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Excitation control systems are an important source of
dynamics in power systems so their modeling is critical for the
understanding of power system behavior and control. Modeling
techniques are developed here for exciter-alternators with
output rectifiers, These are feedback systems of nonlinear
characteristics. The modeling techniques described here are
specifically applied to the Alterrex® excitation control
system. The mathematical model developed for this system is of
such a nature as to include some of the effects neglected in
past models of this device. The form of this model has been
chosen so that there is a correspondence between the model
structure and the actual device and so that model parameters
can be obtained from a knowledge of the parameters and settings
of the physical system. The model developed in this thesis is
complex and represents the properties of the Alterrex
excitation control system in considerable detail. The degree
of complexity is greater than that which would normally be
considered necessary for a transient or dynamic stability |
study. However, the object of this thesis is to develop an
accurate model directly from the physical device. This model
can then be used to study Alterrex performance in detail or as
3 basis for exploring simpler, lower order models.
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Chapter I: INTRODUCTION

1.1 Basic Background

1.1.1 Power System Stability and Excitation Control Systems

In a world more dependent on electric energy than ever,

the reliability of power systems has become one of the major

concerns of utilities. As far as reliability is concerned the

stability of electric power systems is the most important

criterion since a system cannot operate effectively under

unstable conditions. In particular the behavior of the

excitation control system can aid stability by regulating the

generator terminal voltage as well as other parameters of the

system. With the arrival of new technologies, excitation

control systems have become faster and more reliable, thus

improving the stability of the system. One type of excitation

control system in current use employs an exciter-alternator

with output rectifier . Modeling of the excitation control

system is of vital importance for the understanding of the

stability problem in a power system.

Stability in a power system is determined by its

transient and dynamic characteristics. Dynamic characteristics

describe the behavior of the power system during normal

operation. In this mode of operation small changes in load

change the operating conditions of the generating unit.

Transient characteristics describe the behavior of a power

system after a major change has occurred. Major chanaes
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or disturbances occur because of faults in the lines and

opening of breakers. These abrupt changes create new

conditions in the power system to which it must adjust.

Instability can be observed in a power system by observing the

phase angles of the generators. Oscillations of these angles

or the loss of synchronism in an extreme case is the sign of

instability. Also instability can be observed by observing the

abnormal behavior of other parameters such as voltages,

currents or output power.

The generating unit serves to transform the fuel into

Jgseful electric energy. The three fundamental parts of a

generating system are the boiler, the turbine and the generator

with their respective control mechanisms (see Figure 1.1). The

excitation control system is designed to control the terminal

voltage of the main generator. This is achieved because the

excitation control system provides power to the field winding

of the main generator.

A simplified picture of an excitation control system is

given in Figure 1.2. The regulator is designed to regulate

terminal voltage. Regulation of terminal voltage is not

sufficient to guarantee stability. In fact, for very high

values of regulator gain the regulator might actually result in

instability. This instability could occur in the dynamic range

of operation when only small disturbances are involved and also

as a result of a transient disturbance following which growing

oscillation might occur as the result of the regulator effect.

In order to avoid this problem, lower regulator gain might be
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used but also the use of additional regulating signals is a

good measure. A signal often used is the exciter generator

output voltage in order to introduce a rate feedback signal in

the system. This signal is indicated as "rate feedback

signal" on Figure 1.2. In general, we want a fast response for

the regulator system since this is useful when large

disturbances are involved and it becomes necessary to react

against the decay of flux linkage by increasing the field

current in the main generator.

In order to find out how a power system will respond in

steady-state or transient conditions, computer simulations are

done. Since the behavior of the generating unit against the

power system and against other generating units is the

principal factor that determines stable operation, modeling of

this piece of the power system is of great interest for

stability study purposes. More detailed information on this

subject can be found in Reference [1] and [2].

I.E.E.E. Models for Excitation Systems

Present day models [3] of excitation control systems

were developed assuming very simple structures for the

systems. Hence, when applied to complex modern excitation

1.1.2

control systems they may become a black-box type of

representation with little correlation between the parameters

of the model and the actual physical device. This lack of

similarity manifests itself in the difficulty of finding
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parameters for the model appropriate for representing the

actual system. These models are given in Reference [3].

A typical model proposed by the I.E.E.E. committee in

Reference [3] is given in Figure 1.3. This is the Type I model

which is used to model excitation control systems such as the

Alterrex excitation control system. The block diagram with

time constant Ts represents the regulator's input filter.

The main regulator transfer function is represented as a gain

K, and a time constant T,. Following this, the maximum and

minimum limits of the regulator are imposed so that large input

error signals cannot produce a regulator output which exceeds

practical limits. The exciter-alternator is modeled by the

time constant Tes the constant Ke and the feedback loop

Se which represents the exciter's magnetic saturation.

major loop damping is provided by the feedback transfer

function with scale factor K. and time constant Tg, from

exciter output Erg to the first summing point. The signal

coming from the power system stabilizer into the regulator

would be considered under the heading of "other signals" which

are added to one of the summing points. A power stabilizing

signal is usually derived from rotor speed. One problem with

this model is that there is no clear correlation between the

The

parameters of the model and the parameters of the real system.

This is particularly true for the exciter-alternator. There

are also other effects that this model doesn't represent.
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i.2 Purpose of this Thesis

The New Approach

The purpose of thiswork was to develop new modeling

techniques for modern excitation control systems. In

1.2.1

developing these models extremely simplified functional

black-box types of relationships were avoided in favor of a

representation based on the internal physical properties of the

devices in guestion. Thus, the end result was a model in which

a correspondence can be estabished between the important

parameters of the real system and those of the model.

Creating a generalized technique for every possible

excitation control system would had meant a monumental if not

impossible job. The approach chosen in this thesis is to

concentrate on the modeling of a specific system: The

Alterrex excitation control system. The Alterrex excitation

control system possesses the characteristic typical to most

modern excitation control systems. Therefore the techniques

developed here could be utilized with modifications for other

modern excitation control systems.

Modern excitation control system is understood in this

thesis tomen systems that provide power to the field winding of

the main generator by means of an ac power source with output

Registered trademark of the General Electric Co.
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rectifier. Sometimes the ac power source is obtained from the

same output voltage of the main generator as in the case of the

Generrex. system.

The model developed in this thesis is complex and

represents the properties of the Alterrex excitation control

system in considerable detail. The degree of complexity is

greater than that which would normally be considered necessary

for a transient or dynamic stability study. However, the

object of this thesis is to develop an accurate model directly

from the physical device. This model can then be used to study

Alterrex performance in detail or as a basis for exploring

simpler, lower order models,

1.2.2 The Alterrex Excitation Control System

The Alterrex excitation control system is shown

schematically in Figure 1.4. Notice that the output of the

exciter=alternator is rectified by the output rectifier feeding

the field winding of the main generator. The exciter-alternator

itself is self=-excited by using a potential transformer

connected from its output voltage to an SCR controlled 3 phase

rectifier. There is also another excitation loop consisting of

the current transformers with the current boost bridge. During

normal conditions the power input to the field winding comes

from the SCR bridae and the diode bridge is forward biased

* Registered trademark of the General Electric Co.
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without contributing any current to the exciter-alternator. In

case the voltage of the exciter-alternator goes low the diode

bridge then supplies power to the exciter-alternator's field

winding.

In order to obtain this type of behavior the turns

ratios of the potential and current transformers are properly

adjusted. The saturation characteristics of the current

transformers are also important.

The control system is shown in Figure 1.4 as a single

block. Figure 1.5 shows a more detailed version of the

different parts of the control system in block diagram form.

The control system is divided in several subsystems identified

in Figure 1.5. These are the firing angle system, the

automatic regulator, the active-reactive current compensator

(A.R.C.C.), the current limit system (C.L.S.), the exciter

minimum voltage limit system (E.M.V.L.S.), the phase limit

system (P.L.S.), the underexcited reactive ampere limit system

(U.R.A.L.S.) and the manual regulator. Switch s is either in

position 1 or 2 depending on whether the system is controlled

from the manual regulator or the automatic regulator. The

control system inputs are the exciter and generator currents

(11,1) and voltages (Vgyvg). The output from the

regulator is a continuous signal Vg This continuous signal

is the input to the firing angle system which generates the

gate signals that are used to fire the SCR's of the self-
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excited exciter-alternator. For more detailed information

about this system the reader is referred to the Alterrex manual

distributed by the General Electric Co. [4].

1.2.3 Organization and Scope of the Thesis

The thesis has been organized into 6 Chapters.

Chapter II through V can be considered the main body of the

thesis. Chapter VI consists of the conclusions and suggestions

for further work. In Chapter II a basic problem consisting of

an exciter-alternator with output rectifier and powered by a dc

source is treated. This problem allow us to introduce the

model for the exciter-alternator with output rectifier without

having to deal with the saturation and self-excitation effects

of the exciter-alternator. Chapter III then extends the

techniques developed in Chapter II to include the effects of

magnetic saturation and self=-excitation thus obtaining a model

more directly related to the Alterrex excitation control

system. The current boost system is also modeled in

Chapter III.

In Chapter IV the control system is modeled. Chapter Vv

puts together the information in the 3 previous chapters and

adds the main generator equations in order to obtain the

complete final model of the Alterrex excitation control

system. The model is simulated without the current boost

systems. The results are insystem and the limiting
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agreement with expected behavior for this system. The results

are also compared with results obtained using the I.E.E.E.

Type I model.

Methods are developed to obtained the solution for the

equations of the model. Because the model is nonlinear the

method is based on iterative numerical techniques which could

be implemented in a digital computer. The results obtained

using this method in Chapters II and III are compared to

results using a linearized perturbation analysis for the case

where the system is disturbed with small perturbations about

the steady state equilibrium points. This is done as an

approximate way of determining whether the numerical method

used is giving meaningful answers.

As a final comment it must be pointed out that this

model has been developed having in mind the effect of

excitation control systems on the dynamic behavior of the main

generator. In doing this certain effects of little

significance for dynamic analysis such as harmonic components

in the system variables have been neglected. Therefore the

user of this model should understand its limitations before

using it for purposes other than those specified in this

thesis
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Chapter II: MODEL OF SEPARATELY-EXCITED EXCITER-ALTERNATOR

WITH OUTPUT RECTIFIER

2.1 Introduction

In this chapter the case of a single synchronous generator

with output rectifier and with a highly inductive load is

analyzed. This system is analyzed because understanding of

this particular problem helps to understand the

exciter-alternator problem. The analogy between the ac

synchronous generator with rectifier and inductive load and the

exciter-alternator with rectifier and feeding the field winding

of the main generator is based on the fact that the field

winding of the main generator is also highly inductive.

However the exciter-alternator with rectifier will also be

affected by the back emf produced by the changes in the main

synchronous generator armature flux. This effect is equivalent

to having a voltage source in series with an inductor at the

load of the exciter-alternator. In this chapter the back emf

effect at the load of the exciter-alternator is ignored. This

effect will be included in the complete model presented in

Chapter Vv. Except for this, both systems are equivalent and

they will be referred to commonly as the exciter-alternator

with output rectifier. The problem of the exciter-alternator

with output rectifier can be subdivided into two basic

problems; The problem where the exciter-alterrnator is
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separately-excited and the problem where it is selfeaexcited.

In this chapter the former problem will be treated. The latter

problem will be treated in Chapter III.

2.2 Derivation oftheModel Equations

The schematic of the separately-excited exciter-alternator

with output rectifier is shown in Figure 2.1. The field

winding of the exciter-alternator is separately=-excited with a

dc voltage source Vee: This problem is not as trivial as it

might seem since the use of a rectifier at the output gives

rise to complications not encountered in the classical problem

involving a synchronous machine with an ac load. For example

in the present problem harmonics are present in the line

currents i, ig, i, due to the phase controlled rectifier.

The phase controlled rectifier is an important part of

this system, therefore it seems convenient to summarize briefly

the behavior of the rectifier before continuing to solve the

oroblem. Figure 2.2 shows a sketch of the waveforms of the

output voltage across the bridge, the current through the load

and the current through phase a, v(t), i (t) and i(t)

respectively. It also shows the average components of i (t)

and v(t), i.e. 3 (8) (ge) respectively. The other phase

currents i, and ig will be similar to i (t) but shifted

by 120 degrees and 240 degrees respectively. Two sets of

figures are shown, one showing the waveforms obtained with the
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firing angle B=0 degrees and the other at some B=B,. The

waveforms for B=0 are identical to those which one would obtain

using a 3 phase diode bridge. Notice that the phase current

i,(t) goes from zero to I co the magnitude of I dey (8)

instantaneously, i.e. the current commutates instantly from one

leg of the bridge to another. This is a consequence of the

assumption that the terminal voltages behave as sinusoidal

voltage sources with no impedance. In the real case, the

reactance of the alternator will not allow the phase currents

to jump instantaneously in time and instead the current will go

from zero to Ic in a finite interval of time called the

commutation interval. This effect has been neglected in the

model presented in this thesis.

Notice also that the current I(t) appears as having

very little ripple. This is consistent with the assumption

that the inductive nature of the load will filter the harmonics

of the current significantly. In practice there exists a

ripple, therefore 1 (dey (B) represents the average of dc

component of the instantaneous current i (1). While

1 (ge) (V) and Vi (de) (P) represent average values their

magnitudes may change with time and therefore they are

considered functions of time. Figure 2.2 represents the

variables in question for the particular case where the system

has reached steady-state or equilibrium and 1 gey(t) and

Vi (de) (PB) are constants.

In order to understand the behavior of the separately-

excited exciter-alternator it is convenient to approach the
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problem heuristically. This approach will suggest the

mathematical model to be used for this system. First consider

the assumption that the terminal voltages form a balanced

sinusoidal set. This assumption neglects the effect of

armature current harmonics and dc currents on the armature

fluxes and voltages. Similarly, the effects of harmonics and

ripple in the field current will be ignored,Theseapproximations

will be applied to the exciter-alternator throughout this

analysis, permitting the exciter-alternator to be represented

in standard d-q transformation representation. Since the

harmonic components do not play a significant role in the

transfer of energy from the exciter-alternator to the main

generator field winding, these approximations are felt to be

justified. In a consistent fashion, the load ripple will be

ignored; the load will be modeled in terms of I dey (BD and

YI (de) (ED - From this point on these two variables will be

referred to as 1 (t) and vi (B).

The d-a transformations transform armature quantities

into a reference frame rotating with the rotor. This frame of

reference consists of two orthogonal axes: the direct (d) and

the quadrature (a) axes. For more detailed information on d-a

transformations consult Reference [1].

In conclusion it is possible to construct a mathematical

model that represents the effect of the dc components of the

variables in the rotor circuits and the fundamental components

of the ac variables on the armature circuits. This then

ignores all the harmonics of the system variables, or more
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precisely all the harmonics due to the rectifier at the output

of the machine. During transient conditions the ac variables

are amplitude modulated due to changes in magnitude of the

rotor and armature currents and freaquency modulated due to

changes in rotor speed. The frequency components arising due

to these effects are independent of rectifier action and are

accounted for in this model.

The following equations in terms of the direct and

quadrature axis variables will be used as the model for the

synchronous machine of the separately=excited

exciter-alternator. Adkins [1] is given as a reference for

these equations. The d-axis variables are indicated by the

subscript d, g-axis variables by the subscript a and the

subscript e stands for exciter-alternator quantities. The

subscript k is used to indicate damper winding variables and f

is used to indicate field winding variables.

Vv = i déde VaSin e

= §ae VeCOS e

(2.1)

(2.2)

Variable Ve represents the amplitude of the exciter-

alternator terminal voltage in per unit. Variable S

represents the phase angle between the terminal voltage of the

exciter-alternator and the quadrature axis. This variable so
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familiar in standard two - reaction theory has here an

interesting meaning. In standard two - reaction theory this

variable is often measured with respect the infinite bus which

is the absolute electrical frame of reference, i.e. it is

oscillating at constant nominal frequency. In the present case

however there is no easily identifiable infinite bus, rather

the reference frame of the fundamental component of

exciter-alternator terminal voltage is used. Equations (2.1)

and (2.2) are used to transform the terminal voltage into two

fictitious components of voltage on the direct and quadrature

axes. These voltages are Vde and Vie repsectively.

Lye = i;sin(s, + 01)

Le = i,cos(6, + 0,)

(2.3)

(2.4)

Variable i is used to represent the amplitude of the

fundamental component of exciter-alternator current in per

unit. Variable 9 is used to represent the phase angle

between the fundamental exciter-alternator terminal current and

exciter-alternator terminal voltage. Equations (2.3) and (2.4)

are used to transform the terminal current into two fictitious

components of current along the direct and quadrature axes,

» * Ss *Lie and i,e Te pectively
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The different components of flux linkages on the direct

and quadrature axes can be represented as follows:

‘de = ~ Xde ide * Xmde ife * Xmde lkde

\kde = = Xmde ide * Xmde Ife * Xkde ikde

Are = Xere ire = Xnde lde * Xmde kde

‘ae = ~ Xae 1ge * Xmae lkaqe

\kae = = Xmae lge * Xkae lkae

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

Notice that the model employed here represents the exciter-

alternator by one damper winding on each rotor axis. The

symbol A is used to represent linkage flux and X is used to

represent inductances or reactances in per unit. The subscript

m used on the inductances, is used to indicate mutual

inductances. Equations (2.5) through (2.9) are used to define

per unit flux linkages on the d-g axis in terms of the various

per unit rotor currents. Notice that the generator convention

has been chosen for armature currents i4e and ies positive

armature currents are defined as flowing out of the armature

terminals, producing a demagnitizing effect on the exciter-

alternator fluxes.

are

Fluxes Ade and Age linking the transformed armature

fixed with respect the rotor d-qg axes but are in motion
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with respect the physical armature winding. As a result, the

per unit voltages Ve and Van include speed voltage terms

as follows:

Vde = ~ (wg /Weg) Aae = Rae lde

Vae = (8, 7%.0) de - Rae 1ge

The variable Rye Tepresents armature winding resistance.

voltages are diminished due to the ohmic drop across the

(2.10)

(2.11)

The

armature winding resistance. Variable We is the angular

speed of the rotor. Variable Weq is the nominal angular

speed of the rotor. Both variables are measured in electrical

radians per seconds. Strictly speaking there should be a third

term in Equations (2.1) and (2.2) according to Faraday's law.

This third term is due to the fact that fluxes LI and A,

are not just rotating in space with respect the armature

winding but at the same time they are changing in magnitude.

In this model these terms will he neglected. This is

consistent with the assumptions neglecting dc and harmonic

armature currents.

The per unit voltage equations for the remaining rotor

wvindi 1gs can he written ac

dA eq = = WapReelre * WegVre

dt

Wide = = WegR kdelkde

(2.12)

(2.13)
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A _ Ww :
 A eae * e0Rkgelkge
ps

(2.14)

These equations are in per unit, therefore, the dimensions of

the equations must be balanced by multiplying the right side

Dy Woe
The following equationsrepresent the effect OF the

~ectifier and the R-L load:

di, = - U4 RI + Og
dt

(2.33) T, Vo COS B ¥

i = (7,/0.78)  3g

0 Sm

IL (2.15)

(2.16)

(2.17)

(2.18)

Variables Vi and i are the average voltage across and

average current through the R-L load in per unit. Equation

(2.15) is the state equation due to the inductive nature of the

load. Equations (2.16) through (2.18) represent the rectifier

bridge. These equations are standard in the rectifier

literature [5]. The multiplying function (2.33)cospf in

Equation (2.16) comes about after integrating the waveform

shown in Figure 2.2 over the interval [B, 8 + 7m/3]. Since the

function to be integrated on this interval is sinusoidal the

multiplying function is a cosine function. Equation (2.17) and

(2.18) come from the fourier series of the instantaneous
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exciter-alternator terminal current in terms of i. Ty and

Ts are normalizing constants. Since these equations were

originally derived for actual dimensions it becomes necessary

to balance the equations if per unit values are used. For

example, if (2.16) was in actual dimensions it could be per

unitized by dividing the left side by the base value of Ve

and the right side by the base value of vi - Because equality

must be maintained it is then necessary to multiply the left

hand side by the base value of Ve and the right side by the

base value of Vi Bringing the last constant to the left

side of the equations yields the value of Tio i.e., Ty =

Ve(base)’ Vi (base)" Ts is obtained similarly. Equation
(2.18) shows that the angle between the fundamental of

exciter-alternator terminal current and voltage is equal to the

rectifier's firing angle. This is an interesting effect due to

the use of phase controlled rectifiers. A close comparison

netween the sketches given in Figure 2.2 illustrates more

clearly this effect.

