
KS Cv OF Four 72)pa
DEC 4 1964

Lg BR SsARIEZ .-NATURAL LANGUAGE INPUT FOR NUE ~~

A COMPUTER PROBLEM SOLVING SYSTEM

y

DANIEL G. BOBROW

B.5., Rensselaer Polytechnic Institute
(1957)

S.M., Harvard University
(1958)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF
PHILOSOPHY

lo Che

MASSACHUSETTS INSTITUTE OF
TECHNOLOGY

Seutember, 1964

Sighature redacted
Signature of Author

. . 2% .ment Ou Motlematics, June 3, 1964

Signature redacted
Certified b+

2 . esis Supervisor
Signature redacted

Chairman, Departmental Committee
on Graduate Students

i or
-

Acknowledgements

The work reported herein was supported in part by the MIT
Computation Center, and in part by Project MAC, an MIT research
program sponsored by the Advanced Research Projects Agency, De-
partment of Defense, under Office of Naval Research Contract num-
ber Nonr-4102(01). Reproduction in whole or in part is permitted
for any purpose of the United States Government. Associated pre-
liminary research was supported in part by Bolt, Beranek and New-
man, Inc., Cambridge, Massachusetts, and in part by System Develop-
ment Corporation, Santa Monica, California.

The author expresses his gratitude to Marvin Minsky for his
supervision of this thesis; to Victor Yngve and Murray Eden for
their critical reading of the manuscript; to Herbert Simon, Noam
Chomsky and Seymour Papert for enlightening discussions of vari-
ous aspects of the research; and to his wife Eileen for her
patience, encouragement and unfailing confidence without which
this thesis could not have been completed.

3K

A
NATURAL LANGUAGE INPUT FOR

COMPUTER PROBLEM SOLVING SYSTEM

DANIEL G. BOBROW

Submitted to the Department of Mathematics on June 3, 1964 in partial
fulfillment of the requirements for the degree of Doctor of Philo-
sophvy.

ABS res oT

The STUDENT problem solving system, programmed in LISP, ac-
cepts as input a comfortable but restricted subset of English which
can express a wide variety of algebra story problems. STUDENT finds
the solution to a large class of these problems. STUDENT can utilize
a store of global information not specific to any one problem, and
may make assumptions about the interpretation of ambiguities in the
wording of the problem being solved. If it uses such information,
or makes any assumptions, STUDENT communicates this fact to the user.

The thesis includes a summary of other English language ques-
tion~answering systems. All these systems, and STUDENT, are evalu-
ated according to four standard criteria.

The linguistic analysis in STUDENT is a first approximation
to the analytic portion of a semantic theory of discourse outlined
in the thesis. STUDENT finds the set of kernel sentences which are

the base of the input discourse, and transforms this sequence of
kernel sentences into a set of simultaneous equations which form the
semantic base of the STUDENT system. STUDENT then tries to solve
this set of equations for the values of requested unknowns. If it
is successful it gives the answers in English. If not, STUDENT asks
the user for more information, and indicates the nature of the de-

sired information. The STUDENT system is a first step toward natu-
ral language communication with computers. Further work on the se-
mantic theory proposed should result in much more sophisticated
systems.

Thesis Supervisor: Marvin L. Minsky
Title: Professor of Electrical Engineering

TABLE OF CONTENTS

Chapter Page
/INTRODUCTION...

A. The Problem Context of the STUDENT System...
B. Reasons for Wanting Natural Language Input..
C. Criteria for Evaluating Question-Answering

SystemSeeeeccecosccecsee rr» ® ® ® J, PET OOS SS SOS LOS 11

English Language Question-Answering
SystemSeeeeececccccecens 5 6 9% 0 0 6 0

Other Related Work.. Lanne

IT. SEMANTIC GENERATION AND ANALYSIS OF DISCOURSE..ccceee

13
19

292

Language as Communication...
Theories of Language....-.-
Definition of Coherent Discourse. LeaE
The Use of Kernel Sentences in Our Theory...
Generation of Coherent Discourse...
Analysis of Coherent Discourse..
Limited Deductive Models.cee...
The STUDENT Deductive Model... yw.

[III. PROGRAMMING FORMALISMS AND LANGUAGE MANIPULATION.....

22
23
25
27
28
34
36
37

41

A. Specifying a Desired String Format..ce.ccoe.
B. Specifying a Transformed Workspace..ceeeee...
C. Summary..- “sae

TRANSFORMATION OF ENGLISH TO THE STUDENT
DEDUCTIVE MODEL.

42
44
48

[Vv

Outline of the Operation of STUDENT.cececeee
Categories of Words in a Transformation.....
Transformational ProcedureSeeccecececceccescecss
From Kernel Sentences to EquationS.ecececeecse
Possible Idiomatic Substitutions.c.ceeceecececes
Special HeuristicS.eceeeoec - ‘ews

When All Else FailScececeocoooes.coc:eceses

Summary of the STUDENT Subset of English....
Limitations of the STUDENT Subset

of English.

V. STORAGE OF GLOBAL INFORMATION..

VI. SOLUTION OF SIMULTANEOUS EQUATIONS..-

51

51
53
54
58
72
75
78
81

83

86

20

VII. CONCLUSION. ® 6 5 0 8 ~

A. ResultS.eececess~--- UY

3. ExtensionSe.... Lm.aaa90000

97

97
101

Appendix
A. FLOWCHART OF THE STUDENT PROGRAM....-
Be. LISTING OF THE STUDENT PROGRAM...ccccococeccssse
C. GLOBAL INFORMATION IN STUDENT.c.cccccecenccocasca
D. PROBLEMS SOLVED BY STUDENT... .. _.cescocceccss

FE. A SMALL SEMANTIC GENERATIVE GRAMMAR..- cr pee®

104
105
109
110
120

Figure

L - Some Problems Solved by STUDENT...c... Lwssee
Notation Within the STUDENT Deductive Model....
A METEOR Program for the Wang Algorithm.cceeececes
Operators Recognized by STUDENT .eeccccanancensns
The SOLVE Program in STUDENT.

Ze

3.
b.
5.

BIBLIOGRAPHY

BIOGRAPHICAL NOTE.

3
38
50
60
96

[24

128

CHAPTER I: INTRODUCTION

The aim of the research reported here was to discover how

one could build a computer program which could communicate with

people in a natural language within some restricted problem domain.

In the course of this investigation, I wrote a set of computer pro-

grams, the STUDENT system, which accepts as input a comfortable but

restricted subset of English which can be used to express a wide

variety of algebra story problems. The problems shown in Figure 1

illustrate some of the communication and problem solving capabil-

ities of this system.

In the following discussion, I shall use phrases such as

"the computer understands English". In all such cases, the "En-

glish" is just the restricted subset of English which is allowable

as input for the computer program under discussion. In addition,

for purposes of this report I have adopted the following operational

definition of understanding. A computer understands a subset of En-

glish if it accepts input sentences which are members of this subset

and answers questions based on information contained in the input.

The STUDENT system understands English in this sense.

A. The Problem Context of the STUDENT System.

In constructing a question-answering system, many problems

are greatly simplified if the problem context is restricted. The

simplification resulting from the restrictions embodied in the STU-

DENT system, and the reasons these simplifications arise, will be

discussed in detail in the body of this report.

The STUDENT system is designed to answer questions embedded

2
de

3
i
D

 bh

7

D

¢

D
3
n

N
3

D
nN,

>

5]

3
E

(THE PROBLEM TO BE SOLVED 1S)
(THE DISTANCE FROM NEW YORK TO LOS ANGELES 1S 3000 MILES .
IF THE AVERAGE SPEED OF A JET PLANE IS 600 MILES PER HOUR ,

FIND Jue Tine IT TAKES TO TRAVEL FROM NEW YORK TO LOS ANGELES
3Y JET .

|

{THE EQUATIONS TO BE SOLVED ARE)

(EQUAL GO2517 (TIME (IT / PRO) TAKES TO TRAVEL FROM NEW YORK
TO LOS ANGELES BY JET))

(EQUAL (AVERAGE SPEED OF JET PLANE) (QUOTIENT (TIMES 600 (MILES))
(TIMES.1 (HOURS))))

(EQUAL (DISTANCE FROM NEW YORK TO LOS ANGELES) (TIMES 3000
(MILES)))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(USING THE FOLLOWING KNOWN RELATIONSHIPS)
(CEQUAL (DISTANCE) (TIMES (SPEED) (TIME))) (EQUAL (DISTANCE)
(TIMES (GAS CONSUMPTION) (NUMBER OF GALLONS OF GAS USED))))

(ASSUMING THAT)
((SPEED) IS EQUAL TO (AVERAGE SPEED OF JET PLANE))

(ASSUMING THAT)
((TIME) 1S EQUAL TO (TIME (IT / PRO) TAKES TO TRAVEL FROM NEW
fORK TO LOS ANGELES BY JET))

(ASSUMING THAT)
((DISTANCE) 1S EQUAL TO (DISTANCE FROM NEW YORK TO LOS ANGELES))

(THE TIME IT TAKES TO TRAVEL FROM NEW YORK TO LOS ANGELES BY
JET IS 5 HOURS)

{THE PROBLEM TO BE SOLVED 1S)
(THE PRICE OF A RADIO IS 69.70 DOLLARS . IF THIS PRICE IS
15 PERCENT LESS THAN THE MARKED PRICE , FIND THE MARKED PRICE
BY

(THE EQUATIONS TO BE SOLVED ARE)

{EQUAL G02515 (MARKED PRICE))

(EQUAL (PRICE OF RADIO) (TIMES .8499 (MARKED PRICE)))

EQUAL (PRICE OF RADIO) (TIMES 69.70 (DOLLARS)))

"THE MARKED PRICE 1S 82 DOLLARS)

(THE PROBLEM TO BE SOLVED IS)
(THE SUM OF TWO NUMBERS IS 111 . ONE OF THE NUMBERS IS CONSECUTIVE
TO THE OTHER NUMBER . FIND THE TWO NUMBERS .)

TRYING POSSIBLE 1D10MS

(THE PROBLEM WITH AN IDIOMATIC SUBSTUTION 18S)
(THE SUM OF ONE OF THE NUMBERS AND THE OTHER NUMBER IS 111
. ONE OF THE NUMBERS |S CONSECUTIVE TO THE OTHER NUMBER . FIND
THE ONE OF THE NUMBERS AND THE OTHER NUMBER .)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02522 (OTHER NUMBER))

(EQUAL G02521 (ONE OF NUMBERS))

(EQUAL (ONE OF NUMBERS) (PLUS 1 (OTHER NUMBER)))

{EQUAL (PLUS (ONE OF NUMBERS) (OTHER NUMBER)) 111)

(THE ONE OF THE NUMBERS IS 56)

(THE OTHER NUMBER 1S 55)

(THE PROBLEM TO BE SOLVED 18)
(BILL S FATHER S UNCLE IS TWICE AS OLD AS BILL S FATHER , 2
YEARS FROM NOW BILL S FATHER WILL BE 3 TIMES AS OLD AS BILL
, THE SUM OF THEIR AGES IS 92 , FIND BILL S AGE .)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL GO02533 ((BILL / PERSON) S AGE))

(EQUAL (PLUS ((BILL / PERSON) S (FATHER / PERSON) § (UNCLE
/ PERSON) S§ AGE) (PLUS ((BILL / PERSON) S (FATHER / PERSON)
§ AGE) ((BILL / PERSON) S AGE))) 92)

(EQUAL (PLUS ((BILL / PERSON) S (FATHER / PERSON) § AGE) 2)
(TIMES 3 (PLUS ((BILL / PERSON) S AGE) 2)))

(EQUAL ((BILL / PERSON) S (FATHER / PERSON) S§ (UNCLE / PERSON.
S AGE) (TIMES 2 ((BILL / PERSON) S (FATHER / PERSON) S AGE)))

(BILL S AGE IS 2)

in English language statements of algebra story problems such as

those shown in Figure 1. STUDENT does this by constructing from

the English input a corresponding set of algebraic equations, and

solving this set of equations for the requested unknowns. If

needed, STUDENT has access to a store of "global" information,

not specific to any particular problem, and can retrieve relevant

facts and equations from this store of information. STUDENT com~

ments on its progress in solving a problem, and can request the

help of the questioner if it gets stuck.

There are a number of reasons why I chose the context of

algebra story problems in which to develop techniques which would

allow a computer problem solving system to accept natural language

input. First, we know a good type of data structure in which to

store information needed to answer questions in this context,

namely, algebraic equations. There exist will known algorithms

for deducing information implicit in the equations, that is,

values for particular variables which satisfy the set of equations.

In addition, I felt that there was a manageable subset of

English in which many types of algebra story problems were ex=~

pressible. A large number of these story problems are available

in first year high school text books, and I have transcribed some

of them into STUDENT's input English. Since this question-answer-

ing task is one performed by humans, and since the entire process

from input to solution of the equations was programmed, we can ob-

tain a measure of comparison between the performance of STUDENT

and of a human on the same problems. In fact, this program on an

IBM 7094 answers most questions that it can handle as fast or

faster than humans trying the same problem. In judging this com-

parison, one should remember the base speed of the IBM 7094, which

can perform over one hundred thousand additions per second.

B. Reasons for Wanting Natural Language Input.

Why should one want to talk to a computer in English? There

are many tongues the computer already understands - such as FORTRAN,

COMIT, LISP, ALGOL, COBOL, to name just a few. These serve ade-

quately as communication media with the computer for a large class

of problems. A more pertinent question is really, when is English

input to a computer desirable?

English input is desirable, for example, if it is necessary

to use the computer for retrieval of information from a text in

English. If a computer could accept English input, much information

now recorded only in English would be available for computer use

without need for human translation.

A computer which understood English would be more accessible

*o any speaker of English, whether or not he was trained in any

'foreign" computer tongue. For a single shot at the computer with

a question not likely to be repeated, it would not be worthwhile

to train the user in a specialized language. For fact retrieval,

rather than document retrieval, English is a good vehicle for

stating queries. For a good description of the differences between

fact and document retrieval, see Cooper (12).

Programming languages are process oriented. One cannot

describe a problem, only a method for finding a solution to the prob-

lem. A natural language is a convenient vehicle for providing a

description of the problem itself, leaving the choice of processing

to the problem solver accepting the input. In an extreme case, one

would like to talk to the computer about a problem, with appropriate

questions and interjections by the computer on assumptions it finds

aecessary, until the computer claims that the problem is now well

formed, and an attempt at solution can be made.

{ { #

Finally, man's ability to use symbols and language is a prime

factor in his intelligence, and if we can learn how to make a com=

puter understand a natural language, we will have taken a big step

toward creating an "artificially intelligent" computer (32).

C. Criteria for Evaluating Question-Answering Systems.

We have defined understanding in terms of an ability to an-

swer questions in English. A number of question-answering systems

have been built, and will be described in the next section. In this

section, we shall give a number of criteria for evaluating question-

answering systems.

In many systems there is a separation of data input and ques-

tion input. For all systems under consideration, the input questions

are in English. The input data may be either in English or in a

prestructured format, e.g. a tree or hierarchy. The English data

input may be used as a data base as is, or mapped into a structured

information store. Simmons, in his competent survey of English ques-

tion-answering systems (40), calls those systems using a structured

information store ''data base question-answerers', as opposed to

"text-based question-answerers' which retrieve facts from the original

cext.

The extent of understanding of a question-answering system

can be measured along three different dimensions, syntactic, seman-

tic and deductive. Along the syntactic dimension one can measure

the grammatical complexity allowable in input sentences. This may

differ for the data input and question input. In the simplest case,

one or some small number of fixed format sentences are allowable in-

puts. Less restricted inputs may allow any sentences which can be

parsed by a fixeéd grammar. The nearer this grammar is to a grammar

of all of English, the less restricted is the input. Because text-

based question-answerers accept as input any string of words, with-

out further processing, they have no syntactic limitation on input.

However, the fact-retrieval program may only be able to abstract

Information from those portions of a text with less than some maxi-

mum syntactic complexity.

In data base question~answering systems, only certain rela-

tionships between words, or objects, may be representable in the

information store. Other information may be discarded or ignored.

This is a limitation in the semantic dimension of understanding.

In order to obtain answers to questions not explicitly given

in the input, a question-answering system must have the power to per-

form some deductions. The structure of the information store may

facilitate such deductive ability. The range of deductive ability

is measured along the deductive dimension of understanding. The

structure of the information store may also aid in selecting only

relevant material for use in the deductive question-answering pro-

cess, thus improving the efficiency of the system.

Another criteria closely related to the extent of under-

standing, is the facility with which the syntactic, semantic, or

deductive abilities of a question-answering system can be extended.

In the best case one could improve the system along any dimension

Sy talking to it in English. Alternatively, one might have to add

some new programs to the system, or at worst, any change might imply

complete reprogramming of the entire system.

An important additional consideration for users of a ques-

tion-answering system is the amount of knowledge of the internal

structure of the system that is necessary to use it. At best one

|

need not be aware of the information storage structure used at all.

At worst, a thorough knowledge of the internal structure may be nec-

essary to construct suitable input.

Another measure of the usefulness of a question-answering

system is its ability to interact with the user. In the worst case,

a question is asked and sometime later an answer or report of fail-

ure is given. When the question cannot be answered, no indication is

given of the cause of failure, nor does the system allow the person

to give any help. This is typical of the operation of a number of

Air Force query systems (Jay Keyser, personal communication). In

the best case, the system will ask the user for specific help and

accept suggestions of appropriate courses of action.

In this section we have given four criteria for evaluating

juestion~-answering systems. They may be summarized as follows:

Ll) Extent of understanding (syntactic, semantic and de-
ductive abilities)

Facility for extending abilities (syntactic, semantic
deductive)
Need by user for knowledge of internal structure of
system

4) Extent of interaction with user

D. English Language Question-Answering Systems.
In this section, I shall give a critical summary of a number

of English language question-answering systems, utilizing the cri-

teria outlined in the previous section. This discussion will provide

a context for the section of the concluding chapter which summarizes

the capabilities of the STUDENT system. For a description of the dif-

ferent syntactic analysis schemes mentioned below, see the survey by

Bobrow (4).

{

1) Phillips. One of the earliest question-answering systems

was written in 1960 at MIT by Anthony Phillips (36). It is a data

base system which accepts sentences which can be parsed by a very

simple context-free phrase structure grammar, of the type defined by

Chomsky (8). Additional syntactic restrictions require that each

word must be in only one grammatical class, and that a sentence has

exactly one parsing.

A parsed sentence is transformed into a list of five ele-

ments, the subject, verb, object, time phrase, and place phrase in

the sentence. All other information in the sentence is disregarded.

Questions are answered by matching the list from the transformed

question against the list for each input sentence. When a match is

found, the corresponding sentence is given as an answer.

Phillips' system has no deductive ability and adding new

abilities would require reprogramming the system. A questioner must

be aware that the system utilizes a matching process which does not

recognize synonyms, and therefore the sentence "The teacher eats

lunch at noon." will not be recognized as an answer to the question

"What does the teacher do at twelve o'clock?" When Phillips' system

cannot find an answer, it reports only "(THE ORACLE DOES NOT KNOW)'".

It provides for no further interaction with the user.

2) Green. Baseball is a question-answering system designed

and programmed at Lincoln Laboratories by Green, Wolf, Chomsky and

Laughery (19). It is a data base system, in which the data is placed

in memory in a prestructured tree format. The data consists of the

dates, location, opposing teams and scores of some American League

baseball games. Only questions to the system can be given in English,

not the data.

i

Questions must be simple sentences, with no relative

clauses, logical or coordinate connectives. With these restrictions,

the program will accept any question couched in words contained in

a vocabulary list quite adequate for asking questions about basg-

ball statistics. In addition, the parsing routine, based on tech-

niques developed by Harris (21), must find a parsing for the question.

The questions must pertain to statistics about baseball

games found in the information store. One cannot ask questions

about extrema, such as "highest!" score or "fewest! number of games

won. The parsed question is transformed into a standard specifica-

tion (or spec) list, and the question-answering routine utilizes

this canonical form for the meaning of the question. For example,

the question "Who beat the Yankees on July 4?" would be transformed

into the "spec list":

Team (losing) = New York

Team (winning)= ?

Date = Julv 4

Because Baseball does not utilize English for data input, we

cannot talk about deductions made from information implicit in sev-

eral sentences. However, Baseball can perform operations such as

counting (the number of games played by Boston, for example) and

thus in the sense that it is utilizing several separate data units

in its store, it is performing deductions.

Baseball's abilities can only be extended by extensive re-

programming, though the techniques utilized have some general appli-

cability. Because the parsing program has a very complete grammar,

and the vocabulary list is quite comprehensive for the problem domain,

the user needs no knowledge of the internal structure of the Base-

ball program. No provision for interaction with the user was made.

x

3) Simmons. The SYNTHEX system is a text-based question-an-

swering system designed and programmed at SDC by Simmons, Klein and

McConologue (41). The entire contents of a children's encyclopedia

has been transcribed to magnetic tape for use as the information

store. An index has been prepared listing the location of all the

content words in the text, i.e. including words like "worm," "eat,'

and "birds," while excluding function words like "and," "the," and

"of." All the content words of a question are extracted, and in-

formation rich sections of the text are retrieved, i.e. sections

that are locally dense in content words contained in the question.

For example, if the question were "What do worms eat?", with

content words "worms" and "eat", the two sentences "Birds eat worms

on the grass.'" and "Most worms usually eat grass.' might be retrieved.

At this time, the program performs a syntactic analysis of the ques-

tion and of the sentences that may contain the answer. A comparison

of the dependency trees of the question and various sentences may

eliminate some irrelevant sentences. In the example, "Birds eat

worms on the grass" is eliminated because "worms'" is the object of

the verb "eats'" instead of the subject as in the question. In the

general case, the remaining sentences are given in some ranked order

as possibly answering the question.

SYNTHEX is limited syntactically by its grammar to the ex-

tent that the syntactic analysis eliminates irrelevant statements.

It makes no use of the meaning of any statements or words, and cannot

deduce answers from information implicit in two or more sentences.

Because the grammar is independent of the program, the syntactic

ability of SYNTHEX can be extended relatively easily. However, be-

fore it can become a good question-answering system, some semantic

abilities will have to be added.

SYNTHEX does not explicitly provide for interaction with the

Fe

user, but because it is implemented in the SDC time-sharing system

(9), a user may modify a previous question if the sentences re-

trieved were not suitable. The mechanism for selection of sentences

must be kept in mind to get best results.

4) Lindsay. While at the Carnegie Institute of Technology,

Robert Lindsay (28) programmed the SAD SAM question-answering system.

The input to the system is a set of sentences in Basic English, a

subset of English devised by C.K. Ogden (35), which has a vocabulary

of about 1500 words and a simple subset of the full English gram-

mar. The SAD part (Syntactic Appraiser and Diagrammer) of SAD SAM

parses the sentence using a predictive analysis scheme. The Seman-

tic Analyzing Machine (SAM) extracts from these parsed sentences

information about the family relationships of people mentioned; it

stores this information on a computer representation of the family

tree, and ignores all other information in the sentence. For example,

from the parsing of "Tom, Mary's brother, went to the store." Lind-

say's program would extract the sibling relationship of Tom and Mary,

place them on the family tree as descendants of the same mother and

father, and ignore the information about where Tom went.

The information storage structure utilized by SAD SAM, namely

the family tree, facilitates deductions from information implicit

in many sentences. Because a family relationship is defined in

terms of the relative position (no pun intended) of two people in

their family tree, computation of the relationship is independent

of the number of sentences required to place in the tree the path

between the individuals.

Extending the abilities of the SAD SAM system would require

reprogramming. No provision is made for interaction with the user.

No internal knowledge of the program structure is necessary if the

i

user restricts his queries to questions of family relationships, and

his language to Basic English.

5) Raphael. The SIR question-answering system (mnemonic

for Semantic Information Retrieval) was designed by Bertram Raphael

(38) at MIT. The SIR system accepts simple sentences in any of

about 20 fixed formats useful for expressing certain relationships

between objects. The semantic relationships extracted from these

sentences are those of set membership, set inclusion, subpart, left-

to-right position and ownership.

The information about the relationships between various ob-~

jects is stored in a semantic network, where the nodes of the net-

work are objects and the relationships are indicated by directed

labeled links between nodes. For example, if the three sentences

"John is a boy," "A boy is a person,' and "Two hands are part of

any person' were an input to SIR, four nodes labeled John, boy,

person and hand would be created. Included in the network would be

a link indicating set membership between John and boy, another with

a label indicating set inclusion between boy and person, and a link

indicating hand is a subpart of person, with the number of parts equal

to 2.

Separate question-answering routines are used for questions

involving different relationships. Each routine takes cognizance

of the interaction of various relationships, and can deduce answers

from the linked structure of the network, independent of the number

of sentences which were necessary to set up these links. For exam-

nle, by tracing the links from "John" to "hand," SIR would answer

"YES" to the question "Is a hand part of John?"

fhe SIR system can interact with the user. For example, if

2

told that "A finger is part of a hand" and asked "How many fingers

does John have?" it would reply "How many fingers per hand?" Then

if it is told "Every hand has five fingers," it would answer the

question with "The answer is 10".

Any extensions of the SIR system necessitate additional pro-

gramming effort, though it is considerably easier to add new syntac-

tic forms than new semantic relationships. Within the input limits

of the 20 fixed format statements, the user need not know anything

of the internal structure of the information storage structure.

E. Other Related Work.

In addition to those question-answering systems described

above, a number of programs have been written to translate English

statements into a logical notation to check the consistency of a set

of statements, and the validity of logical arguments. In the sense

that, given a corpus transformed to some logical notation, and another

statement, a logic-based system can answer the question "Is this

statement (or its negation) implied by the corpus?'", such logic-

based systems are question-answering systems.

Cooper (12) and Darlington (14) both have programs which

translate a subset of English into the propositional calculus. Dar-

lington is also working on programs which can translate English into

the first order and second order predicate calculi. A difficult prob-

lem being considered by Darlington, in trying to handle implications

of English statements in terms of their logical translation, is the

determination of the proper level of analysis for a particular prob-

lem - that is, whether to translate the input into second order

predicate calculus where proofs are very difficult, or to try to

use first order predicate or propositional calculus to prove the

J

theorem, and perhaps find it logically insufficient.

At the National Bureau of Standards, Kirsch (22), Cohen (10)

and Sillars (39) have designed a system in which pictures and English

language statements are converted to expressions in the first order

predicate calculus. One can then check to see if an English language

statement is consistent with a given picture.

McCarthy's Advice-Taker (30), though not designed to accept

English input, would make an excellent base for a question-answering

system. Fischer Black (2) has programmed a system which can do all

of McCarthy's Advice-Taker problems, and can be adapted to accept a

very limited subset of English. The deductive system in Black's

program is equivalent to tne propositional calculus.

A number of people have done work bearing directly on the

problem of solving algebra word problems stated in English. Sylvia

Garfinkle (18) wrote a paper in which she described the heuristics

she would use in programming a computer to solve algebra word prob-

lems, but never wrote the program. Most of the heuristics were too

vague to really be used; e.g. just stating that one should identify

two variables' names which are only slightly different, but giving

no good criteria for a slight difference. The treatment of "this" was

taken from Garfinkle's paper. So were a number of simplified state-

nents of algebra story problems she transcribed and transformed from

problems in a first year algebra text book.

Michael Coleman (11), at MIT, wrote a term paper describing

a program of his which sets up the equations for some types of alge-

bra story problems (also handled by STUDENT). Some of the special

heuristics I use for "age problems" were inspired by techniques he

invented.

 0)

In his thesis, David Kuck (24) describes his ideas on how to

construct this type of program, but again did not implement these ideas.

He suggests methods for transformation of English input to equations

which would require much more information about words than is used

in the STUDENT program, and therefore were not applicable in this work.

The STUDENT program considers words as symbols, and makes do with

as little knowledge about the meaning of words as is compatible

with the goal of finding a solution to the particular problem.

