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ABSTRACT

This thesis studies the dynamics and active control of a
mechanical unicycle with the human rider replaced by a
turntable. The unicycle equations of motion are derived,
linear in all states except yaw rate which is not considered a
perturbation quantity.

Using the specialized linear equations with yaw rate also
linearized, the dynamics of the open loop system are studied
and shown to decouple into longitudinal and lateral systems
for zero turntable angular velocity, and linear controllers
are proposed for stabilization. The systems reduce to lower
order models by exploitation of the time scale separation of
the open loop dynamics. A variation of the LG control design
method is derived and used in both the lateral and
longitudinal controller designs. This method allows recovery
of LQ regulator inner loop without use of pole zero
cancellation strategy, hence potentially offering greater
parameter uncertainty robustness.

The lateral controller is continuously gain scheduled and
implemented in a bang-bang setting in order to deal with
coulomb friction effects between the tire and the ground. An
estimation algorithm is defined to continuously determine
estimates of the friction and hence adapt the bang-bang
control algorithm.

Thesis supervisor: Prof. Andreas von Flotow

Title: Assistant Professor in Aeronautics and
Astronautics
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LIST OF SYMBOLS

state space dynamics matrix

state space control distribution matrix

state space measuremert matrix

controllability matrix

state space feedforward matrix

friction in yaw (Newton meters)

inertia forces

Newtonian earth fixed reference frame

unicycle frame fixed reference frame

turntable shaft fixed reference frame

wheel axle fixed reference frame

limit cycle frequency (Hz)

viscous friction coefficient in yaw (Newton meter
seconds per radian )

acceleration due to gravity (nominally 9.81 m/s2)
regulator gain matrix for reduced order plant
regulator gain matrix for reduced order plant
angular momentum vector

Kalman filter gain matrix

identity matrix

torque impulse (Newton meter seconds)

moment of inertia of unicycle frame about axis
through centre of mass of frame, in direction f1

in units kgm2



moment of inertia of unicycle frame about axis
through centre of mass of frame, in direction i,
in units kgm2

moment of inertia of unicycle frame about axis
through centre of mass of frame, in direction f3
in units kgm2

moment of inertia of turntable about axis through
centre of mass of turntaole, in direction ty in
units kgm2
moment of inertia of turntable about axis through
centre of mass of turntable, in direction tq in
units kgm2

moment of inertia of turntable about axis through
centre of mass of turntable, in direction tg in
units kgm2

moment of inertia of wheel about axis W, through
centre of mass, in units kgm2

moment of inertia of wheel about axis Wq through
centre of mass, in units kgm2

moment of inertia of wheel about axis Wa through
centre of mass, in units kgm2

optimal quadratic cost

stiffness matrix

bang- bang controller torque gain

heading loop gain

velocity loop gain



1t position of turntable centre of mass above wheel
shaft in meters

LgG linear quadratic Gaussian controller structure

LQR linear quadratic regulator

LQG/LTR  linear quadratic Gaussian controller incorporating

loop transfer recovery

M mass matrix

me mass of unicycle frame (kg)

m, mass of unicycle turntable (kg)

m mass of wheel (kg)

n, turntable gear ratio

n, wheel gear ratio

00 observability matrix

p control algebraic Riccati equation solution
1] state quadratic cost weighting

R control quadratic cost weighting

re position of frame centre of mass above wheel

shaft in meters

T wheel radius (meters)

s Laplace transform operator
T sample period (seconds)

T* inertia torques

t time (seconds)

u input

A Sensor noise covariance

v right eigenvector

v(t) sensor noise function



W left eigenvector
x(t) state vector
x(t) error state vector
y(t) measurement
z Zeros
Subscripts
c lag compensator/commanded quantity
ct continuous time
cl <closed loop
dt discrete time
fs  full state
k compensator
Ic 1limit cycle
lr reduced order
ol open loop
o) plant
t discrete time at time ’t’
Superscripts
F unicycle frame
T  turntable/transpose
V wheel

refers to Kalman filter



GREEK SYMBOLS

‘”max

discrete time control distribution matrix

constant turntable torque amplitude over omne sample
interval (Newton meters)

amplitude of pulsewidth modulated turntable torque
command (Newton meters)

turntable motor torque (Newton meters)

wheel motor torque (Newton meters)

time interval (seconds)

constant turntable control torque time interval (s)
friction compensated pulsewidth modulated constant
turntable torque time interval (seconds)
equivalent yaw impulse time interval (seconds)
damping ratio

integration dummy variable

turntable angular velocity (rad/s)

turntable reference angular velocity (rad/s)
unicycle frame pitch angle (rad)

unicycle frame pitch rate (rad/s)

eigenvalue (rad/s)

process noise

process noise covariance matrix

error state covariance matrix

discrete time state transition matrix

roll angle (rad)

maximum phase lag due to lag network



9 roll rate (rad/s)

¥ heading angle (rad)

¢c commanded heading

¥ yaw rate (rad/s)

0 wheel angular velocity (rad/s)

b, commanded wheel angular velocity (rad/s)

f, reference wheel angular velocity (rad/s)

Unax phase frequency of maximum phase due to lag network

{rad/s)
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1.0 INTRODUCTION

To observe natural phenomena and understand is to experience
wonder. To then change the character of such phenomena is
tantamount to creation of new natural phenomena according to
ones own specifications. Perhaps this desired conquest of
nature is the prime motivation for engineering in general and
more specifically for trying to control a unicycle

automatically?

A large motivating factor in this project is the partial
success achieved on a similar project in 1987 at Stanford
University, Pale Alto, California [14]. This study addressed a
wide range of issues, from design and construction of sensors
and electronic hardware as well as the mechanical elements of
the unicycle robot, to controller design and implementation.
Figure 1 shows the Stanford unicycle robot. The controller
design successfully addressed the longitudinal (pitch) control

problem in both simulation and testing.

The lateral control problem, however, was only briefly
discussed in the linear setting, including (linear) viscous
friction, but ignoring the more significant Coulomb friction
issue. This design was not implemented on the robot and the
extent of the project was thus limited to longitudinal
stabilization of the unicycle with laterally stabilizing

training wheels fitted.
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We have modeled the unicycle robot along the lines of the
Stanford example, with a single motor driving the wheel via a
gearbox of ratio 12:1 for pitch control and a second motor
driving the turntable through gearing of ratio 36:1 for lateral
control. The dynamics of the unicycle may be viewed as
nonlinear, coupled lateral and longitudinal inverted pendulum
motion, the coupling between lateral and longitudinal motion
arising through the gyroscopic effects of the turntable and

through large yaw rate of the frame.

Roll yaw coupling exists due to gyroscopic effects of both the
wheel and turntable. The pitching and rolling motion is
intuitively seen to be unstable, with the pitching motion being
of smaller time constant than the rolling motion, since
pitching occurs about the wheel shaft, which is a shorter
moment arm than the rolling moment arm which extends to the
contact point between the wheel and the surface. The time
constant for the roll instability is dependent on the wheel
speed, since the gyroscopic effect is to stabilize the rolling
motion, these poles moving toward the origin and outward along
the imaginary axis with increasing wheel speed (see figure

4.5.1).
These actuators combined with sensors which measure all angular
rates, pitch and roll angles as well as motor speeds, result in

the command following heading and forward speed control loops
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exhibiting non minimum-phase behaviour, consistent with the
motion of a humar unicyclist. Physically, in order for the
uricyclist to change forward velocity, the wheel speed is
slowed in order to generate a pitch error and then in recovery
of this error, the new forward (increased) velocity is set.
Similar reasoning is valid for the lateral motion- a heading
change to the left is achieved by initially incurring a roll
error by turning to the right, before recovering on the desired

heading.

The lateral and longitudinal linearized dynamics decouple for
the turntable reference angular velocity set to zero, since
this then essentially elimates gyroscopic effects due to the
turntable. The linear control problem is reduced to two
decoupled systems by this approximatior (clearly, the turntable
angular velocity cannot be identically zero for all time if it
is to be used for control, but these are second order effects),
thus allowing separate design of lateral and longitudinal

controllers.

The longitudinal model relies on friction for controllability
and this is implicit in the constraint of zero slip between the
wheel and the surface. The negative effect of friction between
the wheel and the surface is, however, to introduce a
discontinuous nonlinearity into yawing motion. The friction in

yaw is assumed to exist in the sense of stiction or breakaway
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friction and kinematic (dynamic) friction, as well as viscous

friction and is modeled as such.

The linearized dynamics yield lateral and longitudinal models
of a similar structure which lends itself to a design approach
which considers firstly a higher bandwidth inner loop around
which the slower outer loop is clesed. Each inner loop is a
regulation loop since we want only to maintain zero
perturbations from the stabilized vertical position and is
essentially an LQG structure. The outer loops use properties of
the LJG structure to advantage in achieving command following

in both heading and forward speed.

The lateral controller is then extended into an adaptive,
bang-bang framework for implementation. Pulsewidth modulaticn
is used to ensure that actuator torques are always larger than
stiction torques, hence overcoming the restraining friction
effects in yaw. An algorithm is defined for continuous
estimation of the magnitude of the friction (in yaw) thus
enabling the unicycle to operate on terrain where the friction

magnitude is unknown.

The lateral controller is then also gain scheduled according to
wheel speed in order to account for the time varying effect of
varying roll dynamics as a function of wheel speed.

This study demonstrates clearly the limitation of linear

16



control design on systems containing discontinuous
nonlinearities, and the need for careful understanding of the
physical dynamics involved in order to achieve, if only in
simulation at least, more robust control designs. Also of
important value is the demonstrated need for good knowledge of
both modern and classical control design techniques in
achieving a controller incorporating favorable aspects of both

schools.

In implementation, the unicycle robot is to be tested initially
on a treadmill, thus allowing easy monitoring and tuning of the
controllers which are to be implemented digitally. The
longitudinal controller is firstly tuned with the aid of roll
stabilizing training wheels, and then the lateral controller.
The ultimate goal is complete autonomy with a microprocessor on
board and remote control via radio. The unicycle robot
construction is complete at time of writing and test results

will be available in the near future.
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Figure 1. The Stanford unicycle robot [14].
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2.0  SENSORS AND ACTUATORS

2.1 The Problem

Successful control of any system is achieved only with the aid
of suitable sensors and actuators. The most robust of control
structures and benign of plants could easily be transformed

into disaster by incorrect choice of sensors and actuators.

The unicycle presents an unusual challenge in that good
information as to pitch and roll angles and rates is critical
since the system is unstable and recovery from specifically
large roll errors is limited. The pitch modes are in the region
of 8 rad/s natural frequency or analagously, time to double
amplitude for the unstable perturbed response is on the order
of 1 tenth of a second. The roll modes are dependant on wheel
speed, but are typically on the order of 3 to 4 rad/s. Sensors

with time constants greater than 30 or 40 rad/s would suffice.

The resolution requirements are relatively stringent in that
the actuators could typically not recover the system from
errors greater than ten degrees without saturation or tire slip
and by the nature of the system, it is desirable to minimize

(stable) limit cycle amplitude due to sensor/actuator

resolution.
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2.2 Actuators

The unicycle robot has two actuators, selected to emulate the
human unicyclist control mechanism. Human unicyclists achieve
pitch motion control by pedals connected to the wheel and thus
a motor driving the wheel is used for pitch and forward
velocity control on the robot. A second motor driving a
turntable with axis of rotation aligned with the vertical axis
of the frame, is used for lateral control in a reaction wheel
sense. This emulates the pivoting about the hips of the human

for yaw and roll control of the unicycle.

2.2.1 The Motors

The motors are low armature inertia, dc, high torque units
manufactured by INFRANOR inc [9]. These provide high torque to
inertia ratios and hence short response times and compact
dimensions. The mechanical time constants are 9.24 milliseconds
and 19 milliseconds for the turntable and wheel motors

respectively.

The model used for the turntable is M080 with rated voltage
40.3V dc and current 5 amps. The wheel drive motor is model
M0301 with rated voltage 24V dc and current 16.5 amps. Both
motors have integrally mounted tachometers which are listed to

yield measurements to within 0.16 rad/s accuracy.
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These motors are controlled via Galil Motion [7] pulsewidth
modulated amplifier cards although it is uncertain at this time
whether or not the turntable movor will require this since we
are implementing a lateral controller which employs pulsewidth

modulation.

Gearing of ratio 12:1 is achieved by use of a toothed belt
drive on the wheel and the turntable is geared to a ratio of

36:1 via a double set of spur gears each of ratio 6:1.

2.3 Rate Sensors and Inclinometers

The rate sensors are solid state rate gyros produced by Watson
Industries inc [15]. These consist of piezoelectric vibrating
beam/sensing elements, the sensing element rotated through 90°
with respect to the vibrating beam (drive element) as shown in
figure 2.3.1. The drive element oscillates at approximately 360
Hz piezoelectrically excited and when an angular rate exists
about the sensing axis, coriolis forces cause deflection of the
sensing element and this generates the signal. Two such
elements are used in a tuning fork arrangement and their
signals subtracted in order to reduce common mode vibration
effects due to external vibration/acceleration and external

acoustic noise.
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/// P sensing element ,
sensing axis

vibrating“element

/

Figure 2.3.1. Schematic of Solid State Rate Sensor

The rate sensors measure full scale rates of 100°/second at 10
Volts and output noise is 15mV rms yielding resolution of

approximately O.15°/second.

Angular displacement information is cbtained by use of
inclinometers manufactured by the same company and these use
combined pendulum and integrated rate signals to measure
angular displacement. The resolution here is on the same order

as for the rate sensors.

The linearized model is a seven state model, these being wheel
angular velocity, pitch angle and rate, roll angle and rate,
yaw rate and turntable angular velocity. All of these states

are measured using the various sensors described above.
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3.0 LONGITUDINAL DYNAMICS AND CONTROLLER DESIGN

3.1 Introduction

The decoupled longitudinal system open loop dynamics are
discussed here and a structure as well as simelation results
for a stabilizing controller are proposed. The system has non
minimum- phase transmission zeros in the outer loop (velocity
loop), which poses difficulty for implementation of a typical

LQG (Linear Quadratic Gaussian) or LQG/LTR type structure.