Equations (2.1) through (2.18) are sufficient to represent

the separately=-excited exciter-alternator with output

rectifier. Table 2.2 given in the summary in Section 2.5 is

included to help to distinguish between the variables and the

known inputs and parameters values. Notice that the number of

variables is 18, which is also the number of governing

equations. The values of parameters can be obtained using the

data provided by the manufacturer. The data provided by the

manufacturer is based on tests made on the machine from the
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armature side of the machine which yield the following

constants well known in the synchronous machine theory

literature: Xqo Xy Xy, Xq Xg Xo To Tyo» Tuo’ Tq and
Tg. These constants are defined on Table 2.2. The

transformations between these standard constants and the model

parameters are also given in Table 2.2. References [1] and [6]

are given for these constants and equations.

The mechanical input for the exciter-alternator is

we (£) The reason why We rather than torque is considered

to be the mechanical input is that the exciter-alternator is

usually connected to a bigger machine (main generator) whose

moment of inertia is much larger than the one for the smaller

machine. The result is that the speed of the exciter-alternator

is determined solely by the speed of the main generator.

With Table 2.2 plus the values of inputs and data

information from the manufacturer it is possible to obtain the

mathematical model for the separately-excited exciter-

alternator using Equations (2.1) through (2.18). These

soquations are listed again in the summary.

2% Solution Techniaues

2.3.1 Steady-State Solution

For constant inputs w,(t) = Won B = Bg and Veo =

Veen it is possible to determine the equilibrium points or

steady-state solution of this system by setting the derivative
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terms of (2.1) through (2.18) equal to zero and solving the

resulting equations algebraically. The resulting expressions

are given below, These

equations are derived in Apperidix no The eguations determining

the steady-state are:

90 = fg (2.19)

r . -

Xe cos 90 - Rae sin 90

L Re + Rae cos 90 + Xqe sin 90 |

Re = RT,/(0.78(2.33)cos(By)

(2.20)

(2.21)

leo = Vreo/Rre (2.22)

Lig = Xnde reo
“R_cOS§_, +R_, COS (8g + 019) + Xo sin(é,, +O10)

(2.23)

(2.24)
v

eo

For given values of inputs VfeD and Bg» and given

the values of the parameters of Table 2.2, it is possible to

obtained the equilibrium conditions for v 4, i, Sen

lfen and 01g 3s follows. ©10 is determined using

(2.19). The parameter Re is calculated using (2.21). This

parameter represents the resistive impedance that the terminal

of the exciter-alternator sees through the SCR bridge into the

load. Notice that this parameter is a function of the firing

angle Bye with 10 and R, then §_, can be calculated

using (2.20). The value for ieen follows easily from

(2.22). The value for iq can then be calculated using
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(2.23). The terminal voltage v_ 4 is then obtained using

(2.24). With these values other variables such as fluxes can

be calculated using the governing Equations (2.1) through

(2.18).

2.3.2 Transient Solution

We shall now proceed to solve the equations for the

transient response of the system. This presents some

nontrivial problems because these equations are nonlinear and

there is no clear direct method to put the equations in

state-space form. In this section a numerical method to

analyze the system will be developed. In developing this

method the main issue dealt with will be to obtain the global

behavior of the exciter system, i.e. to obtain the solution of

the governing equations for general transient conditions. For

example this could be finding the time trajectory describing

how the system moves from rest to a particular equilibrium

condition for a given input or from one steady-state to another

steady-state in the case when the input changes from one value

to another.

The mathematical expressions (2.1) through (2.18) along

with the initial conditions I (tg)=1i gp realty) = Aroq?

Aede (to) =2kden and Meqe (ta) =2kqen and the unknowns
of Table 2.2 are sufficient information to determine the

response of the separately-excited exciter-alternator given

that we know the parameters. The governing Equations (2.1)

through (2.18) however must be manipulated algebraically in
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order to obtain equations suited to the following numerical

procedure. The necessary manipulations to derive the following

equations are given in Appendix A. It must only be remembered

that these equations are not an addition to the governing

equations but a derivation from them. The iterative numerical

nrocedure is described below step by step.

Step 1 Equations (2.12), (2.13), (2.14), and (2.15) given in

Section 2.2 and repeated here describe the energy storage

elements of the system. These are the state equations.

4A — i

3 fe ~ “eoRfelfe
At

2i YaO

Mpde = = YegRkde*kde
dF

MN qe = 7 YeoRkaelkae
“dF

dl = wg RI +o
dt | 1

Vv

{fe (2.12)

(2.13)

(214)

(2.15)

Step 1 consists of integrating these state equations for a

conveniently small interval of time, AT, thus that the system

variables that are not states on the right hand side of the

state equations can be considered constants, evaluated using

ice (tg), Vie (tg), i (ty and v (tg). In this

way it is possible to obtain the values for NG + AT),

I (ty + AT)» Age (to + AT) and A (ty + AT) approximately.
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with these values it is possible to solve for the rest of the

other unknown variahles at time tg + AT. This is done in the

following steps.

Step 2 Obtain §a(ty + AT) iteratively using equation (2.25)

as indicated below.

D
wr

1) = Tani Vae Cex)
Vae Ce(k)|

——

\
(K de

ran= 2 2 .

(Cg 00) Oe - X mae) (9:78 i (tg +4) cos (84 y) + 04) +

Xkae 2

Rae 4 A n

}

A
J

 (0eg/0eg) Xmge * kage (to* AT) )
% inp

/

2 : :

((wg/ugq) (Kz+ K5“)(0.78 1) sin (Soy + 01) + (wg/ugy):
Ky T,

7]

(K, + KsKg - Rae (1.0.78) cos (Sg (yy + 017)
7 To

(2.25)
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Subscript (K) is used to indicate the current value of the

variable in question and (K+1l) is used to represent the new

value of the variable. Using (2.25) the value for Se(Kkel) is
. . 8 *

estimated using e(K)"

It is obvious that, Se(1) = § (tg). The final

value that Se (K+1) approaches is Se (tg + AT). In order

to determine the convergence of the procedure the following

test is made after each iteration, let E = |Geqn) -

Se(k)) Seka) | then if E &lt; e, where e is a conveniently

small constant the value of 6 can be said to be
e(K+1)

approximately equal to 6s (tq + AT). The constant e is

chosen so as to obtain the necessary precision. If after an

iteration E &gt; e then it is necessary to go back and iterate

again.

Sometimes it is convenient or necessary to speed up
convergence or to guarantee convergence by calculating the

value of SefKsl) as a linear combination of the new value
calculated from (2.25) and the current value, that is,

-1

y = Tan Vioet eco)Vae Se (x)
Se(k+1) = CG V+ Soh = G)

where G 1s a constant that is chosen to speed up or slow
down the iterative procedure. G &gt; 1.0 speeds up the
iterative procedure and G &lt;1.0 slows it down. In the
particular problem solved here a value of G = 0.5 was used to
assure convergence.
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Step 3 Step 3 consists of finding i,(tg + AT), ve (ty + AT), 81,

i..(t, + AT), vi (tg + AT), 1,4e(tp + AT) and

lkae (to + AT) using the results obtained in Step 1 and

Step 2 and equations derived in Appendix A.

1, (tnt AT) oo (0.78) 1
|

(2.26)

0. = B(
 0b

+
]

(2.27)

Le, (%q + AT) ~ ( Meat -X de Ide + Xnde i,(tg+ AT)sin (8,+01))/Xerg
(2.28)

J ’

~
r

—-— \ 2 . 8n+ AT) = [ ((eg/8e0) (ge - X mae) (0-781 cos(©+

Xkae To

7) -

1 »

ae (0-781 sin( Og + 0)
2

- (wg /0g)XpqeArae’
Xie qe

4

2 Cn 0(Cwg/ wen) (Kats )(0.781 )sin(8, + 0.) +
x TT,

(0,70) (K,+KgKg) +
K_

| 1/2

(0.781) cos (5, 0 |Ra (2.29)

Loge(ty + AT) =(2 ge + Xode (0.781) sin (3, + 9)  4d

Amde ire )/ Xikde (2.30)

_(_ : § ,0
Lege (to + AT) =( A ae + Xe 4, (0.75) cos( ot 1) ) /Xy qe

v, (tq + AT) (2.33 i=) vg COs 3.)

*-
(2.31)

(2.32)
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With these results it is possible to go back to Step 1 and

integrate the state equations again to obtain i (tg+2aT),

Mee (Eg+28T), Age (tg+24T) and ip. (tg+2aT) for
the next time interval and repeat the whole procedure.

Therefore, using this method it is possible to obtain the time

response of the system for any length of time knowing the

initial conditions, the inputs and parameters. This method can

be implemented via a digital computer.

? 4 Solution Example

In order to illustrate the utility of this method the

following problem is solved. For simplicity the damper

windings and leakage inductances of the exciter-alternator are

neglected. Consider the problem with parameters given directly

in model notation by Table 2.1, with initial conditions i, =

Are = AMede % Age = 0 and inputs BR = 0, We = 377

rad/sec and Veo = 6.0x10"" p.u. The steady-state values

can be obtained using the method given in Section 2.3.1 and are

given in Table 2.1. Now it is of interest to find out how the

system approaches this steady-state condition from rest. The

numerical method of Section 2.3.2 was implemented on a digital

computer.



44

The results obtained for i (t) using the method proposed

above are plotted versus time in Figure 2.3. As can be seen

from this plot the current rises and overshoots before

converging to the steady-state value.

The response obtained using the technique of Section 2.2

nolds for any value of inputs and for any possible system

conditions; as a result this method should also yield the

response of the system for the case of small perturbations

about an equilibrium point. Therefore, it is possible to test

how meaningful the answers given by the numerical procedure are

by solving the problem for small disturbances using the

numerical method, and comparing the results with the results

obtained analytically using a system of equations obtained by

linearizing the governing equations about an equilibrium

point. The linearized equations are given in Appendix A.

Considered the system at rest at an equilibrium

condition. The equilibrium is disturbed with an impulse which

causes small changes of the variables about the steady-state

values. According to the numerical method of Section 2.3.2,

the result for i (tv) is as shown in Figure 2.4 plotted versus

time. From this plot it can be observed that the response is a

decaying sinusoid with time period of about 56 seconds and an

excursion from the steady-state with a maximum value of 0.0026

p.u. The problem can be solved analytically using the roots of
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the characteristic Equation of (A.41) given in Appendix A. The

solution for the impulse input, Veo = 1g(t) [volts] is

AL, - ec
2

(ZWnt ) sin (w n ht )  | ©

wher, h =J1 7?-

M = wh vl (4.573 x 107%)

 ly (2.33)

(2.34)

Parameters wer &amp; , Vea are given in Table 2.1. It follows

from (2.33) that the time period of oscillation is 59 seconds

and the maximum value for the excursion from the steady-state

value, AL, is equal to:

Ni
2A-gm/2 Ih ) 0.0026 [p.u.] (2.25)

i

which are very close to the values obtained with the numerical

method as they should be

*a(t) is used to represent the impulse function.
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Table 2.1

Parameters for solution example of Section (2.4)

Xde
Xqe
Xmde
mae
Xefe
“e0
“Lo

R

Vee
8a
Ree
110
lren
Yeo
&gt;e0
“

l.4 p.u.

1.4 p.u.

1.4 p.u.

l.4 p.u.

l.4 p.u.

377. rad/sec.

377. rad/sec.

3.388 x 10% p.u.

0.6 p.u.

6.0 x 10°% p.u.

0.0 rad

8.5 Xx 10”4 p.uU.

0.687 p.u.

0.706 p.u.

0.227 p.u.

76.7312 degrees
0.122 rad/sec.

0.496 p.u.
vy
A

J

i

J

»
x °

br

h

-
»

—

1000V (line-to-1line)

1.732 x 103 Amps

46.05 Amps

3.257 x 104 volts

1000 volts (line-to-line)

1.732 x 103 Amps

l

1 ¥ 3
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2.5 Summary

Equations for the model of the separately-excited

exciter-alternator are derived in Section 2.2 based on

heuristic reasoning. These are Equations (2.1) through

(2.18). A steady-state solution method is given in Section

2.3.1. A numerical procedure to obtain the transient response

is developed in Section 2.3.2. The solution technique requires

solving some of the basic equations simultaneously to obtain a

more suitable version of some of the equations. The resulting

equations are given in Section 2.3.2 and derived in Appendix

A. The numerical procedure is summarized in this section using

a flowchart given below. Finally, Table 2.2 is given here to

help differentiate between known parameters and variables. The

parameters of the model are not usually given by the

manufacturer directly. Instead a set of parameters based on

tests are given in the data sheets typically provided by the

manufacturers. The equations necessary to go from the

manufacturer's parameter data to the model parameters are given

in Table 2.2. The purpose of this summary is to stress the

Following points.

\"4 Equations (2.1) through (2.18), repeated below, and

only these equations, cons titute the mathematical

model for the separately=excited exciter-alternator.

All other equations given here are derivations from

these basic equations.
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"ii ) The mathematical model can be solved using the

numerical method described in 2.3.2 and given here

in flowchart form.

(iii) The model parameters can be derived directly from

the manufacturer supplied machine parameters using

the formulas of Table 2 2
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The equations for the separately=-excited exciter-alternator

machine equations:

Vie = Ve sin Seo

ge = Ve COS 6g

lye = 1) sin (§, + 03)

Lge = 1; cos (8, + 07)

‘de = ~Xde de * Xmde ife * Xmde kde

‘kde = = Xmde de * Xmde life * Xkde lkde

‘ee = Xrfe ire = Xmde ide * Xmde lkde

‘ae = “Xge ge * *mge lkae

‘ae = “Xmge lage * Xkae lkae

Vde = = (Wg/Wgq) ae - Rae 1de

Yae = (We/Weq) ge T Rae 1ge

fe = = Weg Reg 1pn + Weg Vie

dA kde = ~ “eo Rkde
a

‘kde

Neqe = = Yep
 ad

R nn *kae

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

load equation:

Ji = = “of 1 + wg
Jt

J
kL

(2.15)

output rectifier equations:

(2.33) T; vg COSB =v,

 = (T./0.78) i

J Pp
-—

(2.16)

(2.17)

(2.18)
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Table 2.2

System Variables

qe
/
qe

/
[=]

)
aS

bag

L
ge

L
1

73

| Input Parameters
variables

Known Quantities

2 Xde
0 mde

Xkde/
f =

Xefe

Xmge
X

qe

Xkae
“ap
3)

J

eda (state)

{PI (state)

Age (state)

Lo (state)

A
qa

A
Je

Fe

/ wr

v by

i 7)

 uJ

Q
32

RL&gt;

Fa
J

(not used in

this chapter)
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Table 2.2 continued

System Variables

ldo

Lge
J]

Input Parameters
Variables oo

vnown Quantities

- b b
ry = Ve an

. b,.b
T, ~ i. /1

I,

.P (L-L)
b b . b

KVA = 3vg 1,

R
ae

Reo, [ohms]

Xia

"40

"4

1 (Xp + Xpge)
Wan Rea

— i (Xee + Xnde Xae
Wep "fe

)

Xode * Xae

11

"30 = 1 (Xige * Xnde Xre)
Weg Ride Xnde * Xae

i"

Tq I (Xge + Xnde Xae Xfe’ «
WegRkde (Xnde Xae * Xmde’fe

ae Xee)
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Table 2.2 continued

System Variables
—

Input
variables

Known Quantities

Pe. 7 I (Xp ne + Xmae
YeoRkae

T
1 1 (Xkae +

“eoRkae
Xmae Kae )

Xnge * *ae

Xde = %ae * *mde

Xde = Xae * Xnde *fe
Xnde * Xre

"

Xde = Xae * Xmde Xe Xkde
(Xnde Xfe * Xmde Xkde

+ Xfo X de)

Xq = Xae * mae

Xa = Xae * *nge *kge
Xmge * kage

Reo (in ohms) not used in
this chapter

Aa 1
Yep Rie

Xg + Xg)
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Figure 2,5 Flowchart for the method described in
section 2.3.2
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Chapter III: MODEL OF SELF-EXCITED EXCITER-ALTERNATOR WITH

QUTPUT RECTIFIER

3.1 Introduction

The previous chapter considered the case of an

exciter-alternator excited with a dc field voltage source. In

the Alterrex system the exciter-alternator is excited by its

own output, i.e., it is self-excited. Furthermore, the voltage

across the exciter-alternator field winding can be changed. By

changing this voltage one is able to control the

exciter-alternator terminal voltage. Figure 3.1 shows the

schematic of a system that resembles more closely the Alterrex

system. The exciter-alternator output is connected to a diode

bridge feeding an inductive load just as in the case treated

before except that here rectification is via a diode bridge.

However, the exciter-alternator field voltage is obtained by

rectifying the exciter ac voltage output using an SCR bridge.

The firing angle ao of the SCR bridge can be changed, thus

changing the exciter-alternator field voltage which in turn

will change the exciter-alternator ac output voltage and

therefore the dc voltage across the load. This system will be

called the self-excited exciter-alternator with output

rectifier. In this chapter magnetic saturation of the

exciter-alternator is modeled.
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Figure 3.1 Schematic of self-excited exciter-alternator
with the current boost system, The letter E stands for
exciter-alternator and P, T. for potential transformer.
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3.2 Modifications to Exciter-Alternator Model of Chapter II

to Include Effects of Self-Excitation, Saturation and

the Current Boost System in the Model Equations

The governing equations for this system differ from the

separately-excited exciter-alternator because of the self-

excitation introduced via the SCR bridge. However, both

systems are similar in many respects and the new governing

equations can be obtained from the equations given for the

separately-excited exciter-alternator in Chapter II. The

exciter-alternator can still be described by Equations (2.1)

through (2.14). These equations are found in Section 2.5. In

order to model self-excitation, the effects of magnetic

saturation must be included. The following assumptions are

proposed to handle the magnetic saturation of the

exciter-alternator:

1) Assume all leakages inductances and the qguadrature-axis

mutual inductance (Xe) to be constants.