2]

CHAPTER II: SEMANTIC GENERATION AND ANALYSIS OF DISCOURSE

The purpose of this chapter is to put the techniques of analy-

sis embedded in the STUDENT program into a wider context, and indi-

cate how they would fit into a more general language processing sys-

tem. We will describe in this chapter a theory of semantic genera-

tion and analysis of discourse. STUDENT can then be considered a

first approximation to a computer implementation of the analytic

portion of the theory, with certain restrictions on the interpreta-

tion of a discourse to be analyzed. It will be evident from the theo-

ry why analysis is so greatly simplified by the imposed restrictions.

A. Language as Communication.

Language is an encoding used for communication between a

speaker and a listener (or writer and reader). To transmit an

"idea", the speaker must first encode it in a message, as a string

in the transmission language. In order to understand this message,

a listener must decode it, and extract its meaning. The coding of a

particular message, M, is a function of both its global context and

local context. The global context of a message is the background

knowledge of the speaker and the listener, including some knowledge

of possible universes of discourse, and codings for some simple ideas.

The local context of a message, M, is the set of messages tem-

porally adjacent to M. M may refer back to earlier messages. M may

even be just a modification of a previous message, and only under-

standable in this context. For example, consider the second sen-

tence of the following discourse: "How many chaplains are in the

J.S. Army? How many are in the navy?"

[n order for communication to take place, the information map

9

of both the listener and the speaker must be approximately the same,

at least for the universe of discourse; also the decoding process

of the listener must be an approximate inverse of the encoding process

of the speaker. Education in language is, in large part, an attempt

to force the language processors of different people into a uniform

mold to facilitate successful communication. We are not proposing

that identity in detail is achieved, but as Quine so nicely put it

(37):

"Different persons growing up in the same language are
like different bushes trimmed and trained to take the shape
of identical elephants. The anatomical details of twigs and
branches will fulfill the elephantine form differently from
bush to bush, but the overall outward results are alike."

As a speaker transmits successive messages concerning some

portion of his information map, the listener who understands the mes-

sages constructs a model of a "situation". The relation between the

listener's model and the speaker's information map is that from each

can be extracted the transmitted information relevant to the universe

of discourse, including information deducible from the entire set

of messages. The internal structure of the listener's model need

bear no resemblance to that of the speaker, and may in general con-

tain far less detail.

B. Theories of Language.

According to Morris' theory of signs (33), the encoding and

decoding of language can be stratified into three levels. The first

level is the syntactic which deals with the relationships of signs

to other signs. A syntactic analysis, treating words as members of

classes of words, can yield structurings of messages which indicate

common processing features. The second level, semantic analysis, is

concerned with the relationships of signs to the things they denote.

29

A third level, pragmatic analysis, is concerned with the relationships

between signs and their interpretations in terms of actions required.

Our theory will deal with all three levels of analysis, with a pri-

mary emphasis on the relation of the semantic aspect of language to

the generation of discourse.

Many theories of syntax have been developed to describe the

structure of English, and many of these have served as bases for

computer programs which perform syntactic analysis. For a complete

survey of such systems see the paper by Bobrow (4). Almost all

of these theories ignore the concepts of meaning and semantics. Be-

cause they ignore such an important aspect of language, programs based

on such theories often yield many possible structurings for a single

sentence which is unambiguous to a person. With some use of meaning,

many of the meaningless ambiguous interpretations could be eliminated.

For a good discussion of why ambiguities arise in syntactic analysis

see Kuno and Oettinger (25).

Based on some ideas described by Yngve (46), a number of

programs have been written which generate syntactically correct En-

glish sentences. In most cases, the sentences generated are pre-

dominately meaningless nonsense. The coherent discourse generator of

Klein (23) is the one exception I know. Klein utilizes an input text

from which he extracts certain structural dependencies of the words

in the input. He then generates sentences and before they are re-

leased for output, a postprocessor checks to see if the words in the

generated sentence satisfy structural dependencies consistent with

those found in the input text. However, even in Klein's program no

attempt is made to use the denotive meaning of any word, except in

so far as this meaning is reflected in its cooccurrences with other

words in the input text.

DL

Some theories which do consider the problem of semantics are

being developed now. Pendegraft (27) states that the programs being

developed at the Linguistic Research Center of the University of Tex-

as are an explication of Morris' theory of signs. Though not yet

implemented, the semantic analysis program will make use of a pre-

liminary phrase structure syntactic analysis. A number of syntactic

structures, with appropriate vocabulary items, will map onto single

semantic constants, essentially indicating that these structures all

have the same meaning. This gives a type of canonical form for

structures in terms of their meanings, but does not utilize any ex-

plicit model of the world. No provision is made in the theory for

deduction of information implicit in a set of sentences.

Lamb (26) also has proposed a stratificational theory of gram-

mar, not yet implemented on a computer, in which successive levels of

analysis are performed, with a final mapping of the input into struc-

tures in a "sememic'" stratum of the language. In this sememic stra-

tum are bundles of ''sememes'" or meanings, and indications of the re-

lationships between different bundles. Different sentences which

mean the same thing should map into the same structure in this sememic

stratum. Sememic structures are thus canonical representations of

meaning.

LC. Definition of Coherent Discoutse.

The theory of language generation and analysis which we shall

describe below is designed to handle what we call coherent discourse.

A discourse is a sequence of sentences such that the meaning of the

discourse cannot be determined by interpreting each sentence inde-

pendently, disregarding the other sentences in the discourse. The

interpretation of each sentence may be dependent on the local con-

text, in the sense defined previously. A discourse is coherent if

) §

it has a complete and consistent interpretation. Completeness im-

plies that there is no substring within the discourse that does not

have some interpretation in the model of the situation being built

by the listener.

A listener's ability to build a model of a situation from a

discourse is dependent on information available to him from his gen-

eral store of knowledge. Therefore it is quite possible for a dis-

course to seem coherent to one listener and not another. A writer,

reading his own writing, may feel that he has generated a coherent

sequence of sentences, but in fact, it is incoherent to all other

readers. This is, unfortunately, not a rare occurrence in the sci-

entific literature. Conversely, a listener who is a psychiatrist,

for example, may find coherence in a sequence of remarks which a

patient thinks are entirely unrelated.

The STUDENT system utilizes an expandable store of general

knowledge to build a model of a situation described in a member of

a limited class of discourses. The form of this model of a situation

built by STUDENT will be discussed in detail in a later section of

this chapter. As far as I know, STUDENT is the only computer im-

plementation of a theory of discourse analysis now extant that maps

a discourse into some representation of its meaning. When the theo-

ries of Lamb and Pendegraft are implemented; they should also be

able to analyze this class of discourse (and others). Harris also

talks about "discourse analysis," (20) but in his use of this term

he specifically excludes the use of meaning, stating:

"The method [of discourse analysis] is formal, depending
only on the occurrence of morphemes as distinguishable ele-
ments, and not upon the analyst's knowledge of the particular
meaning of each morpheme."

 6A

D. The Use of Kernel Sentences in Our Theory.

A basic postulate of our theory of language analysis is that
a listener understands a discourse by transforming it into an equi-

valent (in meaning) sequence of simpler kernel sentences. A kernel

sentence is one which the listener can understand directly; that

is, one for which he knows a transformation into his information

store. Conversely, a speaker generates a set of kernel sentences

from his information map, and utilizes a sequence of transformations

on this set to yield his spoken discourse. This set of kernel sen-

tences is not invariant from person to person, and even varies for a

single individual as he learns.

The use of kernel sentences in this way is controversial.

However, the theory is proposed as a good framework for understanding

and implementing language processing on a computer, not necessarily

as a model for human behaviour. The usefulness of this theory as a

psychological model is an empirical question. Skinner (42) has

given some psychological justification for assuming the existence of

a set of base sentences, and Chomsky (7) has discussed the linguis-

tic merits of the use of the concept of kernel sentences. Despite

this common concept of kernel sentences, in practice, our use of

kernel sentences is different than that of Skinner or Chomsky. Our

use of kernel sentences as a basis of a language is analogous to the

use of generators in defining a group.

Although we are not proposing our theory as a basis for a psy-

chological model, it has been useful, to avoid circumlocutions, to

describe the theory in terms of the properties and actions of a hypo-

thetical speaker and listener. All statements about speakers and

listeners should be interpreted as referring to computer programs

which respectively, generate and analyze coherent discourse.

)7

ff. Generation of Coherent Discourse.

1) The Speaker's Model of the World. We assume that a

speaker has some model of the world in his information store. We

shall not be concerned here with how this model was built, or its ex-

act form. Different forms for the model will be useful for different

language tasks, but they must all have the properties described below.

The basic components of the model are a set of objects, {0,)

a set of functions {r). a set of relations (=) , a set of pro-

positions {e.} , and a set of semantic deductive rules. A function

Fe is a mapping from ordered sets of n objects, called the argu-

ments of Fy » into the set of objects. The mapping may be multi-

valued and is defined only if the arguments satisfy a set of con-

ditions associated with Fy « A condition is essentially membership

in a class of objects, but is defined more precisely below. A re-

lation R; is a special type of object in the model, and consists

of a label (a unique identifier), and an ordered set ofnconditions.

called the argument conditions for the relation. Functions of re-

lations are again relations.

An elementary proposition consists of a label associated with

some relation, R; » and an ordered set ofnobjects satisfying the

argument conditions for this relation. One may think of these pro-

positions as the beliefs of a speaker about what relationships be-

tween objects he has noticed are true in the world. Complex pro-

positions are logical combinations (in the usual sense) of elementary

propositions.

The semantic deductive rules give procedures for adding new

propositons to the model based on the propositions now in the model.

In addition to the ordinary rules of logic, these rules include axioms

about the relationships of the relations in the model. The semantic

) R

deductive rules also include links to the senses of the speaker. For

example, one such deductive rule for adding a propositon to the model

might be (loosely speaking) "Look in the real world and see if it is

true." These rules essentially determine how the model is to be ex-

panded, and are the most complex part of a complete system. How=-

ever, from our present point of view, we need only consider these

rules as a black box which can extend the set of propositions in the

model.

A closed question is a relational label for some R; and an

ordered set ofnobjects. The answer to this question is affirmative

if the proposition, consisting of this label and thenobjects, is

in the model (or can be added to it). If the negation of this pro-

position is in the model (or can be added), the answer is negative.

Otherwise the answer is undefined.

An open question consists of a relational label for an n-argu-

ment relation, R; » and a set of objects corresponding to n~k of these

arguments, where n®&k £1 . An answer to an open question is an or-

dered set of k objects, such that if these objects are associatéd

with the k unspecified arguments of R; » the resulting proposition is

in the model or can be added to it. An open question may have no

answers, or may have one or more answers. A condition is an open

question with k=1, and an object satisfies a condition if it is an

answer to the question.

2) Generation of Kernel Sentences. We have described the

logical properties of the speaker's model of the world. We shall

now consider how strings in a language, words, phrases, and sentences,

are associated with the model. Corresponding to the set of objects

0. there is a set Ney of strings (in English in our case),
called the names of the objects. There is a many-one mapping from

) 4

{v3 onto {o,} . It is many-one because one object may have more
than one name, e.g. frankfurter and hot dog both map back into the

same object.in the model.

Recall that functions map n-tuples of objects into objects.

Thus a function name and an n-tuple can specify an object. We

can derive a name for this object from the function name and the

names of its p-arguments. Associated with each function is at

least one linguistic form, a string of words with blanks in which

names of arguments of the function must be inserted. Examples of

linguistic forms associated with a model are "number of hy

"father of "", and "the child of and ". There is

a many-one mapping from the set of linguistic forms £3; Jone the
set of functions. Two examples of multiple linguistic forms for

the same function are: "father of__'"and" 's father";

and " plus " and "the sum of __ and _____". Thus,

if objects x and y have names "the first number" and '"the second

aumber'" and associated with the function " * " is the linguistic

form "the product of_and '"", then the name of the object

produced by applying the function " * " to x and y is "the product

of the first number and the second number'. A parsing of a name

thus must decompose it into the part which is the linguistic form,

and the parts which are names of arguments of the corresponding func-

tion. We shall call objects defined in terms of a function and an

n-tuple of objects a functionally defined object, and those which

are not functionally defined we shall call simple objects. Simple

objects have simple names and functionally defined objects have

composite names.

In addition to linguistic forms associated with functions,

there are linguistic forms associated with relations. For an n ar-

gument relation there are n blanks in the linguistic form. Examples

0

of relational linguistic forms are: " equals ",

ih gave to " and " speaks". It is this

set of linguistic forms, corresponding to the relations in the model,

that serve as frames for the kernel sentences.

In a manner similar to the way composite names are built, a

kernel sentence corresponding to an elementary proposition is con-

structed by inserting names corresponding to each argument in the

appropriate blank. Names may be simple or composite. An example of

a kernel sentence for a proposition built from such a relational

linguistic form is "John's father gave .3 times the salary of Bill

to Jack." which contains the simple names "John", '".3", "Bill",

and "Jack". It contains the functional linguistic forms "___ 's

father", " times " and "salary of__'"andthe rela-

tional linguistic form " gave to"

A kernel sentence corresponding to a complex proposition

is constructed recursively from the kernel sentences corresponding

to its elementary propositional constituents by placing them in the

corresponding places in the linguistic forms " __ and __

or ", "not " etc.
9

The kernel sentence corresponding to a closed question is

constructed from the kernel of the corresponding proposition by

placing it in the linguistic form "Is it true that _ 7?" For

an open question, dummy objects are placed in the open argument po-

sitions to complete a propositional form. These dummy arguments

have names 'who'', "what', "where", etc., and which dummy objects are

used depends on the condition on that argument position. A question

mark is placed at the end of the kernel sentence constructed in

the usual way from the relational linguistic form and the names of

the arguments.

11

In generating a coherent discourse, a speaker chooses a num-

ber of propositions in his model and/or some open or closed ques-

tions. He then uses linguistic information associated with the model

to construct the set of kernel sentences corresponding to this set of

chosen propositions. In the next section we will discuss how he

generates his discourse from this set of kernels.

3) Transformations on Kernel Sentences. The set of kernel

sentences is the base of the coherent discourse. The meaning of a

kernel sentence is the proposition into which it maps, and simi-

larly, the meaning of any name is the object which is its image un-

der the mapping. To this set of kernels we apply a sequence of

meaning preserving transformations to get the final discourse. We

use the word "transformation" in its broad general sense, not in

the narrow technical sense defined by Chomsky (7).

There are two distinct types of transformations, structural and

definitional. A structural or syntactic transformation is only de-

pendent on the structure of the kernel string(s) on which it operates.

For example, one syntactic transformation takes a kernel in the ac-

tive voice to one in the passive voice. Another combines two sen-

tences into a single complex coordinate sentence.

One large class of syntactic transformations is used to sub-

stitute pronominal phrases for names. Pronominal phrases may be

ordinary pronouns such as "he", "she", or "it". They may be refer-

ential phrases such as "the latter", "the former" or'this quantity".

They may also be truncations of a full name such as "the distance"

for "the distance between New York and Los Angeles'. In cases where

such pronominal reference is made, the coherence of the final dis-

course is dependent on the order in which the resultant strings

appear.

t)

The second type of transformation is definitional. It in-

volves substitutions of linguistic strings and forms for ones ap-

pearing in the kernel sentences. For example, for any appearance of

2 times" we may substitute '"twice', and for ".5 times" substitute

"one half of". In addition to this string substitution, some trans-

formations perform form substitution and rearrangement. For example,

for a kernel sentence of the form " x isymore than z'", where x, y,

andzare any names, one definitional transformation can substitute

"x exceedszby y."

Some transformations are optional, and some may be mandatory

if certain forms are present in the kernel set. Certain transforma-

tions are used by a speaker for stylistic purposes, for example.

to emphasize certain objects; other syntactic transformations such

as those which perform pronominal substitutions are used because

they decrease the depth of a construction, in the sense defined by

Yngve (44).

Let us review the steps in the generation of a coherent

discourse. The speaker chooses a set of propositions, the "ideas"

he wishes to transmit. He then encodes them as language strings called

kernel sentences in the manner described above. He then chooses a

sequence of structural and definitional transformations which are

defined on this set of kernels or on the ordered set of sentences

which result from applications of the first transformations. The

resulting sequence of sentences will be a coherent discourse to a

listener if he knows all the definitional transformations applied.

In addition, for every pair of distinct names which the speaker maps

back into the same object, the listener must also map into a single

object.

In order to clarify this theory,we show, in Appendix E, a

sample semantic generative grammar which will generate coherent dis-

33

course understandable by the STUDENT analysis program. The ob-

jects are numbers and the functions are the arithmetic operations

of sum, difference, product and quotient. The only relation in

the model is numerical equality. The transformations are described

informally; further linguistic investigation is necessary before a

formal notation for transformations can be decided upon. Parallel

to the grammar is a sample problem generated by utilizing this gram-

nar. This problem is solvable by the STUDENT system.

F. Analysis of Coherent Discourse.

Generation of coherent discourse consists of two distinguish-

able steps. From propositions in the speaker's model of the world,

he generates an ordered set of kernel sentences. He then applies a

sequence of transformations to this kernel set. The resulting dis-

course is a coded message which is to be analyzed and decoded by a

listener. The listener's problem can be loosely characterized as an

attempt to answer the question, '""What would I have meant if I said

that?"

To analyze a discourse the listener must find the set of ker-

nel sentences from which it was generated; one way to do this is

to find a set of inverse transformations which when applied to the

input discourse yield a sequence of kernel sentences. The listener

must then transform these kernel sentences to an appropriate rep-

resentation in his information store. The appropriateness of a rep-

tesentation is a function of what later use the listener expects to

make of the information contained in the discourse. The listener

may simultaneously transform a given kernel sentence into a number

of different representations in his information store. On a level

of pragmatic analysis, statements require only storage of information.

Juestions and imperatives require appropriate responses from the

 1

listener. The difficulties in analysis dichotomize into those

associated with finding the kernel sentences which are the base of

the discourse, and those associated with transforming the kernel sen-

tences into representations in the information store.

Mathews (29) has suggested that analysis can be performed by

synthesis. A sequence of kernel sentences, and a sequence of trans-

formations are chosen, and the transformations are applied to the ker-

nel sentences. The resulting discourse is matched against the input.

If they are the same, these kernel sentences and transformations give

the required analysis of the input. If not, a change is made so that

the resulting discourse becomes more like the input.

If the kernel sentences and transformations were chosen ran-

domly, this method would obviously be too inefficient to work in

any practical sense. However, by utilizing clues within the input

discourse, the choice of kernels and transformations can be greatly

restricted. This technique of sentence analysis is being implemented

in a program being written at MITRE by Walker and Bartlett (43). This

technique has the advantage that exactly the same grammar can be

utilized for both analysis and generation of discourse.

A more direct analytical approach would utilize a set of in-

verse analytic transformations. If I, is a transformation that may

be used in generating a discourse, and T, (5) = S, where S and S are

sets of sentences, then the analytic transformation Tr,’ is the in-

verse of T, if and only if T,” (5) = S§S . The choice of which in-

verse transformations to apply and the order of their application

may again be restricted by utilizing heuristics concerned with

features of the input.

Once the base set of kernel sentences for a given dis-

15

course is determined, there remains the problem of entering. rep-

resentations of these sentences in the listener's information store.

The major problem in accomplishing this step involves the separation

of those words which are part of linguistic forms for relations, and

those which are part of a name. This is difficult because the same

word (lexicographic symbol) may have multiple uses in a language.

Having separated the relational form from the names which represent

the arguments of this relation, one can then analyze the name in

terms of components which are functional linguistic forms and others

which are simple names. From this parsing in terms of relational

linguistic. forms, functional linguistic forms and simple names, the

discourse can be transformed into a canonical representation in the

information store of the listener.

G. Limited Deductive Models.

A complete understanding of a discourse by a listener would

imply that the representation of the discourse in his information

store is essentially isomorphic to the speaker's model of the world.

at least for the universe of discourse. The listener's representa-

tion must preserve all information implicit in the discourse.

If the listener is only interested in certain aspects of the

discourse, he need only preserve information relevant to his interest,

and discard the rest. Within his area of interest the listener's mod-

el is isomorphic to the speaker's model in the sense that all rele-

vant deductions which can be made by the speaker on the basis of the

discourse can also be made by the listener. Outside this area of

interest, the listener will be unable to answer anv questions. We

call such restricted information stores limited deductive models.

he question-answering programs of Lindsay and Raphael, and

£

the STUDENT system, all utilize limited deductive models. For the

area of interest in each of these programs there was a "natural"

representation for the information in the allowable input. These

representations were natural in that they facilitated the deduction

of implicit information. For example, Lindsay's family tree rep-

resentation made it easy to compute the relationship of any two in-

dividuals in the tree, independent of the number of sentences nec-

essary to build the tree.

Because the number of relations and functions expressible

in the models in all three systems is very limited, there is a

corresponding limitation on the number of linguistic forms that may

appear in the input. This greatly simplifies the parsing problem

discussed earlier, by restricting alternatives for words in the

input text.

H. The STUDENT Deductive Model.

The STUDENT system is an implementation of the analytic por-

tion of our theory. STUDENT performs certain inverse transformations

to obtain a set of kernel sentences and then transforms these kernel

sentences to expressions in a limited deductive model. Utilizing

the power of this deductive model, within its limited domain of under-

standing, it is able to answer questions based on information im-

plicit in the input information.

The analytic and transformational techniques utilized in

STUDENT are described in detail in Chapter IV. We shall describe

here the canonical representation of objects, relations and func-

tions within the model. STUDENT is restricted to answering questions

framed in the context of algebra story problems. Algebraic equa-

tions are a natural representation for information in the input.

}.

The objects in the model are numbers, or numbers with an as-

sociated dimension. The only relation in the model is equality, and

“he only functions represented directly in the model are the arith-

metic operations of addition, negation, multiplication, division

and exponentiation. Other functions are defined in terms of these

basic functions, by compostion, and/or substitution of constants

for arguments of these functions. For example, the operation of

squaring is defined as exponentiation with "2" as the second argu-

ment of the exponential function; subtraction is a composition of

addition and negation.

Within the computer, a parenthesized prefix notation is used

for a standard representation of the equations implicit in the En-

glish input. The arithmetic operation to be expressed is made the

first element of a list, and the arguments of the function are suc-

ceeding list elements. The exact notation is given in Figure 2 below.

Operation
Equality
Addition

Infix Notation Prefix Notation

A=3B (EQUAL A B)

A+B (PLUS A B)
A+ B+ C (PLUSABC)

(MINUS A)

(PLUS A (MINUS B))

(TIMES A B)
(TIMES A B C)

(QUOTIENT A B)

(EXPT A B)

Negation
Subtraction

Multiplication

A-B

A*B
A%B*C

Division A/b

Exponentiation AB

Figure 2: Notation Within the STUDENT Deductive Model

In the figure, A, B, and C are any representations of objects in the

nodel, either composite or simple names. The usual infix notation for

 ,

these functional expressions is given for comparison. Because this

is a fully parenthesized notation, no ambiguity of operational order

arises, as it does, for example, for the unparenthesized infix nota-

tion expression A*B+C or its corresponding natural language expres-

sion "A times B plus C'". Note also that in this prefix notation plus

and times are not strictly binary operators. Indeed, in the model

they may have any finite number of arguments, e.g. (TIMES A B C D)

is a legitimate expression in the STUDENT model.

Representations of objects in the STUDENT deductive model

are taken from the input. Any string of words not containing a

linguistic form associated with the arithmetic functions expressible

in the model are considered simple names for objects. Thus, "the age

of the child of John and Jane'" is considered a simple name because it

contains no functional linguistic forms associated with functions rep-

resented in STUDENT's limited deductive model. In a more general

model it would be considered a composite name, and the functional

forms "age of "and "child of _ and ___ _" would be

mapped into their corresponding functions in the model.

Because such complex strings are considered simple names in

the model, and objects are distinguished only by their names, it

is important to determine when two distinct names actually refer to

the same object. In fact, answers to questions in the STUDENT sys-

tem are statements of the identity of the object referenced by two

names. However, one of the names (the desired one) must satisfy

certain lexical conditions. Most often this condition is just that

the name be a numeral. For a more general model this restriction

could be stated as requiring a simple name corresponding to some

functionally defined name — because, for example, 'number of __

would be a functional linguistic form in the general model, and the

only simple name for such an object would be the numeral corres-

1g

ponding to this number. An answer consists of a statement of

identity e.g. "The number of customers Tom gets is 162."

The other lexical restriction on answers sometimes used in

the STUDENT system is insistence that a certain unit (corres-

ponding to a dimension associated with a number) appear in the de-

sired answer. For example, spans is the unit specified by the ques-

tion "How many spans equals 1 fathom?'", and the answer given by

STUDENT is "1 fathom is 8 spans''.

The deductive model described here is useful for answering

questions because we know how to extract implicit information from

expressions in this model; that is, we know how to solve sets of

algebraic equations to find numerical values which satisfy these

equations. The solution process used in STUDENT is described in de-

tail in Chapter VI. The transformation process, based on the theory

described earlier, which STUDENT uses to go from an English input

to this deductive model, is described in Chapter IV.

ie

CHAPTER III: PROGRAMMING FORMALISMS AND LANGUAGE MANIPULATION

Almost any programming language is universal in the sense that

with enough time, space, and work at the implementation, any computable

function may be programmed. However, the task of programming can be

made much easier by the proper choice of a higher level problem ori-

ented programming language. The data to be manipulated by the STU-

DENT system is symbolic, and of indefinite length and complexity. For

this reason, a list-processing language was the most appropriate type

of programming for this task. There are a number of such languages

available, each having its own set of advantages and disadvantages.

For a description of the general properties of list-processing lan-

guages, with a detailed comparison of four of the better known list-

processing languages, see Bobrow and Raphael (5). Mostly because I

knew it so well, I chose LISP (31) as the basic language for the STU-

DENT svstem.

The LISP formalism is very convenient for programming recursive

tasks such as the solving of a set of simultaneous equations. However,

LISP does not provide any natural mechanisms for representing manipula-

tion of strings of English words, another very important subtask in

the STUDENT system. For this type of manipulation one would like to

perform a sequence of steps involving operations such as recognizing

a sentence format which fits a particular pattern, finding certain ele-

ments in a sentence by their context, rearranging a string of words,

deleting, inserting, and duplicating parts of strings, and others.

The LISP formalism cannot easily express such string manipula-

tions, though each could be individually programmed. However, a for-

malism for just this sort of manipulation is the basis of the COMIT (45)

programming system. Rules in this formalism can easily express very

1

complex string manipulations, and are easy to read and write. How-

aver, COMIT and LISP cannot be used simultaneously, and the problem

context necessitates going back and forth between LISP-oriented tasks

and COMIT-oriented tasks. Therefore, 1 adapted the COMIT rule nota-

tion for use in LISP, and constructed a LISP program called METEOR which

vould interpret string transformation rules in this notation.

In constructing the METEOR interpreter, I effectively extended

the eloquence of the LISP programming language; that is, operations

which could be done previously, but were awkward to invoke could now

be expressed easily. An extended language embodying the best features

of COMIT and LISP could have been built from scratch, but it is much

more economical to achieve such extensions by embedding. The advan-

cages and disadvantages of language extension by embedding are discussed

in detail by Bobrow and Weizenbaum (6).

A. Specifying a Desired String Format.

METEOR has been described in detail elsewhere (3), but we in-

clude here a brief summary of its features. We do this because use of

the notation makes later explication of the transformation process

easier. In addition, if any ambiguity becomes apparent in the expla-

nation of the operation of STUDENT, it may be resolved by consulting

the listing of the STUDENT program in Appendix B. In this latter

case, it may be necessary to consult the more complete specification

>f METEOR referenced above.

