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ABSTRACT

The equations of motion of a flexible, two-link, planar manipulator are derived via
the Kane formalism, correctly linearized in small elastic deflections and speeds through the
use of nonlinear strain-displacement relations. Ordinary differential equations are obtained
as a result of modelling the links as Bernoulli-Euler beams and expanding the elastic
deflections in terms of cantilever modes. A simulation is implemented that allows the
determination of the manipulator's dynamic response to desired forcing functions in the
form of joint torques. Slew maneuver simulation results are then compared for models
with and without the properly modelled kinematics of deformation, in order to quantify the
relative significance of certain nonlinear terms in the motion equations. It is found that
rigid body motion limits exist below which elastic nonlinear terms are negligible. These are
nonlinear terms that involve the generalized elastic coordinates and their time derivatives.
These rigid body motion limits are set by the requirement that inconsistently linearized
equations of motion (those derived using linear strain-displacement or linear kinematics of
deformation) yield accurate results. Within these limits, it is found that equations derived
ignoring all elastic nonlinear terms produce simulation results that are as good as the
inconsistently and consistently linearized equations.
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CHAPTER 1: INTRODUCTION

Manipulators for space applications need to be lightweight for economical reasons.
It is also desirable that they be faster and more autonomous than the SRMS (Space Shuttle
Remote Manipulator System), which moves relatively slowly (0.1 deg/sec) in order to
minimize elastic excitation, and is teleoperated. The first of these requirements results in
manipulators with significant struciural flexibility (the SRMS has a natural vibration
frequency of 0.3 Hz unloaded and with extended and locked links); while the need to
expand the performance/operational envelope requires that this flexibility be modelled
accurately.

Much work has been done on the dynamic modelling of open chains of rigid and
elastic bodies (see references in [25],[12]). The heightened interest in multibody
simulation, particularly flexible multibody simulation, prompted a workshop on the subject
sponsored by the Jet Propulsion Laboratory late last year [15]. As stated in the preface to
the Proceedings of the Workshop, this interest is being driven by mission requirements put
forth by NASA and the SDIO that call for high angular rate and acceleration articulation of
complex arrangements of interconnected rigid and flexible bodies.

A review of this literature shows that it is common practice to assume small elastic
deflections and beam-like links when modelling structural flexibility in appendages or
robotic links. Small rigid body motions and velocities (translations and relative angular
motion of the links) have sometimes been assumed to simplify the equations of motion. In
particular, so-called "rate-linear" equations have been proposed to yield tractable motion
equations when the rigid body rates are assumed small enough so that second order terms
can be neglected [8]. It has been pointed out by Hollerbach [4], however, that gyroscopic
terms (which are second order in rigid body rates) are as important as inertia terms in the
motion equations for open chains of rigid links. For this reason, it would seem desirable to
obtain motion equations that do not ignore these gyroscopic terms and are in consequence
valid for rigid body motions. Some work has been done in this respect for the case of a
manipulator, using finite element modelling for the small elastic deflections but allowing
large rigid body motion and high velocities [29]. This results in a large number of
equations that are reduced using Guyan model reduction.
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In recent years a fundamental limitation of linear finite element formulations of
flexible deformations in flexible multibody simulation programs such as TREETOPS[31],
DISCOS([3], etc. has been pointed out [23,24,27]. This limitation could be characterized
as a premature linearization of velocity expressions that is implicit in a linear finite element
or modal formulation of the motion equations for flexible bodies [24]. Kane et al. [11]
demonstrated this flaw of the traditional approach numericaily by simulating a simple
system consisting of a flexible beam attached to a rigid base spinning in the plane. This
simulation yielded the surprising and intuitively wrong result of the beam diverging during
a spin up maneuver [23]. Probably because of this simple example the "prematurely
linearized" equations of motion are said to lack the "spin-stiffening effect."

The purpose of this thesis is to provide the equations of motion of a flexible, two-
link, planar manipulator, correctly linearized in small elastic deflection and speeds, but fully
nonlinear in rigid body motions. The links are modelled as Bernoulli-Euler beams and the
elastic deflections are expanded in terms of cantilever (clamped-free) modes. This results
in a smail number of equations that can be derived analytically. The equations of motion
are desired to provide the capability to determine the dynamic response of a two-link
manipulator to desired forcing functions for control experiments purposes. It is further
desired that the developed simulation allow for the use of a variable number of modes in
order to test effects such as spillover when reduced-order controllers are tested.

In view of the limitation of certain linear finite element multibody programs, it is
further desired to investigate the relative significance of "elastic" nonlinear terms in the
equations of motion. These are nonlinear terms that involve the generalized elastic
coordinates and their time derivatives. For this purpose, the simulation is developed with
the capability of ignoring select elastic nonlinear terms, or all elastic nonlinear terms.

THESIS OVERVIEW

Chapter two presents the derivation of the linearized equations of motion for the
two-link manipulator. Using Kane's formalism [9] the correctly linearized equations are
obtained through the proper use of nonlingar strain-displacement relations.

In chapter three, a dynamic analysis of a simplified single beam example is used to
investigate the relative significance of elastic nonlinear terms. Three levels of increasing
simplification of the linearized motion equations are proposed for this investigation.
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The results of the previous chapter are compared to the results of numerical
simulation of the two-link manipulator in chapter four. Four different open loop
trajectories are investigated and conclusions about the dynamic modelling and relative
significance of nonlinear terms are drawn.



CHAPTER 2: DYNAMICS

INTRODUCTION

The equations of motion of a planar, flexible, two-link manipulator, linearized in
small elastic coordinates and speeds, are developed in this chapter. After describing the
system model and stating the assumptions made, the system kinematics are presented. In
section 2.2, the kinematics of the system are derived without making any assumptions as to
the size of generalized elastic coordinates. It is in section 2.3 that the kinematic expressions
are linearized assuming sma!l elastic coordinates and speeds. In the last section of this
chapter the dynamic equations for the nonlinear system, correct to first order in elastic
coordinates and speeds, are derived using Kane's formalism.

2.1 SYSTEM MODEL

The dynamics of a planar, two-link, flexible arm with revolute joints, composed of
three rigid bodies connected by two slender uniform beams (see Fig. 2.1) are to be
investigated. The equations of motion for this system are derived using Kane's formalism
[9] together with second order strain-displacement relations. The equations are thus exact
to first order in the beams' elastic generalized coordinates and speeds, but fully nonlinear in
rigid body coordinates and rates. The normal to the plane of motion is parallel to the local
acceleration of gravity, so gravity can be ignored. Independent axial extensions of the
beams are ignored (i.e., the axial strain at the neutral axis is assumed zero for each beam).
The elbow joint is actually modelled as two bodies: one attached to link 1 in a cantilevered
way and the other, free to rotate with respect to the first, with link 2 attached to it in a
cantilevered way also. Both elbow bodies are rigid and share the hinge point but their mass
centers are allowed to be offset from the hinge point. One percent modal damping is added
to the model to represent material damping. Actuation is assumed in the form of shoulder
and elbow torques. The equations of motion for this system are available in Appendix C.

13
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Figure 2.1: Schematic of the Two-link Flexible Manipulator

The rigid body generalized coordinates, the shoulder angle, 8, and the relative
elbow angle, B, are defined in Figure 2.1. In Figure 2.2 it is anticipated that the transverse
deflection of the inboard link, u;, will be expanded in a series of assumed mode shapes.
The time-dependent coefficients of these assumed modes, g; (i=1,...,n), are the generalized
elastic coordinates for the beam. An analogous definition for the outboard link results in
generalized elastic coordinates pj (j=1,...,m). This set of 2+n+m generalized coordinates
uniquely specifies the configuration of the two-link manipulator.

2.1.1 List of Assumptions

The following is a list of the assumptions made in the derivation of the linearized
equations of motion presented in the rest of this chapter.

1. The links are modelled as nominally straight, uniform beams, with symmetric
cross-sections about a2xes a2 and a3 (b, and b3) when undeformed.

2. The cross-sectional dimensions of the beams are much smaller than the lengths,
so that rotary inertia and shear effects are negligible [18].
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3. Torsion is ignored.

4. No relative motion is allowed between links and points of attachment to the rigid
bodies.

5. Friction, damping, and flexibility have been assumed negligible at the joints.

6. Actuators are assumed to apply torques. Other actuator dynamics are not taken
into consideration.

7. All rigid bodies are modelled as a lumped mass, situated at the mass center, and
lumped moment of inertia, but the mass centers can be offset from the point of
attachment of the links to account for planar dimensions of the same bodies.

8. The shoulder body rotates in inertial frame, but undergoes no translation.

9. The elbow joint is made up of two bodies that share the hinge point, but have
mass centers that can be offset from the hinge point (see Fig. 2.3).

10. The relative elbow angle, 3, is measured between the tangent to the neutral axis
of link two (outboard) at its point of attachment to the elbow (y=0), and the
tangent to the neutral axis of link one (inboard) at the end of link one attached to the
elbow (i.e., x=1).

11. Elastic deformation coordinates and rates for both links are assumed small
enough so that second order terms can be ignored.

2.2 SYSTEM KINEMATICS

2.2.1 Shoulder Body

Following Kane [9,10], an embedded reference frame is associated with each rigid
body (see Fig. 2.1). Frame (a;,87,a3) is associated with the shoulder body, denoted as
body A, and its origin coincides with the body's center of mass. The a, axis cxtends along
the line b; and thus along the neutral axis of the undeformed link 1. Axis a3 is
perpendicular to this one in the plane of motion, and a3 is such that A is a right-handed,
Cartesian coordinate system. Body A is free to rotate in the plane but pinned at its mass
center A*, so that frame A can only rotate and undergoes no translation. The motion of A
in the inertial frame N (n;,ny,n3) is pure rotation, where the angular velocity of A in N is
given by
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N _ A _
Q"= of, )
and w3 uniquely defines the motion of body A. This quantity is termed a generalized speed

in Kane's formalism.