(2) The only saturable element is the direct-axis mutual

inductance (X qe)

(3) The non-linear inductance Xmde 1s only a function of

the mutual direct axis flux or equivalently of the

currents 140 lear Ide which produce fluxes on

the direct axis, i.e., Xnde = Xnde (1.9 1g,

L, de’
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(4) The function Xnde = Xnde (ipo) 14g: ide) must

be obtained empirically. This can be done using data

from the open-circuit saturation curve (open-circuit

voltage vs. field current). The form of the function

X nde (irq) 14ers 1.4e) may be chosen in any

fashion which will yield a good fit to the data.

jeneral, then a polynomial of the form, Xmde

In

i

zon (igg + lpge - iz ~
-

with an arbitrary number of terms m will fit the data as

accurately as needed. For the purposes of this thesis,

Equation (3.1) (with m = 3) will be used to model

saturation in the exciter-alternator

“mde = Cog + C1 (lee + 1p4e -

ode Co (lpg + 140 = 1

gg) + Cp (Leg + i 40 = 1g.)
/

(3.1)

It must be observed that this is only an approximate way

of handling this non-linear effect. In order to simplify the

calculations leakage inductances and Xa aa were assumed

constant, although in reality this may not be necessarily so.

bi
This expression only holds for a given range of values.
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For the purposes of this chapter as in Chapter II, an R-L

load is assumed at the output of the exciter-alternmator. Thus,

this load is represented by Equation (2.15).

The equations for the output rectifier of the self-excited

exciter-alternator can be obtained from the rectifier equations

of the separately-excited exciter-alternator with minor

modifications. In the self-excited exciter-alternator case a

diode bridge is used instead of an SCR. Equations (2.16) can

be modified simply by setting B = 0. Equation (2.17) applies

directly to the problem after changing i; to i . Equation

(2.18) is not applicable to the present problem. The two

equations for the output diode rectifier are then (3.2) and

(3.3) given below.

Jf .... (2.33) T, Ve1

1
 ”"

(1,/0.78) i,

(3.2)

(3.3)

M3 and T, 8re normalizing constants which come into the

equations because of the normalization of the equations as is

11]

described in Chapter II. The variable i, represents the

fundamental component of current going into the output

rectifier. It is obvious that because of the rectifier effect

these equations only hold for positive currents i and i,.

For modeling purposes as soon as these currents go negative

they are set to zero and the voltage v, is also set to zero.
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The field winding of the exciter-alternator is fed via a

potential transformer and the SCR rectifier. It is important

to find a model for the potential transformer that predicts the

voltage drop across it. This voltage drop is primarily due to

the leakage inductance of the transformer. On the other hand

it is not really important to model the magnetic energy storage

capacity of this inductance. Therefore a very simple model is

chosen for the transformer based on the voltage drop due to the

fundamental component of current flowing through it. In the

present case however the phasor magnitudes are considered

functions of time. As shown in Figure (3.2) the resulting

equations in terms of d-qg quantities are:

/ = V
de e

'

Vv = V
ae e

sin( v + § go)

cos( y+ 8)

(3.4)

(3.5)

Variable v, represents the fundamental component of voltage

at the secondary side of the potential transformer.

The variable Y is the phase angle between ve and v,

The variables Vie and Vee are the projection on the direct and

'

quadrature axes of the voltage v, . Therefore, Equations (3.4)

and (3.5) are used to project Vv, on the direct and

quadrature axes.

4 '

Lqe - i,
r !

Le © i,

ojin(y +8 a + 0

cos( y+ §
J

+ OO.

\

)

3

J

(3.6)

(3.7)
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Variable i is used to represent the fundamental

component of current flowing through the potential

transformer. The variable 0, is the phase angle between
, ! v ° ® yz

1, and Ve Then 14 are the projections of i, on the

direct and quadrature axes.

‘de = Vde * (“&amp;e0) Xo ‘qe

‘qe = Vae ~ (We/%ep) Xo lde

(3.8)

(7.9)

x is the leakage reactance (at frequency Wap) of the

transformer. In actual dimensions the voltage Ve will be

stepped down by Np» the turns ratio of the transformer.

Therefore the base value for v, is chosen to be

b . : a. ,

Yo /Ng- The effect of an increase of magnitude of oe and le
'

is to increase the imaginary part Vie and decrease the real

part Voe and therefore to increase

fquations (3.8) and (3.9) are obtained by equating the real
(q) and imaginary (d) variables of the phasor equation for
the transformer in terms of fundamental components of

'

transformer variables, i.e., Ve /-8¢ = Ys J -8a =v »
1

’ . ¥

Jr we / weg) Xp 14 /-§ -y -8,
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The SCR bridge equation can be obtained from equation

(2.16) through (2.18) by using a change of variables. The

Following equations are obtained.

 Foy = (2.33) Tg Ve COS

le. = (T, (0.78) i

oh = Qa

(3.10)

(3.11)

(3.12)

Tg and Tg are normalizing constants dependent on the

base values of Ve, Veay? ire and 1s The variable «

represents the firing angle of the SCR bridge. The variable

Veey 1S the average voltage across the SCR bridge. The phase

angle between the fundamental component of current i and

the fundamental component of voltage 2 0) is set by the

firing angle of the SCR bridge according to Equation (3.12).

Notice that these equations only hold for positive currents.

See similar comments for Equations (3.2) and (3.3).

Current i is obtained by using Kirchhoff's current law at

the terminal of the exciter-alternator. This vields:

”" q
L - * - -

de lde lde
J . . ¥

lage © lage © 1ge

(3.13)

(3.14)

where.
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1" "

l4e = iy sin (8)
1" J"

Lie = 1, cos (8)

(3.15)

(32.16)

" 1"

Variables 14e and ie represent the projections on the direct
 ”"

and quadrature axes of i, . Using this equations it is

possible to construct a phasor diagram for the exciter-

alternator as shown in Figure 3.2.

With the model modified to include self-excitation and

saturation it is possible now to make one more addition. This

consists of adding equations to include the effects of the

current boost system. This system is shown in Figure 3.1. The

behavior of the current boost system is more complicated than

might appear at first sight. What follows is an explanation of

why the current boost system is used and how it works.

During normal operation, exciter-alternator field current

control is obtained by phase control of the SCR bridge

rectifier. For certain transient conditions the control system

that changes the variable ao might force this variable to be 90°

which means that the average voltage across the field winding

will be zero. If this condition is maintained for too long the

exciter-alternator output voltage might decay close to zero.

Then the control system won't be able to raise the output

voltage again by changing the angle a , i.e., this system has

"collapsed". The purpose of the current boost system is to

save the system from collapsing. If the exciter-alternator
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terminal voltage decreases and the exciter-alternator field

current decreases beyond a certain limit, the current boost

system takes control by providing current feedback to the field

winding. This current feedback is regenerative, hence, the

field current will build up until the current transformers

feeding the diode bridge in the current boost system saturate.

This occurs at rated full load field current. Once the system

builds up terminal voltage to normal levels again the current

boost system ceases to operate. It should be emphasized that

the current boost system operates under transient conditions

only.

During normal operation the current boost system has no

effect on the rest of the exciter-alternator. The SCR bridge

voltage is high enough to keep all the diodes in the current

boost system forward biased. Current lea is divided between

the three legs of the current diode bridge. The currents

coming from the current transformers are also flowing through

the diodes of the current boost system and the current in each

individual diode is modulated by the currents from the current

transformers. It is shown in Appendix B that for values of

currents such that 2 i &lt; legs where No. is the current

N.

transformer turns ratio, the current boost system is not in

operation. This is defined as Mode I of operation of the

current boost system.

As the output voltage collapses, the current leg

decreases. The current boost system is designed in such a way
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that the current modulation taking place in the current boost

bridge "forces" certain diodes to reverse bias and others to

remain forward biased when ice falls under certain level

relative to i. At this point the current boost system

commences to operate. It is shown in Appendix B that this mode

of operation occurs for leg &gt; 2 i. This mode of operation
N

will be called Mode II of operation.

For Mode I then the system is governed by the equations

given above alone. However, for Mode II we have to include the

effect of the current boost system. For Mode II the current

boost system has a topology as shown in Figure 3.3. In the

following analysis the leakage inductances and winding

resistances of the current transformers will be neglected.

This is done to simplify the problem and because these elements

are considered to have a second order effect on the system.

The mutual inductance of the current transformers is

non-linear, i.e., it saturates. The current transformers are

designed so that at the point of saturation, the current boost

system will be supplying rated full load field current.

The saturation curve for the current transformers will be

modeled as shown in Figure 3.4. The variables shown in this

schematic are defined in Figure 3.3. variables Ap and i

are the values of flux and current at which the current

transformers saturate. L. is the value of mutual inductance

in the linear region. R_ is a resistor connected across
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the secondary of the current transformers. Parameters Lo

and Am? 1, can be found from the saturation curve of the

current transformers (Figure 3.4). Variables Veeel and

Vieco aTe the average voltages across the upper and lower

halves of the topology in Figure 3.3. The variables i and

ig are the primary and secondary currents of the upper

transformer in Figure 3.3. The variable Ap is used to

represent the total flux in the core of the upper transformer.

Notice that the exciter-alternator terminal currents are shown

as current sources with values dependent on i. This

topology is explained in Appendix B. The saturation model

shown in Figure 3.4 is expressed in terms of the variables of

the upper transformer, however, this model is also used for the

other current transformers. Based on this information the

governing equations for the current boost system are derived in

Appendix B and given below.

f { wegRe) Veect(3RID; 1-2veoe&lt; i and 21, &gt; ie
L. ? 3R N_

dv ee = ) ~-
FF

(wegRe) eect (RLID; i&gt;i,&gt;1 - veo. and 21, &gt; igg
L. 2 R. N.

\ Vv

(3.17)

0D di = ¥; 9 Ap + ¥, d A + Vg d
it —p— - y— -

A &lt;qe + Yu ai
-dt

(3.18)
IK

1 21, - leg
Al

(3.19)
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Noticed that the input to the state Equation (3.20), D, is

only available during transient conditons because D is a

function of therate of change of the states. It follows that

the current boost bridge has no effect on the steady-state

conditions.

Each of the three expressions given for Equation (3.17)

hold exclusive of all the others when the given inequalities

are satisfied. Notice from Figure 3.3 that the current flowing

through each of the lower transformers is half of the current

going through the upper one. Therefore, as the current

increases, the upper transformer saturates before the lower

transformers. If the current increases further even the lower

transformers will saturate in which case all the transformers

are saturated. Equation (3.17) describes the three possible

saturation states. The first expression at the top represents

the behavior of the current boost bridge in Mode II when all

the transformers are unsaturated. The middle expression is

used to model the behavior of the current boost system when the

upper transformer of Figure 3.3 saturates but the lower ones

remain unsaturated. The third expression holds for the case

when all the transformers are saturated and, therefore, the

voltage across the current boost bridge, Veee? is zero.

During Mode I the bridge is forward biased and Veeo is also

zero, therefore, the bottom expression also holds for Mode I.
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The variable Veeco represents the average voltage across

the current boost bridge. Constants Yq through Y, are

given in Appendix B. The voltage across the field winding is

then the sum of the SCR bridge voltage and the current boost

bridge voltage and is given by

J
Fo  Veer  FF Veo (3.20)

In this section the equations for the self.excited

exciter-alternator model were derived. Obtaining the equations

involved modifying certain equations from the separately-

excited exciter-alternator and adding new ones. The complete

model is described by Equations (2.1) through (2.15) and (3.1)

through (3.20). All other equations are derived from these 35

basic equations. These equations are listed in the summary in

Section 3.5. A table is also given in the summary to help

differentiate between variables, parameters, and inputs. As

explained in Chapter 11, the parameters for the

exciter-alternator model given by the manufacturer differ from

the parameters used in the model and transformations given in

Table 2.2 are needed to obtain the model parameters. Notice

that there are 35 unknown variables and 35 equations.

Equations (2.1) through (2.15) and (3.1) through (3.20) are

then the 35 basic equations the parameters of which can be

obtained using Tables 2.2 and 3.2.
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32.3 Solution Techniques

3.3.1 Steady-State Solution

It is interesting to notice that the self-excited

exciter-alternator works using a positive feedback loop, i.e.,

the self-excitation loop. This is interesting because normally

this would drive a system into instability and it would never

reach steady-state. In the present case, however, the problem

is stable and it achieves steady-state. The reason behind this

is that as the exciter-alternator terminal voltage goes up the

non-linear direct axis mutual inductance modeled by Equation

(3.1) saturates, thus, creating a unique point where the

machine remains stable. This is a well known fact in self=-

excited dc machines and it happens to be true for this case

too. The reader should see Section (5-6) of Reference [6] and

Chapter 5 of Reference [7].

Conceptually, the problem can be illustrated graphically

as shown in Figure 3.5. It shows the voltage-current

characteristics of the exciter-alternator and of the load seen

by the exciter-alternator. These two curves meet at only one

point creating a unique steady-state condition. Notice that

the exciter-alternator characteristics are non-linear because

the direct axis mutual inductance saturates. Otherwise the

axciter-alternator characteristics would look like the airgap

line
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In order to solve for the steady-state condition or

equilibrium points of the system the derivative terms of the

governing equations are set to zero and the resulting equations

are solved simultaneously. All the equations necessary to

solve the steady-state condition are derived in Appendix B from

the governing equations. Appendix B also explains how to use

these equations to get the equilibrium points. In this section

we will limit ourselves to giving a brief explanation of the

procedure outlining at the same time some of the most important

equations used to solve the steady-state conditions. The

derivation of these equations can be found in the Appendix B.

Basically, the problem can be thought of obtaining the

values corresponding to the intersection between the load and

exciter-alternator characteristics (see Figure 3.5). The load

characteristic is obtained by determining the driving point

impedance at the exciter-alternator terminal; let us call its

magnitude Zg-
The exciter-alternator during steady-state is loaded by

the output rectifier. The exciter-alternator is also loaded by

the self-excitation loop to its own field winding modified by

the SCR bridge and the potential transformer. Therefore, the

load characteristics will depend on the eauations describing

the characteristics of these devices.
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Once Zg is found, this is equivalent to having found the

load characteristics, i.e., the slope of the load line of

Figure 3.5. It was explained before that the steady-state is

reached due to the fact that for a given load the non-linear

inductance Ande changes as to oppose further changes in

voltage. For different loads X mde will settle at different

steady-state values. Therefore, the value at which the

non-linear inductance X nde settles, let us call it Xmden?

is a function of the load, i.e., Zg- Equation (3.21) below

gives the value of dian as a function of Z,.

2 ‘ 5/ - (-R ge SIN(6,+07) +X oC0S(8,+07)) 4

20 SIn(S,+0)+R_, nts) / argo ~~ sin(6,+0;)
z
-

hem

"A

J

(3.21)

Quantities Zo Sas 9; and Zs depend on the
parameters and loading conditions of the machine and can be

found as described in Appendix B. Then the non-linear

characteristics of the exciter, Equation (3.1) is used to solve

For (ig, - 14a) setting Xnde = Xndeg+ Then using,

I = (ig, - tel 12 (T,/0.78) - sin(6_+06 :
Zz

 il

and v, then follows

/ orfe Z, (3.23)
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Equations (3.21), (3.22) and (3.23) are derived in

Appendix B. With i, and Ys the steady-state values of

other variables can be found using the governing equations,

Transient Solution

In this section a solution technique to obtain the

transient response of the governing equations is developed.

The method is a numerical technique to obtain the global

solution of the mathematical model presented in Section 3.2.

The method here is more involved than for the case of the

separately-excited exciter-alternator but it is also based on

the same basic idea. In this section certain auxiliary

equations derived from the basic equations are used. These

equations are given without much explanations. The reader is

expected to look at Appendix B under auxiliary equations for

their derivation. The numerical global solution is obtained as

indicated below.

Step 1. Step 1 consists of integrating the state equations of

the self-excited exciter-alternator (2.12) through (2.15) and

(3.17) given below for a small time step AT so that variables

other than the states can be considered to be constants

calculated at tq the initial time.
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d Ape = ~ wep Ree ire (ty) + Weg Vee (ty)
——

d Aede = = Yeo Ride kde (tg!
dt

a Akge = = Yeo Rkqe Iae (tg)
—
di = - w oR i+ “Lo vi (ty)
dt

‘wanRy) Veeco + (3R_) D (tg), i-2ve oc i and
R.

(3.24)

(3.25)

(3.26)

(2.27)

sss21 Zleg

No.

QV rec ©
df } (weqRe) Vfec *

wr
*

(Ro) D (tg), i&gt; i&gt; i = Vea and
2 R

° &gt;

21 =1eg
N

\ Vrec
iio 0: i _ 21 or 21)&lt; leo

N - (2.28)

In the case of Equation (3.28) the inequalities must be

established just before integration so as to decide what

expression to integrate of the three possible expressions

given for (3.28). The term D is given by (3.18) and

(3.19).

Step 2. Knowing i (t+ AT) from the step before

i" (tg+ AT) can be found using Equation (3.3). It is

necessary to find i, (t+ AT) to obtain the solution of
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the problem. This can be done using Equation (3.29). However,

this requires knowing 1,0 (tg+ AT) and y(tg+ AT). The

variable Y(tg+ AT) at this time is unknown. What is done

here is to find these values iteratively. At the start it is

assumed that y(tg+ AT) and i! (t+ AT) are equal to

Y(ty) and i,t (ty). Once new values for Y and i

are found in later steps they are used again to estimate a new

value for i,. The variable 0; is also calculated in the

same way. This is repeated until the procedure converges.

Then it follows that,

Ly = (CB (Ege AT) + 5 (1) ©0s ( Yep qysa 0)

 (key SEDC Yo gy + aN) 172 (3.29)

-=1
Oi) = Tan | 4 en Sin Cre +

L 11 (tg+ AT) + i, (K=1) cos ( Yik_1) *© )

7

am

(3.30)

Here the subscript (K) indicates the iteration at which the

estimate is obtained. Therefore, in the first iteration the

first estimate of i, is obtained, 1c): The quantities
! f

1100) and Y(g) are taken to be 1,(ty) and Y(ty) respectively.

Step 3. With these estimates the value of &amp;(K) is calculated

iteratively just as it was done for the case of the separately-

excited exciter-alternator in Chapter II.
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Step 4. Now it is possible to find the rest of the system

variables as follows.

Lear) = ( Apalt4

Lede) = Mege (tot

‘mde lea / Xide

AT) + Xode 11k) sin ( Se (K) + 0 (iy) / Xere
(3.31)

AT) + Amde (0.781) sin ( §, +
MN k

J

(3.32)

Lae (K) = {= Age + Xmae (I0.7®) ) ees ( 2 + O10) / Xkqe
”? (3.33)

Ya (Kk)
- 2 |

|(Cug/ tg) (Xge = X“qe) (0-781) cos (6, -

Xkae Ts

3

»)
JP

. : 2

(0.781) sin ( 8. + ©) - (w/w) Xmge A kae’
~ Xena

(
2 : y

Wy/ Wg) (Ky + Ks ) (0.781) sin (§ +0
K5 Ty

$ { W,7 ug) (K+

i 2 1/2Kg Kg) - Rye (0.781 ) cos (8, +04) ]
K.. —T. (3.34)

iy = pe /(14/0.78) (3.35)

1 2 : } 2

‘e(K) © \/ Ve(k) ~ ((we/ weg) Xp 11(k) cos @) 4

(we/ wap) X5 1) (x) sina
( = Tan® [ / ) X |
(K) ~ we’ Weg’ Ap t1(k) COS ©I.JA -

| Vek) * (we/weg) Xp ij(ky sina

(3.26)

(. + 21)
a
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Variables leek)? 1 de(k)’ Iqe(x)’ Ve (K)’ 1k)? Ve (K)

and Y (ky can be obtained using (3.31), (3.32), (3.33),

(3.34), (3.35), (3.36), and (3.37) respectively. Constants

Ky through Kg are given in Appendix A. Notice that in the

steps above the variables found are not the actual variables at

Lo+AT but the kth estimate because calculating these values

involved using 1k) and ©1(k)*

Step 5. At this point we are in a position to test whether the

kth estimates of the variables found do really approach the

values of the variables at t +AT. Therefore, Step 5 consists

in testing the convergence of the KEN estimate found in the

previous steps. If the estimates have converged within

acceptable limits, then it is possible to integrate the state

equations again and repeat the procedure for the next time

step. If convergence has not been achieved then it is

necessary to find new estimates in terms of the old ones.

is done by using Equations (3.29) and (3.30) for the next

iteration, that is

This

3 «P . ” Z

11(ke1) = (C1) (tg + AT) + 3gycos (ye py+a))

Se (i 1(k) Sin (Yeuy + a)) 21/72

-1
91(K+1) = Tan

-_—
i (tq + AT) + 10k) COS CYegy+® JL

(3.38)

(3.53)
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Convergence is tested as follows:

E. =

EE, =

(a)

Green) 1100) [ike |
(ken) = 110607/Laika)|

(3.40)

(3.41)

If Ei&lt; ey and E,&lt; ey, where ey and e, are

conveniently small constants, then 1k) and 91 (Kk)

have converged according to the error criterions , and

e053 therefore the values obtained in the kth

iteration are approximately equal to the values of the

variables at tL+AT. In this case it is possible to go

to Step 6

(b) If Eq &gt;e) OT E, &gt;e, then this means that the

«th estimates have not converged in which case it is

necessary to obtain the (k+1) th estimate, that is go

back to Step 3 using the values of 11 (kel) and

01 (Kal) obtained in Step 5 and repeat Steps 3, 4

and gS

Step 6. In Step 6 a new value of Xnde is calculated using

Equation (3.42) and (3.43). Also the value for v, is

calculated using (3.44). The value of Veo, 1s calculated

using (3.45) and (3.46).
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Lye (tg+ T) = i sin (§ et 01) (3.42)

Xmde (tg + AT) =Cq + Cp (Lp + 140 - 15

4
~ i ; : 2 .

