the line

currents ia’ ib, i due to the phase controlled rectifier.

&
The phase controlled rectifier is an important part of
this system, therefore it seems convenient to summarize briefly

the behavior of the rectifier before continuing to solve the
problem. Figure 2.2 shows a sketch of the waveforms of the
output voltage across the bridge, the current through the load
and the current through phase a, vL(t), iL(t) and ia(t)
respectively. It also shows the average components of iL(t)
and vL(t), i.e. iL(t)(dc) respectively. The other phase
currents ib and ic will be similar to ia(t) but shifted

by 120 degrees and 240 degrees respectively. Two sets of

figures are shown, one showing the waveforms obtained with the
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firing angle R=0 degrees and the other at some B:BO. The
waveforms for B=0 are identical to those which one would obtain
using a 3 phase diode bridge. Notice that the phase current
ia(t) goes from zero to I ,, the magnitude of iL(dc)(t)'
instantaneously, i.e. the current commutates instantly from one
leg of the bridge to another. This is a consequence of the
assumption that the terminal voltages behave as sinusoidal
voltage sources with no impedance. 1In the real case, the
reactance of the alternator will not allow the phase currents
to jump instantaneously in time and instead the current will go

from zero to I in a8 finite interval of time called the

LC
commutation interval. This effect has been neglected in the
model presented in this thesis.

Notice also that the current iL(t) appears as having
very little ripple. This is consistent with the assumption
that the inductive nature of the load will filter the harmonics
of the current significantly. 1In practice there exists a
ripple, therefore iL(dc)(t) represents the average of dc
component of the instantaneous current iL(t). while

)(t) and v )(t) represent average values their

1 (de L(dc
magnitudes may change with time and therefore they are
considered functions of time. Figure 2.2 represents the
variables in question for the particular case where the system
has reached steady-state or equilibrium and iL(dc)(t) and
vL(dC)(t) are constants,

In order to understand the behavior of the separately-

excited exciter-alternator it is convenient to approach the
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Figure 2,2 Schematic showing the 3-phase rectifier
waveforms for 8= 0andg =@,
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problem heuristically. This approach will suggest the
mathematical model to be used for this system. First consider
the assumption that the terminal voltages form a balanced
sinusoidal set. This assumption neglects the effect of
armature current harmonics and dc currents on the armature
fluxes and voltages. Similarly, the effects of harmonics and
ripple in the field current will be ignored,T hese approximations
will be applied to the exciter-alternator throughout this
analysis, permitting the exciter-alternator to be represented
in standard d-ag transformation representation. Since the
harmonic components do not play a significant role in the
transfer of energy from the exciter-alternator to the main
generator field winding, these approximations are felt to be
justified. 1In a consistent fashion, the load ripple will be
ignored; the load will be modeled in terms of iL(dc)(t) and
VL(dc)(t)' From this point on these two variables will be
referred to as iL(t) and vL(t).

The d-a transformations transform armature quantities
into a reference frame rotating with the rotor. This frame of
reference consists of two orthogonal axes: the direct (d) and
the quadrature (a) axes. For more detailed information on d-a
transformations consult Reference [1].

In conclusion it is possible to construct a mathematical
model that represents the effect of the dc components of the
variables in the rotor circuits and the fundamental components
of the ac variables on the armature circuits. This then

ignores all the harmonics of the system variables, or more
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precisely all the harmonics due to the rectifier at the output
of the machine. During transient conditions the ac variables
are amplitude modulated due to changes in magnitude of the
rotor and armature currents and fregquency modulated due to
changes in rotor speed. The freaquency components arising due
to these effects are independent of rectifier action and are

accounted for in this model.

The following equations in terms of the direct and
quadrature axis variables will be used as the model for the
synchronous machine of the separately=excited
exciter-alternator. Adkins [1] is given as a reference for
these equations. The d-axis variables are indicated by the
subscript d, g-axis variables by the subscript o and the
subscript e stands for exciter-alternator quantities. The
subscript k is used to indicate damper winding variables and f

is used to indicate field winding variables.

- vesin 58 (2.1)

Vge = VeCOS Ge (2.2)
variable L represents the amplitude of the exciter-

alternator terminal voltage in per unit. Vvariabhle 6e

represents the phase angle between the terminal voltage of the

exciter-alternator and the guadrature axis. This variable so
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familiar in standard two - reaction theory has here an
interesting meaning. 1In standard two - reaction theory this
variable is often measured with respect the infinite bus which
is the absolute electrical frame of reference, i.e. it is
oscillating at constant nominal freguency. In the present case
however there is no easily identifiable infinite bus, rather
the reference frame of the fundamental component of
exciter-alternator terminal voltage is used. Eqguations (2.1)
and (2.2) are used to transform the terminal voltage into two
fictitious components of voltage on the direct and quadrature

axes. These voltages are ¥ie and Vo repsectively.

s ilsin(rse + el) (2.3)

[
1

ge = ijc0s(8, + ;) (2.4)

Variable il is used to represent the amplitude of the
fundamental component of exciter-alternator current in per
unit. Vvariable @l is used to represent the phase angle

between the fundamental exciter-alternator terminal current and
exciter-alternator terminal voltage. Eguations (2.3) and (2.4)
are used to transform the terminal current into two fictitious
components of current along the direct and guadrature axes,

ide and i respectively.

ae
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The different components of flux linkages on the direct

and quadrature axes can be represented as follows:

Ade = - Xge 1de * Xnde 1fe * Xmde ikde (2.5)
Mede = = Xmde lde * Xmde ire * Xkde lkde (2.6)
Are = Xpre lre = Xmde lde * Xmde lkde (2.7)
‘ge = - Xge lge * Xmge ikae (2.8)
Akqe = = Xnge iqe + Xkge ikqe (2.9)

Notice that the model employed here represents the exciter-
alternator by one damper winding on each rotor axis. The
symbol X is used to represent linkage flux and X is used to
represent inductances or reactances in per unit. The subscript
m used on the inductances, is used to indicate mutual
inductances. Eaguations (2.5) through (2.9) are used to define
per unit flux linkages on the d-q axis in terms of the various
per unit rotor currents. Notice that the generator convention
has been chosen for armature currents i and i

de ae’
armature currents are defined as flowing out of the armature

positive

terminals, producing a demagnitizing effect on the exciter-
alternator fluxes.

Fluxes lde and AQ linking the transformed armature

e
are fixed with respect the rotor d-g axes but are in motion
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with respect the physical armature winding. As a result, the
per unit voltages Yoria and Ve include speed voltage terms

as follows:

(2.10)

- (Wg/ugqg) Ac:e - Rae lde

eo) Ade - Rae iae (2.11)

de

= w w
qu ( e/

The variable R_, represents armature winding resistance. The
voltages are diminished due to the ohmic drop across the

armature winding resistance. Variable y_ is the angular

e
speed of the rotor. Variable w is the nominal angular

eo
speed of the rotor. Both variables are measured in electrical
radians per seconds. Strictly speaking there should be a third
term in Equations (2.1) and (2.2) according to Faraday's law.
This third term is due to the fact that fluxes lqe and Ade
are not just rotating in space with respect the armature
winding but at the same time they are changing in magnitude.
In this model these terms will be neglected. This is
consistent with the assumptions neglecting dc and harmonic
armature currents.

The per unit voltage eguations for the remaining rotor

windings can be written as:

d)\f.e = - weORf.elf_.e + meovf.e (2.12)
Tt
MNpde = = “eoRkdelkde (2.13)

—dat
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dA (2.14)

- - W 'l
kge = eokgelkage

These equations are in per unit, therefore, the dimensions of

the equations must be balanced by multiplying the right side

by Wege
The following equationsrepresent the effect of the

rectifier and the R-L load:

;;L = - 2%2 Ri + f%& v (2.15)
(2.33) T, v, cos B = v (2.16)
iL = (T2/0.78) il (2.17)
el = B (2.18)

L and iL are the average voltage across and

average current through the R-L load in per unit. Equation

Variables v

(2.15) is the state equation due to the inductive nature of the
load. Equations (2.16) through (2.18) represent the rectifier
bridge. These equations are standard in the rectifier
literature [5]. The multiplying function (2.33)cos B in
Equation (2.16) comes about after integrating the waveform
shown in Figure 2.2 over the interval [B, g + m/3]. Since the
function to be integrated on this interval is sinusoidal the
multiplying function is a cosine function. Equation (2.17) and

(2.18) come from the fourier series of the instantaneous
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exciter-alternator terminal current in terms of i Tl and

L*

T, are normalizing constants. Since these equations were

2
originally derived for actual dimensions it becomes necessary
to balance the equations if per unit values are used. For
example, if (2.16) was in actual dimensions it could be per
unitized by dividing the left side by the base value of Ve

and the right side by the base value of v Because equality

L
must be maintained it is then necessary to multiply the left

hand side by the base value of v_ and the right side by the

e

base value of Vi Bringing the last constant to the left
side of the equations yields the value of T1s i.e., Ty =

T, is obtained similarly. Equation

Ve(base)/VL(base)‘ .
(2.18) shows that the angle between the fundamental of
exciter-alternator terminal current and voltage is equal to the
rectifier's firing angle. This is an interesting effect due to
the use of phase controlled rectifiers. A close comparison
between the sketches given in Figure 2.2 illustrates more
clearly this effect.

Equations (2.1) through (2.18) are sufficient to represent
the separately=-excited exciter-alternator with output
rectifier. Table 2.2 given in the summary in Section 2.5 is
included to help to distinguish between the variables and the
known inputs and parameters values. Notice that the number of
variables is 18, which is also the number of governing
equations. The values of parameters can be obtained using the

data provided by the manufacturer. The data provided by the

manufacturer is based on tests made on the machine from the
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armature side of the machine which yield the following

constants well known in the synchronous machine theory

1 " 1 " L} " '

literature: X , X4 Xg» Xg» Xq Xq, Tar Tgor Tqor Tq and

T,. These constants are defined on Table 2.2. The
transformations between these standard constants and the model
parameters are also given in Table 2.2. References [1] and [6]
are given for these constants and eguations.

The mechanical input for the exciter-alternator is
we(t). The reason why g rather than torque is considered
to be the mechanical input is that the exciter-alternator is
usually connected to a bigger machine (main generator) whose
moment of inertia is much larger than the one for the smaller
machine. The result is that the speed of the exciter-alternator
is determined solely by the speed of the main generator.

With Table 2.2 plus the values of inputs and data
information from the manufacturer it is possible to obtain the
mathematical model for the separately-excited exciter-

alternator using Equations (2.1) through (2.18). These

equations are listed again in the summary.

2.3 Soplution Techniques

2.3.1 Steady-State Solution

For constant inputs we(t) = weO,B = BO and Vee =

Vfeo it is possible to determine the equilibrium points or

steady-state solution of this system by setting the derivative
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terms of (2.1) through (2.18) equal to zero and solving the
resulting equations algebraically. The resulting expressions
are given below, These
equations are derived in Appendix A. The equations determining

the steady-state are:

Olo - 30 (2.19)

-1 .
8ep = Tan [xqe cos 019 - Rge SiN emﬁ (2.20)

Re + Rae cos elo + xqe sin 610
Re = RT2/(0.78(2.33)COS(80ﬂ1) (2.21)
ifeo = Veeo/Rre (2.22)
110 = Xnde lfeo _
Recos Geo + Rae cos (Geo + 610) + xde 31n(6eo + 910)

; (2.23)
v = R i
eo e 10 (2.24)

For given values of inputs Ve and BO’ and given

el
the values of the parameters of Table 2.2, it is possible to
obtained the equilibrium conditions for Ve’ ilO’ 6e0’

ifeO and 019 as follows. %10 is determined using

(2.19). The parameter Re 1s calculated using (2.21). This
parameter represents the resistive impedance that the terminal
of the exciter-alternator sees through the SCR bridge into the
load. Notice that this parameter is a function of the firing
angle 80. with Blo and Re then deD can be calculated

using (2.20). The value for ifep follows easily from

(2.22). The value for ilO can then be calculated using
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(2.23). The terminal voltage Veo is then obtained using
(2.24). With these values other variables such as fluxes can
be calculated using the governing Equations (2.1) through

(2:18).

2.3.2 Transient Solution

We shall now proceed to solve the eguations for the
transient response of the system. This presents some
nontrivial problems because these equations are nonlinear and
there is no clear direct method to put the eguations in
state-space form. In this section a numerical method to
analyze the system will be developed. 1In developing this
method the main issue dealt with will be to obtain the global
behavior of the exciter system, i.e. to obtain the solution of
the governing equations for general transient conditions. For
example this could be finding the time trajectory describing
how the system moves from rest to a particular equilibrium
condition for a given input or from one steady-state to another
steady-state in the case when the input changes from one value
to another.

The mathematical expressions (2.1) through (2.18) along
with the initial conditions iL(tO)ziLD, Afe(t0)= AFeU’
Akde(t0)=lkde0 and )\kqe(to)ﬂkqe0 and the unknowns
of Table 2.2 are sufficient information to determine the
response of the separately-excited exciter-alternator given
that we know the parameters. The governing Eguations (2.1)

through (2.18) however must be manipulated algebraically in
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order to obtain eguations suited to the following numerical
procedure. The necessary manipulations to derive the following
equations are given in Appendix A. It must only be remembered
that these equations are not an addition to the governing
equations but a derivation from them. The iterative numerical

procedure is described below step by step.

Step 1 Equations (2.12), (2.13), (2.14), and (2.15) given in
Section 2.2 and repeated here describe the energy storage

elements of the system. These are the state equations.

A — .

Ao = = WogReolee + Yop Vre (2.12)
Nge = - YeoRkdelkde (2.13)
dt

dAkue = - weDRKaelkqe (214)
dig = - g RIL +u gV (2.15)
Jt T 5%

Step 1 consists of integrating these state eaquations for a
conveniently small interval of time, AT, thus that the system
variables that are not states on the right hand side of the
state equations can be considered constants, evaluated using
ife (tg)y vee (tg), iL(tO) and QL(tU). In this

way it is possible to obtain the values for J\f.e(t0 + AT),

i (tg + AT),Akde(tD + OT) and Apgo(ty + AT) approximately.
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with these values it is possible to solve for the rest of the
other unknown variables at time t0 + AT. This is done in the

following steps.

Step 2 Obtain cse(t0 + AT) iteratively using equation (2.25)

as indicated below.

Wl
Se (kK + 1) = 1@ Vde(ée(K))il =
Vue (Ee(K)

- Tan™? [((we/meo)()(qe - X2 0e) (0278 1 (g + AT) €OS(84(yy + 01) +

Ty

xkae

T2

~(Weg/0eg)Xnge *kge (ot AT)) /

xkue

2 : :
((wg/weg) (Ky+ Kg)(0.78 1) sin (8 .,y + 01) + (wg/wgg):

K5 Ty

(K, + KgKg - Ry, (1, 0.78) cos (5e(x) + 91))] (2:25)

K, T

7 2



Subscript (K) is used to indicate the current value of the
variable in question and (K+1l) is used to represent the new
value of the variable. Using (2.25) the value for 6e(K+l) is

estimated using *

ge(K)‘
It is obvious that, Ge(l) = Ge(to). The final

value that Ge(K+1) approaches is 8 (ty + AT). 1In order

to determine the convergence of the procedure the following

test is made after each iteration, let E = (6e(K+l)

6e(K)) /6e(K+l) , then if E < e, where e is a conveniently

small constant the value of § can be said to be

e(K+1)
approximately equal to ée(tO + AT). The constant e is

chosen so as to obtain the necessary precision. If after an
iteration E > e then it is necessary to go back and iterate

again.

Sometimes it is convenient or necessary to speed up

convergence or to guarantee convergence by calculating the

value of 5e$K+l) as a linear combination of the new value
rom (

calculated 2.25) and the current value, that is,
Y = Tan'l v, (6 )
- [de e(K)
vae(ge(K))
Se(ke1) = C Y * Syl -G

where G 1is a constant that is chosen to speed up or slow
down the iterative procedure. G > 1.0 speeds up the
iterative procedure and G <1.0 slows it down. 1In the
particular problem solved here a value of G = 0.5 was used
assure convergence.

41

to
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Step 3 Step 3 consists of finding i,(ty + &4T), v (tg + AT),BP

e
ife(t0 + AT), vL(t0 +AT), ikde(to + AT) and
ikqe(to + AT) using the results obtained in Step 1 and

Step 2 and equations derived in Appendix A.

i, (tg+ 8T) = (0.78) i, (2.26)
T
0, = B(tg) (2.27)
feg(ty + AT) = ( Apo+ =Xpue lpge * Xpge 11(tg+ AT)sin (8,401))/Xee,
(2.28)
o \ 2 1 {5 @
Vo(ty + 8T) = [((ue/weo)(xae - X% 000 (0,781 cos(5,+0)) +
xkae T2
o - 2
- Rae(0.781L 51n(6e + @l) - (we/uﬁo)xmqe Akae) +
iy -

2 . .
+((we/weo)(K3+K5 )(0.781 )SIn(8, + 07) + (U /0 ) (K +KsKg)+

K7 T2 K7

- s o \2 ]1/2
- Ry, (0.78i) cos (8, + 13 (2.29)
—

2

_ : : 0
1ge(ty + AT) -(A kde * Xnge (0.78i ) sin (ée +0.) 4
T

2
- Xnde ire )/ Xide (2.30)
(- - § .0
Legeto * A1) =(= X o0 + Xpge 1.€0.78) cos(® +© ) ) /X, o
"R
2

(2.31)

v, (t

o+ AT) = (2.33 Tl) v_cos B (2.32)

L( e
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Wwith these results it is possible to go back to Step 1 and
integrate the state equations again to obtain iL(t0+2AT),

Aee (Eg+28T), Apgqe (tg+24T) and iy . (t4+2aT) for

fe
the next time interval and repeat the whole procedure.
Therefore, using this method it is possible to obtain the time
response of the system for any length of time knowing the
initial conditions, the inputs and parameters. This method can

be implemented via a digital computer.