A METEOR program consists of a sequence of rules each specifying

a string transformation and giving some control information. Let us

first consider how a string transformation is specified. We shall

call the string to be transformed the workspace. The workspace will

be transformed by a rule only if it matches a pattern or format given

Lv /

in the "left half" of the rule. This left half is a list of ele-

mentary patterns which specifies a sequence of items that must be

matched in the workspace. For example, if the left half were

"(THE BOY)" then a match would be found only if the workspace con-

tained a "THE" immediately followed by "BOY" . In addition to

known constituents, one can match unknown constituents. The ele-

ment $1 in a left half will match any one workspace constituent. The

left half "(A $1 B $2 C)" will match a contiguous substring of the

workspace which consists of anAfollowed by exactly one constituent

(specified by the marker "$1') followed by a B followed by exactly 2

constituents (matching the "$2") followed by an occurrence of a C.

Thus $1 will match an element of the workspace with a specified con-

text. If a left half would match more than one substring in the

workspace, the left-most such substring is the one found by the

matching process.

We have discussed elementary patterns which match a fixed num-

ber of unknown constituents (e.g., "$3" matches 3 unknown constitu-

ents). METEOR also has an elementary pattern element "S$" which

matches an arbitrary number of unknown constituents. For example,

the left half (THE $ BOY) will match a substring of the workspace

which starts with an occurrence of "THE" followed by any number of con-

stituents (including zero) followed by an occurrence of "BOY" . It

would, for example, match a substring of the workspace "(GIVE THE

GOOD BOY)" or of the workspace "(THE BOY HERE)" . If the left

half ($ GLITCH $3) matches a substring of the workspace, then the

elementary pattern "$§" matches the substring from the beginning of

the workspace up to but not including the first occurrence of "GLITCH":

the pattern "GLITCH" matches this occurrence of "GLITCH" in the work-

space: and the elementary pattern "$3" matches the 3 elements or

constituents of the workspace immediately following GLITCH.

|

Elements in the workspace may be tagged or subscripted to in-

dicate special properties of this element; for example, one might

have (HAVE/VERB) or (BOY/NOUN) as elements of the workspace. Such

elements can be matched by name (using HAVE or BOY as pattern elements)

or identified just by their subscripts (or by both). The elementary

pattern ($1/VERB) will match any single constituent which is a verb;

that is, one which has the subscript "VERB", even if this constituent

has other subscripts. Thus the left half (ALFRED ($1/VERB) BOOKS)

will match the substring ¢CALFRED (READS/VERB) BOOKS) in the work-

space (NOW ALFRED (READS/VERB) BOOKS IN THE LIBRARY).

Dther elementary pattern elements are provided, and new pat-

"ern elements can be defined and easily used within the METEOR system.

B. Specifying a Transformed Workspace.

We have discussed how a desired format can be specified through

a prototype pattern, called a left half. If we try to match the work-

space to a left half, but it is not in the format specified, we say

the match has failed. If a substring of the workspace is in the speci-

fied format, the match is successful. When there is a successful

match, we may wish to transform or manipulate the substring matched,

or place in a temporary storage location, called a shelf, copies of

segments of the matching substring. We shall now discuss the nota-

tion used for specifying such transformations, and storage of material

A left half is a sequence of elementary patterns, and we associ-

ate with each elementary pattern a number indicating its position in

this left-half sequence. For example, in the left half ($2 D $ E).

he first elementary pattern, $2, would be associated with the number

lL, the second, D, with 2, $ with 3, and E with 4. If a match is suc-

cessful, each elementary pattern element in the left half matches a

part of the substring of the workspace matched by this left half. The

part matched by an elementary pattern can then be referenced by the

number associated with this elementary pattern. For the left half

given above, and the workspace (A B CD B A E G), the left-half match

succeeds, and the substring (B C) may then be referenced with the num-

ber 1, the substring (D) by 2, (B A) by 3, and (E) by 4&4.

The transformed workspace is specified by the "right half"

of a METEOR rule. This right half may be just the numeral 0, in

which case the matched portion of the workspace is deleted. Other-

wise this right half must be a list of elements specifying a replace-

ment for the matched substring. Any numbers in this right-half list

reference (specify) the appropriate part of the matched substring.

Other items in the list may reference themselves, or strings in tem-

porary storage, or functions of any referenceable substrings. In

the example discussed above, if the right half were (3 2 M 2 H), then

the matched portion of the workspace would be replaced by (B ADMD H)

and the workspace would become (A B ADMDHG). Note that 1 and 4

were not mentioned in this right half and were therefore deleted from

the workspace. Also 3 and 2 were in reverse order, and thus these

referenced parts were inserted in the workspace in an order opposite

to that in which they had appeared. 2 is referenced twice in this right

half and therefore two copies of this referenced substring, '"(D)" ap-

pear in the workspace. The elements M and H in this right half refer-

ence only themselves, and are therefore inserted directly into the

workspace.

Using the right=half elements described, that is, numbers

referencing matched substrings and constants (elements referencing

themselves), one can express transformations of the workspace in

which elements have been added to, deleted from,duplicated in, and

rearranged in the workspace. Elements to be added to the workspace

k)

thus far can only be constants. Let us consider some other possible

vight=half elements. They are all indicated by lists which start with

special flags.

The contents of any shelf (temporary storage list) can be

referenced by a two element list with first element either *A (for All)

or *N (for Next), and a second element, the shelf name. For example,

(*A EQT) references the entire contents of a shelf named EQT. If this

element appeared in a right half, the entire contents of that shelf

would be placed in the corresponding place in the workspace. The

first element of a shelf named SENTENCES could be put into the work-

space by using the element (*N SENTENCES) in a right half.

The flag FN as the first member of a list serving as a right

half element indicates that the next member of this list is a function

name, and the following ones are the arguments of this function. The

value of the function for this set of arguments is placed in the

workspace. In this way, any LISP function can be used within a METEOR

rule.

The flag *K indicates that the rest of the list following is to

be evaluated as a right-half rule, and then is to be ''compressed"

into a list which will be a single element of the workspace. Thus,

chunks which are longer, and have more complex structure than a

single word can be treated as a single unit within the METEOR

workspace string. The inverse operation is the expansion of a chunk

so that all its components appear as individual constituents in the

workspace. Expansion is indicated by a *E flag at the beginningof

a riecht«half element list.

We have thus far discussed how the transformation of a string,

called the workspace, can be expressed in terms of a left half which

”

is a pattern for a desired input format, and a right half which is a

pattern for the desired output format. There is no reason to limit to

one the number of outputs from a single left half match. In fact, a

third section of a METEOR rule, called the "routing section" (for

historical reasons), allows the programmer to give any number of oth-

er right halves, and place these referenced lists at the beginning or

end of any shelf (temporary storage list). The storage of such a

"right half" is indicated in the routing section by a list starting

with a *S or a *Q, followed by the shelf name, and followed by a

right half pattern. The *S indicates that the referenced material is

to be Stored on the beginning of the named shelf. %*Q indicates that

it should be Queued on the end of the shelf. Used with a *N for re-

trieval, a shelf built up by a *S is a pushdown list, (a last-in-

first-out list), and a shelf built up by a *Q is a queue (first-in-

first-out list).

The only other significant feature of a METEOR program that we

have not yet touched on is the control structure in a set of rules.

A METEOR rule has a name, and has a "go-to" section. Ordinarily, if

the left-half match fails, control is automatically passed to the

next rule in sequence. If the left-half match succeeds, the right half

and routing sections are interpreted, and then control is passed to

the rule named in the "go-to". However, by insertion of a '"*"

immediately after the rule name in the rule, the method of transfer of

control is switched, and only on left-half failure will control pass

to the rule named in the "go-to".

Routing control can also be changed by a list of the form

"(*D namel name2)'" in the routing section of a rule. After this list

is interpreted, any occurrence of namel in a ''go-to' will be inter-

preted as a "go-to" containing '"mame2'". This latter feature allows

easy return from subroutines. The use of left-half success or failure

 vy

as a switch for the transfer of control makes it possible to write sig:

nificant one rule loops.

A METEOR program is a sequence (list) of rules. Each rule is

a list of up to six elements. The following is an example of a METEOR

rule containing all six elements:

(NAME * (S$ BOY) (2 1) (/ (*s S1 2 2) (*D Pl P2)) Pl)

We shall briefly review the function of each of these six elements.

The first element of a METEOR rule is a name, and must be present

in any rule. If no name is needed, the dummy name '"*'" can be used.

The second element is a "*" and is optional. When it is present it

reverses the switch on flow of control, and transfer of control to the

rule named in the "go-to" is made on left-half failure.

The third element is mandatory, and is a left-half pattern

which is to be matched in the workspace. The fourth element is

optional, and is a right-half pattern specifying the result in the

workspace of the string transformation desired. The fifth (optional)

element is called the routing section, and is a list flagged with

a "/" as a first element. The remainder of the routing section is a

sequence of lists which specify operations which place items on

shelves or set "go-to" values. The final element is called the ''go-

to" and specifies where control is to be passed if a match succeeds

(in the normal case). A '"&" in this position specifies the next rule

in sequence.

C. Summary.
In this chapter, we have briefly summarized the features of a

ianguage for string manipulation which has been embedded (by building

.

the METEOR interpreter) in the general list-processing language LISP,

The ability to describe easily in METEOR the string transformations

needed to process English sentences, and also use, where appropriate,

the functional notation of the general list-processing language, LISP,

was a great advantage in the programming effort involved in this study

As a final illustration of the power of the combined METEOR-LISP

language, we include a program for Wang's algorithm for proving

theorems in the propositional calculus. This algorithm is described

on pages 44-45 of the LISP manual (31), and a LISP program for the al-

gorithm appears on pages 48-50. Figure 3 below contains the complete

METEOR program for the algorithm, including definitions of four

small auxiliary LISP functions used within the METEOR program.

In addition, the figure contains a trace of the program as it

proves the theorem given after the first line containing "(THEOREM)"

The other lines give the theorems that are proven by the algorithm as

steps in the proof of this theorem. This METEOR program compares

quite favorably in both size and understandability to the one given in

the LISP manual, and to the one COMIT program which I have seen which

performs the Wang algorithm.

x
=le

9
3
D

J

T

>
i

+
3
=

Definition of WANG in METEOR

DEFINE((
(WANG (LAMBDA (X) (METEOR (QUOTE (
(TOP ((xP THEGREM)) %)

{%* (5 $1 S$ ARROW $2 8 (OK *TX)) END)
(A2 CARRY $ (FN MAINCBN NT) CC FN ARGONE (#K 3) 3

2)
(82 CCFN MAINCON NBT) $ ARROW) (2 3 (FN ARGONE (x 1

MM T0P)
{A3 ($ ARROW $ CFN MAINCON AND) $ CCFN AN2 (FN WANG

(kK 12 3 CFN ARGBNE (HK 4)) 5)) (FN WANG (3K
12 3 (FN ARGTWZ (HK #)) 5)))) END)

(83 CCFN MAINCON AND) $ ARROW) CCFN ARGBNE (KK 1)) (
FN ARGTWO (KK 13) 2 3) T8P)

(A% (ARROW $ CFN MAINCON ZR)) (1 2 (FN ARGEBNE (KK 3)
) (FN ARGTWZ (KK 3))) T0P)

(BY ($ CFN MAINCON ZR) $ ARROW $) (CFN AN (FN WANG
(kK 1 (FN ARGONE CkK 23) 3 4 5)) (FN WANG (KK
1 (FN ARGTWD (+ 2)) 3 4 5)))) END)

(AS (ARROW $ CFN VAINCON IMPLIES)) CCFN ARGENE OK 3
3) 12 (FN ARGTWS (3K 33) T@P)

(B5 (3 CFN MAINCON IMPLIES) $ ARROW $) ((FN AN2 (FN
WANG (*K 1 CFN ARGTWO (3K 2)) 3 4 5)) (FN WANG

(GK 13 45 CFN ARGONE (3K 2)))))) END)
{A6 ($ ARROW $ (FN MAINCON EQUIV $ C(CFN AN "CEFN

WANG (kK 1 (FN ARGONE (KK 4)) 2 3 (FN ARGTWE (
*#K 4)) 5)) (FN WANG (KK 1 (FN ARGTWZ (KK #)) 2

3 (FN ARGEBNE (kK 4)) 5)))) END)
FN MAINCON EQUIV) $ ARROW C(FN AN (FN

JANG (kK CFN ARGONE CK 2)) (FN ARGTWZ (KK 2))
34 5)) CFN WANG (kK 1 3 4 5 (FN ARGONE (kK 2

3) (FN ARGTHO (KK 2)))))) END)
3 (XK) END)(FAILWRE

)) X)))
))

Auxiliary Functions for WANG

DEFINE((
(MAINCON (LAMBDA (WS CON) (COND

(CEQ CON (CAAR WS))(CONS(LIST(CAR WS))(CDR WS)))
(T NIL) DD)

(AN2 (LAMBDA (X Y) (COND (X Y) (T NIL))))
{ARGONE (LAMBDA (X) (LIST(CADAR X))))
CARGTWO (LAMBDA (X) (LIST(CADDAR X))))
))

Trace of a Proof by WANG

(THECREM)
{(ORA(NOT B)) ARROW (IMPLIES (AND P Q) (EQUIV P Q)))
(THEOREM)
'A ARROY (IMPLIES (AND P Q) (EQUIV P Q)))
'THEREM)
‘A_(AND P Q) ARRG{ (EQUIV P Q))
THEOREM)
A P Q ARROW (EQUIV P Q))
THEGREM)
AP QP ARROW Q)
THEOREM)
A PQ Q ARROW P)
THEREM)

/(NOT B) ARROY (IMPLIES (AND P Q) (EQUIV P Q)))
THEOREM)
'ARFOW B (IMPLIES (AND P Q) (EQUIV P Q)))
. THEOREM)

(AND P Q) ARROW B (EQUIV P Q))
 THEGREM)
(P Q ARRGY B (EQUIV P Q))
(THECREM)
{P Q P ARROW 8 Q)
(THEOREM)
(P Q Q ARRGY B P)
VALUE
(*T*)

CHAPTER IV: TRANSFORMATION OF ENGLISH TO THE STUDENT DEDUCTIVE MODEL

The STUDENT system consists of two main subprograms, called

STUDENT and REMEMBER. The program called REMEMBER accepts and pro-

cesses statements which contain global information; that is, in-

formation which is not specific to any one story problem. We shall

discuss the processing and information storage techniques used

in REMEMBER in the next chapter. A listing of the global informa-

tion given to the STUDENT system may be found in Appendix C.

In this chapter, we shall describe the techniques embedded in

the STUDENT program which are used to transform an English statement

of an algebra story problem to expressions in the STUDENT deductive

model. By implication we are also defining the subset of English

which is "understood" by the STUDENT program. A more explicit des-

cription of this input language is given at the end of the chapter.

A. Outline of the Operation of STUDENT.

To provide perspective by which to view the detailed heuristic

techniques used in the STUDENT program, we shall first give an out-

line of the operation of the STUDENT program when given a problem to

solve. This outline is a verbal description of the flow chart of

the program found in Appendix A.

STUDENT is asked to solve a particular problem. We assume that

all necessary global information has been stored previously. STUDENT

will now transform the English input statement of this problem into

expressions in its limited deductive model, and through appropriate

deductive procedures attempt to find a solution. More specifically.

STUDENT finds the kernel sentences of the input discourse, and trans-

N

forms this sequence of kernels into a set of simultaneous equations,

keeping a list of the answers required, a list of the units involved

in the problem (e.g. dollars, pounds) and a list of all the variables

(simple names) in the equations. Then STUDENT invokes the SOLVE program

to solve this set of equations for the desired unknowns. If a solu-

tion is found, STUDENT prints the values of the unknowns requested in

a fixed format, substituting in "(variable IS value)" the appropriate

phrases for variable and value. If a solution cannot be found,

various heuristics are used to identify two variables (i.e. find two

slightly different phrases that refer to the same object in the model).

[f two variables, A and B, are identified, the equation A = B is added

to the set of equations. In addition, the store of global information

is searched to find any equations that may be useful in finding the solu-

tion to this problem. STUDENT prints out any assumptions it makes about

the identity of two variables, and also any equations that it retrieves

because it thinks they may be relevant. If the use of global equa-

tions or equations from identifications leads to a solution, the an-

swers are printed out in the format described above.

[f a solution was not found, and certain idioms are present in

the problem (a result of a definitional transformation used in the

generation of the problem), a substitution is made for each of these

idioms in turn and the transformation and solution process is re-

peated. If the substitutions for these idioms do not enable the prob-

lem to be solved by STUDENT, then STUDENT requests additional informa-

tion from the questioner, showing him the variables being used in the

problem. If any information is given, STUDENT tries to solve the prob-

lem again. If none is given, it reports its inability to solve this

problem and terminates. If the problem is ever solved, the solution

is printed and the pregram terminates.

39

B. Categories of Words in a Transformation.

The words and phrases (strings of words) in the English input

can be classified into three distinct categories on the basis of how

they are handled in the transformation to the deductive model. The

first category consists of strings of words which name objects in the

model; I call such strings, variables. Variables are identified only

by the string of words in them, and if two strings differ at all, they

define distinct variables. One important problem considered below

is how to determine when two distinct variables refer to the same ob-

ject.

The second class of words and phrases are what I call "substitu-

tors". Each substitutor may be replaced by another string. Some sub-

stitutions are mandatory; others are optional and are only made if the

problem cannot be solved without such substitutions. An example of

a mandatory substitution is "2 times'" for the word "twice". "Twice"

always means "2 times" in the context of the model, and therefore this

substitution is mandatory. One optional "idiomatic" substitution is

"twice the sum of the length and width of the rectangle" for "the peri-

meter of the rectangle". The use of these substitutions in the trans-

formation process is discussed below. These substitutions are inverses

of definitional transformations as defined in Chapter II.

Members of the third class of words indicate the presence of

functional linguistic forms which represent functions in the deductive

model. I call members of this third class "operators'". Operators

may indicate operations which are complex combinations of the basic

functions of the deductive model. One simple operator is the word

"plus", which indicates that the objects named by the two variables

surrounding it are to be added. An example of a more complex operator

is the phrase "percent less than', as in "10 percent less than the

marked price", which indicates that the number immediately preceding

3 7

the "percent" is to be subtracted from 100, this result divided by 100,

and then this quotient multiplied by the variable following the "than".

Operators may be classified according to where their arguments

are found. A prefix operator, such as "the square of....." precedes

its argument. An operator like ".....percent" is a suffix operator,

and follows its argument. Infix operators such as ".....plus....."

or ".....less than.....'" appear between their two arguments. In a

split prefix operator such as "difference between.....and.....'",

part of the operator precedes, and part appears between the two

arguments. '"The sum of.....andand....." is a split prefix

operator with an indefinite number of arguments.

Some words may act as operators conditionally, depending on

their context. For example, "of" is equivalent to "times" if there

is a fraction immediately preceding it; e.g., ".5 of the profit" is

equivalent to ".5 times the profit"; however, "Queen of England"

does not imply a multiplicative relationship between the Queen and

her country.

C. Transformational Procedures.

Let us now consider in detail the transformation procedure used

by STUDENT, and see how these different categories of phrases interact.

To make the process more concrete, let us consider the following example

which has been solved by STUDENT.

(THE PROBLEM TO BE SOLVED IS)

(IF THE NUMBER OF CUSTOMERS TOM GETS IS TWICE THE SQUARE OF

20 PER CENT OF THE NUMBER OF ADVERTISEMENTS HE RUNS, AND THE

NUMBER OF ADVERTISEMENTS HE RUNS IS 45, WHAT IS THE NUMBER

OF CUSTOMERS TOM GETS Q.)

y /1

Shown below are copies of actual printout from the STUDENT pro-

gram, illustrating stages in the transformation and the solution of the

problem. The parentheses are an artifact of the LISP programming lan-

guage, and '"Q." is a replacement for the question mark not available

on the key punch.

The first stage in the transformation is to perform all manda-

tory substitutions. In this problem only the three phrases underlined

(by the author, not the program) are substitutors: '"twice' becomes

"2 times", "per cent" becomes the single word "percent", and "square

of" is truncated to '"square'. Having made these substitutions, STUDENT

prints:

(WITH MANDATORY SUBSTITUTIONS THE PROBLEM IS)

(IF THE NUMBER OF CUSTOMERS TOM GETS IS 2 TIMES THE SQUARE

20 PERCENT OF THE NUMBER OF ADVERTISEMENTS HE RUNS, AND THE

NUMBER OF ADVERTISEMENTS HE RUNS IS 45, WHAT IS THE NUMBER

OF CUSTOMERS TOM GETS Q.)

From dictionary entries for each word, the words in the problem

are tagged by their function in terms of the transformation process,

and STUDENT prints:

(WITH WORDS TAGGED BY FUNCTION THE PROBLEM IS)

(IF THE NUMBER (OF / OP) CUSTOMERS TOM (GETS / VERB) IS

2 (TIMES / OP 1) THE (SQUARE / OP 1) 20 (PERCENT / OP 2) (OF/OP)

THE NUMBER (OF / OP) ADVERTISEMENTS (HE / PRO) RUNS, AND THE

NUMBER (OF / OP) ADVERTISEMENTS (HE / PRO) RUNS IS 45,

(WHAT / QWORD) IS THE NUMBER (OF / OP) CUSTOMERS

TOM (GETS / VERB) (QMARK / DIM))

y

If a word has a tag, or tags, the word followed by "/", followed by

the tags, becomes a single unit, and is enclosed in parentheses. Some

typical taggings are shown above. "(OF/OP)" indicates that "OF" is

an operator and other taggings show that "GETS" is a verb, "TIMES"

is an operator of level 1 (operator levels will be explained below),

"SQUARE" is an operator of level 1, "PERCENT" is an operator of level

2, "HE" is a pronoun, "WHAT" is a question word, and "QMARK" (replac-

ing Q.) is a delimiter of a sentence. These tagged words will play

the principal role in the remaining transformation to the set of

aquations implicit in this problem statement.

The next stage in the transformation is to break the input sen-

tences into "kernel sentences'. As in the example, a problem may

be stated using sentences of great grammatical complexity; however,

the final stage of the transformation is only defined on a set of

kernel sentences. The simplification to kernel sentences as done in

STUDENT depends on the recursive use of format matching. If an in-

put sentence is of the form "IF" followed by a substring, followed by

a comma, a question word and a second substring (i.e. it matches the

METEOR left half "(IF $, ($1/ QWORD($)") then the first substring

(between the IF and the comma) is made an independent sentence, and

everything following the comma is made into a second sentence. In

the example, this means that the input is resolved into the fol-

lowing two sentences, (where tags are omitted for the sake of brevity}

"The number of customers Tom gets is 2 times the
square 20 percent of the number of advertisements
re runs, and the number of advertisements he runs
is 45." and "What is the number of customers Tom gets?"

This last procedure effectively resolves a problem into declara-

tive assumptions and a question sentence. A second complexity resolved

y DY

by STUDENT is illustrated in the first sentence of this pair. A co-

ordinate sentence consisting of two sentences joined by a comma im-

mediately followed by an "and" (i.e., any sentence matching the

METEOR left half "($, AND $)") will be resolved into these two in-

dependent sentences. The first sentence above is therefore resolved

into two simpler sentences.

Using these two inverse syntactic transformations, this prob-

lem statement is resolved into "'simplé' kernel sentences. For the

example, STUDENT prints

(THE SIMPLE SENTENCES ARE)

(THE NUMBER (OF/OP) CUSTOMERS TOM (GETS / VERB) IS

2 (TIMES /OP 1) THE (SQUARE / OP 1) 20 (PERCENT / OP 2)

(OF / OP) THE NUMBER (OF / OP) ADVERTISEMENTS (HE / PRO)

RUNS (PERIOD / DLM))

(THE NUMBER (OF / OP) ADVERTISEMENTS (HE / PRO) RUNS IS 45

(PERIOD / DLM))

((WHAT / QWORD) IS THE NUMBER (OF / OP) CUSTOMERS TOM

(GETS / VERB) (QMARK / DLM))

Each simple sentence is a separate list, i.e., is enclosed in paren-

theses, and each ends with a delimiter (a period or question mark).

Each of these sentences can now be transformed directly to its inter-

pretation in the model.

D. From Kernel Sentences to Equations.

The transformation from the simple kernel sentences to equa-

tions uses three levels of precedence for operators. Operators of

higher precedence level are used earlier in the transformation. Be-

fore utilizing the operators, STUDENT looks for linguistic forms

associated with the equality relation. These forms include the copula

"is" and transitive verbs in certain contexts. In the example we are

considering, only the copula "is" is used to indicate equality. The

use of transitive verbs as indicators of equality, that is, as rela-

tional linguistic forms, will be discussed in connection with another

example. When the relational linguistic form is identified, the

names which are the arguments of the form are broken down into

variables and operators (functional linguistic forms). In the present

problem, the two names are those on either side of the "is" in each

sentence.

The word "is" may also be used meaningfully within algebra

story problems as an auxiliary verb (not meaning equality) in such

verbal phrases as "is multiplied by" or "is divided by". A special

check is made for the occurrence of these phrases before proceeding

on to the main transformation procedure. The transformation of sen-

tences containing these special verbal phrases will be discussed later.

If "is" does not appear as an auxiliary in such a verbal phrase, a

sentence of the form "Pl is P2" is interpreted as indicating the

aquality of the objects named by phrases Pl and P2. No equality

relation will be recognized within these phrases, even if an appro-

priate transitive verb occurs within either of them. If Pl* and

P2%* represent the arithmetic transformations of Pl and P2, then "Pl

is P2" is transformed into the equation

"(EQUAL P1* p2%)''.

3 8

The transformation of Pl and P2 to give them an interpretation

in the model is performed recursively using a program equivalent to

the table in Figure 4. This table shows all the operators and for-

mats currently recognized by the STUDENT program. New operators can

easily be added to the program equivalent of this table.

In performing the transformation of a phrase P, a left to

right search is made for an operator of level 2 (indicated by sub-

scripts of "OP" and 2). If there is none, a left to right search is

made for a level 1 operator (indicated by subscripts "OP" and 1),

and finally another left to right search is made for an operator of

level 0 (indicated by a subscript "OP" and no numerical subscript).

The first operator found in this ordered search determines the first

step in the transformation of the phrase. This operator and its con=-

text are transformed as indicated in column 4 in the table. If no

operator is present, delimiters and articles (a, an and the) are de-

leted, and the phrase is treated as an indivisible entity, a variable.

Lit che example, the first simple sentence 1a13

(THE NUMBER (OF/OP) CUSTOMERS TOM (GETS/VERB) IS

2 (TIMES/OP 1) THE (SQUARE/OP 1) 20 (PERCENT/OP 2)

(OF /OP) THE NUMBER (OF /OP) ADVERTISEMENTS

(HE /PRO) RUNS (PERIOD/DIM))

This is of the form "Pl is P2", and is transformed to (EQUAL Pl* P2%).