(ipo + ige = 1ge)” + C- (ig) +

v, (tg + AT) = (2.33) T, v,

V fev (tg + AT) = (2.33) Te Ve

(th + AT) at Veer

cos a

Ay

lide i (3.43)

(3.44)

(3.45)

(3.46)

Notice that a new value of Xde and Xero must also be

calculated using Xnde Now it is possible to go back to Step

1 and integrate for the next time step repeating the whole

procedure to obtain the values for tot 2 AT.

Notice that there are three iterative loops nested in this

method. The outer one is due to the fact that the state

equations must be integrated for each time step. The next

iterative loop is caused because of the need to find i, and

0; for every time step in Step 2. The innermost iterative

loop is described in Step 3 and is due to the fact that S

must be found iteratively for every value of 1k) and

©) (K) found. The solution procedure is summarized in the

flowchart (Figure 3.8) given in the summary in Section 3.5.

The flowchart should help visualize this method. The different

blocks in the flowchart refer to the different steps in the

method just described.
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3.4 Solution Example

In order to illustrate the utility of this method the

numerical procedure is implemented in a digital computer and

some problems are solved using it. In solving these problems

the effects of damper windings and current boost system are

ignored for simplicity; also Xp is set to zero. The

steady-state values are also calculated as described in Section

3.3.1 and Appendix B. The values for the parameters used in

this problem and for steady-state values are given in Table

3.1. These parameters belong to the Alterrex exciter-

alternator. The steady-state symbols are denoted by the

subscript "oO".

Using the numerical method the equations for the selfa

excited exciter-alternator system without damper windings and

without the current boost system is solved using the parameters

given in Table 3.1. The response obtained for i, is given in

Figure 3.6. The initial conditions for this response are

i =Xre = 0, i.e., the system starts at rest. At time

to an impulse is applied to the field winding of the machine

in order to start the "build up process" that takes the

machine from rest to a given steady-state. Notice from Figure

2.6 that the current builds up very slowly. This happens

The reader should make in his mind an analogy between the
puild up process in dc machines and the build up process
here. If necessary References [6] and [7] should be
reviewed.
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Table 3.1

Parameters, Steady-State Values

3 ui

Input for the Solution Example of Section 3.4

ae
Xde
Lge
Xmde
Amae
Xefe
Xfe
Ree

Ro
No

2

Q
/

2

p

 Ww er I)

v J+

Fe

~

ry rT

0.135 p.u.

0.69 p.u.

0.64 p.u.

0.555 p.u. (unsaturated)

0.505 p.u. (saturated)

0.725 p.u.

0.170 p.u.

8.199 x 107% p.u.

(unsaturated)
(saturated)

3.781 x 10™° p.u.

? turns

420 volts (line-to-1line)

/
am

Pd N
-

754.0 rad/secC

3 451 x 10% volts

45.78 amps

3160 KVA
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Table 3.1 (continuation)

Y LO .
Ree (in ohms)

A

«

6
rn
“0

“1
rr
vp

Cz
Y.

X
Pp
Ho
lreo
Veo
S80

0.94 x 10° p.u.

0.5 p.u.

377.0 rad/sec

0.931 at 125°

7.884 x 107%

1.447

2.33 x 107°

189.77

0.555

-0.253/68.165

0.6312/68.165

-0.4071/68.165 _

70° = 1.2217 rad.

0 p.u.

0.9897 p.u.

2.1235 p.u.

0.93661 p.u.

0.5883 rad.

ia.

Rfe (in ohms) is used to find the base values of the field
winding.



»

J
A

)

£

1.6

4

R

i oy

{.@

1. eo
(Peue)g

A

3

»
!

b

A

3 100 200 300 4.20 S500 800

TIME (seconds)

Figure 3,6 Computer plot of the load current i;.

oo
Pa



87

because the time constants of the exciter-alternator are rather

large. However, the system could be made to build up faster by

using a time varying input for a so that at the start a is such

that forces the system to build up very fast but as the system

builds up the firing angle is returned to its nominal value

for steady-state operation.

It is of interest now to test how meaningful the answers

given by the numerical method are by solving the problem for

small disturbances using the numerical method, and comparing

the results with the results obtained analytically using a

linearized system of equations obtained by linmearizing the

governing equations about an equilibrium point. The linearized

equations and coefficients can be found in Appendix B. From

the linearized equations the response to the impulse Aa =

3.0135 a(t) is described bv

A { = 0.294 (e
-0.111¢t Ja286%, (3.47)

The symbol A in front of the system variables is used to

represent the perturbed variables from the equilibrium

position, i.e., Aa=qa - 0g and AL, =1 -14: According

to (3.47) the response has a fast growing part and a slowly

decaying part, from which it can deduce that the response first

a(t) is used as the impulse function.
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rises fast, peaks and then decays slowly. The peak occurs at

about 5 seconds and the excursion from the steady-state is of

about 0.1 p.u.

The response was also obtained using the numerical

method. The result for i is plotted in Figure 3.7. As can

be seen, it behaves approximately as predicted by the

linearization.

3.5 summary
Equations for the model of the self-excited

exciter-alternator were derived in Section 3.2. The derivation

of these equations involved modifying some equations from

Chapter II and adding new ones to account for the effect of

self.excitation and saturation of the exciter-alternator. The

governing equations are (2.1) through (2.15) and (3.1) through

(3.20). These equations are summarized below. These equations

and only these equations constitute the mathematical model for

the self-excited exciter-alternator system. Any other equation

used is derived from these 35 basic equations. The derivations

of the other equations used in this chapter can be found in

Appendix B. A solution technigue to solve for the steady-state

condition is given in Section 3.3.1. A numerical method to

obtain the transient solution is given in Section 3.3.2. The

numerical procedure is summarized in the flowchart given in

Figure 3.8. A table is given here to help differentiate

between knowns and variables. The parameters of the

exciter-alternator are obtained from the data provided by the
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manufacturer as described in Chapter II in Table 2.2. With the

information given in this chapter the user could model a self-

excited exciter-alternator with R-L load given a data sheet

from the manufacturer is provided.

The equations for the self-excited exciter-alternator.

xciter-Alternator eguations:

Vde = Ve sin So

Vge = Ve COS So

Iie = i, sin (8 + 01)

ae = i; Cos (Sg + ©)

‘de = “Xde lde * Xmde life * Xmde lkde

‘ede = “Xmde de * Xmde ite * Xkde lkde

‘re = Xffe fe Xnde lde * Xmde ikde

‘ae = Xge tage * Xmge lkae

‘eae = “Xmae lge * Xkae lkae

Vge = = (W/wgg) ‘ge = Rae de

ae = (We/ Wen) Age = Rae lige

dpe = “weg Ree le *wep Vre
—

Age = “veo Rude kde
dt
LN = ~weg Rige 1 qe

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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. . . . . . 2

“mde = Co + Cp (pe + Ipge = 1ge) + Cp (lpg + dp g0 - 14.07 +

Lge = ig) +0, (hg wd - di,"
cde de 4 fe kde ~ (3.1)

Load equation:

1) = ~wgq RI + “Lo
— -

r
I" (2.15)

Output Rectifier equations:

(2.33) Ts Ve = V |
i

"

(1,/0.78) ".1

(3.2)

(3.3)

Potential Transformer equations:

: 1

Vde = Ve Sin (y + &amp;

'

= V §! qe e COs (vy + 4)

1 ' v

Le = 1; sin (vy + 0)

i 1 i
1 a 3 \

Lp = 1, cos (vy + 0, )

de = Vge * (we og) Xy ie

‘qe = Vage - (wa/woq) X, Lde

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

SCR Rectifier equations:

(2.33) Tg cos(alv, =

le.
!

(T./0.78) i,

J 4 =QQ

v
fx (3.10)

(3.11)

(3.12)
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Terminal Current equations:

1" ¥

lde= de ~ 1de

” J

Les 1qe - 1qe

”" fn

lye = iy sin (8g)

LU on
Las = i, cos (8.)

(3.13)

(3.14)

(3.15)

(3.16)

Current Boost System equations:

( - WeoRe Veeo + 3 e )° i - 2 Veae &lt; ip and 21, &gt; lee
L. 2 3 R. N,

IVeoo
“di

-

| (Zee “) Vee ?Lo

. i &gt; * * - * &gt; *

Di 1&gt;1 ~&gt;1 Veepdnd 21 &gt; 1g,
2? FJ N

Cc

\ Veer ~ 0: 2 io or 21 &lt; leg

N., (3.17)
0 EH] = Yq dAeg + Ys, Age + Ys 9X qe + Yu di,

dt IF IF dt (3.18)

21) - lre

N.
(3.19)

VY ra = V
fer

He v
Fev (3.20)
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Table 3.2

Unknown
Quantities

System
variables

de
Vv

ae
/

e

Se
le

Ly
Lae
71
\ de

A kde

A fe
A ge

‘kae
fL
ie,

lyde
‘L
Lae

Xmde

Known Quantities
Input Parameters

variables

Xde

Xide
Xefe
Xmge
Xqe
Xkqe
“Yeo
Rae
Xae
Ree
Ride
Riae
Xfe
Xeea
N

p

Ne
My
,
[ -

| ¢

, 11

L
1

~ a
-4

Az
2

_

X
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Table 3.2 - Continued

Unknown
Quantities

System
Variables

ue

Known Quantities

Input | Parameters
Variables

 hn

Ym

9
J

= 8

te

L je

L 2

EF

»

X

an

V
fev

. "

i
Je

L
ye

J
fec

{,

Reo (in ohms)

Ves
D

. 0

leo

“fa

 FF

, ©

vopb
+h

J
a
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Figure 3,8 Flowchart for the method described in
section 3.3.2
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Chapter IV: MODEL FOR THE CONTROL SYSTEM

INTRODUCTION

In this chapter the model for the control system of the

Alterrex excitation control system is given. It is important

to have the equations describing the behavior of the control

system because the control system has a strong effect on the

dynamic behavior of the Alterrex system. On the other hand it

[|

is desirable to obtain a model which exhibits the essential

features of the control function yet is not overly detailed for

practical use. Therefore certain simplifying assumptions have

been made.

Some of the states of this model are introduced by certain

lead-lag compensators consisting of R-C networks. The states

introduced by some filters consisting of R-C networks have also

been considered. All the other elements of the control system

have been assumed not to possess any energy storage capacity,

and thus not to introduce additional states. The voltage drop

across solid-state junctions have been ignored. The model of

the control system is nonlinear. The nonlinearities come about

because of saturation of the amplifiers and other effects such

as the effect introduced by the limiting systems that will be

treated in Section 4.5.

The control system can be divided in several subsystems as

can be seen in Figure 4.1. Figure 4.1 shows eight basic

blocks: the firing angle system, the automatic regulator, the

active reactive current compensator (A.R.C.C), the current
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limit system, the exciter minimum voltage limit system

(E.M.V.S.), the phase limit system, the underexcited reactive

ampere limit system (U.R.A.L.) and the manual regulator.

Switch s is either in position 1 or 2 depending on whether the

system is controlled from the manual regulator or the automatic

requlator.

The control system inputs are the exciter-alternator and

the main generator currents and voltages. Also the power

factor angle 6g between the main generator terminal voltage and

current is an input. The output from the regulator is a

continuous signal Vp- This continuous signal is the input to

the firing angle system which generates the gate signals that

are used to fire the SCR bridge supplying voltage to the

Alterrex exciter-alternator field winding.

The purpose of this chapter is to present the model of the

control system. The philosophy followed in this chapter is to

give the expressions for the control system rather than derive

them. Explanations are given for the expressions in terms of

the actual physical devices of the system. These explanations

are somewhat limited by the fact that it is not possible to

show the actual schematics of the Alterrex control system.

However, the reader who has access to an Alterrex Manual [4]

may find it useful in understanding the control system as

described in this chapter. The model is given in block diagram

form and the necessary expressions to obtain the governing

equations of the system from the block diagram are given in

Section 4.7. Section 4.7 includes a table listing the values
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for the model parameters of the Alterrex control system. The

parameters values are given in Table 4.1 in Section 4.7.

Because the governing equations are not given explicitly

but in terms of the block diagram two examples are given, one

in Section 4.2 and another in Section 4.7, to demonstrate how

to obtain the governing equations using the block diagrams.

This should help to clarify how to use the information given

here to obtain the necessary governing equations for the

control system.

4.2 Firing Angle System

The firing angle system is used to generate the gate

signals that are used to fire the SCRs of the Alterrex

exciter-alternator. The input to the firing angle system can

be either taken from Vag OT V5, that is from the automatic

regulator, exciter minimum voltage limit system and phase limit

system output or from the manual regulator output depending on

the position of the switch s as can be seen in Figure 4.1.

The model for the firing angle system is given by the

block diagram of Figure 4.2. This is a good place to explain

how to use the block diagrams presented in this chapter. First

notice that the block diagram is read from right to left as

indicated by the arrows. This makes it easier to relate back

to the actual schematics. Every block of the diagram is

represented by a symbol that stands for a functional

relationship between the input variables indicated by the

arrows coming into the block and the output indicated by the
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Figure 4.2 Block diagram of firing angle system
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arrow pointing away from the block. These functions are

indicated by the letter G with a subscript. These functions

can be linear or nonlinear.

In the case of the firing angle system we have the

function Gy relating the input VR and the output Vig®

The expression Gy is given in Section 4.7 as Equation

(4.8). It is simply a multiplicative constant -34 times

Va. Therefore we have:

 Jv
48 = Gay

-

(vg!

. FT Vn

(4.1)

(4.2)

In this chapter the parameters of the system will be

denoted with positive constants 99 through d¢10 Pg

through Pig and a and a,. The symbol v with a subscript

is used to represent the input and output signals (voltage

signals except where noted) for the different blocks of the

diagram. The signal Vig (in radians) is the input to the

block Tg: The letter T with a subscript is used in this

chapter to represent a special type of relationship. The

relationship is a nonlinear one and comes about because of

saturation in the solid-state and magnetic elements of the

system. This nonlinearity can be represented by a linear

region in which the block can be represented by a unity gain.

However if the given input goes above or below a given limit

value, the output of the block is clipped to that limiting
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value. From this discussion it follows that in order to

specify a function T all that is needed is to specify the

limiting values at which the input gets clipped. The limits of

the function Ta are specified in Section 4.7 as given by

(4.9). Therefore it follows that:

(ue 0

0 Vv,s”Ho

\ .

radsSv,,S4p=Tad.

«J rad.

: &gt; .! ro mirad (4.3)

Therefore Equations (4.2) and (4.3) constitute the governing

equations for the firing angle system.

The control system model has been developed in such a way

that the signal Vr is always a negative quantity. Since the

angle o is positive and the constant 95 in (4.2) is also

positive a negative sign must be used in expression (4.3) so

that V,g comes out positive as it should. Therefore for VR

more negative (smaller) o gets bigger and for Vie less

negative (bigger) o becomes smaller. Recall from Chapter III

that if o ranges between 0 and m then an increase in a implies

a smaller exciter-alternator field voltage and a decrease in a

implied an increase in the exciter-alternator field voltage as

indicated by Equation (3.10).
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4.3 Automatic Regulator

The automatic regulator is designed primarily to hold

constant voltage at the main generator terminals. The model

For the automatic regulator is given in Figure 4.3. The

regulator senses Va by means of a potential transformer and

the ac output voltage of this is rectified. This process is

represented by block G, in Figure 4.3. The expression for

G, is given by Equation (4.10), which shows that G, is a

multiplicative negative constant. This negative constant will

cause signal Vo to be negative and in fact all the other

signals throughout the automatic regulator will be negative.

Signal Vs is filtered by a low pass R-C filter in order to

eliminate the ripple left after rectifying. This process is

represented by Gs. This filter is very fast (very small time

constant) compared to other dynamics of the feedback loop. In

spite of this the dynamics of the filter have been considered

in the present model. The expression for G; is given by

(4.11) in Section 4.7.

Notice that V4 has been added to a voltage Vip

This voltage is due to the dc bias voltage used for the

transistors and other biasing voltages used in the circuitry.

There are a number of these voltages added throughout the model

The symbol Z is used to represent addition. For example in
the present case we have vg = Vz + Vhy.
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due to this effect. They have been indicated with the

subscript b. These voltages must not be confused with inputs

or reference signals. In fact these voltages have very little

effect, if any, on the dynamic behavior of this system. The

value for Vil is given by (4.12) in Section 4.7.

The signal Va is now processed by block G- The

function G, represents a resistive voltage divider. The

expression for G, is given in Section 4.7 as Equation

(4.13). Notice that the expression is given in terms of the

adjustable parameter a. For given values of 815 Os and

9 G, is a multiplicative constant. By changing the

adjustment 8, then the value of G, can be changed.

The output from G, is Vg which in this case it is also

equal to Vo, the input to Amplifier 1. Amplifier 1 is a dc

transistor amplifier and is modeled by Ty and Gs. The

Function Gg is the gain of the amplifier and is given by

equation (4.14) in Section 4.7. Ty is used to represent the

cutoff and saturation effect of the amplifier and is given by

(4.15).

The output of the amplifier is superimposed on a bias

voltage Vo given by (4.16). The resulting signal Vio is

processed by block Gg- Gg is used to represent an R-C

lead-lag network whose transfer function is given in Section

4.7 as (4.17). This is a very important element because it

adds one of the most dominant states in the system.

A nonlinear element following Gg is modeled by Ts

given in Section 4.7 as (4.18). The output of T. is Vi,
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The signal Vio is modified by adding the signal Vig to

obtain Vise The signal Vzg COMes from what is called the

nonlinear rate feedback. The signal Vag is basically a

signal proportional to the rate of change of exciter terminal

voltage Ve and is obtained as follows. The terminal voltage

of the exciter, Var is stepped down using a transformer and

rectified with a three phase rectifier. This process is

represented using the block Gyy- Function G,, is given by

(4.19) in Section 4.7. Notice from (4.19) that Gy, is a

negative gain. This comes about because of the way the

reference used to measure the voltage signal was defined in the

circuitry. This negative sign will cause signal Vogr 2MONg

others, to be a negative dc quantity. The output of Gis is

signal Vos that goes into Gis- Gis represents the effect

of an R-C low pass filter. The output of Gis is signal Vog

which is added to the bias voltage Viy given by (4.20).