Specifically, the LTR (Loop Transfer Recovery) procedure tries
to establish high bandwidth filter dynamics and cancel
regulator zeros and plant poles in order that the dominant
dynamics of the compensated system are only those of the
desired regulator. Inherent in this model based method is the
problem that the filter retains the non minimum- phase
transmission zeros of the plant and as such cannot achieve the
necessary pole/zero cancellation for elimination of undesired
dynamics, yielding poor designs. Figure 3.1.1 shows the closed
loop transfer function relating commanded velocity to system
velocity for an LQG/LTR design, which certainly appears
undesirable. The LQG/LTR method, however, yields invaluable
insights into restructuring the LQG type methodology to the

classical approach of inner lcop regulator design.

The system has a single actuator in the wheel torque motor and
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since this methodology (LOG/LTR) can only deal with ’square’
systems i.e. having the same number of inputs and outputs, we
are only allowed one sensor and all other states must be
estimated from information contained in this single
measurement. Logically, since we are controlling velocity in
the outer loop, this measurement is selected as the wheel
tachometer. This situation is unsatisfactory in the sense that
as the plant is of such difficult nature and we have all
measurements available, we would like to incorporate this
information into the controller to assist in achieving a robust

system.

This problem is alleviated by combining the classical concept
of closing ’fast’ inner loops first, with a reduced order L{G
controller structure, thus avoiding the problem of non
minimum- phase zeros by seeking an inner plant, which is
minimum- phase, about which the LG reduced order controller is

designed.

This is of course only possible if the actuator-plant-sensor
structure is such that the faster dynamics can be ’decoupled’
(in an inner loop sense), from the slower dynamics and that
this then yields a minimum- phase system. Note that for this
reduced order system, we have one input and two measurements
i.e. a non square system so that the concept of transmission
zeros does not apply, but since nonsquare systems do not have

any transmission zeros in general [10], this is an easier
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system to deal with than the full order one. Also resulting
from this fact (’nonsquareness’) is the nonexistance of a

general solution for the closed loop LQR pole pattern [12].

0f further interest in the longitudinal controller design is
the use of classical lag compensation in the outer (velocity)
loop to achieve good loop transfer function shape as regards
improved command following and disturbance rejection, without
significant phase penalty. Since this is dome in frequency
ranges greater than that of the non minimum- phase zeros (of the
square ﬂ/I‘w transfer function), which is an unachievable
frequency for closed loop system bandwidth, it does not hurt
the system phase and significantly does assist in shaping the
root locus to yield better damping of the dominant modes of the

closed loop system.
3.2 Longitudinal model

The decoupled (from lateral motion) longitudinal system as

derived in appendix 1 is repeated below. For state vector x(t)T

= [8(t) B(t) o(t)]

¥ x(t) + Kx(t) + Blu(t) =0 3.2.1
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Vhere

2 v
= |-((m +me+m)r + Io) -(more + m 1 )ry 0
-(mere + mtlt)rw -(mfr% + mtlz + Iy + Ig) 0
0 0
K = 0 0 0
0 0 (mere + m.1,)g
0 -1 0

Bi= n

-NW

Then, rearranging 3.2.1 above

K x(t) - K 1Btu(t)
A x(t) + B u(t)

x(t)

1

The model parameters in appendix 2, yield the following state

space model

x(t) = 0 0 -194.61 x(t) +

25
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3.3 Open Loop Dynamics

The open loop eigenstructure shows the linear longitudinal

system constituent of three modes.
Pitch mode pair

0.9462

S
1l

8.1272 rad/s

<
1

-0.3211
-0.0395

r

S
"

-8.1272 rad/s v 0.9462

-0.3211

+0.0395

This eigenvalue/eigenvector pair is associated with the
pitching motion, which is unstable and of frequency in the
region of 1.30z. This is representative of the inverted
pendulum type dynamics in pitch.

Rolling mode

A =0.0 rad/s vV = i

The third mode is a pure integrator associated with the rolling
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motion of the unicycle wheel.

3.4 Transmission Zeros

The system has one actuator in the wheel torque motor and we

measure all states. As discussed in 3.1 the system with the

single measurement, f(t), has the following non minimum- phase

structure
zy = -3.2343 rad/s
zo = +3.2343 rad/s

Clearly the non minimum- phase zero is at a frequency roughly
half that of the open loop pitch mode and for this reason
presents an especially difficult task for the controller in
this frequency range and represents a fundamental limit in
achievable bandwidth of the closed loop controlled system [6].
This is, however, the physical reality of riding a unicycle in
that it is not possible to perform maneuvers in this frequency

range.

As discussed in 3.1 above, the reduced order system obtained by
considering only the states #(t) and #(t), has no transmission

Z€ros.
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3.5 Reduced Order Linear Quadratic Regulator

The inner regulator loop does not do any form of command
following, rather regulation to zero of any existing pitch
angle and pitch rate deviations from the vertical rest

condition.
3.5.1 The Reduced Order Plant

The reduced order state space model for design of the inner
loop controller is derived from the full order system by
considering only the states #(t) and 0(t). For the state vector

x(t)7, = [(t) 6(t)] then

it

Xpp(t) = Appx(t) + Byu(t)

0  66.051 | x;_(t) + -10.76 | u(t)
1 0 0 3.5.1.1

Vith measurement

ylr(t) = Clrxlr(t)
= (10 | x (1) 3.5.1.2
0 1

29



3.5.2 Linear Quadratic Regulator

The linear quadratic regulator yields an optimal least squares

regulator by minimizing the cost functional

= f <X ()0x(t) + uT(t)Ru(t) }dt

o

Subject to the constraints of the linear system 3.5.1.1 and

3.5.1.2

Since the more important error we would like to eliminate is
pitch angle, we place a heavier penalty on this state in the
weighting matrix §. The expensive control (heavily penalized
actuator) LQR solution casts all unstable poles at their
respective mirror images about the jw-axis. By the nature of
the modal structure shown in the s-plane plot of figure 3.5.2.1
and following the root square locus [12] or inverse roots
characteristic equation [5] reasoning, although not universally
applicable to rectangular systems, the cheap control problem
(small penalty on the actuator) will tend to move one pole
towards the origin. This effectively reduces the bandwidth of
the regulator. For this reason the penalty on the actuator is
selected fairly large to ensure the closed loop poles are close
to the location of the open loop stable pole frequency (x 8
rad/s).
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The weighting matrices

States: g = 1 0

Control: R = 1060

Yield the LOR gain
g1, = [-1.561 -12.29 ]
Vith closed lcop poles

Ay = -8.64 rad/s Ay = -7.65 rad/s
Time histories of this system response to an initial pitch
angle of ten degrees are shown in figure 3.5.2.2. This inner
loop is now incorporated into the full order system in order to

design the outer loop compensator.
3.6 Lag Compensator in Quter Lcop
The full state model including the closed loop regulatnr, with
the full state vector X(t)L = [0(t) B(t) 6(t)] and ’A’ and ’B’

referring to the open loop dynamics and control distribution

matrices respectively as in section 3.2 above:
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() = [A(t,1)  A(1,2)  AL,3)] x(t) + B u(t)
A(2,1)

A, - B g
A(3,1) Ir "1r®lr

Since the outer loop measures only fi(t), we have

y(t) = C x(t)

[1 0 0] x(t)

Figure 3.6.1 shows the open loop Bode plot for this system.
Recalling from section 3.4 that this loop has two transmission
zeros, one being non minimum- phase and at the exact frequency
of the minimum- phase zero, it is clear that the net phase
contribution of these elements is zero. Thinking in terms of an
s-plane root locus, however, negative feedback (positive root
locus gain) for the f loop closure will drive the integrator
into the right half plane due to the presence of the non
minimum- phase zero. For this reason we use positive feedback in

this loop, the root locus is shown in figure 3.6.2.

This root locus shows that for reasonably damped (¢ = 0.72)
oscillatory poles the integrator pole has moved to s=-0.8
rad/s, which is low bandwidth. The Bode magnitude plot of

figure 3.6.1.a also shows undesirable characteristics in the
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frequency range of 2 rad/s to 9 rad/s. This is due to the two
zeros at frequency » 3 rad/s picking the magnitude up and the
two poles at ~ 8 rad/s pulling the magnitude down again. This
is easily eliminated by use of a lag network Kl(s) with a zero

at 8 rad/s and pole at 3 rad/s.

3(s + 8
Ki(s) = 3{2‘5'3%

The maximum phase penalty [3] due to this network is

. i- 3/8
Sin(ppay) = {T_i_ﬁég} O Pnax = 27°

at frequency

)2 = 3.8 or

= 4.9 rad/s

(Umax phase “max phase

The root locus for this lag compensated system is shown in
figure 3.6.3 where for damping of the oscillatory mode of ¢ =
0.89 the dominant poles are of natural frequency 2.3 rad/s,
much improved over the uncompensated system. The lag
compensated system Bode nugnitude and phase plots of figure
3.6.4 indicate that for phase margin of 60°, the crossover
frequency should be set around 1 rad/s. This corresponds to

outer loop gain of

Ky = -0.17 Nm/rad.s’1
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yielding closed loop poles of

Ay = -4 rad/s Ay = -8.07 rad/s

)3’4 = -2 + j1.04 rad/s
The Bode magnitude plots for the closed loop transfer function
and loop sensitivity (relating output disturbance to plant
output) have desirable characteristics as apparent in figures
3.6.6 and 3.6.5 respectively. This is borne out in the time
response plots, figures 3.6.7 and 3.6.8, showing response of
the system to step command in {l and recovery from an initial
condition pitch angle (f) of ten degrees, respectively. All
units are rad or rad/s and the actuator response units are

Newton meters.

3.7 Kalman Filter for LG Inner Loop

The LQG inner regulator loop is shown in figure 3.7.1. In order

to complete this structure we now address the definition of the

Kalman Filter.

>

|Clr]

Figure 3.7.1 L{G Inner Loop Regulator Structure
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By the non minimum- phase nature of the model, it is not
possible to achieve high frequency dynamics in the Kalman
filter, in fact the filter dynamics remain in the same
frequency range as the regulator dynamics. For this reason, it
is not obvious whether or not low pass filtering of the sensor
data will suffice in obtaining good plant state information.
The Kalman filter structure appears advantageous in that phase
peralties are to be incurred either way (low-pass filtering or
Kalman filtering), but the Kalman filter uses all sensor data
and a model of the plart to improve the individual
measurements. However, the design philosophy deviates from the
typical Kalman Filter approach of determining the optimal
filter to yield best state estimates from noisy sensors and
plant processes in a least squares sense. Here, in typical L{G
fashion, the sensor noise and process noise intensities are
used as parameters for achieving a desired filter structure in

terms of bandwidth.
For this system, process noise ¢{(t) enters via the torque motor
and sensor noise occurs in both sensors (pitch angle and rate)

as v(t). The state space medel can be written

x(t) = A x(t) + B u(t) + B £(t)
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and measurement
y(t) = C x(t) + v(t)

Vhere ((t) and v(t) are assumed to be zero mean Gaussian white

noise of constant intensities Z and V respectively.

The optimal steady state least squares estimator for this

linear time invariant system is of the structure

%(t)

A R(t) + B (y(t) - € %(t)) + B u(t)

(A - kaC) x(t) + kay(t) + B u(t)
Vhere the filter gain in the steady state is
_ Ty-1
Be =2C

Vith ¥ being the steady state error covariance determined as

the solution to the Filter Algebraic Riccati equation given by
$=0=43+3a7+Bz8 - sclvilcsy
Assuming that the sensor noise is greater on the rate semsor by

a factor of 10 than on the angle sensor and the process noise

parameter is fiddled to yield as fast as possible dynamics in
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the LQG setting, use

Sensor covariance V = 20 0

Process covariance = =1

This yields filter gain

ka = 14.3 17.3
1.73  2.15

and filter poles at

A, =-9.34 rad/s Ao = -T7.12 rad/s

1 2
and by the nonsquare nature of the filter, there are no

transmission zeros.

The filter poles of the LQG inner loop system are in the same
region as those of the regulator, however, the performance is
not degraded significantly as is seen in comparing the time
histories of the LG inner loop of figure 3.7.2 and those of
the LQR loop of figure 3.5.2.2. Figure 3.7.2 shows the states
and the estimates of the states, with the estimates tracking
the actual states fairly well. 0f course due to the filter

dynamics being of the same order as the ’plant’ the estimates
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will always be a little sluggish, but this situation improves
when closing the outer loop since one regulator pole moves
toward the origin (see section 3.9) and the benefit in having
the estimator perform low pass filtering of the sensor signals
may prove to outweigh this degradation in performance. If the
Kalman filter is not implemented, low pass filtering of each
indiviual output (#(t) and 6(t)) will in all likelihood be

necessary.
3.8 Complete Full State System with LQG Inner Loop

All component elements of the longitudinal controller have now
been defined and the full state structure can be formed. The
block diagram of figure 3.8.1 shows the schematic form of the
closed loop system from which the state space model is readily

determined as follows. For state vector x(t)fs = [xC RGO

]T = [xc hx ilr]T' The lag network state is xc(t).