Pl is "(THE NUMBER (OF /OP) CUSTOMERS TOM (GETS/VERB))'". The occur-

rence of the verb ''gets'" is ignored because of the presence of the

"is" in the sentence, meaning "equals'". The only operator found

is "(OF/OP)". From the table we see that if "OF" is immediately pre-

ceded by a number (not the word '"number'") it is treated as if it

were the infix "TIMES". In this case, however, "OF" is not preceded

by a number; the subscript OP, indicating that "OF" is an operator, is

50

Jperator Precedence Context
Level

Interpretation in the Model

PLUS

PLUSS

MINUS

P1 PLUS P2

P1 PLUSS P2

P1 MINUS P2

MINUS P2

P1 MINUSS P2

P1 TIMES P2

Pl DIVBY P2

SQUARE P1

P1 SQUARED

Pl ** P2

Pl LESSTHAN P2

Pl PER K P2

Pl PER P2

Pl K PERCENT P2

Pl K PERLESS P2

SUM P1 AND P2 AND P3

SUM P1 AND P2

DIFFERENCE BETWEEN
P1 AND P2

K OF P2

Pl OF P2

(PLUS P1* P2%) (a)

(PLUS Pl P2%) (b)

(PLUS P1* (MINUS P2%)) (c)

(MINUS P2%)
(PLUS P1l* (MINUS P2%)) (b)

(TIMES P1l* P2%)

(QUOTIENT Pl* P2%)

(EXPT P1* 2)

(EXPT P1l* 2)

(EXPT Pl* P2%)

(PLUS P2* (MINUS P1l%))

(QUOTIENT P1* (K P2)%)

(QUOTIENT P1l* (1 P2)%)

(P1 (K/100) P2)* (f) (8
(P1((100-K) /100) P2)* (f) (8)
(PLUS P1* (SUM P2 AND P3)*)

{PLUS P1% P2%) :

(PLUS P1* (MINUS P2*))

MINUSS

TIMES

DIVBY

SQUARE

SQUARED
kek

LESSTHAN

PER

-

3)

PERCENT

PERLESS

SUM J

DIFFERENCE D

(TIMES K P2%)

‘Pl OF P2)*

a)

'b)

If Pl is a phrase, Pl* indicates its interpretation in the model.

PLUSS and MINUSS are identical to PLUS AND MINUS except for precedence level.

#¥hen two possible contexts are indicated, they are checked in the order shown.

SQUARE Pl and SUM Pl are idiomatic shortenings of SQUARE OF Pl and SUM OF Pl.

‘¢)

'd)

‘e) * outside a parenthesized expression indicates that the enclosed phrase is
to be transformed.

"£) K is a number-

2) / and = imply that the indicated arithmetic operations are actually performed.

Figure 4: Operators Recognized by STUDENT

51)

stripped away, and the transformation process is repeated on the

phrase with "OF" no longer acting as an operator. In this repeti-

tion, no operators are found, and Pl* is the variable

(NUMBER OF CUSTOMERS TOM (GETS/VERB))

lo the right of "IS" in the sentence is P2:

(2 (TIMES/OP 1) THE (SQUARE /OP 1) 20 (PERCENT/OP 2) (OF/OP)
THE NUMBER (OF /OP) ADVERTISEMENTS (HE/PRO) RUNS (PERIOD/DLM))

The first operator found in P2 is PERCENT, an operator of level

2. From the table in Figure 4, we see that this operator has the effect

of dividing the number immediately preceding it by 100. The "PERCENT"

is removed and the transformation is repeated on the remaining phrase.

In the example, the "...20 (PERCENT/OP 2) (OF/OP)...'" becomes

"... .2000(0OF/0P).....".

Continuing the transformation, the operators found are, in

order, TIMES, SQUARE, OF and OF. Each is handled as indicated in

the table. The "OF" in the context "... .2000 (OF/OP) THE"

is treated as an infix TIMES, while at the other occurrence of "OF"

the operator marking is removed. The resulting transformed expres-

sion for P2 is:

(TIME 2 (EXPT (TIMES .2 (NUMBER OF ADVERTISEMENTS

(HE/PRO) RUNS)) 2))

The transformation of the second sentence of the example is

done in a similar manner, and vields the equation:

 ed ,uAL (NUMBER OF ADVERTISEMENTS (HE/PRO) RUNS) 45)

q

The third sentence is of the form "What is P1?'". It starts with

3 question word and is therefore treated specially. A unique variable,

2 single word consisting of an X of G followed by five integers,

is created, and the equation (EQUAL Xnnnnn P1%) is stored. For this

example, the variable X00001 was created, and this last simple sen-

tence is transformed to the equation:

(EQUAL X00001 (NUMBER OF CUSTOMERS TOM (GETS/VERB))

In addition, the created variable is placed on the list of variables

for which STUDENT is to find a value. Also, this variable is stored,

paired with Pl, the untransformed right side, for use in printing out

the answer. If a value is found for this variable, STUDENT prints the

sentence (Pl is value) with the appropriate substitution for value.

Below we show the full set of equations, and the printed solution given

by STUDENT for the example being considered. For ease in solution, the

last equations created are put first in the list of equations.

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL X00001 (NUMBER OF CUSTOMERS TOM (GETS/VERB)))

(EQUAL (NUMBER OF ADVERTISEMENTS (HE/PRO) RUNS) 45)

(EQUAL (NUMBER OF CUSTOMERS TOM (GETS/VERB)) (TIMES 2 (EXPT
(TIMES .2000 (NUMBER OF ADVERTISEMENTS (HE/PRO) RUNS)) 2)))

THE NUMBER OF CUSTOMERS TOM GETS IS 162)

In the example just shown, the equality relation was indicated by the

copula "is". In the problem shown below, solved by STUDENT. equality

is indicated by the occurrence of a transitive verb in the proper context.

3)

(THE PROBLEM TO BE SOLVED IS)

(TOM HAS TWICE AS MANY FISH AS MARY HAS GUPPIES. IF MARY HAS

3 GUPPIES, WHAT IS THE NUMBER OF FISH TOM HAS Q.)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL X00001 (NUMBER OF FISH TOM (HAS/VERB)))

(EQUAL (NUMBER OF GUPPIES (MARY/PERSON) (HAS/VERB)) 3)

(EQUAL (NUMBER OF FISH TOM (HAS/VERB)) (TIMES 2 (NUMBER OF
GUPPIES (MARY/PERSON) (HAS/VERB))))

THE NUMBER OF FISH TOM HAS IS 6)

The verb in this case is '"has'. The simple sentence '"Mary has 3

guppies" is transformed to the "equivalent" sentence "The number of

guppies Mary has is 3" and the processing of this latter sentence is

done as previously discussed.

The general format for this type of sentence, and the format

of the intermediate sentence to which it is transformed is best ex-

pressed by the following METEOR rule:

(ow21/VERB) (§1/NUMBER) $) (THE NUMBER OF 4 1 2 IS 3) *)

This rule may be read: anything (a subject) followed by a verb fol-

lowed by a number followed by anything (the unit) is transformed to

a sentence starting with "THE NUMBER OF" followed by the unit, fol-

lowed by the subject and the verb, followed by "IS" and then the

number. In "Mary has 3 guppies" the subject is '"Mary'", the verb "has"

and the units "guppies". Similarly, the sentence "The witches of

3 9

firth brew 3 magic potions" would be transformed to

"The number of magic potions the witches of Firth brew is 3.

In addition to a declaration of number, a single-object tran-

sitive verb may be used in a comparative structure, such as exhibited

in the sentence "Tom has twice as many fish as Mary has guppies."

The METEOR rule which gives the effective transformation for this

type of sentence structure is:

% ($ (S1/VERB) $ AS MANY $ AS $ ($1/VERB) $)

(THE NUMBER OF 6 1 2 IS 3 THE NUMBER OF 10 8 9) *)

For the example, the transformed sentence is

"The number of fish Tom has is twice the number of guppies

Mary has!

Transformation of new sentence formats to formats previously

"understood" by the program can be easily added to the program, thus

extending the subset of English "understood" by STUDENT. In the pro-

cessing that actually takes place within STUDENT the intermediate

sentences shown never exist. It was easier to go directly to the

nodel from the format, utilizing subroutines previously defined in

terms of the semantics of the model.

The word "is" indicates equality only if it is not used as

an auxiliary. The example below shows how verbal phrases containing

"is", such as "is multiplied by", and "is increased by" are handled

in the transformation.

-a

(THE PROBLEM TO BE SOLVED IS)
(A NUMBER IS MULTIPLIED BY 6. THIS PRODUCT IS INCREASED BY 44.
THIS RESULT IS 68 . FIND THE NUMBER .)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL X00001 (NUMBER))
(EQUAL (PLUS (TIMES (NUMBER) 6) 44) 68)

(THE NUMBER IS 4)

The sentence "A number is multiplied by 6" only indicates that

two objects in the model are related multiplicatively, and does not

indicate explicitly any equality relation. The interpretation of

this sentence in the model is the prefix notation product:

(. IES (NUMBER) 09)

This latter phrase is stored in a temporary location for possible

later reference. In this problem, it is referenced in the next sen-

tence, with the phrase "THIS PRODUCT". The important word in this last

phrase is "THIS' — STUDENT ignores all other words in a variable con-

taining the key word "THIS". The last temporarily stored phrase is

substituted for the phrase containing "THIS". Thus, the first three

sentences in the problem shown above yield only one equation, after

two substitutions for ''this" phrases. The last sentence '"Find the

number." is transformed as if it were "What is the number Q."

and yields the first equation shown.

The word "this" may occur in a context where it is not

referring to a previously stored phrase. Below is an example of

such a context.

98

(THE PROBLEMTOBESOLVED IS)
(THE PRICE OF A RADIO IS 69.70 DOLLARS . IF THIS PRICE IS

15 PERCENT LESS THAN THE MARKED PRICE, FIND THE MARKED PRICE.)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL X00001 (MARKED PRICE))

fEQUAL (PRICE OF RADIO) (TIMES .8499 (MARKED PRICE)))

‘EQUAL (PRICE OF RADIO) (TIMES 69.70 (DOLLARS)))

‘THE MARKED PRICE IS 82 DOLLARS)

In such contexts, the phrase containing "THIS" is replaced by the left

half of the last equation created. In this example, STUDENT breaks

the last sentence into two simple sentences, deleting the "IF". Then

the phrase "THIS PRICE" is replaced by the variable "PRICE OF RADIO",

which is the left half of the previous equation.

This problem illustrates two other features of the STUDENT pro-

gram. The first is the action of the complex operator "percent less

than". It causes the number immediately preceding it, i.e., 15,

to be subtracted from 100, this result divided by 100, to give .85

(printed as .8499 due to a rounding error in floating point conversion).

Then this operator becomes the infix operator "TIMES". This is in-

dicated in the table in Figure4.

This problem also illustrates how units such as "dollars" are

handled by the STUDENT — Any word which immediately follows a

number is labeled as a special type of variable called a unit. A

aumber followed by a unit is treated in the equation as a product of

the number and the unit, e.g.,'%9.70 DOLLARS" becomes "(TIMES

59.70 (DOLLARS))". Units are treated as special variables in solving

the set of equations; a unit may appear in the answer though other

variables cannot. If the value for a variable found bv the solver is

 ay

the product of a number and a unit, STUDENT concatenates the number

and the unit. For example, the solution for "(MARKED PRICE)" in

the problem above was (TIMES 82 (DOLLARS)) and STUDENT printed out:

(THE MARKED PRICE IS 82 DOLLARS)

There is an exception to the fact that any unit may appear in

the answer, as illustrated in the problem below.

(THE PROBLEM TO BE SOLVED IS)
(IF 1 SPAN EQUALS 9 INCHES, AND 1 FATHOM EQUALS 6 FEET,
HOW MANY SPANS EQUALS 1 FATHOM Q.)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL X00001 (TIMES 1(FATHOMS)))

(EQUAL (TIMES 1(FATHOMS)) (TIMES 6 (FEET)))
(EQUAL (TIMES 1 (SPANS)) (TIMES 9 (INCHES)))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(USING THE FOLLOWING KNOWN RELATIONSHIPS)
((EQUAL (TIMES 1 (YARDS)) (TIMES 3 (FEET))) (EQUAL (TIMES 1
(FEET)) (TIMES 12 (INCHES))))

(1 FATHOM IS 3 SPALL 3)

If the unit of the answer is specified, in this problem by the phrase

"how many spans' — then only that unit, in this problem ''spans'',

may appear in the answer. Without this restriction, STUDENT would

blithely answer this problem with "(1 FATHOM IS 1 FATHOM)".

In the transformation from the English statement of the problem

to the equations, "9 INCHES" became (TIMES 9 (INCHES)). However,

3

"1 FATHOM" became "(TIMES 1 (FATHOMS))'". The plural form for fathom

has been used instead of the singular form. STUDENT always uses the

plural form if known, to ensure that all units appear in only one

form. Since "fathom" and "fathoms" are different, if both were used

STUDENT would treat them as distinct, unrelated units. The plural

form is part of the global information that can be made available

to STUDENT, and the plural form of a word is substituted for any

singular form appearing after "1" in any phrase. The inverse apera-

tion is carried out for correct printout of the solution.

Notice that the information given in the problem was insufficient

to allow solution of the set of equationstobesolved. Therefore,

STUDENT looked in its glossary for information concerning each of the

units in this set of equations. It found the relationships'"l foot

equals 12 inches." and "1 yard equals 3 feet." Using only the first

fact, and the equation it implies, STUDENT is then able to solve the

problem. Thus, in certain cases where a problem is not analytic,

in the sense that it does not contain, explicitly stated, all the

information needed for its solution, STUDENT is able to draw on a

body of facts, picking out relevant ones, and use them to obtain a

solution.

Tn certain problems, the transformation process does not yield

a set of solvable equations. However, within this set of equations

there exists a pair of variables (or more than one pair) such that

the two variables are only "slightly different", and really name the

same object in the model. When a set of equations is unsolvable,

STUDENT searches for relevant global equations. In addition, it

ises several heuristic techniques for identifying two '"slightlv

different" variables in the equations. The problem below illustrates

the identification of two variables where in one variable a pronoun

has heen substituted for a noun phrase in the other variable. This

3

identification is made by checking all variables appearing before one

containing the pronoun, and finding one which is identical to this

pronoun phrase, with a substitution of a string of any length for

the pronoun.

(THE PROBLEM TO BE SOLVED IS)
(THE NUMBER OF SOLDIERS THE RUSSIANS HAVE IS ONE HALF OF THE
NUMBER OF GUNS THEY HAVE . THE NUMBER OF GUNS THEY HAVE IS

7000 . WHAT IS THE NUMBER OF SOLDIERS THEY HAVE Q.)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL X00001 (NUMBER OF SOLDIERS (THEY/PRO) (HAVE/VERB)))

(EQUAL (NUMBER OF GUNS (THEY/PRO) (HAVE/VERB)) 7000)
(EQUAL (NUMBER OF SOLDIERS RUSSIANS (HAVE/VERB)) (TIMES .5000
(NUMBER OF GUNS (THEY/PRO) (HAVE/VERB))))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(ASSUMING THAT)
((NUMBER OF SOLDIERS (THEY/PRO) (HAVE/VERB)) IS EQUAL TO
(NUMBER OF SOLDIERS RUSSIANS (HAVE/VERB)))

(THE NUMBER OF SOLDIERS THEY HAVE IS 3500)

If two variables match in this fashion, STUDENT assumes the two

variables are equal, prints out a statement of this assumption, as

shown, and adds an equation expressing this equality to the set

to be solved. The solution procedure is tried again, with this

additional equation. In the example, the additional equation was

sufficient to allow determination of the solution.

iM

The example below is again a '"mon-analytic'" problem. The first

set of equations developed by STUDENT is unsolvable. Therefore,

STUDENT tries to find some relevant equations in its store of glo-

bal information.

(THE PROBLEM TO BE SOLVED IS)
(THE GAS CONSUMPTION OF MY CAR IS 15 MILES PER GALLON.
THE DISTANCE BETWEEN BOSTON AND NEW YORK IS 250 MILES.
FNHAT IS THE NUMBER OF GALLONS OF GAS USED ON A TRIP

BETWEEN NEW YORK AND BOSTON Q.)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL X00001 (NUMBER OF GALLONS OF GAS USED ON TRIP
BETWEEN NEW YORK AND BOSTON))

(EQUAL (DISTANCE BETWEEN BOSTON AND NEW YORK) (TIMES
250 (MILES)))

(EQUAL (GAS CONSUMPTION OF MY CAR) (QUOTIENT (TIMES
5 (MILES)) (TIMES 1 (GALLONS))))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(USING THE FOLLOWING KNOWN RELATIONSHIPS)
((EQUAL (DISTANCE) (TIMES (SPEED) (TIME))) (EQUAL (DISTANCE)
TIMES (GAS CONSUMPTION) (NUMBER OF GALLONS OF GAS USED))))

(ASSUMING THAT)
((DISTANCE) IS EQUAL TO (DISTANCE BETWEEN BOSTON AND NEW
YORK))
(ASSUMING THAT)
((GAS CONSUMPTION) IS EQUAL TO (GAS CONSUMPTION OF MY CAR))

(ASSUMING THAT)
((NUMBER OF GALLONS OF GAS USED) IS EQUAL TO (NUMBER OF
GALLONS OF GAS USED ON TRIP BETWEEN NEW YORK AND BOSTON))

(THE NUMBER OF GALLONS OF GAS USED ON A TRIP BETWEEN
NEW YORK AND BOSTON IS 16.66 GALLONS)

it uses the first word of each variavle string as a key to its

1)

glossary. The one exception to this rule is that the words ''number

of" are ignored if they are the first two words of a variable string.

Thus, in this problem, STUDENT retrieved equations which were stored

under the key words distance, gallons, gas, and miles. Two facts

about distance had been stored earlier; 'distance equals speed times

time" and "distance equals gas consumption times number of gallons

of gas used". The equations implicit in these sentences were stored

and retrieved now — as possibly useful for the solution of this

problem. In fact, only the second is relevant.

Before any attempt is made to solve this augmented set of

equations, the variables in the augmented set are matched, to identi-

fy "slightly different" variables which refer to the same object in

the model. In this example '"(DISTANCE)'","(GAS CONSUMPTION)'" and

"(NUMBER OF GALLONS OF GAS USED)", are all identified with "similar"

variables. The following conditions must be satisfied for this type

of identification of variables Pl and P2:

1) Pl must appear later in the problem than P2.

2) Pl is completely contained in P2 in the sense that Pl
is a contiguous substring within P2.

This identification reflects a syntactic phenomenon where a

truncated phrase, with one or more modifying phrases dropped, is

often used in place of the original phrase. For example, if the phrase

"the length of a rectangle" has occurred, the phrase "the length"

may be used to mean the same thing. This type of identification is

distinct from that made using pronoun substitution.

In the example above, a stored schema was used by identifying

the variables in the schema with the variables that occur in the prob-

lem. This problem is solvable because the key phrases "distance"

gas consumption' and "number of gallons of gas used" occur as

BR

substrings of the variables in the problem. Since STUDENT identi-

fies each generic key phrase of the schema with a particular vari-

able of the problem, any schema can be used only once in a problem.

Because STUDENT handles schema in this ad hoc fashion it cannot

solve problems in which a relationship such as "distance equals

speed times time" is needed for two different values of distance,

speed, and time.

E. Possible Idiomatic Substitutions.

There are some phrases which have a dual character, depending

on the context. In the example below, the phrase ''perimeter of a

rectangle" becomes a variable with no reference to its meaning, or

definition, in terms of the length and width of the rectangle.

This definition is unneeded for solution.

(THE PROBLEM TO BE SOLVED IS)
(THE SUM OF THE PERIMETER OF A RECTANGLE AND THE PERIMETER
OF A TRIANGLE IS 24 INCHES. IF THE PERIMETER OF THE RECTANGLE
IS TWICE THE PERIMETER OF THE TRIANGLE, WHAT IS THE
PERIMETER OF THE TRIANGLE Q.)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL X00001 (PERIMETER OF TRIANGLE))

(EQUAL (PERIMETER OF RECTANGLE) (TIMES 2 (PERIMETER OF
TRIANGLE)))
(EQUAL (PLUS (PERIMETER OF RECTANGLE) (PERIMETER OF TRIANGLE))
(TIMES 24 (INCHES)))

‘THE PERIMETER OF THE TRIANGLE IS 8 INCHES)

However, the following problem is stated in terms of the peri-

neter, length and width of the rectangle. Transforming the English into

3

(THE PROBLEM TO BE SOLVED 15S)
(THE LENGTH OF A RECTANGLE 1S 8 INCHES MORE THAN THE WIDTH
OF THE RECTANGLE . ONE HALF OF THE PERIMETER OF THE RECTANGLE
IS 18 INCHES . FIND THE LENGTH AND THE WIDTH OF THE RECTANGLE
V)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02516 (WIDTH OF RECTANGLE))

{EQUAL GO02515 (LENGTH))

(EQUAL (TIMES .5000 (PERIMETER OF RECTANGLE)) (TIMES 18 (INCHES)))

(EQUAL (LENGTH OF RECTANGLE) (PLUS (TIMES 8 (INCHES)) (WIDTH
OF RECTANGLE)))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(USING THE FOLLOWING KNOWN RELATIONSHIPS)
(CEQUAL (TIMES 1 (FEET)) (TIMES 12 (INCHES))))

(ASSUMING THAT)
{C(LENGTH) IS EQUAL TO (LENGTH OF RECTANGLE))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

TRYING POSSIBLE IDJOMS

(THE PROBLEM WITH AN IDIOMATIC SUBSTUTION IS)
(THE LENGTH OF A RECTANGLE IS 8 INCHES MORE THAN THE WIDTH
OF THE RECTANGLE . ONE HALF OF TWICE THE SUM OF THE LENGTH
AND WIDTH OF THE RECTANGLE 1S 18 INCHES . FIND THE LENGTH AND
THE WIDTH OF THE RECTANGLE .,)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02518 (WIDTH OF RECTANGLE))

{EQUAL GO02517 (LENGTH))

(EQUAL (TIMES (TIMES ,5000 2) (PLUS (LENGTH) (WIDTH OF RECTANGLE)))
{TIMES 18 (INCHES)))

(EQUAL (LENGTH OF RECTANGLE) (PLUS (TIMES 8 (INCHES)) (WIDTH
OF RECTANGLE)))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTYON

(USING THE FOLLOWING KNOWN RELATIONSHIPS)
(CEQUAL (TIMES 1 (FEET)) (TIMES 12 (INCHES))))

(ASSUMING THAT)
((LENGTH) IS EQUAL TO (LENGTH OF RECTANGLE))

(THE LENGTH IS 13 INCHES)

{THE WIDTH OF THE RECTANGLE 1S 5 NChesS)

equations is not sufficient for solution. Neither retrieving and us-

ing an equation about "inches", the unit in the problem, nor identi-

fying "length" with a longer phrase serve to make the problem sol-

vable. Therefore, STUDENT looks in its dictionary of possible idioms,

and finds one which it can try in the problem. STUDENT actually

had two possible idiomatic substitutions which it could have made

for "perimeter of a rectangle'; one was in terms of the length and

width of the rectangle and the other was in terms of the shortest and

longest sides of the rectangle. When there are two possible substitu-

tions for a given phrase, one is tried first, namely the one STUDENT

has been told about most recently. In this problem, the correct one

was fortunately first. If the other had been first, the revised

problem would not have been any more solvable than the original,

and eventually the second (correct) substitution would have

been made. Only one non-mandatory idiomatic substitution is ever

made at one time, although the substitution is made for all occur-

rences of the phrase chosen.

In this problem, the idiomatic substitution made allows the

problem to be solved, after identification of the variables "length"

and "length of rectangle. The retrieved equation about inches was

not needed. However, its presence in the set of equations to be

solved did not sidetrack the solver in any way.

This use of possible, but non-mandatory idiomatic substitutions

can also be used to give STUDENT a way to solve problems in which two

phrases denoting one particular variable are quite different. For

example, the phrase, "students who passed the admissions test" and

"successful candidates" might be describing the same set of people.

However, since STUDENT knows nothing of the '"real world" and its

value system for success, it would never identify these two phrases.

However, if told that "successful candidates' sometime means ''students

"I

who passed the admissions test", it would be able to solve a problem

using these two phrases to identify the same variable. Thus, pos-

sible idiomatic substitutions serve the dual purpose of providing ten-

tative substitutions of definitions, and identification of synono-

mous phrases.

F. Special Heuristics.

The methods thus far discussed have been applicable to the

entire range of algebra problems. However, for special classes of

problems, additional heuristics may be used which are needed for

members of the class, but not applicable to other problems. An

example is the class of age problems, as typified by the problem

below.

(THE PROBLEM TO BE SOLVED IS)
(BILL S FATHER S UNCLE IS TWICE AS OLD AS BILL S FATHER. 2
YEARS FROM NOW BILL S FATHER WILL BE 3 TIMES AS OLD AS BILL.
THE SUM OF THEIR AGES IS 92 . FIND BILL S AGE .)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL X00001 ((BILL / PERSON) S AGE))

(EQUAL (PLUS ((BILL / PERSON) S (FATHER / PERSON) S (UNCLE
/ PERSON) S AGE) (PLUS ((BILL / PERSON) S (FATHER / PERSON)
S AGE) ((BILL / PERSON) S AGE))) 92)

(EQUAL (PLUS ((BILL / PERSON) S (FATHER / PERSON) S AGE) 2)
(TIMES 3 (PLUS ((BILL / PERSON) S AGE)))

(BILL S AGE IS 8)

Before the age problem heuristics are used, a problem must be

identified as belonging to that class of problems. STUDENT identifies

age problems by any occurrence of one of the following phrases, "as old

as", "years old" and "age". This identification is made immediately

after all words are looked up in the dictionary and tagged by function.

=

After the special heuristics are used the modified problem is trans-

formed to equations as described previously.

The need for special methods for age problems arises because

of the conventions used for denoting the variables, all of which are

ages. The word age is usually not used explicitly, but is implicit

in such phrases as "as old as'". People's names are used where their

ages are really the implicit variables. In the example, for instance,

the phrase "Bill's father's uncle'" is used instead of the phrase

"Bill's father's uncle's age".

STUDENT uses a special heuristic to make all these ages ex-

plicit. To do this, it must know which words are "person words' and

therefore, may be associated with an age. For this problem STUDENT

nas been told that Bill, father, and uncle are person words. They

can be seen tagged as such in the equations. The " " following a

word is the STUDENT representation for possessive, used instead of

"apostrophe - s" for programming convenience. STUDENT inserts a

'S AGE" after every person word not followed by a '"S'" (because this

"S" indicates that the person word is being used in a possessive

sense, not as an independent age variable). Thus, as indicated,

the phrase "BILL S FATHER S UNCLE" becomes "BILL S FATHER S UNCLE S

AGE".

In addition to changing phrases naming people to ones naming

ages, STUDENT makes certain special idiomatic substitutions. For

the phrase 'their ages", STUDENT substitutes a conjunction of all

the age variables encountered in the problem. In the example, for

"THEIR AGES" STUDENT substitutes "BILL S FATHER S UNCLE S AGE AND

BILL S FATHER S AGE AND BILL S AGE". The phrases 'as old as" and

'vears old" are then deleted as dummy phrases not having any meaning,

and "will be" and "was'' are changed to "is'. There is no need to

~

preserve the tense of the copula, since the ser e of the future or

past tense is preserved in such prefix phrases as "2 years from now"

or "3 years ago'.

The remaining special age problem heuristics are used to process

the phrases "in 2 years', "5 years ago" and 'now'". The phrase "2

years from now' is transformed to "in 2 years" before processing.

These three time phrases may occur immediately after the word "age"

(e.g., "Bill's age 3 years ago') or at the beginning of the sentence

If a time phrase occurs at the beginning of the sentence, it implic-

itly modifies all ages mentioned in the sentence, except those

followed by their own time phrase. For example, "In 2 years Bill's

father's age will be 3 times Bill's age" is equivalent to "Bill's

father's age in 2 years will be 3 times Bill's age in 2 years". How-

ever, "3 years ago Mary's age was 2 times Ann's age now" is equivalent

to "Mary's age 3 years ago was 2 times Ann's age now'. Thus prefix

time phrases are handled by distributing them over all ages not

modified by another time phrase.

After these prefix phrases have been distributed, each time

phrase is translated appropriately. The phrase "in 5 years" causes

5 to be added to the age it follows, and "7 years ago' causes 7

to be subtracted from the age preceding this phrase. The word "now"

is deleted.

Only the special heuristics described thus far were necessary to

solve the first age problem. The second age problem, given below

requires one additional heuristic not previously mentioned. This

is a substitution for the phrase ''was when" which effectively de-

couples the two facts combined in the first sentence. For 'was

when', STUDENT substitutes ''was K years ago . K years ago' where

K is a new variable created for this purpose.