Gig is given by (4.21) in Section 4.7. Adding Voq and

Yih yield Vage
The voltage Vag is now processed by the nonlinear rate

feedback section of the system. First the voltage Vag is

processed by a nonlinear gain Gg given by (4.22) in Section

4.7 yielding the signal Vig. The signal Vio is now added

to a bias voltage Vh10 whose value changes depending on the

value of the output Vag- This voltage is given by (4.23) in

Section 4.7. The result of adding Vh1o and Vso is signal

V3g. SO far signal Vig Can be considered proportional to

the voltage v_. The proportion changes depending on Vago 8S
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manifested by the relationship Gig: The signal Vag is now

processed by Gig: Gig is basically a differentiator but it

also introduces a small delay in the nonlinear rate feedback

loop. Gig is given by (4.24). Hence Vag is proportional

to the rate of change of Ve© The purpose of adding a signal

proportional to the rate of change of Vea in the feedback loop

is to add damping to the system to help stabilize the

exciter-alternator. The effect of this signal and the

nonlinear gain Gig will be illustrated in Chapter Vv.

Signals Vio and Vig are added to obtain Vis

therefore Viz has a component proportional to the rate of

change of Ve with some delay and a component proportional to

Yq with some delay due to the filtering introduced by G,

and the delay introduced by the lead-lag network Gg- Notice

that because of the way the reference has been defined this

voltage is negative. This signal, Vis is now amplified by

the dc amplifier 2. Amplifier 2 is modeled by the saturating

function Ts and the gain G5 as given in Section 4.7 by

(4.25) and (4.26). The output of amplifier 2, Vigo is

superimposed on the bias voltage Vp3- The resulting voltage

is Vig which is also shown equal to Vgc. If switch s shown

in Figure 4.1 is in position 2 then Vo, is also equal to

V3e
Therefore in conclusion the automatic regulator introduces

a negative feedback signal based upon generator terminal

voltage. The automatic regulator also has an input from

exciter terminal voltage in order to introduce a stabilizing
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signal for the exciter. Let us illustrate the behavior of the

automatic regulator with the following example. Assume that

the output of the automatic regulator of Figure 4.3, Vig: is

connected to the input of the firing angle system, Figure 4.2,

i.e. the switch s is in position 2. The input to the automatic

regulator is taken from FL Therefore we have the

closed-loop system defined as in Figure 1.4 by a self-excited

exciter-alternator feeding the field winding of the main

generator. The control system in Figure 1.4 is here defined by

the automatic regulator and the firing angle system. Assume

that the system is in steady-state working at given values of

Vg ao and regulator signal voltages.

If thereis anincreasein generator terminal voltage, this

will cause a decrease in the signal Vo, (recall that this

voltage is the output of G, which is a negative gain).

Similarly, without dwelling on the delays of the feedback loop

caused by filtering and compensation, all the signals of the

feedback loop will be decreased including Vg. A decrease in

Vg causes an increase in Vag (recall that Gog was a

negative gain). An increase in Vag? assuming it is between

the limits set by Tg will cause an increase in a. From

Equation (3.25) in Chapter III it follows that the voltage

across the field winding of the exciter-alternator is decreased

From which follows that after some delay the exciter terminal

voltage decreases causing a decrease in the field current of

the main generator. This, after some delay, will cause the
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terminal voltage to be decreased, which will tend to return

back to its initial value.

The effect of the nonlinear rate feedback comes into play

as follows. Assume that the exciter-alternator voltage for the

case above decreases so fast that it results in overcorrection

of the voltage Yq and therefore in instability. What rate

feedback does, without dwelling on the effect of the nonlinear

gain is explained as follows. If Ve decreases too fast it

means that Vog increases rapidly (recall that Gyy is a

negative gain). As a result the differentiator Gig will

produce a positive dc voltage for Vag momentaneously. Since

Vio is negative a positive increment of voltage from Vag

will cause Vis to be less negative than it would have been

without the rate feedback effect. The angle a increases to a

lesser extent which results in the exciter voltage not

decreasing as fast and therefore in the main generator terminal

voltage not being overcorrected. It follows that the nonlinear

rate feedback helps to stabilize the system.

Active-Reactive Current Compensator

The main function of the automatic regulator, described in

Section 4.3, is to keep the main generator terminal voltage

Vg unchanged. Sometimes however it is desired to regulate

the voltage at some point in the power system other than at the

generator terminal. In that case it is necessary to substitute

For Vg the signal that needs to be regulated. Because the

actual voltage that needs to be regulated is anywhere in the

4.4
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system, possibly far away from the physical location of the

regulator, it is not always practical to make a connection

between that point and the regulator.

What is done instead is to estimate the voltage in

auestion. This is fairly simple to do because all that needs

to be known is the impedance between the main generator

terminal voltage and the voltage that needs to be regulated,

the current flowing through it (generator terminal current,

1) the generator terminal voltage 2 and the phase angle,

99&gt; between Vg and ig With these then it is possible to

calculate the voltage to be regulated, substituting that

voltage for Vg-

Figure 4.4 shows the block G, representing the process

used to estimate a given voltage in the power system. This

block is placed between Yq and the input to the automatic

regulator, Vie The expression for Gy is given in Section

4.7 by (4.27). The expression is nonlinear because the voltage

Yq and the voltage between the main generator terminals and

the point of interest must be substracted vectorially.

Limiting Systems

The automatic regulator is designed to control the

behavior of the generator terminal voltage or of some voltage

in the power system. In the process of regulating these

h.5

variables the automatic regulator might try to force certain

variables in the system to increase (or decrease) above (or

below) a certain limit beyond which the safety of the equipment
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could be endangered. For example if the load at the output of

the main generator is increased (i.e. if more power is demanded

by the power system) this would tend to decrease the terminal

voltage. Therefore the regulator will change the angle a in

order to increase the exciter terminal voltage to correct the

voltage Vg: The loading conditions might be such however

that the exciter terminal voltage called by the control system

to correct the decrease in Yq is too high and consequently

the exciter terminal current goes above its rated value. This

would mean endangering the safety of the equipment in order to

keep the main generator terminal voltage constant. In a case

like that the survival of the system takes priority and the

regulation of Vg is maintained within safe limits. In order

to do this, Limiting Systems are used.

The purpose of the Limiting Systems is then to limit the

extent to which certain system variables can change by taking

over control from the main generator terminal voltage of the

automatic regulator when the survival of the system is in

danger. The limiting systems used in the control system that

are of importance are the following: the current limit system,

the exciter minimum voltage limit system, the phase limit

system and the underexcited reactive ampere limit system.

Before continuing with a description of these systems it

is convenient to define two auxiliary functions. These are the

Functions ch and ct and are given in block diagram form in

Figure 4.5. These functions may have n inputs but only one

output. The output Vv in the case of ch will be equal to
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the highest input or inputs. For the block cl the output

will be equal to the lowest input or inputs. Let us call these

functions "low signal comparator" and "high signal

comparator." As will be seen shortly, these functions will

help formulate in block diagram form the action of the limiting

control systems

The Current Limit System

Let us recall the example presented above. There it is

shown that during certain conditions the automatic regulator

4.5.1

might force the exciter terminal current and therefore the main

generator field current to increase to levels which are

undesirable for the safety of the system. A remedy for this is

to use a current limit system which takes control of the

regulator by cutting off the signal provided by the main

generator terminal voltage and substituting in its place 3a

signal proportional to i.

This can be implemented by using a low signal

comparator cy placed in the automatic regulator between blocks

G4 and T3. The resulting system is shown in Figure 4.6.

”

The current i, is obtained from the secondaries of the

current boost transformers. The current is stepped down using

current transformers connected from the secondary terminals of

the current boost transformers which feed a resistive network.

The resulting voltage signal from the resistive network is a
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time varying voltage. This voltage is rectified resulting in a

signal proportional to i). The process just described is

represented by Gg which yields the output Vig- The

expression for Gg is given by (4.28) in Section 4.7. Notice

that Gg is a negative constant. This comes about because of

the reference chosen to measure the voltages in the circuitry.

The signal Vig is then passed through a low pass filter

represented by Gg- The transfer function for Gg is given

by (4.29) in Section 4.7. The output of Gg is signal Vis

which is superimposed on the bias voltage Via? given by

(4.30) in Section 4.7. This yields signal Vig proportional

to i1" which is fed into oh along with v4. Therefore vg

will be equal to the lowest of these two signals.

Let us now go through an example to show how a limiting

system actually behaves. Assume that the system is at a given

point operating in steady-state. The automatic regulator is

regulating main generator terminal voltage very well so that

any small deviation of this voltage from the nominal value is

auickly corrected. Therefore it can be assumed that the

voltage at the terminal of the main generator is always close

to the nominal voltage and therefore the voltage signals

throughout the automatic remain almost constant at some

operating point.

Let us repeat now the experiment done in the previous

section where the loading conditions are increased gradually so

that the exciter terminal voltage and therefore exciter

terminal current are increased to levels endangering the
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survival of the system. As the exciter terminal current

increases the input to the current limit system increases.

Then this implies that signal Vi is decreasing (recall that

Gg is a negative gain). Signal vi; decreasing implies

Vis and Vig decreasing. During normal operation the

current limit system is designed so that Vig is less negative

and therefore bigger than Vg which usually remains fixed at

some operating point. The current limit system is designed so

that when the exciter terminal current is equal to the value of

current which is considered to endanger the survival of the

system Vig is equal to the value of Veg which is always

close to some operating point. Any further increase in iy

will cause Vig to fall below Veg which means that vg would

no longer be equal to Vg but tends towards Vig- At this

point the automatic regulator ceases to be a main generator

terminal voltage regulator and becomes an exciter terminal

n

current limiter. Therefore any further increase in ij] causes

a decrease of Vig which after some delay causes a decrease in

Vi increasing&amp;.Therefore exciter field voltage is

decreased which decreases exciter-alternator terminal voltage

which consequently decreases exciter terminal current.

Therefore exciter terminal current is limited. Notice that now

the exciter terminal current is well regulated which means that

as long as the current limit system is in control the value of

“1 remains almost constant which further implies that the
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signals throughout the regulator including Vig remain close

to an operating point.

Say now that the loading conditions that caused the

increase in exciter terminal current are changed so that the

load demanded is decreased. Since the exciter terminal current

is kept constant at the value required for the higher loading

condition, the main generator voltage, which during the time

the current limit system is in control is unregulated, will

tend to increase to a value higher than nominal, but it also

happens that this causes the signal Vg to decrease to a

value lower than the operating value of Vig: therefore at

this moment the voltage Vg will no longer be equal to Vig

but it will become v. again. Therefore the automatic

regulator goes back to regulate main generator terminal

voltage.

The Underexcited Reactive Ampere Limit System

The underexcited reactive ampere limit system is

designed to help maintain steady-state stability. This is

achieved by imposing a limit on the magnitude of the generator

underexcited reactive current. This limit is shown graphically

in Figure 4.7. Figure 4.7 shows a portion of the capability

curve for the underexcited region of the curve. In order to

retain steady-state stability the main generator must operate

inside the curve shown. Therefore what is needed is a system

that takes over control of the automatic regulator by cutting

off regulation of the terminal voltage, Vg? and introducing
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instead a signal dependent on underexcited reactive current in

order to regulate and limit the underexcited reactive current

when it goes above levels that might endanger the stability of

the system. Such a system is shown in Figure 4.8.

This system uses the function Gig given in Section 4.7

by expression (4.31). This expression comes about from the way

the detecting circuitry was designed. The reader is referred

to Reference [4]. Normally block Gig yields a negative

output. Notice that block T, clips the signal Yoo at 0 and

10 volts. Therefore normally the output at Ty is zero. Ty

is given by (4.32). Under any other conditions voltage Vol

is restricted to be between zero and ten volts. Because of the

last statement and because Vhs is a constant biasing voltage

equal to -24 volts, as given by (4.33) in Section 4.7, the

resulting signal will always be a negative dc signal. Signal

Vor is a dc signal proportional to the rate of change of

exciter terminal voltage used to stabilize the underexcited

reactive ampere limit system. This signal, Vos is obtained

by using the signal Vig from the nonlinear gain of the

automatic regulator and processing it by the differentiator

represented by Gz. The transfer function for G;, is given

by (4.34) in Section 4.7. This signal has an effect on the

underexcited reactive ampere limit system similar to the effect

of Vag ON the automatic regulator. The resulting signal

Vos is fed now to amplifier 3 modeled by Tg and gain

Gy. Tg and Gy; are given by (4.35) and (4.36)

respectively in Section 4.7. The resulting signal Vou is



120

then added to a bias signal Vibe given by (4.37). The

resulting signal Vos is then processed by a lead-lag network,

Gy,. The expression for Gyo is given by (4.38) in Section

4.7. The resulting signal Vog is the output from the U.R.A.L.

Then using the high voltage comparator ch between ch and
amplifier 1 the desired effect is obtained.

Assume that the underexcited reactive current goes below

the limit set by the dashed lines in Figure 4.7. This would

result in Gio producing a positive dc signal Vog- After

this signal is processed by LA it results in a positive

signal Voy. Due to the effect of the bias voltage Vhe?

V,, comes out a negative signal. Without dwelling on the

effect of the stabilizing signal Voo the signal Vos is

approximately the result of Voi and Vise As the

underexcited reactive current magnitude continues to increase

the positive dc signal Vol increases which translates into

the dc signal Vos being less negative, i.e. increasing. This

will also translate in the other signals of the U.R.A.L.

increasing. As this goes on there will be a point when Vog

has increased so much that it is bigger (less negative) than

the operating point Veo therefore at this point Vv, ceases

to be equal to Vg and becomes equal to Vag? i.e. the

underexcited reactive ampere limit system takes control of the

automatic regulator. The underexcited reactive ampere limit

system is designed to take control when the main generator

operating point violates the underexcitation constraint on the

capability curve
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4.5.3 The Exciter Minimum Voltage Limit System

During certain transient conditions the regulator might

force the angle a to be equal to 90° in which case the average

voltage applied to the field winding of the exciter-alternator

is zero. If this condition is maintained for too long the

exciter-alternator output voltage may collapse as is indicated

in the discussion of the current boost system in Chapter III.

The purpose of the exciter minimum voltage limit system is to

put a lower bound on the value of the exciter voltage such that

it doesn't collapse. The exciter minimum voltage limit system

is shown in Figure 4.9.

Notice that the first part of the system up to the point

yielding signal Vag has been explained before when discussing

the nonlinear rate feedback for the automatic regulator.

Signal Vig is now processed by Gig which is a voltage

divider which reduces the signal Vag to Vg. Gig is

given by (4.39). The signal Va, is now added to the bias

voltage Vba yielding Vs5,. The bias voltage Vig is given

by (4.40). This signal is now amplified by Amplifier 4.

Amplifier 4 is modeled by Te and G,, given by (4.41) and

(4.42) respectively in Section 4.7. The output from Amplifier

4 is Va, which is added to bias voltage Vho! given by

(4.43), yielding Vie which goes into the signal comparator

~h :
Cz along with Vig:

During normal condition Vig is bigger than Vig (less

negative) which means the automatic regulator is in control of
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the firing angle system. Let us assume that the loading

conditions are suddenly lowered to such an extent that the

automatic regulator forces the exciter terminal voltage to go

very low in order to keep the main generator terminal voltage

constant. As the exciter terminal voltage goes low signal

V30 increases (becomes less negative). Without dwelling on

the delays of the system it can be seen that as Vag

increases, Vas increases too. The system is designed so

that Vas becomes higher than Vig for the value of exciter

terminal voltage below which the system could be in danger of

collapsing. The exciter minimum voltage limit system therefore

takes control at this point and starts regulating Ve in order

to keep it above the limit. When the conditions return to

normal the automatic regulator takes control of the firing

angle system again.

Phase Limit System

For some reason, the phase limit system is used to put a

lower bound on the value of exciter field voltage in order to

4.5.4

limit the degree of negative voltage which can be applied when

attempting to quickly reduce exciter terminal voltage. This is

accomplished by limiting the value of a. Therefore it is

necessary to place a lower bound on voltage Vg as shown by

Cigure 4.10. A small component of Vagr Vip? is obtained

from the voltage divider Gog and added to the bias voltage

Vh1l to obtain Val- Expression for Gog and Vp1) Te

given by (4.44) and (4.45) in Section 4.7. Signal Vi, is



126

then processed by the divider Gos to yield Vago Goy is

given by (4.46).

The signal Vio is determined mostly by the fixed bias

voltage Vpl1l® Therefore Vio is a fixed limit (it actually

does change a little bit due to the small component from

Vag) - Therefore all that the phase limit system does is to

take control of the firing angle system and set @ to a fixed

minimum value whenever it happens that Vig and Vis try to

force the angle o to a value below which undesirable inversion

of field voltage is obtained (recall that for angles between

m/2 and Tm the SCR bridge actually gives negative average

voltage to the field winding, according to Equation (3.25).

4.6 Manual Regulator

The control system of the Alterrex system has also a

manual regulator which may be used to control the level of

excitation. This regulator is shown in Figure 4.11. Notice

that the manual regulator is very similar to the minimum

exciter voltage limit system.

As in the case of the exciter minimum voltage limit system

the input Ve is rectified and filtered by a low pass filter.

Both effects have been grouped using the same function Gyro

The transfer function for G,s is given in Section 4.7 as

Equation (4.47). Notice that G,o is a function of the

adjustable parameter 3,- Notice also that the gain of

transfer function is a negative constant. The output from

555 is superimposed on a bias voltage Vhl? and the
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resulting signal, Vigo is amplified by Amplifier 5 modeled as

Gr and T5. The voltage Vh12? and functions T, and

G,5 are given by (4.48), (4.49) and (4.50) respectively in

Section 4.7. The output from Amplifier 5, Vig is

superimposed on Viz given by (4.51), resulting on v ,

output of the manual regulator.

the

When switch s is in position 1 the manual regulator is in

total control of the system. Its main function is to regulate

the level of excitation Ve- This is accomplished because as

Ve tries to change the regulator reacts as to change a such

that it corrects the change in Ver By changing the

adjustable parameter a, the overall closed-loop gain of the

system can be changed and therefore the level of excitation can

be controlled manually

Mathematical Model For The Control System

In this section all the information given in this chapter

is summarized. The complete block diagram for the control

4.7

system is given in Figure 4.12. The expressions necessary to

obtain the governing equations are listed below as (4.8)

through (4.51). The expressions are written in terms of

positive parameters 99 through dg1» Pg through Pio and

adjustable parameters 3, and a,. The values for these

parameters are given in Table 4.1. The control system is

modeled in terms of actual units rather than in per unit.

Since the inputs are in per unit, the blocks at the beginning

of the model must account for this by multiplying the inputs by



other parts of
control system

V7

| amplifier5|
46 Vi5 v ’ 1.