2.3 Solution Example

In order to illustrate the utility of this method the
following problem is solved. For simplicity the damper
windings and leakage inductances of the exciter-alternator are
neglected. Consider the problem with parameters given directly
in model notation by Table 2.1, with initial conditions il =

A = 0 and inputs B =0, w, = 377

kde = Akqe e

. = 6.0x107% p.u. The steady-state values

can be obtained using the method given in Section 2.3.1 and are

rad/sec and Ve

given in Table 2.1. Now it is of interest to find out how the
system approaches this steady-state condition from rest. The
numerical method of Section 2.3.2 was implemented on a digital

computer.
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The results obtained for iL(t) using the method proposed
above are plotted versus time in Figure 2.3. As can be seen
from this plot the current rises and overshoots before
converging to the steady-state value.

The response obtained using the technique of Section 2.2
holds for any value of inputs and for any possible system
conditions; as a result this method should also yield the
response of the system for the case of small perturbations
about an equilibrium point. Therefore, it is possible to test
how meaningful the answers given by the numerical procedure are
by solving the problem for small disturbances using the
numerical method, and comparing the results with the results
obtained analytically using a system of equations obtained by
linearizing the governing equations about an equilibrium
point. The linearized equations are given in Appendix A.

Considered the system at rest at an equilibrium
condition. The equilibrium is disturbed with an impulse which
causes small changes of the variables about the steady-state
values. According to the numerical method of Section 2.3.2,
the result for iL(t) is as shown in Figure 2.4 plotted versus
time. From this plot it can be observed that the response is a
decaying sinusoid with time period of about 56 seconds and an
excursion from the steady-state with a maximum value of 0.0026

p.u. The problem can be solved analytically using the roots of
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the characteristic Equation of (A.41) given in Appendix A. The

solution for the impulse input, Vea = 1g(t) [volts]* is

M, = e"@Wntlsin @ ht) [p.u.] (2.33)
5 n
2
where, h =1 -Z
M = w_h vb (4.573 x 10'2) (2.34)
- Yn fe . %

Parameters mn,g, vfb are given in Table 2.1. It follows

e
from (2.33) that the time period of oscillation is 59 seconds

and the maximum value for the excursion from the steady-state

value, AiL is eaqual to:

- é;gw/Z / V1 - cz )

AiL = 0.0026 [p.u.] (2.35)
M

which are very close to the values obtained with the numerical

method as they should be.

*a(t) is used to represent the impulse function.
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Table 2.1

Parameters for solution example of Section (2.4)

xde 1i Pl
qu 1.4 p.u.
dee 1.4 p.u.
que 1,8 P,
xffe 1.4 p.us
Yeg 377. rad/sec.
wLU 377. rad/sez.
L 3.388 x 107 p.u.
R 0.6 p.u.
-4
Vea 6.0 x 10 pP.U.
BD 0.0 rad
-4
Rf'e 8.5 x 10 p.u.
110 0.687 p.u.
lfeO 0.706 p.u.
Veo 0.227 p.u.
530 76.7312 degrees
wn 0.122 rad/sec.
0.496 p.u.
veb 1000V (line-to-1line)
i b 1.732 x 103
1 . x 102 Amps
i b 46.05 Amps
fe ¥ P
Ve, P 3.257 x 10%4 volt
fe . volts
va 1000 volts (line-to-line)
. b 3
i 1.732 x 10° Amps
T1 1.0

T, 1.0



49

2.5 Summary

Equations for the model of the separately-excited
exciter-alternator are derived in Section 2.2 based on
heuristic reasoning. These are Equations (2.1) through

(2.18). A steady-state solution method is given in Section
2.3.1. A numerical procedure to obtain the transient response
is developed in Section 2.3.2. The solution technique reqguires
solving some of the basic equations simultaneously to obtain a
more suitable version of some of the eguations. The resulting
equations are given in Section 2.3.2 and derived in Appendix

A. The numerical procedure is summarized in this section using
a flowchart given below. Finally, Table 2.2 is given here to
help differentiate between known parameters and variables. The
parameters of the model are not usually given by the
manufacturer directly. 1Instead a set of parameters based'on
tests are given in the data sheets typically provided by the
manufacturers. The equations necessary to go from the
manufacturer's parameter data to the model parameters arergiven
in Table 2.2. The purpose of this summary is to stress the

following points.

(i) Equations (2.1) through (2.18), repeated below, and
only these equations, cons titute the mathematical
model for the separately=excited exciter-alternator.
All other equations given here are derivations from

these basic equations.



(ii)

(iii)
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The mathematical model can be solved using the
numerical method described in 2.3.2 and given here

in flowchart form.

The model parameters can be derived directly from
the manufacturer supplied machine parameters using

the formulas of Table 2.2.
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The equations for the separately-excited exciter-alternator

machine equations:

Vde = Vg sin 69
Vge = Ve COS &g
lge = 1; sin (58 + el)
ige = i) cos (5, + 0y)
‘de = “Xde ide * *mde ife * Xmde lkde
Aede = = Xmde lde * Xmde ife * Xkde lkde
Afe = Xere ife = Xnde ide * Xmde lkde
A - ac - -
ae = “Xge 1ae * *mage lkqe
Akqe = “Xnge iae + Xkge kqe
Vdp = = (we/weo) Aae - Rae ide
Vae = (We/%ep) 4o ~ Rge ige
Aee = = Weg Rpe 1pe + Weg Ve
d)‘I-<de T el dee kde
dt
dAkqe = = Yep que lkqe
load equation:
dlL = = wLOR 1L + W g vL
dt L L
output rectifier equations:
(2.33) T, v, cosB = v
iL = (T2/0.78) il
© _ B

1

(2.1)
(2.2)
(2.3)
(2.4)
(2.5)
(2.6)
(2.7)

(2.8)
(2.9)
(2.10)
(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
(2.17)

(2.18)



System Variables

Table 2.2

Input Parameters

Variables

Ade

Akde

Afe

A
ge

Akqe
i

fe

(state)

(state)

(state)

(state)

Known Quantities

mae

er (not used in

s b >
iee this chapter)

52



System Variables

lkde

kae
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Table 2.2 continued
Input Parameters
Variables
Known Quantities
b a]
Ty = Ve /VL
. b,. b
T2 = 11 /1L
L
b
Vi (L-L)
b b b
KVA~ = 3ve 1l
Rae
Rfe [ohms]
Xae
1
Tge = 1 (Xee + Xpge)
weg Ree
L
Tg = 1 = (Xfe * Xnde Xae
Yeo "fe
dee + X
Tdo = 1 (Xkde * Xpde X
Weg Rikde Xnde *
"
Tg = 1 (Xpge + Xmde Xae xfe)
WeoRkde (Xnde Xae

mdexfe

+ Xge Xge)
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Table 2.2 continued

System Variables Input Parameters
Variables
Known Quantities
L]
qu = __l_#_ (xkae + que)
YeoRkqe
' X X
Ty = 1 (Xyge *+ _mae “ae )
YeoRkae Xmge * *Xae
Xde = Xae * *mde
L}
Xde = Xae * Xmde *re
Xnde * Xre
"
Xde = Xae * *mde Xre *kde
Xnde Xfe * Xmde Xkde
+ Xee Xide!
Xa = Xze * %nge
1
XQ = Xae + que Xkue
que + que
Rfe (in ohms) not used in
this chapter
l " L 1]
Ta = (Xd + Xq )
weU Rae 2




Give initial conditions,
parameters and inputs

Step 1

—
Step 2

no

yes

Step 3

Figure 2,5 Flowchart for the method described in
section 2,3,2

a5
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Chapter III: MODEL OF SELF-EXCITED EXCITER-ALTERNATOR WITH

QUTPUT RECTIFIER

3.1 Introduction

The previous chapter considered the case of an
exciter-alternator excited with a dc field voltage source. 1In
the Alterrex system the exciter-alternator is excited by its
own output, i.e., it is self-excited. Furthermore, the voltage
across the exciter-alternator field winding can be changed. By
changing this voltage one is able to control the
exciter-alternator terminal voltage. Figure 3.1 shows the
schematic of a system that resembles more closely the Alterrex
system. The exciter-alternator output is connected to a diode
bridge feeding an inductive load just as in the case treated
before except that here rectification is via a diode bridge.
However, the exciter-alternator field voltage is obtained by
rectifying the exciter ac voltage output using an SCR bridge.
The firing angle o of the SCR bridge can be changed, thus
changing the exciter-alternator field voltage which in turn
will change the exciter-alternator ac output voltage and
therefore the dc voltage across the load. This system will be
called the self-excited exciter-alternator with output
rectifier. 1In this chapter magnetic saturation of the

exciter-alternator is modeled.
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Figure 3,1 Schematic of self-excited exciter-alternator
with the current boost system., The letter E stands for
exciter-alternator and P, T, for potential transformer,



Modifications to Exciter-Alternator Model of Chapter II

to Include Effects of Self-Excitation, Saturation and

the Current Boost System in the Model Equations

The governing equations for this system differ from the

separately-excited exciter-alternator because of the selfa-

excitation introduced via the SCR bridge. However, both

systems are similar in many respects and the new governing

equations can be obtained from the equations given for the

separately-excited exciter-alternator in Chapter II. The

exciter-alternator can still be described by Equations (2.1)

through (2.14). These equations are found in Section 2.5.

order to model self-excitation, the effects of magnetic

saturation must be included. The following assumptions are

proposed to handle the magnetic saturation of the

exciter-alternator:

1)

(2)

(3)
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In

Assume all leakages inductances and the qguadrature-axis

mutual inductance (xmae) to be constants.

The only saturable element is the direct-axis mutual

inductance (xmde)'

The non-linear inductance dee is only a function of
the mutual direct axis flux or eguivalently of the

currents lyer 1lpgs Yiedn which produce fluxes on

the direct axis, i.e., X i

mde = Xmde (ide’ fe’

1kde)'
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(4) The function Xode = ¥nide (ife' ide’ ikde) must

be obtained empirically. This can be done using data
from the open-circuit saturation curve (open-circuit

voltage vs. field current). The form of the function
dee (ife’ ide’ ikde) may be chosen in any

fashion which will yield a good fit to the data. 1In

general, then a polynomial of the form, dee =

m
=% C

nz=0°n (Ire * ipge - 1ge)
with an arbitrary number of terms m will fit the data as
accurately as needed. For the purposes of this thesis,
Equation (3.1) (with m = 3) will be used to model

- L] . *
saturation in the exciter-alternator.

2

Xnde = Co *+ €1 Upg + pge = Igg) + Cp (dpg + iy - ig)7 +

. ; g 3
+ C3 (lfe + lkde = lde) (3.1)

It must be observed that this is only an approximate way

of handling this non-linear effect. 1In order to simplify the

calculations leakage inductances and que were assumed

constant, although in reality this may not be necessarily so.

* This expression only holds for a given range of values.
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For the purposes of this chapter as in Chapter II, an R-L
load is assumed at the output of the exciter-alternator. Thus,
this load is represented by Equation (2.15).

The equations for the output rectifier of the self-excited
exciter-alternator can be obtained from the rectifier equations
of the separately-excited exciter-alternator with minor
modifications. 1In the self-excited exciter-alternator case a
diode bridge is used instead of an SCR. Eguations (2.16) can

be modified simply by setting B = 0. Equation (2.17) applies

directly to the problem after changing il to il . Eqguation

(2.18) is not applicable to the present problem. The two
equations for the output diode rectifier are then (3.2) and

(3.3) given below.

v = (2.33) T3 Ve (3.2)

i = (1,/0.78) i, (3. 3)

T3 and Ta are normalizing constants which come into the

equations because of the normalization of the equations as is

described in Chapter II. The variable il represents the

fundamental component of current going into the output

rectifier. It is obvious that because of the rectifier effect

"

these equations only hold for positive currents iL and il.

For modeling purposes as soon as these currents go negative

they are set to zero and the voltage Vi is also set to zero.
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The field winding of the exciter-alternator is fed via a
potential transformer and the SCR rectifier. It is important
to find a model for the potential transformer that predicts the
voltage drop across it. This voltage drop is primarily due to
the leakage inductance of the transformer. On the other hand
it is not really important to model the magnetic energy storage
capacity of this inductance. Therefore a very simple model is
chosen for the transformer based on the voltage drop due to the
fundamental component of current flowing through it. 1In the
present case however the phasor magnitudes are considered
functions of time. As shown in Figure (3.2) the resulting

equations in terms of d-q quantities are:

1 ]

i Ve sin( y+ 68) (3.4)

It

v; cos( v+ Ge) (3.5)

<
H

Variable Vé represents the fundamental component of voltage
at the secondary side of the potential transformer.

The variable Y is the phase angle between ¥ and v;.

The variables Vée and V;e are the projection on the direct and

]
guadrature axes of the voltage Ve Therefore, Equations (3.4)

and (3.5) are used to project v; on the direct and

quadrature axes.

C]

sin( v + Se + ) (3.6)

o
Q
1]
1]
[

= - -

) (3.7

= e =

cos( vy + 6e + 0



Variable i. is used to represent the fundamental

1
component of current flowing through the potential

transformer. The variable 91 is the phase angle between

. ! 1 ! n 4 N
i and Ve Then 14 28TE the projections of i, on the

direct and quadrature axes.

] 1
Ve * “eep) Xo e

1 L]
ae = Vge = (“e™en’) X5 1ge

<
]

Xp is the leakage reactance (at frequency weD) of
transformer. 1In actual dimensions the voltage Ve will
stepped down by Np, the turns ratio of the transformer.

Therefore the base value for v; is chosen to be

1
Vig /Np. The effect of an increase of magnitude of iue

'
is to increase the imaginary part Vde and decrease the

]
part Wi and therefore to increase v.*

(5.8

(3.9

the

be

and i

real
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)

)

de

Fquations (3.8) and (3.9) are obtained by eauating the real

() and imaginary (d) variables of the phasor equation for

the transformer in terms of fundamental components of

transformer variables, i.e., Ve f-ée — v; f -GE -y +

+ Jlwg/wgg) Xp iy Z{Ge -y 'ei
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The SCR bridge equation can be obtained from equation
(2.16) through (2.18) by using a change of variables. The

following equations are obtained.

1
Veey = (2.33) T5 Ve COS a (3.10)
[ ]
l1eg = (T6 (0.78)) i (3.11)
B, = g (3.12)

T5 and T¢ are normalizing constants dependent on the

] L]
base values of Wt ife and il. The variable a

Viev?
represents the firing angle of the SCR bridge. The variable
Veey 1s the average voltage across the SCR bridge. The phase
angle between the fundamental component of current ii and

the fundamental component of voltage v;, ei, is set by the
firing angle of the SCR bridge according to Equation (3.12).
Notice that these equations only hold for positive currents.

See similar comments for Equations (3.2) and (3.3).
Current iI is obtained by using Kirchhoff's current law at

the terminal of the exciter-alternator. This yields:

(3.13)

f.. = £ . = § [5.14)
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ide = il sin (68) (3.15)

]
i = 1, cos (58) (3.16)

" "

Variables ide and iCle represent the projections on the direct

and quadrature axes of iI . Using this equations it is
possible to construct a phasor diagram for the exciter-
alternator as shown in Figure 3.2.

With the model modified to include self-excitation and
saturation it is possible now to make one more addition. This
consists of adding equations to include the effects of the
current boost system. This system is shown in Figure 3.1. The
behavior of the current boost system is more complicated than
might appear at first sight. What follows is an explanation of
why the current boost system is used and how it works.

During normal operation, exciter-alternator field current
control is obtained by phase control of the SCR bridge
rectifier. For certain transient conditions the control system
that changes the variable o might force this variable to be 90°
which means that the average voltage across the field winding
will be zero. If this condition is maintained for too long the
exciter-alternator output voltage might decay close to zero.
Then the control system won't be able to raise the output
voltage again by changing the angle o , i.e., this system has
"collapsed". The purpose of the current boost system is to

save the system from collapsing. 1If the exciter-alternator



Efde g-axis

d-axis

Figure 3.2 Phasor diagram for self-excited exciter-
alternator
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terminal voltage decreases and the exciter-alternator field
current decreases beyond a certain limit, the current hoost
system takes control by providing current feedback to the field
winding. This current feedback is regenerative, hence, the
field current will build up until the current transformers
feeding the diode bridge in the current boost system saturate.
This occurs at rated full load field current. Once the system
builds up terminal voltage to normal levels again the current
boost system ceases to operate. It should be emphasized that
the current boost system operates under transient conditions
only.

During normal operation the current boost system has no
effect on the rest of the exciter-alternator. The SCR bridge
voltage is high enough to keep all the diodes in the current
boost system forward biased. Current ife is divided between
the three legs of the current diode bridge. The currents
coming from the current transformers are also flowing through
the diodes of the current boost system and the current in each
individual diode is modulated by the currents from the current
transformers. It is shown in Appendix B that for values of
currents such that 2 iL< ife’ where NC is the current

Ne

transformer turns ratio, the current boost system is not in
operation. This is defined as Mode I of operation of the
current boost system,

As the output voltage collapses, the current ife

decreases. The current boost system is designed in such a way
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that the current modulation taking place in the current boost
bridge "forces" certain diodes to reverse bias and others to
remain forward biased when ife falls under certain level

relative to iL. At this point the current boost system

commences to operate. It is shown in Appendix B that this mode

of operation occurs for i > 2 i . This mode of operation

— L

Ne

will be called Mode II of operation.

fe

For Mode I then the system is governed by the eguations
given above alone. However, for Mode II we have to include the
effect of the current boost system. For Mode II the current
boost system has a topology as shown in Figure 3.3. 1In the
following analysis the leakage inductances and winding
resistances of the current transformers will be neglected.

This is done to simplify the problem and because these elements
are considered to have a second order effect on the system.

The mutual inductance of the current transformers is
non-linear, i.e., it saturates. The current transformers are
designed so that at the point of saturation, the current boost
system will be supplying rated full load field current.