(THE PROBLEM TO BE SOLVED IS)
(MARY IS TWICE AS OLD AS ANN WAS WHEN MARY WAS AS OLD AS ANN
IS NOW . IF MARY IS 24 YEARS OLD, HOW OLD IS ANN Q.)

‘THE EQUATIONS TO BE SOLVED ARE)

‘EQUAL X00008 ((ANN / PERSON) S AGE))

(EQUAL ((MARY / PERSON) S AGE) 24)

(EQUAL (PLUS ((MARY / PERSON) S AGE) (MINUS (X00007))) ((ANN
/ PERSON) S AGE))

(EQUAL ((MARY / PERSON) S AGE) (TIMES 2 (PLUS ((ANN / PERSON)
S AGE) (MINUS (X00007)))))

ANN S AGE IS 18)

In the example, the first sentence becomes the two sentences:

"Mary is twice as old as Ann X00007 years ago. X0000/ years ago

Mary was as old as Ann is now." These two occurrences of time

phrases are handled as discussed previously. Similarly the phrase

"will be when" would be transformed to "in K vears . In K years".

These decoupling heuristics are useful not only for the STUDENT

program but for people trying to solve age problems. The classic age

problem about Mary and Ann, given above, took an MIT graduate student

over 5 minutes to solve because he did not know this heuristic. With

the heuristic he was able to set up the appropriate equations much

nore rapidly. As a crude measure of STUDENT's relative speed, note

that STUDENT took less than one minute to solve this problem.

G. When All Else Fails.

For all the problems discussed thus far, STUDENT was able to

find a solution eventually. In some cases, however, necessary glo-

bal information is missing from its store of information, or vari-

ables which name the same object cannot be identified by the heuris-

jo.

tics of the program. Whenever STUDENT cannot find a solution for any

reason, it turns to the questioner for help. As in the problem

below, it prints out "(DO YOU KNOW ANY MORE RELATIONSHIPS BETWEEN

THESE VARIABLES)" followed by a list of the variables in the problem.

The questioner can answer ''yes' or "no". If he says "yes",

STUDENT savs "TELL ME'", and the questioner can append another sen-

tence to the statement of the problem.

(THE PROBLEM TO BE SOLVED IS)
(THE GROSS WEIGHT OF A SHIP IS 20000 TONS . IF ITS NET
WEIGHT IS 15000 TONS , WHAT IS THE WEIGHT OF THE SHIPS

CARGO Q.)

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

TRYING POSSIBLE IDIOMS

(DO YOU KNOW ANY MORE RELATIONSHIPS AMONG THESE VARIABLES)

(GROSS WEIGHT OF SHIP)

(TONS)
(ITS NET WEIGHT)

(WEIGHT OF SHIPS CARGO)

yes
TELL ME

(the weight of a ships cargo is the difference between
the gross weight and the net weight)

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(ASSUMING THAT)
((NET WEIGHT) IS EQUAL TO (ITS NET WEIGHT))

(ASSUMING THAT)
((GROSS WEIGHT) IS EQUAL TO (GROSS WEIGHT OF SHIP))

‘Tlis, WEIGHT OF THE SHIPS CARGO is HLUu0 TONS)

@

In this problem, the additional information typed in (in lower

case letters) was sufficient to solve the problem. If it was not,

the question would be repeated until the questioner said "no", or

provides sufficient information for solution of the problem.

In the problem below, the solution to the set of equa-

tions involves solving a quadratic equation, which is beyond the

mathematical ability of the present STUDENT system. Note that in

this case STUDENT reports that the equations were unsolvable, not

simply insufficient for solution. STUDENT still requests additional

information from the questioner. In the example, the questioner says

"mo", and STUDENT states that "I CANT SOLVE THIS PROBLEM" and terminates.

(THE PROBLEM TO BE SOLVED IS)
(THE SQUARE OF THE DIFFERENCE BETWEEN THE NUMBER OF
APPLES AND THE NUMBER OF ORANGES ON THE TABLE IS EQUAL
T0 9 . IF THE NUMBER OF APPLES IS 7 , FIND THE NUMBER

OF ORANGES ON THE TABLE .)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02515 (NUMBER OF ORANGES ON TABLE))

‘EQUAL (NUMBER OF APPLES) 7)

(EQUAL (EXPT (PLUS (NUMBER OF APPLES) (MINUS (NUMBER
OF ORANGES ON TABLE))) 2) 9)

JNABLE TO SOLVE THIS SET OF EQUATIONS

TRYING POSSIBLE IDIOMS

(DO YOU KNOW ANY MORE RELATIONSHIPS AMONG THESE
VARIABLES)

(NUMBER OF APPLES)

(NUMBER OF ORANGES ON TABLE)

10

| CANT SOLVE THIS PROBLEM

0

A. Summary of the STUDENT Subset of English.

The subset of English understandable by STUDENT is built

around a core of sentence and phrase formats, which can be transformed

into expressions in the STUDENT deductive model. On this basic

core is built a larger set of formats. Each of these are first trans-

formed into a string built on formats in this basic set and then this

string is transformed into an expression in the deductive model. For

example, the format ($ IS EQUAL TO $) is changed to the basic for-

mat ($ IS $), and the phrase "IS CONSECUTIVE TO" is changed to

"IS 1 PLUS". The constructions discussed earlier involving single

object transitive verbs could have been handled this way, though

for programming convenience they were not.

The complete list of the basic formats accepted by the present

STUDENT system can be determined by examining (in the program list-

ing in the Appendix) the rules from the one labeled OPFORM to the one

labeled QSET. The METEOR rules of the STUDENT program preciselv

specify the acceptable formats, and their translations to the model,

but I shall try to summarize the basic and extended formats here.

Implicitly assumed in the syntax is that any operator appears only

within one of the contexts specified in the table given in Chapter II

and only the operators given in the table appear. The listing of

STUDENT starting at the rule labeled IDIOMS gives translations of

additonal operators to those in the table.

The basic linguistic form which is transformed into an

equation is one containing "is'" as a copula. The phrases "is equal

to" and "equals" are both changed to the copula "is". The

auxiliary verbal constructions "is multiplied by", "is divided by"

and "is increased by'" are also acceptable as principal verbs in a

sentence. As discussed in detail earlier, a sentence with no

occurrence of "is" can have as a main verb a transitive verb immedi-

3]

ately followed by a number. This number must be an element of the

phrase which is the direct object of the verb, as in 'Mary has

three guppies'". This type of transitive verb can also have a compara-

tive structure as direct object, e.g.,"Mary has twice as many

guppies as Tom has fish".

This completes the repertoire of declarative sentence formats.

Any number of declarative sentences may be conjoined, with '",and"

between each pair, to form a new (complex) declarative sentence.

A declarative sentence (even a complex declarative) can be made

a presupposition for a question by preceding it with "IF" and fol-

lowing it with a comma and the question.

Questions, that is, requests for information from STUDENT, will

be understood if they match any of the patterns:

(WHAT ARE $ AND $)

(FIND $ AND 3)

(HOW MANY $ DO $ HAVE)

HOW MANY $1 IS $)

(WHAT IS $)

(FIND $)

{HOW MANY S$ DOES $ HAVE)

This completes the summary of the set of input formats present-

ly understood by STUDENT. This set can be enlarged in two distinct

ways. One is to enlarge the set of basic formats, using standard

subroutines to aid in defining, for each new basic format, its inter-

pretation in the deductive model. The other method of extending the

range of STUDENT input is to define transformations from new input

formats to previously understood basic or extension formats. In the

next chapter we discuss how this latter type of extension can be

performed at run time, using the STUDENT global information storage

facility. A combination of English and METEOR elementary pattern

2°)

elements can be used to define the input format and transformation.

Even if a story problem is stated within the subset of English

acceptable to STUDENT, this is not a guarantee that this problem can

be solved by STUDENT (assuming it to be solvable). Two phrases des-

cribing the object must be at worst only "slightly different" by

the criteria prescribed earlier. Appropriate global information

must be available to STUDENT, and the algebra involved must not ex-

ceed the abilities of the solver. However, though most algebra story

problems found in the standard texts cannot be solved by STUDENT exactly

as written, the author has usually been able to find some paraphrase

of almost all such problems, which is solvable by STUDENT. Appendix D

contains a fair sample of the range of problems that can be handled

by the STUDENT system.

I. Limitations of the STUDENT Subset of English.

The techniques presented in this chapter are general and can

be used to enable a computer program to accept and understand a

fairly extensive subset of English for a fixed semantic base. How-

ever, the current STUDENT system is experimental and has a number of

limitations.

STUDENT's interpretation of the input is based on format

matching. If each format is used to express the meaning understood

by STUDENT, no misinterpretation will occur. However, these formats

occur in English discourse even in algebra story problems, in semantic

contexts not consistent with STUDENT's interpretation of these for-

mats. For example, a sentence matching the format '"($, AND $)"

is always interpreted by STUDENT as the conjunction of two declarative

statements. Therefore, the sentence "Tom has 2 apples, 3 bananas, and

4 pears." would be incorrectly divided into the two "sentences"

2

"Tom has 2 apples, 3 bananas." and "4 pears.”

Each of the operator words shown in Figure 4 must be used as

an operator in the context as shown or a misinterpretation will

result. For example, the phrase "the number of times I went to

the movies" which should be interpreted as a variable string will be

interpreted incorrectly as the product of the two variables "number of"

and "I went to the movies", because "times" is always considered to

be an operator. Similarly, in the current implementation of STUDENT,

"of" is considered to be an operator if it is preceded by any number.

However, the phrase "2 of the boys who passed" will be misinterpreted

as the product of "2" and "the boys who passed".

These examples obviously do not constitute a complete list of

misinterpretations and errors STUDENT will make, but it should give

the reader an idea of limitations on the STUDENT subset of English.

In principle, all of these restrictions could be removed. However,

removing some of them would require only minor changes to the program.

while others would require techniques not used in the current

system.

For example, to correct the error in interpreting "2 of the

boys who passed", one can simply check to see if the number before the

"of" is less than 1, and if so, only then interpret "of" as an

operator ''times'. However, a much more sophisticated grammar and

parsing program would be necessary to distinguish different occur-

rences of the format "($, AND $)", and correctly extract simpler sen-

tences from complex coordinate and subordinate sentences.

Because of limitations of the sort described above, and the

fact that the STUDENT system currently occupies almost all of the

computer memory, STUDENT serves principally as a demonstration of

2

the power of the techniques utilized in its construction. However,

I believe that on a larger computer one could use these techniques

to construct a system of practical value which would communicate

well with people in English over the limited range of material

understood by the program.

2 3

CHAPTER V: STORAGE OF GLOBAL INFORMATION

This algebra problem-solving system contains two programs

which process English input. One is the problem thus far discussed,

STUDENT, which accepts the statement of an algebra story problem and

attempts to find the solution to the particular problem. STUDENT does

10t store any information, nor ''remember'" anything from problem to

broblem. The information obtained by STUDENT is the local context

of the question.

The other program is called REMEMBER and it processes and stores

facts not specific to any one problem. These facts make up STUDENT's

store of "global information" as opposed to "local information'

specific to the problem. This information is accepted in a subset of

English which overlaps but is different from the subset of English

accepted by STUDENT. REMEMBER accepts statements in certain fixed

formats, and for each format the information is stored in a way that

makes it convenient for retrieval and use within the STUDENT program.

Some information is stored by actually adding METEOR rules to the

STUDENT program, and other information is stored on property lists

9f individual words, which are unique atoms in the LISP system.

The following are the formats currently understood by REMEMBER,

and the processing and information storage techniques used for

sach one:

Format: Pl EQUALS P2

ixample: DISTANCE EQUALS SPEED TIMES TIME

Processing: The sentence is transformed into an equation in

the same way it is done in STUDENT. This equation is stored on the

property lists of the adatoms which are the first words in each

< ”~

why

variable. In the example, the equation

'"(s<OUAL (DISTANCE) (TIMES (SPEED) (TIME)))"

is stored on the property lists of "DISTANCE", "SPEED" and "TIME".

If any one of these words appears as the initial word of a variable

in a problem, and global equations are needed to solve this problem,

this equation will be retrieved.

Format: Pl IS AN OPERATOR OF LEVEL K

Example: TIMES IS AN OPERATOR OF LEVEL 1

Processing: A dictionary entry for Pl is created, with sub-

scripts of OP and K. For TIMES, the dictionary entry (TIMES / OP 1)

is created. The dictionary entry for any word is placed on the

property list of that word (atom), and is retrieved and used in

place of any occurrence of that word in a problem.

Format: ©P1 IS AN OPERATOR

Example: OF IS AN OPERATOR

Processing: A dictionary entry is created for Pl with the sub-

script OP. The entry for OF is (OF/QOP).

Format: Pl IS A P2

Example: BILL IS A PERSON

Processing: A dictionary entry is created for Pl with sub-

script P2. The entry for BILL is (BILL/PERSON).

Format: Pl IS THE PLURAL OF P2

Example: FEET IS THE PLURAL OF FOOT

Processing: P2 is stored on the property list of Pl, after

the flag SING; the word Pl is stored on the property list of P2

after the flag PLURAL. Thus FEET is stored after PLURAL on the

3

property list of the atom FOOT.

Format: Pl SOMETIMES MEANS P2

Example: TWO NUMBERS SOMETIMES MEANS ONE NUMBER AND THE
OTHER NUMBER.

Processing: The STUDENT program is modified so that an idiomatic

substitution of P2 for Pl will be made in a problem if it is other-

wise unsolvable. All such "possible idiomatic substitutions” are

tried when necessary, with the last one entered being the first one

tried. The STUDENT program is modified by the addition of four new

METEOR rules. Since Pl and P2 are inserted as left and right halves

of a METEOR rule, they need not contain only words, but can use the

METEOR elementary patterns to specify a format change instead of

just a phrase change. For the example shown, the rules added to the

STUDENT program, as listed in Appendix B, are the rule labeled

C02510, the rule following that one, the rule labeled GO02511 and the

rule following it.

Format: Pl ALWAYS MEANS P2

Example: ONE HALF ALWAYS MEANS 0.5

Processing: The program STUDENT is modified so that if Pl

occurs, a mandatory substitution of P2 for Pl will be made in any prob-

lem. The last sentence in this format processed by REMEMBER will

be the first mandatory substitution made. Thus "one always means 1"

followed by "one half always means 0.5" will cause the desired sub-

stitutions to be made; if these sentences were reversed no occurrence

of "one half" would ever be found since it would have been changed

to "1 half". bv mandatorv substitution of 1 for one.

For each sentence in this format processed by REMEMBER, a

new METEOR rule is added to the STUDENT program, immediately fol-

lowing the rule named IDIOMS. The format of the METEOR rule added

 85

is (* (Pl) (P2) IDIOMS) where Pl and P2 are the strings in the sen-

tence processed. Thus by using a combination of English and METEOR

elementary patterns and reference numbers in Pl and P2, one can add

a new format of sentence to the STUDENT repertoire. For example, the

following statement was processed by REMEMBER to allow STUDENT to

"understand" (properly transform) a sentence in which the main verb

was "exceeds":

(3 EXCEEDS $ BY $ ALWAYS MEANS 1 IS 5 MORE THAN 3)

This permanently extended the STUDENT input subset of English,

while avoiding the necessity of actually editing and changing the

STUDENT program.

The global information stored for STUDENT ranged from equa-

tions to format changes to plural forms. Again, the compatible use

of the METEOR prototype notation and the use of the general list

processing operations in I'ISP facilitated programming of processing,
storage and retrieval of this wide range of information. In Appen-

dix C is a listing of the global information currently embodied in

the STUDENT system.

20

CHAPTER VI: SOLUTION OF SIMULTANEQUS EQUATIONS

This chapter contains a description of the LISP program

used by STUDENT to solve sets of simultaneous equations. The de-

finitions of the three top level functions SOLVE, SOLVER and SOLVE]

are shown in the figure at the end of this chapter. This descrip-

tion of these functions is essentially independent of a detailed

knowledge of LISP, although occasional parenthetical comments will

be directed to the more knowledgeable.

The top level function, SOLVE, is a function of three argu=-

ments. One, labeled EQT in the definition of SOLVE, is the set of

aquations to be solved. The argument labeled WANTED in the defini-

tion is a list of variables whose values are wanted. The third

argument, labeled TERMS, is another list of variables which is dis-

joint from WANTED. SOLVE will find the value of any variable which

is wanted in terms of any or all of the variables on the list TERMS.

In use, the list TERMS is a list of units, such as pounds, or feet,

which may appear in the answer.

The output of SOLVE is dependent on whether the set of equa-

tions given can be solved for the variables wanted. If no solution

can be found because the solution involves nonlinear processes, SOLVE

returns with the value UNSOLVABLE. If no solution is found because

not enough equations are given, SOLVE returns with the value INSUF-

FICIENT. If however, a solution is found, SOLVE returns with a list

of pairs. The first element of each pair is a variable, either on the

wanted list, or a variable whose value was found while solving for the

desired unknowns. The second element of each pair is an arithmetic ex-

pression (in the prefix notation shown in Figure 2), which contains

only numbers and variables on the list TERMS. Thus, the answer found

JO

by SOLVE is an "association list" of variables, and their values

in the proper terms.

For example, let us consider the set of seven simultaneous

equations shown below, and suppose SOLVE were asked to solve this

set of equations for x and z. These are given in infix notation

for ease of reading.

(1) =4+w=09

(2) x2 -C=D

(3) C+3D=6

(4) 2C-D=35

(5) x+ 2y =4

(6) 2 -3y+ 2 =z

(7) 4x - v =17

The list TERMS is empty, and thus the values must all be num-

bers. In this case SOLVE would return with the list of pairs

"((y, D(x, 2)(z, 0))," which indicates that the values x = 2 and

z = 0 satisfy this set of equations (or those members of this set

which were used to determine the values). The value y = 1 was

found during the solving process.

Most of the work of SOLVE is done by the function SOLVER.

SOLVE transmits to SOLVER the list of WANTED variables, the list of

TERMS, and a null association list (called ALIS) which is recur-

sively built up to give the answer. The value of SOLVER is this as-

sociation list of pairs, with the first element of each pair

being a variable whose value has been found. The second element of

each is an arithmetic expression which may contain any variable

on the list TERMS (as was the case for the ALIS of SOLVE). However,

it may also contain variables which are first elements of pairs

later on the association list. If values for variables given by

later pairs are substituted into this arithmetic expression, one

)

gets the arithmetic expression given by SOLVE containing only

variables on the list TERMS. In the example, SOLVER would re-

turn with the association list ((y, (4x-7)) (x,2) (z,0)) which

gives y in terms of x. SOLVE makes the substitutions and simplifica-

tion on the association list returned by SOLVER.

SOLVER is a program which solves for a list of wanted

variables. It does this by choosing one of these variables, adding

the others to the list of terms and calling SOLVEl to solve for this

one variable in terms of the other wanted variables and the original

TERMS. If SOLVEl succeeds in solving for this variable, SOLVER

pairs this one variable with the expression found, puts this pair

on the end of the ALIS, and using this substitution in every equa-

tion it tries to solve, attempts to solve for the remaining wanted

variables. If there are no more, SOLVER is finished and returns the

association list built up.

SOLVE1l solves for a single wanted variable by finding an

equation containing this variable, after all substitutions of

values for variables listed on the ALIS have been made. It then

makes a list of all the other variables in the equation, and checks

to see if there are any not on the list TERMS. If so it calls

SOLVER to solve for these new variables in terms of the wanted

variable and the variables in TERMS. If SOLVER is unsuccessful,

SOLVEl tries to find another equation containing the wanted variable,

and repeats the process. If there is none, SOLVEl has the value

INSUFFICIENT. If SOLVER is successful, and values for these new

variables are found, or if there were no new variables, SOLVE]

finally calls SOLVEQ which attempts to solve this equation for the

wanted variable. If the equation is linear in this variable,

SOLVEQ will be successful and give a solution. SOLVEl will add

a pair consisting of the wanted variable and this value to the end

17)

of ALIS, and return with this augmented ALIS as its value. If

SOLVEQ is unsuccessful, SOLVEl tries another equation, but then if

no solution can be found SOLVEl returns the value UNSOLVABLE.

This description has been a rather long-winded attempt to

explain the one page of LISP program at the end of this chapter.

To make it more specific, let us consider what happens when SOLVER

tries to solve the set of equations below (the same ones shown

earlier):

(1) x+w=09

(2) x2 -C=D

(3) C+3D=>5

(4) 2C -D=75

(5) x+2y=4
(6) 9 -3y+ 2 = 2

(7) 4x = v =17

SOLVER is asked to solve forxand z. It asks SOLVEL to

solve for x in terms of z. SOLVEl picks equation (1), finds that

a new variable,w,hasappeared and asks SOLVER to solve for w

in terms of x and z. Since there is no other occurrence of w in

this set, SOLVER is unsuccessful and SOLVEl abandons equation (1)

and goes to equation (2). Here it calls SOLVER to solve for the

two new variables C andDin terms ofxand z. In this case

SOLVER is successful, using equations (3) and (4), but when these

values are substituted in equation (2), SOLVER cannot solve for x

because the equation is not linear in x.

SOLVEl now abandons equation (2) and the results it obtained

as subgoals for solving (2). It finds an occurrence of x again

in (3). Again it calls on SOLVER, to solve for the new variable

y in terms of x and z. SOLVER tries to use (6), but SOLVEQ cannot

solve this equation for y. Using (7) SOLVER returns with an ALIS

of ((y,(4x - 7))). Using this ALIS, substituting this value for y

3 }

into (5), SOLVElL calls on SOLVEQ to solve this equation for x,

which it does, and finally SOLVEl returns to SOLVER the ALIS

((y, (4x - 7)), (x,2)) which does give the value of x in terms

of z. Having found xX in terms of z, SOLVER will now call SOLVE

to find the value of z. SOLVEl finds an occurrence of z in

equation (6), and after substitution of terms on the ALIS, SOLVEQ

is able to solve this equation for z, because it is linear in z.

Adding the pair (z,0) to the ALIS, SOLVEl returns it to SOLVER,

which passes on this ALIS ((y, (4x - 7)), (x,2), (z,0)) to SOLVE.

SOLVE, using the function SUBORD, which substitutes in order

pairs on an ALIS into an expression and simplifies, finally returns

the ALIS ((v,1)(x,2)(z,0)).

This example shows the rather tortuous recursions that these

functions use to solve a set of equations. Why should we use this

type of solving program instead of a more straightforward matrix

method? The principal reason is that, as shown, nonlinear equations

may appear in the set. In this case, if appropriate values can be

found from other equations which when substituted into this non-

linear equation make it linear in the variable for which we want to

solve, then SOLVE will find the value of this variable.

The method of operation of SOLVER requires that if n vari-

ables appear in any equation, and that equation is used, then at

least n-1 other independent equations containing these variables must

be in the set of equations, or the actual mechanics of solving will

not be started. This eliminates much work if there are extraneous

equations in the set which contain one or two of the wanted variables.

However, it precludes solving a set of equations which is homo-

geneous in one unwanted variable, and would therefore cancel out

in the solution process. This is the principal reason why problems

such as:

3}

"Spigot A fills a tub in 1 hour, and spigot B in 2

hours. How long do they take together?"

cannot be solved by STUDENT

This solving subroutine set is an independent package in the

STUDENT program. Therefore, improvements can be made to it without

disturbing the rest of the processing. The routine described

here was designed to handle most of the problems that can be found in

first year algebra texts.

}5

1
; de

x
C
~~
Ce

n

A

3
3
2
 qd

{SOLVE
(LAMBDA (WANTED EQT TERMS ALIS) (PROG (A B)

(SETQ A (SOLVER WANTED TERMS ALIS))
START (COND

((NULL A) (RETURN B))
((NULL (CDR A)) (RETURN (CONS (CAR A) B)))
((ATOM A) (RETURN A)))

(SETQ B (CONS (CONS (CAAR A) (SUBORD (CDAR A) (
COR A))) 8))

(SETQ A (CDR A))
(GO START))))

{SOLVER
(LAMBDA (WANTED TERMS ALIS) (PROG (AB CD E GH J)

(SETQ A WANTED)
(SETQ J (QUOTE INSUFFICIENT))

START (COND
((NULL A) (RETURN J)))

tSETQ B (CAR A))
(SETQ C (CDR A))
{SETQ E (SOLVEl B (APPEND C (APPEND D TERMS)) ALIS

{COND
((ATOM E) (GO ON)))

{SETQ H (NCONC D CJ)
1 COND

((NULL H) (RETURN E)))
(SETQ E (SOLVER H TERMS E))
[COND

((NOT (ATOM E)) (RETURN E)))
[COND

((EQ E (QUOTE UNSOLVABLE)) (SETQ J E)))
(SETQ D (CONS B D))
(SETQ A C)
iGO START))))

JN

{SOLVE1
(LAMBDA (X TERMS ALIS) (PROG (AB CDE GHUJ)

(SETQ A EQT)
(SETQ J (QUOTE INSUFFICIENT))
(COND

((NULL A) (RETURN J)))
(SETQ B (CAR A))
(SETQ C (SUBORD B ALIS))
(SETQ D (VARTERMS C))
{COND

{(MEMBER X D) (GO ON)))
{SETQ E (CONS B E))
(SETQ A (CDR A))
(GO START)
(SETQ G (CONS X TERMS))
(SETQ H (LOGMINUS D G))
(SETQ EQT (EFFACE B EQT))
(COND

((NULL H) (GO SOLVEQ)))
(SETQ G (SOLVER H G ALIS))
{COND

((ATOM G) (GO D)))
(SETQ ALIS G)
(SETQ C (SUBORD B ALIS))

SOLVEQ (SETQ G (SOLVEQ X C))
(COND

((ATOM G) (GO D)))
(RETURN (APPEND ALIS (LIST

G)))
{COND

((EQ G (QUOTE UNSOLVABLE)) (SETQ J G)))
(SETQ EQT (APPEND E A))
(GO B))))

CHAPTER VII: CONCLUSION

A.Results.
The purpose of the research reported here was to develop

techniques which facilitate natural language communication with

a computer. A semantic theory of coherent discourse was proposed

as a basis for the design and understanding of such man-machine

systems. This theory was only outlined, and much additional work

remains to be done. However, in its present rough form, the

theory served as a guide for construction of the STUDENT system,

which can communicate in a limited subset of English.

The language analysis in STUDENT is an implementation of the

analytic portion of this theory. The STUDENT system has a very

HALLOW semantic base. From the theory it is clear that by utilizing

this knowledge of the limited range of meaning of the input discourse

the parsing problem becomes greatly simplified, since the number of

linguistic forms that must be recognized is very small. If a

parsing system were based on any small semantic base, this same sim-

plification would occur. This suggests that in a general language

processor, some time might be spent putting the input into a semantic

context before going ahead with the syntactic analysis.

The semantic base of the STUDENT language analysis is delimited

by the characteristics of the problem solving system embedded in it.

STUDENT is a question-answering system which answers questions posed

in the context of "algebra story problems." In the introduction,

we used four criteria for evaluating several question-answering sys-

tems. Let us compare the STUDENT system to these others in the light

of these criteria.

)7

1) Extent of Understanding. All the other question-an-

swering systems discussed analyze input sentence by sentence.

Although a representation of the meaning of all input sentences

may be placed in some common store, no syntactic connection is

aver made between sentences.

In the STUDENT system, an acceptable input is a sequence of

sentences, such that these sentences cannot be understood by just

finding the meanings of the individual sentences, ignoring their

local context. Inter-sentence dependencies must be determined, and

inter-sentence syntactic relationships must be used in this case for

solution of the problem given. This extension of the syntactic

dimension of understanding is important because such inter-sentence

dependencies (e.g.pthe use of pronouns) are very commonly used in

natural language communication.

The semantic model in the STUDENT system is based on one

celationship (equality) and five basic arithmetic functions. Com-

position of these functions yield other functions which are also

expressed as individual linguistic forms in the input language.