(2 ES 17 (&gt; “22
Vb13 CTT TT Vbl2 a,

Manual Regulator
adjustment

[Fe]

Manual Regulator

Figure 4,11 Block diagram of Manual Regulator,

- a

Rn)
 LO



130

the system base values. The letter s was used here to

represent the derivative operator. So for example in the case

of G, in the automatic regulator we have that the governing

equations relating Vo and Vg is obtained using the transfer

function for G, as follows:

Ceagat

J

4

-
-

 Jd ALR + s)lv,

(4.4)

(4.5)

ro,

v4(Pq +s) = g, Vo (4.6)

and.

dv,
gf = - Pp Vv» + 9, Vo

where (4.7) is the state equation relating v, and v5

Expressions (4.8) through (4 1) are:

(4.7)

Firing Angle System Equations
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The Active-Reactive Current Compensator Equation

J

(955

.

 wy

| (
\ . y 2

Yq * Op4 1g COS % + Jog 1g sin 9)

i, cos O -954 1 sin a JZ

-Jd.
“Jn

(4.27)

(4. 8)



134

 927

‘ba - -~— ~~
. 4 &gt;

(4.29)

(4.20)

UJnderexcited Reactive Ampere Limit System

’50

34.

~

[6] 10) (1 ~ Yn

[(g,q4 i, [Gq cos © +

(3,54 i, [954 sin op -0=

14 1/22 _[(g,q

. 2

gzy Sin O41)

COs 0.

#
a

20S 0
J

1

: 2 .

35, sin 6q1) + [9,4 1 (95g sin o_

34 0S 0.) + 9-5 Ya + 923 v | 24172

fi Jgpper limit 9-3 lower limit = +c

hs
~x

-

ZL

J S
Gi. = ol

13 "s + D-

upper limit = I.4; lower limit = -0,,

(4.31)

(4.32)

(4.33)

(4.34)

(4.. 5).
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G11 = 940

hE

in _ 341 (s + pg)

32 "T+.

(4.36)

(4.37)

(4.38)

Exciter Minimum Voltage Limit System Expressions

39g

/
 Hh 8

=

i

Z

G15

‘ho

} ~

-859 = 12 (-1 + 9,5)

Jpper limit = 9433 lower limit = ~944

945

ur

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(Gyo Gis and Vp aTe also given for the automatic

regulator as (4.19), (4.21) and (4.20) respectively.)

Phase Limit System Expressions

Gog = 947

011 = “948

(4.44)

(4.45)
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9,231 (4.46)

Manual Regulator System Expressions

95g (8, + 951)
590 = Teo b1q

h12 dg1 = -0-5 (a, +

«

- Jdpper 14 mil = J 52”

oo
a) = Ogg

R13 = Gg

cy)

lower limit = Os,

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)
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TABLE 4.1

Control System Paramenters

T c

17

15

J,

Jn
1.

3

3
JS

dq

Jo

310

J
]

Y

1.0472

T

“i

x

202.173

LOO

150

7.5

500

5.036 x 10°°

0.13295

2.731

I

20

0.278

20

5.56

[1/volts]

[rad]

[rad]

[volts]

[1/sec]

[1/sec]

[volts]

[ohms]

[1/0hms]

[volts]

[volts]

[1/sec]

[1/sec]
-

15

J13

014

dy¢

91¢
Do

Js
by - 4

:

~

rl4

313.9

1
a

"0

750

L r 3

aC

[volts]

[volts]

[volts]

[volts]

[1/sec

[1/sec]

[volts]
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Table 4.1 - Continued

1 4«

150

9-21

955
Jy

353

51/61

56

0.056

0.67

5.850

[volts]

[volts]

[1/sec]

do4
Jo5

Jog

154

Je

Vg

Io8

2.21

8.0074 x 10°

1.686 x 10°

§.076 x 10°

nN.s°2

[volts]

1/[sec?]
1/[ sec]

1/[sec?]
[volts]

dog

930

33)

J35

333

Jz,

95

 Jd
J 3+

J

/
af

0.0769

N.N9%4

t

1)i i

)

24

[ohms]

[ohms]

[volts]

[volts]

[volts]

[1/sec]

[1/sec]

[volts]
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Table 4.1 - Continued

p.

[I “ov
1

pu

7

340
341
Jo

JA

Js

343
ua

J45

Jug

47

348

140

Is50

95,

0c,

9g=

dg,

dc

I5¢

3,

3

Pio
] 37

../i [volts]

 Zz 5

0.1071

1.603

0.172

[1/sec]

[1/sec]

0.1098

N [volts]

[volts]LL 24

21]

50.4 [volts]

1/180

ho 12 [volts]

0.6

9.22 [volts/ohms-sec]
1.47[KQ]

3.479 x10% [volts/ohms]
N [volts]

beTT [volts]
ro]

50 [volts]

500 [adjustable between 0-500]

1.42 K @ [adjustable between 0-5K Q ]

+)3 [1/sec]
41 S44 [volts]
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Table 4.1 - Continued

deg

959

J¢0

dg

50

10.68

110.16

[volts]

[volts]

[volts]

[volts]

Parameters gop4 and gps belong to the Active-Reactive
Current Compensator. (See Section 4.4 ) Parameters gop,

and 925 are the resistance and reactance in per unit
respectively between the Main Generator Terminal and the
point that needs to be regulated.

These parameters belong to the U.R.A.L. and are not given in
the Alterrex manual. These parameters could be found as
follows (refer to [4], Figure 18 entitled "Diagram and Vector
Pogitions for Underexcited Reactive Ampere Limit").
Parameters go9, g32 and g3z3 are found as follows:

dog =
3
N ’

3

|
J

where ig" is the base value of main generator terminal

current and Ny the turns ratio of the current transformer
connected in the armature of the main generator at phase b.

g32 = M) vol, where vg" is the base value for the

generator terminal voltage. Mj; is the fraction of
generator terminal voltage measured from point (5) to M in
BlVT of Figure 18 in Reference [4].

g3z3 = M2 vg®, where Mp is the fraction of vq

measured from (3) to (5) in B1lVT.
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Chapter Vv: COMPLETE MODEL OF THE ALTERREX EXCITATION CONTROL

SYSTEM

Introduction

In this chapter the complete model for the excitation

control system is given. The model is completed by using the

self-excited exciter-alternator model given in Chapter III and

adding the governing equations of the main generator. Thus the

5.1

R-L load at the output of the model given in Chapter III is

replaced by the field winding of the main generator. This

model and the control system model (Chapter IV) constitute the

complete model for the Alterrex excitation control system and

is pictured schematically in Figure 5.1. The main generator is

shown connected to an infinite bus, v_, through an inductive

impedance, X_. The control system takes the exciter-alternator

"

terminal voltage and current, ve and ij and the main

generator terminal voltage and current vy and ig, And

processes them to yield the value for the control input,

firing angle «a.

the

The sample simulations presented in this chapter exclude

the effect of the current boost system and the limiting

systems, although these are included as part of the complete

model. They simulate the case of the unloaded main generator

and that of the generator connected to an infinite bus through

an inductive impedance. The results of tests on this model for
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Figure 5,1 Schematic of the Model for the Alterrex excitation
control system
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these two cases are compared with the results of the type I

model proposed by the IEEE committee on excitation systems [3].

Bw?

5.2.1

Governing Equations for the Complete Model

Governing Equations for the Self-Excited Exciter-

Alternator with Main Generator Connected

to an Infinite Bus

The model for the self-excited exciter-alternator is

defined by the model given in Chapter III for the self-excited

exciter-alternator with current boost system but in this case

feeding the field winding of the main generator. The main

generator is connected to an infinite bus v_ through an

inductive impedance X_. The model for the main generator is

based on standard two-reaction theory for synchronous machines

[1]. The parameters used can be found in Table 3.1 and in

Table C.1 in Appendix C.

The model for the main generator includes damper

windings and has a total of five states. The self-excited

exciter-alternator with current boost system and damper

windings has four states. Therefore there are a total of nine

states for the self-excited exciter-alternator with the main

generator model. In this thesis the turbine output will be

modeled as a constant torque source.

5.2.2 The Control System Equations

The mathematical model for the control system is defined

oy the block diagram given in Figure 4.12 and the expressions
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given at the end of Chapter IV in Section 4.7. The parameters

used can be found in Table 4.1.

5.3 Solution Technique for the Self-Excited Exciter=-Alternator

with Main Generator and Automatic Regulator Problem

In this chapter the behavior of the Alterrex model is

illustrated. In this section a method is developed to obtain

the numerical solution of the self-excited exciter-alternator

with main generator and the automatic regulator model. For the

purposes of this section the limiting systems and current boost

system effects are ignored. The Active-reactive current

compensator has also been left out. This means that the input

to the automatic regulator (vy) is connected directly to the

main generator terminals which therefore is regulating Vg"

The method presented here is an extension of the methods

used in Chapters II and III. The method is given below step by

step. The variables used have been defined in previous

chapters and in Appendix C.

Step 1 - The first step consists of integrating the state

equations given below. The necessary information to obtain

these equations is given in Chapters II, III, IV and Reference

[1] for the generator.

dA
es = Do (-Reg leo + Veo) ( = 1)



lay

dA
kde ww R i

dt ~~ e0 "kde “kde

dA
kae w

dt ~ el R kage 1 kae

dA

 mr = (-go (“Reg leq 4 Veg

dA _w R .
TE = g0 "kdg ‘kdg

3A
kg WwTr = - R |a0 "kag ‘kag

5 Ww
3 =gg

W
30

-W
Nn) A . A ° -

g = 523° “dg ag * “ag fda = Tm’

vy,
= Vv soTE = “Pg V7 - (95 Pg + 94 93 vo) (8) gg + gy)

dv, dvg )IT = P22 Vn? 11 (0s at *t P1(957 ME: Vg)

V0TT = 30 * 915) Pz 03, 934 Ve

(2.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(2.3)3

(5.9)

(5.10)

(2.11)
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dvg oo y dvsg
gt = “Py Vig * 920 FT (5.12)

Equations (5.1) through (5.3) are the state equations for the

exciter-alternator. Equations (5.4) through (5.8) are the

state equations for the main generator. Finally Equations

(5.9) through (5.12) are the state equations for the automatic

regulator. Notice that the main generator variables are

denoted using the same symbols used for the exciter-alternator

with the exception that the subscript e is replaced by a g.

Step 2 - Step 1 yields the values for, Aas Ade? A eng!

Ag Medg? Mag? Sq Wy Vos Vi1s Vag and Vig
at t = tg + AT. The quantity v_ is also known. Step 2

consists of a procedure to find the value of main generator

field current, leg and a using the information available.

Once this is found then the problem becomes analogous to the

problem solved in Chapter III. This makes sense physically

since the only external effects affecting the behavior of the

self-excited exciter-alternator are the loading conditions and

the input variable o, i.e. the firing angle of the SCR bridge.

Once thesevariables are found the variables for the self-excited

exciter-alternator can be obtained independently of everything

else.

The main generator is connected to an infinite bus through

an inductive impedance X_. It is possible to redefine the

problem by adding X_ to the leakage inductance of the main
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generator. In this case the problem is transformed to a

problem with a new machine connected directly to an infinite

bus. However the voltage regulator must be modeled so as to

regulate the actual generator terminal voltage. After the

variables for the new machine are obtained it is always

possible to get Vg* What follows is the procedure to find

the current leg and the variable a. First the expressions

needed to find the variable leg are listed below. These

equations can be derived from the governing equations of the

main generator. They are given in this thesis without

derivation.

£5. 51
ing (to + AT) _(Zkag C, . C3 ) Me

= Cp X-7C, ~ “99
ag’ ~3

Ce C,
X (cs . C3 ) *ia

mag +“xt
6 “mag” "3

(5.13)

Cc, C c, C
» 6 2 * 6 1kag (tg + AT) - (. - (es - —) tag - “= /[- Xmag” © )

(5.14)

. C C X .
i (t AT) 1 2 i mag i
kdg 0 + =r - ag + — kag

2 Ek 7
(5.15)
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| “90 Xmdg “90i (t. + AT) = Vv _ cos é - A + R i 4

;

2 x 2
| x md

_ _mdg i _X + pe )- or ress) kdg dg Ffq (5.16)

fo (tg + OT) -| Aq ¥ Xndg 14g - Xmdg tag) [Xera (5.17)

The variables Cy through Cg are given in Appendix C.

variables lag? lag’ 1idg’ lg and leg can be found
at time tg + AT using Equations (5.13) through (5.17)

respectively.

The

The value of a is found as follows (refer to Figure 4.12

in Chapter IV). Variables Vil and Vig are known from Step

1. variable Vio Can be obtained then by applying the

nonlinearity T, to Vii Variable Viz is obtained then

by adding Vag to Vio- Using the model for amplifier 2,

i.e. expressions G, and T=, the value for Vis Can be

obtained. Knowing Vis the variable vp can be obtained

after adding Vis to Vis (notice that for this case Vig?

Vig and vp are all equal). Therefore using the model for

the phase angle system, i.e. expression Tg and Gory the

value for @ can be found. The variables for the self-excited

exciter-alternator can be found independently of the rest of

the system. This can be done by using Steps 2, 3, 4, 5 and 6

of the solution technique given in Section 3.3.2 of
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Chapter III. Notice that i of Chapter III is now lege

The reader should at this point refer to the solution technique

presented in Chapter III. At the end of Step 6 in Chapter III

it is said to go back to Step 1. This is not done so here.

Instead at the end of Step 6 in Chapter III the procedure is

continued as follows

Step 3 - Before returning to Step 1 the variables Veg *dag’
A °
ag’ Vg Vg and Vag must be obtained. Also

convenient expressions for d Vg and d Vig must be obtained.
dt dt

Furthermore if the saturation of the main generator has also

been modeled, a new value of Xndg must be calculated for

tg + AT.

The variable Vg is the average voltage at the output of

the rectifier of the exciter-alternator. This also happens to

be indentical to vi of Chapter III which is calculated in the

solution technique of Chapter III (Step 6). The variables

dg and ag can be found from the governing equations of

the main generator [1]. The variable Va is found using the

transmission line reactance X_, and the current through it.

variable vg can be found from v5 using Ty. If vg is

between the limits set by T; then d Vg is equal to d Vy
dt JF

which means it is also given by the right side of Equation

(5 9 J
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The variable Vgg Can be found from Vag using Gig and

Yhlo® After determining the value of the function Gig '

the term d Vig Can be set equal to Gig times d v,,.
dt dt

Finally Xmnde C2817 be found using the following expression

chosen to model the saturation of the main generator. This

expression fits the data for i&lt;0.95 p.u.

X
mdq

she ~e

0
Q

Ad

Lo

ha
»

§

+

J

8

1kdg

1

‘dg

1,

(5.18)

(5.13)

Constants bg through b, are given in Table C.1 in

Appendix C. The manufacturer's data for the main generator

(AEPs Big Sandy Unit 2) is also given in Appendix C. Notice

that values for Xdq and Xfeq must also be calculated using

Xmdq Now it is possible to go back to Step 1 and repeat the

whole procedure to obtain new variables for tg + 2AT.

The steady-state values for the case where the main

generator is unloaded can be obtained fairly easily because for

a given value of vq the corresponding value of field current

and voltage can be obtained using the saturated value of

Xmdg* Then using the procedure described in Chapter III to

obtain the steady-state conditions for the self-excited

exciter-alternator it is possible to obtain the steady-state

values of the exciter-alternator that are consistent with the
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generator field voltage and field current. Then the adjustable

parameters of the control system should be adjusted to satisfy

these conditions.

The steady-state values for any other conditions can be

obtained numerically using the method described in this

chapter. The method should be initialized with a set of

consistent initial conditions so as to avoid convergence

problems, a desired input torque Lp and the external and the

elements X_ and v_.

Demonstration of the Model for the Self-Excited Exciter -

Alternator with Main Generator and Automatic Regulator

It is possible to implement the numerical method of

solution described in the previous section using a digital

computer, This was done here as a demonstration of the

capabilities of the model for simulating the real system.

These tests were made to test the self-excited

exciter-alternator with the main generator and the automatic

requlator. The current boost system and limiting control

systems are not included.

5.4.1 Tests on the Model

Two different types of tests are performed on the

model. One test consists of changing the reference setting of

the control system with the main generator open circuited. The

second test consists of introducing a fault somewhere in the

system with the main generator loaded.
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The first test is done by setting X, to a very high

value as to simulate the open circuited conditions. The

steady-state values are given in Table 4.1. The automatic

regulator adjustment a, is initially adjusted to maintain 1.0

p.u. main generator output voltage. This value is given in

Table 4.1. The automatic regulator adjustment a, is then

changed so as to simulate the effect of a step input in the

reference voltage of the automatic requlator. This causes the

system to go to a new steady-state position after moving

through a transient. The results of this test are shown in

Figures 5.2 through 5.6 .

Notice that the generator terminal voltage has a rise

time of about 0.5 seconds. It overshoots 14 percent with the

peak of the overshoot at about 0.8 seconds and it settles in

about 1.5 seconds. The parameters of the automatic regulator

are adjusted to obtain a fast rise time and also a short

settling time for the response, however, no attempt was made to

Find a set of values which yield the absolute fastest

response.

It was observed that the time constant of the lead-lag

network shown in the automatic regulator loop of Figure 4.11

had a strong effect on the rise time. Therefore the parameters

of the lead lag network are adjusted to produce a short rise

time in the response. It was also noticed that adjusting the

exciter rate feedback time constant has a strong effect on the

damping of the dynamic response of the system: it also has a

smaller effect on the rise time. Therefore the time constant
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of the rate feedback is adjusted to reduce the settling time

and eliminate oscillations as much as possible without

offsetting the rise time of the response by much. The

parameters for the control system are given in Table 4.1.

It is interesting to observe from the plots of the

results that the step input in the automatic regulator

adjustment causes the control input &amp;, plotted in Figure 5.3,

to go to zero almost immediately. At this value the firing

angle system saturates (see Figure 4.12). The control input

stays at this value for about 0.25 seconds. This forces the

2xciter terminal voltage shown in Figure 5.4 to reach peak

voltage at about 0.3 seconds.

It is interesting to observe the effect of the nonlinear

rate feedback. From the plot of Vag shown in Figure 5.5 it

is possible to deduce that the nonlinear rate feedback loop

changes gain at about 0.2 seconds and at 0.5 seconds, i.e. when

V3g = 99 volts. At point 0.2 seconds the rate feedback loop

changes from a higher gain to a lower gain, resulting in less

damping. This can be seen by the fact that signal Vag shown

in Figure 5.6 decreases at a lower rate after 0.2 seconds. At

0.5 seconds the value of Vag becomes high enough so that the

rate feedback loop regains a higher value for the gain. This

is also the time at which the generator terminal voltage

crosses the desired steady-state value and continues to

overshoot. It seems as if the effect of the nonlinear gain in

the feedback loop is to decrease the rise time while damping

the tail of the transient response effectively
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The next test performed on the model is done with the

main generator connected to an infinite bus through an

impedance X,. The steady-state values and the values for X

and v_ are given in Table C.3. The test consists of a fault at

the infinite bus cleared in 6 cycles. This test is performed

on the generator both without and with the exciter model in

order to observe the effect of the exciter on the dynamic

behavior of the generator. The results of these tests are

shown in Figures 5.7 through 5.12.

The generator terminal voltage for the case without and

with exciter are shown in Figures 5.7 and 5.9 respectively.

Comparing these two voltages it can be observed that there

exists a slight difference between the two. The figures show

that the exciter does improve the terminal voltage regulation,

the voltage appearing to return to its steady-state value more

rapidly.

It is also evident that the excitation system has an

effect on the behavior of the load angle as shown in Figures

5.8 and 5.10 for the cases without and with exciter-alternator

respectively. The difference in behavior between the two cases

appears to be that the exciter initially raises field current

in an attempt to maintain main generator terminal voltage,

hence resulting in a negative effect on the rotor angle. This

can be seen by comparing Figures 5.11 and 5.12 for the case

with and without exciter-alternator respectively. It also

appears to somewhat improve damping following the first swing

as seen by Figures 5.8 and 5.10. As a result of this
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simulation, it can be seen that the exciter-alternator seems to

have a significant effect on the dynamic behavior of the

generator.