The saturation curve for the current transformers will be
modeled as shown in Figure 3.4. The variables shown in this
schematic are defined in Figure 3.3. variables Ay and i
are the values of flux and current at which the current
transformers saturate. L_ is the value of mutual inductance

c

in the linear region. RC is a resistor connected across
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Figure 3.3 Schematic of equivalent circuit for the
current boost system in Mode II of operation.
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Figure 3.4 Sketch of saturation curve for current
transformer
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the secondary of the current transformers. Parameters Las
and Apr» iy can be found from the saturation curve of the
current transformers (Figure 3.4). Variables Viso] and
Vfacp a@re the average voltages across the upper and lower
halves of the topology in Figure 3.3. The variables ip and

ig are the primary and secondary currents of the upper
transformer in Figure 3.3. The variable AQ is used to
represent the total flux in the core of the upper transformer.
Notice that the exciter-alternator terminal currents are shown
as current sources with values dependent on iL. This

topology is explained in Appendix B. The saturation model
shown in Figure 3.4 is expressed in terms of the variables of
the upper transformer, however, this model is also used for the
other current transformers. Based on this information the

governing equations for the current boost system are derived in

Appendix B and given below.

( - (meORC) erc+(3Rc)D; i'zvfec< im and ZiL z-ife
LC 2 3RC NC

Veoe = g = (wegRe) Veeet(RoIDs 1> 1> 1 - ve o and 21 > i,
dt ' C. i g R N

| c c c

\ Vego = 05 B> 20 or 2i < ig,

Ne (3.17)
D = di= Y] d A s ¥, d Ay v Y5 d A s Y, di (3.18)
dt —dt - dt —dat —dt

=21 - g (3.19)
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Noticed that the input to the state Equation (3.20), D, is
only available during transient conditons because D is a
function of therate of change of the states. It follows that
the current boost bridge has no effect on the steady-state
conditions.

Each of the three expressions given for Equation (3.17)
hold exclusive of all the others when the given inequalities
are satisfied. Notice from Figure 3.3 that the current flowing
through each of the lower transformers is half of the current
going through the upper one. Therefore, as the current
increases, the upper transformer saturates before the lower
transformers. If the current increases further even the lower
transformers will saturate in which case all the transformers
are saturated. Equation (3.17) describes the three possible
saturation states. The first expression at the top represents
the behavior of the current boost bridge in Mode II when all
the transformers are unsaturated. The middle expression is
used to model the behavior of the current boost system when the
upper transformer of Figure 3.3 saturates but the lower ones
remain unsaturated. The third expression holds for the case
when all the transformers are saturated and, therefore, the
voltage across the current boost bridge, Veec? is zero.

During Mode I the bridge is forward biased and v is also

fec
zero, therefore, the bottom expression also holds for Mode I.
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The variable Veee represents the average voltage across
the current boost bridge. Constants Y, through Y, are
given in Appendix B. The voltage across the field winding is
then the sum of the SCR bridge voltage and the current boost

bridge voltage and is given by

Vfe = Vfec * Vfev (3.20)
In this section the equations for the self.excited
exciter-alternator model were derived. Obtaining the equations
involved modifying certain equations from the separately-
excited exciter-alternator and adding new ones. The complete
model is described by Equations (2.1) through (2.15) and (3.1)
through (3.20). All other equations are derived from these 35
basic equations. These equations are listed in the summary in
Section 3.5. A table is also given in the summary to help
differentiate between variables, parameters, and inputs. As
explained in Chapter II, the parameters for the
exciter-alternator model given by the manufacturer differ from
the parameters used in the model and transformations given in
Table 2.2 are needed to obtain the model parameters. Notice
that there are 35 unknown variables and 35 equations.
Equations (2.1) through (2.15) and (3.1) through (3.20) are
then the 35 basic equations the parameters of which can be

obtained using Tables 2.2 and 3.2.



72

3.3 Solution Techniqgues

3.3.1 Steady-State Solution

It is interesting to notice that the self-excited
exciter-alternator works using a positive feedback loop, i.e.,
the self-excitation loop. This is interesting because normally
this would drive a system into instability and it would never
reach steady-state. 1In the present case, however, the problem
is stable and it achieves steady-state. The reason behind this
is that as the exciter-alternator terminal voltage goes up the
non-linear direct axis mutual inductance modeled by Equation
(3.1) saturates, thus, creating a unique point where the
machine remains stable. This is a well known fact in self=-
excited dc machines and it happens to be true for this case
too. The reader should see Section (5-6) of Reference [6] and
Chapter 5 of Reference [7].

Conceptually, the problem can be illustrated graphically
as shown in Figure 3.5. It shows the voltage-current
characteristics of the exciter-alternator and of the load seen
by the exciter-alternator. These two curves meet at only one
point creating a unique steady-state condition. Notice that
the exciter-alternator characteristics are non-linear because
the direct axis mutual inductance saturates. Otherwise the
exciter-alternator characteristics would look like the airgap

line.
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In order to solve for the steady-state condition or
equilibrium points of the system the derivative terms of the
governing equations are set to zero and the resulting equations
are solved simultaneously. All the equations necessary to
solve the steady-state condition are derived in Appendix B from
the governing equations. Appendix B also explains how to use
theseequations to get the equilibrium points. 1In this section
we will limit ourselves to giving a brief explanation of the
procedure outlining at the same time some of the most important
equations used to solve the steady-state conditions. The
derivation of these equations can be found in the Appendix B.

Basically, the problem can be thought of obtaining the
values corresponding to the intersection between the load and
exciter-alternator characteristics (see Figure 3.5). The load
characteristic is obtained by determining the driving point
impedance at the exciter-alternator terminal; let us call its
magnitude Ze'

The exciter-alternator during steady-state is loaded by
the output rectifier. The exciter-alternator is also loaded by
the self-excitation loop to its own field winding modified by
the SCR bridge and the potential transformer. Therefore, the
load characteristics will depend on the equations describing

the characteristics of these devices.
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airgap line

exciter—alternator
charac teristics

load characteristics

Figure 3.5 Sketch of exciter-alternator
ioad characteristics.
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Once Ze is found, this is equivalent to having found the
load characteristics, i.e., the slope of the load line of
Figure 3.5. It was explained before that the steady-state is
reached due to the fact that for a given load the non-linear

inductance Xrn changes as to oppose further changes in

de
voltage. For different loads dee will settle at different

steady-state values. Therefore, the value at which the

non-linear inductance Xm settles, let us call it deeO’

de

is a function of the load, i.e., Ze. Equation (3.21) below

gives the value of deeO as a function of Ze.

2 . 2
deeo = v/ée = (-Rae 51n(5e+el)+xqecos(ae+el)) +

+ Xae sin(ée+®l)+Rae cos(de+el) // ze(T6/0'78) = sin(68+el)
ZD

(3.21)

Quantities Ze, ¢ 61 and Z_ depend on the

e’ p

parameters and loading conditions of the machine and can be
found as described in Appendix B. Then the non-linear
characteristics of the exciter, Equation (3.1) is used to solve

for (1fe - lde) setting xmde = xmdeO' Then using,

il = (ife - idei// Ze (T6/0.78) - sin(68+61) (3.22)
ZD

and Ve then follows,

v = Z i (3.23)
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Equations (3.21), (3.22) and (3.23) are derived in
Appendix B. With il and v, the steady-state values of

other variables can be found using the governing equations.

3.3.2 Transient Solution

In this section a solution technigue to obtain the
transient response of the governing equations is developed.
The method is a numerical technigue to obtain the global
solution of the mathematical model presented in Section 3.2.
The method here is more involved than for the case of the
separately-excited exciter-alternator but it is also based on
the same basic idea. 1In this section certain auxiliary
equations derived from the basic equations are used. These
equations are given without much explanations. The reader is
expected to look at Appendix B under auxiliary equations for
their derivation. The numerical global solution is obtained as

indicated below.

Step 1. Step 1 consists of integrating the state equations of
the self-excited exciter-alternator (2.12) through (2.15) and

(3.17) given below for a small time step AT so that variables

other than the states can be considered to be constants

calculated at tO the initial time.
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d Ape = WeQ Ree 1pe (to) + Weg Vee (to) (3.24)
-at
d Aede = = Yeo Ride lkde (to) (3.231
—at___
d Aege = Wep Rige ikge (to) (3.26)
diL = - E&DR iL + f&o VL (tO) (3.27)
dt L L
- (weoRc) Veee * (BRC) D (to), i'zvfec< im and
Lo B _?ﬁ;_
s Mg
Ne
dvfec = - (weORc) Vipn * (EE) D (to), iz_im> i- Vs and
dt L 2 2 R
c c
>-
2iL._.1fe
Ne
Veeo = 0; i> Zim or 2iL< i_Fe
'NC (3.28)

In the case of Equation (3.28) the inegualities must be
established just before integration so as to decide what
expression to integrate of the three possible expressions
given for (3.28). The term D is given by (3.18) and
({3:.19):

Step 2. Knowing iL (t0+ AT) from the step before
iL" (t0+ AT) can be found using Equation (3.3). It is

necessary to find il (t0+ AT) to obtain the solution of
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the problem. This can be done using Equation (3.29). However,
this reauires knowing i,' (tg+ AT) and y(tg+ AT). The
variable TYt0+ AT) at this time is unknown. What is done

here is to find these values iteratively. At the start it is
assumed that y(t0+ AT) and il' (t0+ AT) are equal to

v(ty) and i, (tg). Once new values for Y and ii

are found in later steps they are used again to estimate a new

value for i The variable 91 is also calculated in the

l .
same way. This is repeated until the procedure converges.

Then it follows that,

il(K) = ((il (t0+ AT) + i]'_ (k-1) €Os ( Y(k-1)*© ))2 +

172

f () gy stn Crgegy + ond (3.29)

& = Tan ™t [ 1 i1y sin Cvgelgy ¢ @

(3.30)

Here the subscript (K) indicates the iteration at which the
estimate is obtained. Therefore, in the first iteration the

first estimate of il is obtained, il(l)' The quantities

] 1
i1(0) and Y(p) 2are taken to be il(to) and Y(to) respectively.

Step 3. With these estimates the value of g(K) is calculated
iteratively just as it was done for the case of the separately-

excited exciter-alternator in Chapter I1I.
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Step 4. Now it is possible to find the rest of the system

variables as follows.

leaky = C Apeltor A1) + Xpge £3y SIn € 80y + 0 ))) /Xepe

(3.31)
Lede(k) = ¢ Megelto* A1) + Xp4. (0.781) sin ( 8, + 0) +
T2
- Xnde re) / Xige (3.32)
Legek) = (= e * que(iL(O.‘/B) )cos (& + @1))/que
P (3.33)
2 )
Ve(K) = [(( W/ Upg) (Xge = X2100)(0.781 ) cos ( & + ©) +
que T2
) 2
- Rae (0.781L) sin ( (% + Cﬁ) - (“é/“éo) xmuel kqe) +
T2 xkue
+ (Cup/upg) (Ky + KE ) (0.781) sin (§ +© 1 ) + (u/uq) (K,
K9 T
27 1/2
Ks Kg) = Ryo(0.781 ) cos (8, +0 1)) ]
K4 Ty (3.34)
[}
L {gh ° lfe/(Ts/o'm) (3.35)
v' = v2 - ((w./ ) X i' cos a)2
e(K) © e(K) Y/ Wen’/ *p *1(K) +
L}
- (we/weo) Xp 11(K) sina (3.36)
T 0
Y(K) = Tan (wb/“bo) xp ll(K) cos a

Ve(K) + (we/weo) Xp il(K) sin a (3.37)
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variables icoyyr Ipge(kyr tkae(k)’ Ve(k)' T1(k)? Ve(k)
and Y (k) can be obtained using (3.31), (3.32), (3.33),
(3.34), (3.35), (3.36), and (3.37) respectively. Constants
K, through Kg are given in Appendix A. Notice that in the

steps above the variables found are not the actual variables at

th

t,+AT but the K estimate because calculating these values

0
involved using il(K) and @l(K)'

Step 5. At this point we are in a position to test whether the

Kth estimates of the variables found do really approach the

values of the variables at t_ +AT. Therefore, Step 5 consists

th

0
in testing the convergence of the K

estimate found in the
previous steps. If the estimates have converged within
acceptable limits, then it is possible to integrate the state
equations again and repeat the procedure for the next time
step. If convergence has not been achieved then it is
necessary to find new estimates in terms of the old ones. This

is done by using Equations (3.29) and (3.30) for the next

iteration, that is

: LN < 2
I1(kely = ((1l (t0 + AT) + 1)(ky €os (Y(K)+a ) [ I

+ (ii(x) sin (Y(K) + oa))z)l/2 (3.38)

1 !
1(k+1) = T@" i%(x) sin { Yegy + %)

(3.39)
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Convergence is tested as follows:

E

1= Gren -t /e | (3.40)

& |(i1(;<+1) - i1(l<))/il(|<+1)| kil )

H

Z

(a) If Elie1 and Ezf.EZ’ where e, and e, are
conveniently small constants, then 11 k) and Ol(K)

have converged according to the error criterions e, and

€,; therefore the values obtained in the Kth

iteration are approximately equal to the values of the

variables at t. +AT. 1In this case it is possible to go

8]
to Step 6.

(b) If E, >e, or E, e, then this means that the

Kth estimates have not converged in which case it is

necessary to obtain the (K+1)th estimate, that is go

back to Step 3 using the values of il(K+l) and
@1(K+l) obtained in Step 5 and repeat Steps 3, 4

and 5.

Step 6. In Step 6 a new value of dee is calculated using

Equation (3.42) and (3.43). Also the value for Vi is

calculated using (3.44). The value of Vee is calculated

using (3.45) and (3.46).
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ide(tU+A T) = il sin (6 e+Ol) (3.42)

dee (to + AT) = CD + Cl (ife + ikde - ide) +

#Ch (e +i . -i.02 40, (1. + i - i’ (3.43)
2 fe kde de 3 fe kde de :

v, (to + AT) = (2.33) T3 Vg (3.44)

Vg (t0 + AT) = (2.33) T5 Ve COSO (3.45)

Vee (to + AT) = Veee * Vrey (3.46)

Notice that a new value of xde and xffe must also be

calculated using X Now it is possible to go back to Step

mde *
1 and integrate for the next time step repeating the whole
procedure to obtain the values for t0+ 2 AT.

Notice that there are three iterative loops nested in this
method. The outer one is due to the fact that the state
equations must be integrated for each time step. The next
iterative loop is caused because of the need to find il and
0y for every time step in Step 2. The innermost iterative
loop is described in Step 3 and is due to the fact that 68
must be found iteratively for every value of il(K) and
@l(K) found. The solution procedure is summarized in the
flowchart (Figure 3.8) given in the summary in Section 3.5.

The flowchart should help visualize this method. The different

blocks in the flowchart refer to the different steps in the

method just described.
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3.4 Solution Example

In order to illustrate the utility of this method the
numerical procedure is implemented in a digital computer and
some problems are solved using it. 1In solving these problems
the effects of damper windings and current boost system are
ignored for simplicity;also Xp is set to zero. The
steady-state values are also calculated as described in Section
3.3.1 and Appendix B. The values for the parameters used in
this problem and for steady-state values are given in Table
3.1. These parameters belong to the Alterrex exciter-
alternator. The steady-state symbols are denoted by the
subscript "O".

Using the numerical method the equations for the self-
excited exciter-alternator system without damper windings and
without the current boost system is solved using the parameters
given in Table 3.1. The response obtained for iL is given in
Figure 3.6. The initial conditions for this response are
iL = Xfe = 0, i.e., the system starts at rest. At time

t, an impulse is applied to the field winding of the machine

0
in order to start the "build up process"* that takes the
machine from rest to a given steady-state. Notice from Figure

3.6 that the current builds up very slowly. This happens

The reader should make in his mind an analogy between the
build up process in dc machines and the build up process
here. If necessary References [6] and [7] should be
reviewed.
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Table 3.1

Parameters, Steady-State Values

and

Input for the Solution Example of Section 3.4
xae 0.135 p.u.
xde 0.69 p.u. (unsaturated)
xqe 0.64 p.u. (saturated)
Xenila 0.555 p.u. (unsaturated)
xmae 0.505 p.u. (saturated)
xffe 0.725 p.u.
Xfe 0.170 p.u._a
Ree 8.199 x 10 p.u
R 3.781 x 1077 p.u.

ae
Np 2 turns
vg 420 volts (line-to-line)

'b b
ve Ve /Np
W en 754.0 rad/sec

b 4

Vee 3.451 x 10 volts
i b 45,78 amps

fe :

b

KVA 3160 KVA
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Table 3.1 (continuation)

R 0.94 x lO'3 p.u.

L 0.5 p.u.

w0 . 377.0 rad/sec

Rfe(in ohms) 0.931g at 125°C

T, 7.884 x 107" -
Ty 1.447 , .
T 2.33 » 107 -
Ty 189.77 __
Ch 0.555 .
Cl -0.253/68.165 -
C, 0.6312/68.165 L
Cs -0.4071/68.165 -
o 70° = 1.2217 rad.

Xp O p.u.

ilU 0.9897 p.u.

ifeO 2.1235 p.u.

Vep 0.93661 p.u.

Geo 0.5883 rad.

Rfe (in ohms) is used to find the base values of the field
winding.
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because the time constants of the exciter-alternator are rather
large. However, the system could be made to build up faster by
using a time varying input for o so that at the start o is such
that forces the system to build up very fast but as the system
builds up the firing angle 1is returned to its nominal value
for steady-state operation.

It is of interest now to test how meaningful the answers
given by the numerical method are by solving the problem for
small disturbances using the numerical method, and comparing
the results with the results obtained analytically using a
linearized system of equations obtained by limearizing the
governing equations about an equilibrium point. The linearized
equations and coefficients can be found in Appendix B. From
the linearized equations the response to the impulse Ao =
0.0135 a(t)" is described by
pi = 0.294 (e "O-1IE _ o-0.286%, (3.47)

The symbol A in front of the system variables is used to
represent the perturbed variables from the equilibrium
position, i.e., An=o -ag and AiL = iL - iLO' According
to (3.47) the response has a fast growing part and a slowly

decaying part, from which it can deduce that the response first

*
a(t) is used as the impulse function.
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rises fast, peaks and then decays slowly. The peak occurs at
about 5 seconds and the excursion from the steady-state is of
about 0.1 p.u.

The response was also obtained using the numerical
method. The result for iL is plotted in Figure 3.7. As can
be seen, it behaves approximately as predicted by the

linearization,.