2.2.2 Inboard Link

Following [11], the motion of link 1 in the inertial reference frame N is described
by introducing a rigid differential element P; of link 1, with centroid C; and elastic center
E; located at a distance x from Q,, when the link is undeformed (see Fig. 2.2). No relative
moticn is allowed between body A and link 1 at Qy, i.e., link 1 is attached to A in a
cantilevered way. The position of point E; (which coincides with C; under the stated
assumptions) in the frame A after deformation is found by applying the iranslations

w, and uAf,.

o

J— ]

[}
1
1
)
L] ]
! ]
I ] n
] ]
] ]
1 1
] ]

* gaiding

Figure 2.2: Definitions for Link Kinematics

Defining r; and u as
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rIEJcﬁ1

u(x,r)=ux, )8 + uyx,t )4,

the position vector from Q; to E; (see Fig. 2.2) can be expressed as

E
le '=r +ulx,r).
Further, since
pElcl =0,
C E
pQ] 1=pQ1 l=l'1+ u(x,t)=0x + ul)ﬁ1+ uzﬁz.

Finally, the position vector for C; in frame A is obtained:

AsC A%

ocC
p '=p +p“=(bl+x+u1)ﬁl+uzﬁz.

Now it is possible to write down the velocities of Q; and Py in N:

l~,vQ'=""v""+N_(g,)"pr.QWAVQ1
=bof,

N C A*C. A C

v 1=NyA* L N wp 14000

=, — ou)d +[i,+ ay(b+x +u)ll,
where

Ar_A2

v v '=0.

2.2.3 Elbow Joint

D

)

©)

(4)

G)

(6)

As mentioned in section 2.1, it is assumed that the elbow consists of two rigid
bodies (see Fig. 2.3). Body B; is attached to link 1 at point Q2;, while body Bj is
connected to B, at the hinge point H. No relative motion is allowed between link 1 and
body B; at Qy;. The mass center of B, Bj*, can be offset from the hinge point. This

17



configuration of elbow bodies was chosen to allow the simulation maximum flexibility, as
it is easier to align hardware hinge points than to place mass centers.

To characterize the motion of By in N, it is convenient to first obtain the velocity of
Hin N:

NyH = NyA* f NoA o pAH 4 AyH W

To be able to write down the distance from A* to H, note that the angle between the normal
to the cross-section of the beam at x after deformation, and the neutral axis before
deformation, is, for a Bernoulli-Euler beam (where distortion due to shear is ignored-see

[18])
-gx—uz(x , 1)
and defining
x=l @)
the position vector results:

pA™H =[b + I+ u(l, 1)+ by cos(@)Id, + [u, 1) + by, sin (D)4, 3)

This yields for the desired hinge point velocity vector
NyH — {0, t) = b, & sin o ~ oluy(l;, )+ by sin o]},
+ [1'42(11, 1)+ bzlixlcos o+ o,fb + 1 + u(l, t) + by, cos al]]ﬁ ) @)

x =11:| (5)

NmBl = (ixl + a;3)ﬁ 3 ©)

where the following convention has been used:

The angular velocity of B is then
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and it is possible to write the velocity of Bi* in N as

N B* N B, HB* B B*
vi=NH 4 "gixp ! 4+ ly!

=Ml — /(@ + asin (5 + o) | + €,(0 + @)cos(y + W), )y

where the following expression has been used for the distance from the hinge point to the
mass center of B,

HB * .
P ' =ecos(y+ og)d, + esin(y + )8,
v 1 =0. (&)
The velocity of point Qy; in body B; will be needed in the determination of the

generalized active forces (see section 2.4.2), and so it is written down here for the sake of
completeness:

N O N C
v n_ ! v !
Jt=ll

=[u(, 1) - oud, t)]ﬁl + {iy(1, 8) + ay[b,+ 1+ w ()t ))}a o ©)

The second elbow body, B,, is free to rotate with respect to body B; about the
hinge point H. Frame B (b;,b,,b3) is associated with body B, and the origin of the
coordinate frame coincides with the hinge point. The axis b; lies along line by, that is,
also along the neutral axis of the undeformed link 2; b is perpendicular to b; in the plane
of motion; by completes a right-handed rectangular coordinate system. As in the case of
B1, B2* can be offset from the hinge point. The rotational motion of By in N is
characterized by

Q=P (10)

where f is the relative angle between bodies B and B,, and the angular velocity of Bj in
the inertial frame is given by:
N B .
Yo' =T "= (o+ &+ QA5 (11)

The velocity of B2* in N can be written down immediately as
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N B * N B HB.* 3 B*
v2=Nyll 4 2xp 24+ v?2
N B A N B A
— NyH _ 2 2
=Ny e, o “sin K,b, +e, @ “cos b, 12)

where the following facts have been used:

HBz" A . A
p = e,cos Kb, + e,sin 1,b,
B B*
vi=0 (13)

and the following definition has been made:

N

B, .
® ‘= o+ o+ . (14)

2.2.4 Outboard Link

Using a similar approach to that of section 2.2.2, the motion of link 2 in N is
described by introducing a rigid differential element P; of link 2, with centroid C; and
elastic center Ej, located at a distance y from point Q22 when the link is undeformed.
Again relative motion is disallowed between body B, and link 2 at the point Q,, (see Fig.
2.1). Defining rp and v as

A

r,=yb,

A A
v Vl(y’t )bl+V2()’.Ub2’ (1)

and following the set of assumptions described in section 2.1, the position vector from H
to C; results:

pEzC2=0
C E
an 2=an 2=r2+ v(iy,t)=(y +V1)’I\’1+ vzll;z

HC HQ 0.cC A A
P *=p 2+p 2 2=(by,+y +v)b, +v,b, @

In equation (2), v is the vector that describes the change in position of E; due to the
deformation.

20



It is now possible to write the velocities of Q7 and P, in the inertial reference
frame:

. N B A . N B A
=Nyl + 4, - @ W)b +,+ @ Xb,,+y +v)Ib, 3)

where

B @

2.2.5 Tip Mass

Finally, the kinematics of the "end effector,” or tip body, are determined. Again it
is assumed that the tip rigid body C is attached rigidly to link 2 at point T. As in the case of
link 1, the angle between the normal to the cross-section of the beam at y after deformation
and the neutral axis before deformation is given by:

B 0).

Note that as before, the above equation is true due to the assumption of Bemoulli-Euler
beams. Defining

%= ,
y=l, 1)

the distance from H to C* is:

pHC" = [b,, + 1, + v,(I,, 1) + bycos (o)1b | + (1, 1)+ bsin (o)l @)
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Then the velocity in the inertial reference frame of the mass center C* of body C is given
by:

NyC*_NyH L NgB x pHC * 4+ ByC*
=NvH 4+ 6, 1)- ba,sin o — " @ 2 (Lt)+ b, sin a]}b
= 1 (&SI 0 = @ Vol p SIN 05,130
. . N B A
+ {"2(12’ )+ b,azcos G+ 2[b22+ 12+ "1(’2' t) + b,cos ozz]}b2 3)
where

ByC*— L) pHC *
7y @)

The angular velocity of C in the inertial frame is

Na© = (@, + o+ 2+ @,)8 5 5)
The velocity of point T in N is
N T _ N C2
y=tl,
) N B
=NV LB (L) - @ Wy, )b,
. N B2 A
+ ["2(’2' N+ @ by, + 1+ 2% Ob,. ©)
Together with the relation
@ =9, )

the above completes the kinematic description of the model. The transformation matrix to
go from frame B (by,bs,b3) to frame A (a;,a3,a3) is

cos(ay+ B) -sin(og+ fB) O
AT =| sin(a, + B) cos(a+ B) O
0 0 1 (8)
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2.3 LINEARIZED DYNAMICS - ASSUMED-MODES METHOD

Following the development outlined in section A.1 (see Appendix A), a solution to
the free vibration problem is assumed in the form of a series composed of a linear
combination of admissible functions of the spatial coordinates, multiplied by time-
dependent generalized coordinates [19]. This is equivalent to treating the continuous
system as a discrete many-degrees-of-freedom system and will result in the motion
equations being ordinary differential equations instead of partial differential equations. As
pointed out in [19], the assumed-modes method is well suited to the case of systems with
both distributed and discrete properties.

For the system model under consideration, and taking into account the assumptions
stated at the beginning of the chapter, independent axial extensions of both links are
ignored, as in the example of section A.2. The correct condition for this assumption is

£x=0 (1)

This results in the following expressions for the axial displacements of both link 1 and 2 in
frames A and B respectively:

u(x,t)=- I: %(g;—z)zda
vi(y.t)=- on _;.(%?-)zdo

which are correct to second order in the transverse displacement gradients.

2
Assuming now the following solutions for the transverse displacements of both

links in frames A and B respectively

uy(x,0 )= 2,(x)q,(t)
i=1

vy(¥,t )= 2¥,(y)p, (1)
i=1 3)

expressions for #; and vy correct to second order in the generalized elastic coordinates g;,
Dp; are obtained
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(x .8 ) =~ %ZUZ | RACTACZYS
m m y
v(y.t) == %);l Z.lfov/,. (@)W, (©)do p, p,

(4)

Note that the hybrid continuous and discrete system has been transformed into a 2+n+m

degrees of freedom system. The admissible functions @(x) and y(y) are chosen to be

cantilevered (clamped-free) mode shapes for uniform beams of lengths /; and /,

respectively. These are given explicitly as the following functions of spatial coordinates

[2]:
5 A,.s 1‘.s }{s _ l,.s
y;(s) = cosh 7|~ cos 7|~ 9 sinh| —— l. ~ sin T
J J J J
~_ ¢,‘ _ X ,_{ 1,--9’1 ’j =1
Y= v’ s-{ y © 1l .m » J =2
where

sinh A ~ sin ).
0 = cosh Z. + cos /1

and 4; are the solutions, arranged in increasing order, of the transcendental equation:

cos Acosh A +1=0.

These mode shapes satisfy the following orthogonality conditions

!

1
| 5,675, )as = |
0 0

=1 =~ 0’ i ¢j
y'i(s)¥";(s)ds = I, i=j

where

&)

()

()

@®)



dn 5 dn +4
7. =

n i~ n 5&'
d(/’l.is) (/‘Lis) +4
1 d 1 ©)

Requiring now that the elastic generalized coordinates, g; and p;, and the elastic
generalized speeds, dgi/dt and dpj/dt (i=1....,n; j=1,...,m), be infinitesimally small, it
should be possible to obtain equations of motion for the system model under consideration
that are linear in these elastic coordinates and speeds. Heeding the lessons of Appendix A,
the expressions for velocities and angular velocities ottained in section 2.2 are not
linearized until after the formation of partial velocities and partial angular velocities but
previous to the formation of the accelerations (see section 2.4). The velocities and angular
velocities linearized in the elastic coordinates and speeds are presented below.