Comparison with the IEEE Type I Model

In this section the simulations done in Section 5.4.1

are repeated using the IEEE type I model (3) using typical dats

5.4.2

not necessarily consistent with the parameter values used for

the detailed simulations in Section 5.4.1. Therefore small

differences in behavior could be expected. The block diagram

For the type I model is given in Figurels3in Chapter I. The

parameters used here for the type I model are given in Table

5.1.

The reference voltage is changed suddenly in the IEEE

type I model to repeat the first test done in Section 5.4.1.

The result for the terminal voltage is given in Figure 5.13.

Comparing Figure 5.13 with the response obtained in Section

5.4.1 shown in Figure 5.2, it shows that both responses have

essentially the same charateristics. The response in Section

5.4.1 however seems to be much better damped while retaining

the same rise time characteristics. It seems reasonable to

expect that this difference is due to the fact that the model

proposed in this thesis accounts for the effect of nonlinear

rate feedback while the IEEE type I model does not.

The fault test on the IEEE type I model is also repeated

For the cases where the system is without and with

exciter-alternator. The results are shown in Figures 5.14
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through Figure 5.17. These results show that both models have

captured the essential characteristics of the dynamic

behavior. There is however a stronger effect on the swing of

the rotor angle according to the model presented in this thesis

than according to the IEEE type I model. For example Figure

5.10 shows that the simulation using the model presented in

this thesis predicts a larger effect of the rotor angle than

does the type I model.

The tests done above were intended to be an illustration

of the utility of the model presented in this thesis and not as

an exhaustive testing procedure. In fact, since no documented

procedure can be found for the derivation of type 1 parameter

values from the known physical construction of the generator,

it is not possible to do more than the general sort of

comparison tests presented here. However, the results do

verify that the Alterrex model developed in this thesis behave

consistently with expected behavior. Further verification must

await comparison testing with an actual Alterrex system.
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TABLE 5.1

Parameters For The IEEE Type I Model
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Chapter VI: CONCLUSION AND SUGGESTED FURTHER WORK

6.1 Summary and Conclusion

A detailed model for the Alterrex excitation control

system has been developed. The model has heen developed by

considering the physical principles governing the behavior of

this system. The model developed has a direct relationship

with the actual physical system, which is a departure from

traditional models developed for this system [3]. Therefore

the parameters of the model developed in this thesis have been

obtained from the actual physical parameters of this system.

This is considered to be an advantage over previous models.

The complete model for the Alterrex is given in Chapter

V. The main part of the model is considered to be the

self-excited exciter-alternator, the main generator and the

automatic regulator. The simulations done on this model show

that it predicts the expected behavior of the actual system.

The results are also compared to the results obtained using the

IEEE type I model [3] with typical data. The comparison shows

that although both models capture some of the essential

characteristics of the system the model presented in this

thesis does seem to predict effects that the IEEE model could

never predict even if different parameters were chosen. An

example of such an effect is the nonlinear rate feedback.

Although the complete model given is specifically designed

for the Alterrex system, the modeling techniques developed here

could be applied to a wide range of excitation control systems,
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particularly those that use an exciter-alternator with output

rectifier. Other problems apart from excitation systems but

involving ac machinery with rectifiers could also be solved

using the material presented in this thesis.

This thesis has dealt with two basic problems. These

are: the problem of the separately-excited exciter-alternator

for transient conditions and the problem of the self-excited

exciter-alternator for steady-state and transient conditions

presented in Chapters II and III and complemented by

Appendicies A and B. They by themselves constitute the heart

of this work.

The control system was also modeled in order to obtain the

complete model for the Alterrex excitation control system.

Although this model can be obtained from the actual schematics

of the system in a straightforward manner by using basic

circuit theory, it is a tedious and time consuming task.

Notice that Chapter IV gave detailed explanations of the

pehavior of the control system. These explanations are more

detailed than those found in the Alterrex Manual [4].

Suggestions For Further Work

The work presented here could suggest further research in

several different directions. One direction is to try to

reduce the present model to a smaller and more modest one yet

maintaining a correlation between the model parameters and the

parameters of the actual system.
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It is also necessary to simulate the current boost system

and the limiting systems. Only after this is done and after

the simulations show that they predict expected behavior should

the parameters and models given for them be considered

adequately verified.

Another possibility is to use the model presented here to

design control strategies to control the system optimally. For

example the parameters 9g through gg, Pg through p,q

and a,, a, could be optimized according to some criterion.

Finally further work should be done to justify

experimentally the given model. At this stage the model has

given results that are consistent with the expected behavior.

Further experimental evidence, at this time unobtainable,

should show the superiority of the model presented here over

other models.



169

APPENDIX A
Derivation of the Equations Used in Chapter II

In this appendix Equations (2.19) through (2.32) are

derived. Also the linearized equations and related constants

are given. This includes Equations (2.33), (2.34) and (2.35).

A.l1 Steady-State Equations

Equation (2.19) is Equation (2.18) applied in the

steady-state case. Equation (2.21) is obtained by finding the

driving point impedance at the terminal of the

exciter-alternator. This is obtained by using Equations:

(2.15) with di /dt set to zero, (2.16) and (2.17) as follows:

Ve ] v /[(2.33) T, cos a _RsL(2,33) T, cos BJ

i, i /7(1,/0.78) (1,/0.78)

To
(2.33)(0.78) T, cosB

(A.1)

Equation (2.20) is derived as follows. Looking at the

phasor diagram of Figure A.l1 we notice that Ee can be

written as follows:

pao LO. = Ve [8 * Rae 11 [Se -0) + JXgqe 1) fo “Og (3.2)

Now multiply both sides of (A.2) by 1 [5

Erde [0 = Ve lo + Rae 11 [oy + JXge 11 [01 \
7
p= A
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35T¢

1

] «-R
ae 1. s1n 93 + Xqe Ly cos A

f

y

y (AR.4)

From which Equation (2.20) follows trivially. Equation (2.22)

follows from (2.12) with dA eg set to zero. Equation (2.24)

Ht

follows from the definition of R_ as

impedance.

Ode J 1 ig DJ Lb Nt

Equation (2.23) is derived as follows. Looking at the

phasor diagram of Figure A.l we see that it is possible to

write for the steady-state:

“fde = Xmde life = Vo cO0SsS L

xX
de sin (8. +

 Ay
J

And using (2.24) we can substitute for Vg and obtain

Redip cO0S Sen + Ro, 1 10 cos (S.A 1

MN de a

ir]
SL { N

ar:
-1, 0’ = Amde iran

(A.5)

(A.6)

From which (2.23) follows trivially.
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A.2 Auxiliary Equations

Equation (2.25) is derived as follows. From Equations

(2.1) and (2.2) it follows that,

¥
Vv

an} deVv
qe

(rp 7)

Now it is necessary to express Vde and Vae in terms of the

states and Sev This is done by manipulating the equations as

follows. First substitute (2.8) in (2.11). Then solve (2.9)

by ne and the result is substituted in the previous

result. The result is an equation in terms of ler i4e

and AMkage. Using Equations (2.3), (2.4) and (2.17) it is

possible to replace ig and i,, in terms of i, and 6.

obtaining:

/
de

R
qe

2 .
X 0.78 1

L(w/w) (x _ rae | AE cos (6_+ ©.)e’ el qe Xiqe T, 1

{0.78 i, ) X X
L . mae “kaqe

—— sin (6. +0.) = (W/W) —=
1, e 1 e’ el Xraqe

3

(F f3)

Now the same sort of manipulations are done using Equations

(2.5). (2.6), (2.7), (2.3), (2.4) and (2.17). Obtaining:

2 .
K i, 0.78

— L °‘Go = (Vell) (5 : 2) (fe) sin 0, + 4]
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KK 0.78 i
2.8 erred S 0,) (A.9)(wg /wgg) (&lt;4 Ks ) - x T cos ( e * 9

whe =,Fm

)

1 = Xg4e
4 mage

"kqe

(= "mae
° Xkqe

l

2
_ x , X mde

ae © Xorg

Ky =
“mde
Xeeq Are

{ = Xda

2
Xnde
Xffe

2
Xnde
Xeea

£ -~ Ade

‘g = Mede
‘mde
Xeeq Are

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

And from (A.7), (A.8) and (A.9) (2.25) follows trivially.

fquations (2.26), (2.27), (2.28), (2.30), (2.31) and (2.32)

follow trivially from Equations (2.17), (2.18), (2.7), (2.6),
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(2.9) and (2.16). Equations (2.29) can be derived as follows.

Use Equation (2.1) and (2.2) to obtain:

Ve A + Vae
—y

(A.17)

Then using (A.2) and (A.3) and substituting above Equation

(2.29) is obtained.

A.3 Linearized Equations About Equilibrium Point

In general any nonlinear Equation with continuous partial

derives of the form:

y = I \ X

yhooCL

y
: 1

LY 1s Yas Vaeeeor Yl

f i (fy, fo fzeoeeyf]
1

X = Lx, X ny XzI.

can be linearized about an equilibrium point as follows:

Ay = aw | xg Dx

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

where,
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Ly = Y - Yq

AX = X “0

/g 3Nd Xg are equilibrium values and,

(A.23)

(A.24)

Caf (x) afy(x) ... af (x)
3%] 3%, 3%

3f (x)
J(x) = EC =

af, (x) af (x) ... 3f,(x)
Ixy 3%, 3X,

(A.25)

af (x) af (x) ... af (xX)
3X4 3X, 3X

Applying this method the linearized equations and related

~onstants can he obtained.

A.4 Linearization of Equations (2.1) Through (2.18)

(Without Damper Windings).

AS N— N AV &amp;
+ No Aly

N,d Al. 4 1
AV = N. Aly + IF

(A.26)

(R.27)
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N_ d Ai N_d Ai N dA Se
Av = N. Ai 6 fe + 7 i + 8

fe = 5 fe + dat dt dt

AV_ i Al, + Ny= Ng Bley + Njg 81 Abe

(A.28)

(A.29)

Coefficients N; through N;, are given in terms of the

parameters and the steady-state values.

N — .51inN Sen’ (Ven COS 60 * “mae t10 SIN Seq)

N Amage 20S Sen’ Ven CoS San + X noe iio sin Sap)

N- Re

N X,= LT,/[0.78 (2.33) w,, cos (By) T,l

N
y Re,

NI - A fra’ NrYs

N — Ande sin (Souq

No = -Xpge 110 08 (8.9/u.q

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(AR.27)
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. 2 . . 2

Ng = (1eeq X mde “13 BLP (beg) X mde’ Veo

N
i0

EN (i
. 2 ‘ .

10 S17 (80g) X mde * 110 cos?(8,%nae

5

i
x mde sin (Sag Weg

(A.28)

(A.39)

Zz j £ . 2 : .

Vip = (XTpge 11g €08(850) sin Bog) =X ge 1rep 110 COS (8ep)*

A
. . 2

mae cos(8,n)sin( sg) 10°”Ven p 0)

Using these equations it is possible to obtain an equation

of the following form:

, doi, dai
(t) = uw, My +286 gE + T3Fo (A.41)

Notice that Equation (A.8) is a second order differential

equation since only the field flux and the load current were

considered to be states.

The coefficients for this equation are:

x: _ [(Zte Ree 0) Xmde (Zre CE Ree °)]/*
n = A ~~ an J 7 *Y\T™wm ~~ Tan

(AR.42)
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vo, [CreJBre)(Srrel(Herelpp)fasen A A e Weg A Wop A Z

“ere © re B
va -F)E-\g—x+6)|/H
el el

- (pe i (Site c ) 0) y
Weg A Yeo A e

-

A x JE= Z )-— -To1/2mde ip (1 . 22) /2

3
leeg z

Xmde zZ{1 - 1 / 2
10 V1 + Z

C =
mde z lfeo
(1 . 72 ) 172

D =

Amde 110 (Z + 1/2)

E
1

Lyn (Z2~ + 172)

Xmde 110
“nde10© A (1 + 22) 2

=

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)



179

~~

2

7

Xmnde :
“eo (1 + 72 172

K

mde
R

y

(A.51)

(A.52)

Fquation (2.33) and (2.34) are the solutions to the impulse

response of Equation (A.41). Equation (2.35) is obtained by

substituting t = Hz in Equation (2
 ~~

]
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APPENDIX B

Derivation of the Equations Used in Chapter IIT

B.1 Current Boost System

A brief explanation of the operation of the current

boost system is given in Section 3.2. The expressions model-

ing the behavior of the current boost system are also given

in Section 3.2. The behavior of the current boost system can

be divided into two modes of operation, Mode I for lee &lt; “lL

and Mode II for lee &gt; 1 . In this appendix, these modes ’

of operation are investigated and the threshold value

lre(th) = a. is derived. Then using the saturation model

of Figure 3.4 for the current transformers the governing

equations for the current bocstsystemare derived.

Let us begin by analyzing the system in Figure B.l

when the line to line currents at the secondary of the current

transformers, i, i, and i are small compared to lee:

I'he subscripts a, b, and c¢ represent phases a, b, and c,

respectively. In this case the six diodes of the current

boost bridge are forward biased (Mode I) and the secondaries

of the current transformers are short circuited through the

diodes. The resistance R, are thus inconsequential during

Mode I of operation. Since the current transformers are short

circuited, the transformers are operating unsaturated and

simply stepping down the current passing through the
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primary by the factor N,&gt; i.e., the turns ratio of the

current transformers.

Let us derive the current waveforms for this case.

Notice that the current transformers have no direct effect

on the rest of the system quantities during this mode of

operation. The current through the field winding and the

currents from the current transformers can be considered as

time varying current sources. Figure B.l1l can be drawn as

Figure B.2. The symbols Rp through Rpg stand for the 6

diodes, respectively. Using Kirchoff's current law for

Figures B.1l and B.2 it is possible to obtain the current

waveforms for the different branches of the current boost

system. In doing this it is assumed that the armature cur-

rents were solely determined by the current drawn from the

R-L load, i.e., the current 1 due to the self-excitation loop

is neglected. The waveforms obtained are shown in Figure B.3.

Notice that the variable ir is the magnitude of the load

current which could be changing during transient conditions.

The waveforms shown are: the line to line exciter-alternator

terminal voltages Vb? Voc? Vig? Vioas Vab? and Vie? the

exciter-alternator terminal currents 1150 1ip° and 1100 the

phase currents of the secondary of the current transformers,
1 1 1

i , 1 ., and 1 and the line to line currents at the
ca cb cc

n " ”"

secondary of the current transformers, 1.42 loys and 1.00
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Now it is of interest to study the behavior of the

current boost bridge for changes in the current ir The six

diodes of the current boost bridge are represented as non-

linear resistances Ry through Rpg? with forward voltages

across them Vii through Vo and forward currents through

them 151 through lie: The characteristics for the diodes

can be modeled as follows:

V1,1
i,.

= Ri, + 52 1n(-2d+1
SS bJ q Ig

(B.1)

The subscript j can be either 1, 2, 3, 4, 5, or 6,

i.e., corresponding to diodes 1, 2, 3, 4, 5, or 6, respec-

tively. The quantities Rg» a and Ig are parameters of the

diode. The variable Voi is the forward voltage across the

diode and 1b; is the current through the diode. We will con-

sider the six diodes to be identical. It is possible to de-

fine the resistance Ry 5 for a diode J to be:

kT 4 (at + )
i —Kl St

’ Ti.o te bda Ybj _ Rg
3 - ip;

(B.2)

Ig is the reverse saturation current which is very small,

therefore for lpg very small the value of By is very big

and for all practical purposes is infinity. Also notice that

ji
See P. E. Gray [8].
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when the current Inj increases Rod decreases. Assume that

the current boost bridge 1s operating in Mode I and 1. 1,

and i are much smaller than lea or equivalently that cL

is much smaller than leg at all times. Then all the Currents

through the six diodes are due mostly to the current source

Leg (see Figure B.2). Therefore lee is forward biasing all

the diodes which is equivalent to saying that the currents

py’ 8 are relatively large and Ry, 4 =~ Rg is a very small

resistance value.

Now let us write the diode currents in terms of the

time varying current sources of Figure B.3. Let us assume

without loss of generality that all the events described

hereon are taking place in the interval 0 &lt; Wap &lt; n/3 of

Figure B.3.

In the case above the current lee is divided nearly

equally among the three legs of the current boost bridge.

Currents i, i, and i also divide symmetrically, that is

i, will divide equally between Ry 3 and Rug and then the

current going through Rp3 will divide equally between Ryq and

Ryo and so on. As a result the currents can be written in

terms of the current sources for the time interval of

interest as:
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i - Ife + L
bl 3 N,

fe _ TL
2N

C

, = fe _ TL

b3 3 2N
(B.3)

i -—pl~
fre TL

3 N,
i 5

= Lf
Cc

i 1
_ “fe L

= = tox
C

Lr

Lo¢

i
Assume now that the current + starts to

Cc

so that its effect becomes significant compared to

Notice that from the expressions above this implies that 17:

15 and 1v6 will increase and 150 1p3 and 1 will decrease.

However as soon as this starts to happen then the effect will

be also to increase the resistances Ryo Rig and

Ryu which can no longer be assumed to be equal to Rg - Resis-

tances Ryqe Rye and Rig can still be assumed to be equal

Fo k

Notice that now currents will tend to redistribute

according to the new values of the resistances.
1" 1" 1"

Now currents 1.0 i, and i. will tend to take the path of
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less resistance. Hence more current coming from i will tend

to go through Ryq rather than Ryy- This implies that more

current coming from 151 must be divided between Ryo and Rys

which tends to increase Ryo and Rs and decrease 15 and 1,3

even further. Since Roy has increased, more current due to

lee will tend to go through branches defined by the resis-

tances Ryo ~Rys and Rp3 Rig rather than Riq “Ryy-
As this process continues to go on, that is as 1p

increases relative to leg during the interval of interest it

is possible to envision a limiting situation where most of the

current due to i goes through Ryqs Rpy is now a very big

resistance and hence it is plausible to assume that lee almost

divides nearly equally between the branches defined by the

resistances Ryo - Rig and R23 and Ry3 -Ryg- Also 191 divides

through Ryo and Ry 3 This 1s because since lou is very small,

very little current due to i, and 1 will have to flow

through ips and 16 to balance the effect of the currents due

to i, pe As a result the currents through the diodes can be

written approximately as:
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a?
bl N, \

i,~ 7D
5 re L
Aa

Cc

i ~~
b2

re lL
g N

‘RLY
i ~py=0

lps=0

Lv6
-~ 0

i, lea 21,
Then as N_ &gt; —5— or equivalently when leg =&gt; w_

we have the situation where the results above hold exactly as

a result Rpy +&gt; oo, Ryo +&gt; «© and Rig + ©, This means that now

2ip
for leg 2 No the system leaves Mode I and enters Mode II of

C

operation. In fact notice that the topology obtained after

setting Rp3» Ryo and Ryy equal to infinity and Ryqo Ris and

Rig equal to 0 (Ry is very small) in Figure B.1l is the topology

given in Figure 3.3. It can be shown that these results are

obtained independently of the restriction 0 &lt; w_42 m/3.