The input language is richer in expressing functions than Lindsay's

or Raphael's system. The logical systems discussed may have more

relationships (predicates) allowable in the input, but do not allow

any composition of these predicates. The logical combinations

of predicates used are only those expressed in the input as logical

combinations (using and, or, etc.).

The deductive system in STUDENT, as in Lindsay's and Raphael's

>rograms, is designed for the type of questions to be asked. It

can only deduce answers of a certain type from the input information,

rhat is, arithmetic values satisfying a set of equations. In per-

forming its deductions it is reasonably sophisticated in avoiding

IR

irrelevant information, as are the other two mentioned. It lacks

the general power of a logical system, but is much more efficient

in obtaining its particular class of deductions than would be a

ceneral deductive system utilizing the axioms of arithmetic.

2) Facility for Extending Abilities. Extending the syntactic
abilities of any of the other question-answering systems discussed

would require reprogramming. In the STUDENT system new definitional

transformations can be introduced at run time without any reprogram-

ming. The information concerning these transformations can be in-

put in English, or in a combination of English and METEOR, if that is

more appropriate. New syntactic transformations must be added by

extending the program.

The semantic base of the STUDENT system can be extended only

by adding new program, as is true of the other question-answering

systems discussed. However STUDENT is organized to facilitate

such extensions, by minimizing the interactions of different parts

of the program. The necessary information need only be added to the

program equivalent of the table of operators in Figure 4, in Chap-

ter IV.

Similarly, the deductive portion of STUDENT, which solves the

derived set of equations, is an independent package. Therefore, a

new extended solver can be added to the system by just replacing

the package, and maintaining the input-output characteristics of

this subroutine.

3) Knowledge of Internal Structure Needed by User. Very

little if any internal knowledge of the workings of the STUDENT

system need be known by the user. He must have a firm grasp of the

J Q

type of problem that STUDENT can solve, and a knowledge of the input

grammar. For example, he must be aware that the same phrase must

always be used to represent the same variable in a problem, within

the limits of similarity defined earlier. He must realize that

even within these limits STUDENT will not recognize more than one

variation on a phrase. But if the user does forget any of these

facts, he can still use the system, for the interaction discussed

in the next section allows him to make amends for almost any mistake.

4) Interaction With the User. The STUDENT system is embedded

in a time-sharing environment (the MIT Project MAC time-sharing

system (13)), and this greatly facilitates interaction with the

user. STUDENT differentiates between its failure to solve a

problem because of its mathematical limitations and failure from

lack of sufficient information. In case of failure it asks the user

for additional information, and suggests the nature of the needed

information (relationships among variables of the problem). It

can go back to the user repeatedly for information until it has

enough to solve the problem, or until the user gives up.

STUDENT also reports when it does not recognize the format of

an input sentence. Using this information as a guide, the user is

in a teaching-machine type situation, and can quickly learn to speak

STUDENT's brand of input English. By monitoring the assumptions

that STUDENT makes about the input, and the global informationit

uses, the user can stop the system and reword a problem to avoid

an unwanted ambiguity, or add new general information to the

global information store.

The crucial point in this user interaction is that STUDENT is

embedded in an on-line time-sharing system, and can thus provide more

interaction than any of the other systems mentioned.

00

B. Extensions.

The present STUDENT system has reached the maximum size allow-

able in the LISP system on a thirty-two thousand word IBM 7094. There-

fore, very little can be added directly to the present system. All

the programming extensions mentioned here are predicated on the

existence of a much larger memory machine.

Without inventing any new techniques, I think that the STUDENT

system could be made to understand most of the algebra story prob-

lems that appear in first year high school text books. If new

operators, new combinations of arithmetic operations occur, they

can easily be added to OPFORM, the subroutine which maps the kernel

English sentences into equations. The number of formats recog-

nizable in the system can be increased without reprogramming

through the machinery available for storing global information

(this was discussed in more detail in Chapter V). The problems i:

would not handle are those having excessive verbiage or implied

information about the world not expressible in a single sentence.

As mentioned earlier, the system can now make use of any given

schema only once in solving a problem. This is because the schema

equation is added to the set of equations to be solved, and the vari-

ables in the schema only identified with one other set of vari-

ables appearing in the problem. For example, if "distance equals

speed times time" were the schema, then 'distance', as a variable

in the schema might be set equal to "distance traveled by train"

or "distance traveled by plane', but not both in the same problem

This problem could be resolved by not adding the schema equation

directly to the set of equations to be solved, but by looking for

consistent sets of variables to identify with the schema variables.

Then STUDENT could add an instance of the schema equations, with the

appropriate substitutions, for each consistent set of variables

937

found which are ''similar' to the schema variables.

At the moment the solving subroutine of STUDENT can only per-

form linear operations on literal equations, and substitutions of

numbers in polynomials and exponentials. It would be relatively

easy to add the facility for solving quadratic or even higher order

solvable equations. One could even add, quite easily, sufficient

mechanisms to allow the solver to perform the differentiation needed

to do related rate problems in the differential calculus.

The semantic base of the STUDENT system could be expanded. In

order to add the relations recognized by the SIR system of Raphael,

for example, one would have to add on the lowest level of the STUDENT

program the set of kernel sentences understood in SIR, their mapping

to the SIR model, and the question-answering routine to retrieve

facts. Then the apparatus of the STUDENT system would process much

more complicated input statements for the SIR model. One serious

problem which arises when the semantic base is extended is based on

the fact that one kernel may have an interpretation in terms of two

different semantic bases. For example, "Tom has 3 fish." can

be interpreted in both SIR and the present STUDENT system. To

resolve this semantic ambiguity, the program can check the context

of the ambiguous statement to see if there has been one consistent

model into which all the other statements have been processed. If

the latter condition does not determine a single preferred inter-

pretation for the statement, then both interpretations can be stored.

In addition to these immediate extensions of the STUDENT system,

our semantic theory of discourse can be used as a basis for a much

more general language processing system. As a start, one could

implement the generative grammar described in Appendix E to produce

coherent discourse—problems solvable by the STUDENT system.

19

Another more exciting possibility is to utilize this type of speak-

er's model of the world to attack ¥Yngve's '"baseball announcer" prob-

lem. The baseball announcer has certain propositions added to his

world model from the events he perceives, i.e. the baseball game he

is watching. Mandatory application of certain semantic rules add

other propositions, and delete some that are there. While these

changes are going on, the announcer is to generate a running com-

mentary (coherent discourse) describing this ball game he is watch-

ing. By making the proper assumptions about where the attention

of the announcer is focused, that is, which propositions he is

going to use as a base of his discourse at any time, I feel that a

reasonable facsimile of an announcer can be programmed. This is,

of course, an empirically testable hypothesis.

Another use for this model for generation and analysis of

discourse is as a hypothesis about the linguistic behaviour of

people. Psychologists have built reasonable computer models for

human behaviour in decision making (17), verbal learning of nonsense

syllables (15), and some problem solving situations (34). STUDENT

may be a good predictive model for the behaviour of people when con-

fronted with an algebra problem to solve. This can be tested, and

such a study may lead to a better understanding of human behaviour,

and/or a better reformulation of this theory of language processing.

I think we are far from writing a program which can understand

all, or even a very large segment of English. However, within its

narrow field of competence, STUDENT has demonstrated that '"under-

standing' machines can be built. Indeed, I believe that using the

techniques developed in this research, one could construct a system

of practical value which would communicate well with people in En-

glish over the range of material understood by the program.

013

APPENDIX A: FLOWCHART OF THE STUDENT PROGRAM

START

INPUT AND PRINT
THE PROBLEM

MAKE MANDATORY

SUBSTITUTIONS

AG WORDS BY FUNCTION
1 CT IQIYARY LOOK-UP

patGE PROB ~D—XES.

“LEMP.

USE SPE CIAL
JAGE PROBLEM

TRANS-
FORMATION,

BREAK (NTO SEQUENCE OF
SIMPLE SENTENCES

TRANSF ORM SIMPLE SENTENCES
IND SET OF EQUATIONS

“PRINT REQUESTED|
 INFORMATION

RAMP
QUA =

ONS SOL:
BIE

ADD EQUATIONS TO SET.
PRINT NEW EQUATIONS

YES

HERE
ANY GLOBAL

SGUATIONS ORADENTITIES? /

HASAEARCHS
EEN MADE opIAL INFORMATION :
~ UpENTITIESY

” Bs

SOLVE

(PRINT
ANSWERS

-

Ye rend

BPTIONAL srr
HBS TI TU TIONS ¥ES RINT
r YET TRIED 2 THE

RESULT _

| no

AN IGET INFORMT —

v SER GIVEN veES ar
NY HELP? PROPRIATE|

i POINT IN

ANAL YSIS
MNS

 ror) ~—IREPORT FAILURE]
 STOP —

 VA

pt

O
JN

{(STUDENT ($) (/ (»S ORGPRB 1))
fa ($) (1 (FN TERPRI1) (FN TERPRI) (FN TERPRI))

* ((»P THE PROBLEM TO BE SOLVED [S))
IDIOMS (%) +

‘ (HOW OLD) (WHAT) IDIOMS
(1s EQUAL TO) (1s) 'DIOMS
(YEARS YOUNGER THAN) (LESS THAN) D1 0MS
(YEARS OLDER THAN) (PLUS) DIOMS
{PERCENT LESS THAN) (PERLESS) DI0MS,
(LESS THAN) (LESSTHAN) J1OMS,
(THESE) (THE) DLOMS,
(MORE THAN) (PLUS) DIOMS
(FIRST TWO NUMBERS) (THE FIRST NUMBER AND "iE

SECOND NUMBER) DIOMS,
{THREE NUMBERS) (THE FIRST NUMBER AND THE SECON

NUMBER AND THE THIRD NUMBER) IDIOMS,
(ONE HALF) (.5000) IDIOMS.
(TWICE) (2 TIMES) IDIOMS,
(TWO NUMBERS) SIM
(+ DOLLAR) $1) (2 DOLLARS) iDIOMS]
{CONSECUTIVE T0) ((QUOTE 1) PLUS) IDIOMS.
{LARGER THAN) (PLUS) 'DIOMS.
‘PER CENT) (PERCENT) 1DIOMS,
{HOW MANY) (HOWM) IDIOMS
{SQUARE OF) (SQUARE) 'DIOMS,
(($.1S) MULTIPLIED BY) (TIMES) JDIOMS,
(($.1S) DIVIDED BY) (DIvVBY) IDIOMS,
{THE SUM OF) (SUM) IDIOMS)
(3%) (/ (*S NONID 1)) *
($1) 0 (/ (+Q SHELF (FN GETDCT 1 DICT)))

WORDS)
(3) ((*A SHELF)) *
(THE THE) (1) THE
(¢) (/ (*S MARKWD 1)) *,
[AS OLD AS) AGEPROB)
AGE) AGEPROB,
{YEARS OLD) AGEPROB)
($) (/ («D RETURN SENTENCE)) BRACKET)

(SENTENCE (3) ((*N PROBLEM)) *)
(» ($1) 0 (/ (#S FIND (#E 1)) («D RETURN SENTENCE

)) OPFORM)
(QUIET ($) *)
(SUBSTITUTIONS (3%) ((FN TERPRI) (+A NONID)) *)
(» ((*P WITH MANDATORY SUBSTITUTIONS THE PROBLEM 1S))

*)
(TAGGING ($) ((FN TERPRI) (+A MARKWD)) *)
(* ((+P WITH WORDS TAGGED BY FUNCTION THE PROBLEM ir

a

(BRACKETING ($) ((FN TERPRI) (*A SIMSEN)) *)
{* ((FN PRINLIS ((THE SIMPLE SENTENCES ARE)))) *)
(EQUATIONS (S$) ((FN TERPRI) (=A SHELF)) *)
(w (CFN PRINLIS ((THE EQUATIONS TO BE SOLVED ARE))))

«)

i] ($) (/ («S$ SHLCLF 1))
(SOLUTION (s) ((FN TERPRI))
(OPRN ($) ((FN REMDUP (=K («A SHELF)))) : f
(w ($) ((~A WANTED)) (/ (*S SHELF 1) (+S EQT 1))

»)
(» ($) {(FN REMDUP (»K (=A UNITS)))) (/ (=S

WANTED 1) (+S WANT 1)) *)
($s) ((FN REMDUP (*K (*A AUNITS)))) (/ (=$

UNITS 1) (*S UNIT 1)) *)
{= (3) (/ (+S AUNIT 1)) *)
(= ($1 $) ((FN SOLVE (*K (*A WANTED)) (*K («A SHELF

3) (=K 1 2) (#K))) ouT)
(w ($) ((FN SOLVE (*K («A WANTED)) («K (*A SHELF))

(*K (*A UNITS)) (*K))) ouT)
(out (3) *)
(ANSWER (UNSOLVABLE) (1 (»W UNABLE TO SOLVE THIS SET OF

EQUATIONS $EORS$) (FN TERPRI)) SIMVAR)
(w (INSUFFICIENT) ((*W THE EQUATIONS

WERE INSUFFICIENT TO FIND A SOLUTION $EORS)
(FN TERPRI)) S IMVAR)

Te (3%) ((FN PRLIS (*K (*A ANS)) (*K 1))) *)
w (INCOMPLETE) (UNSOLVABLE) ANSWER)
J (3) (THE PROBLEM 1S SOLVED) END)
{BRACKET + ($1) BKT)
(. ($ ($1 / DLM)) 0 (/ («Q PROBLEM (#K 1 2)))

BRACKET)
[w ($) 0 (/ (»Q PROBLEM (*K 1 (PERIOD / DLM))))

*

NO END))
(BKT ($) (/ (#S SHELF (*A PROBLEM)) (+D BKEND PBKT))

*)
(BKT1 (3) ((=N SHELF)) *)
(«+ =» (31) ((+E 1)) BKEND)
(w (IF $§ (« COMMA) ($1 / QWORD) $) 0 (/ (=S SHELF

(*K 2 ((PERIOD / DLM})) (»K 4 5)) («D BKEND
8KT)) BKT1)

($ (« COMMA) AND $) 0 (/ (*S SHELF (#K 1 ((
PERIOD / DLM))) (=K 4)) (=D BKEND BKT)) BKT1)

(» ($) (/ («Q PROBLEM (*K 1))) 8KT1)
(PBKT ($) ((*A PROBLEM)) *)
‘n ($s) 0 (/ («S PROBLEM 1) (+S SIMSEN 13) RETURN

ee
—’

=
x

2
=

>
wr

°
i,

pa

“

a
2
mg

x

2
=

vt

 =

>
+

(CRY ($) ((FN TERPRI) («W | CANT SOLVE THIS PROBLEM
$EORS)) END)

(GETEXP ($1) 0 (/ («Q WORDS (FN GETDCT 1 DICT)))
GETEXP)

(= (s) ((FN TERPRI) (*A WORDS))
(w» ($s 1S §) ((*K EQUAL (FN OPFORM (#*K 1)) (FN

OPFORM (*K 3)))) (/ («D SIMVAR SIMVAR))
EQTIN)

Tw» ((*P | DONT UNDERSTAND THIS)) CRY)
(VDTABLE ($) *)
1G02514 (THE PERIMETER OF $1 RECTANGLE) (TWICE THE SUM

OF THE LENGTH AND WIDTH OF THE RECTANGLE)
GO02514)

(= ($) PNEW)
(G02512 (TWO NUMBERS) (ONE OF THE NUMBERS AND THE OTHER

NUMBER) G02512)
(= ($) PNEW)
(G02510 (TWO NUMBERS) (ONE NUMBER AND THE OTHER NUMBER)

G02510)
(» (%) PNEW)
(PNEW ((~P THE PROBLEM WITH AN IDIOMATIC SUBSTUTION 1S))

*)
‘w ($) ((*K (*A ORGPRB)) 1 (FN NLSHLF) (FN TERPRI))

+)

(» ($1 3) (2) (/ (*S ORGPRB (*E 1))) IDIOMS)
AGEPROB (AS OLD AS) 0 AGEPROB)
"YEARSOLD (YEARS OLD) 0 YEARSOLD)
"WHENFUT (WILL BE WHEN) (WHx IN (FN GENSYM) YEARS (

PERIOD / DLM)) WHENBOT)
(«+ =» (WAS WHEN) (WH*» (FN GENSYM) YEARS AGO ((PERIOD /

DLM))) WHENGO)
(WHENBOT {WH* $§ (PERIOD / DLM)) (2 3 2) WHENFUT)
(WHENGO (($1 / PERSON) WILL BE IN $1 YEARS) {1S AGE 4 5

6) WHENWAS)
(WAS (WAS) (1s) WAS)
(WILLBE (WILL BE) (1s) WILLBE)
(ISNOW (($1 / PERSON) IS NOW) (1 S AGE NOW) | SNOW)
(FROMNOW ($1 YEARS FROM NOW) (IN 1 2) FROMNOW)

"TOP (3 ¢42 / PERSON)) (M4) (/ («xQ PROBLEM 1 2)) =»
* (MM S) 0 (/ («Q PROBLEM 2)) TOP)
Tw (MM) 0 (/ (=Q PROBLEM S AGE)) TOP}
(» ($) ((=A PROBLEM) 1) *)
(» (($1 / PERSON) $ S AGE) (/ (=Q SUBJECT 1 2) (=Q

SUBJECTS 1 2 3)) :

*)

(SUBPRO + ($ ($1 / PRO) §) ((*A SUBJECT)) (/ (=Q
PROBLEM 1) (+Q REST 3)) PPRO)

(= ($s) ((*A REST)) (/ (=Q PROBLEM 1 S AGE) (»S
SUBJECT 1)) SUBPRO}

(PPRO (3) ((*A PROBLEM) 1) w)
{POSSPRO + ($ ($1 / POSSPRO) $) ((*A SUBJECTS)) (/ (

*Q PROBLEM 1) (»Q REST 3)) ENDPRO)
(» ($) ((+A REST)) (/ (»Q PROBLEM 1) (#S SUBJECTS

1)) POSSPRO)
(ENDPRO ($) ((«A PROBLEM) 1) *!
({GETAGE ($ ($1 / PERSON) $ AGE) 0 (/ (+Q PROBLEM 1 2 »

4b) («Q AGES (#K 2 3 4))) GETAGE)
(= ($) ((«A PROBLEM) 1) *)
{TAGE ($ THEIR AGES $) ((FN REMDUP (#K (#A AGES))))

(/ (+Q LEFT 1) (#Q RIGHT &)) THRAGE)
or (3) (/ («D RETURN AGESEN)) BRACKET)
(AGESEN ($) ((=N PROBLEM)) ®)
(» » (s1) (Ma (#E 1)) AGEDONE)
((M+ IN $1 YEARS) 0 (/ («S AGEOP 2 3 &4)) SETOP

J

(¢ = (M+ $1 YEARS AGO) 0 (/ (*S AGEOP 2 3 4))
GETNEXT)

(SETOP =» (3 AGE) (PP*) (/ (=xQ TEMP 1 2)) OPEND)
(= (PP+ IN $1 YEARS) 0 (/ (»Q TEMP 2 3 U4)) SETOP

)
(= (PP* $1 YEARS AGO) 0 (/ («Q TEMP 2 3 4))

SETOP)
(» (PPw NOW) 0 SETOP)
((PP» $) ((*A AGEOP)) (/ (=Q REST 2)) *)
(($) ((«A REST)) (/ (*Q TEMP 1) (+S AGEOP 1))

SETOP)
{GETNEXT (M#) 0 FUTOP)
(OPEND (S$) ((+A TEMP) 1) (/ (*S GARBAGE (+A AGEOP)))

*)
(FUTOP (IN $1 YEARS) ((*K PLUSS / OP) 2) FUTOP)
(PASTOP ($1 YEARS AGO) ((»K MINUSS / OP) 1) PASTOP)
((1S ($17 DLM)) (2) *)
(= (3) 0 (/ (#Q FIND (*K 1))) AGESEN)
(AGEDONE (s) 0 (/ («Ss PROBLEM (+A FIND))) SENTENCE

)
(THRAGE ($1) 0 (/ («Q MIDDLE AND (#E 1)) (+Q AGES 1))

THRAGE)
(* ($) ((=N MIDDLE)) *}

iy ($) ((*A LEFT) (»A MIDDLE) («A RIGHT)) TAGE)

ad
O

 nN

[{OPFORM (3) ((~A FIND)) *)
a ow ($1) RETURN)
(* (WHAT ARE $ AND $ QMARK) ((FN GENSYM) 3) (/ «

=S FIND 1 2 5 G)) QSET)
{» (WHAT ARE $ QMARK) ((FN GENSYM) 3) QSET)
(w (WHAT IS $ QMARK) ((FN GENSYM) 3) QSET)
(n (HOWM $1 IS §) ((FN GENSYM) 4) (/ (+S AUNITS (

*K 2))) QSET)
(HOWM ¢ DO $ HAVE QMARK) ((FN GENSYM) THE NUMBER

OF 2 4 HAS) QSET)
((HOW / QWORD) $ DOES $ HAVE QMARK) ((FN GENSYM)

THE NUMBER OF 2 4 HAVE) QSET)
(FIND $ AND $) ((FN GENSYM) 2) (/ (#«S FIND 1 4

)) QSET)
(FIND $ ($1 / DLM)) ((FN GENSYM) 2) QSET)
($) ((FN REMART (#K 1))) *
($ IS MULTIPLIED BY $) 0 (/ («SS REF (*K TIMES

(FN OPFORM (#K 1)) (FN OPFORM (+*K 5)))))
RETURN)

IS DIVIDED BY $) 0 (/ (»S REF (*K QUOTIENT
(FN OPFORM (#K 1)) (FN OPFORM (*K 5)))))
RETURN)

|S INCREASED BY $) 0 (/ (=S REF (#K PLUS (
FN OPFORM («K 1)) (FN OPFORM (*K 5)))))
RETURN)

1S $) 0 (/ (*S SHELF (*K EQUAL (FN OPFORM (
«K 1)) (FN OPFORM (*K 3))))) RETURN)

{$1 / VERB) $ AS MANY $ AS ¢$ ($1 / VERB) $ (s1
/ DLM)) 0 (/ (#S SHELF (*K EQUAL (FN
OPFORM (#K THE NUMBER OF 6 1 2)) (FN OPFORM (
sK 3 THE NUMBER QF 10 8 9 111))))) RETURN)

{$1 / VERB) (FN NMTEST) $1 $ ($1 / DLM)) 0
(/ («S SHELF (*K EQUAL (FN OPFORM (+K THE
NUMBER OF 4 1 2)) (FN OPFORM (*K 3 5 6)))))
RETURN)

{= ((=P THIS SENTENCE FORM IS NOT RECOGNIZED)) *)
(e ($) 0 RETURN)
{QSET ($1 §%) 0 (/ (#S SHELF (#K EQUAL 1 (FN OPFORM (

*K (FN REMART (*K 2)))))) (*=Q WANTED 1) (=Q
ANS 1 (»K (FN OPREM (*K 2))))) OPFORM)

(SIMVAR (%) ((FN GETEQNS (#K (*A VAR)))) £1
(» ($1 $) 0 (/ («Ss VBL («E 1)) (=S EQT1 2)) *)
(» (%) ((FN REMDUP («K (*A EQT1)))) *)
(x » ($1 $) (/ (»S EQT1 1 2)) SP)

-

(* ((*P USING THE FOLLOWING KNOWN RELATIONSHIPS))
(» ($s) ((FN TERPRI))
(sp ($) ((=«N VBL)) (/ («=D SIMVAR SIM))
(SIMP » ($1) ((+E 1)) SIMFI°
{# ($ ($1 / PRO) $) (1 (» DOLLAR) 3) (/ (+S VAR

*K 12 3))) VTS:

(» ($) i DOLLAR) 1 (» DOLLAR)) (/ («SS VAR (#K
(VTST ($) ((=K (#K = («K 1) (QUOTE 0) END) (QUOTE ¢/

($) END)
(viop (3%) ((«N VBL)) (/ (*S TEST 1 1))
{w ($1) ((FN METRIX2 («N TEST) 1)) (/ («SS VART

) TSTEN
($1 8%) ((«N TEST)) vTO
($) (EQUAL (#N VAR) (*N VART))
(EQUAL $1 $1) (2 IS EQUAL TO 3) (/ (»S VART

(«S EQT1 (*«K 1 2 3)))
* ((«P ASSUMING THAT))
e ($) ((FN TERPRI))

'TSTEND ($) ((«N VART)) 1
» (£1) 0 (/ (Ss VBL 1)) TSTENL
+ () ((=A TEST)) !
* (» ((*N VBL)) SIMF.

(SIMFIN (') ((+A EQT1)) =’
CEQTIN (51 §) 0 (/ (+S SHELF 1 2 (+A EQT)) (*S UNITY

(«A UNIT)) (#S AUNITS (*A AUNIT)) (+S WANTED (
*A WANT))) OPRN)

(SIM ($) ((FN TERPRI) (*A ORGPRB)) *)
(w ($) (1 («W TRYING POSSIBLE IDIOMS EOR) (FN

TERPRI)) (/ («S ORGPRB 1) (+D SIMVAR SIMVAR)
(«D PO PO)) | DTEMP)

(IDTEMP ($) *)
iw (THE PERIMETER OF $1 RECTANGLE) (/ («D IDTEMP

G02513)) G0251k)
(G02513 ($) -*
{* (TWO NUMBERS) (/ («xD IDTEMP G02511)) G0251.
{G02511 (2)
* “TWO NUMBERS) (/ («xD IDTEMP G02509)) G0251

(G02509 ()
{IDFIN ($) ((*A VAR))
{» (CEN PRINLIS ((DO YOU KNOW ANY MORE RELATIONSHIP

AMONG THESE VARIABLES))))
(» ($s) ((FN RDFLX)) (/ («SS VAR 1))
(= (YES) ((*W TELL ME EOR) (FN TERPRI) (FN RDFLX

* GETEXP®

—

~

((OPFORM ($) *)
'. ($ ($1 7 0P 2) $) ((FN CAR (*K 2))) (/ (=S

LEFT (*K 1)) (*S RIGHT (*K 3))) OPTST)
(» ($ ($1 /70P 1) 8%) (CFN CAR (*K 2))) (/ (=S

LEFT (#K 1)) (*S RIGHT (*K 3))) OPTST)
a ($ ($1 / OP) $) ((FN CAR (#K 2))) (/ (#S LEFT

(*K 1)) (#S RIGHT (*K 3))) OPTST)
Lo” ($ ($1 7 DLM)) (1) h
x ($) ((FN REMART (*K 1)))
on ($1) NMTST!
(ARGERR * ((*P ARGUMENT ERROR)) END)
.NMTST (($1) (FN NMTEST)) ARGERR}
‘w ((QUOTE 1) $1) (1 (FN GETDCT 2 PLURAL)) *}
R ((FN NMTEST) $1 $) ((*K TIMES 1 (FN OPFORM (+K .