345 Summarz

Equations for the model of the self-excited
exciter-alternator were derived in Section 3.2. The derivation
of these equations involved modifying some equations from
Chapter II and adding new ones to account for the effect of
self.excitation and saturation of the exciter-alternator. The
governing equations are (2.1) through (2.15) and (3.1) through
(3.20). These equations are summarized below. These eguations
and only these equations constitute the mathematical model for
the self-excited exciter-alternator system. Any other equation
used is derived from these 35 basic equations. The derivations
of the other equations used in this chapter can be found in
Appendix B. A solution technique to solve for the steady-state
condition is given in Section 3.3.1. A numerical method to
obtain the transient solution is given in Section 3.3.2. The
numerical procedure is summarized in the flowchart given in
Figure 3.8. A table is given here to help differentiate
between knowns and variables. The parameters of the

exciter-alternator are obtained from the datsa provided by the
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manufacturer as described in Chapter II in Table 2.2. With the
information given in this chapter the user could model a self-
excited exciter-alternator with R-L load given a data sheet

from the manufacturer is provided.

The equations for the self-excited exciter-alternator.

Exciter-Alternator eaquations:

Vde = Ve Sin g (2.1)

Vge = Ve COS § (2.2)

ide = i; sin (& + ©p) (2.3)

iqe = 1, cos (& + ©) (2.4)

‘de = ~Xde lde * *mde ife * Xmde lkde (2.5)

Aede = ~*mde lde * Xmde ife * Xkde lkde (2.6)

‘e = Xrfe ife ~Xmde lde * Xmde lkde (2.7)

Aqe = —qu iqe + que ier (2.8)

Akae = -que iqe + que ikqe (2.9)

Vde = = (W/ugg) ‘ge = Rae 1de (2.10)
Vae = (W’ %) Age = Rae 1ge (2. L)
dipe = ~wep Rfe 1fe *weg Vre (2.12)
-

P ge = ~weo Rkde kde (2.13)
-dt

dAkqe ~wen Rkge 1kqe (2. X4)



xmde = CO + C1 (lfe ® lkde - lde) * C2 (lfe o 1kde - 1de
B 8, + 1o =T P e, fh. e L. - L 3%
3 fe kde de 4 fe kde de
Load equation:
di = ~w g R I +w gV
dt L L
Qutput Rectifier equations:
{2.33) T3 Ve = VL
. n
lL = (T4/0.78) il
Potential Transformer equations:
) I'.
Vde = Ve Sin (v + Ge)
] )
qu = Vg cos (y + Ge)
I' -' - '
1de = 1, sin (v + el)
) ] ]
i,e = 1) cos (v + @l)

Vde = Vde * (weﬂueo) Xp ioe

ge = Vge = (Wg/wgp) X5 1de

<
0

SCR Rectifier equations:

(2.33) T5 cos(a)ve = Veoy

ife = (T6/0.7B) il

]
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Terminal Current equations:
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ide” 14e = ide (3.13)
L1 . 'l (3 14)
lae= 1ge = Ige .
." .ll . 6 15)
i4e = 1 sin ( e) (3
." -l'l 6
iqe = i; cos ( e) (3.16)
Current Boost System equations:
( - weORc Veeo * (3 RC D; 1 - 2 Vean 51 and 21L3_1f
[ 2 3 R N
c o c
dVeeo =\ - “eg Re\ Vfee * Rg D5 121, >1 - v, and 21 >
dt LC 2 2 2 Nc
\ Veoo © 0; L > 2 i, or 21L < leg
Ne (3.17)
dt dt dt (3.18)
1 = 21L - lfve (3.19)
Ne
Vie = Veee * Vfev (3.20)



Table 3.2
Unknown
Quantities Known Quantities
System Input Parameters
Variables Variables
Vde > Xde
Vae Cor €10 T3 Cg
Ve xkde
5 e Xffe
j'de xmqe
i1 xqe
iae xkqe
@l weO
A de Rae
A kde Xae
A fe Ree
Aae dee
%kqe que
oy, xfe
lre Xefe
ND
. NC
lde Ty
L Ty
ikue T5
dee Te
o
i, R
'
Vde L
'
Ve xp
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Table 3.2 - Continued

Unknown
Quantities Known Quantities
System Input Parameters
Variabhles Variables
' A
qu m
Y i
e )
1 Lc
.l
ll Rc
‘l
lde Yl
L]
lQe Y2
Vf‘ev Y3
"
lde Ya
" . h
1qe Rfe (in ohms)
b
erc er
. b
- lre
b
er Ve
D KVAb
V'b
e




Give initial conditions,
parameters and inputs

\?

Step 1
i
Step 2

I}

5 Step 3

Figure 3,8 Flowchart for the method described in

section 3,3.2
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Chapter IV: MODEL FOR THE CONTROL SYSTEM

4.1 INTRODUCTION

In this chapter the model for the control system of the
Alterrex excitation control system is given. It is important
to have the equations describing the behavior of the control
system because the control system has a strong effect on the
dynamic behavior of the Alterrex system. On the other hand it
is desirable to obtain a model which exhibits the essential
features of the control function yet is not overly detailed for
practical use. Therefore certain simplifying assumptions have
been made.

Some of the states of this model are introduced by certain
lead-lag compensators consisting of R-C networks. The states
introduced by some filters consisting of R-C networks have also
heen considered. All the other elements of the control system
have been assumed not to possess any energy storage capacity,
and thus not to introduce additional states. The voltage drop
across solid-state junctions have been ignored. The model of
the control system is nonlinear. The nonlinearities come about
because of saturation of the amplifiers and other effects such
as the effect introduced by the limiting systems that will be
treated in Section 4.5.

The control system can be divided in several subsystems as
can be seen in Figure 4.1. Figure 4.1 shows eight basic
blocks: the firing angle system, the automatic regulator, the

active reactive current compensator (A.R.C.C), the current
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Figure 4,1 Block diagram of control system
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limit system, the exciter minimum voltage limit system
(E.M.V.S.), the phase limit system, the underexcited reactive
ampere limit system (U.R.A.L.) and the manual requlator.

Switch s is either in position 1 or 2 depending on whether the
system is controlled from the manual regulator or the automatic
regulator.

The control system inputs are the exciter-alternator and
the main generator currents and voltages. Also the power
factor angle eg between the main generator terminal voltage and
current is an input. The output from the regulator is a

continuous signal v This continuous signal is the input to

R
the firing angle system which generates the gate signals that
are used to fire the SCR bridge supplying voltage to the
Rlterrex exciter-alternator field winding.

The purpose of this chapter is to present the model of the
control system. The philosophy followed in this chapter is to
give the expressions for the control system rather than derive
them. Explanations are given for the expressions in terms of
the actual physical devices of the system. These explanations
are somewhat limited by the fact that it is not possible to
show the actual schematics of the Alterrex control system.
However, the reader who has access to an Alterrex Manual [4]
may find it useful in understanding the control system as
described in this chapter. The model is given in block diagram
form and the necessary expressions to obtain the governing

equations of the system from the block diagram are given in

Section 4.7. Section 4.7 includes a table listing the values
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for the model parameters of the Alterrex control system. The
parameters values are given in Table 4.1 in Section 4.7.

Because the governing equations are not given explicitly
but in terms of the block diagram two examples are given, one
in Section 4.2 and another in Section 4.7, to demonstrate how
to obtain the governing eguations using the block diagrams.
This should help to clarify how to use the information given
here to obtain the necessary governing equations for the

control system.

4,2 Firing Angle System

The firing angle system is used to generate the gate
signals that are used to fire the SCRs of the Alterrex
exciter-alternator. The input to the firing angle system can

be either taken from v OT V that is from the automatic

36 47’
regulator, exciter minimum voltage limit system and phase limit
system output or from the manual regulator output depending on
the position of the switch s as can be seen in Figure 4.1.

The model for the firing angle system is given by the
block diagram of Figure 4.2. This is a good place to explain
how to use the block diagrams presented in this chapter. First
notice that the block diagram is read from right to left as
indicated by the arrows. This makes it easier to relate back
to the actual schematics. Every block of the diagram is
represented by a symbol that stands for a functional

relationship between the input variables indicated by the

arrows coming into the block and the output indicated by the
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frgm
o V.8 VR sw;tch

Figure 4.2 Block diagram of firing angle system
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arrow pointing away from the block. These functions are
indicated by the letter G with a subscript. These functions
can be linear or nonlinear.

In the case of the firing angle system we have the

function G relating the input VR and the output Vug®

24
The expression Gza is given in Section 4.7 as Equation
(4.8). 1t is simply a multiplicative constant -9, times
VR~ Therefore we have:

VaB = Gza (VR) (4.1)

= -9 Vg (4.2)
In this chapter the parameters of the system will be
denoted with positive constants 9 through 951 Pg
through p10 and 3, and a,. The symbol v with a subscript
is used to represent the input and output signals (voltage
signals except where noted) for the different blocks of the
diagram. The signal Vg (in radians) is the input to the
block TB' The letter T with a subscript is used in this
chapter to represent a special type of relationship. The
relationship is a nonlinear one and comes about because of
saturation in the solid-state and magnetic elements of the
system. This nonlinearity can be represented by a linear
region in which the block can be represented by a unity gain.

However if the given input goes above or below a given limit

value, the output of the block is clipped to that limiting
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value. From this discussion it follows that in order to
specify a function T all that is needed is to specify the
limiting values at which the input gets clipped. The limits of
the function Tg are specified in Section 4.7 as given by

(4.9). Therefore it follows that:

v . < <
48 ; O rad_vas_rad.

o VA8>ﬂrad‘ (4.3)

Therefore Equations (4.2) and (4.3) constitute the governing
equations for the firing angle system.
The control system model has been developed in such a way

that the signal v_ is always a negative quantity. Since the

R
angle o is positive and the constant 9 in (4.2) is also

positive a negative sign must be used in expression (4.3) so

that V,g comes out positive as it should. Therefore for v

more negative (smaller) a gets bigger and for Ve less

negative (bigger) o becomes smaller. Recall from Chapter III

R

that if o ranges between 0 and m then an increase in o implies
a smaller exciter-alternator field voltage and a decrease in «
implied an increase in the exciter-alternator field voltage as

indicated by Equation (3. 10).
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4.3 Automatic Regulator

The automatic regulator is designed primarily to hold
constant voltage at the main generator terminals. The model
for the automatic regulator is given in Figure 4.3. The
regulator senses vg by means of a potential transformer and
the ac output voltage of this is rectified. This process is

represented by block G, in Figure 4.3. The expression for

2
62 is given by Equation (4.10), which shows that G, is 3
multiplicative negative constant. This negative constant will
cause signal vV, to be negative and in fact all the other
signals throughout the automatic regulator will be negative.
Signal Vo, is filtered by a low pass R-C filter in order to
eliminate the ripple left after rectifying. This process is

represented by G This filter is very fast (very small time

3
constant) compared to other dynamics of the feedback loop. 1In
spite of this the dynamics of the filter have been considered
in the present model. The expression for 83 is given by
(4.11) in Section 4.7,

Notice that vy has been added to a voltage Vbl*‘
This voltage is due to the dc bias voltage used for the

transistors and other biasing voltages used in the circuitry.

There are a number of these voltages added throughout the model

The symbol I is used to represent addition. For example in
the present case we have v4 = vz + vp]l.
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due to this effect. They have been indicated with the
subscript b. These voltages must not be confused with inputs
or reference signals. 1In fact these voltages have very little
effect, if any, on the dynamic behavior of this system. The
value for Vpy is given by (4.12) in Section 4.7.

The signal Vi is now processed by block G- The
function Ga represents a resistive voltage divider. The
expression for Ga is given in Section 4.7 as Equation
(4.13). Notice that the expression is given in terms of the
adjustable parameter a,. For given values of a1, 95 and
9, G, is a multiplicative constant. By changing the
adjustment a then the value of G, can be changed.

The output from G, is v_. which in this case it is also

4 5

equal to v the input to Amplifier 1. Amplifier 1 is a dc

7!

transistor amplifier and is modeled by Tl and G The

5
function Gs is the gain of the amplifier and is given by
equation (4.14) in Section 4.7. T, is used to represent the
cutoff and saturation effect of the amplifier and is given by
(4. 15),

The output of the amplifier is superimposed on a bias
voltage Vo 9iven by (4.16). The resulting signal Vip s

processed by block G G6 is used to represent an R-C

6"
lead-lag network whose transfer function is given in Section
4.7 as (4.17). This is a very important element because it

adds one of the most dominant states in the system.

A nonlinear element following G6 is modeled by T2

given in Section 4.7 as (4.18). The output of T2 is Vig:
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The signal v is modified by adding the signal vy to

12

obtain v The signal v;5 comes from what is called the

13
nonlinear rate feedback. The signal Vag is basically a

signal proportional to the rate of change of exciter terminal
voltage Vy and is obtained as follows. The terminal voltage

of the exciter, Ver is stepped down using a transformer and
rectified with a three phase rectifier. This process is
represented using the block GIA' Function Gyg is given by
(4.19) in Section 4.7. Notice from (4.19) that Gy, is a
negative gain. This comes about because of the way the
reference used to measure the voltage signal was defined in the

circuitry. This negative sign will cause signal v among

28’
others, to be a negative dc quantity. The output of Gla is

signal Vog that goes into GlS’ Gls represents the effect
of an R-C low pass filter. The output of Gis is signal Vog

which is added to the bias voltage v given by (4.20).

b7

is given by (4.21) in Section 4.7. Adding v and

G 29

1.5

yield v

Vh7 30"

The voltage v

30 is now processed by the nonlinear rate

feedback section of the system. First the voltage v is

30
processed by a nonlinear gain G18 given by (4.22) in Section

4.7 yielding the signal v The signal vy, is now added

37*
to a bias voltage Vb1o whose value changes depending on the

value of the output v This voltage is given by (4.23) in

38"
Section 4.7. The result of adding Vp1g and Vi is signal

v So far signal Vig Can be considered proportional to

38"

the voltage L The proportion changes depending on v as

38
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manifested by the relationship G The signal Vig is now

i8*

processed by G G19 is basically a differentiator but it

19°
also introduces a small delay in the nonlinear rate feedback
loop. G19 is given by (4.24). Hence Vg is proportional

to the rate of change of v The purpose of adding a signal

e
proportional to the rate of change of Ve in the feedback loop
is to add damping to the system to help stabilize the
exciter-alternator. The effect of this signal and the
nonlinear gain G18 will be illustrated in Chapter V.
Signals Vio and Vzg are added to obtain Vi3

therefore Vis has a component proportional to the rate of
change of Ve with some delay and a component proportional to
vg with some delay due to the filtering introduced by G2
and the delay introduced by the lead-lag network G6. Notice
that because of the way the reference has been defined this
voltage is negative. This signal, Vi is now amplified by
the dc amplifier 2. Amplifier 2 is modeled by the saturating
function T3 and the gain G, as given in Section 4.7 by
(4.25) and (4.26). The output of amplifier 2, Vi is
superimposed on the bias voltage Vp3- The resulting voltage
is Vig ¥hich is also shown eaqual to Vige If switch s shown
in Figure 4.1 is in position 2 then VR is also equal to
Vig-

Therefore in conclusion the automatic regulator introduces
a negative feedback signal based upon generator terminal

voltage. The automatic regulator also has an input from

exciter terminal voltage in order to introduce a stabilizing
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signal for the exciter. Let us illustrate the behavior of the
automatic regulator with the following example. Assume that
the output of the automatic regulator of Figure 4.3, Vig? is
connected to the input of the firing angle system, Figure 4.2,
i.e. the switch s is in position 2. The input to the automatic
regulator is taken from vg. Therefore we have the

closed-loop system defined as in Figure 1.4 by a self-excited
exciter-alternator feeding the field winding of the main
generator. The control system in Figure 1.4 is here defined by
the automatic regulator and the firing angle system. Assume
that the system is in steady-state working at given values of

v o and regulator signal voltages.

g’

If thereisanincreasein generator terminal voltage, this
will cause a decrease in the signal Vo (recall that this
voltage is the output of G, which is a negative gain).
Similarly, without dwelling on the delays of the feedback loop
caused by filtering and compensation, all the signals of the
feedback loop will be decreased including V- A decrease in
Vg causes an increase in V4g (recall that 02& was a

negative gain). An increase in v assuming it is between

48"’
the limits set by T8 will cause an increase in a. From
Equation (3.25) in Chapter III it follows that the voltage
across the field winding of the exciter-alternator is decreased
from which follows that after some delay the exciter terminal
voltage decreases causing a decrease in the field current of

the main generator. This, after some delay, will cause the
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terminal voltage to be decreased, which will tend to return
back to its initial value.

The effect of the nonlinear rate feedback comes into play
as follows. Assume that the exciter-alternator voltage for the
case above decreases so fast that it results in overcorrection
of the voltage vg and therefore in instability. What rate
feedback does, without dwelling on the effect of the nonlinear
gain is explained as follows. If Ve decreases too fast it
means that Vog increases rapidly (recall that G14 is a

negative gain). As a result the differentiator Gl9 will

produce a positive dc voltage for v momentaneously. Since

39
Vio is negative a positive increment of voltage from Vg

will cause Vi3 to be less negative than it would have been
without the rate feedback effect. The angle o increases to a
lesser extent which results in the exciter voltage not
decreasing as fast and therefore in the main generator terminal

voltage not being overcorrected. It follows that the nonlinear

rate feedback helps to stabilize the system.

4.4 Active-Reactive Current Compensator

The main function of the automatic regqulator, described in
Section 4.3, is to keep the main generator terminal voltage
Vg unchanged. Sometimes however it is desired to regulate
the voltage at some point in the power system other than at the
generator terminal., 1In that case it is necessary to substitute

for vg the signal that needs to be regulated. Because the

actual voltage that needs to be regulated is anywhere in the
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system, possibly far away from the physical location of the
regulator, it is not always practical to make a connection
between that point and the regulator.

What is done instead is to estimate the voltage in
guestion. This is fairly simple to do because all that needs
to be known is the impedance between the main generator
terminal voltage and the voltage that needs to be regulated,
the current flowing through it (generator terminal current,

i ), the generator terminal voltage v_ and the phase angle,

g g
S] between v_ and i1_. With these then it is possible to

’ g g

cglculate the voltage to be regulated, substituting that
voltage for Vg

Figure 4.4 shows the block Gl representing the process
used to estimate a given voltage in the power system. This
block is placed between vg and the input to the automatic
régulator, Vi The expression for Gy is given in Section
4.7 by (4.27). The expression is nonlinear because the voltage
v_and the voltage between the main generator terminals and

g
the point of interest must be substracted vectorially.