Notice that as 3 starts to decrease again the process reverses

21,
and for lea CN the current boost system leaves Mode II and

enters Mode I. ’

It must be noted that we have ignored the gradual

affect of the current boost bridge on the rest of the system as
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some of the resistances representing the diodes of the current

boost bridge grow larger. It has been assumed that the current

boost system goes from a situation of no effect to a situation

of effect on the rest of the system immediately. This 1s

justified by the fact that the characteristics of the diode

are exponential and therefore Rp varies rapidly from a value

of R to =,
&lt;

We have shown that the threshold value 1a that53 e(th)
divides Mode I and Mode II of operation is = . Now we will

Cc

derive the governing equations for Mode II. The topology for

Mode II is independent of the time interval considered and

is shown in Figure 3.3. The current transformers have been

modeled with a saturable mutual inductance as shown in Fig-

ure 3.4. Leakage inductances and winding resistances of the

current transformers have been neglected. The current sources

represent the exciter-alternator terminal currents flowing

through the primary of the current transformers. Letus define:

1 A ro
N fe

C

(B.5)

This is also equation (3.19). Using Faraday's law

for the current transformer it is possible to write the follow-

ing expression for the transformer with voltage Veeel 2CTOSS

the secondary. The term (i ~Veoo1/Re) is the current through

the magnetizing inductance of the transformer.
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v _ Le d3-vp,q41/R,) i Yrecl &lt;1
fecl w dt ? - R m

e0 n

lv. 0fecl .

a — m
 mn

(32.6)

Similarly for the lower half of Figure 3.3 it is possible to

write

i
L, d(5 -%o.0/R,) i Veec? ‘4

= at &gt; 77 TR Tm

[rec Yeo : "2

lv... Vv,
+ _ _fec2J
2 R — m

Cc

(2.7)

Vv
. _ _ . fecl .

, Notice that Veal 0 and Veen 0 for 1 - — zi,

and % - Sart &gt; i respectively, is a consequence of the
Cc

saturation of the current transformers. Expressions (B.7) and

(B.8) can be manipulated using the fact that Veoel ¥ Veeeo ©

Veo. to obtain (3.17). Inequalities at the extreme left of

the equation (3.17) are added to the inequalities obtained

from (B.7) and (B.8) to account for Mode I of operation.

Equation (3.18) is obtained by manipulating the governing

equations algebraically to obtain a as a function of the rate

of change of the states Apes Ade? A oe and i.. The variables

through Y, are given below

rent)
(onl)

(B.8)

v2.9)
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CW,3 = amy 5

Yy =

W
2 1ws my)

(B.10)

(B..1)

where,

2

V. = 11, “mde
M1 - 2 Xorg Kk x2

2 7h Pe

v= 1 Ande
2 2 Kokppe

VI -

_ 1 Y de 2 des .

- 1 a) X - X _ .. K_ M8in So
ffe fe 7

M, = = 1(¥mae - “mde’s M L cos 6
ou 2\X X K 5 N e\*frre f'fe 7 c

Vi D.78/T,

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

Constants Kes K. are given in Appendix A by (A.14)

and (A.15), respectively, W, through W. are given by

A
qe Xo oe Vie KS
~z (w/w go) Xqe - Trae) 55° 5. - 2 (w/w, o) Ko 5 5Sin 8« ¥

’—

(B.17)

N

 Vv
~22

R=
X

mge(w/w gy) 3
kage

(B.18)
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. x2 i
Vv

v= _ 3% 32 Lo;Nn, ===&gt; ogre), - )(r T sin .)
vo kge c

WN, =

N -

"de i, :
ae Wo = 2

a (0 jw oMMs XN cos 8 Ks + &lt;

Yde (0 Jo ) ude _ Ks Xnae
2 O\Xere Kp Xero

‘de
2
I

Ks

(B.19)

(B.20)

(B.21)

Constant Kj is given in Appendix A by (A.1l2)

Steady-State Equations

The equations necessary to solve for the steady-state

are listed below.* These equations and equations (3.21), (3.22)

and (3.23) are sufficient to find the steady-state. Notice

that in the steady-state the damper winding currents are zero.

2

AN

bp =

l, =

rR
©33T,(0.78)

7. /

Reels
2.33T.cos a(0.78)

(B.22)

(B.23)

(B.24)

I————A————

%
Hatted variables mean phasor or complex variables.
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Z =b Zz /aty

/
8

v sta _ tine esms remitpete
e _ . 2 2

, V(z +x sin a) + (X cos a)

&gt; = 6

Zz, = 2/01

Z
V (ac+BD)2 + (BC-AD)?

7,2

5 tan “[ (BC-AD)/(AC+BD)]

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)
1

A SN Z COS Q (B.30)

B -

I~ X t R_Z.sin o
oo

(B.31)

r™
“/

ne 7 er [9] (B.32)

D 7 sin o = (B.33)

X cos 6. - R_ sin 6

. R, COS 1 ZqeBin 5, *
{

First I will explain how to obtain these equations

and equations (3.21), (3.22) and (3.23) from the basic govern-

ing equations in Chapter III. After that I will describe how

to obtain the steady-state values using these equations and

equation (3.1)



196

Equation (B.22) is obtained by calculating the

driving point impedance at the input of the output rectifier.

What this gives us is the equivalent impedance presented during

steady-state by the load resistance as seen through the output

rectifier. Something similar is done in the case of the

separately=excited exciter-alternator and the reader is

referred to Appendix A.

The complete quantity Zp represents the impedance seen

at the input of the SCR bridge looking towards the field winding

of the exciter-alternator. The angle of the impedance being

equal to a follows from the definition of driving point imped-

ance, i.e.

Al i

v Vv

=/8%i i
J 1

1 1 1 ?

since 6, is the phase angle between Ve and i, and 9, is from

(3.12) equal to a. The magnitude of Bes Z., is obtained as

ffor R, as shown in Appendix A.

The driving point impedance
~

/,
0

given Dy (B.25) and

(B.26) is derived as follows:

A Rn
Z, S =F [ory

$
(B. 35)

The angle o+y follows from the fact that this is the phase
1

angle between v, and i, as shown in the phasor diagram given
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' ' .
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-
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-

1
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y

TxAPl

p—

A.

A—— -

d-axis i,

Figure B.4 Steady-state phasor diagram for self-excited
exciter-alternator
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in Figure B.4. The magnitude of 250 Z is derived as follows.

Equation (3.8) and (3.9) in phasor form can be written as

! 1

V./=S¢ = Vv /=Se=Y + JX 1,/=8e=-Y-0

Now multiply (B.36) by 1/8ety Obtaining:
1 1

LY =v_ + JX i./=a (B.37)

(B. 36)

IT

! ? 1
= + o o o *PVA (ve Xp1psin a) + J(X 1 cos a) (B.38)

Equating magnitudes it follows that:

J
rE EECEAER= Y(v +X i_.sin a) +(x i. cos a)e pl pl

(B.39)

’ Using the definition of Zo as driving point impedance

(2 - 2%) it is possible to substitute v, in (B.39) for 2014
The variable 1 can then be factored from (B.39) and after

dividing both sides by i (B.26) is obtained.

The complex quantity zZ, represents the driving point

impedance that is observed by the exciter-alternator at its

terminals (v /1;). Since the exciter-alternator is loaded by

both the R-L load and the excitation loop going to the field

winding in parallel, it follows that Z is the parallel combina-

tion of Ry and Z_. Doing this yields equations (B.28) and

‘B.29).

Equation (B.34) follows from a derivation similar to

that of (2.20) as derived in Appendix A. In this case R_

should be replaced by Z
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Equation (3.22) is derived as follows. From the

definition of Z, and zg it follows that

1,2, = 1,2, (B 40)

1

Using (3.11), 1, can be expressed in terms of leg

This expression is substituted in (B.14) and the resulting

expression is solved for lo,

_ ety nl“a 1 7
P

Then using (B.41) and (2.3) the quantity (i.  -1,.) can

(B.41)

be

written as follows.

_ 2, (Tg/0.78)qe = I\—/—— - cans) (B.42)
n

Equation (3.22) follows trivially. Equation (3.23) follows

trivially from the definition of Z, as the driving point

impedance.

Equation (3.21) for Xdeo is found by manipulating

the governing equations to obtain an expression in terms of

the direct axis mutual inductance X de From (2.1) and (2.2)

it follows that

Z _ 2 2
Vv. = Vv +Vv

e de qe
Bb.43)

If (2.5) and (2.8) are substituted in (2.10) and

(2.11), respectively, and the resulting expressions are
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substituted in (B.43) with (w/w) set equal to 1 it follows

that

J
~~

. ¢ 2 " . . 2

(Fae qe Ryelqe) + (Haelae nae’ re Facte c) (B.44)

Substituting Xie = Xe + Xoge In (B.44) and solving

the resulting expression for X de it is possible to obtain the

following expression

S-
2 ( i } ) . .-{- +Yi Rielget ge iqe ¥ Xa elde Raelge

i - i
f'e de

(B.45)

If expression (3.23) is substituted for V and (2.3)

and (2.4) are substituted for 156 and The respectively, in the

numerator of expression (B.45) it is possible to factor out the

variable i, from the numerator. Then by substituting (B.42)

for the denominator in (B.45) equation (3.21) is obtained

after the variable 1, is cancelled from the numerator and

denominator.

The steady-state values can be found as described in

Section 3.3.1 knowing the quantities Zs Sas 6, and 2p First

it is necessary to find R_ and Zo using (B.1l) and (B.3), respec-

tively. Then Za and other parameters are used to find Z, using

(B.26). With Zs? Zo and Re and other exciter-alternator

parameters found from Tables 2.2 and 3.2, it is possible to

find Z and 6. Then §, can be obtained using (B.13). With
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these quantities and equations (3.21), (3.22) and (3.23) the

steady-state condition can be found.

B.3 Auxiliary Equations

The equations used in Section 3.3.2 to help obtaining

the transient solution numerically are called auxuliary

equations. What follows is a brief explanation of how to

obtain these equations.

Equation (3.29) can be derived using (3.13) and

(3.14) in phasor form (see phasor diagram in Figure B..4). It

follows that

1 1A]

Ly/mY-%@ + 1,78, = 1, ,-6,-9, (B.L6)

Multiply (B.46) by 1/%e to obtain

i / + 1.70% = 1./781
1m. 1,22 = 1,2 2

(B.47)

Equating magnitudes, real and imaginary parts

of this equation, it is possible to obtain (3.29) and (3.30).

Equations (3.31) through (3.34) are derived for Chapter II in

Appendix A. Equation (3.35) is derived from (3.11). Equa-

tion (3.36) follows from (B.39). Equation (3.37) can be

obtained from (B.37). Equations (3.42) through (3.46) are

obtained from the governing equations applied for t equal

tott,+A
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B.U4 Linearization of the Governing Equations (Without Damper

Windings, Potential Transformer and Current Boost Bridge)

In this section the linearized equations for the self

sxcited exciter-alternator used in Section 3.4 are given.

Av
?

= Ai, (s.) + a8 (s,) + AL, (sy) + AX 4a L"= \
=) (B.48)

1 1"

ALL, = Ai (sq,) - bas, 3) + AL, (sqy) (B.49)

AS (sg) + 81, (5,4) + AV _(s,  8) (B.50)

Av
a

Tn daiq
= R A1, tL, ge (B.51)

1

dni,
-(8,5)Av_ + (5,001, + (s,c)=iMoy

AA dA dai
mde e 1

- (8,4) —m7— - (8,5) —3¢[a] (B.52)

AX go = (550001, (e “ ¥ A i (ePal. AS _ (B.53)

Manipulating these equations an equation of the following form

can be obtain~d

Au

1" 2 1"

| 0s dai, dai,
Zz) = AL wo + 2Lw rT + 2 (B.54)

Notice that equation (B.54) is second order because

only the field flux and the load current are considered states.
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The constant coefficients for equations (B.48) through (B.5L)

are given below:

jd . + _ + 2 . +((r_ sin(6, 8.0) Xet08(8 80) (R 1, sin(e, 8.0)

cd + + (- + - i + el geos(8,g+0,4)) +( R,eC0s(8 +6, o) =X, sin(8+8,4)

{ 0. 78) Xnae0i1 0 ~X3e0%1 0510 (8e0*0, ) -R_ i; ,c08(8,0%6, 1) )) vg

(B.55)

-—
f . . » » -

{ (R_ 1, cos(6, +30) + Xeliosin 8a0%0:0) ) (R_ 1, sin( 8,500)

A
. _ i + . i .Le tigeos(s_+8,4)) + ( X3e00110908(8 +01) R,e1ipsin(e 61)

A(T,/0.78)X |. i.- i si + “Ri +{( 10.7 ) nder10 Xiootiosins_, 0,4) Ryel1ot0s(d 0,4)))/v¢g
(B.56)

: » i gs | - .

(Tg/0-T8)Xnge0) ((Tg/0-T8)X0016~Xae0t10987e010)

RI, oc0s( 8o0%91 0) A

Sy = (((T./0.78)1, w 1),8in(8e0+0, ) )( (T,/0.T8)X 3e0i10

_ - ° - 2 +X3e01y ~sin(s_ +6,,) Ry oipqc0s(8 810))/v

&gt; 10

1" 1

- (5) eos lagvis ) 71,

” 1

13 © (£7 0t1051n(a)) 11g

”" T

SN (1,6%11 0008 eg) 7p,

(B.57)

(B.58)

(B.59)

(B.60)

(B.61)
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= + . + . .S19 = COs 8 olVeo Rijs 8% Xqeliosin 6.0)

4 . - . . + .sin 8 of R_ipo8in 8.1 Xe l1gc08 00) (B.62)

S50 = sin 6.0 \R, cos 0,,%X,.sin ag) cos 8 (=X, cos 6, o*R, Sin 6.5) (B.63)

~

~ S113 + A (B.6U)

R
-

TR
2.337,(0.78) (B.65)

"Lk
2, 33T 0.78)uw,, (B.66)

S55
cos a

_ 0

sin o (v )
0" ed

(B.67)

oo Rp (Tc/0.78)
“ol (2.33)T (sin an) Veg (B.68)

 Xp (Tg/0-78)
°25 = w_(2.33)T_(sina_)v__De 4 2 33)T sin on Veo

(B.69)

(Tg/0.78)1, -1, ,sin(s +6, )
wep (2.33)T (sin aq )v_,

--

oY4 (B.70)

,o _10%maeo cos(8.g*610)
27 Ww. (2.33)T (sin oa IV, (B.71)

_ XgeoSins 6,4)
&gt; 8 - . .2 NE 33)T,v, sin a (B.72)
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S09 = (T),/0-T8)(C +2,(ig0=1300)+3C4(irep=1ge0)”)

S20 (C
2 . 2

 1 - + i -i ioie ole) 3051. g=ig.q) )sin(s +e)

= . : . . 2,

333 (c +20, (dp 1500) +305 (ipep-1ge0) )i, jcos(8e0*6,)

where C, through C, are given in Table 3.2.

=}2 RP, +P,
" PL

LW
+LPs tBE, Pe

P, Lhe

P
A 1
0 ule

\ 3

Ss
20

~ S305L ~ (spmsqoy)5 + (sy+sp0),)/s,,

 Pp = 1] 4 21513 ] ((s3*s,08),) (s, 3/810) sp),75,5)

(B.73)

(B.74)

(B.75)

(B.76)

(B.77)

(B.78)

(B.79)

(B.80)

513 | Soo
Py = 5, (52526529) = ((55+556509) 51, * (spp¥sy684,) 51

S
13(5,6+5.6530)) (¢s5¥s005)) so) (N)

P= -s,, + (s,),/5,,)(1 + (s,m5418),)(s,,/5,4))/(N)

(B.81)

(B.82)
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Soo 20
Py = (spg831%55) 5 * ((505%5 26509) /51, * (sprts,683;)So

S

(5257526530) (1 + (3-5, 5,) S22)

I TAT PUTT
7 (N) s

P ~~

S

S20- (Coa5t526500) 7510 * (5p 8 pe51) S10 (5,26%556530))

S Ss
L(s_+s s;) =H) (nw) -L% (5 +s _.s\ 3 7297) =) S,, 25 26°29

(B.83)

(B.84)

(B.85)

Variables with subscript 0 represent steady-state

values and are obtained using the method of 3.3.1.
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APPENDIX C

Data and Expressions Used in Chapter V

c.1 TABLES

TABLE C.1

Parameters for the Main Generator

R a

Ro

mde
X

mgg

X
kag

“kde
Riaz
R
kag

Reg
erg
JO
g

&lt;0
Field

Resistance

J
z0

In

0.
O,
3

ET

0. 3

0.00448

2.04

1.64

1.97

2.1153

0.0141

0.00746

0.94x1073
2.129

26

Q07000

0.09638

377.0

2.04

-0.34

1.665

-5.12

2.987

2.14

D.U.

p.u.

D.Uu.

p.u.

p.Uu.

D.uU.

D.U.

D.U.

D.U.

D.U.

KV

KVA

@ 125C°

rad/sec

seconds
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TABLE C.2

Parameters for Stev-Test

A FeO

A edeo

‘qe
A Pe0

Akdgz0
Akqe0
520
5
20

rT.

Tq

20
J

29

tq

Ve
v
g0

Le0
Lean
L
0

Ll.9g

Se0
Lede

lkde0

 7

al }

0.379
0.268

-0.129

1.0505

1.0

0.0

7.0

N.0

-22.493

-19.902

-77.024

~0.173x107°
1.15304

0.29162

1.0

0.57

0.656

0.0

0.3081

0.5881

0.0

0. 0

0.5379x103

p.u.

p.u.

p.u.

D.U.

p.u.

p.u.

D.U.

rad/sec

volts

volts

volts

volts

rad

p.U.

D.U.

D.U.

D.Uu.

D.U.

v,U.,

rad

P.U,

P.U.

wells
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Are 0

Mede0

Arqed
A eo

A edz 0

Age
S
80

S
g0

711

730
7

29

%

Ve 0

750
tfe0
Leen

oo
10
Oe 0

lydeo
deo

Vee
—~ry

T
~

TABLE C.3

Parameters for Fault-Test

0.5175

0.3654

-0.1756

0.8877

0.8186

-0592°2

0.8151

0.0

-0. 225x107
-19.904

-99.23

0.0

1.1534

0.3977

0.9998

0.7772

0.8946

0.4996

0.42024

0.5883

0.0

0.0

0.73339x10"3
O.3

1 .0

p.u.

p.u.

D.U.

pP.U.

D.U.

p.u.

rad

rad/sec

volts

volts

volts

volts

rad

D.U.

D.U.

pD.U.

D.U.

D.U.

D.U.

rad

3» Lis

D.U.

D.U.

p.u.

D.U.
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0.2 Variables Cq Through Ce for the Auxiliary Equations

Used in Chapter V

2
w Ww X,

rR (80%), _ gr (80)mdg,
W.0 ag\ w ag ag\ w Xep fg

' = y (222) CF [fg°  (c.1)dg\ w 2
£ X

(+ + pasdg Xppo

~
J

~
J

J

2
wx2, (20)= rE +

? ag
x, + imo

dg Xppp

w x2

Ra “50 - 258
g\ o g fg

x°
(-%4 + nde5 Xppo

(C.2)

(C.3)

x Woo-X + SBOE 8EU),
A mdg X w ag

o = _ _mde A - fg gr__-
L kdg  X fg 2

ffg X
-X 5 + mae

g fre

2
X X

(x + -ndg) mde\ mdg Xpp Xep fg
2

X

(x, . quis)&amp; Xero

(C.4)
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~~

ye

J
-_

2
X w

(na . Bs) (=)NT Treg) %E\Ye)
2

X(+, \ Fas&amp; Xepg

2 2
X

=X + _mdg 2
mag Xep X 3~  — Hig 4 fx _ mag

2 kdg; X
X 3 ; fg

“Xyg, * Poh
&amp; fg

(C.5)

(C.6)
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