Figure 3.8.1 Complete System Block Diagram
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Open f# loop, inner loop closed:

xgg(t) = Ay xgo(t) + Ky Be R (t)

Vith
B(191)CC A(191) [A(1,2) A(133)] -B(lsl)glr
B):Cc 0 Avr “Bir81r
| B.Ce 0 BegCir [ BiBr BieCyl|
Beg = | B, 3.8.1
B(1,1)D,
Berc
] B1rDc

The measurement is only the state f
(t) = [01000 0] xfs(t)

The open loop Bode magnitude and phase plots for this complete
linear longitudinal system are shown in figure 3.8.2. The
addition of the filter in the inner regulation loop has not
resulted in any phase loss from the system of figure 3.6.4. The
sensitivity and closed loop Bode magnitude plots are shown in
figure 3.8.3 and time response simulations to a step wheel

velocity (1) command are shown in figure 3.8.4, demonstrating
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no loss in performance due to inclusion of the filter in the
inner loop (compare with figure 3.6.7). See section 4.6.1 for
formal explanation as to this result. Essentially we may design
the regulator loop as desired and append outer loop dynamics as
desired, and inclusion of the filter in the inner loop will not

affect these structures as long as the filter is model based.
3.9 Discussion

The reason for the outer loop not seeing any degrading of
performance as a result of including the Kalman filter in the
inner loop LQG controller, is is that seen from the outer loop,
effectively the filter error dynamics are uncontrollable, hence
pole zero cancellation occurs i.e. the transfer function
relating n/nc has some zeros the poles of the filter.This is

discussed more fully in section 4.6.1.

The complete longitudinal closed loop system from nc to 1 in

figure 3.8.1 has poles and zeros

A=-4.73

LOR regulator poles
A =-8.07
A=-T7.12

Kalman filter poles
A=-9.34
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S
"

-2.04  + j1.04
Outer loop poles

A=-2.04 - jl1.04
z = 3.23
Open outer loop transmission zeros
z = -3.23
z = -8.0 Quter loop lag network zero
z =-7.12 Inner loop filter poles showing up in
z =-9.34 outer loop transfer function as zeros

Clearly in the outer loop, pole zero cancellation of the filter
modes occurs so the response fi to commanded ﬂc does not see any
of these modes, but this is not the case in the inner loop. The
inner loop transfer function relating the desired (zero valued)
pitch rate and angle to actual (see figure 3.8.1) has a single
transmission zero at -8.44 rad/s with poles at -9.34; -8.64;
-7.65; -7.12. Clearly here is no cancellation of the filter
modes (-9.34 and -7.12) as evidenced in the outer lcop. The
presence of the filter is clearly apparent in the time history
of figure 3.9.2 as compared with figure 3.6.8 in the slightly
increased overshoot of specifically fi(t). Figure 3.9.2b shows
the inner loop Kalman filter states (pitch angle and pitch rate

estimates) track the actual states well.
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3.10 Low Pass Filter for Tachometer

The remaining issue which has not been specifically addressed
here is that of low pass filtering of the outer loop tachometer
signal measuring 0(t). This depends on the necessity of
cleaning up this signal and typically, the low pass filter
should be at least one decade above the loop crossover
frequency which in this case implies low pass filter bandwidth
of at least 10 rad/s. This to ensure that too large a phase
penalty is not incurred as a result of such a filter. The
reason for not including this in simulation here, is that it is
really an implementation issue and all we need to bear in mind

are the above mentioned guidelines.

3.11 Compensator State Space Model

Refer to figure 3.8.1 and rewrite the open loop state space

model of the compensated system such that it is in the form of

figure 3.11.1.

compensator design plant

Figure 3.11.1 Cascaded compensator and plant

Define the augmented state for the cascaded system
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x = [xx xp]T, with subscripts k and p referring to the
compensator and plant respectively. The state space model for

the cascaded system is then for input vector u(t) = [f¢ O 6c]T

x(t) = [ o O }x(t) + [ % }u(t) 3.11.1
A B.Dy

Vith output

y(#) = [0 ¢ Ix(t)

Reordering the states of the open loop state space description

. _ ) T
of equation 3.8.1 for the state vector x; = [x, xy. X7, 8]
and writing the model with all feedback loops open (with

rs

superscript ~ referring to the Kalman filter)

A= [ 0 0 0
By.Cc [Ay By8yp HpeCypl 0 0
B(1,1C,  -B(1,1)g;,  A(1,1)  A(1,2:3)

| By.Cc "By 81y 0 hir

B - [ B 0
B, D K X 3.11.2
B(1,1)0 K 0

By D X 0 |
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Now, equating block partitions of equations 3.11.1 and 3.11.2
the compensator state space model matrices are
Ak = | A 0

c

-

i Birle Aur BiBir HieCyp

-

B = | BK 0
¢ = [ C. “81r |
D, = [ D, 0]

3.12 Discrete Time System
The controller is to be implemented in digital form and two
means of obtaining the discrete time equivalent are described

here.

1) The controller state space model of section 3.11 can be

written in equivalent discrete time form, for sample period, T

X 1% ] Xy o+ r ug
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with € and T determined as

T
¢ = exp(4,T) I'= [ exp(Ayn) dn By 3.12.1
o]

2) Evaluate the discrete time LQR and Kalman filter gains and

substitute these in the compensator state space description of
section 3.11, the system component matrices being the discrete
time equivalents of the plant model, determined using equations

3.12.1.

The discrete time LQR problem is formulated as minimizing the

summation
J = X{XTQ x + ulk u}
subject to the constraint of the linear system

= & x

Xt+1 g Ty

Where the discrete time (dt) weighting matrices are selected to
yield the same time response as the continuous time (ct) design

for small sampling period T, as [12],
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Qat = Qe T

1.0 2
Ry, = [Boy + 38 0BT T 3.12.2

t ct

with T being the sample period and the continuous time

weighting matrices are as determined in section 3.5.2.

In order to introduce minimal effect (phase) due to
discretization, the sample period is chosen arbitrarily small

as T = 0.01 seconds (or sample rate of 100Hz).

Similarly, the Kalman filter discrete time solution is

determined by aid of the duality with the LQR solution, namely

Following the approximations of equations 3.12.2 for the

discrete time equivalent weightings, get

- _(I‘

N
=dt ~ r )dt - “ctT

183]

_ 1 T - 2
dt = Vet + 3 BegfeeBetI] T
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Using these transformations with the discrete time models

yields the same inner loop LG time domain performance

controller.

The remaining discretization is that of the lag network. The
simplest means of discretizing here, is to write the state

space model for the lag network and discretize using equations

3.12.1.
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Figure 3.1.1a. LQG/LTR design closed loop Bode plot. Single sensor
measuring wheel angular velocity and actuation by wheel torque motor.
The poor resonance is a result of the non minimum- phase zero and the
fact that in order to fit the L{G/LTR design methodology (defined for
square systems) only one state can be measured. For this difficult
design problem, we wish to use as much sensor data as possible and

thus not discard sensors.
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Figure 3.1.1b. LOG/LTR design wheel speed response to step command.

The performance is undesirable in the large undershoot. This may

certainly be improved if additional sensors are employed.
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Figure 3.5.2.1 S-Plane plot of open loop reduced order model with
system states pitch angle (#) and pitch rate (#). Using root square
locus reasoning, the L regulator solution (’expensive control’) will
place the unstable pole at its mirror image about the imaginary axis.
Using cheap control moves one pole closer to the origin, reducing

dominant mode frequency.
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Figure 3.5.2.2. Two state L regulator response to initial pitch error
of 10° illustrating desirable performance. Units are rad (8) and rad/s
(#). This regulator forms the controller inner loop, but is
implemented in typical L{G fashion with a Kalman filter to assist in

obtaining good state information with noisy sensors.
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Figure 3.6.1a & b. Bode magnitude and phase plots. Loop transfer

function relating motor torque to wheel angular velocity (f). The two
state inner regulator loop is closed, but does not include a Kalman

filter yet. The phase plot is shifted by 180° and clearly illustrates

that the non minimum- phase zero phase effect is canceled by the

minimum- phase zero at the same frequency.
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Figure 3.6.2. Negative gain root locus for feedback of wheel speed to
motor torque. Note that since the single actuator is used for both
inner loop regulation and outer loop control, the inner loop poles
move with closing of the outer loop. For good damping ((=0.72) of the
oscillatory poles, k=-0.13 is selected, but this results in the real
pole being of too low frequency. Use of a classical lead- lag network

is made to remedy this.
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Figure 3.6.3. Root locus closing wheel speed control loop. Lag-lead

network included shows improvement of dominant (oscillatory) mode

bandwidth for gain of k=-0.17, exhibiting damping of (=0.9.
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Figure 3.6.4. Bode magnitude and phase plots for lag-lead compensated
wheel speed loop transfer function. Comparing this with figure 3.6.1
shows improved loop shape as well as phase. For phase margin of 60°,

the crossover frequency is selected at around 1 rad/s.
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to system output. Amplification of output disturbances occur between

1.4 and 30 rad/s due to non minimum- phase zeros.
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Figure 3.6.6. Bode magnitude plot for wheel speed loop closed. Compare

with figure 3.1.1.
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Figure 3.6.7a. Closed loop wheel speed (rad/s) and actuator (Nm)

response to step command. The improvement in vsing sensors for all

states is clear in comparison between this and figure 3.1.2.

0

0.

0.

0.

0.

- Q).

. 06

.08

.04

03

01

¢

.8 g ] 3 3.6 4

Time (38)

Figure 3.6.7b. Pitch angle and pitch rate response to step wheel speed

command. Units in radians and rad/s respectively.
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Figure 3.6.8a. Vheel speed (rad/s) and actuator (Nm) response to

initial pitch error of 10°.
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Figure 3.6.8b. Pitch angle and rate response. Comparison with figure

3.5.2.2 shows the effect of the outer loop compensation on the inner

loop performance resulting from the single actuator being used to

compensate two different bandwidth functions.
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Figure 3.7.2. LQG inner loop (including Kalman filter} response to

initial pitch error of 10°. Plotted are filter states § and g, as well
as actual states # and # (in units rad/s and rad respectively). The
filter states do well in tracking the actual states and the
degradation in performance by inclusion of the Kalman filter is

minimal as is apparent in comparison with figure 3.5.2.2.
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Figure 3.8.2. Bode magnitude and phase plots relating commanded wheel
speed to actual wheel speed. This includes the inner L{G regulator
loop closed. Comparison with figure 3,5,4 shows that the outer loop as

structured is independent of the inner loop Kalman filter.
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Figure 3.8.3b. Closed loop Bode magnitude plot. Inner LQG loop closed.
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Figure 3.8.4a. Closed loop wheel speed and actuator response to step
wheel speed command. Figures 3.8.42 and 3.8.4b represent the system
including LQG inner loop closed and outer loop compensated system.
These compare well with figure 3.6.7, illustrating the independence of
the outer loop on the inclusion of the Kalman filter in the inner

loop.
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Figure 3.8.4b. Closed loop pitch angle and pitch rate response to step

wheel speed command. Units are radizns and rad/s respectively.
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Figure 3.9.2a. Full Closed loop system including LQG inner loop, wheel
speed and actuator response to initial pitch angle error of 10°. This
for comparison with figure 3.6.8. The effect of the filter is apparent
here, since this is effectively inner loop control activity
(regulation), as opposed to outer loop command following. In a sense
the loop transfer function here is from the desired pitch angle and
pitch rate (both desired regulated to zero) to to the actual system

outputs, and the filter dynamics show up in this relation.
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Figure 3.9.2b. Filter estimates and actual pitch angle and pitch rate

response. Units are radians and rad/s respectively.
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4.0 LATERAL CONTROIL DESIGN
4.1 Introduction

The decoupled open loop lateral model is analyzed in this
section and the characteristic modes determined. The lateral
controller is defined and simulation results are shown to

demonstrate the performance of the linear controlled system.

As shown in appendix 1, the lateral and longitudinal systems
decouple for zero reference angular velocity of the turntable.
Due to the non minimum- phase nature of the lateral system, an
unusual implementation of an L{G type structure is used, as in
the longitudinal controller. An algebraic proof for a single
input single output system as well as multi input multi output
systems is given in appendix 2 as justification for the

specific result obtained in this structure.
4.2 0Open Loop Lateral Dynamics Model

The lateral system state space model as derived in appendix 1
is repeated here for the state vector x=[¢ ¢ ¢ b]T and contrcl
input vector u=[I, F ]T, vhere T, and F are turntable torque
and friction respectively. A description of the friction model
is given in section 6.2. In this chapter, we ignore these
nonlinear friction effects, but include viscous friction in yaw

(see the term —f¢ in stiffness matrix), in the linear
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controller design. The linear controller forms a structure for
generating the correct commands for stabilization, but is to be
implemented in a nonlinear bang-bang form as discussed in

Chapter 6.

For the lateral system equations

¥ %(t) + K x(t) + Bu(t) =

with
- 0 ” ;
M= (m rl + mf(r + rf) +ID] ) 0 0
(m(r, +1)% + I} + 1)
0 -1 0 0
v F T T
0 0 (I3 + Iy + Ip) -Io
T T
0 0 -I3 -13_
K= 0 (mwrw * mfrf)g rw(mwrw * mf(rw * rf))no 0
¥
+(mfrw * mt(rw ¥ 1t))g +(rwmt(rw +lt) * I2)no
1 0 0 0
¥
-1290 0 -fﬁ 0
0 0 0 0

(Note that the viscous friction coefficient f¢ is positive)
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Bu =10 0
0 0
0 1t

-0y 0 ]

Notice that the implication of the actuation being a reaction
wheel type of input is the state $ is not directly influenced
by input torques to the turntable, but via the state 5. This
could obviously be rewritten, eliminating the turntable angular
velocity state by substitution of the % equation into that for
#. This is, however, unnecessary since in arriving at the state
space form, multiplication of the inverse of the mass matrix
with the control distribution matrix, B, gives the correct

distribution of input torques to the frame and turntable.

The state space form is determined as

%(t)

0K x(t) - W IBu(t)
A x(t) + B u(t)

Using the parameters for the model as in appendix 3 and nominal
wheel speed of 2 rad/s yields the following numerical values

for the state space model
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A= [ 0 10.9 0.45 0
1 0 0 0
-0.21 0 0.064 0
0.21 0 -0.064 0
B = - 0 0
0 0
94.7 2.63
-154.7 -2.63

Note that the friction F (see figure 6.2.1) is modeled as a
negative quantity, since it is an external force which opposes
rotation of the frame. Since we measure all states, the

measurement matrix is
C= I,.4 (14,‘4 = 4x4 identity matrix )

4.3 Controllability and Observability

4.3.1 Observability

Evaluation of the observability matrix given by

0, = [CT alel.il, (AT)n'ICT] (n=system order)

and checking the rank of Ob shows it to be full rank, as could

be expected, since we measure all states. The system is
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completely observable.
4.3.2 Controllability

In this section we evaluate the controllabilty of the system

with all friction effects ignored.