In what follows, a ~ represents a quantity that has been linearized with respect to
the small elastic deflections and speeds. The following definitions will be used throughout
the next two sub-sections to simplify the equations.

u(x, 1)= wix,t)=0 v(y.0)=vi(y,1)=0
uy(x,t )= Y0, (x)q;(t) v (¥, )= 2 ¥ (y)p,(r)
i=1 i=1
uy(x.0) = 2.9, (x)q;(r) vy(y, )= DY (y)p; (1)
i=1 i=1
()= 24,0 )q,(¢) a(t)= 2,(,)p,(t)

i=1 i=1
()= 28,04, () a(t)= 2, p; (1)
i=1 i=1
Li=b+1+b,, L,=b,,+1,+b,
‘571=cosyl—sin Y E‘yl=sin Y, +cos - o
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N(,';Bz= o+ Q
&,=cos(h+ B)=sin(p+ f)- o & =sin(p+ f+cosp+ f)- o

é"ﬁ=cosﬁ—smﬂ- o .s'ﬂ=s1nﬁ+cos,3-oz1 (10)

2.3.1 Linearized Velecities
N’\TQ = blaoa,ﬁ2

KA =-0u8, +[u, + ay(b + x)]4,

= [-ay(uyldy )+ by o) 8, + [ ) + byy0 + 5L 4, 1)

N B° N_H .. . ~
vi="¥ —[ela1 sin ¥, + e{zﬁﬁjﬁl +[e1a1cos %+ elcosc.},I]ﬁ2

NVQ"=—a)u

sty (1 t)ﬁl+ [u (1t ) + o,(b, + ll)]ﬁ2

N_B, N_H N_B .
~ 2_ o~ _ 2 ~ .
V2='¥ [ @ exSy, + Gye,sin B + 72)]91

N _ B, .
+[ & ze2c72+ ase,cos(f + 72)]ﬁ2 @
N7022= NVH + b22{[— NGBZ% _ dlsin ﬁ]ﬁl+[ N(ng% + dlcos ﬁ]ﬁz}
N2z N —{ N(:)BZ[vzcos B+ by, +y ).4'7,]+ [v,+ ay(b,, + y)]sin ﬁ}ﬁl

{ &5 2[—v sin [i+(b22+y) ]+ [v + al(b22+y)]cosﬂ}

(3)
N _c* N_H
vV = ¥
N_B - . . . )
{ ‘[ 2(Ip) + bya)cos B+ Lzsp]"' [v,(1,) + &L, + ab,]sin ﬁ}ﬁl
+{ N B‘[ 0,(1,)+ ba)sin B + L, ]+[v2(12)+ oL, + a,b, Jcos [3} 2 )
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N_T N_H
v =

v
"B o1 )cos B+ (byy + )T+ [yl + (b, + 1)]sin ﬂ}ﬁl

+

N_B ] - . .
{ o ’[—vz(lz)sm B +b,, + lz)cﬂ] +[v,(,) + oq(by, + 12)]cos ﬁ}ﬁz )

2.3.2 Linearized Angular Velocities

NmA = w8,

Nm81= (0, + &),
Vo= (o, + i+ QA

Va° = (@, + 0+ Q+ )4, 1)

2.4 KANE'S DYNAMICAL EQUATIONS

In this section, Kane's dynamical equations are used to assemble the equations of
motion for the system model, linearized in small generalized elastic coordinates and speeds.

According to the Kane formalism, the dynamic equations are given by

F,’ +F =0
r=w,2, 4P ; G=1.,nj=1...m) a0
where F;* is the generalized inertia force corresponding to the ger=ralized speed r, while I
is the associated generalized active force. Note that as in the previous section, a ~ signifies
that the indicated quantity has been linearized with respect to the small elastic deflections

and speeds.

For a collection of rigid bodies, the generalized inertia force is equal to the sum over
all the bodies of the d'Alembert force dot multiplied by the partial velocity of each body's
mass center with respect to a particular generalized speed, plus the inertial time derivative of
the bodies' angular momenta, about their respective mass centers, dot multiplied by the
corresponding partial angular velocity. The generalized active force is equal to the sum
over all the forces and torques acting on the system of the forces and torques themselves
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dot multiplied by the appropriate partial velocities and partial angular velocities,
respectively, at the points or bodies of application. These definitions will become clearer
when they are applied in the following sections.

The selected generalized speeds

P L q.p,  (i=1L.,nj=1..m)

together with the kinematic relationships

(03 =

Rla o

q'f= q; p. = (i=],...,n:j=1,...,m)

(2)

completely characterize the 2+n+m degree of freedom system.

Define mx to be the mass of body X, and Jx to be the moment of inertia of body X
about an axis passing through its mass center, X*, and parallel to n (X=A,B1,B,,0). p;
(i=1,2) is the mass per unit length of link i. N&P is the linearized acceleration of point P in
the inertial reference frame, while NgX is the angular acceleration of body X in the same
frame. Further, following Kane, the partial velocity of point P, and the partial angular
velocity of frame/body X, with respect to the generalized speed r are defined as

~P 0
er _ 7[N vP]

N X _d
mr‘—&.[me] (3)

respectively.

2.4.1 Generalized Inertia Forces

With the above definitions, the generalized inertia force for the system under
consideration is given by

{
* I'N C N C N B N B
Fr=_JANQ¢‘Nﬂ "I V,ile ﬁ'pldx—JB o'e o
0 !
N B, N B N_B' N_B' N_B, N_B
—JB2 Qe _qz-mnl V,le ﬁ"—mnz V,?e¢ '3 2
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l
2N C N C
_I vrz. §2p2d —-’C ng.NnC_m

0 1
where as before

r=w,0,, q‘f,p'j i=1..mj=1...m)

The partial ve. scities are obtained from the velocity expressions which are correct to
second order in elastic generalized coordinates and speeds (see section 2.2), and are then
linearized in these same coordinates and speeds. The linearized partial velocities are given
in Table 2.1, and the partial angular velocities are presented in Table 2.2. The linearized
accelerations are obtained by differentiating the linearized velocity expressions at the end of
section 2.4, and ignoring terms of second order or higher in the elastic deflections and
speeds.

o, b, -Xq8 +x+b)l, -2 6.0)q.8 +0 + b,
i=1 i=1

G 0 -XBx)gh o),  -XB()ed+ U8,
i=] i =1

Table 2.1a: Linearized Partial Velocities

@ -2 AU)gA + LA, -2 A0 )q; - elf)’ljlﬁl L+ ey Py

i=1 L i=1

g; -glC‘.j(ll)q‘.ﬂl+ AR, |-XC,0)g - ¢fj(1,)e,'s‘,,l]ﬁ,

L i=1

+ LAi )+ ¢'j (1))e, @l]ﬁ )

Table 2.1b: Linearized Partial Velocities (cont.)
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N~H . A A N.H A
o, Vo — esin 1,b, + e,cos pb, Vm + b,,b,

q; NVH ¢, Deysin yzbl+ ¢, (I e,cos 72 ) NV’.’ + ¢ (11)1722 2

. A A A
ﬂ3 - e, sin 72b1 + e, cos 72b2 bnb2

Table 2.1c: Linearized Partial Velocities (cont.)

The symbols in Table 2.1 that have not been defined previously are the modal
integrals and constants that depend on the mode shapes. These are defined in Appendix B,
where they are also evaluated for the physical manipulator parameters chosen (see Table
4.1), and assuming cantilever mode shapes.

@, Nvl:’, gw pb, +(y +byb, M9 z,lw(lz)p B+, + byyb,
q; NVl;j— ¢(j(ll)il"’ipial Nv:-l,_‘ ¢'j(l1)il'/’;(lz)pi31
- i
+ ¢ U)(y + byb, + ¢, + b,,)b,
2 - glv'i pi61+(y + bzz)az = gl"’i(lz)pisx +(,+ bzz)f’z
b, -g.lﬁ,fj(y)p,.“b,+ v, (»)b, —gﬁ,f,.az)p,-ﬁﬁ v ()b,

Table 2.1d: Linearized Partial Velocities (cont.)
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m
N H A A
, Vo, - .ZIB" (,)p,b,+Lyb,
i=
N_H < A A
G - ¢(j(ll)2,18,-(12)p,-b1+ §U)Lb,
i=
- A A
2 'ZBi(lz)pib1+Lzb2
i=1
m
; Y c*)p.b, + B.(I,)b
p; i) p;b + B ()b,

i=1

Table 2.1e: Linearized Partial Velocities (cont.)

r__ Mot "o, Mo, Yl
@y 4, 4, 4, 4,
i 0 ¥4, #,UA, #,3A,
Q 0 0 4, a,
p 0 0 0 v, U,

Table 2.2: Linearized Partial Angular Velocities

2.4.2 Generalized Active Forces
The generalized active force can be written as

£=(F) +(F)

r= w3,.(23, 9P @G=1.,mj=1...m) )

where (F;); consists of those contributions to the generalized active forces due to internal
forces; and (F;)c are those contributions due to external or "control” forces. Taking into



account the definitions given at the beginning of this section, and referring to Fig. 2.3, the
expression for the (Fp); is

I av
N _Q 'N C 1
(F), = "at « (ot ]+ "o o [ron ] |60 [ 50l
Q
M o] My o - T+ M [M08,]
g av
+ VP, [v,0b,]+ L,z T [‘Wz'h’z}’y # e b)

+ Nl o [-M (18]

r=0,02, qlf,p'j G=1.,mj=1...m)

)

M,(0) Vid) M) Vo))
@ ]TI ] @ [ JITlr 1 @
IV ! IV,
-v.0 - ?x_l B, T)y_% M, ()

Figure 2.3: Schematic of Internal Forces and Eibow Joint Definitions

For a Bernoulli-Euler beam, under the governing assumptions presented in section

2.1,
azu2 32v2
M (x) =(E7)1? Mz(y)=(EI)2—372-
-9 _ 0
Vl(x ) - g"Ml(x ) Vz(y ) - Whlz(y )

©))

where (EI); (i=1,2) is the bending stiffness of link i. Taking into account the fact that link
1 is attached to body A in a cantilevered way, and link 2 is attached to body B; in a
cantilevered way also, it is seen that
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$,(0)= ¢,(0)=0 i=1..n
y;(0)=y;0=0  j=L.,m @

Using these boundary conditions, and executing the required operations, equations (2)
reduce to:

() =0

(),

¢ 5)

where
{
Hy= ] (ED @7 008" )dx

l
. 2 ” r
H.-,-=IO (EL) W, (» W (3 )dy ©6)

and the orthogonality conditions governing these integrals have been presented in equation
2.3.8.