4.5 Limiting Systems

The automatic regulator is designed to control the
behavior of the generator terminal voltage or of some voltage
in the power system. 1In the process of regulating these
variables the automatic regulator might try to force certain
variables in the system to increase (or decrease) above (or

below) a certain 1limit beyond which the safety of the equipment
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could be endangered. For example if the load at the output of
the main generator is increased (i.e. if more power is demanded
by the power system) this would tend to decrease the terminal
voltage. Therefore the regulator will change the angle o in
order to increase the exciter terminal voltage to correct the
voltage Vg' The loading conditions might be such however

that the exciter terminal voltage called by the control system
to correct the decrease in vg is too high and conseaquently

the exciter terminal current goes above its rated value. This
would mean endangering the safety of the eauipment in order to
keep the main generator terminal voltage constant. 1In a case
like that the survival of the system takes priority and the
regulation of vg is maintained within safe limits. 1In order
to do this, Limiting Systems are used.

The purpose of the Limiting Systems is then to limit the
extent to which certain system variables can change by taking
over control from the main generator terminal voltage of the
automatic regulator when the survival of the system is in
danger. The limiting systems used in the control system that
are of importance are the following: the current limit system,
the exciter minimum voltage limit system, the phase limit
system and the underexcited reactive ampere limit system.

Before continuing with a description of these systems it
is convenient to define two auxiliary functions. These are the
functions c" and ch and are given in block diagram form in
Figure 4.5. These functions may have n inputs but only one

output. The output L in the case of Ch will be equal to
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the highest input or inputs. For the block CL the output

will be equal to the lowest input or inputs. Let us call these
functions "low signal comparator" and "high signal

comparator.”™ As will be seen shortly, these functions will
help formulate in block diagram form the action of the limiting

control systems.

4.5.1 The Current Limit System

Let us recall the example presented above. There it is
shown that during certain conditions the automatic requlator
might force the exciter terminal current and therefore the main
generator field current to increase to levels which are
undesirable for the safety of the system. A remedy for this is
to use a current limit system which takes control of the
regulator by cutting off the signal provided by the main

generator terminal voltage and substituting in its place a
signal proportional to iI.

This can be implemented by using a low signal
comparator C& placed in the automatic regulator between blocks
G4 and T1. The resulting system is shown in Figure 4.6.

The current iI is obtained from the secondaries of the

current boost transformers. The current is stepped down using
current transformers connected from the secondary terminals of
the current boost transformers which feed a resistive network.

The resulting voltage signal from the resistive network is a
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time varying voltage. This voltage is rectified resulting in a

signal proportional to il' The process just described is
represented by G8 which yields the output Vi7- The

expression for G, is given by (4.28) in Section 4.7. Notice

8

that G8 is a negative constant. This comes about because of
the reference chosen to measure the voltages in the circuitry.

The signal v is then passed through a low pass filter

17
represented by 89. The transfer function for G9 is given

by (4.29) in Section 4.7. The output of G, is signal Vis

9

which is superimposed on the bias voltage v given by

b4’
(4.30) in sSection 4.7. This yields signal v,, proportional

to i1" which is fed into Ck along with vy4. Therefore vg

will be equal to the lowest of these two signals.

Let us now go through an example to show how a limiting
system actually behaves. Assume that the system is at a given
point operating in steady-state. The automatic regulator is
regulating main generator terminal voltage very well so that
any small deviation of this voltage from the nominal value is
auickly corrected. Therefore it can be assumed that the
voltage at the terminal of the main generator is always close
to the nominal voltage and therefore the voltage signals
throughout the automatic remain almost constant at some
operating point.

Let us repeat now the experiment done in the previous
section where the loading conditions are increased gradually so
that the exciter terminal voltage and therefore exciter

terminal current are increased to levels endangering the
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survival of the system. As the exciter terminal current
increases the input to the current limit system increases.
Then this implies that signal Vi7 is decreasing (recall that
Gg 1s a negative gain). Signal vy, decreasing implies

Vis and Vig decreasing. During normal operation the

current limit system is designed so that Vig is less negative

and therefore bigger than v_ which usually remains fixed at

5
some operating point. The current 1limit system is designed so
that when the exciter terminal current is equal to the value of
current which is considered to endanger the survival of the

system Vig is equal to the value of Vg which is always

close to some operating point. Any further increase in i;
will cause Vig to fall below Vg which means that Vg would

no longer be equal to v. but tends towards Vig- At this

5
point the automatic regulator ceases to be a main generator

terminal voltage regulator and becomes an exciter terminal

current limiter. Therefore any further increase in i] causes
a decrease of Vig which after some delay causes a decrease in
Ve increasingad. Therefore exciter field voltage is

decreased which decreases exciter-alternator terminal voltage
which consequently decreases exciter terminal current.
Therefore exciter terminal current is limited. Notice that now

the exciter terminal current is well regulated which means that

as long as the current limit system is in control the value of

il remains almost constant which further implies that the
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signals throughout the regulator including Vig remain close
to an operating point.

Say now that the loading conditions that caused the
increase in exciter terminal current are changed so that the
load demanded is decreased. Since the exciter terminal current
is kept constant at the value required for the higher loading
condition, the main generator voltage, which during the time
the current 1imit system is in control is unregulated, will
tend to increase to a value higher than nominal, but it also
happens that this causes the signal Vg to decrease to a
value lower than the operating value of Vig: therefore at
this moment the voltage Vg will no longer be egual to v,

but it will become v_. again. Therefore the automatic

5
regulator goes back to regulate main generator terminal

voltage.

4.5.2 The Underexcited Reactive Ampere Limit System

The underexcited reactive ampere limit system is
designed to help maintain steady-state stability. This is
achieved by imposing a limit on the magnitude of the generator
underexcited reactive current. This limit is shown graphically
in Figure 4.7. Figure 4.7 shows a portion of the capability
curve for the underexcited region of the curve. 1In order to
retain steady-state stability the main generator must operate
inside the curve shown. Therefore what is needed is a system
that takes over control of the automatic regulator by cutting

of f regulation of the terminal voltage, vg, and introducing
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instead a signal dependent on underexcited reactive current in
order to regulate and limit the underexcited reactive current
when it goes above levels that might endanger the stability of
the system. Such a system is shown in Figure 4.8.

This system uses the function G10 given in Section 4.7
by expression (4.31). This expression comes about from the way
the detecting circuitry was designed. The reader is referred
to Reference [4]. Normally block GlO yields a negative

output. Notice that block T, clips the signal v at 0 and

4 20
10 volts. Therefore normally the output at T, is zero. LA

4
is given by (4.32). Under any other conditions voltage Vol
is restricted to be between zero and ten volts. Because of the
last statement and because Vhs is a constant biasing voltage
equal to -24 volts, as given by (4.33) in Section 4.7, the
resulting signal will always be a negative dc signal. Signal
Voo is a dc signal proportional to the rate of change of
exciter terminal voltage used to stabilize the underexcited
reactive ampere limit system. This signal, Vogi is obtained
by using the signal Vig from the nonlinear gain of the
automatic regulator and processing it by the differentiator

represented by G The transfer function for G3 is given

13°
by (4.34) in Section 4.7. This signal has an effect on the
underexcited reactive ampere limit system similar to the effect
of V3g ON the automatic regulator. The resulting signal

Voo is fed now to amplifier 3 modeled by Tg and gain

Gyq- Ty and G,, are given by (4.35) and (4.36)

is

respectively in Section 4.7. The resulting signal Vou
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then added to a bias signal Vbg given by (4.37). The
resulting signal Vos is then processed by a lead-lag network,
GlZ' The expression for Gip is given by (4.38) in Section

4.7. The resulting signal Vog is the output from the U.R.A.L.
Then using the high voltage comparator C; between CE and
amplifier 1 the desired effect is obtained.

Assume that the underexcited reactive current goes below
the limit set by the dashed lines in Figure 4.7. This would
result in Glo producing a positive dc signal Voo© After
this signal is processed by T4 it results in a positive

signal v Due to the effect of the bias voltage Vhe?

21°
V5, COmes out a negative signal. Without dwelling on the

is

the signal Voo

effect of the stabilizing signal Vo

approximately the result of Vol and Vbs- As the

underexcited reactive current magnitude continues to increase
the positive dc signal Vo1l increases which translates into
the dc signal Vo, being less negative, i.e. increasing. This
will also translate in the other signals of the U.R.A.L.
increasing. As this goes on there will be a point when Vog
has increased so much that it is bigger (less negative) than
the operating point Vg» therefore at this point v, ceases

to be eaual to Vg and becomes equal to Vog? i.e. the
underexcited reactive ampere limit system takes control of the
automatic regulator. The underexcited reactive ampere limit
system is designed to take control when the main generator

operating point violates the underexcitation constraint on the

capability curve.
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4.5.3 The Exciter Minimum Voltage Limit System

During certain transient conditions the regulator might
force the angle a to be equal to 90° in which case the average
voltage applied to the field winding of the exciter-alternator
is zero. 1If this condition is maintained for too long the
exciter-alternator output voltage may collapse as is indicated
in the discussion of the current boost system in Chapter III.
The purpose of the exciter minimum voltage limit system is to
put a lower bound on the value of the exciter voltage such that
it doesn't collapse. The exciter minimum voltage limit system
is shown in Figure 4.9.

Notice that the first part of the system up to the point
yielding signal Vag has been explained before when discussing
the nonlinear rate feedback for the automatic regulator.

Signal Vag is now processed by Gyg which is a voltage
divider which reduces the signal Vag to va1. Gig is

given by (4.39). The signal v is now added to the bias

21

voltage Vbs yielding v The bias voltage v, g is given

32"
by (4.40). This signal is now amplified by Amplifier 4.
Amplifier 4 is modeled by T6 and Gy< given by (4.41) and
(4.42) respectively in Section 4.7. The output from Amplifier
4 is Vi which is added to bias voltage v
(4.43), yielding v

b9 given by

35 which goes into the signal comparator

h :
C3 along with vy

60

During normal condition v is bigger than Vig (less

16
negative) which means the automatic regulator is in control of
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the firing angle system. Let us assume that the loading
conditions are suddenly lowered to such an extent that the
automatic regulator forces the exciter terminal voltage to go
very low in order to keep the main generator terminal voltage
constant. As the exciter terminal voltage goes low signal

v increases (becomes less negative). Without dwelling on

30
the delays of the system it can be seen that as Vig

increases, v increases too. The system is designed so

35
that v becomes higher than Vig for the value of exciter

B35
terminal voltage below which the system could be in danger of
collapsing. The exciter minimum voltage limit system therefore
takes control at this point and starts regulating ¥ in order
to keep it above the limit. When the conditions return to
normal the automatic regulator takes control of the firing

angle system again.

4.5.4 Phase Limit System

For some reason, the phase limit system is used to put a
lower bound on the value of exciter field voltage in order to
limit the degree of negative voltage which can be applied when
attempting to quickly reduce exciter terminal voltage. This is
accomplished by limiting the value of a. Therefore it is
necessary to place a lower bound on voltage Vg 8s shown by

Figure 4.10. A small component of v is obtained

30’ V40

from the voltage divider G and added to the bias voltage

20
Vhil to obtain Val- Expression for GZO and Vh1) are

given by (4.44) and (4.45) in Section 4.7. Signal Vil is
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then processed by the divider G,y to yield v,,. Gy 1%
given by (4.46).

The signal v is determined mostly by the fixed bias

42
voltage Vp1l- Therefore Vo is a fixed limit (it actually
does change a little bit due to the small component from
VBO). Therefore all that the phase limit system does is to
take control of the firing angle system and set & to a fixed
minimum value whenever it happens that Vig and Vasg try to
force the angle a to a value below which undesirable inversion
of field voltage is obtained (recall that for angles between
m/2 and T the SCR bridge actually gives negative average

voltage to the field winding, according to Equation (3.25).

4.6 Manual Regulator

The control system of the Alterrex system has also a
manual regulator which may be used to control the level of
excitation. This regulator is shown in Figure 4.11. Notice
that the manual regulator is very similar to the minimum
exciter voltage limit system.

As in the case of the exciter minimum voltage limit system
the input Vo is rectified and filtered by a low pass filter.
Both effects have been grouped usiﬁg the same function 822.

The transfer function for G > 1is given in Section 4.7 as

2

Equation (4.47). Notice that G is a function of the

22

adjustable parameter a Notice also that the gain of

9
transfer function is a negative constant. The output from

622 is superimposed on a bias voltage vy, and the
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resulting signal, Viar is amplified by Amplifier 5 modeled as
G23 and T,- The voltage Vh12? and functions T, and

G,5 are given by (4.48), (4.49) and (4.50) respectively in
Section 4.7. The output from Amplifier 5, Vig is
superimposed on V139 given by (4.51), resulting on Vg the
output of the manual regulator.

When switch s is in position 1 the manual regulator is in
total control of the system. 1Its main function is to regulate
the level of excitation Ve This is accomplished because as
Ve tries to change the regulator reacts as to change a such
that it corrects the change in L By changing the

adjustable parameter a, the overall closed-loop gain of the

2
system can be changed and therefore the level of excitation can

be controlled manually.

4.7 Mathematical Model For The Control System

In this section all the information given in this chapter
is summarized. The complete block diagram for the control
system is given in Figure 4.12. The expressions necessary to
obtain the governing equations are listed below as (4.8)
through (4.51). The expressions are written in terms of
positive parameters 9y through g.y, Py through p,4 and
and a,. The values for these

1 2
parameters are given in Table 4.1. The control system is

adjustable parameters a

modeled in terms of actual units rather than in per unit.
Since the inputs are in per unit, the blocks at the beginning

of the model must account for this by multiplying the inputs by
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the system base values. The letter s was used here to

represent the derivative operator. So for example in the case

of G3 in the automatic regulator we have that the governing
equations relating Vo and Vg is obtained using the transfer
function for G3 as follows:

Vg = G3(s) Vo (4.4)

= [gA/(pO + s)]v2 (4.5)

then:

VB(DD + S) = 9 Vo (4.6)
and:

dv3

gE = "~ Po V3t 9y Vo (477

where (4.7) is the state equation relating Vg and Voo

Expressions (4.8) through (4.51) are:

Firing Angle System Equations

Gos = =99 VR (4.8)
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T8: upper limit = 913 lower limit = a5 (4.9)
Gy = Oy (4.10)
G3 = ga/(pD + S) (4.11)
Vbl = —gs (A.].Z)
Ga =3y g, + Oy (4.13)
Gg = gg (4.14)
T1: upper limit = g lower limit = -9, (4.15)
Vb2 = 24 (—1 + 98) = 957 ‘ (4.16)
gll (s + pl)
Gg = T3 5 2) (4.17)
T2: upper limit = IPY lower limit = -9,3 (4.18)
G1a = “914 (4.19)
Vb7 = -gls (A.ZO)
916
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gl7 v38 < -ng volts
Gig = (4.22)
919 Vag > -g18 volts
'920 volts Vag < -918 volts
Vbilo = (4.23)
-9, volts Vig > =0jg volts
g s
22
Vhz = 24 (-1 + g53) = g4 (4.25)
G7 =923 (4.26)
The Active-Reactive Current Compensator Equation
vi = [(v, + g i_cos 0. + g i sin © )2 +
1= g 24 7g "7 g 25 7g g
; : 2-1/2
(9,5 ig cos eg 94 14 sin eg) ] (4.27)

8 = =9 (4.28)
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g
Gy = —! (4.29)
S + S (p5) + p6
Vba = -928 (4.30)
Underexcited Reactive Ampere Limit System
V20 = GlO (ig, Vg, eg) =
; . 2
[(g29 lg [930 cos Og + g3; sin Gg]) +
(959 ig [g5, sin Og -G, COS eg] +
2,1/2 :
95, Vg) ] —[(929 19[930 cos eg +
g sin 0. 1)% « [g i (g sin 0 _ -
Al o] 29 "9 Y30 g
2,1/2
95, COS eg) + 935 Vg *+ U33 vg] ] (4.31)
T,: upper limit = Q543 lower limit = 935 (4.32)
Vbs = 936 (4.33)
g s
37
C13 =s%p; — (4.34)
To: wupper limit = O35} lower limit = 95 (4.35)
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G11 = 940 (4.36)
Vb = Osg = 24 (-1 + g,q) (4.37)
6z = g2 385
Exciter Minimum Voltage Limit System Expressions

C16 = 942 (4.39)
Vpg = -O9sg = 12 (-1 + g,,) (4.40)
Tg: upper limit = 9,33 lower limit = =944 (4.41)
G17 = Oy (4.42)
Vbo = 946 (4.43)
(Gy,» Gy and Vyy 8re also given for the automatic

regulator as (4.19), (4.21) and (4.20) respectively.)

Phase Limit System Expressions

G0 = 947 (4.44)

Vh11l = -948 (4.45)
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G =

21 (4.486)

949

Manual Regulator System Expressions

-g (a5 + Qey)
G.. = —20 2 51 (4.47)
22 S + Pig

Vhip = 91 = -Oso (85 + T5;) (4.48)
T,: upper limit = gg5; lower limit = g5, (4.49)

bl = 9sg (4.51)
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TABLE 4.1

Control System Paramenters

1.0472 [1/volts]

m [rad]

0 [rad]
202.173 [volts]
100 [1/sec]
150 [1/sec]

7.5 [volts]
500 [ohms]

5.036 x 107° [1/0hms]
0.13295 -
2.731 “
0 [volts])
24 [volts]
0.278 =
20 [1/sec]
5.56 [1/sec]
” [volts]
24 [volts]
313.9 [volts]
16 [volts]
500 [1/sec
750 [1/sec]
173 -
99 [volts]



Table 4.1 - Continued

51/61

66

0.056
0.67
5,99

2.21

8.0074 x 10°
1.686 x 10°
6.076 x 10°

0.52
.i.