The controllability of the system can be evaluated in a number
of ways. Ve use firstly the modal form to determine
reachability of each mode from turntable torque and secondly
check for rank deficiency of the controllability matrix Cc

where, for the system matrices as defined in 4.1
C.=[B AB...... A(n'l)B] n = order of system

The modal form of the state response to forced input is

determined as [4]

x(s) k'zf.l [sT - 4] Luy (s)

n m

1 T
i§| k§1 (s - Iii viwiuk(s)

T

where v. and w; are right and left eigenvectors respectively of

i
the open loop system associated with the i’th eigenvalue Ai and

u, (s) is the Laplace transform of the k’th input.
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Evaluation of this (modal) form using standard eigen analysis
software (MATLAB or MATRIX ) indicates (erroneously) that all
modes are controllable from the single input Ft’ the turntable
torque, which might lead one to believe that the system is
completely controllable, whilst the first method shows the
controllablity matrix Cc to be of reduced rank and hence the

system to be not completely controllable.

The modal form result is counter intuitive, since it is clear
that in a frictionless system using ’reaction wheel’ actuation,
it is impossible to control both the action and reaction
independently. It is only possible to obtain a desired action
and the reaction has to be within the constraints of the system

and thus dependant directly on the action.

This is a typical problem encountered in solving for the
eigenstructure of a system having repeated eigen values. The
solution to the posed eigenvalue problem, for example the left

eigenstructure problem

vhere Ai is one of a set of repeated eigenvalues, yields an
n-dimensional plane as the solution to this linear algebra
problem which is clearly not correct for a physical system. The
correct solution is easily determined using standard software

by ’fooling’ the software and perturbing one of the state space
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A-matrix parameters slightly (on the order of 1073

perturbation). This yields the correct eigenvector solution.

The important result is that the system is not completely
controllable if no friction is modeled. Including yawing
friction (viscous friction) between the tyre and the surface
yields a completely controllable system as intuitively expected
since this changes the means of actuation to be no longer

reactionary.

This result also yields insight into how to independently
control the turntable speed in a low bandwidth sense i.e.
impose a restraining torque which is always much less than the
stiction, to retard rotation of the turntable which might arise

due to control.

4.4 Open Loop Plant Dynamics

The eigenstructure of the open loop plant below shows the
presence of an integrator, an unstable-stable pair of equal
frequency and a low frequency stable pcle. The eigenvalues and

eigenvectors of these modes are as follows

A1= -3.29 vy = 0.95




Ao= 3.29 - [ 0.95
0.29
-0.06
0.06
Ao= -0.065 = 0.002
0.03
-0.71

0.71

A4= 0.0
0.0
0.0
1.0

Closer examination of the mode shapes indicates that the two
poles at -3.29 and +3.29 rad/s respectively represent the
inverted pendulum effect in roll. The pole at -.065 is
representative of the yawing motion of the unicycle and is not
a pure integrator since we have included viscous friction in
the yawing equation of motion. In forced motion. the ratio of
turntable to frame rotation rate is determined by the inertia
ratio of these two elements, since we have not modeled any
friction effects between the turntable and the frame. The
integrator represents purely the rotation of the turntable
independant of the frame, again since we have not modeled

friction effects between these two elements this is
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not a stable pole.

4.5 Root Locus as Function of Wheel Angular Velocity

The lateral dynamics are strongly dependant on the angular
velocity of the wheel by means of the gyroscopic coupling
between roll and yaw which arises when the forward rolling
wheel undergoes yawing or rolling motion. This is demonstrated
in figure 4.5.1 which shows the s-plane location of the open
loop lateral system dynamics as a function of wheel angular

velocity.

As is shown later, this effect necessitates implementation of a
gain scheduled control algorithm in order to account for the
linear controller not being able to control the system
adequately at wheel velocities differing significantly from the
design value so that a time varying (parameter dependant)
control structure is necessary. This is discussed further in

chapter 5.

4.6 Transmission Zeros

As we wish to control only the heading of the lateral system in
a command following sense, the other states all being regulated

to zero, we consider only this square system when evaluating

the transmission zeros.

74



In section 3.2 reference is made to the fact that nonsquare
systems do not in general have any transmission zeros [10] and
this is shown by the following reasoning for this single input,

four outpui system.

By definition, the transmission zero represents, specifically
for the single input multi output case, a frequency of
exponential input for which there is no response in any of the
output channels (in the multi imput multi output case, this
includes .a requirement on the directionality of the combined

inputs as well as the plant initial condition).

Considering the four transfer functions from the turntable

torque input to each of the outputs ¢, ¢, ¢ and 7

o(s) _ 42.9 s
I'(s ~ s(s + 0.065)(s + 3.29)(s - 3.29)

s) _ 42.9 s
s)  s(s + 0.065)(s + 3.29)(s - 3.29)

t

; +3.3)(s - 3.3
f%%} = 947575 3(3.065)(2(3 3.29)%s —3.39)

?{g} _ _154.7(5 - 0.025)(s + 3.296)(s - 3.296)

I s(5 + 0.065)(s + 3.29)(s - 3.29)

it is clear there exist no common zeros to all the above

transfer functions and hence we deduce that the system has
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no transmission zeros.

4.7 Reduced Order Inner Loop Regulator

As in the longitudiral system, the system is essentially of two
time scales and thus lends itself to a controller structured
around a ’fast’ inner loop and ’slow’ outer loop. A reduced
order model is used in this section to define the inner loop

regulator.

Since the measurements are noisy, it is sensible to use an LQG
structure to obtain good state estimates for regulation. All
the inner loop states are to be regulated as opposed to command
following, which makes the possible structure specially suited
to a variation in the standard LQG structure. This leads to the
command following outer loop being independent of the Kalman
filter dynamics in the inner loop and is shown in detail in

appendix 2.

4.7.1 Variation of LG Structure

The closed inner loop structure is shown in figure 4.7.1.1. The

subscrpt ’1r’ denotes lateral reduced order model, to

distinguish from the full order model of section 4.1
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Figure 4.7.1.1 Inner LG regulator loop

In the inner loop we wish to regulate the roll rate, roll angle
and yaw rate and these are the states of the reduced order
lateral model. The input to the plant, T (t), is the turntable
torque and by the nature of the model, this is the natural
place to break the regulator loop when appending the cuter loop
dynamics i.e. the integration of yaw rate to yield heading
angle. This is so since the heading command generates a
commanded torque to the turntable and this influences the
status of the inner loop in the sense of input disturbances to
the reduced order plant. The interesting result is that the
filter dynamics do not show up in the outer loop transfer
function relating the ’external’ (outer loop) input u(t) and

the output y(t) = [p ¢ #]T. See appendix 2.

This approach is used in both the longitudinal and lateral
controllers which are both ’non-square’ and as such do not fit
into the LOG/LTR ballpark. It is of course possible to reduce

the number of measurements of the ’design plant’ in order to
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fit the LQG/LTR approach, but it is senseless to throw away

information contained in these measurements specifically seen
in the light of the difficulty of the control problem. Only in
the case ¢f measurements providing redundant information would

this be feasible.

Using this method of synthesis thus defines an irner loop of
desirable characteristics about which any design methodclogy
can be applied to design the outer loop compensacion. For
example, the outer loop may be multivariable and if
dimensionality of the compensator is not too much of an issue,
an LQG structure could be implemented in order to be sure of
optimal outer loop state estimaces being used in the

controller.
4.7.2 Design of Inner Loop

In this section we apply the methodology defined in 4.7.1 to
the lateral controller. The inner locp is designed about the
reduced order plant which, similar to the longitudinal
controller inner loop, contains the inverted pendulum type
dynamics and the yaw motion dynamics. The state space model
describing these dynamics for the reduced order state vector

x(t)=[p v ﬁ]T and input I, (turntable torque) is
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Alr = 0 10.9 0.45
1 0 0
-0.21 0 0.064 j
0
94.7

with measurement matrix the identity matrix of order 3x3 since

we measure all states.
4.7.2.1 Reduced Order Regulator

Ve design the linear quadratic regulator to stabilize the inner

loop and to minimize the quadratic cost functional
® T T
J= [ {x7(t)Qx(t) + u (t)Ru(t) }dt
o]

The feedback gains are determined for the steady state solution

as

_ o 1,T
Glr =k Ber

with P the solution (steady state) to the control algebraic

Riccati equation [4, 12]
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T

T -1 _

1r
This yields a closed loop regulator with all the desirable
characteristics of the LOR solution in gain margins of 1/2 to o
in each channel independently and simultaneously, phase margins
of at least between -60° and +60° in each channel independently
and simultaneously and closed loop high frequency roll-off of

-20dB per decade.

The inner loop is to act as a regulator in the sense that outer
loop commands generate disturbances to the inner loop and these
are desired to be ’rejected’ as efficiently as possible. This
is the perfect setting for the input disturbance rejection
characteristics of the L regulator which guarantee, for the
cheap control problem (control weighting - 0) and minimum- phase
systems, perfect input disturbance rejection [4]. The reduced
order system here is non-square (one input and three outputs)
and has no transmission zeros, but we use the expensive control
problem, so perfect disturbance rejection is not achieved,
however, it is optimal in a least squares sense for the

weightings selected.
For the state weighting
Q=1

3x3
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and control weighting

R = 100

rather arbitrarily selected as expensive control weightings,

the LQR gain matrix is

G1r= [1.99 6.58 0.17]

yielding closed loop poles at

Ay= -9.45 rad/s
Ap= -3.54 rad/s
Ag= -3.09 rad/s

Clearly the solution has yielded closed loop perdulum mode
poles located close to the stable open loop pole and the
unstable pole has moved to its mirror image about the imaginary
axis as is expected using root square locus reasoning. One of
the poles around -3 rad/s would move closer to the origin as
the control weighting is reduced, thus reducing the effective
bandwidth of the closed loop system, hence the choice of the

expensive control solution.
Figure 4.7.2.1.1 shows an initial condition time simulation of
the regulator for initial value of ten degrees in roll angle

error. Figure 4.7.2.1.2 shows the Bode magnitude plet for the
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transfer function relating turntable torque to yaw rate. Note
that since this transfer function has dc gain of 97.4, the

magnitude is raised approximately 20dB. This is the loop shape
(closed inner loop) which we wish to retain when incorporating

the Kalman filter in the feedback loop.
4.7.2.2 Kalman Filter

The Kalman filter is essentially in the feedback loop of the

LQG structure as implemented here. For the plant

).((t) = Aer(t) + Blru(t) + Blrf(t)
and measurement
y{t) = Gy x(t) + v(t)

WVhere {(t) and v(t) are assumed to be zero mean Ganssian white

noise of constant intensities Z and V respectively.

The optimal steady state least squares estimator for this

linear time invariant system is of the structure

x(t) = Ay &(t) + B(y(t) - 1 &(t)) + By u(t)

1

(ﬁlr— kaélr) x(t) + Hpy(t) + ﬁlru(t)
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In the absence of noise data for the process and sensor noise
of the system, we select the covariance matrices as follows.
Essentially, the rate senscrs are considered ten times
(arbitrarily) noisier than the inclinometer and the process

noise.

Process covariance

(3]
(]
—

Sensor covariance

10 0 0
V= 01 0
0 010

The steady state state error covariance ¥, is the steady state

solution to the Filter algebraic Riccati equation
$=4%+54 0217 - sclvilcs
yielding filter gains
B, = 5cv1

[ 3.47 10.43 0.38
1.04 3.16 -0.007
[ 0.38 -0.07 390.02
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The closed loop dynamics are (eigenvalues of [&1r— kaélr])
Ay =-29.95 rad/s
)y = -3.38 rad/s

Ao = -3.25 rad/s

Since the filter has three inputs and one output, it has no

transmission zeros.
4.8 (Outer Loop Closure
4.8.1 The LGG Inner Loop Closed

The LQG inner loop regulator structure including the turntable
angular velocity state () is shown in figure 4.8.1.1 and the
transfer function defined here relates input r,=[000 O]T to

the output of the plant [p ¢ ¢ b]T

Figure 4.8.1.1 LQG Inner Loop Regulator Block Diagram.
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The seven state (3 filter states and four plant states

including 7) open loop state space model for figure 4.8.1.1 is

x(t) [Air - BicGir - HesCie] 0 0 x(t)
x(t)| -B1:Gir [Alr Az, 0)] ] x(t)
W(t) 'B(491)Glr A(4,1:3) A(4,4) 7](1:)
-Bgs O
1 0 offe
L o o

Vhere A’ and ’B’ without subscripts refer to the system
matrices of section 4.2, superscript " refers to the Kalman

filter.

For measurement of all four states

o(t) ((4)
y(t) = zE:; = [ 04,5 ITgug f(t)
7(t) n(t).

The closed loop dynamics matrix is then simply

A A

7¢1° 7017 B0y

Yhere the subscript ’7’ refers to the seven state open loop

model as defined here.
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The closed inner LG loop (i.e. including Kalman filter)
transfer function relating turntable torque and yaw rate (9)
Bode magnitude plot is shown in figure 4.8.1.2 and comparison
with figure 4.7.2.1.2 shows that the presence of the Kalman
filter has not influenced this transfer function at all, as

predicted in section 4.7.1. The transfer function is

97.74(s+3.30) (s- 3.30)

~ (5+9.45)(s+3.54) (5+3.09)

Vhere the filter error dynamics appear in both the numerator
and the denominator and hence pole zero cancellation occurs.
This, together with the controllability matrix structure as set
out in section 4.3.2, also indicates that the filter error
dynamics are uncontrollable from the input I'(t). The integrator
in this transfer function is the turntable rotation mode and as
discussed in section 4.3.2, this mode is uncontrollable, hence
the differentiator in the transfer function showing pole zero

cancellation of this mode.