3)))) (/ (*S UNITS (*K 2))) END)
(CEN NMTEST)) END)
($ THIS $) ((+«N REF) MM 1 2 3) ouT)
($1 MM $) (1) END)
(MM) ({*N SHELF) 1) w]
($1 MM $) ((«E 1)) (/ (#S SHELF 1)) MM)
(EQUAL $1 $) (2) END)
f$) (ERROR) END)
[MM THIS $) ((*K 3)) (/ (*S VAR (#*K 3))) END)
($2 $) ((*K 1 2)) (/ (*S VAR (*K 1 2))) END)
(($.ATOM)) ((*K 1)) (/ (*S VAR (#K 1))) END)
($1) ((+E 1)) *)
7$0 $1 7 $8) ((*K (*K 2 3 4))) (/ (*S VAR (#K (

*K 2 3 4)))) END)
($1) 0 (/ (*Q SDICT (FN GETDCT 1 DICT)))

GTDCT)
(# (3) ((=A SDICT)) OPFORM)
(OPTST ($1 $) (1) $)
(OF ($) ((#EN LEFT)) *)
(w (($.NUMBER) $0) OF OK)
(» ($) (1 OF (=EN RIGHT)) OPFORM)
(OFOK ($) ((*K TIMES (FN OPFORM (#K 1)) (FN OPFORM (eN

RIGHT)))) END)
(DIVBY ($) ((*K QUOTIENT (FN OPFORM (»N LEFT)) (FN

OPFORM (#N RIGHT)))) END)
(ww ($) ((*K EXPT (FN OPFORM (#N LEFT)) (FN OPFORM (

*N RIGHT)))) END}

(PER ($) (1 (*EN RIGHT)) *)
(* (PER (FN NMTEST)) (2) PERNUM)
(# (PER) ((QUOTE 1)) *)
{PERNUM ($) ((*K QUOTIENT (FN OPFORM (*N LEFT)) (FN

OPFORM (*K 1)))) END)
(LESSTHAN ($8) ((#K PLUS (FN OPFORM (*N RIGHT)) (*K

MINUS (FN OPFORM (*N LEFT))))) END)
{MINUSS ($) MINUS)
(MINUS ($) ((=EN LEFT) *)
(+ ($1 $) ((*K PLUS (FN OPFORM (*K 1 2)) (#K MINUS

(FN OPFORM (#N RIGHT))))) END)
(» ($) ((%K MINUS (FN OPFORM (*N RIGHT)))) END)
(TIMES ($) ((*EN LEFT)) *)
(= ($1) OFOK)
(* ® ((*P INCORRECT USE OF TIMES)) END)
(PERLESS ($) ((*EN LEFT) 1) *}
(» (($.NUMBER) PERLESS) ((FN QUOTIENT (FN

DIFFERENCE 100 1)- 100)) OFOK)
(= ($) PERERR)
(PERCENT ($) ((*EN LEFT) 1) *)
(» (($.NUMBER) PERCENT) ((FN QUOTIENT 1 100) (

*EN RIGHT)) OPFORM)
(PERERR * ((*P INCORRECT USE OF PERCENT)) END)
(SQUARE ($) ((+EN LEFT)) *)
(» (s) {ax EXPT (FN OPFORM (#N RIGHT)) (QUOTE 2)))

END
(PLUSS ($) PLUS)
(PLUS ($) ((#K PLUS (FN OPFORM (*N LEFT)) (FN OPFORM (

*N RIGHT)))) END)
(DIFFERENCE ($) ((#*EN RIGHT)) *)
(» (BETWEEN $ AND $) ((*K PLUS (FN OPFORM (*K 2)) (

*K MINUS (FN OPFORM (*K 4))))) END)
(+ = ((*P INCORRECT USE OF DIFFERENCE)) END)
(SQUARED ($) ((*EN RIGHT)) .
(* ($) ((*K EXPT (FN OPFORM (*N LEFT)) 2)) ENC
(SUM ($) ((«N LEFT)) ‘
(« ($) ((*EN RIGHT)) “4
(* ($ AND $ AND $) ((*K PLUS (FN OPFORM (*K 1)) (FN

OPFORM (#K (*K SUM / OP) 3 & 5)))) END)
(» ($ AND $) ((*K PLUS (FN OPFORM (*K 1)) (FN

OPFORM (*K 3)))) END)
Co » ((«P SUM USED WRONG)) END)

N
 ~~

o
m
+h
ih

J
ty

+
=3*
D

4

=
AS

APPENDIX C: GLOBAL INFORMATION IN STUDENT

REMEMBER((
(PEOPLE 1S THE PLURAL OF PERSON)
(FEET |S THE PLURAL OF FOOT)
{YARDS IS THE PLURAL OF YARD)
{FATHOMS |S THE PLURAL OF FATHOM)
{INCHES IS THE PLURAL OF INCH)
(SPANS 1S THE PLURAL OF SPAN)
(ONE HALF ALWAYS MEANS 0.5)
(THREE NUMBERS ALWAYS MEANS THE FIRST NUMBER AND THE SECOND
NUMBER AND THE THIRD NUMBER)
(FIRST TWO NUMBERS ALWAYS MEANS
THE FIRST NUMBER AND THE SECOND NUMBER)
(MORE THAN ALWAYS MEANS PLUS)
(THESE ALWAYS MEANS THE)
(TWO NUMBERS SOMETIMES MEANS ONE NUMBER AND THE

OTHER NUMBER)
{TWO NUMBERS SOMETIMES MEANS ONE OF THE

NUMBERS AND THE OTHER NUMBER)
(HAS IS A VERB)
{GETS IS A VERB)
(HAVE IS A VERB)
(LESS THAN ALWAYS MEANS LESSTHAN)
(LESSTHAN IS AN OPERATOR OF LEVEL 2)
(PERCENT 1S AN OPERATOR OF LEVEL 2)
(PERCENT LESS THAN ALWAYS MEANS PERLESS)
(PERLESS IS AN OPERATOR OF LEVEL 2)
{PLUS IS AN OPERATOR OF LEVEL 2)
{SUM |S AN OPERATOR)
(TIMES 1S AN OPERATOR OF LEVEL 1)
(SQUARE IS AN OPERATOR OF LEVEL 1)
(DIVBY IS AN OPERATOR OF LEVEL 1)
(OF IS AN OPERATOR)
(DIFFERENCE IS AN OPERATOR)
(SQUARED 1S AN OPERATOR)
(MINUS 1S AN OPERATOR OF LEVEL 2)
(PER |S AN OPERATOR)
{SQUARED IS AN OPERATOR)
(YEARS OLDER THAN ALWAYS MEANS PLUS)
(YEARS YOUNGER THAN ALWAYS MEANS LESS THAN)
(1S EQUAL TO ALWAYS MEANS 1S)
(PLUSS 1S AN OPERATOR)
(MINUSS IS AN OPERATOR)
(HOW OLD ALWAYS MEANS WHAT)
(THE PERIMETER OF $1 RECTANGLE SOMETIMES MEANS
TWICE THE SUM OF THE LENGTH AND WIDTH OF THE RECTANGLE)
{GALLONS |S THE PLURAL OF GALLON)
(HOURS IS THE PLURAL OF HOUR)
(MARY IS A PERSON)
(ANN IS A PERSON)
(BILL IS A PERSON)
(A FATHER IS A PERSON)
(AN UNCLE IS A PERSON)
{POUNDS IS THE PLURAL OF POUND)
(WEIGHS |S A VERB)
))
REMEMBER ((
(DISTANCE EQUALS SPEED TIMES TIME)
(DISTANCE EQUALS GAS CONSUMPTION TIMES
NUMBER OF GALLONS OF GAS USED)
(1 FOOT EQUALS 12 INCHES)

(1 YARD EQUALS 3 FEET)

109

ch

=

>

(THE PROBLEM TO BE SOLVED 1S)
(IF THE NUMBER OF CUSTOMERS TOM GETS |S TWICE THE SQUARE OF
70 PER CENT OF THE NUMBER OF ADVERTISEMENTS HE RUNS , AND THE
JUMBER OF ADVERTISEMENTS HE RUNS |S 45 , WHAT IS THE NUMBER
YF CUSTOMERS TOM GETS Q.)

(WITH MANDATORY SUBSTITUTIONS THE PROBLEM 1S)
(IF THE NUMBER OF CUSTOMERS TOM GETS IS 2 TIMES THE SQUARE
20 PERCENT OF THE NUMBER OF ADVERTISEMENTS HE RUNS , AND THE
NUMBER OF ADVERTISEMENTS HE RUNS IS 45 , WHAT IS THE NUMBER
OF CUSTOMERS TOM GETS Q.)

(WITH WORDS TAGGED BY FUNCTION THE PROBLEM 18)
(IF THE NUMBER (OF / OP) CUSTOMERS TOM (GETS / VERB) IS 2 (
TIMES / OP 1) THE (SQUARE / OP 1) 20 (PERCENT / OP 2) (OF /
)P) THE NUMBER (OF / OP) ADVERTISEMENTS (HE / PRO) RUNS , AND
THE NUMBER (OF / OP) ADVERTISEMENTS (HE / PRO) RUNS IS 45 ,
"WHAT / QWORD) |S THE NUMBER (OF / OP) CUSTOMERS TOM (GETS
/ VERB) (QMARK / DLM))

“THE SIMPLE SENTENCES ARE)

"THE NUMBER (OF / OP) CUSTOMERS TOM (GETS / VERB) IS 2 (TIMES
/ OP 1) THE (SQUARE / OP 1) 20 (PERCENT / OP 2) (OF / OP) THE
NUMBER (OF / OP) ADVERTISEMENTS (HE / PRO) RUNS (PERIOD / DLM):

(THE NUMBER (OF / OP) ADVERTISEMENTS (HE / PRO) RUNS IS 45
{PERIOD / DLM)) :

((WHAT / QWORD) |S THE NUMBER (OF / OP) CUSTOMERS TOM (GETS
/ VERB) (QMARK / DLM))

THE EQUATIONS TO BE SOLVED ARE)

"EQUAL G02515 (NUMBER OF CUSTOMERS TOM (GETS / VERB)))

(EQUAL (NUMBER OF ADVERTISEMENTS (HE / PRO) RUNS) 45)

(EQUAL (NUMBER OF CUSTOMERS TOM (GETS / VERB)) (TIMES 2 (EXPT
(TIMES 2000 (NUMBER OF ADVERTISEMENTS (HE / PRO) RUNS)) 2)))

(THE PROBLEM TO BE SOLVED 1S)
(THE SUM OF LOIS SHARE OF SOME MONEY AND BOB S SHARE iS $ 4,500
» LOIS SHARE IS TWICE BOB S . FIND BOB S AND LOIS SHARE ,)

(WITH MANDATORY SUBSTITUTIONS THE PROBLEM 1S)
(SUM LOIS SHARE OF SOME MONEY AND BOB S SHARE IS 4,500 DOLLARS
» LOIS SHARE |S 2 TIMES BOB S . FIND BOB S AND LOIS SHARE .)

(WITH WORDS TAGGED BY FUNCTION THE PROBLEM IS)
((SuM / OP) LOIS SHARE (OF / OP) SOME MONEY AND BOB $ SHARE
1S 4,500 DOLLARS (PERIOD / DLM) LOIS SHARE IS 2 (TIMES / OP
1) BOB S (PERIOD / DLM) (FIND / QWORD) BOB S AND LOIS SHARE
(PERIOD / DLM))

(THE SIMPLE SENTENCES ARE)

((SUM / OP) LOIS SHARE (OF / OP) SOME MONEY AND BOB S SHARE
1S 4,500 DOLLARS (PERIOD / DLM))

(LOIS SHARE IS 2 (TIMES / OP 1) BOB S (PERIOD / DLM))

((FIND / QWORD) BOB S AND LOIS SHARE (PERIOD / DLM))

{THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02519 (LOIS SHARE))

(EQUAL G02518 (BOB S))

{EQUAL (LOIS SHARE) (TIMES 2 (BOB S)))

(EQUAL (PLUS (LOIS SHARE OF SOME MONEY) (BOB S SHARE)) (TIMES
4,500 (DOLLARS)))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(ASSUMING THAT)
((BOB S) IS EQUAL TO (BOB S SHARE))

(ASSUMING THAT)
(CLOIS SHARE) IS EQUAL TO (LOIS SHARE OF SOME MONEY))

=
d

;
-
~

J

=
J
7
=
CW
=
tn

23
on?
NE

3
o

=
ho

nN
«3
ot

B
A

=
THE NUMBER OF CUSTOMERS TOM GETS IS 162)

(BOB S IS 1,500 DOLLARS)

{LOIS SHARE |S 3 DOLLARS]

ad

mah

eh

(THE PROBLEM TO BE SOLVED 1S)
(MARY 1S TWICE AS OLD AS ANN WAS WHEN MARY WAS AS OLD AS ANN
iS NOW . IF MARY IS 24 YEARS OLD , HOW OLD IS ANN Q.)

{WITH MANDATORY SUBSTITUTIONS THE PROBLEM IS)
(MARY IS 2 TIMES AS OLD AS ANN WAS WHEN MARY WAS AS OLD AS
ANN IS NOW . IF MARY IS 24 YEARS OLD , WHAT IS ANN Q.)

{WITH WORDS TAGGED BY FUNCTION THE PROBLEM IS)
{(MARY / PERSON) |S 2 (TIMES / OP 1) AS OLD AS (ANN / PERSON)
NAS WHEN (MARY / PERSON) WAS AS OLD AS (ANN / PERSON) 15 NOW
(PERIOD / DLM) IF (MARY / PERSON) |S 24 YEARS OLD , (WHAT /
QWORD) 1S (ANN / PERSON) (QMARK / DLM))

(THE SIMPLE SENTENCES ARE)

{(MARY / PERSON) S AGE 1S 2 (TIMES / OP 1) (ANN / PERSON) §
AGE G02521 YEARS AGO (PERIOD / DLM))

(602521 YEARS AGO (MARY / PERSON) S AGE IS (ANN / PERSON) §
AGE NOW (PERIOD / DLM))

((MARY / PERSON) S AGE IS 24 (PERIOD / DLM))

((WHAT / QWORD) IS (ANN / PERSON) S AGE (QMARK / DLM))

{THE EQUATIONS TO BE SOLVED ARE)

{EQUAL G02522 ((ANN / PERSON) S AGE))

{EQUAL ((MARY / PERSON) S AGE) 24)

(EQUAL (PLUS ((MARY / PERSON) S AGE) (MINUS (G02521))) (CANN
{ PERSON) S AGE))

(EQUAL ((MARY / PERSON) S AGE) (TIMES 2 (PLUS ((ANN / PERSON)
§ AGE) (MINUS (G02521)))))

ANN § AGE IS 18.

(THE PROBLEM TO BE SOLVED IS)
(THE SUM OF THE PERIMETER OF A RECTANGLE AND THE PERIMETER
OF A TRIANGLE IS 24 INCHES . IF THE PERIMETER OF THE RECTANGLE
IS TWICE THE PERIMETER OF THE TRIANGLE , WHAT 1S THE PERIMETER
JF THE TRIANGLE Q.)

{WITH MANDATORY SUBSTITUTIONS THE PROBLEM 18)
{SUM THE PERIMETER OF A RECTANGLE AND THE PERIMETER OF A TRIANGLE
I$ 24 INCHES . !F THE PERIMETER OF THE RECTANGLE 1S 2 TIMES
THE PERIMETER OF THE TRIANGLE , WHAT 1S THE PERIMETER OF THE
TRIANGLE Q.)

(WITH WORDS TAGGED BY FUNCTION THE PROBLEM IS)
((SUM / OP) THE PERIMETER (OF / OP) A RECTANGLE AND THE PERIMETER
(OF / OP) A TRIANGLE 1S 24 INCHES (PERIOD / DLM) IF THE PERIMETER
(OF / OP) THE RECTANGLE IS 2 (TIMES / OP 1) THE PERIMETER (
OF / OP) THE TRIANGLE , (WHAT / QWORD) |S THE PERIMETER (OF
/{ OP) THE TRIANGLE (QMARK / DLM))

(THE SIMPLE SENTENCES ARE)

((SuM / OP) THE PERIMETER (OF / OP) A RECTANGLE AND THE PERIMETER
(OF / OP) A TRIANGLE IS 24 INCHES (PERIOD / DLM))

(THE PERIMETER (OF / OP) THE RECTANGLE 1S 2 (TIMES / OP 1)
THE PERIMETER (OF / OP) THE TRIANGLE (PERIOD / DLM))

((WHAT / QWORD) IS THE PERIMETER (OF / OP) THE TRIANGLE (QMARK
{ DLM))

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02517 (PERIMETER OF TRIANGLE))

(EQUAL (PERIMETER OF RECTANGLE) (TIMES 2 (PERIMETER OF TRIANGLE)))

{EQUAL (PLUS (PERIMETER OF RECTANGLE) (PERIMETER OF TRIANGLE))
(TIMES 24 (INCHES)))

(THE PERIMETER OF THE TRIANGLE 1S 8 INCHES)

od

 JD

(THE PROBLEM TO BE SOLVED 1S)
(BILL IS ONE HALF OF HIS FATHER S AGE 4 YEARS AGO . IN 20 YEARS
HE WILL BE 2 YEARS OLDER THAN HIS FATHER IS NOW ., HOW OLD ARE
BILL AND HIS FATHER Q.)

\THE EQUATIONS TO BE SOLVED ARE)

{EQUAL G02550 ((BILL / PERSON) S (FATHER / PERSON) S AGE))

{EQUAL GO02549 ((BILL / PERSON) S AGE))

(EQUAL (PLUS ((BILL / PERSON) S AGE) 20) (PLUS 2 ((BILL / PERSON)
§ (FATHER / PERSON) S AGE)))

(EQUAL ((BILL / PERSON) S AGE) (TIMES .5000 (PLUS ((BILL /
PERSON) S (FATHER / PERSON) S AGE) (MINUS 4))))

(BILL S AGE IS 14)

(BILL S FATHER S AGE IS 32)

(THE PROBLEM TO BE SOLVED IS)
(BILL S FATHER S UNCLE IS TWICE AS OLD AS BILL S FATHER . 2
fEARS FROM NOW BILL S FATHER WILL BE 3 TIMES AS OLD AS BILL
. THE SUM OF THEIR AGES 1S 92 , FIND BILL S AGE .)

"THE EQUATIONS TO BE SOLVED ARE)

(EQUAL 602533 ((BILL / PERSON) S AGE))

(EQUAL (PLUS ((BILL / PERSON) S (FATHER / PERSON) S (UNCLE
/ PERSON) S AGE) (PLUS ((BILL / PERSON) S (FATHER / PERSON)
5 AGE) ((BILL / PERSON) S AGE))) 92)

(EQUAL (PLUS ((BILL / PERSON) S (FATHER / PERSON) S AGE) 2)
{TIMES 3 (PLUS ((BILL / PERSON) S AGE) 2)))

(EQUAL ((BILL / PERSON) S (FATHER / PERSON) S (UNCLE / PERSON)
3 AGE) (TIMES 2 ((BILL / PERSON) S (FATHER / PERSON) S AGE)))

(THE PROBLEM TO BE SOLVED 1S)
(A NUMBER IS MULTIPLIED BY 6 . THIS PRODUCT IS INCREASED BY
4 , THIS RESULT IS 68 , FIND THE NUMBER .)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02528 (NUMBER))

(EQUAL (PLUS (TIMES (NUMBER) 6) 4k) 68)

{THE NUMBER IS &)

(THE PROBLEM TO BE SOLVED IS)
(THE PRICE OF A RADIO IS 69,70 DOLLARS . IF THIS PRICE IS
15 PERCENT LESS THAN THE MARKED PRICE , FIND THE MARKED PRICE
LV)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL GO02515 (MARKED PRICE))

(EQUAL (PRICE OF RADIO) (TIMES .8499 (MARKED PRICE)))

(EQUAL (PRICE OF RADIO) (TIMES 69,70 (DOLLARS)))

(THE MARKED PRICE IS 82 DOLLARS)

(THE PROBLEM TO BE SOLVED IS)
(TOM HAS TWICE AS MANY FISH AS MARY HAS GUPPIES , IF MARY HAS
5 GUPPIES , WHAT IS THE NUMBER OF FISH TOM HAS Q.)

(THE EQUATIONS TO BE SOLVED ARE)

{EQUAL G02520 (NUMBER OF FISH TOM (HAS / VERB)))

(EQUAL (NUMBER OF GUPPIES (MARY / PERSON) (HAS / VERB)) 3)

(EQUAL (NUMBER OF FISH TOM (HAS / VERB)) (TIMES 2 (NUMBER OF
GUPPIES (MARY / PERSON) (HAS / VERB))))

BILL S AGE IS 8)
(THE NUMBER OF FISH TOM HAS IS 6)

wench

aed

A

(THE PROBLEM TO BE SOLVED 1S)
(IF 1 SPAN EQUALS 9 INCHES , AND 1 FATHOM EQUALS & FEET , HOW
MANY SPANS EQUALS 1 FATHOM Q.)

{THE EQUATIONS TO BE SOLVED ARE)

{EQUAL G02529 (TIMES 1 (FATHOMS)))

[EQUAL (TIMES 1 (FATHOMS)) (TIMES 6 (FEET)))

{EQUAL (TIMES 1 (SPANS)) (TIMES 9 (INCHES)))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(USING THE FOLLOWING KNOWN RELATIONSHIPS)
(CEQUAL (TIMES 1 (YARDS)) (TIMES 3 (FEET))) (EQUAL (TIMES 1
{FEET)) (TIMES 12 (INCHES))))

(1 FATHOM IS 8 SPANS)

(THE PROBLEM TO BE SOLVED 195)
(THE NUMBER OF SOLDIERS THE RUSSIANS HAVE IS ONE HALF OF THE
NUMBER OF GUNS THEY HAVE . THE NUMBER OF GUNS THEY HAVE 1S
7000 . WHAT IS THE NUMBER OF SOLDIERS THEY HAVE Q.)

[THE EQUATIONS TO BE SOLVED ARE)

[EQUAL G02519 (NUMBER OF SOLDIERS (THEY / PRO) (HAVE / VERB)))

{EQUAL (NUMBER OF GUNS (THEY / PRO) (HAVE / VERB)) 7000)

{EQUAL (NUMBER OF SOLDIERS RUSSIANS (HAVE / VERB)) (TIMES .5000
(NUMBER OF GUNS (THEY / PRO) (HAVE / VERB))))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(ASSUMING THAT)
((NUMBER OF SOLDIERS (THEY / PRO) (HAVE / VERB)) IS EQUAL TO
(NUMBER OF SOLDIERS RUSSIANS (HAVE / VERB)))

(THE PROBLEM TO BE SOLVED 18S)
(THE RUSSIAN ARMY HAS 6 TIMES AS MANY RESERVES IN A UNIT AS
iT HAS UNIFORMED SOLDIERS . THE PAY FOR RESERVES EACH MONTH
IS 50 DOLLARS TIMES THE NUMBER OF RESERVES IN THE UNIT , AND
THE AMOUNT SPENT ON THE REGULAR ARMY EACH MONTH IS $ 150 TIMES
THE NUMBER OF UNIFORMED SOLDIERS . THE SUM OF THIS LATTER AMOUNT
AND THE PAY FOR RESERVES EACH MONTH EQUALS $ 45000 , FIND THE
NUMBER OF RESERVES IN A UNIT THE RUSSIAN ARMY HAS AND THE NUMBER
DF UNIFORMED SOLDIERS IT HAS .)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL 602532 (NUMBER OF UNIFORMED SOLDIERS (IT / PRO) (HAS
/ VERB)))

{EQUAL G02531 (NUMBER OF RESERVES IN UNIT RUSSIAN ARMY (HAS
/ VERB)))

(EQUAL (PLUS (AMOUNT SPENT ON REGULAR ARMY EACH MONTH) (PAY
FOR RESERVES EACH MONTH)) (TIMES 45000 (DOLLARS)))

(EQUAL (AMOUNT SPENT ON REGULAR ARMY EACH MONTH) (TIMES (TIMES
150 (DOLLARS)) (NUMBER.OFUNIFORMEDSOLDIERS)))

(EQUAL (PAY FOR RESERVES EACH MONTH) (TIMES (TIMES 50 (DOLLARS))
{NUMBER OF RESERVES IN UNIT)))

(EQUAL (NUMBER OF RESERVES IN UNIT RUSSIAN ARMY (HAS / VERB))
(TIMES 6 (NUMBER OF UNIFORMED SOLDIERS (IT / PRO) (HAS / VERB))))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(ASSUMING THAT)
{(NUMBER OF UNIFORMED SOLDIERS) |S EQUAL TO (NUMBER OF UNIFORMED
SOLDIERS (IT / PRO) (HAS / VERB)))

{ASSUMING THAT)
((NUMBER OF RESERVES IN UNIT) 1S EQUAL TO (NUMBER OF RESERVES
IN UNIT RUSSIAN ARMY (HAS / VERB)))

(THE NUMBER OF RESERVES IN A UNIT THE RUSSIAN ARMY HAS IS 600)

{THE NUMBER OF UNIFORMED SOLDIERS IT HAS IS 100)

(THE NUMBER OF SOLDIERS THEY HAVE IS 3500)

mach

—~

~

(THE PROBLEM TO BE SOLVED 1S)
(THE NUMBER OF STUDENTS WHO PASSED THE ADMISSIONS TEST IS 10
PERCENT OF THE TOTAL NUMBER OF STUDENTS IN THE HIGH SCHOOL
, IF THE NUMBER OF SUCCESSFUL CANDIDATES 1S 72 , WHAT IS THE
NUMBER OF STUDENTS IN THE HIGH SCHOOL Q.)

{THE EQUATIONS TO BE SOLVED ARE)

EQUAL G02553 (NUMBER OF STUDENTS IN HIGH SCHOOL))

{EQUAL (NUMBER OF SUCCESSFUL CANDIDATES) 72) |

"EQUAL (NUMBER OF STUDENTS WHO PASSED ADMISSIONS TEST) (TIMES
01000 (TOTAL NUMBER OF STUDENTS IN HIGH SCHOOL)))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(ASSUMING THAT)
((NUMBER OF STUDENTS IN HIGH SCHOOL) |S EQUAL TO (TOTAL NUMBER
)F STUDENTS IN HIGH SCHOOL))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

TRYING POSSIBLE IDIOMS

(THE PROBLEM WITH AN IDIOMATIC SUBSTUTION IS)
'THE NUMBER OF STUDENTS WHO PASSED THE ADMISSIONS TEST IS 10
>ERCENT OF THE TOTAL NUMBER OF STUDENTS IN THE HIGH SCHOOL
, IF THE NUMBER OF STUDENTS WHO PASSED THE ADMISSIONS TEST
I$ 72 , WHAT |S THE NUMBER OF STUDENTS IN THE HIGH SCHOOL Q.)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02554 (NUMBER OF STUDENTS IN HIGH SCHOOL))

{EQUAL (NUMBER OF STUDENTS WHO PASSED ADMISSIONS TEST) 72)

{EQUAL (NUMBER OF STUDENTS WHO PASSED ADMISSIONS TEST) (TIMES
,1000 (TOTAL NUMBER OF STUDENTS IN HIGH SCHOOL)))

'HE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(ASSUMING THAT)
((NUMBER OF STUDENTS IN HIGH SCHOOL) 1S EQUAL TO (TOTAL NUMBER
OF STUDENTS IN HIGH SCHOOL))

(THE NUMBER OF STUDENTS IN THE HIGH SCHOOL 1S 720)

{THE PROBLEM TO BE SOLVED 1S)
{THE DISTANCE FROM NEW YORK TO LOS ANGELES 1S 3000 MILES .
JF THE AVERAGE SPEED OF A JET PLANE 1S 600 MILES PER HOUR ,
FIND THE TIME IT TAKES TO TRAVEL FROM NEW YORK TO LOS ANGELES
BY JET .)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL GO02517 (TIME (IT / PRO) TAKES TO TRAVEL FROM NEW YORK
TO LOS ANGELES BY JET))

(EQUAL (AVERAGE SPEED OF JET PLANE) (QUOTIENT (TIMES: 600 (MILES))
(TIMES 1 (HOURS))))

(EQUAL (DISTANCE FROM NEW YORK TO LOS ANGELES) (TIMES 3000
(MILES)))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(USING THE FOLLOWING KNOWN RELATIONSHIPS)
(CEQUAL (DISTANCE) (TIMES (SPEED) (TIME))) (EQUAL (DISTANCE)
(TIMES (GAS CONSUMPTION) (NUMBER OF GALLONS OF GAS USED))))

(ASSUMING THAT)
((SPEED) IS EQUAL TO (AVERAGE SPEED OF JET PLANE))

(ASSUMING THAT)
((TIME) IS EQUAL TO (TIME (IT / PRO) TAKES TO TRAVEL FROM NEW
YORK TO LOS ANGELES BY JET))

(ASSUMING THAT)
((DISTANCE) IS EQUAL TO (DISTANCE FROM NEW YORK TO LOS ANGELES))

(THE TIME IT TAKES TO TRAVEL FROM NEW YORK TO LOS ANGELES BY
JET IS 5 HOURS)

od

—

 Nn

{THE PROBLEM TO BE SOLVED 1S)
(THE COST OF A BOX OF MIXED NUTS 1S THE SUM OF THE COST OF
THE ALMONDS IN THE BOX AND THE COST OF THE PECANS IN THE BOX
» FOR A LARGE BOX THIS COST 1S $¢ 3,500 . THE WEIGHT , IN POUNDS

.» OF A BOX OF MIXED NUTS |S THE SUM OF THE NUMBER OF POUNDS
JF ALMONDS IN THE BOX AND THE NUMBER OF POUNDS OF PECANS IN
THE BOX , THIS LARGE BOX WEIGHS 3 POUNDS . THE COST OF ALMONDS
PER POUND OF ALMONDS IS $ 1 , AND THE COST OF PECANS PER POUND
OF PECANS IS $ 1.500 . FIND THE COST OF THE ALMONDS IN THE
80X AND THE COST OF THE PECANS IN THE BOX .)