10

24

0.0769
0.094

138

[volts]
[volts]

[1/sec]

-

[volts]
1/[sec?]
1/[sec]
1/[sec?]
[volts]

[ohms]

[ohms]

[volts]
[volts]
[volts]
[1/sec]
[1/sec]

[volts]



Table 4.1 - Continued

+24
Fyd
0.1071
1.603
0.172
0.1098

+24
3.1
50. 4
17180
+12
0.6
9.22
1.47[KQ]
3.479 x10%
0
+24
Fel
50
500 [adjustable between 0-5008]

139

[volts]

[1/sec]
[1/sec]
[volts]
[volts]

[volts]

[volts]

[volts/ohms-sec]

[volts/ohms]
[volts]
[volts]

[volts]

1.42 K @ [adjustable between 0-5K Q ]

903
41,544

[1/sec]
[volts]



Table 4.1 - Continued

Ocg 60
959 10.68
9¢0 110.16
961 L

[(volts]
[volts]
[volts]
[volts]

Parameters g4 and g2s belong to the Active-Reactive

Current Compensator. (See Section 4.4 ) Parameters

and gzg.are the resistance and reactance in per unit
i

respec
point that needs to be regulated.

924

vely between the Main Generator Terminal and the

140

T These parameters belong to the U.R.A.L. and are not given in
the Alterrex manual. These parameters could be found as
follows (refer to [4], Figure 18 entitled "Diagram and Vector
Pogitions for Underexcited Reactive Ampere Limit").
Parameters gp9, g32 and gz3 are found as follows:

i b

S
29 Ny ’

where igb is the base value of main generator terminal

current and Ny the turns ratio of the current transformer
connected in the armature of the main generator at phase

gzp = M) vgb, where vgb is the base value for the
generator terminal voltage. M) is the fraction of

generator terminal voltage measured from point (5) to M in

B1VT of Figure 18 in Reference [4].

gz3 = Mg vgb, where My is the fraction of vg
measured from (3) to (5) in B1VT.

b.
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Chapter V: COMPLETE MODEL OF THE ALTERREX EXCITATION CONTROL

SYSTEM

5.1 Introduction

In this chapter the complete model for the excitation
control system is given. The model is completed by using the
self-excited exciter-alternator model given in Chapter III and
adding the governing equations of the main generator. Thus the
R-L load at the output of the model given in Chapter III is
replaced by the field winding of the main generator. This
model and the control system model (Chapter IV) constitute the
complete model for the Alterrex excitation control system and
is pictured schematically in Figure 5.1. The main generator is

shown connected to an infinite bus, v through an inductive

oo?

impedance, X, The control system takes the exciter-alternator
"
terminal voltage and current, ve and ij] and the main

generator terminal voltage and current vg and lg, -

processes them to yield the value for the control input, the
firing angle «a.

The sample simulations presented in this chapter exclude
the effect of the current boost system and the limiting
systems, although these are included as part of the complete
model. They simulate the case of the unloaded main generator
and that of the generator connected to an infinite bus through

an inductive impedance. The results of tests on this model for
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these two cases are compared with the results of the type I

model proposed by the IFEE committee on excitation systems [3].

8.2 Governing Equations for the Complete Model

5.2.1 Governing Equations for the Self-Excited Exciter-

Alternator with Main Generator Connected

to an Infinite Bus

The model for the self-excited exciter-alternator is
defined by the model given in Chapter III for the self-excited
exciter-alternator with current boost system but in this case
feeding the field winding of the main generator. The main
generator is connected to an infinite bus v_ through an
inductive impedance X_. The model for the main generator is
based on standard two-reaction theory for synchronous machines
[1]. The parameters used can be found in Table 3.1 and in
Table C.1 in Appendix C.

The model for the main generator includes damper
windings and has a total of five states. The self-excited
exciter-alternator with current boost system and damper
windings has four states. Therefore there are a total of nine
states for the self-excited exciter-alternator with the main
generator model. 1In this thesis the turbine output will be

modeled as a constant torque source.

5.2.2 The Control System Equations

The mathematical model for the control system is defined

by the block diagram given in Figure 4.12 and the expressions
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given at the end of Chapter IV in Section 4.7. The parameters

used can be found in Table 4.1.

5.3 Solution Technigue for the Self-Excited Exciter=Alternator

with Main Generator and Automatic Regulator Problem

In this chapter the behavior of the Alterrex model is
illustrated. 1In this section a method is developed to obtain
the numerical solution of the self-excited exciter-alternator
with main generator and the automatic regulator model. For the
purposes of this section the limiting systems and current boost
system effects are ignored. The Active-reactive current
compensator has also been left out. This means that the input
to the automatic regulator (vl) is connected directly to the
main generator terminals which therefore is regulating Vg

The method presented here is an extension of the methods
used in Chapters II and III. The method is given below step by
step. The variables used have been defined in previous

chapters and in Appendix C.

Step 1 - The first step consists of integrating the state
equations given below. The necessary information to obtain
these equations is given in Chapters II, III, IV and Reference

[1] for the generator.

TE— = eo (-Rpe 1pe + Vge) (5.1)
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dv dv
8
H'E3—9 = =Py V39 * Upp _dT?'“ (5.12)

Equations (5.1) through (5.3) are the state equations for the
exciter-alternator. Equations (5.4) through (5.8) are the
state equations for the main generator. Finally Equations
(5.9) through (5.12) are the state equations for the automatic
regulator. Notice that the main generator variables are
denoted using the same symbols used for the exciter-alternator

with the exception that the subscript e is replaced by a g.

Step 2 - Step 1 yields the values for, Afe’ Akde' Akqe’

Afg’ lkdg’ Akqg’ Gg, wg, Vo V110 Vag and Vig

at t = tO + AT. The quantity v_ is also known. Step 2
consists of a procedure to find the value of main generator
field current, ifg’ and a using the information available.
Once this is found then the problem becomes analogous to the
problem solved in Chapter III. This makes sense physically
since the only external effects affecting the behavior of the
self-excited exciter-alternator are the loading conditions and
the input variable o, i.e. the firing angle of the SCR bridge.
Once thesevariables are found the variables for the self-excited
exciter-alternator can be obtained independently of everything
else,

The main generator is connected to an infinite bus through

an inductive impedance X_,. It is possible to redefine the

problem by adding X, to the leakage inductance of the main
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generator. 1In this case the problem is transformed to a
problem with a new machine connected directly to an infinite
bus. However the voltage regulator must be modeled so as to
regulate the actual generator terminal voltage. After the
variables for the new machine are obtained it is always
possible to get vg. What follows is the procedure to find
the current ifg and the variable a. First the expressions
needed to find the variable ifg are listed below. These
equations can be derived from the governing equations of the

main generator. They are given in this thesis without

derivation.

Yg £1
X C
i (t, + AT) (kqg(a- 3) A /
ag 0 - kag
C6 qug/C3
( C6 C2)
C C X
Xmag + SC' 3 37C kag {515}
6 "mag’ "3
C. & cC, C
; 6 ~2 6 1
*kag (tg + aT) _ (G4 '(CS - C, ) ag C, )/(Cs xmug/c 3)
(5.14)
C B X .
'kdg (o . AT L 21gq , 1199 dyqg (5.15)
3 3 3
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x2 x2
_x _ _mdg i _x N mdg (5.16)
mdg Xffg kdg dg xffg
1fg (tO + AT) =[ Afg + xrncig idg - xmdg ikdg]/xffg (5.17)

The variables Cl through Cg are given in Appendix C. The

variables 109, ikqg’ ikdg’ 1dg and ifg can be found

at time tg + AT using Eauations (5.13) through (5.17)
respectively.

The value of o is found as follows (refer to Figure 4.12
in Chapter 1IV). Variables Vi1 and V4o are known from Step
l. Vvariable Vip Can be obtained then by applying the

nonlinearity T, to Vi - Variable v is obtained then

2 13

by adding Vag to Vip- Using the model for amplifier 2,

i.e. expressions G, and T the value for Vis can be

7
obtained. Knowing v

3’

15 the variable VR can bhe obtained

after adding v to Vis (notice that for this case v

b3 16’

Vg and vg are all equal). Therefore using the model for

the phase angle system, i.e. expression T, and G the

8 24
value for @ can be found. The variables for the self-excited
exciter-alternator can be found independently of the rest of
the system. This can be done by using Steps 2, 3, 4, 5 and 6

of the solution technique given in Section 3.3.2 of
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Chapter III. Notice that iL of Chapter III is now ifg'

The reader should at this point refer to the solution technigue
presented in Chapter III. At the end of Step é in Chapter III
it is said to go back to Step 1. This is not done so here.
Instead at the end of Step 6 in Chapter III the procedure is

continued as follows.

Step 3 - Before returning to Step 1 the variables Vfg’ Adg’

A
ag’ Vg’ Vs

convenient expressions for d Vg and d Vg must be obtained.

dat — dt

and V38 must be obtained. Also

Furthermore if the saturation of the main generator has also

been modeled, a new value of Xm must be calculated for

dg
t0 + AT.

The variable v is the average voltage at the output of

fg
the rectifier of the exciter-alternator. This also happens to

be indentical to Vi of Chapter III which is calculated in the

solution technique of Chapter III (Step 6). The variables

Adg and kag

the main generator [1]. The variable vg is found using the

can be found from the governing equations of

transmission line reactance X, and the current through it.
Variable Vg can be found from vy using Ty If Vo is

between the limits set by T; then d vg is equal to d v,
Tdt —dt

which means it is also given by the right side of Equation

(5.9):
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The variable v can be found from Vag using G;g and

38
Vhio® After determining the value of the function G18 ’
the term d v;o can be set equal to Gjg times d v,,.
dt dt

Finally dee can be found using the following expression
chosen to model the saturation of the main generator. This

expression fits the data for i<0.95 p.u.
X yq = bg + byl +b, 1% 4 b 4% 4 b, if (5.18)

where, i = iffg + ikdg - idg (5.19)

Constants bO through b, are given in Table C.1 in
Appendix C. The manufacturer's data for the main generator
(AEPs Big Sandy Unit 2) is also given in Appendix C. Notice
that values for xdg and Xffg must also be calculated using
xmdg‘ Now it is possible to go back to Step 1 and repeat the
whole procedure to obtain new variables for tO + 2AT.

The steady-state values for the case where the main
generator is unloaded can be obtained fairly easily because for

a given value of v_ the corresponding value of field current

g
and voltage can be obtained using the saturated value of

X Then using the procedure described in Chapter III to

mdg*
obtain the steady-state conditions for the self-excited
exciter-alternator it is possible to obtain the steady-state

values of the exciter-alternator that are consistent with the
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generator field voltage and field current. Then the adjustable
parameters of the control system should be adjusted to satisfy
these conditions.

The steady-state values for any other conditions can be
obtained numerically using the method described in this
chapter. The method should be initialized with a set of
consistent initial conditions so as to avoid convergence
problems, a desired input toraque Trn and the external and the

elements X_ and v_.

5.4 Demonstration of the Model for the Self-Excited Exciter-

Alternator with Main Generator and Automatic Regulator

It is possible to implement the numerical method of
solution described in the previous section using a digital
computer, This was done here as a demonstration of the
capabhilities of the model for simulating the real system.
These tests were made to test the self-excited
exciter-alternator with the main generator and the automatic
regulator. The current boost system and limiting control

systems are not included.

5.4.1 Tests on the Model

Two different types of tests are performed on the
model. One test consists of changing the reference setting of
the control system with the main generator open circuited. The
second test consists of introducing a fault somewhere in the

system with the main generator loaded.
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The first test is done by setting X, to a very high
value as to simulate the open circuited conditions. The
steady-state values are given in Table 4.1. The automatic
regulator adjustment ay is initially adjusted to maintain 1.0
p.u. main generator output voltage. This value is given in
Table 4.1. The automatic regulator adjustment 3 is then
changed so as to simulate the effect of a step input in the
reference voltage of the automatic regulator. This causes the
system to go to a new steady-state position after moving
through a transient. The results of this test are shown in
Figures 5.2 through 5.6

Notice that the generator terminal voltage has a rise
time of about 0.5 seconds. It overshoots 14 percent with the
peak of the overshoot at about 0.8 seconds and it settles in
about 1.5 seconds. The parameters of the automatic regulator
are adjusted to obtain a fast rise time and also a short
settling time for the response, however, no attempt was made to
find a set of values which yield the absolute fastest
response.

It was observed that the time constant of the lead-lag
network shown in the automatic regulator loop of Figure 4.11
had a strong effect on the rise time. Therefore the parameters
of the lead lag network are adjusted to produce a short rise
time in the response. It was also noticed that adjusting the
exciter rate feedback time constant has a strong effect on the
damping of the dynamic response of the system: it also has a

smaller effect on the rise time. Therefore the time constant
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of the rate feedback is adjusted to reduce the settling time
and eliminate oscillations as much as possible without
offsetting the rise time of the response by much. The
parameters for the control system are given in Table 4.1.

It is interesting to observe from the plots of the
results that the step input in the automatic regulator
adjustment causes the control input o, plotted in Figure 5.3,
to go to zero almost immediately. At this value the firing
angle system saturates (see Figure 4.12). The control input
stays at this value for about 0.25 seconds. This forces the
exciter terminal voltage shown in Figure 5.4 to reach peak
voltage at about 0.3 seconds.

It is interesting to observe the effect of the nonlinear
rate feedback. From the plot of Vag shown in Figure 5.5 it
is possible to deduce that the nonlinear rate feedback loop
changes gain at about 0.2 seconds and at 0.5 seconds, i.e. when
Vag = 99 volts. At point 0.2 seconds the rate feedhack loop
changes from a higher gain to a lower gain, resulting in less
damping. This can be seen by the fact that signal Vg shown
in Figure 5.6 decreases at a lower rate after 0.2 seconds. At
0.5 seconds the value of V3o becomes high enough so that the
rate feedback loop regains a higher value for the gain. This
i1s also the time at which the generator terminal voltage
crosses the desired steady-state value and continues to
overshoot. It seems as if the effect of the nonlinear gain in

the feedback loop is to decrease the rise time while damping

the tail of the transient response effectively.
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The next test performed on the model is done with the
main generator connected to an infinite bus through an
impedance X,. The steady-state values and the values for X_
and v_ are given in Table C.3. The test consists of a fault at
the infinite bus cleared in 6 cycles. This test is performed
on the generator both without and with the exciter model in
order to observe the effect of the exciter on the dynamic
behavior of the generator. The results of these tests are
shown in Figures 5.7 through 5.12.

The generator terminal voltage for the case without and
with exciter are shown in Figures 5.7 and 5.9 respectively.
Comparing these two voltages it can be observed that there
exists a slight difference between the two. The figures show
that the exciter does improve the terminal voltage regulation,
the voltage appearing to return to its steady-state value more
rapidly.

It is also evident that the excitation system has an
effect on the behavior of the load angle as shown in Figures
5.8 and 5.10 for the cases without and with exciter-alternator
respectively. The difference in behavior between the two cases
appears to be that the exciter initially raises field current
in an attempt to maintain main generator terminal voltage,
hence resulting in a negative effect on the rotor angle. This
can be seen by comparing Figures 5.11 and 5.12 for the case
with and without exciter-alternator respectively. It also
appears to somewhat improve damping following the first swing

as seen by Figures 5.8 and 5.10. As a result of this
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simulation, it can be seen that the exciter-alternator seems to
have a significant effect on the dynamic behavior of the

generator.

5.4.2 Comparison with the IEEE Type I Model

In this section the simulations done in Section 5.4.1
are repeated using the IEEE type I model (3) using typical data
not necessarily consistent with the parameter values used for
the detailed simulations in Section 5.4.1. Therefore small
differences in behavior could be expected. The block diagram
for the type I model is given in Figurels3in Chapter I. The
parameters used here for the type I model are given in Table
5:ds

The reference voltage is changed suddenly in the IEEE
type I model to repeat the first test donme in Section 5.4.1.
The result for the terminal voltage is given in Figure 5.13.
Comparing Figure 5.13 with the response obtained in Section
5.4.1 shown in Figure 5.2, it shows that both responses have
essentially the same charateristics. The response in Section
5.4.1 however seems to be much better damped while retaining
the same rise time characteristics. It seems reasonable to
expect that this difference is due to the fact that the model
proposed in this thesis accounts for the effect of nonlinear
rate feedback while the IEEE type I model does not.

The fault test on the IEEE type I model is also repeated
for the cases where the system is without and with

exciter-alternator. The results are shown in Figures 5.14
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through Figure 5.17. These results show that both models have
captured the essential characteristics of the dynamic

behavior. There is however a stronger effect on the swing of
the rotor angle according to the model presented in this thesis
than according to the IEEE type I model. For example Figure
5.10 shows that the simulation using the model presented in
this thesis predicts a larger effect of the rotor angle than
does the type I model.

The tests done above were intended to be an illustration
of the utility of the model presented in this thesis and not as
an exhaustive testing procedure. 1In fact, since no documented
procedure can be found for the derivation of type I parameter
values from the known physical construction of the generator,
it is not possible to do more than the general sort of
comparison tests presented here. However, the results do
verify that the Alterrex model developed in this thesis behave
consistently with expected behavior. Further verification must

await comparison testing with an actual Alterrex system.
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TABLE 5.1

Parameters For The IEEE Type I Model

T, 0
Ky 400
i 0.05
3.5
-3.5
Ke 0.04
T 1.0
Ke -0.17
T 0.95
Ys Epg*  f(Epg)
Se pe o ro)

A | 2.65 x 1077
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Chapter VI: CONCLUSION AND SUGGESTED FURTHER WORK

6.1 Summary and Conclusion

A detailed model for the Alterrex excitation control
system has been developed. The model has been developed by
considering the physical principles governing the behavior of
this system. The model developed has a direct relationship
with the actual physical system, which is a departure from
traditional models developed for this system [3]. Therefore
the parameters of the model developed in this thesis have been
obtained from the actual physical parameters of this system.
This is considered to be an advantage over previous models.

The complete model for the Alterrex is given in Chapter
V. The main part of the model is considered to be the
self-excited exciter-alternator, the main generator and the
automatic regulator. The simulations done on this model show
that it predicts the expected behavior of the actual system.
The results are also compared to the results obtained using the
IEEE type I model [3] with typical data. The comparison shows
that although both models capture some of the essential
characteristics of the system the model presented in this
thesis does seem to predict effects that the IEEE model could
never predict even if different parameters were chosen. An
example of such an effect is the nonlinear rate feedback.