In order to see the effect of the filter on the inner loop
regulation performance, initial conditior simulations for an
initial bank angle error of ten degrees are shown in figures
4.8.1.3 a, b & c. Comparing these with figure 4.7.2.1.1 shows

that the LOG regulator response is degraded (slower than the L{
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regulator) but is still very good with peak values and

transient behaviour quite similar to the system without the
Kalman filter. The Kalman filter states of figure 4.8.1.3a
track the plant states of figure 4.8.1.3b very well, so the

performance of the filter appears good.

The Kalman filter thus influences the system mainly in that it
obtains better estimates of the states for full state feedback
in the inner LG regulator loop and in an optimal sense
(minimizing least square errors, if our guesses at the noise
covariances are not too far wrong) as opposed to simply
employing low pass filtering in each channel to eliminate
noise, at the cost of phase loss and no assistance in obtaining

better estimates from the sensors.

This is a very desirable feature in that some form of filtering
is necessary on these sensor channels, so if this is

transparent in the outer loop of interest, all the better.

4.8.2 Positive Feedback in Heading Loop

The model is now augmented with an integrator, representing
integration of the yaw rate to yield heading angle as we would
like to maintain heading in a relatively low bandwidth function
to counter the drift due to turntable torque commands required
for maintaining balance of the unicycle. The system block

diagram is given in figure 4.8.2.1 and the state space model is
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determined as follows

- outer loop feedback path ;
%L Kg- L
{Bir— Cy_

_!‘Glr :

inner lcop feedback path B4 ] Rl ]

Figure 4.8.2.1 Complete Lateral Closed Loop Block Diagram.

The full system with inner LG loop closed and outer heading

loop open state space model is

%(t) [A1r-Bie61r-HisCie] HisCir 0 0f] x(t)
x(t)| ~ -B1:61: [Ah- A(:,4)] of| x(i)
fi(t) -B(4,1)61r A(as1:3) Ae,4)] Of| n(t)
p(t) 0 (00 1] 0 0J{ #(t)
glr 11(
+ Bl(z,l ‘l ¢¢C

with measurement

y() = $(t) = [05,; 1] x(¢)
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The closed loop dynamics matrix is
Ac1= A61-Bo1Co1

The numerical transfer function form for this case (wheel speed

of 2 rad/s) is determined as

#%g} _97.74(5+29.95) (5+3.25) (s+3.38) (s+3.30) (s-3.30)s
5) © (§I§§T§7(§¢§T§%)(s+3.38)(s+9.45)(s+3.54)(s+3.09)(s)(s)

t

97.74(s+3.30) (s-3.30)
(5+9.45) (5+3.54) (5+3.09)5

Clearly the presence of the non minimum- phase transmission zero
will pull the integrator into the right half plane for negative
feedback, so positive feedback is used in closing the heading
loop. Feedback gain of K¢=-0.06 (Nms/rad) is chosen for this
loop and the cpen loop transfer function is shown in figure

4.8.2.2 3 & b.

The net phase contribution of the two zeros around 3.3 rad/s is
zero since one is non minimum- phase. The two poles of the inner
loop regulator contribute approximately 90° phase lag (at this
frequency) and this combined with the 90° phase lag due to the
integrator, is the cause of the poor phase at this frequency if
we were to use negative feedback and positive lcop gain. The
loop transfer function is of desirable shape as regards high dc

gain for good command following and disturbance rejectior and
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no resonant modes, with good high frequency roll-off to guard

against excitation of unmodeled high frequency dynamics.

The closed loop transfer function is

#{g} 97.74(s+30) (s+3.3) (s+3.4)(s+3.3)(s-3.3)s
(s+30)(s+3.3)(s+3.4)(s+10)(5+3.3) (s+1.1+30.7) (5+1.1-30.7)s

_97.74(s+3.30) (s-3.30)
= (5+10.49) (5+3.33) (s+1.13%30.7) (5+1.13-30.7)

Since the filter error dynamics are uncontrollable from the
outer loop, these poles remain fixed when closing the heading
loop. The effect of the need for positive feedback (negative
gain K¢ in figure 4.8.2.1) is clearly illustrated in the
presence of the two stable oscillatory (well damped) poles,
instead of unstable poles which result from positive gain Ky.

The root locus plot of figure 4.8.2.3 illustrates this.

The closed loop Bode magnitude plot is shown in figure 4.8.2.4,
and closed loop step heading command simulations are shown in
figure 4.8.2.5 a, b & c. The time responses illustrate the non
minimum- phase behaviour of the system. The small motor torques
required by the linear controller are clearly too small to
overcome yawing friction between the wheel and the surface and
this is motivation for the implementation of the lateral
controller in the form of a bang-bang controller. Details of

this are given in chapter 6.
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4.9 Compensator State Space Model

For purposes of implementing the controller in digital form, we
need to define the state space model of the compensator with
all feedback paths open. The cascaded form of the open loop

compensated system is shown in figure 4.9.1.

e 1D | ¥ 2
Yc tq +l + v
gr | ~ ol —o—TTako-Drilal— (¢
Ve [Ax | Ap| p(t
compensator design plant

Figure 4.9.1 Cascaded compensator and plant

This is the desired form since the closed loop compensated
system is simply obtained by defining the closed loop form of
this state space model. Consider then, referring to figure
4.8.2.1, the state space description with all feedback loops (¥

¢, v, ¥ loops) open.

i(t)] [ﬂlr-ﬁ1rG1r—kaé1r] 0 0 0l x(t)
x(t)] ~ -BirGiy [A1r A(:,4)] Off x(¢)
(t) -B(4,1)61r A(4,::3) A(are)] Of 7(t)
p(t) 0 [0 0 1] 0 0] | #(t)
By | Bir e
+10 T L 4.9.1
0 B(451) ¢ gc
o o ] c.

01



with measurement matrix

%(t)
y(t) = | 049 [[glr] g3x1 23x1] x(t) 4.9.2
L Y123 “1x1 f1x1]]] .
n(t)
¥(t)

The state space model for the cascaded system of figure 4.9.1

is

5[ L) T o

with r¢ = [¥e vc pc ﬁc]T, the commanded input to the system,

and measurements

y(t) = [0 Cp][ i:i;)] 4.9.4

Now, matching blocks of the partitioned matrices of 4.9.1 with
4.9.3 and 4.9.2 with 4.9.4, yields the state space model for

the compensator
Ay = [ Ay Byl HieCypl
= Ul By Kyl

g = 6]
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D, = [0, K

1x3 vﬁ]

4.10 Discrete Time Compensator

The discrete time controller is determined as in section 3.12
method (2), but since we have a time varying plant in the
lateral model, not only do the L and Kalman filter gains vary
with wheel angular velocity, but also the plant model. This
requires a slightly different approach than for the
longitudinal system. This is discussed in the following chapter

on gain scheduling the discrete time controller.

93



8 T ; ; ; ; ! ;

J RO SO ORI SERNN: S — PO S -
4 e, er e e, Boee e Foon frere e e v -
i?
_ e e e e §x .................................................................. -
I H
" : X
a i : i X : ;
(-J () b csvsaa sene mx.x.x.x..x.“..x,;.!..*..--)(- )( x x.-)mx‘ ! X "“X""'X"'X'"X"X'X'X‘X‘Xm ........ —
i H s : X H H
11
a e e e
.
Y
B I S S ST DTN S S S i
Y- S OO S N bevrs e B O AT e
-8 i ; H H H H ;

Real

Figure 4.5.1. Root locus of lateral open loop dynamics as function of
wheel speed. The stabilizing of the pe;ldulum mode with increased wheel
speed 7. roll is entirely due to greater gyroscopic restoring moments
existing at higher wheel angular velocities. This mode stabilization

is synonymous with that demonstrated by a rolling disk at high speed.
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Time ()

Figure 4.7.2.1.1. Inner loop L§ regulator (excluding Kalman filter)
response to initial roll error of 10°. Units are radians and rad/s.
The inner loop serves to regulate errors in roll angle, roll rate and
yaw rate, emulating buman unicyclist behavior when executing a heading
change, which typically involves pulse heading changes- the roll
angle, roll rate and yaw rate errors being regulated to zero in an

inner loop sense.
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Figure 4.7.2.1.2. Bode magnitude plot for L{ inner loop closed. The
transfer function relates turntable torque to yaw rate. This loop
transfer function is retained when the Kalman filter is included in
the inner loop (see figure 4.8.1.2.). Note 20 dB gain at low
frequencies- this occurs since we are breaking the regulator loop at

the unusual location in the plant imput.
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Figure 4.8.1.2. Bode magnitude plot for inner LG loop closed. The
inner loop includes a Kalman filter in the typical LQG structure and
this does not affect the outer loop transfer function as is apparent

in comparison with figure 4.7.2.1.2.
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Time (8

Figure 4.8.1.3a. LQG inner loop regulator response to initial roll
error of 10°. Estimates of roll angle, roll rate and yaw rate states
plotted with units radians and rad/s. Comparison with figure 4.7.2.1.1
shows almost negligible difference in performance. The true states are

plotted in figure 4.8.1.3b for comparison.
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Figure 4.8.1.3b. True states response to initial condition as
specified in figure 4.8.1.3a. Comparison with this figure shows good

tracking of the states by the Kalman filter estimates.
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Figure 4.8.1.3c. Actuator activity for initial condition simulation.
Note the small amplitudes. These represent motor torque and the
gearing or the turntable amplifies this by ratio 36:1. These
amplitudes are too small to overcome coulomb friction (stiction and
kinematic friction) effects hence the implementation of this

controller in a bang-bang setting.
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.8.2.2. Bode magnitude and phase plots. Open outer loop

commanded heading to plant heading, with inner LG loop

closed. The loop shape is desirable for good command folowing, output

disturbance rejection and attenuation of sensor moise and has good

phase margin.
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Figure 4.8.2.3. Heading loop root locus (negative gain). The heading
loop gain is selected negative to prevent the integrator moving into
the right half plane toward the non minimum-phase zero near 3.3 rad/s.
Closed loop poles are at -10.64 rad/s, -3.33 rad/s and an oscillatory

pair at -1.13+j0.7 rad/s respectively.
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Figure 4.8.2.4. Bode magnitude plot. Outer heading loop closed and
inner LQG regulator loop closed. Bandwidth is approximately 0.4 rad/s,
i.e. one decade belcw the frequency of the non minimum- phase zero.
This could be designed to have higher bandwidth, but the loop
sensitivity would show amplification of output disturbances over a
significant frequency range, which is undesirable. This is directly

attributable to the non minimum- phase zero.
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Figure 4.8.2.5a. Simulation response of closed loop system to step

heading command. Estimator states in units of radians and rad/s

respectively. Comparison with figure 3.8.2.5b shows excellent tracking

of plant states.
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Figure 4.8.2.5b. True system states response to step heading command.
Units are radians and rad/s. Notice the steady state error in
turntable angular velocity. This is since we have not modeled any
friction in the turntable drive-train and also have no means cf
controlling this state independently in the frictionless model. If the
stiction (breakaway friction) value is well known, a slow loop
(requiring torque actuation much smaller than the stiction value) may

be closed around turntable speed to regulate this.
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Figure 4.8.2.5c. Turntable actuator activity for step heading command.
Again, these are motor torques, so the torque experienced by the
system is 36 (the gear ratio on the turntable is 36:1) times greater.
These values are still too small to overcome friction and we deal with
this by applying pulsewidth modulated torque commands of large
amplitude (significantly larger than friction) in a bang-bang type

implementation. This is discussed in chapter 6.
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5.0 GAIN SCHEDULING THE DISCRETE TIME CONTROLLER

5.1 Introduction

As indicated in section 4.10, the lateral model is of time
varying nature, requiring a gain scheduled controller since no
one controller as designed in chapter 4 will suffice over a

large enough range of wheel speeds.

Here we look more carefully at the nature of the time variation
and define methods for dealing with this. Since the system
varies according to a single parameter, the dynamic model can

be written as a function of this in discrete time.

As a result of this time variation of the plant it is of course
necssary to have time varying L@ regulator and Kalman filter
gains to yield consistent performance over the operatimg
region. Thus, the L{ and Kalman filter gains are evaluated over
a large number of operating points and then least squares
polynomial fits of each element as a function of wheel angular
velocity (f(t)) are defined in order to compensate for the

necessary time varying nature of these gains.
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5.2 The Time Varying Model
5.2.1 Continuous Time Model

The continuous time lateral model in standard state space form
x(t)=Ax(t) + Bu(t) for the state vector x(t)=[p(t) p(t) ¥(t)
ﬁ(t)]T is determined by carrying out the symbolic inversion of
the mass matrix of the lateral decoupled system as specified in

section 4.2, to yield
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Mg3 = M3q = -Ig
den = I

kig = (T, + mg(rs 1)+ my(r,* 1)

kis = (mwr?] *mgT (g re) +omr(ror 1) Ig)no
ks = -I3 0

Clearly, the only coefficients which are affected by a change
in wheel angular velocity, are A(1,3) and A(3,1) for the
continuous time system nodel and the relation is linear,
however this linearity is not necessarily preserved in the

discrete form.

5.2.2 Discrete Time Hodel

The discrete time model, discretized according to the method as
outlined in section 3.12, has nine state transition matrix (%)
elements which are time varying and the control distribution

matrix (') has two.

The means of determining this is simply to evaluate the state

transition matrix and control distribution (discrete time)
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matrix at a number of typical values of wheel angular velocity
(1) and look at the trends shown by the individual
coefficients, a rather brute force approach, but effective for
this specific system. Only one of these varies in a
significantly quadratic sense, the others all being essentially

linear.