For the case at hand, the generalized active forces due to external forces have a
particularly simple form

N B N B
(Pr)c=Nm¢.Ts+ mrl.(—TE)'*' m,“TE

r= 0)3,.(2 » 4P i=1..,mj=1...m) )

where the control forces are couples of torque Ts and Tg applied at the shoulder body, A,
and the elbow body, B, respectively:

Ty = T1ﬁ3’ Tp= Tzﬁa
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Again effecting the required dot products, and making use of Table 2.1, equaticns (7)

simplify to

(%) -t

F.) =0 i =1,...,m.
(%) St N

From equations (5) and (8) the linearized generalized active forces result

F, =T,
E =T
.03 2
n
Fq.'=—ZH‘.jq‘., j=1...,n
J i=1
m
Fﬁ_=—2H‘."jp‘., j=L...m.
il ©

2.4.3 Equations of Motion
Finally, the 2+n+m ordinary differential equations of motion are obtained from

F+F=0,  r=o0,4p, @=lonj=l.m)

Let x be a state vector such that

XR T
x=[ x, ]= [6: B. 4y -5 Gns Py --» P

and T be the control input vector
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[

Then equation (1) can be written in the matrix form:
MRR(X) MRE (X) . 0 0 I .
X + 0 K X= + F(x,x)
Mg (x) Mg (x) EE 0
where F(x,dx/dt) is a 2+n+m vector of gyroscopic (centripetal and coriolis) forces;

(Kgg) = Hj; i,j=1...,n
ij

@)

(KEE) =H', i,j=1...,m

i
n+in+j /

and M(x) is the configuration dependent mass matrix.

[:]

the matrix equation (2) can be written in the form

) 0 I 0 0
-M 'K 0 M M F (3)

in which form it can be integrated straightforwardly using a Runge-Kutta fourth-order
integration scheme (see chapter 4).

Setting

The full equations of motion that result from the above development are quite
extensive. For this reason, they are presented in Appendix C in the matrix form of
equation (2).
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CHAPTER 3: DYNAMIC ANALYSIS

INTRODUCTION

In the previous chapter, the motion equations for the two link arm, correct to first
order in small elastic deflections and speeds, and exact in rigid body motions, were
obtained. It is now desired to investigate the relative significance of nonlinear terms which
involve the elastic coordinates and speeds. For this purpose, this chapter begins with a
brief general presentation of the equations of motion for open chains of elastic bodies,
linearized in small elastic deflections and rates. After considering possible simplifications
to these equations, three models are proposed for purposes of investigating the effects of
these simplifications on the systems under consideration.

Using these three models as a guide, the simple one link example of section A.2 is
analyzed. By virtue of its simplicity, this model serves to clearly identify the issues of
importance, and to highlight the complexity introduced by inertial coupling between
multiple links. Predictions using this example are made as to the relative significance of
elastic nonlinear terms in the equations of motion of more complex systems. These
predictions are tested in the next chapter via simulation of the twe link arm using the
equations developed in chapter two. The chapter ends with an eigenanalysis of the two link
manipulator that will be useful when the simulation results are analyzed in chapter four.

3.1 FORM OF THE EQUATIONS OF MOTION FOR A CHAIN OF
ELASTIC BODIES

The equations of motion of an open chain of elastic bodies can be expressed quite
generalily as [8]:

[MRR(x’q) MRE (x!q) :||:f ] rc] ext,R + FR(x’ qvi’ q)

- = + ..
MER (x ’q ) ME (x ’ Q) q 0 TCXI.E FE(x ’ qsx ’ q) (1)
where x is a vector of rigid generalized coordinates; q is a vector of the elastic generalized

coordinates; Mrr, Mrg, Mgg form the configuration-dependent mass matrix; Tc is a vector
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of control forces and we assume only the rigid coordinates are directly actuated (as in joint-
torque actuators in a manipulator); Ty, is a vector of other generalized external forces; Kgg
is a constant stiffness matrix (see equation (2) below) and F is a vector of nonlinear inertial
(including coriolis and centripetal) forces.

The important class of systems for which the elastic deformations remain small, so
that terms of second order in ¢ and dg/dt can be ignored, is often considered. Strictly
speaking this requires that ligll and lidg/dtll be infinitesimally small. However it is known
that if, for example, a flexible body is modelled as a beam, it is sufficient that the elastic
deformations do not exceed ore tenth of the length of -2 beam in order to use linear
Bernoulli-Euler beam theory. At any rate, given this assumption of small elastic
deflections, the previous equation could be expanded in order to show more explicitly the
form of the nonlinear terms:

[MRR(x,Q) Mg (x, q)][ ] r'c] ext.R [0 0 ][x]
Mp(xa) Mg L a] Lol"|r,, . |7Lo ke L a

+ Zfl,,(x )X, +—2 Zfl,,(x )X X, %Zfz,,(x )qx

x 1j =i

Mpp(x,q)
lZ‘.‘Z‘.fz,,(x )qx; x; +2f3, (x)gx, [ I:R }-

i=1j+i MER(xvq)

(Mpptx, @) =mi (x)q, (Mg(x, q)) mh.i(x)q
i V)

where n above is the number of rigid body coordinates; f1;; is a column matrix, but f;; and
f3i are n+m by m matrices, where m is the number of elastic coordinates.

In light of the discussion in Appendix A, some of the terms in equation (2) could be
written as:

Fpif 6 ) = £y ) + f08)
mh.j(x )= mlu (x)+ mlu(x )

my; (x)= mw(x )+ m2|'j (x) 3)

where the superscript 2 terms can only be obtained through the use of displacement and
velocity expressions, in the development of the equations of motion, that are accurate to
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second order in the elastic generalized coordinates and speeds (g and ©). This requires the
use of nonlinear strain-displacement relations (as in App. A, [13]), nonlinear kinematic
constraints [11, 24], or the use of a nonlinear "geometric stiffening” term appended to the
incorrectly linearized equations of motion [27, 1].

The complexity of equations (2) and the difficulty involved in obtairing the
nonlinear terms have historically prompted attempts at simplification. It is common [8] for
example to assume small velocities and drop all terms nonlinear in rates. This results in
rate-linear motion equations that greatly simplify the dynamicist's task. It has been pointed
out [4], however, that in the case of n-link rigid manipulators in any configuration, the
velocity and acceleration terms of the dynamic equations have the same relative significance
at any speed of movement. The fact that the omission of these terms does not significantly
affect simulation results is attributed to the fact that gravity and joint friction usually
overpower inertial terms. These results have not been extended to chains of flexible
bodies. One might argue that in some limit (e.g., vanishingly small q) the equations of
motion of the flexible multibody system should reduce to those of the rigid multibody
system. Then it seems that a good case could be made for the inclusion of at least nonlinear
terins in the rigid body rates in the rate-linear equations (i.e., f;j(x)), particularly
considering the fact that future, fast, space manipulators with low joint frictions are part of
the class of systems under consideration.

Faced with this, there are two ways in which to proceed with respect to the
equations of motion: we can be consistent, or we can be selective. To be consistent
requires keeping all terms of order ligll and liull in equation (2), i.e., no simplification.
There is also the problem that the superscript 2 terms in equations (3) are not readily
available in the general case since they depend on nonlinear elastic theory or nonlinear
kinematics of deformation for their derivation. We could just make do with the superscript
1 terms in equations (3) (standard approach) but this would not be consistent nor justifiable
since there is no a priori reason to guarantee llf;;!ll >> lif5;;2ll, for example.

We are forced then to be selective, at least in the general case. Now we have to rely
mostly on experience and simulation to determine which terms are important and which
negligible under given conditions. Using a dynamic system very much like the one used in
the simple example of section A.2, an empirical speed limit has been found beyond which
the standard linear finite element or modal formulations of the model give erroneous results
[11]. This limit is specified as follows: the magnitude of the spinning rate of the system
has to be one order of magnitude less than the fundamental vibrution frequency of the beam
nominally stationary in Newtonian reference frame. This simulation result is used to claim
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the following: unless the equations of motion exact to first order in elastic generalized
coordinates and speeds are available, rigid body angular rates are limited to less than an
order of magnitude lower than the lowest fundamental bending frequency of the system. In
view of this, it might be possible to model the system accurately enough by just keeping the
rate-linear equations together with terms fj;;. In other words, it might not be detrimental to
drop all nonlinear terms involving elastic coordinates and speeds. It can further be claimed
that speed or acceleration limits also exist in translational rates or accelerations, arising both
from those mass matrix terms that depend on g and cannot be obtained through the standard
approaches and from such terms in f3;;. In section 3.3 these claims are investigated
analytically.

3.2 COMPARISON MODELS

In what follows, taking the above discussion into account, three types of models
for a flexible multibody system under study shall be considered. The "consistent" model
will be that which retains all terms to first order in elastic coordinates and speeds. This is
the correctly, or consistently, linearized model. The equations of motion developed in
chapter two for the two-link manipulator, and in Appendix A for the simple one link
example, are representative of this type. This model implies no further simplification of the
linearized equaticns and, as can be seen from Appendix C, even for the case of only two
flexible links results in unwieldy expressions.

The second model to be considered is the "inconsistent” model. This is obtained
through the use of linear kinematics of deformation in the determination of system
velocities. It is clear from the discussion in Appendix A that this results in equations of
motion that are incorrectly linearized. They lack the superscript 2 terms mentioned in the
previous section. While this model results in equations that are as unwieldy as those of the
consistent model, it yields erroneous results, as shall be seen. The advantage of this model
lies in its use of linear elastic theory, and in the fact that, as it turns out, its results are valid
within certain rigid body rate limits.