{THE EQUATIONS TO BE SOLVED ARE)

+EQUAL G02538 (COST OF PECANS IN BOX))

{EQUAL G02537 (COST OF ALMONDS IN BOX))

(EQUAL (QUOTIENT (COST OF PECANS) (TIMES 1 (POUNDS OF PECANS)))
(TIMES 1.500 (DOLLARS)))

(EQUAL (QUOTIENT (COST OF ALMONDS) (TIMES 1 (POUNDS OF ALMONDS)))
(TIMES 1 (DOLLARS)))

{EQUAL (WEIGHT , IN POUNDS , OF BOX OF MIXED NUTS) 3)

(EQUAL (WEIGHT , IN POUNDS , OF BOX OF MIXED NUTS) (PLUS (NUMBER
OF POUNDS OF ALMONDS IN BOX) (NUMBER OF POUNDS OF PECANS IN
BOX)))

[EQUAL (COST OF BOX OF MIXED NUTS) (TIMES 3.500 (DOLLARS)))

(EQUAL (COST OF BOX OF MIXED NUTS) (PLUS (COST OF ALMONDS iN
BOX) (COST OF PECANS IN BOX)))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

(ASSUMING THAT)
((POUNDS OF PECANS) IS EQUAL TO (NUMBER OF POUNDS OF PECANS
IN BOX))

(ASSUMING THAT)
((COST OF PECANS) |S EQUAL TO (COST OF PECANS IN BOX))

(ASSUMING THAT)
((POUNDS OF ALMONDS) IS EQUAL TO (NUMBER OF POUNDS OF ALMONDS
iN BOX))

(ASSUMING THAT)
((COST OF ALMONDS) IS EQUAL TO (COST OF ALMONDS IN BOX))

(THE COST OF THE ALMONDS IN THE BOX IS 2 DOLLARS)

(THE COST OF THE PECANS IN THE BOX IS 1,500 DOLLARS)

(THE PROBLEM TO BE SOLVED IS)
{THE GAS CONSUMPTION OF MY CAR IS 15 MILES PER GALLON . THE
JISTANCE BETWEEN BOSTON AND NEW YORK IS 250 MILES . WHAT 13
THE NUMBER OF GALLONS OF GAS USED ON A TRIP BETWEEN NEW YORK
AND BOSTON Q.)

{THE EQUATIONS TO BE SOLVED ARE)

{EQUAL G02556 (NUMBER OF GALLONS OF GAS USED ON TRIP BETWEEN
NEW YORK AND BOSTON))

[EQUAL (DISTANCE BETWEEN BOSTON AND NEW YORK) (TIMES 250 (MILES)))

(EQUAL (GAS CONSUMPTION OF MY CAR) (QUOTIENT (TiMES 15 (MILES))
[TIMES 1 (GALLONS))))

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

{USING THE FOLLOWING KNOWN RELATIONSHIPS)
((EQUAL (DISTANCE) (TIMES (SPEED) (TIME))) (EQUAL (DISTANCE)
(TIMES (GAS CONSUMPTION) (NUMBER OF GALLONS OF GAS USED))))

(ASSUMING THAT)
({DISTANCE) |S EQUAL TO (DISTANCE BETWEEN BOSTON AND NEW YORK))

{ASSUMING THAT)
((GAS CONSUMPTION) IS EQUAL TO (GAS CONSUMPTION OF MY CAR))

(ASSUMING THAT)
{(NUMBER OF GALLONS OF GAS USED) IS EQUAL TO (NUMBER OF GALLONS
JF GAS USED ON TRIP BETWEEN NEW YORK AND BOSTON))

{THE NUMBER OF GALLONS OF GAS USED ON A TRIP BETWEEN NEW YORK
AND BOSTON IS 16.66 GALLONS)

ed

—

™N

(THE PROBLEM TO BE SOLVED IS)
(THE DAILY COST OF LIVING FOR A GROUP IS THE OVERHEAD COST
PLUS THE RUNNING COST FOR EACH PERSON TIMES THE NUMBER OF PEOPLE
'N THE GROUP , THIS COST FOR ONE GROUP EQUALS $ 100 , AND THE
JUMBER OF PEOPLE IN THE GROUP IS 40 , IF THE OVERHEAD COST
1S 10 TIMES THE RUNNING COST , FIND THE OVERHEAD AND THE RUNNING
“0ST FOR EACH PERSON .)

"THE EQUATIONS TO BE SOLVED ARE)

"EQUAL G02521 (RUNNING COST FOR EACH PERSON))

(EQUAL G02520 (OVERHEAD))

(EQUAL (OVERHEAD COST) (TIMES 10 (RUNNING COST)))

JEQUAL (NUMBER OF PEOPLE IN GROUP) 40)

{EQUAL (DAILY COST OF LIVING FOR GROUP) (TIMES 100 (DOLLARS)))

(EQUAL (DAILY COST OF LIVING FOR GROUP) (PLUS (OVERHEAD COST)

LE LUED SRuNRLNS COST FOR EACH PERSON) (NUMBER OF PEOPLE IN

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

{ASSUMING THAT)
((OVERHEAD) |S EQUAL TO (OVERHEAD COST))

{ASSUMING THAT)
{(RUNNING COST) 1S EQUAL TO (RUNNING COST FOR EACH PERSON))

(THE OVERHEAD IS 20 DOLLARS)

(THE RUNNING COST FOR EACH PERSON IS 2 DOLLARS)

(THE PROBLEM TO OE SOLVED 1S)
{THE SUM OF TWO NUMBERS 1S 96 , AND ONE NUMBER 1S 16 LARGER
THAN THE OTHER NUMBER , FIND THE TWO NUMBERS .)

TRYING POSSIBLE IDIOMS

(THE PROBLEM WITH AN IDIOMATIC SUBSTUTION 18)
(THE SUM OF ONE OF THE NUMBERS AND THE OTHER NUMBER IS 96 ,
AND ONE NUMBER IS 16 LARGER THAN THE OTHER NUMBER . FIND THE
ONE OF THE NUMBERS AND THE OTHER NUMBER .)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02518 (OTHER NUMBER))

(EQUAL G02517 (ONE OF NUMBERS))

(EQUAL (ONE NUMBER) (PLUS 16 (OTHER NUMBER)))

{EQUAL (PLUS (ONE OF NUMBERS) (OTHER NUMBER)) 96)

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

TRYING POSSIBLE IDIOMS

(THE PROBLEM WITH AN IDIOMATIC SUBSTUTION IS)
(THE SUM OF ONE NUMBER AND THE OTHER NUMBER IS 96 , AND ONE
NUMBER IS 16 LARGER THAN THE OTHER NUMBER . FIND THE ONE NUMBER
AND THE OTHER NUMBER ,)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02520 (OTHER NUMBER))

(EQUAL G02519 (ONE NUMBER))

(EQUAL (ONE NUMBER) (PLUS 16 (OTHER NUMBER)))

(EQUAL (PLUS (ONE NUMBER) (OTHER NUMBER)) 96)

{THE ONE NUMBER IS 56)

{THE OTHER NUMBER IS 40)

om

—

ot

(THE PROBLEM TO BE SOLVED 1S)
(THE SUM OF TWO NUMBERS IS TWICE THE DIFFERENCE BETWEEN THE
TWO NUMBERS . THE FIRST NUMBER EXCEEDS THE SECOND NUMBER BY
5 . FIND THE TWO NUMBERS .)

TRYING POSSIBLE IDIOMS

(THE PROBLEM WITH AN IDIOMATIC SUBSTUTION 18)
(THE SUM OF FIRST NUMBER AND THE SECOND NUMBER 1S TWICE THE
DIFFERENCE BETWEEN THE FIRST NUMBER AND THE SECOND NUMBER
THE FIRST NUMBER EXCEEDS THE SECOND NUMBER BY S . FIND THE
IRST NUMBER AND THE SECOND NUMBER .)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02548 (SECOND NUMBER))

(EQUAL GO02547 (FIRST NUMBER))

(EQUAL (FIRST NUMBER) (PLUS 5 (SECOND NUMBER)))

(EQUAL (PLUS (FIRST NUMBER) (SECOND NUMBER)) (TIMES 2 (PLUS
(FIRST NUMBER) (MINUS (SECOND NUMBER)))))

(THE FIRST NUMBER IS 7,500)

(THE SECOND NUMBER IS 2.500,

(THE PROBLEM TO BE SOLVED 18)
(THE SUM OF TWO NUMBERS 1S 111 , ONE OF THE NUMBERS IS CONSECUTIVE
TO THE OTHER NUMBER . FIND THE TWO NUMBERS ,)

TRYING POSSIBLE IDIOMS

(THE PROBLEM WITH AN IDIOMATIC SUBSTUTION IS)
{THE SUM OF ONE OF THE NUMBERS AND THE OTHER NUMBER IS 111
. ONE OF THE NUMBERS 1S CONSECUTIVE TO THE OTHER NUMBER . FIND
THE ONE OF THE NUMBERS ANN THE OTHER NUMBER .)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02516 (OTHER NUMBER))

(EQUAL G02515 (ONE OF NUMBERS))

(EQUAL (ONE OF NUMBERS) (PLUS 1 (OTHER NUMBER)))

(EQUAL (PLUS (ONE OF NUMBERS) (OTHER NUMBER)) 111)

(THE ONE OF THE NUMBERS IS 56)

{THE OTHER NUMBER IS 55)

(THE PROBLEM TO BE SOLVED 1S)
{THE SUM OF THREE NUMBERS |S 9 , THE SECOND NUMBER IS 3 MORE
THAN 2 TIMES THE FIRST NUMBER . THE THIRD NUMBER EQUALS THE
SUM OF THE FIRST TWO NUMBERS . FIND THE THREE NUMBERS .)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02527 (THIRD NUMBER))

(EQUAL G02526 (SECOND NUMBER))

(EQUAL 602525 (FIRST NUMBER))

{EQUAL (THIRD NUMBER) (PLUS (FIRST NUMBER) (SECOND NUMBER)))

{EQUAL (SECOND NUMBER) (PLUS 3 (TIMES 2 (FIRST NUMBER))))

SrauaL (PLUS (FIRST NUMBER) (PLUS (SECOND NUMBER) (THIRD NUMBER)))

(THE FIRST NUMBER IS ,5000)

{THE SECOND NUMBER IS &)

{THE THIRD NUMBER IS 4.500)

pd

—

=

(THE PROBLEM TO BE SOLVED 1S)
(THE SUM OF THREE NUMBERS IS 100 , THE THIRD NUMBER EQUALS
THE SUM OF THE FIRST TWO NUMBERS . THE DIFFERENCE BETWEEN THE
FIRST TWO NUMBERS |S 10 PER CENT OF THE THIRD NUMBER . FIND
THE THREE NUMBERS .)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02536 (THIRD NUMBER))

{EQUAL G02535 (SECOND NUMBER))

{EQUAL G02534 (FIRST NUMBER))

{EQUAL (PLUS (FIRST NUMBER) (MINUS (SECOND NUMBER))) (TIMES
»1000 (THIRD NUMBER)))

"EQUAL (THIRD NUMBER) (PLUS (FIRST NUMBER) (SECOND NUMBER)))

{S30AL- PLUS (FIRST NUMBER) (PLUS (SECOND NUMBER) (THIRD NUMBER)))

(THE FIRST NUMBER IS 27.50)

{THE SECOND NUMBER IS 22,50

(THE THIRD NUMBER IS- 50)

(THE PROBLEM TO BE SOLVED IS)
{IF C EQUALS B TIMES D PLUS 1 , AND B PLUS D EQUALS 3 , AND
B MINUS D EQUALS 1 , FIND C .)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02539 (C))

.EQUAL (PLUS (B) (MINUS (D))) 1)

(EQUAL (PLUS (B) (D)) 3)

(EQUAL (C) (PLUS (TIMES (B) (D)) 1))

CIS

(THE PROBLEM TO BE SOLVED 18}
(3 « X +4 %»Yell,

S # XX = 2% Y=],

FINDXANDY.)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL GO2541 (Y))

(EQUAL G02540 (X))

(EQUAL (PLUS (TIMES 5 (X)) (MINUS (TIMES 2 (¥Y)))) 1)

(EQUAL (PLUS (TIMES 3 (X)) (TIMES & (Y))) 11)

(Xx Is 1)

(v Is 2)

(THE PROBLEM TO BE SOLVED 1S)
(X 7 2=(Y+3)2=0,
(X =1) / 3 +2» (Y +1) =5,
FINDXANDY.)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL GO2543 (Y))

(EQUAL GO2542 (X))

(EQUAL (PLUS (QUOTIENT (PLUS (X) (MINUS 1)) 3) (TIMES 2 (PLUS
(vy) 132) 5)

SE0UaL PLUS (QUOTIENT (X) 2) (MINUS (QUOTIENT (PLUS (Y) 3)

(x Is 4)

(vy 1S 1)

—

—

O

(THE PROBLEM TO BE SOLVED 1S)
(THE SQUARE OF THE OIFFEREMCE BETWEEN THE NUMBER OF APPLES
AND THE NUMBER OF ORANGES ON THE TABLE !S EQUAL TO 9 , IF THE
NUMBER OF APPLES 1S 7 , FIND THE NUMBER OF ORANGES ON THE TABLE
J)

(THE EQUATIONS TO BE SOLVED ARE)

{EQUAL G02515 (NUMBER OF ORANGES ON TABLE))

+EQUAL (NUMBER OF APPLES) 7)

(EQUAL (EXPT (PLUS (NUMBER OF APPLES) (MINUS (NUMBER OF ORANGES
ON TABLE))) 2) 9)

UNABLE TO SOLVE THIS SET OF EQUATIONS

TRYING POSSIBLE IDIOMS

{DO YOU KNOW ANY MORE RELATIONSHIPS AMONG THESE VARIABLES)

(NUMBER OF APPLES)

{NUMBER OF ORANGES ON TABLE)

NO

J CANT SOLVE THIS PROBLEM

(THE PROBLEM TO BE SOLVED 15S)
(THE GROSS WEIGHT OF A SHIP IS 20000 TONS . IF ITS NET WEIGHT
1S 15000 TONS , WHAT |S THE WEIGHT OF THE SHIPS CARGO Q.)

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

TRYING POSSIBLE IDIOMS

{DO YOU KNOW ANY MORE RELATIONSHIPS AMONG THESE VARIABLES)

{GROSS WEIGHT OF SHIP)

(TONS)

(ITS NET WEIGHT)

(WEIGHT OF SHIPS CARGO)

yes
TELL ME

(the welght of a ships cargo is the difference between
the gross weight and the net weight)

THE EQUATIONS WERE INSUFFICIENT TO FIND A SOLUTION

{ASSUMING THAT)
{CNET WEIGHT) 1S EQUAL TO (!TS NET WEIGHT))

{ASSUMING THAT) .

{(GROSS WEIGHT) IS EQUAL TO (GROSS WEIGHT OF SHIP))

{THE WEIGHT OF THE SHIPS CARGO 1S 5000 TONS)

APPENDIX E: A SMALL SEMANTIC GENERATIVE GRAMMAR

The grammar outlined here will generate only word problems

solvable by STUDENT, though not the set of all such problems.

RULES

Create a set of simultane-

ous equations which can be

solved by strictly linear tech-

niques, except that substitu~-

tion of numerical values in

higher order equations which

reduce them to linear equa-

tions is allowed. These are

the propositions of the speak-

er's model.

Choose unknowns for which

STUDENT is to solve. This is

the question.

Choose unique names for

variables without articles "a"

"an", or '"the'". In the prob-

lem any of these articles may

Se used at any occurrence of

a name. In a complete model

hese names would be associ-

ated with the objects in the

chosen propositions.
Write one kernel sen=-

tence for each equation. Use

any appropriate linguistic form

ziven in the table below to

EXAMPLES

2x + 3y=7
y = 1/2x

_ 2

y+z=x

7

 TL = first number

y = second number Tom chose

z = third number

"2 times the first number

plus three times the second

number Tom chose is 7. The

second number Tom chose

20

represent the arithmetic

functions in the equa-

tion.

For each unknown whose

value is to be found, use

a kernel sentence of the

form:

Find

What is __

Find and ___

What are __ and __

for more than one such un-

known.

If a name appears more

than once in a problem, some

(or all) occurrences after

the first may be replaced

by a "similar" name. Simi-

lar names are obtained by

transformations which:

3) insert a pronoun

for a noun phrase

in the name.

b) delete initial and/

or terminal sub-

strings of the name.

Only one such "similar" string

can be used to replace an oc-

currence of a name, though

any number of replacements

can be made.

equals .5 of the first

number.

The sum of the second num-

ber Tom chose and a third

number is equal to the

square of the first num-

ber. What is the third

number?™

Similar names:

"first" for "first number"

"second number he chose!

for "second number Tom

chose!

|

If N; occurs in Sj and

S541 and in 5, it is the
entire substring to the left

of "is", "equals" or "is

aqual to" (or the entire

substring to the right) then

in Ser Vy may be replaced
by any phrase containing the

word ''this".

Any phrase P, may be
replaced by another phrase

P, which means the same

thing. This would mean that

STUDENT had been told of this

equivalence using REMEMBER

and the sentence "P, always

means P." or "P, sometimes
means P." .

Two consecutive sen-

Eences may be connected by

replacing the period after

the first by ", and". A

sentence can be connected

to a question by preceding

the sentence by "If" and

replacing the period at

the end of the sentence by
Ir

Replace "the second number

Tom chose" by "this second

choice" in the third sen-

fence.

Replace "2 times" by "twice"

and ".5" by "one half".

connect sentences 1 and 2, and

sentence 3 and the final ques-

Eion to give:

"Twice the first number plus

three times the second

qumber Tom chose is 7, and

the second number he chose

is one half of the first.

If the sum of this second

choice and a third number

is equal to the square of

the first number, what is

the third number?"

197)

Summary of Linguistic Forms to Express Arithmetic Functions

and the Equality Relation

4

’

x 1s y; x equals y; x is equal to y

X plus y; the sum of x and y; x more than y

Xx minus y; the difference between x and y;

y less than x

Xx times y; x multiplied by

is a number)

ys x of y (ifx

x divided by vy; X ser

123

BIBLIOGRAPHY

(1D)

2)

(3)

(4)

5)

6)

(7)

Berkeley, E.C. and D.G. Bobrow (eds.), The Programming
Language LISP: Its Operation and Applications, Informa-
tion International, Inc., Cambridge, Mass.; 1964.

Black, F., "A Deductive Question-Answering System," Ph. D.
Thesis, Division of Engineering and Applied Physics, Harvard
Jniversity, Cambridge, Mass.; 1964.

Bobrow, D.G., "METEOR: A LISP Interpreter for String Trans-
formations," in (1).

Bobrow, D.G., "Syntactic Analysis of English by Computer—
A Survey," Proc. FJCC, Spartan Press, Baltimore, Md; 1963

Bobrow, D.G. and B. Raphael, "A Comparison of List-Processing
Computer Languages," Comm. ACM; April, 1964.

Bobrow, D.G. and J. Weizenbaum, "List Processing and the
Extension of Language Facility by Embedding," Trans. IEEE,
PGEC; August, 1964.

Chomsky, A.N., '"On the Notion 'Rule of Grammar'," Proceedings
of the Symposium in Applied Mathematics, vol. 12.

(8) Chomsky, A.N., Syntactic Structures, Mouton and Co.., 'S-Graven-
hage: 1957.

(9) Coffman, E.G., J.I. Schwartz and C. Weissman, "A General-Pur-
pose Time~Sharing System," Proc. SJCC, Spartan Press, Bal-
timore. Md.: April, 1964.

(10)

(11)

(12)

(13)

Cohen, D., "Picture Processing in a Picture language Machine,"
NBS Report 7885, Dept. of Commerce, Wash., D.C.; April, 1963.

Coleman, M., "A Program to Solve High School Algebra Story
Problems." MIT Term Paper for 6.539: 1964.

Cooper, W.S., "Fact Retrieval and Deductive Question Answering,"
JACM, vol. 11, no.-2: April. 1964.

Corbato, F.J., et al., The Compatible Time-Sharing System,
MIT Press, Cambridge, Mass.; 1963.

 2 /i

(14) Darlington, J., "Translating Ordinary Language into Sym-
bolic Logic," Memo MAC-M-149, Project MAC, MIT; March, 1964.

(15) Feigenbaum, E., "The Simulation of Verbal Learning Behav-
iour," in (16).

(16)

(17)

Feigenbaum, E. and J. Feldman (eds.), Computers and Thought
McGraw Hill, New York; 1963.

Feldman, J., "Simulation of Behaviour in the Binary Choice
Experiment," in (16).

(18) Garfinkle, S., "Heuristic Solution of First Year Algebra
Problems,'" Working Paper Number 11, Management Science
Group, University of California, Berkeley, Califi; 1962.

(19) Green, B.F., A.K. Wolf, C. Chomsky and K. Laughery,
"Baseball: An Automatic Question Answerer," Proc. WICC;
May, 1961.

(20) Harris, Z., "Discourse Analysis)’ Language, vol. 28, no.
Jan. - March, 1952.

(21) Harris, Z., String Analysis of Sentence Structure,
Mouton and Co., The Hague; 1962.

(22) Kirsch, R.A. and B.K. Rankin III, "Modified Simple Phrase
Structure Grammars for Grammatical Induction,' NBS Report

7890, Dept. of Commerce, Wash., D.C.: 1963.

(23)

(24)

(25)

(26)

(27)

Klein, S. and R.F. Simmons, "Syntactic Dependence and the
Computer Generation of Coherent Discourse,' Mechanical
Translation; 1963.

Kuck, D., "A Problem Solving System with Natural Language
Input," Ph. D. Thesis, Technological Institute, Northwestern
Oniv., Evanston, Illinois; 1963.

Kuno, S. and A. Oettinger, ''Syntactic Structure and Am-
biguity of English," Proc. FJCC, Spartan Press, Bal-
timore, Md.; Nov., 1963.

Lamb, S.M., Outline of Stratificational Grammar, Univer-
sity of California, Berkeley, Calif.; 1962.

Lehman, W.P. and E.D. Pendergraft, Machine Language Trans-
lation Study No. 16, Linguistic Research Center, Univer-
sity of Texas, Austin, Texas; June, 1963.

75

(28) Lindsay, R.K., "Inferential Memory as the Basis of Machines
Which Understand Natural Language," in (16).

(29)

(30)

(31)

Mathews, G.H., "Analysis by Synthesis of Sentences in a
Natural Language," First International Conference on

Machine Translation and Applied Language Analysis, HMSO,
London; 1962.

McCarthy, J., "Programs With Common Sense," Proc. of the
Symposium on Mechanization ofThought Processes, HMSO,
London; 1959.

McCarthy, J., et al., LISP 1.5 Programmers Manual, MIT
Press, Cambirdge, Mass.; 1963.

(32) Minsky, M., "Steps Toward Artificial Intelligence," in (16).

(33) Morris, C.W., "Foundations of the Theory of Signs," Inter-
national Encyclopedia of Unified Science, vol. 1, no. 2,
University of Chicago Press, Chicago; 1955. ‘

134)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

Newell, A. et al., "Report on a General Problem Solving
System," Proc. International Conference on Information
Processing, UNESCO House, Paris; 1959.

Ogden, C.K., A System of Basic English, Harcourt-Brace,
New York: 1934.

Phillips, A.V., "A Question-Answering Routine," Masters Thesis,
Mathematics Department, MIT, Cambridge, Mass.: 1960.

Quine, W.V., Word and Object, MIT Press, Cambridge, Mass.;
1960.

Raphael, B., "SIR: A Computer Program for Semantic Informa-
tion Retrieval," Ph. D. Thesis, Mathematics Department, MIT,
Cambridge, Mass.; 1964.

Sillars, W., "An Algorithm for Representing English Sentences
in a Formal Language," NBS Report 7884, Department of Com-
merce. Wash.. D.C.: April, 1963.

Simmons, R.F., "Answering English Questions by Computer—
A Survev.'" SDC Report SP-1556, Santa Monica, Calif.; April, 1964

Simmons, R.F., S. Klein and K.L. McConologue, ''Indexing
and Dependency Logic for Answering English Questions,"
American Documentation, (in press).

26

(42) Skinner, B.F., Verbal Behaviour, Appleton Century Croft,
New York; 1957.

(43) Walker, D.E. and J.M. Bartlett, "The Structure of Language
for Man and Computers: Problems in Formalization," Proc.
First Congress on the Information Sciences, Vista Press;
1963.

(44) Yngve, V., "A Model and an Hypothesis for Language
Structure," Proceedings of the American Philosophical
Society, val. 104, no. 5; 1960.

(45) Yngve, V., COMIT Programmers Reference Manual, MIT Press
Cambridge, Mass.; 1961.

(46) Yngve, V., "Random .Generation of English Sentences,"
Proc. 1961 International Conference on Machine Trans-

lation and Applied Language Analysis, vol. 1, HMSO,
London; 1962.

 =

BIOGRAPHICAL NOTE

Daniel G. Bobrow was born in New York City on November 29, 1935.
He attended the Bronx High School of Science, received a B.S. degree
in Physics from Rensselaer Polytechnic Institute in 1957, and re-
ceived an S.M. in Applied Mathematics from Harvard University in
1958.

Mr. Bobrow held several scholarships at R.P.I. from 1953 to
1957, and was a Gordon McKay Fellow at Harvard in 1958. He was
elected to Sigma Xi in 1957. At MIT, he has been a research
assistant with the Research Laboratory of Electronics and with
Project MAC.

Mr. Bobrow has been employed by the General Electric Company;
Boeing Aircraft Company; RCA; Encyclopedia Britannica Film Corp.;
Bolt, Beranek and Newman, Inc.; RAND Corporation; and the System
Development Corporation. He has accepted a position as Assistant
Professor of Electrical Engineering at MIT for the 1964-65 aca-
demic year.

His publications include:

Introductory Calculus, Britannica Press, Chicago; 1961.

Basic Mathematics, Britannica Press, Chicago; 1962.

The Programming Language LISP: Its Operation and Applications
(edited with E.C. Berkeley), Information International, Inc.,
Cambridge, Mass.; 1964

"METEOR: A LISP Interpreter for String Transformations,"
(in The Programming Language LISP: Its Operation and
Applications).

"Syntactic Analysis of English by Computer — A Survey,' Proc.
FJCC, Spartan Press, Baltimore, Md.; 1963.

"A Comparison of List-Processing Computer Languages," (with
B. Raphael), Comm.ACM; April, 1964.

"List Processing and the Extension of Language Facility by
Embedding," (with J. Weizenbaum), Trans. IEEE, PGEC; August, 1964.

Mr. Bobrow is currently a member of the Association for Com-
puting Machinery, the Association for Machine Translation and Com-
outational Linguistics, and the American Mathematical Society.

| 2 8