Using a least squares curve fit to these data, we obtain the

following expressions for the time varying elements of thes

matrices.
§(3,1) = -1.0523 = 10730
§(4,1) = 1.0523 x 10730
§(5,1) = -5.2621 107 Op
§(3,2) = -5.7347 x 10790
§(4,2) = 5.7347 x 10790
§(5,2) = -1.9117 = 100
§(1,3) = 2.2324 x 10 30
§(2,3) = 1.1163 x 107 °0
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8(4,3) = 1.1747 x 107902 + 1.9464 x 10790 + 6.4452 x 1072
I(1,1) = 1.0576 x 10750
I(2,1) = 3.5254 = 10750

These expressions are all really simple and as such could
easily be implemented in code with minimal cost in terms of CPU

time of the microcontroller.

5.3 The Time Varying Controller

The controller is a model based compensator and thus
incorporates the time varying plant dynamics as specified in
section 5.2.2. In addition, the L regulator and Kalman filter
gains are time varying and since these are generated via a
highly nonlinear function in the Riccati equation, these do not
follow nice linear paths, but are nonetheless continuous
functions suited to least squares curve fitting. A typical
example is shown in figure 5.3.1, where the regulator gain gi
is plotted as a function of wheel angular velocity for both the

data points as well as the curve fit.
Following the approach as in section 5.2.2, generating data at

a number of typical operating points and solving for the

regulator and filter gains at each condition according to the
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procedure as outlined for the discrete time case in section
3.12, the folowing polynonials describe the value of the
respective gain elements as functions of wheel angular velocity

(rad/s).

The LQ regulator gain matrix has three elements

G, .= [g1 g2 &3]
and the Kalman filter gain matrix has nine elements

hl1 h2 h3
ka= h4 h5 h6
h7 h8 h9

The polynomials determined by least squares fit are

gl = -8.806x107 207 + 9.051x20" 708 - 3.992x107%7 + 9.879x10" 408
- 1.506x10720% + 0.146 0% - 0.905 23 + 3.466 0% - 7.699 0
+ 8.743

g2 = -2.907x10" 209 + 2.088x107 %08 - 1.318x107%n7 + 3.261x10" 308
- 4.973x10720% + 0.483 0% - 2.980 03 4 11.44 0% - 25.42 2
+ 28.86

g3 = 3.794x10 602 + 1.737.107% + 0.16

2

BT = -9.48x10" 05 + 6.048x107°02 + 1.795x10° %0 + 3.742x10°

112



h2 = 5.6x107 105 - 3.261x10 902 - 1.744x10"% + 8.7432x102
h3 = -1.183x107°02 1.635x10730 - 4.275x10™%

h4 = 0.0114

h5 = 6.0265

h6 = -5x10"

h7 = -1.132x107°02 + 1.663x10730 - 2.762x10° 3

h8 = 5.975x10 002 - 8.156x107%n - 5.014x1072

h9 = -8.123x10790% - 4.843x107% + 0.255

The controller structure is shown in figure 5.3.2 for the

discrete time system

kalman {1

'y

Figure 5.3.2 Discrete Time Lateral Closed Loop Block Diagram.
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The subscript ’1r’ refers to the reduced order (3-state) model
used for design of the inner LG regulation loop and
specifically refers to the model determined by reducing the
state vector to xy =[yp ¢ ﬁ]T. Note that figure 5.3.2 refers
to a five state plant, the extra state being simply the

integral of yaw rate to yield heading angle.

By the very fact that we deem it necessary to use gain
scheduling due to the non-robustness of the contrcllers to
varying wheel speed, it is of quite significant importance to
obtain good data as regards this parameter and in order to
achieve this, it may be necessary to low pass filter this
measurement as suggested in section 3.10, or even run a Kalman
filter around the inner LQG loop (i.e. run an estimator in the
outer wheel angular velocity loop), which would turn out to be
of third order since as shown in appendix 2, the inner LG loop
Kalman filter dynamics may be ignored when considering only the
outer loop, and the plant is third order when wheel speed is
included. This will of course lead to a compensator of order
five (three in outer loop and two in inner LG loop), however,
this does not pose any problems for us in implementation, so it

is a feasible idea.

Simulations showing the performance of the gain scheduled
controller in discrete time are shown if figure 5.3.3. The
gains are continuously updated at each data sample point which

is nominally selected at 0.01 seconds period
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(sample rate 100 Hz). The simulation results look good, but the
important issue is that the measurement of wheel angular
velocity () is assumed perfect as is the model (in the sense
of unmodeled high frequency dynamics) in the simulations, which

is definitely not the case in the real world.

5.4 Stability of Gain Scheduled system

We have absolutely no guarantees as regards the stability of
this scheme and make no claims to this end. As mentioned in
chapter 4, we could consider the system as moving in a
linearized time invariant sense from one stabilized point to an
adjacent stabilized point and that the direction in which it
starts out from each point is such as to incur minimal least
squares penalty according to the LQG regulator and filter cost

functions.
0f course one sure way to evaluate the scheme is to test it in

the real world and these results should be available in the

near future.
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Figure 5.3.1. Regulator gain gl variation with wheel angular velocity.
The discrete data points (*) represent the value as determined by the
controller design at the specific wheel speed. The continuous line
represents the least squares curve fit for the ninth order polynomial
and the dashed curve (- -) represents a seventh order polynomial fit.

Clearly the seventh order fit is inadequate.
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Figure 5.3.3a. Discrete time simulation of step heading command with
gain scheduled controller. Inner loop Kalman filter estimates of roll
angle, roll rate and yaw rate shown. The controller gains are updated
at every time increment (100 Hz frequency). Comparison with figure
4.8.2.5 shows that in simulation, the gain scheduling has not affected

performance at all.
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Figure 5.3.3b. Imner loop plant states roll angle, roll rate and yaw
rate for step heading command. The estimated states accurately reflect

similar time histories to these, as shown in figure 5.3.3a.
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Figure 5.3.3c. Heading and turntable angular velocity response to step

heading command for the gain scheduled controller.
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6.0 PULSEWIDTH MODULATED BANG- BANG ADAPTIVE CONTROLLER
6.1 Introduction

Since the friction between the wheel and the surface is very
’condition dependent’ for example tyre pressure and surface
state markedly influence the nature and magnitude of the
friction, it is desirable to have the controller capable of
dealing with this situation. To this end we define an adaptive
controller which could of its own accord determine the friction
(in yawing motion) magnitude, but dependent on a pre-specified

form or model.

In order to overcome the problem of stiction, we implement the
lateral controller in the form of a bang-bang controller, the
amplitude of actuation being larger than the estimated stiction
such that the unicycle always breaks free of this restraining

moment when commanded.
6.2 Friction Model

Ve model the friction in three forms. The equations of motion
as derived in appendix 1 take into account the linear form of
friction i.e. viscous friction which might be present between
the wheel and the surface and all other forms of friction are
lumped into the externally working friction term F. The viscous

friction term models a form of yaw damping and is an opposing
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moment in yaw which is a linear function of the yaw rate. The
second form is stiction or static friction (breakaway friction)
which is assumed to be a constant value and essentially
represents a deadband of torque action on the system in that no
motion occurs in yaw before the external action torque exceeds
the magnitude of the stiction moment. Thirdly, we model a
constant with yaw rate kinematic frictior, which is thus
independent of yaw rate and a function of the surface
condition. Figure 6.2.1 shows a schematic diagram of the

complete friction model.

Friction (Nm)

s . viscous friction
stiction RN

kinematic friction

) 4(2§3}s)

Figure 6.2.1 Yawing motion friction model

6.3 Pulsewidth Modulated Bang-Bang Controller Structure
The linear controllers we have thus far designed have the best

chance of success if the unicycle in the real world is as

closely as possible modeled by the linear equations of motion
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as derived. To this end, we aim to identify the main source of
potential deviation from the linear model. This is obviously
the friction problem as defined in section 6.2 above and the
obvious solution is to try and define some scheme such that as
far as the linear control system is concerned, this
nonlinearity is not apparent in the sense that the response of
the unicycle to turntable torque commands should as close as

possible be what is expected in the logic of the controller.

This implies defining a scheme which converts the commanded (by
the controller) torques into an expected yaw acceleration,
assuming that the longitudinal controller is successful in
achieving its task of reducing pitch motion errors to zero.
Referring to figure 6.3.2, the block defined as ’actuator’
should essentially yield the expected accelerations desired by

the controller in yawing motion.

e i it
¢C a !'f_OT ? t
gc l_ ——_+1i -_q p(t
Ye #(t

compensator design plant

Figure 6.3.2 Location of ’actuator’ block.
Assuming the pitch controller is successful and since we do not

ever command steady turn rates (rather, heading is commanded)

the roll rates and roll errors can be assumed small, the
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lateral yawing motion may be described by a single simple

equation
p(t) = K.I, - [friction effects]

vhere Kt represents inertia effects and is the associated
element in the control distribution matrix of the linear model.
Ft is the turntable torque assumed instantaneously achieved
since the time constant (in torque) of the DC motor used is
negligible. The linear controller, however, expects yaw
acceleration governed approximately by the equation (other

small terms are neglected)
#(t) = Ktrt

Clearly, the difference in actual response and linear expected
response is due to the friction effects and we could obtain
estimates of the friction by measuring the yaw rate and

comparing this with the expected rate. Thus

t

. . f

Yexpected - Yaciual =tI { K, I, + [friction effects] - KT} dt
i

or, considering the differential over a small interval in time

At

¢ex°°0tegt- Yactual - [friction effects]
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This offers a means of estimating the friction effects, but the
estimate must occur over a short time period and the assumption
regarding the fast torque motor response may be inaccurate over
short time intervals. A better approach would be to do

estimation while the system has no actuator torques active. In

this case the governing equation of motion is simply

#(t) = - [friction effects]

the negative sign indicating the effect of friction is to
derease the yaw rate. Now it is simpler to consider a period of
time over which the turntable torque actuator has no command
and take measurements of the yaw rate at the beginning and the

end of this period. The estimate of friction effects is then

'- . 3 1 - .f- 1 ~ . .

Vinitia T Yrinal - [friction effects]
which is dependant on good measurements of ¢ and has one less
source of error in that since no turntable torque is active,
this does not also have to be determined as is necessary in the
previous suggested approach.

6.4 Bang-Bang Control

The requirement we have imposed upon ourselves by the second

method of friction effects estimation is that the lateral
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system has to run open loop for a short period of time whilst
measurements are made to drive the estimator. This fits very
nicely into the framework of a discrete time bang- bang
pulsewidth modulated strategy. We define three time scales: 1)
define Atc as the time period over which the torque command to
the turntable is held constant and 2) define T to be the sample
period of the discrete time controller, with Atc> T and 3)
define Att as the time period of fixed amplitude torque
application to exert an equivalent (to the linear controller

required value) torque impulse on the system.

The magnitude of the torque command (FC) to remain constant

over the interval Atc is determined by the controller based on
the latest measurements and the product of this value and Atc
determines the impulse which will be applied to the system by

this command.
I, =Tt. (Newton meter seconds)

Consider the actuator which applies torques of fixed magnitude,
T¢, then the duration of this torque required to yield the same
impulse (Newton meter seconds) to the system is

Im

o

FcAt

= —Tg—fl- (seconds)
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A timing diagram showing the relation between the 3 time

intervals as defined here is given in figure 6.4.1

Turntable |
Torque (Nm)

//M ]
T c

Time(s)

Figure 6.4.1 Timing Diagram for Pulsewidth Modulation

In figure 6.4.1, the area under the curves represent the
equivalent torque impulse applied to the system for the
constant torque inputs. As defined above, the interval Atc
represents the interval of conrstant applied torque and Att the
time interval required to yield the same impulse with larger
amplitude. The interval (AtC - Att) is the interval over which
the torque cowmand is set to zero and is thus also the interval
over which yaw rate measurements are used to obtain an estimate

of the friction.

The time inmterval Atc must be selected large enough such that
it does mot excite the unmodeled dynamics of the drive train
and the motor should be able to achieve the selected rate of
torque commands. The trade-off is to ensure that this interval
is short emwough so as not to allow the unicycle to attain

irrecoverable roll or pitch errors between actuation.

The discretization interval T, as shown indicates the fact that
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the applied constant torque may only exist over integer
multiples of T, thus it is apparent that the unicycle will
settle into a stable limit-cycle induced by the controller
since it can never achieve the infinitesimally small torque
impulses required to maintain an unnoticeably small amplitude
limit cycle, unless we use amplitude modulation together with

pulsewidth modulation.

6.5 Compensating for Friction

Now we have a controller structure which obtains on-line
estimates of the total friction effective in yawing on the
unicycle and we use this information to define compensatory

values in the commanded torque to overcome these effects.