A "ruthlessly linearized", or simply "ruthless" model, shall be the last one
considered. In this model all nonlinear terms which include elastic coordinates and speeds
are ignored, including those terms in the mass matrix which depend on elastic coordinates.
Referring to section 3.1, a ruthless model does not contain terms f;; and f3;, or my;;(x),
ma;j(x). Unlike the first two models, the ruthless model yields equations of motion that are
greatly simplified, and since terms nonlinear in rigid body coordinates and rates are kept,
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this model degrades to the correct model of a rigid multibody system as flexible deflections
approach zero.

In the next section, limits of validity for all three models shall be investigated.

3.3 SINGLE FLEXIBLE BODY EXAMPLE

Consider the simple, slender, uniform beam cantilevered to a rigid base, of section
A.2 (see Fig. A.1). The equations of motion, exact to first-order in generalized elastic
coordinates and speeds were | resented in eq. (A.2.1.14) . All symbols have been defined
in equations (A.2.1.15).

3.3.1 Pure Rotation

Specializing equation (A.2.1.14) to the prescribed motion of uniform rotation of the
base,

vi=vy=0, v3=Q2=constant

the following is obtained,

EGU&E * ,-%[H"f + @by TR T Gij)]qi =0
(j=L...,n) (1)

We recall that the terms y;; and 7;; cannot be obtained using linear kinematics of
deformation but were obtained in section A.2.1 through the use of nonlinear strain-
displacement relations. Equation (1) represents the consistent model. The term

Lop, + n,)

is known as the geometric stiffness matrix for this specialized rigid body motion (rotation).
Laskin et al. [13] point out that this matrix provides coupling among the transverse
vibrational modes of the beam and this coupling leads to the phenomenon of geometric
stiffening. They further mention that this stiffening mainly raises the value of the bending
vibrational frequencies.

Indeed, noting that equation (2.3.8) is true for a variety of simplie beam mnode
shapes, und using the relations of Appendix B, equation (1) becomes



0 0
OmBOZj‘..,.

0 0
0o 90
0 mb‘? 0J+ soe b#,-j"'ﬂ,-,-"mgts,-j q; |=0
0 0 ' : @)

where the following equation has been used

2 2 P
/’L‘.=w‘.1 —_—

and the Kronecker delta is given by

L i=j
Y 0 i=#j

As it turns out in the case of cantilever mode shapes, the geometric stiffness matrix is
positive definite (see section B.2.2), and dominates over the modal mass matrix Gj;.
Consequently, equation (2) yields the correct spin-stiffening result as the angular rate £ is
increased.

The inconsistent model is obtained using linear kinematics of deformation, so that
the geometric stiffness matrix is absent. In this case, equation (2) reduces to

0 0T : 0 0
0 my 013G l+my|0 0?-2° 0| 4 (=0
0 0 ~ | : 0 o0 -] A3)

It is clear from the above equation that when £ reaches the value of the first fundamental
bending frequency of the beam, the stiffness matrix will be singular. This amounts to the
mocel predicting divergence under large enough spin, which is incorrect. On the other
hand, if £2is much less than the first fundamental bending frequency, say about one order
of magnitude less, then the discrepancy between equations (2) and (3) may be less
noticeable and results using equation (3) might be qualitatively "correct."

From this it is apparent that a limit on the rigid body spin rate exists, below which
the inconsistent model is "valid." This limit has been pointed out experimentally in the
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Fe~rature in recent years [11,24,27]. Its analytical confirmation here serves as a check on
the equations.

Ignoring all nonlinear terms that involve the elastic coordinates and speeds in
equations (A.2.1.14 ), the ruthless model for uniform rotation of the base results in the
cquations

0 OT ¢ ~ 0 0
0 mp 0 &l. + mg 0 (D‘.z 0 q; (=0
0 0 ~ g 0 0

@

While equation {(4) does not exhibit the correct spin-stiffening of equation (2), it also does
not show the incorrect destiffening of equation (3). Clearly, if the angular rate £2 is small
enough, equation (4) will be as "valid" as equations (3) or (2), with the added advantage of
yielding results that are more conservative than those of equations (3). In other words,
even for large £2, the ruthless model yields qualitatively similar results to those of the
consistent one, while the inconsistent model fails.
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Fig. 3.1: Fundamental Bending Frequency of Spinning
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The above results are succinctly summarized in Fig. 3.1, where the first
fundamental bending frequency of the spinning beam is plotted versus spin rate for all three
models (for the case of only one assumed mode).

3.3.2 Pure Linear Acceleration

Specializing to the prescribed motion of constant translational acceleration along the
neutral axis of the beam

f:l=g=constant, v,=v,=0
equation (A.2.1.14) turns into
n n
EGij&i + Z(Hii ~ &) q, =0
i=1 i=1
(j=1...,n) (1)

which are the consistent model equations. Making use of relations (2.3.8), equation (1)
becomes

0 OT: [ 0 0 b "]
0 mB 0 q, + 1 0 mB (')‘.2 0 |- gl #‘J q,' =0
0 0 O 0 -~ I S : @)

Since y;; is positive definite in this case, for large enough g destiffening is again predicted.
For g large enough, the stiffness matrix becomes non-positive definite which implies that
the beam buckles due to its own weight. The predicted buckling is correct, and is lost with
the inconsistently or ruthlessly linearized models, as shall be seen. This suggests that a
translational acceleration limit also exists beyond which our model is again grossly
incorrect if we do not use equations exact to first order.

Reducing the model to a single assumed mode, it is easy to obtain a first
approximaiion to this translational acceleration limit:

2 4
Ia)l _ EIA.l
- 2

& mg 1",

g =
3)
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&1 and A, are constants that depend on the mode shapes chosen (see section B.2.2). For
the parameters used for the outboard link of the manipulator, this limit is approximately
g~45g's.

The inconsistent and the ruthless models have the same equations for this case,
mainly

0 0T : “ 0 0
0 mg 0| g |+|0 mpa? 0] ¢ [=0
O 0 -~ : o 0 -~ : @)

Once again it might be expected that for small enough axial accelerations, g, equation (4)
will yield results qualitatively similar to those of the consistent model, equation (2). It is
significant that the ruthless model is as good as the inconsistent model.

3.3.3 General Stability Boundary of the Consistent Model
In general, from equations (A.2.1.14), an effective stiffness matrix can be written

as

(K)ij= Hy+ vy, + v}[b/,t‘.j + 1, - G]- Vil W

whence it can be seen that besides being affected by axial acceleration and centripetal terms,
the "dynamic" stiffness contains a coriolis term. Again using only one assumed mode, it is
possible to obtain a three-dimensional stability boundary depending on the values, all
functions of time, of dv,/dt, v, and v3. The boundary is given by the equation

(Lo

|
gl

where x, y, and z are nondimensional variables given by

2)

A4
x=F3l, = — z = —

and &; and 4 are constants that arise from the foreshortening matrices 7);; and p;;, and that
depend on the mode shapes (see section B.2.2). Equation (2) is obtained by requiring the
"dynamic" stiffness to equal zero.
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Figs. 3.2 and 3.3 show two-dimensional projections onto the x-y plane for two
non-dimensionalized values of axial acceleration. Not surprisingly, taking into
consideration the previous results, the larger z is, the larger the region in the x-y plane
where divergence is predicted. Also note there are two qualitatively different x-y
boundaries, corresponding to values of z above and below the “critical” value which is the
limit predicted in the previous section for the case of axial acceleration only.

This stability boundary is used in the simulation of the two-link manipulator (see
section 4.3.3), to determine when (and if) divergence of the outboard link is predicted by
the consistent equations for the tried maneuvers. This helped distinguish between correct
results and numerical ill-behavior.

3.4 PREDICTICNS

From an examination of the analytical results presented above, the following
predictions are ventured in what concerns the relative significance of nonlinear terms found
in more complex systems.

For the values of the beam properties selected (see Table 4.1), and for maneuvers
typical of a manipulator, it seems that the more restrictive limit on the validity of other than
the correctly linearized equations is by far the one imposed on the rotational rigid body
rates. Therefore, for rotational rigid body rates of less than an order of magnitude of the
first fundamental bending frequency of a system of the type under consideration, no
significant difference might be expected among the three models studied above. For rates
larger than this limit, the inconsistent model will degrade, eventually predicting divergence;
while the ruthless model will become increasingly more inaccurate with increasing rates,
when compared to the consistent model.

3.5 EIGENANALYSIS OF THE TWO-LINK MANIPULATOR

An examination of the equations of motion for the two-link, flexible manipulator
(see App. C) makes it clear that the complexity of the mass matrix and nonlinear inertial
terms could be diminished immensely by dropping terms involving the generalized €lastic
coordinates and speeds (i.e., the "ruthless" case). It would be advantageous to know,
then, if these terms have a significant effect on the dynamics of a chain of elastic bodies if
we are limited to the low rotational speeds and translational accelerations encountered
during slew maneuvers with joint torques limited by the requirement that flexible
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deflections remain small. In order to investigate this, we propose to examine the three
models presented in section 3.2, to note, consistent, inconsistent, and ruthless, as applied
to the two-link arm. The complexity of the motion equations precludes an analytical study
akin to the one presented in section 3.3. It is therefore necessary to rely on numerical
simulation and compare the performance of the three "models" of the arm when it is
subjected to several possibly typical maneuvers.

In order to examine the above predictions on the manipulator, it is desirable to
obtain a measure of the fundamental vibration frequency of the system, since this quantity
dominates the first approximation of the limit on the validity of the simplified models. The
two-link manipulator, however, is a nonlinear dynamical system with configuration
dependent mass matrix, as presented in section 3.1 (see also App. C). In this case, the
standard eigenanalysis does not strictly apply. To obtain a first order linear approximation
of the system frequencies and mode shapes, a configuration dependent eigenanalysis is
performed on the manipulator.