Although the complete model given is specifically designed
for the Alterrex system, the modeling techniques developed here

could be applied to a wide range of excitation control systems,
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particularly those that use an exciter-alternator with output
rectifier. Other problems apart from excitation systems but
involving ac machinery with rectifiers could also be solved
using the material presented in this thesis.

This thesis has dealt with two basic problems. These
are: the problem of the separately-excited exciter-alternator
for transient conditions and the problem of the self-excited
exciter-alternator for steady-state and transient conditions
presented in Chapters II and III and complemented by
Appendicies A and B. They by themselves constitute the heart
of this work.

The control system was also modeled in order to obtain the
complete model for the Alterrex excitation control system.
Although this model can be obtained from the actual schematics
of the system in a straightforward manner by using basic
circuit theory, it is a tedious and time consuming task.

Notice that Chapter IV gave detailed explanations of the
behavior of the control system. These explanations are more

detailed than those found in the Alterrex Manual [4].

6.2 Suggestions For Further Work

The work presented here could suggest further research in
several different directions. One direction is to try to
reduce the present model to a smaller and more modest one yet
maintaining a correlation between the model parameters and the

parameters of the actual system.
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It is also necessary to simulate the current boost system
and the limiting systems. Only after this is done and after
the simulations show that they predict expected behavior should
the parameters and models given for them be considered
adequately verified.

Another possibility is to use the model presented here to
design control strategies to control the system optimally. For
example the parameters 95 through 9610 Pg through Pio
and 3, @, could be optimized according to some criterion.

Finally further work should be done to justify
experimentally the given model. At this stage the model has
given results that are consistent with the expected behavior.
Further experimental evidence, at this time unobtainable,
should show the superiority of the model presented here over

other models.
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APPENDIX A
Derivation of the Equations Used in Chapter TI

In this appendix Eauations (2.19) through (2.32) are
derived. Also the linearized equations and related constants
are given. This includes Equations (2.33), (2.34) and (2.35).

A.l Steady-State Equations

Equation (2.19) is Equation (2.18) applied in the
steady-state case. Eguation (2.21) is obtained by finding the
driving point impedance at the terminal of the
exciter-alternator. This is obtained by using Equations:

(2.15) with diL/dt set to zero, (2.16) and (2.17) as follows:

12 VL/[(2.33) Tl coSs B]_ R/[(2.33) Tl cos R

il iL/(T2/0.78) (T2/0.78)

s Mg (A.1)
(2.33)(0.78) Tl cos B

Equation (2.20) is derived as follows. Looking at the

phasor diagram of Figure A.l1 we notice that Erge C2N be

written as follows:

Eraell = Ve [78e * Rae 11 [roe -01 + IXge 11 fO1 “8e  (R-D)

Now multiply both sides of (A.2) by 1 {de:

Erde [Se = Ve [o + Ry 1y f0; + xge 1 fO) (A.3)
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Figure A,1 Steady-State Phasor diagram for the
exciter-alternator
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oT:

Efde fée = (ve + Hga il cos Ol + Xge i1 sin 91) +

& j(-Ra i, sin 0, + X i, cos @l) (A.4)

e qe

From which Equation (2.20) follows trivially. Eaquation (2.22)

follows from (2.12) with dAfe set to zero. Eaquation (2.24)

gt
follows from the definition of Re 3s driving point
impedance.
Equation (2.23) is derived as follows. Looking at the
phasor diagram of Figure A.l we see that it is possible to

write for the steady-state:
Efde = Xmde lfe = Ve COS Se + Rye 1y cos (58 + 91) 3

e

And using (2.24) we can substitute for ¥, and obtain
ReilO COS 855 + Rge ilo cos (690 + Ol) +

+ X i (A.6)

de 110 sin (&g + ©19) = Xp4e ireq

From which (2.23) follows trivially.



A.2 Auxiliary Equations

Equation (2.25) is derived as follows. From Equations

(2.1) and (2.2) it follows that,

§_ = Tan'l(—gg) (A.7)

Now it is necessary to express Vil and Vae in terms of the

states and Sg- This is done by manipulating the equations as
follows. First substitute (2.8) in (2.11). Then solve (2.9)

by i and the result is substituted in the previous

kae

result. The result is an equation in terms of iqe' ide

and Akae. Using Equations (2.3), (2.4) and (2.17) it is

possible to replace i and i, in terms of i, and 58

ae
obtaining:

2 .
X 0.78 1
- _ _Mmge R § , ©
Vge = (we/weo) (xqe X ) ( T ) cos ( gt 1) &

kaqe 2
(0.78 i,) X X
L " mae “kae
- R sin (6, +0,) - (w /w ) o— (A.8)
ae T2 e 1 e’ el que

172

Now the same sort of manipulations are done using Equations

(2.5), (2.6), (2.7), (2.3), (2.4) and (2.17). Obtaining:




where,

Ki = Xge
B Xmae
2 " Xkge
K = - Xge
K = xmde
4~ Xege
Ks = Xnde
Ky = Xkde
k8 = Akde

And from (A.7),

Equations (2.26),

follow trivially from Equations (2.17),

- HAE 4
Xepe €

(2.27),

(2.28) 4 [

2.30),
(2.18),

(2.7);

(A

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.8) and (A.9) (2.25) follows trivially.

(2.31) and (2.32)
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)

10)

113

12)

13)

14)

15)

16)

(2.6),
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(2.9) and (2.16). Equations (2.29) can be derived as follows.

Use Equation (2.1) and (2.2) to obtain:

2 2
Ve =\£de & vQe (A.17)

Then using (A.2) and (A.3) and substituting above Equation
(2.29) is obtained.

A.3 Linearized Equations About Equilibrium Point

In general any nonlinear Equation with continuous partial

derives of the form:

y=f (X (A.18)
where,

#
.¥. - [yl! YQ: y3’ ,Yn] (A.l9)
f=10f, f,, f £F17 (A.20)
— 1, 2, 3,"', n .

T
5 = [xlr X0 X3,...,xn] (A.21)

can be linearized about an equilibrium point as follows:

sy = [3(x) | 1 & (A.22)

o

where,



>
<
"
<
!
<
o

and Xq are equilibrium values and,

Bxl 3X2 X
, af (x) 8f, (X)) af (x) ... af,(X)
J(x) = —— = —_—
- ax IXy ax2 3%

| 3% 3%, 3%,

Caf (0 af (X)) ... af (x)

af (x) af (x) .. 3f (x)
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(B 25)

(A.24)

(A.25)

Applying this method the linearized equations and related

constants can be obtained.

A.4 Linearization of Equations (2.1) Through (2.18)

(Without Damper Windings).

AS

N&d Ail
AVe = N3 Ail + I

(A.26)

(R.27)



N6 d Alfe N7d All NedA Se

Ay Ng Biego | "gF— * g + TT

fe

Avg = Ng Alf.e + Nig All + N“Aﬁe

Coefficients N, through N,, are given in terms of the

parameters and the steady-state values.

Ny = -sin 580/(veo cos 8,9 + Xpge i10 sin 680)

N, = xer cos 580/(\/eO cos 8,5 + Xpge ilO sin 680)
N3 = Re

N, = Xg= LT,/[0.78 (2.33) w,q cos (By) T,]

fe
Ng = Xrre/weo
Ny = -Xnde 51n(5e0)/‘ﬂeo

Ng = -Xpge 110 €08 (6,9 w.g
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(A.28)

(A.

(A.

(A.

(A.

LB

(A.

(A.

(A.

(A.

29)

30)

31)

32)

33)

34)

35)

36)

37)
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2

: : ; 2
Ng = (ipeg X nge ~110 S1nCeg) X nge?/Veo (A.38)
. ;2 2 . 2
Nig = (L1 SIn"(80)X g *+ 119 COS (6e0))8m0e +
-i x 2 sin (5. )V (A.39)
feO mde el el '
N = (x2 i? cos(6_n~)sin (6 )-x2 i i cos (S, )+
11 = mde *10 ©95(%gq e0) =X mde 1feo 10 (°eq

2 : + 2
“X e cos(deo)51n(éeo)1 lO)/veo A.40)

Using these equations it is possible to obtain an eguation

of the following form:

dAil d” Al

n (A.41)

N =

dt

Notice that Equation (A.8) is a second order differential
equation since only the field flux and the load current were
considered to be states.

The coefficients for this equation are:

. [(Rfe Req CD) - ) (Rfe CE R, B)]/H (A.42)



T
I

N Z(ifeo_ z )
mde 110 (l " 22) 1/2

i 7

feO
X z (1 - < )
mde ( 19 V1 + z°

X Z i

mde feD

= (1 . Z:2)1/2

Z

X ilD (2 + 1/2)

mde

1

=3

10 (z + 1/2)

xmcle ilO

oo (1 s 22 ) 172

(A.

(A.

(A.

(A.

(A.

(A.

(A.

(A.
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43)

44)

45)

46)

47)

48)

49)

50)
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X .
c - _mde (A.51)

weO(l + 22)1/2

dee/Re (A.52)

N
I

Equation (2.33) and (2.34) are the solutions to the impulse

response of Equation (A.41). Equation (2.35) is obtained by

substituting t = —=_ in Equation (2.33).
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APPENDIX B

Derivation of the Equations Used in Chapter IIT

B.1 Current Boost System

A brief explanation of the operation of the current
boost system is given in Section 3.2. The expressions model-
ing the behavior of the current boost system are also given

in Section 3.2. The behavior of the current boost system can
21

be divided into two modes of operation, Mode I for ife < NL
21 e}
and Mode II for ife > NL . In this appendix, these modes
c
of operation are investigated and the threshold value

21
lfe(th) = jﬁ; is derived. Then using the saturation model

of Figure 3.4 for the current transformers the governing
equations for the current bocstsystemare derived.
Let us begin by analyzing the system in Figure B.1l

when the line to line currents at the secondary of the current

n "
icb’
The subscripts a, b, and ¢ represent phases a, b, and c,

n
and icc are small compared to if g

transformers, i &

ca’
respectively. In this case the six diodes of the current
boost bridge are forward biased (Mode I) and the secondaries
of the current transformers are short circuited through the
diodes. The resistance RC are thus inconsequential during
Mode I of operation. Since the current transformers are short
circuilted, the transformers are operating unsaturated and

simply stepping down the current passing through the
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lc

T
foc |
cC
14

il
cﬁl
A

la

(¢}
0

i c
feT —A\ A A4

+

fec cb

N N N

Figure B,1 Schematic of current boost system
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primary by the factor Nc’ i.e., the turns ratio of the
current transformers.

Let us derive the current waveforms for this case.
Notice that the current transformers have no direct effect
on the rest of the system quantities during this mode of
operation. The current through the field winding and the
currents from the current transformers can be considered as
time varying current sources. Figure B.l can be drawn as
Figure B.2. The symbols Rbl through Rb6 stand for the 6
diodes, respectively. Using Kirchoff's current law for
Figures B.1 and B.2 it is possible to obtain the current
waveforms for the different branches of the current boost
system. In doing this it 1s assumed that the armature cur-
rents were solely determined by the current drawn from the
R-L load, i.e., the current ii due to the self-excitation loop

is neglected. The waveforms obtained are shown in Figure B.3.

Notice that the variable i. is the magnitude of the load

L
current which could be changing during transient conditions.

The waveforms shown are: the line to line exciter-alternator

terminal voltages v v v v and v the

be?
and i

ba’ cb?

exciter-alternator terminal currents i

”
ab?* "ac’ ca’

1a’ 11p? jg8 BhE
phase currents of the secondary of the current transformers,

i
ca’

1 1
icb’ and icc and the line to line currents at the

secondary of the current transformers, i

n n

11
ca? icb’ and 1,..
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1p1 ] T Y
R

b6 | Vb6

Figure B,2 Schematic of current boost system with time
varying current sources
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exciter-
alternator Veb Vab Vac
voltages
(line=-to-
line)
exciter-
alternator
terminal
currents
phase -i /N |
currents L/ Vet
at the icb
secondary
of the
current i
transformers
-iL/N

Figure B,3 Sketch of the current waveforms for the
current boost system (continued)
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Figure B,3 Sketch of the current waveforms for the
current boost system (continuation)
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Now it is of interest to study the behavior of the
current boost bridge for changes in the current iL. The six
diocdes of the current boost bridge are represented as non-

linear resistances R through Rb6’ with forward voltages

bl

across them Wi through Vo6 and forward currents through

them 1 through ib6' The characteristics for the diodes

bl
¥
can be modeled as follows:

1

. kT . (1bj
vbj Rslbj + = ln(\Is + 1) (B.1)

The subscript j can be either 1, 2, 3, 4, 5, or 6,

i.e., corresponding to diodes 1, 2, 3, 4, 5, or 6, respec-

tively. The gquantities Rs’ %g and IS are parameters of the

diode. The variable vbj is the forward voltage across the

diode and ibj is the current through the diode. We will con-

sider the six diodes to be identical. It is possible to de-

fine the resistance R for a diode J to be:

bj
i
A Vb. q I
R, 2 2 =R + = (B.2)
bJ 1pj s ibj

IS is the reverse saturation current which is very small,

therefore for i very small the value of ij is very big

bj
and for all practical purposes 1s infinity. Also notice that

See P. E. Gray [8].
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when the current ibj increases ij decreases. Assume that
" "

the current boost bridge is operating in Mode I and ica’ icb

1 2iL

and icc are much smaller than ife or equivalently that 5
c

is much smaller than ife at all times. Then all the currents
through the six dlodes are due mostly to the current source

ife (see Figure B.2). Therefore ife is forward biasing all

the diodes which is equivalent to saying that the currents

i, .'s are relatively large and R

bj bj
resistance value.

= RS is a very small

Now let us write the diocde currents in terms of the
time varying current sources of Figure B.3. Let us assume
without loss of generality that all the events described
hereon are taking place in the interval 0 < w_, < n/3 of
Figure B.3.

In the case abcve the current ife is divided nearly

equally among the three legs of the current boost bridge.

1" "

"
Currents 1.2 1op and iCc also divide symmetrically, that is

"

i will divide equally between R

ca and R

B b6 and then the

b3 will divide equally between Rbl and

Rb2 and so on. As a result the currents can be written in

terms of the current sources for the time interval of

current going through R

interest as:
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i = ____1fe + i_L
bl 3 Nc \
i = i_fg =) j“_
b2 3 2Nc
R S ¢
b3 3 2N
¢ (B.3)
R
bl 3 Nc
. _ ife 1L
1 = == + —
b5 3 2N
c
i B
j_ = __.f_e+ _I'.'..
b6 3 2N
c
iL
Assume now that the current N starts to increase
c i
so that 1ts effect becomes significant compared to —%9 .

Notice that from the expressions above this implies that ibl’

1b5 and 16 will increase and 105 ib3 and ibu will decrease.
However as soon as this starts to happen then the effect will

be also to increase the resistances R R and

b2? b3
qu which can no longer be assumed to be equal to RS. Resis-

tances Rbl’ R and Rb6 can still be assumed to be egual

b5
to RS.
Notice that now currents will tend to redistribute
according to the new values of the resistances.

" 1" "
Now currents ica, icb and > will tend to take the path of
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"
less resistance. Hence more current coming from icc will tend

to go through R rather than R This implies that more

bl bl-
current coming from ibl must be divided between sz and Rb3
which tends to increase sz and Rb3 and decrease ib2 and ib3

even further. Since Rbh has increased, more current due to

i will tend to go through branches defined by the resis-

fe

tances R and Rb _Rb6 rather than R

b2 ~Rps 3 b1 ~Fpy:
As this process continues to go on, that is as iL

increases relative to 1 during the interval of interest it

fe
is possible to envisicn a limiting situation where most of the

n

current due to iCC goes through R Rbh is now a very big

b1’
resistance and hence it 1s plausible to assume that ife almost
divides nearly equally between the branches defined by the

b2 -RbS and Rb3 and Rb3 -Rb6'
and R

resistances R Also 1 divides

bl

through R This is because since 1 is very small,

b2 b3’ b
"

"
very little current due to i and 1 will have to flow
ca chb

through i and i to balance the effect of the currents due

b5 b6
to ibu' As a result the currents through the diodes can be

written approximately as:
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i zg_i

bl NC \

i :i_fg.,i

b2 2 NC

i z%i_i_]-:‘_

b3 2 Nc

(B.4)

oy = O

lb5 = 0

ib6 = 0
i 1 2i
L fe 2 L

Then as ﬁ; -+ —5- or equivalently when lee bl 0

c
we have the situation where the results above hold exactly as

a result R + o, R + » and R + o, This means that now

b4 b2 b3
21y
for ife > 5 the system leaves Mode I and enters Mode II of
e

operation. In fact notice that the topology obtained after

setting R R and R equal to infinity and R R and

b3’ b2 bl bl’ b5
Rb6 equal to 0 (RS is very small) in Figure B.1 i1s the topology
given in Figure 3.3. It can be shown that these results are

obtained independently of the restriction 0 < We g < "T/3s

i
Notice that as ﬁL starts to decrease again the process reverses
c
2iL
and for ife < 5 the current boost system leaves Mode II and
c

enters Mode I.
It must be noted that we have ignored the gradual

effect of the current boost bridge on the rest of the system as
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some of the resistances representing the diodes of the current
boost bridge grow larger. It has been assumed that the current
boost system goes from a situation of no effect to a situation
of effect on the rest of the system immediately. This is
justified by the fact that the characteristics of the diode

are exponential and therefore R varies rapidly from a value

bJ
of R, to .
S
We have shown that the threshold gilue ife(th) that
divides Mode I and Mode II of operation is 7¢£ . Now we will
¢

derive the governing equations for Mode II. The topology for
Mode II is independent of the time intérval considered and

is shown in Figure 3.3. The current transformers have been
modeled with a saturable mutual inductance as shown in Fig-
ure 3.4. Leakage inductances and winding resistances of the
current transformers have been neglected. The current sources
represent the exciter-alternator terminal currents flowing

through the primary of the current transformers. Letus define:
18 et o A (B.5)

This is also equation (3.19). Using Faraday's law
for the current transformer it is possible to write the follow-
ing expression for the transformer with voltage Veecl across
the secondary. The term (i -ercl/Rc) is the current through

the magnetizing inductance of the transformer.
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L  da{i-w /RC) v

- - _¢ fecl 1 fecl _
fecl w dt 2 - R m
el o]
(B.6)
v
_ ; “Tecl
Veecy ~ 0 3 L= =5 = im

Similarly for the lower half of Figure 3.3 it is possible to

write
L da@E-w_ ./R) v
c 2 Yec2’ ¢ i _ _fec2 _
= ’
Vrec2 T Yeo qar e Ry 1
(B.T)
\Y%
- & fee? .
Veec2 = 0 s 3T R, 2 S
Vrecl
. Notice that Vool = 0 and Voo = 0 for 1 - —5 Vilm
and % - —%%92 > im’ respectively, is a consequence of the
¢

saturation of the current transformers. Expressions (B.7) and

feel T Vrec2 T
to obtain (3.17). Inequalities at the extreme left of

(B.8) can be manipulated using the fact that v
Vrec
the equation (3.17) are added to the inequalities obtained
from (B.7) and (B.8) to account for Mode I of operation.