Consider the friction as estimated

P - Is(ﬂinizz?lktffinal )

where I3 represents the moment of inertia about the yaw axis of
the unicycle wheel and frame. Bearing in mind the fact that we
are trying to ensure that the response of the system is as
expected by the linear controller it is obvious that the
friction needs to be compensated for. This is easily achieved
assuming that the friction estimate is relatively accurate and

then increasing the commanded torque by this amount.
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In the bang-bang controller framework, this implies increasing
the time At, (amplitude is constant) as follows. Let the
friction compensated tim. interval be Atf, then assuming that
the friction is essentially consistant of kinematic friction

and is thus constant, get

I‘t Atf = (PC + F) Atc

or

(T, + F) At

Aty =
f Pt

6.6 Implementation

Simulation results of this adaptive, bang-bang control
algorithm are shown in figure 6.6.1. In these simulations, the
discretization of the system is done for a sample period of
0.01 seconds and the time interval Atc= 0.05 seconds, with
torque amplitude of one Newton meter (motor torque). Various
amplitude torque values and time intervals Atc, were simulated,
the only requirements being that the torque value be
significantly greater than the stiction , but smaller than
motor saturation torque, and the main difference in performance
is the magnitude of the limit cycle which results. Also, Atc
must be small enough (Atc=0.1 seconds simulations showed no

degradation in performance) to prevent errors too large for
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system recovery developing, i.e. AtC should be small compared
to system time constants. Typical values of stiction are
assumed to be approximately 1.5 times greater than the
kinematic friction [13] and since we estimate the kinematic (or
dynamic) friction, the controller knows roughly what the

stiction value is.
6.6.1 Limit Cycle Amplitude

The limit cycle which results from the bang-baang controller,
has amplitude directly related to the amplitude of the peak
torque value used in the bang-bang structure. Also, the

frequency of the cycle is obviously the inverse of the time

period over which commands are held constant. Thus

1
Fle = 5, (B2)

For the system in a stable limit cycle, the impulse applied to

the system is determined as

lc (I‘t - F) Att - F (AtC - Att)

(I8 + I5) (b, - #y) 6.6.1.1
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WVhere &1 and &2 are the initial and final yaw rates, evaluated
at the beginning of the impulse application time and time
period Atﬁ later, respectively and F is the friction in yaw
assumed to be kinematic friction since a yaw rate exists (hence
no static friction) and these rates are small enough to neglect
viscous friction in this analysis. By the nature of the limit
cycle, the yaw rate at the start of Atc is exactly the negative

of the final value at the end of the interval Atc, or

Using this in 6.6.1.1,

_ o: Vv LF
Ty Aty - F At = 2¢; (I3 + Ij)

Now the amplitude of the limit cycle is determined by

integrating over one half cycle (Atc), thus

1
b = (T, At, - F At )
lc (Ig 4 153)2 A{c toe c

EV—T[F t2 - F 4t2]
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Figure 6.6.1a. Gain scheduled bang-bang controller. Heading response
to step command. This is representative of typical human unicyclist
control. The ’global’ heading change is accomplished in a series of
discrete incremental heading changes. This simulation used fixed
turntable motor torque amplitude of 1 Nm and time interval Atc of 0.05

seconds. The discretization sample rate is 100 Hz.
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Figure 6.6.1b. Bang-bang controller. Estimated roll rate (rad/s).
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Figure 6.6.1c. Bang-bang controller. Estimated roll angle (radians).
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Figure 6.6.1d. Estimated yaw rate (rad/s). The Kalman filter estimates
of figures 6.6.1 b through d show excellent tracking of the actual

plant states shown in e through g.
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Figure 6.6.1e. Bang-bang control. Roll rate (rad/s) response.
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Figure 6.6.1f. Bang-bang control. Roll angle (rad) response.
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Figure 6.6.1g. Plant yaw rate response (rad/s). Pulse torque
are applied and estimation of kinematic frictiom occurs whilst applied

turntable torque is set to zero. The gradient of the response between
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pulses is proportional to this friction.
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Figure 6.6.1h. Turntable angular velocity response. (rad/s)
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Figure 6.6.1i. Actuator activity (Nm). The fixed amplitude (1 Nnm)

pulsewidth modulated control is apparent here.
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Figure 6.6.1j. Friction estimate. This estimate is obtained during

periods of zero turntable torque actuation, when the unicycle yawing

motion occurs in an unforced fashion. The stepping effect is due to

the estimate lumping all effects other than linear frictionless

response into a friction estimate, so that the viscous friction also

is contained in this estimate. Since the yaw rate varies between

approximately 0.1 rad/s and 0.9 rad/s at each alternate pulse, the

viscous friction contribution alternates between pulses.
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7.0 DISCUSSION AND CONCLUSION

The derivation of the equations of motion in appendix 1
demonstrates the ease of using Kane’s approach for multibody
systems. Also, the method lends itself well to extension of the
linearized equations to incorporate nonlinear (smooth) effects
as is illustrated by the inclusion of large yaw rates, § as not
being a perturbation quantity. The method is well defined and
yields a formal approach to deriving equations of motion, which
places minimal emphasis on intuitive insight into the complex

motions involved.

This study has yielded controllers of order equal to the plant.
The possibility of these eventually being implemented with
extra filtering of the outer loops, resulting in controllers of
higher order than the plant is also suggested. As the main
objective is to stabilize the unicycle, the fact that a
controller of higher order than the model might be used is
completely justifiable in the light of the difficulty
experienced by human beings in riding the unicycle even though
the ’order’ of the human contrcller is certainly of much higher
degree than the unicycle, although this is difficult to
quantify in the nonlinear terms of the human controller. The
dynamics of the unicycle are certainly within the bandwidth of
the human capability in terms of response times, and the sensor
and actuator data are much cleaner than could be hoped for in

the ’robot’, so this cannot be used as an excuse for failing to
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maintain balance, although this is a nontrivial task and is
often met with failure by the inexperienced cyclist. What is
being suggested here, is that it is conceivable that in order
to control ’difficult’ plants it may be necessary to use
controllers of order greater than the plant and that the

structure must be well defined.

The unicycle is certainly one of the more challenging control
design problems and this study serves well to highlight the
limitations of plant inversion design approaches for non
minimum- phase, unstable systems. These design approaches yield
poor designs even before any nonlinear effects are considered.
Much improved designs were achieved using variations on the LQG
design approach combined with classical control evaluation
techniques, such as gain and phase margins and loop transfer

functior shaping in the frequency domain.

A further significant point illustrated is the importance of
good understanding of nonlinear issues dominant in the
particular system. In the case of the unicycle, the greatest
difficulty is the problem of compensating for friction effects
in yawing motion. The linear lateral control system designed
was completely inadequate in this regard and substantial
thought and innovation was called upon to suggest solutions. It
is of value to point out that linear friction in the form of
viscous friction, is easily dealt with by including this in the

linear model. This is the only form of friction dealt with in
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the Stanford project [14].

The discontinuous, nonlinear Coulomb friction, which models
bath stictiom and kinematic friction, was best dealt with in
simulation by implementation of the linear lateral controller
im a bang-bang framework, using simple ad hoc estimation to
determine continucus estimates of friction between the wheel
and the surface in yaw motion. This is only one suggestion and
there are probably many methods, the problem is of course to
identify a switable method and the only true criteria for

judgment is practical evaluation of these designs.

It has become clear through this study that a good approach to
comtrol design is to understand the dynamics of the system to
be comtrolled as well as possible. Identification of parameters
contributing to coupling of system dynamics yields insight into
means of addressing control issues of subsystems of the dynamic
model individually. Also of significance is time scale
separation of the dynamics in the classical sense and
manipulztion of the structure to using these to advantage,

apart from the monlinear issues as discussed above.

Issues mot addressed in this study include the station keeping
problem. It is felt that a major achievement would be
stabilizing the unicycle and as such the station keeping issue
is regarded as am extension of this study. It is quite probable
that at Ieast for the lateral controller, a significantly

140



different strategy is necessary. The human unicyclist generates
a for-aft sinusoidal motion when in this mode of operation and
further study of this control strategy could yield invaluable
insight into this problem.
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APPENDIX 1 EQUATIONS OF KQTION USING KANE’S METHOD

Introduction

The rigid body equations of motion are derived here using the
methodology known as "Kane’s Equations" [2, 11]. The
linearization reference condition is the unicycle in a
vertical standing statically unstable equilibrium at constant
forward speed. The equations of motion derived are nonlinear
in yaw rate ¢, which is allowed to become large in order to
capture the interaction between roll angle and pitch angle

errors when maneuvering through large yaw rates.

Since a controller is to be designed to maintain small (< 5°)
deviations from vertical in both pitch and roll and assuming
that this is attained, these equations completely model the
controlled rigid body dynamics of the unicycle and are used

for validation simulations of the controller designs.

The complete linearized equations of motion are also presented
as a specialization of the nonlinear in ¢ equations, for
linear controller design purposes.

A.1 Reference Frames

Define the following reference frames as illustrated in figure

a.l:
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1) Earth fixed Newtonian reference L
2) Vheel axle fixed reference F .
3) Unicycle frame fixed reference Fe.
4) Turntable shaft fixed reference F..
The frames Fw’ Ff and Ft are centered at the respective

centres of mass of the elements referred to.

A.2 Notation

Define the following vector notation used throughout:

avb = linear velocity of b in reference frame Fa
fwl = angular velocity of i in reference frame Fe
fI = basis vector in frame Fe

A.3 Velocities (nonlinear)

Define the following angular velocities:

Turntable referance angular velocity b°t3
Turntable perturbation angular velocity bt3
Wheel referance angular velocity f vy
Wheel perturbation angular velocity v,

Angular velocities of wheel, frame and turntable:

awF
awT

glib + ¢w + 9w2
g + vy + uy ¢ (1 + 7)1,
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a ¥ - piyg + (04 R,)vg + ¥by

Linear velocities of mass centres:

aV _aV¥W
Vi =W x T owg

r, (0 + 0w+ rogsin(p)vy - T _pvg

aF aV af
vi = %Y o+ %y x rff3

(rgbcos(8) + re¢sin(p)cos(h) + r (8 + 0))w,
+ r ¥sin(p)wy + (rgdcos(p)sin(f) -(r, +
recos(6))pw, - (rgbsin(0) + rfﬁsin(¢)sin(0))w3

aT_aV af
vi = % o+ % x ltf3

(1, 0cos(8) + 1t¢sin(¢)cos(0) + 1 (0 +0))wy

+ rwiﬁsin((o)w1 + (L ¥cos(p)sin(4) -(r, +
ltcos(ﬂ)){aw2
- lt?)sin(ﬂ)w3 - 1t¢sin(¢)sin(0)w3

A.4 Partial Velocities

wD: WO =r A sy S

DR (U
d da VW d,a_F
—(.): —(*v") = -r_w —(*v') = -(xr_ + ;)W
(%) = -(x, + 1)w Z(*") = w
ag aF " v ag T 1
—(*¢") = w ) =¥
dyp 1 dyp 1
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a9

V') = 1 _pvy Eg(avF) = (r, + Tg)pwy + 1ol
¥

dea T da WV
—(v") =(r_, + 1 )pw, + 1 6w —("w") = pw, +
a a
—(%0") = pug + ¥ —(C07) = pug +
5¢( 2 3 o9 2
da_V dea ¥
2e2y™y = 0 —(%v") = rew, - 1T 0w
T DA
a a a
—(*v)=1w, - 1w, —(“0)=0 —=S(%)=w
a
—(w) =w
ap( ) = ¥y
2Ny o b oo LA -

M -0 a—‘?(%F) =0 20 - gw
Uj

an an an

A.5 Velocities (nonlinear in §)

The velocities are linearized here, allowing for ¢ being large

and thus not considered a linearizing ("small") quantity.

aww
auF
awT
avw
aVF

avT

]

n

iy + (04 0+ Pp)uy + Pig

&wl + (0 + &p)w2 + ¢w3

(b + 1,009, + (0 + Bohwy + (i v 0, + B)vg
r (0 + 0+ dp)wy - T,

(rgd + rgibp + T, (0 + 8, + Pp))wy + redlu,
- (ry, + 1) v,

(L0 +r (0 +0 + ¢p) + 1 dp)wy + 1 90w,

i (rw * lt)¢w2
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A.6 Rectilinear Accelerations (nonlinear in ¥)

In this section we use extensively the angular velocity of

frame F_ in inertial space, denoted by 2,¥ = Py + ¢¢w2 + ﬁws.

A7

x Vv

W
aaV g(avv L3N a V

T+ B+ 280wy + T, (0,5 + 05+ Fe - By
- rwﬂ°¢¢w3

N
1

aF _ (av ) + L avF

(rf0 + (x, + rf)ﬁ¢ +2(r, + rf)¢¢ + rwﬁ)w1
- ﬁﬁﬂrfwl + (rw(ﬂo + )¢+ (rw + rf)(¢¢¢ - é))"g
+ (rfﬁﬁ + 2rf$9)w2 - rw90&¢w3

W
a T _ a%(avT) . avT

(ltp + (rw + lt)(a¢ + 29p) + rwﬂ - ltﬁﬁﬂ)wl
+ (ltﬁﬂ + (rw + 1t)(ﬁﬁ¢ - p) + 21t¢9)w2
+ rwﬁ(ﬂ + B )y - rwﬂ°¢¢w3

Q
1

Inertia Forces

*

Fw =-m aaV
. W
LA mfaaF

*
L mtaaT
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A.8 Inertia Torques

First define the principle inertia dyadics for the wheel,

frame and turntable:

T LT T T
Turntable I = Ilflfl + 12f2f2 + I3f3f3

F _.F F F
Frame I = Ilflfl + 12f2f2 + I3f3f3

¥ _ .V v v
Vheel I° = I]wiw1 + 12w2w2 + 13w3w3

Angular momentum about the mass centre of each element

LS LI I¥¢w1 + Ig(ﬂ + g+ Pp)vg + Igﬁwg
F_.FaF __F. . F : ¥,

B =12 =1(p- PO)Ey + Io(D + #p)f, + Igifs
B = 1027 = 105 - 408, + I3(D + Po)e,

+

T,. ..
+ Ig(ﬂo 7 ¢)f3

244
Inertia torques are then given by: -3¢ (E), where the

superscript "a" refers to the time derivative taken in

reference frame Fa‘

Uk V- V.. v . .. .
TV = - (T35 + Tiip - I5(0, + 0 + )i)w, - IS0 + Fp)w,
Voo V- V. .
- 12¢WW2 - (13¢ + 129°¢)W3
F*

-3
Ll
l

(13(5 - 0 #0) + (T3 - I5) (30 + ¥bp) + Thjo)w,
(500 + Bo + #) + (T - IE) (35 - #90))wy - Toiw,
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™= @G- B0 9 (1]~ I+ i) + Do,
- L0+ be)igey - (T - TN - B0,
L0+ B+ H)uy - Th(7 + g

A.9 Generalized Inertia Forces

These are evaluated as the inner product of the specific
partial velocity and inertia force. So, for example, the
generalized force in the directicn of the generalized speed
fi_, is given by the sum of the inner products of the partial
velocities with respect to ﬂo of each element and the inertia

force of the element.