An examination of the equations for the system presented in Appendix C reveals
that the mass matrix depends on the relative angle between the links (f), as well as on the
elastic generalized coordinates of both links. Choosing the nominal configurations to be
the undefcrmed links, all the generalized elastic coordinates are zero, and the system
frequencies and mode shapes are determined for several values of . For each
configuration, the eigenanalysis is performed for both free and locked joints. The values of
the parameters used in this analysis correspond to those presented in chapter four for the
numerical simulation (see Table 4.1).

(deg) Free joints (rad/sec) Locked joints

0 429 68.1 153.7 2243 3.03 736 62.2 120.7
45 42.8 68.0 153.6 2243 3.15 6.82 62.0 120.7
9 427 68.0 153.5 2243 3.53 590 61.6 120.7
135 428 68.0 153.6 224.3 408 532 61.6 120.7
180 429 68.1 153.7 224.3 435 5.19 61.8 120.8

Table 3.1: Configuration Dependent Manipulator Frequencies
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As might be expected, the free joints results are almost identical for all values of
considered (see Table 3.1). Fig. 3.5 shows these results for B equal to zero. For fixed
joints, on the other hand, the lowest two frequencies move closer together on the jw axis as
B is increased from O to 180 degrees (see Fig. 3.4 and Table 3.1). The higher frequencies
are less affected by changes in B. Figs. 3.6 to 3.10 show the first four fixed joints mode
shapes for the different values of relative angle. Since only eight assumed modes (four per
link) were used (as a maximum) in implementing the simulation, it is to be expected that
only the first four frequencies of the system presented herein are accurate, while perhaps
even fewer mode shapes.

(deg) Link 2 rigid (rad/sec) Link 1 rigid

0 3.52 29.2 320.5 907.0 4.67 63.6 202.0 479.2

90 4.04 239 318.6 905.6 - - - -
Table 3.2: Frequencies for Each Link when Other is Rigid and Joints are Locked

For comparison purposes, and for reference, Table 3.2 lists the eigenfrequencies
for each link, when the other is considered rigid and both joints are locked. In the
following pages, the system mode shapes have been normalized so that the largest
deflection of either link be approximately ten percent of the link lengths, which have been
normalized to one.
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CHAPTER 4: SIMULATION RESULTS

INTRODUCTION

In the previcus chapter, three levels of increasing simplification of the correctly
linearized equations of motion were proposed. Based on the results of the simple one beam
example, predictions were made concerning the relative significance of elastic nonlinear
terms in the equations of motion of chains of flexible bodies undergoing large rigid body
motion, but small elastic deflections. Recall that elastic nonlinear terms are those nonlinear
terms in the equations of motion which involve the generalized elastic coordinates and

speeds.

In this chapter the same three models are used to test these predictions for the case
of the manipulator with two flexible links. The chapter starts with a description of the
numerical simulation capabilities. After a brief section on trajectory time-scaling, the
simulation results of implementing four different trajectories for each model are presented.

4.1 NUMERICAL SIMULATICON

The motion equations for the two-link, flexible, planar manipulator, consistently
linearized in small elastic deflections and speeds, were programmed in FORTRAN and
implemented in a VAXstation 2000. The code developed for this purpose allows the joint
and tip bodies to have mass, moment of inertia, and planar dimensions, just as in the case
of the equations developed in chapter twe (see Fig. 2.1). A maximum of four cantilever
modes per beam are implemented, although only two per link are used in most of the actual
simulations. One percent damping ratio is assumed for each cantilever mode to
approximately model material damping in the manipulator. The structure of the code is
modular for ease of handling and to facilitate expansion. A short separate program handles
user interface by creating the input files needed by the main program, which can then be
run as time-sharing or in batch mode. This user interface has a short and a long version.
The long version allows the user to input the physical manipulator parameters such as mass
density, link lengths, modal damping, joint planar dimensions, etc. The short version lets
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the user select initial and final times for the simulation, initial configuration of the
manipulator, number of modes to be used for each link, initial time step to be tried, and the
kind of model to be run, i.e., consistent, inconsistent, or ruthless (see section 3.2).

Actuation is assumed in the form of joint torques, as in chapter two. Torque time
histories, which can be open or closed-loop, are created by a subroutine which is linked to
the main program. This subroutine has access to the state vector and to the simulation time,
to allow for feedback and time-varying forcing schemes. It can also generate computed
torques time histories, given desired trajectories. It is in this last capacity that it was used
for all of the cases presented below, with the notable exception of the time-optimal bang-
bang controller (section 4.3.4).

As can be seen from Appendix C, the configuration dependent mass matrix is non-
symmetric due to the linearization. For this reason, the mass matrix inversion needed to
obtain the form of equation (2.4.3.3) for the equations of motion is exccuted using LU
decomposition [6] instead of the computationally cheaper Cholesky decomposition. The
latter requires symmetric, positive definite matrices. Once the equations are in the form of
equation (2.4.3.3), they are integrated in time using a Runge-Kutta fourth-order scheme
with adaptive time step [22].

The constants that depend on modal integrals are evaluated by subroutines that use
the physical parameters' input file. These subroutines are mode shape dependent and need
to be rewritten if other than cantilever mode shapes are desired (see App. B and D). Two
routines, ENERGY and AMOMENTUM, provide energy and angular momentum checks.
They determine the instantaneous energy and angular momentum of the system and
compare it to the change in the corresponding quantity due to forcing and/or damping.

The output of the simulation is of two kinds. "Raw" data is output to the file
DATFILE.DAT in a format which can be used by other FORTRAN programs. Data in
MATRIXx [16] format is output to MATPLOT.DAT. The latter is used to obtain the plots
presented in this chapter using MATRIXx. The "raw" data file is used by another
FORTRAN program, POST_PROCESS, which processes it and puts it into the proper
form to be used by ANIMATE_ARM, which does a graphics animation in a Vax
Workstation screen. The FORTRAN code for the simulation, and ancillary programs and
subroutines are included in Appendix D.

The values of the physical parameters utilized for the manipulator simulation were
chosen to mimic an actual experimental testbed presently under construction at Martin
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Marietta by Dr. Eric Schmitz. Table 4.1 shows the assumed properties for the manipulator
(see also Fig. 2.1).

Phxsical Promes of Planar ManiEulator with Two Flexibie Links

Mass of shoulder body (kg) 20.0 Length of link 1 (m) 0.9144

Mass density of link 1 (kg/m) 1.33937 Length of link 2 (m) (0.9144

Mass of elbow body (kg) 14.0

Mass density of link 2 (kg/m) 0.669685 Other lengths (see Fig. 2.1):

Mass of tip body (kg) 2.0 b; (m) 0.0762

by; (m) 0.0762

Moments of Inertia (about axis perpendicular to plane):  bp2 (m) 0.0127

Shoulder body (kgm?) 0.01 b; (m) 0.0508

Elbow body (kgm?) 0.03

Tip body (kgm?2) 0.01

Table 4.1: Physical Properties of the Two-link Manipulator

4.2 TIME SCALING OF TRAJECTORIES

In the following sections, reference is made to time-scaled trajectories. Time-
scaling of nominal trajectories [7] is achieved by replacing time as the independent variable
by the new variable

r=ot, a>0

where a is a constant. When a is greater than one, the trajectory is sped up, while if o is
less than one it is slowed down. Notice that with this substitution, the time derivatives of
the trajectories become

—i ()= ab(a)
d2 2,
=9 = 0

Py (r)y=a"6(am) O

From this it is apparent that rates scale like ¢, while accelerations, and thus torques,
scale like the square of a. These relaiions are used in the following sections to select a
scaling factor that yields a desired maximum value of angular rate, or a given maximum
value of torque to obtain desired maximum link tip deflections.
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4.3 RESULTS

All the trajectories presented below were run in open loop after the torques had been
computed from the inverse dynamics problem (given the desired angular trajectories)
assuming rigid links for the manipulator. The exception to this is the minimum-time
trajectory of section 4.3.4. Although it was run open loop like the rest, maxiraum torque
bang-bang contro! was implemented instead of computed torques. For all simulaticn runs,
only two assumed modes per link were used, since this gave adequate results and was
computationally much cheaper than running the full four modes per link. With two modes
per link, the first two system vibration frequencies were obtained to within three percent of
the value obtained using four modes per link.

4.3.1 Spinning of the Outboard Link

The first maneuver tried on the two-link manipulator is the smooth spin-up
maneuver of the outboard link. This is done for purposes of comparison with recent
published results [11,27], and thus as a form of validation of the correctly linearized
equations of motion. For this reason, the same smooth spin-up as [27] is selected

where

t, =15 sec

Q = 6 rad /sec

and df/dt is the elbow angular rate.

The above trajectory results in a constant angular rate at the elbow of 6 rad/sec at the
end of 15 seconds. To implement this on the two-link manipulator simulation, the stioulder
angle (6) was clamped, and the inboard link was assumed rigid. Note that the first
fundamental bending frequency of the second (outboard) link, with the first (inboard) link
rigid and the shoulder angle locked, is 4.67 rad/sec (see Table 3.2). Accordingly, from the
discussion in chapter three, summarized in the predictions of section 3.4, it can be
surmised that the inconsistent model will fail, while the ruthless model will yield results
that are not correct, but more conservative. This is indeed the case as can be observed in
the results presented in Fig. 4.1.
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It can be seen from the figure that the consistent model yields results that are stiffer
than those for the ruthless model. This agrees with the analysis presented in section 3.3.1.
The two miodels yield otherwise qualitatively similar results. The inconsistent model, on
the other hand, predicts divergence under the smooth spin-up.