Equation (3.18) is obtained by manipulating the governing

equations algebraically to obtain %% as a function of the rate
of change of the states Afe’ Akde’ lkqe and iL' The variables
Yl through Yu are given below

(B.8)

>
Wy
Y, = (Me +Mu(iT)) (B.9)

=<
=
|
=
|__l
+
=
=
0
(]
.[s
==
\-——/
n



3
W
¥, = =M, +N
where,
2
M = 1 1, dee
1~ 2\X -
ffe Xrre
M. = E dee
2 2 K7Xffe

X X . X
M. = 1 -%(‘mde . mnde 5)M sir B

3 Xere  XppeKq/) D e
B l(dee X aete i 5
My = - 3\x ~ ¥ XK. Mg [ 098 O
i fre e 7 c
Mg = 0.78/T,
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(B.l0j}

(B.11)

(B,12)

(B.13)

(B.14)

(B.15)

(B.16)

Constants K K. are given in Appendix A by (A.14)

5* 77
and (A.15), respectively, W

through W

1 5

v e v

(0]

v X
- _ _9¢€ _mas
Wy = =5 (we/weo) X

are given by

2 2
v { v K
ge mqe de 5 .
W, = —% (we/weo)(%qe - qu )Mscos 8§, - —% (we/meo)(%3-+i;)M531n 8
e

(B.17)

(B.18)



194

W, = = — (o /w X -— M_ —=— sin §
3 Vi 0 qge que 5 Nc e
2
v i K
de L 5
- — ) e —
2 (me/weO’MS 5 cos ée(K3 e ) (B.19)
e 2 T
v X K_X
W, = - <2 (me/men)(fﬁ‘?- - 2= (B.20)
ve ' ffe T “ffe
v K
_ de . 2 :
Wy = = =g \we/meo) e (B.21)
v T

Constant K3 is given in Appendix A by (A.12)

B.2 Steady-State Equations

The equations necessary to solve for the steady-state
are listed below.* These equations and equations (3.21), (3.22)
and (3.23) are sufficient to find the steady-state. Notice

that in the steady-state the damper winding currents are zero.

T,R

Re = 2.337,(0.78) (B.22)

Zo = /0 (B.23)
R. T

7. = fe' 6 (B.24)

£ 2.33T5cos a(0.78)

* :
Hatted variables mean phasor or complex variables.



Z =2 Jaty §
p p/ \B
A Ve 2 P
Z_ = — ='V(Z +X sin a)” +(X_cos a) (B.
Py £p P
1
A= e
Ze Ze/ 1 (B
‘/ 2 2
_ (AC+BD)“ + (BC-AD)
Ze B 2 2 (B
C™ +D
6, = tan™'[ (BC-AD)/(AC+ED)] (B.
A= Rercos a (B.
B = Rexp + Rersin a (B.
c = Re + chos o (B.
0 = Zfsin o + Xp (B.
X cos ©
ge

- R sin 8
1 e i
a ] -
1

§ = tan_l[
= +
e Ze + Raecos 81 qusin 8
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25)

26)

.27)

w2 }

29)

30)

31)

32)

33)

.34)

First I will explain how to obtain these equations

and equations (3.21), (3.22) and (3.23) from the basic govern-

ing equations in Chapter III. After that I will describe how

to obtain the steady-state values using these equations and

equation (3.1).
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Equation (B.22) is obtained by calculating the
driving point impedance at the input of the output rectifier.
What this gives us is the equivalent impedance presented during
steady-state by the load resistance as seen through the output
rectifier. Something similar 1s done in the case of the
separately=excited exciter-alternator and the reader is
referred to Appendix A.

The complete quantity Ef represents the impedance seen
at the input of the SCR bridge looking towards the field winding
of the exciter-alternator. The angle of the impedance being
equal to o follows from the definition of driving point imped-

ance, i.e.,

0-—'“->.|(D<:>.
l—'H...!(D<: -
»\
<D
[

1 1
and 11 and el is from

is obtained as

1
since 91 is the phase angle between v

T
e
(3.12) equal to a. The magnitude of Z

i i 2

f’
for Re as shown in Appendix A.
The driving point impedance ﬁp given by (B.25) and

(B.26) is derived as follows:

}(D<)

Z £ & Jary (B.35)

1

>

The angle a+y follows from the fact that this is the phase

]
angle between L and il as shown in the phasor diagrain given
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Efde g-axis

d-axis

Figure B.4 Steady-state phasor diagram for self-excited
exciter-alternator
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in Figure B.4. The magnitude of ﬁp, Zp is derived as follows.

Equation (3.8) and (3.9) in phasor form can be written as

' \

-5 = ~8a- i e B. 36
v /=8¢ v I Se¥ + prilf P (B.36)

Now multiply (B.36) by 1/8e*y obtaining:
1 1
v /Yy = v o+ JXpijg-a (B.37)

or
1

1 1
ve[x = ve+Xpi sin a) + J(Xpll

1 cos a) (B.38)

Egquating magnitudes it follows that:

_ i LI 2 ( i 2
¥y = J(veﬂ(pilSln on) + Xpllcos a) (B.39)

v Using the definition of Z_. as driving point impedance

f
(zf - :—‘?) 1t is possible to substitute v_ in (B.39) for z.i,.
The variable ii can then be factored from (B.39) and after
dividing both sides by ii (B.26) is obtained.

The complex quantity Ee represents the driving point
impedance that is observed by the exciter-alternator at its
terminals (Ge/ii). Since the exciter-alternator is loaded by
both the R-L load and the excitation loop going to the field
winding in parallel, it follows that Ee is the parallel combina-
tion of Re and gp' Doing this yields equations (B.28) and
(B.29).

Equation (B.34) follows from a derivation similar to

that of (2.20) as derived in Appendix A. In this case R

should be replaced by Ze‘
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Equation (3.22) is derived as follows. From the

definition of Zp and Ze it follows that

1 B =4 K (B.40)

]
Using (3.11) i1 fe

This expression is substituted in (B.1l4) and the resulting

can be expressed in terms of 1

expression is solved for ife

Z (T./0.78)
e "6
ife = il( 7 ) (B.41)

p

Then using (B.41) and (2.3) the quantity (ife -ide) can be

written as follows.

Ze(T6/O.78)
l3e = 14 7 - sin(ée+81) (B.42)

p

lre ~
Equation (3.22) follows trivially. Equation (3.23) follows
trivially from the definition of Ze as the driving point
impedance.

Equation (3.21) for Xden is found by manipulating

de
the governing equations to obtain an expression in terms of

the direect axis mutual inductance Xm From (2.1) and (2.2)

de”
it follows that

vo = v + v (B.43)

If (2.5) and (2.8) are substituted in (2.10) and

(2.11), respectively, and the resulting expressions are



200

substituted in (B.43) with (we/weo) set equal to 1 it follows

that

- - . 2 . 2
ve (#qeiqe Raelde) +'Q“ﬁelde+xmdeife_Raeiqe) (B.44)

Substituting Xie = ¥ * X in (B.44) and solving

the resulting expression for Xm

de

A it is possible to obtain the

following expression

2 ( : : )2
X - V%é -Raelde+xqelqe + Xaeide + Raeiqe (B.45)
mde i - 1 3
fe de

If expression (3.23) is substituted for v, and (2.3)

and (2.4) are substituted for ide and iqe’ respectively, in the

numerator of expression (B.45) it is possible to factor out the

variable i, from the numerator. Then by substituting (B.42)

for the denominator in (B.45) equation (3.21) is obtained

after the wvariable il is cancelled from the numerator and

denominator.
The steady-state values can be found as described in

Section 3.3.1 knowing the quantities Ze, Ge, el and Zp. First

it is necessary to find R, and Z, using (B.1) and (B.3), respec-

tively. Then Z_. and other parameters are used to find Zp using

i

(B.26). With Zp, Zf and Re and other exciter-alternator

parameters found from Tables 2.2 and 3.2, it is possible to

find Ze and Bl. Then de can be obtained using (B.13). With
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these quantities and equations (3.21), (3.22) and (3.23) the
steady-state condition can be found.

B.3 Auxiliary Egquations

The equations used in Section 3.3.2 to help obtaining
the transient solution numerically are called auxuliary
equations. What follows is a brief explanation of how to

obtain these equations.

Equation (3.29) can be derived using (3.13) and
(3.14) in phasor form (see phasor diagram in Figure B.4). It
follows that

n

|
R . _ o B ol
1p,=v=8 o + 1, -8, =1, ,-8,-0, (B.46)
Multiply (B.46) by 1/S8e to obtain
! noo, . 5

1 = - B.4
1/_"1.‘:.Q._+ il./...o_ 11/_1 ( 7)

Equating magnitudes, real and imaginary " parts

of this equation, it is possible to obtain (3.29) and (3.30).
Equations (3.31) through (3.34) are derived for Chapter II in
Appendix A. Equation (3.35) is derived from (3.11). Equa-
tion (3.36) follows from (B.39). Equation (3.37) can be
obtained from (B.37). Equations (3.42) through (3.46) are
obtained from the governing equations applied for t equal i

to tO + AT.
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B.4 Linearization of the Governing Equations (Without Damper

Windings, Potential Transformer and Current Boost Bridge)

In this section the linearized equations for the self

excited exciter-alternator used in Section 3.4 are given.

Ave = Ail(sl) 4 Aée(sg) + Ail(s3) + Adee(sq) (B.48)
1 "
AL, = A11(812) - Aa(sl3) + Ail(sl”) (B.49)
Aée(slg) + Ail(SEO) + Ave(322) =0 (B.50)
n asiq
Av, = RAL, + L —¢ (B.51)
, dAii
-Aa = -(823)Ave + (SEU)All +(S25) T
dAX dAs dai
mde e 1
t(spg) gt - (Sp7) a@ - (Se8) @@ (B:52)
AX pge = (szg)Ail - (530)A11 = (s31)A6e (B.53)

Manipulating these equations an equation of the following form
can be obtained

n
dAil d Al

_ n oo 1
—Aa(ZO) = Ailwn + 2;mn 3t + 5 (B.54)

Notice that equation (B.54) is second order because

only the field flux and the load current are considered states.



The

are given below:

= s i +
s; ((r e51n(9 ) cos(elo+6e0))(R .= 1051n(elo 6e0)
- 4 + - i +
xqe 1OCOS( )) +(-R ecos(6e0 elO) Xde051n(6e0 4
8 Q. . - -
-«T6/O.T )deeollo -Xd6011051n(6e0 elo) Raellocos(é
5y = ((Raell cos(610+6 O) +qu11081n(590+910))(R e11051n(9
- 3 + 3
qullocos(660+ﬂ )) + (=X X300 locos(6e0+elo) RaellO
8 1
. et . . _ . "
((T6/0.T )deeo:l.lO Xd8011051n(660+610) Raellocos(ﬁeO 8,
1 L}
sy = ((Te/0.T8)Xpq00) ((Tg/0-T8)X 50011 o = Xaegty o8in(8 o¥E o)
- Raellocos( oot lO)Vv
L] t
5), = (((T6/0.78)110 1051n(6e0 10))((T6/0‘78)dee0110
- i g - i +
Xde011051n(6e0+610) Raellocos(éeO 610)))/ve0
(1, )
515 = \jgeoslag)+iyg)/i,
" []
$13 7 (1101105“’(“0))/110
"
Sy ( 10" 10°°s “ ))/110

10

eO 10

-+
10

sin(§ +6
(eO
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constant coefficients for equations (B.48) through (B.5L)

Mg,

(B.55)

10))

)))/veO

(B.56)

(B.57)

(B.58)

(B.59)

(B.60)

(B.61)
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20

22

323

2k

So6

27

So8

= cos § (v _+4R
e

= sin GeO(Raecos 8,

0" el "ae 10

+ sin 6e0(-Rae 10

= sin GeO

R

4

- 2.331,(0.78)

o5 =

CcOos o
(o]

sin o v )

0" el

Rfe(T6/0.78)
(2.337T5(sin g )Veq

xffeo(T6/o.78)

O+qu

we0(2.33)T5(sin aOYGeO

(T6/O.78)ii0 -ilosin(6

+
e 810

i +
i _cos 910 qu

i. _sin 810+qu

. & & .
sin elo)+ coséeo( qucos 910 Rae51n 6

)

weo(2-33)T5 0

1) o¥maeo 05035010

(sin a )veo

)

ub0(2.33)T5(sin uO)véO

deeOSln(6e0+610)

meo(2.33)T5ve081n o

(B.

{B.

LB

(B.

(B.

(B

(B.

(B.

(B.

(B
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62)

.63)

64)

65)

66)

67)

.68)

69)

70)

71)

.72)



2]
I

pg = (T),/0.T8)(C1+20, (4 g=le0) +3C,ipe0=igen)?)

30 = (Cq*2Cy (i, -3, )+ 3¢5 (ip g1y o) )sin(8 5+, )

7]
|

-
S31 = (C1#2C; (i gIge0) * 305 ipe01ae0) )1y geos (8ep*o, )

where C1 through 03 are given in Table 3.2.

2o B tPs
n PhLe

L P +P,R +P
~ _ e 3 L'e "6
‘Cwn - PML

e

7 = !
o PhLe
N = S1 = S305), - (s ,=55,8 h) 1 + (53+s29 h)/
N 551,513 ((s S+, h)(513 12)(S2h/512)
1 s - N

s s
_ 513 20
P (525+s

2 8y, 19

313
- (528+526S3o)) ((53+529 ) ?3'1_2)/ ()

P, =-s__ + (Seh/s (1 +(s.-s h)(s ))/(N)

3 23 2 31 22 19

26529) - ((525”326829)/ S1p * (pptsyg83y) 5=

(B

(B.

(B.

(B.

(B.

(B

(B.

(B.

(B.
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73)

T4)

75)

76)

77)

78)

-79)

80)

81)

82)



Sop

* ((525+526529)/312 t (s ppts, 685 %y

P, = (s

s..+s__)
26731 27 319

S
- (528+sa6s30)) (l *(spms5y8),) s—f)/(m

3 (Seh/slz)(53+529Sh)(51h/512) Sot S

5 (N) 515
S50
Fe = ((825+526529)/512+(527+826531) 1o (528+S26530))
S S
. 1k 1k
((S3+529Sh) 312)/“” 510 (5,555,658 ,50)
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(B.83)

(B.84)

(B.«85)

Variables with subscript 0 represent steady-state

values and are obtained using the method of 3.3.1.
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APPENDIX C

Data and Expressions Used in Chapter V

C.1 TABLES

TABLE C.1

Parameters for the Main Generator

Xae 0.18 p.U.

Rog 0.00448 p.u

Xndg 2.04 p.u

X ae 1.64 Bele

qug LeJT P adda

Xyag 2.1153 D.u

Ryede 0.0141 Pl

Ryae 0.00746 p.u.

Rpg 0.94x1073 D.u.

Xerg 2.129 Bl

Vg ; 26 KV

KVA 907000 KVA
Regiéigice 0.09630 @ 125C°

“20 377.0 rad/sec

b, 2.04 i

by ~0. %4 _—

b, 1.665 _—

By -5.12 -

Dy 2.987 -

H 3.14 seconds



fe0
kdeO
kgeO
fg0
kdgO

Akng

g0
fel
g0
10

el
kdeO

kdg0

fel

Parameters for Step-Test

0.

0

TABLE C.2

379
268

-0.129

1

Lo

0.

Qs

0.

0505
0
0
0
0

-22.493

-19.902

-77.024

-0.173%x10"

1

g.

.15304

29162

0

.57
656

«JOBL

5081

.5379%x10"

2

3

LU,

‘T g T W v ©w o
<

i
rad/sec
volts
volts
volts
volts

rad

rad

p.u.

pnu.
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fel
kdeO
kqgeO
g0
kdgO

Akqgo

TABLE C.3

Parameters for Fault-Test
0.5175
0.3654
-0.1756
0.8877
0.8186
-05922
0.8151
0.0
—0.225><102
-19.904
~98.283
0.0
1.1534
0.3977
0.9998
Q. 7772
0.8946
0.4996
0.42024
0.5883
0.0
0.0
0.73339x1073
0.3
1.0
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C.2 Variables C1 Through C6 for the Auxiliary Equations

Used in Chapter V

2
w w X
r (Ye0), _ g (“s0\rae,
ng ag wg ag ag wg Xffg fg
C. = v + {0.1)
1 dg wg X2
¥ + mdg
dg * Xpp,
2
R (‘”ﬂ)
_ ag\ w
C, = g
2 + X c.2
. o (c.2)
_x. + -mndeg
dg Xffg
w X2
R _&0 X _ _mdg
ag wg mdg Xffg
C3 = 2 (C.33
(—X + mndg
dg Xffg
X2 w
, (_x | _@a)(_ag)v
c, = _ _mdg _ mag Xffg wg a8
b kdg Xffg fg X2
X * _mdg
dg = Xppo
Xed X 3
_deg * EE"E fm_& A
+ - £fe/7ffg P (g 4




X dg
('de * Xm .
&€  “rrg/ 28
2
X
(Xd + -nde )
& Xepg
( : )2
-X md
mdg X
ffg &
X2
-X 4+ _mdg
dg X

211

(C«5)

(C.6)
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