Generalized speed 0 direction:
* 9 . .. . .
Fo=-mro(0 + gp + 2¢p) - mer (Or + ¥(r, + Te)p + ﬂrw)

- Mg (2(ry ¢ ) #p - Tpd0) - mer (1.9 - 1, $0)
- mr ((rg + 1) ¥ + 2(z, + 1)) - T80 + o + )
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Generalized speed p direction:

By = - mra((0, + 0§+ $bo - §) + mg(r, + 14) (r490)

# gy + 1g) (Qrgdl - (ry vrg)p + (ry + 1) ¥ip)

+ mg(r, + 1T, (0, + 0)F + my(x, + 1) (190 + 21,90)
+ m(ry + 1) ((rg + 1) (By - 9) + 1 (8, + D)) -

- Thpbp + I8 + 8+ §p) - TL(p - $0- #0) - Tyo
- (T3 - To) (0 + #bp) - Ti(p - $0 - 200 - #ip)
- Ia(Bh, - B0+ Bie + die + 90)

Generalized speed ¢ direction:

F

*
Fy=- (I8 + I

; + I3 - Tap - I0_p

37 2%

Generalized speed ¢ direction:

Fy = - mere(r o+ rel + (z, + 1) (B0 + 28) - 1 990)
- m 1 (L0 + (r, + L) (0 + 200) + T 0 - L #90)
- T(0+ Yo+ #) - (I8 - IE) (b - wi0) - 12(D + Be)
- To(28p - BHO) + Ta(Hp - WO + pi- #i,0)

Generalized speed g direction:

* T,e -
Fﬁ = - Ig(ﬂ + ¥)
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A.10 Active Forces

These are the moments acting externally due to gravity, wheel
torque Fw’ turntable torque Pt and friction effects. F
representing Coulomb friction effects and fﬁﬁ viscous friction
effects. Both friction effects modelled are at the contact
point between the wheel and surface. The gear ratios are
represented by n, for the wheel and n, for the turntable, both

referred to the unicycle frame.

V .
T, =mr gpw; + T v, + Fug - fﬁ¢w3
F
T, = me(r + Te)gpwy + (mfrfgﬂ - an‘w)w2 + T f,
= (mg(r+ te)ge + n.T 0w, + (meregh - n.T )vg +
nelvs
1 -

a = My(Ty+ 1o)gewy + meloghuy - n,Tifq
= (m (z+ 1,)gv - n, T f)wy + m1,g0w, - n. T v,

A.11 Generalized Active Forces

As for the generalized inertia forces, these are evaluated as

the inner product of partial velocities and active forces.
Generalized speed f! direction:
Fﬂ - nwrw
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Generalized speed ¢ direction:

F¢ = (mwrw +me(r, + re) + mt(rw + lt))gw

Generalized speed ¢ direction:
= F - f.1

Py = F - £
Generalized speed § direction:
Generalized speed 5 direction:

F;] = - ntl‘t
A.12 Equations of Motion

The equations of motion are now determined as the sum of

generalized active and generalized inertia forces:

Generalized speed i direction:

n L mer (2(x, + 1) ¥p - P90) - mr (L0 - 1.990)

- mwrg(ﬂ + ¥ + 29p) - mer (frg + ;}(rw +1g)p + fir)

- mer (T, + lt)$¢ +2(r, + 1)¥p) - Ig(ﬂ + dp + $p)
=0
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Generalized speed p direction:

(mr, + me(r, + T4) + m (r, + 1))gy

- mr2((8g + M)F + $p - §) + me(r, + 1) (r0)

me(r, + rg)(2rgd - (, +rf)& + (x, + 1) ¥¥p)

me(r, + )T (B, + 8)P + m(r, + 1) (1,90 + 21, 99)
my(r, + 1) ((x, + 1) (B - ) + 1,0, + 0)P) - T}y
Tipbp + T30, + & + Pp) - T(5 - §0- #9) - Thyo

- (T3 - T (0 + ¥9) - To(h - $0- 290 - i)
T3(Bh, + #0 + $ip + b + $0) = 0

+

+

+

Generalized speed ¢ direction:

. w F T o T.. v .
F - f¢¢ - (I3 + I+ I3)¢ - Iap- I p=0

Generalized speed § direction:

- Ly v (mgrg + mly)gl

- mere(r f + rpf 4 (r, + 1) (P9 + 29p) - )

- m L (18 + (r, + 1) (o + 260) + £, 0 - L 30)
(8 + $o + #9) - (I - 1) (3 - #90) - 12 + )
Iy(200 - $90) + Ta(Pp - 90 + - $7,0) = 0

1

Generalized speed 7 direction:

T, -
ntrt * 13(71 +9) =0
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A.13 Linearized Equations of Motion

The linearized equations of motion are determind by
eliminating all products of generalized speeds and/or

coordinates as follows:

Generalized speed { direction:

2 2 2 V y;
- (mwrw +MeT + MT Iz)ﬁ - 1 (mere + ml.)6 +nl =

Generalized speed ¢ direction:

V
t 1

V. 2 Vig ¢
- Ign B+ (mro + mer (r, + Tg) +mer (z,0+ L) + I)0 ¢

2 2 2 F T,-
- (mwrw + mf(rw + Te)" 4 mt(rw + 1)+ I7 + I + Il)w

+(mr, +me(r, + 1) + m(r, + 1.))gp =0

Generalized speed ¢ direction:

F oo Tyu T V. . .
g * I3)¢ - I3n - I g+ F - f¢¢ =0

S

Generalized speed # direction:

2 2 F T\ 5 T. .
- (mere + m 1) - (merf 4 mly + Ip + I5)0 + Ign ¢

+ (mfrf + mtlt)g0 - ol =0
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Generalized speed 5 direction:
Ty
- Igg(\/"f/"‘ ) - “trt =0
A.14 State Space Description of Linearized Equations.

Tie state space structure is given here for use with linear
comtrol design techniques. This is the standard form:

State vector JcT("t:). M8 0 ¢ 9o ¢ 7

Tnput. vector u’(t)

[r, I, Fl

=(t) = &k x(t) + B u(t)
y(t) = € x(t)

For the equatioms as derived above we first write the form:

Ex(t) + Ex(t) + Bu(t) =0

() = ¥ x(t) - ¥ 1B u(t)
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Vhere the mass matrix M and stiffness matrix K are

M= M, Hp K= 1Ky Xy
Ho1 Hgo Ko1 Koo
The partitions defined as follows
Ho = |-((m, + m +m)r2+Iw) - (mer +ml ),
11 W f t/ " w 2 f°f t7t
2 T F
- (merp + m 1, )r, —(mfrf +mll o+ I + 1)
0 0
_ ol
le = H21 = 0 0 0 0
0 0 0 0
0 0 0 0
2 V
H22 - (mwrw + mf(r + rf) + 1 ) 0 0
T
(mt(r +lt) + I + I )
0 -1 0
W F
0 0 -(I3 + I
T
i 0 0 —I3
K11 = 0 0 0
0 0 (mere+ m 1,)g
0 -1 0
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12

21

0 -Inp, 0
0 0 0
0 0 0
¢ 0 0

0 (mwrw * mfrf)g rw(mwrw + mf(rw * rf))ﬂo

v

ogr, + my (o, + 1)e | +(rymyn, 1) - T,

1 0 0

v

-Izﬂo 0 —f¢
0 0 0
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The control distribution matrix B is

B = n, 0 0
-n 0 0
W
0 0 0
0 0 0
0 0 0
0 0 1
i 0 -y 0 |

Since we measure all states, the measurement matrix is the

identity matrix

C = I7x7

A.15 Discussion of Equations

As indicated in the introduction to this appendix, the
nonlinear in ¢ equations are derived here for use in validating
the controller designed. The controller is designed for
regulation of pitch and roll errors in both rates and angles
and command following in heading and speed of the unicycle.
Bearing this in mind we make the following assumption for the

linear controller design strategy.
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A.15.1 Decoupiing of Lateral and Longitudinal Dynamics

Setting the turntable referance angular velocity, 1, to zero
eliminates the coupling terms Igbo from partitions K12 and K21
in the stiffness matrix K thus decoupling the lateral and
longitudinal dynamics for the purposes of linear controller

design. These terms are included in the simulations for

controller evaluation.
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Figure a.1. Reference Frames Schematic
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APPENDIX 2 VARIATION OF LQG DESIGN METHODOLOGY

Introduction

This appendix derives the result used in both the lateral and
longitudinal linear controller designs. The derivation
considers the lateral control problem of the unicycle. This
result gives the designer freedom to select the Kalman Filter
dynamics as pleased and always be guaranteed that these will
not affect the desired regulator closed loop transfer function

when viewed in the sense specified here.

A2.1 Variation of LQG Structure

The closed inner loop structure is shown in figure A2.1.1. The

subscrpt ’1r’ denotes lateral reduced order model, to

distinguish from the full order model of section 4.1.

Figure A2.1.1 Inner LQG regulator loop

In the inner loop we wish to regulate the roll rate, roll angle

and yaw rate and these are the states of the reduced order
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lateral model. The input to the plant, I'(t) is the turntable
torque and by the nature of the model, this is the natural
place to break the regulator loop when appending the outer loop
dynamics i.e. the integration of yaw rate to yield heading
angle. This is so since the heading command generates a
commanded torque to the turntable and this influences the
status of the inner loop in the sense of input disturbances to
the plant. The interesting result is that the filter dynamics
do not show up in the outer loop transfer function relating the

external’ (outer loop) input u(t) and the output

y(t) = [p o #]%.

Ve can easily show this result for the single input single
output (SISD) case as follows. Consider the block diagram of

figure A2.1.1 for an equivalent SISO system
The plant dynamics propogate by
x(t) = Ay x(t) + By T(t)

or, in Laplace transform form

B,.I'(s)

x(t) = [ ) A2.1.1
5 1r
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and for the filter
s %(s) = ) &(s) + By P(s) - H4C) R(s) + H4Cq x(s)
or

x(s) = ~ ~ A2.1.2
(s - Ay + HpgCyp )
Substituting A2.1.1 in A2.1.2
1 H .C, B
u 5 ki“lr 1lr
x(s) = R s y(By .+ G-I )I(s 42.1.3
(s At kaclr) 1r” (s 1r )
The turntable motor torque can be writter
I'(s) = u(s) - G, .X(s)
including equation A2.1.3 yields
G K .C, B
1r 5 kf’1r 1r
I(s) = u(s) - Byt 51y )T(6)
- - S -
(S = Alr"' kaclr) ].I‘
rearranging
u(s)(s - A, + 0 .G )
I(s) = Ir ki ir’ A2.1.4

G, L C{ B
i A A 1r'kf"1r"1r
(s - Ay He0qr OByt (s - 4&,) )
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The output is given by

y(s) = Cp,x(s)

recalling A2.1.1 and A2.1.4 yields

CypByp(s - Ay HpgCy u(s)

y(s) =

A v
n A 5 1r'ki 1r 1r
(s - A1) (s - Aypr HygCypv Gy By 5= 5 )

The denominator can be rewritten as, noting that since the

filter is model based, £1r=A1r, ﬁ1r=B1r and (‘:h=c1r

9 2
7 - 24y s + A7+ (By Gyt Hi g€y ) (s - Ap) + HpeCy By 6

Now, since the filter is model based, by the separation

principle this factors into the following

(s - Ay;+ By 6y )(s - Ay o+ BgCo)

so that the final form of the transfer function relating u(s)

and the output y(s) is

o(s) - Cerlr(s - Alr+ kaclr)u(s)
(s - Ay BG (s - K+ B 61

i Cy By uls)
(s - &t By 6yp)
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where the final form shows pole-zero cancellation which can be
shown to imply that the error (kX{t)=x(t) - %(t)) dynamics are
uncontrollable from the input u(t). This becomes apparent when

writing the error dynamics expression out as follows

Consider the HIM0 augmented state space description for a

structure as given by figure A2.1.1

A -B

x(t)

%(t)

1r erlr x(t)

i

HeCrp  Ayp HpgCopm By 6qp || %(t)

+ | B1r {u(e)

Bir |

Defining the state error as
x(t) = x(t) - %(t)

we rewrite the state space model including the error state,

thus

x(t) - A Bir8yy B1r61s x(t)
+ | Byr u(t)
0
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Clearly the error dynamics are uncontrollable from the input
u(t), implying pole-zero cancellation in the MIM0 (multi input
multi output) sense must occur here, which leads to the
conclusion that the above result is valid in MIM0 systems as

well as SISO systems.

A third means of viewing this issue is that by definition in
the Kalman filter derivation, the state error is orthogonal

with the true state in order that the estimate be unbiased [8,

1].
E{x(t)%1(t)} = 0

Hence the error state space cannot be reached from the true

state space.

This property of the structure opens a very useful synthesis
path in that the regulator loop may be designed independently
by the separation principle and however the filter is defined,
with the only condition being that it be model based in order
for the seperation principle to be valid, will not affect the
outer loop transfer function. Thus it is possible to design a
regulator having all the desired characteristics and yielding a
'nice’ closed loop transfer function and then shape the outer
loop as desired around the regulator loop with full guarantee
of retaining this loop transfer function when the inner loop

filter is designed.
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The real advantage in this approach being that the optimal
filter for the existing process and plant noises of the inner
loop, in order to obtain optimal estimates of the states, need
not have high bandwidth as required in methods such as Loop
Transfer Recovery, and thus all the inherently bad properties
of the ’cheap’ control solution such as very high gains and
associated high frequency dynamics, attempted plant inversion
and particularly the poor recovery associated with non

minimum- phase systems, are avoided.
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APPENDIX 3 MODEL PARAMETERS USED IN STUDY

The model parameters used are representative of the unicycle

robot and are as defined in the Stanford study [14].

Unicycle Wheel:

mass m, = 2.1kg
radius r,=02m
inertia I = Ij = 0.02 kgn?
Iy = 0.04 kgn®
Unicycle frame
mass me = 23.2 kg
centre of mass re =0.45m
inertia I% = 1.35 kgm2
I? = 1.51 kgm2
Ig = 0.36 kgm2
Turntable
mass m, = 24 kg
centre of mass 1. =0.8m
inertia I =0.3 kgm2

t

1

t
I% = 0.3 kgm2
3 2
t = 0.6 kgm
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Frictiom coefficients in yaw between wheel and surface

f$,7 = §.0245 Nms/rad

Gear ratios
wheel n, = 12
Turntable n, = 36
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