4.3.2 First Smooth Trajectory

In section 3.4 it was predicted that the more severe limit on the validity of other than
consistently linearized equations would be the limit on rigid body angular rates. In the case
of chains of flexible bodies, as exemplified by the two-link manipulator in this simulation,
the nonlinearity arising from dependence on configuration makes it difficult to select a
"characteristic" angular rate in the general case. This suggests a case by case approach.
With this in mind, the first trajectory tried on the full two-link manipulator is a smooth
maneuver intended to mimic as much as possible a single slewing beam. This implies little
motion of the relative elbow angle S, and thus small elbow angular rates. In thic manner
the shoulder angular rate dominates and becomes the "characteristic" anguiar rate of
importance. This provides possibly the simplest way to test the rigid body angular rate
limit in the two-link manipulator.
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The smooth trajectory is obtained by assuming a form of the angular time histories
that is quintic in time. This allows the specification of angle, angular rate and angular
acceleration at the initial and final times of the trajectories [5]. Selecting

6,=0 B, =0.0873 rad
0f=7trad ﬂf=0
0l=ol=ﬁl:=pl=0f=ef=ﬁf=ﬂf=0

\N
[
[o2]
o
&

the coefficients for the quintic polynomial in time are obtained from the relations

a,= 9;
5
@, =5
_ 208, - 206, - (86, +126,)1, - (36, - 6,)i/
03— 2".;
_ 308, — 308, +(14I9f + lGéi)tf +(36, - zéf)tf2
a4 = 2t
- of - . 2
o= 129, — 126, - ( 66, +650i)ti—(ei - 6. ),
2 a)

with analogous relations for the relative elbow angle (). The desired trajectory results

2 3 5

_ 4
0(t)= ay+ at + a,t”+ a;t” + at” + agt

B(t) = by+ bt + byt2+ by + bt + by 2

Fig. 4.2 shows the computed torques for the nominal trajectory scaled by a factor of two
(a=2.0).

Figs. 4.3 to 4.5 show the results of the three time-scaled trajectories tried. The
maneuvers were scaled to vary the maximum value of the characteristic rigid body rate,
i.e., the shoulder angular rate. The first fundamental bending frequency of the arm, in
extended configuration and with joints locked (§=0) is approximately three radians per
second (see section 3.5). The first case shown exhibits low shoulder angular rate relative



to the fundamental (46/dt about 0.2 rad/sec at maximum). As expected, the elbow rate ic
very small. For this case, all three models exhibit excellent agreement, as expected from
the discussion in chapter three.
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Fig. 4.2: Computed Torques for First Smooth Trajectory (Nm)

In the second case, the nominal trajectory was scaled down by a factor of 0.4297.
In this case the shoulder angular rate is about 0.3 rad/sec at maximum, or ten percent of the
first fundamental bending frequency of the system. This is the limit of accuracy of the
inconsistent model, if the predictions of section 3.4 are correct. From Fig. 4.4 it is clear
that while ruthless and consistent models still agree very well, the inconsistent model
exhibits a high frequency "chattering.” This was deemed a sort of onset of ill-conditioning,
since the chattering seems to be numerical in nature. As shall be seen for the last case tried,
for shoulder rates higher than this limit (ten percent of the fundamental), the inconsistent
model fails altogether.

Figure 4.5 shows the last time-scaled trajectory, where the nominal trajectory was
sped up (@=2.0). For this case, the shoulder angular rate is high, about half of the first
fundamental vibration frequency of the manipulator. In this case, the plots show only the
ruthless and consistent models, since the inconsistent model has failed. While good
agreement is still evident between the two remaining models, a notable discrepancy is
apparent in the elbow angle and. elbow angular rates. This is to be expected since the
"characteristic" rate is a significant fraction of the fundamental, and from the discussion in
chapter three, it would be expected that the ruthless be valid accurately only for very low
rigid angular rates compared to the fundamental. Note that the nominal trajectory cannot be
sped up anymore without violating the small elastic deflection assumption, sinice for this
case deflections of ten percent of the length of the second link are already in evidence.
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It is interesting to note that the inconsistent model fails whenever the shoulder
angular rate is higher than ten percent of the fundamental, much earlier than predicted by
the single beam example of chapter three. This could be due to the exacerbation of an ill-
conditioning of the mass matrix due to the lack of the foreshortening terms. This situation
could be the result of nonlinear interactions between the links that are absent in the one link
example. For a more complete discussion of ill-conditicning in the simulation, see the
discussion in section 4.4.

Finally, it is worth pointing out the excellent agreement in the tip deflections for
both links, in all three cases. This is probably due to the fact that the equations of motion
(see App. C) are elastically decoupled, and, while inertially coupled, the elastic degrees of
freedom mass matrix (Mgg of section 3.1) does not depend on elastic nonlinear terms due
to linearization. Also, the agreement in shoulder angle and angular rates is remarkable.
This indicates that, depending on what state variable is of interest in a given trajectory, the
ruthless model will be as good as the more cumbersome consistent model. In all cases, the
ruthless is more conservative and better conditioned than the inconsistent model.

4.3.3 Second Smooth Trajectory

The second trajectory tried on the two-link manipulator is intended to examine the
relative significance of the nonlinear elastic terms in the equations of motion of a chain of
elastic bodies as a function of trajectory. In the previous section, the shoulder-rate
dominant slew maneuver confirmed the predictions of section 3.4. It is now desired to see
how these results are affected by a change in trajectory. For this purpose, a typical
“deployment” maneuver of the twe link manipulator is commanded.

As in the previous section, the smooth trajectory is obtained by assuming a form of
the angular time histories that is quintic in time. Selecting

9‘. =-1.570796 ﬂi =2.96706 rad

9,, = 0.2617994 rad ﬁf = (0.8726646 rad

9‘_=0i=ﬂi=ﬂi=ef=9f=p}=ﬁf=o
” =4.0 sec

and solving for the coefficients of the polynomial in time as in the previous section, the
trajectory results in
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0(6)= ay+ at + a2t2+ a3r3+ a,t* + asts

B(1) = by+ bt + byt*+ b2 + bt*+ b i O

Figure 4.6 shows the computed torques for the nominal trajectory.
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Fig. 4.6: Computed Torques for Second Smooth Trajectory (Nm)

Figure 4.7 shows the nominal trajectory. In this figure, plots for both the ruthless
and the consistent models have been overlaid. The inconsistent model fails for this case.
This is not surprising after examining the results of the previous section and noting that the
- angular rates for the nominal maneuver are as large as thirty percent of the "fundamental
vibration frequency.” From table 3.1 in section 3.5, the system frequencies for the
manipulator with locked joints are seen to fluctuate from 3 rad/sec to 4 rad/sec for
corresponding elbow relative angles of zero to 135 degrees. For this reason, in the case at
hand reference is made to "one" fundamental frequency, and it is assumed that it lies in the
range specified above and is about 3.5 rad/sec. For the two models shown, the agreement
is again excellent for the shoulder angle and tip deflections, with the elbow angular position
being off by only a maximum of ten percent relative error.

In the second case considered, the nominal maneuver is slowed down until the
inconsistent model does not fail (a=0.1685). Figure 4.8 shows that for this case, all three
models yield identical results. This confirms the predictions in section 3.4, and further
suggests that within the limit of validity of the inconsistent model, the ruthless is as good as
the inconsistent, and actually better since it is much easier to obtain. Note that the angular
rates are well within the ten percent of the fundamental mark.
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The last case considered consists of the nominal trajectory scaled upwards in time
(a=1.2). As in the previous section, it was desired to reach the "hard" simulation limit of
link tip deflections of about ten percent of the link lengths. As Figure 4.9 shows, only the
ruthless model did not fail under the given speed-up of the trajectory, even though tip
deflections should only be about four percent of link lengths. To investigate these results,
the stability boundary of section 3.3.3 was implemented in the simulation and checked at
every time step to determine whether the simulation failure of the consistent model was due
to the correct prediction of divergence, or due to some numericai or other phenomenon.
For the case of two assumed modes per link, the lowest eigenvalue of the effective stiffness
matrix (see section 3.3.3) was actually checked, with the conclusion that no divergence
was predicted by the analytical consistent equations. Section 4.4 offers further comments
on this problem.

In summary, the above results again show a strong correlation between the limit of
validity of the inconsistent model and the maximum values of angular rates. Contrary to
the case in section 4.3.2, however, for the present maneuver no "characteristic” rigid body
rate is apparent. The limit at which the inconsistent model fails seems to be even before
any of the two angular rates (shoulder or elbow) reach ten percent of the fundamental
vibration frequency. A strong point can still be made, nevertheless, in that the ruthless
model is as good as the inconsistent whenever the inconsistent is valid, and more
conservative since the rithless model does not fail. Even at high angular rates the ruthless
model yields results that are quantitatively very close to the consistent model results.

4.3.4 Minimum-Time Trajectory

The last trajectory attempted on the two-link manipulator is a minimum time
trajectory execited via bang-bang controls [17]. The idea behind implementing this
maneuver is to get a feel for how the results of the previous two sections change when a
"typical" fast maneuver is commanded with abrupt forcing. For comparison purposes, the
torque bounds for the minimum-time problem are set to the maximum values of the torques
obtained for the nominal first smooth trajectory (section 4.3.2) scaled by a factor of
0:=0.4297 (see Fig. 4.4). The actual forcing time history for the manipulator simulation is
adapted from that presented by Meier and Bryson [17], to fit the chosen arm parameters
and configuration.
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The maneuver chosen was that referenced in [17] as one D/L=3.9, where L is the
link length, assumed the same for both links, and D is the distance traveled by the
manipulator end effector. The switching times for shoulder and elbow torques, and the
final time are given as

t,=113 t,, =146
1,=144 £ = 2.91
t,=177
with initial angular values of
6,=0 B, =-0.21 rad

where it has been assumed that the normalized torque bounds are

T T
¢2= S2=i1
mL mL

where m is the link mass, also assumed the same for both links and the same for the tip
load. Elbow mass and the moments of inertia of shoulder, elbow and tip effectors are
ignored. For the case at hand , the switch times were scaled to obtain the proper trajectory
taking into account elbow and tip masses, moments of inertia of all bodies, and different
link masses. The resulting trajectory is shown in Fig. 4.10 for the case of both links rigid.

The results are presented in Fig. 4.11. As in the previous two sections, the
inconsistent model fails for angular rates larger than about ten percent of the fundamental
vibration frequency of the system (in this case about one third of the fundamental at
maximum). For this reason, only the consistent and rutkless models are compared. As in
section 4.3.2, the ruthless model yields results that are within ten percent relative error of
the consistent results, and this for relatively large angular rates. The interesting thing to
note is the high frequency oscillation induced in the flexible links by the bang-bang
controller. Recall that all the maneuvers are run open loop, and that one percent modal
damping was assumed for the cantilever mode shapes.

The large discrepancy shown in the energy and angular momentum balance plots is
probably due to round-off error accumulation due to the relatively large tip deflections and
high frequency excitation.
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4.4 DISCUSSION

Having determined in section 4.3.3 that a numerical problem existed that might be
responsible for some of the unexpected results in section 4.3, a more detailed examination
of this problem is in order. The possibility of a programming error was ruled out to a large
extent through thorough debugging and the use of energy and angular momentuin checks.
Numerical experiments determined that the problem was caused by ill-conditioning of the
mass matrix brought about somehow by its dependence on the elastic coordinates. This
suggests that this could be the reason behind the premature failing of the inconsistent rnadel
in the previous section. Numerical ill-conditioning of the mass matrix implies that at some
configurations the configuration dependent mass matrix is numerically singular. A singular
mass matrix indicates massless degrees of freedom being modelled. The problem therefore
seems to come down to modelling error.

It appears that at least two ways of solving the problem are available. One way is to
solve the problem numerically. This is most appealing at first glance since it entails
keeping all the developed software. On the other hand, as shall be seen, it requires a much
more computationally intensive algorithm to implement. Also, the second possible solution
retains all of the derived equations of motion (and thus most of the software), while
requiring changes to only a few mode shape dependent subroutines.

The first solution calls for determining at every time step, and thus for every
configuration, if there are any massless degrees of freedom. This is achieved doing a
singular value decomposition (SVD) of the mass matrix. If a near zero singular value is
detected, a least squares projection is used to obtain the optimal (in a least squares sense)
inversion of the mass matrix so that the acceleration vector thus obtained does not grow
without bounds [22]. This is to some extent the equivalent of Guyan reduction performed
on the mass matrix after it has been transformed into a space where the massless degrees of
freedom are apparent. The problem with this solution is that it is very expensive
computationally.

The other solution requires realizing that the selected assumed mode shapes are not
appropriate for modelling the manipulator. In chapter two it was explained that
cantilevered-free mode shapes were chosen because they simplified the equations of the
two link arm. Indeed these mode shapes are easier to include in the development of the
motion equations than the pinned, system or unconstrained mode shapes [25].
Unfortunately, the free end condition forces the cantilever mode shapes to have zero second
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and third derivatives with respect to beam length evaluated at the tip of the link. In other
words, these mode shapes do not support moment or shear at the "free" end of the link. In
the manipulator, both links end in masses with moments of inertia, and are therefore not
free. The problem here might be equivalent to the mode shapes selected for the system not
being "complete” in the strain energy norm [28]. This then suggests that mode shapes for a
cantilever beam with a tip body, with mass and moment of inertia, be used as the beam
mode shapes for the determination of modal integrals in the equations of motion.

Both these possible solutions are being pursued at present and are offered as
suggestions for further work.

2
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- SINGULAR VALUE
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-2 -1.5 -1 -5 0 ) 1 1.5 2

Fig. 4.12: Comparison of Right Singular Vectors for the Mass Matrix at Failure

It is possible that the "free play" aliowed at the link tips by the cantilever mode
shape assumption provides the connection between the two seemingly different approaches
presented above. As a matter of fact, velocity "mode shapes"” of the mass matrix at failure
corresponding to near zero singular values suggest that it is the combination of positive
angular rate with negative link tip velocity that yields a configuration that has little or no
kinetic energy while the chosen state variable rates are nonzero. Fig. 4.12 shows these
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velocity mode shapes (actually right singular vectors) for the largest and smallest singular
values of the mass matrix at failure. The mode shapes have been normalized so that the
largest tip deflection of either link be ten percent of the link lengths, which have been
normalized to one. For the physical manipulator parameters chosen (see Table 4.1), the
elbow is massive in comparison to link or tip masses. Therefore it is clear that for the
mode with near zero velocity of the elbow joint the kinetic energy is near zero when
compared to the kinetic energy for the largest singular value mode. Thus the mass matrix is
numerically singular and this results in massless degrees of freedom being modelled.
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CHAPTER 5: CONCLUSIONS

The equations of motion for a planar, two-link, flexible manipulator, fully noniinear
in rigid body motions and rates, but linearized in small elastic coordinates and speeds, were
obtained. These motion equations, developed via the Kane formalism, were correctly
linearized through appropriate use of nonlinear strain-displacement relations. The links
were modelled as Bernoulli-Euler bearns and the elastic deflections were expanded in terms
of cantilever beam modes. The resulting extensive equations were coded in FORTRAN
and implemented as a simulation that allows the determination of the manipulator dynamic
response to desired forcing functions in the form of joint torques. The simulation allows
for a variable number of modes to be used in the modelling of the link flexibility so that
effects such as spillover can be tested in control experiments. Modularity in the software
developed permits the mode shapes to be changed with changes to two ancillary
subroutines that determine modal constants. Further, elastic nonlinear terms in the motion
equations were "flagged" in the simulation. This was done to permit running of three
different models, characterized by increasing simplification of the equations, in order to test
the relative significance of these nonlinear terms.

Having looked into the general form of the linearized dynamics equations for chains
of flexible bodies undergoing large rigid body motions, but small elastic deflections, it was
concluded that some terms cannot be obtained through the use of linear strain-displacement
relations. These terms were seen to be critical in the simple rotating beam example as they
provide the geometric stiffness terms necessary to obtain physical results. The absence of
these terms in inconsistently linearized equations limits their validity to angular rates lower
than approximately ten percent of the first fundamental vibration frequency of the system.
Other terms which are unavailable through the use of linear strain-displacement relations
predicted (correctly) buckling under large axial accelerations. The fact that these terms are
unobtainable for the general case of an arbitrary flexible body prompted considerations of
possible simplifications to the general motion equations.

The two alternative models studied, the ruthlessly linearized model and the
inconsistent model, are subject to several limits in applicability. While the consistent model
requires that elastic coordinates and speeds be kept small, the two alternative models will
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only be accurate if low angular rates are also maintained. There also exists some
translational acceleration limit that needs to be considered, although for the cases studied
this limit was of no consequence. Within the domain of validity of both simplified models,
it appears the ruthless model yields results as accurate as the correct consistently linearized
model. This coupled to the simplification of the dynamicist's task inherent in the adoption
of ruthlessly linearized models makes this option an attractive alternative.

Simulation misbehavior at certain trajectories for relatively high rigid body angular
rates was tracked down to numerical ill-conditioning of the configuration dependent mass
matrix. This problem was attributed to modelling error inherent in choosing cantilever
(clamped-free) modes to model the flexible deflections of the manipulator links. In chapter
four it was suggested that this results in effectively modelling one (or more) massless
degrees of freedom. Two possible solutions were outlined. A numerical solution entails
condensing oui these massless degrees of freedom through the use of a singular value
decomposition approximate inversion of the mass matrix. This is expected to result in a
simulation that is computationally very expensive. The use of mode shapes obtained from
a cantilever beam with an end mass with moment of inertia is proposed as the analytical
solution. Both these concepts are under study at present and are snggested as further
work.
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APPENDIX A: NONLINEAR STRAIN-
DISPLACEMENT AND LINEARIZATION

This appendix first presents a general discussion on the proper linearization of the
equations of motion of a flexible multibody system undergoing motion with large rigid
body rates (not just angular velocities) and rigid body configuration changes, but with
infinitesimal elastic deformations. Some of the terms in these motion equations cannot be
obtained with linear kinematics of elastic deformation (i.e., the traditional linear finite
element or modal formulation). It has been suggested [26] that this is not due to a
fundamental flaw of the linear theories, but rather to the inability of these theories to
account for nonlinear geometric effects. The role of nonlinear strain-displacement relations
in the proper linearization is then investigated using the simple example of a Bernoulli-Euler
beam cantilevered to a rigid base free to move in the plane.

A.1 GENERAL DISCUSSION

The problem that concerns us is that of obtaining the correctly linearized equations
of motion for an important class of systems which exhibit large rigid body motions but
small elastic deflections. Needless to say this class of systems is of vital interest in many
fields, particularly in aerospace. By far the most common practice to date is to handle the
flexibility through discretization of the desired continuous system. This is achieved by
representing the solution as a finite series of time-dependent generalized elastic coordinates
multiplied by space-dependent functions, as in an assuned modes approach, or in a finite
element formulation [19]. Whichever formulation one uses, in light of the class of systems
under study, the next step is to require that these elastic coordinates, together with the
generalized elastic speeds, be infinitesimally small. In other words, we want these
coordinates and speeds to be small enough so that only terms linear in them are kept in the
equations of motion, as terms of second order or higher are negligible.

Now that our goal is clearly stated, it should be an easy matter to obtain the
linearized equations of motion as long as we consistently drop all terms nonlinear in the
elastic coordinates and the corresponding generalized elastic speeds. Of course, the word
"consistently" is the catch. When do we linearize? That is to say: Does it matter at what
step in our derivation of the equations of motion we start to linearize? To answer this
question we have to consider the process by which we derive these equations.
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Let us consider two of the more widely known methods to derive motion equations
for complex systems: Lagrange's equations of motion [21] and Kane's dynamical
equations [9]. Lagrange's equations for a holonomic system with n generalized
coordinates qy:

d(dL oL
S| = |-5—= , k =1...,
dt(&k) k Qk ( n) (1)

L=T-V

where the Lagrangian L is a function of the system kinetic and potential energies (T and V
respectively). Oy are n generalized non-potential forces. The important thing to note is that
using this method to derive motion equations requires differentiating both the potential and
kinetic energies of the system with respect to the generalized coordinates and speeds. If
these ¢ and u; (=dg;/dt) were to represent our generalized elastic coordinates, we see that
the above differentiations imply that some terms linear in q; and u; in the energy
expressions become terms of zeroth order in the elastic coordinates and speeds. More
importantly, we see that terms of second order in the generalized coordinates and speeds in
the energy expressions become terms of first order in the resulting equations of motion.
Clearly then in order to cobtain equations of motion correct to first order in g; and u; we
need to have energy expressions for our system that are correct to second order in these
same elastic generalized coordinates and speeds. More specifically the requirement
demands in general that the expressions for displacements and velocities used in
determining potential and kinetic energies be correct to second order in the elastic
coordinates and speeds. Only by doing this can we ensure consistent linearization.

Kane's dynamical equations for a holonomic system of n particles with n
generalized speeds u;:

F,+F =0 (r=1...,n)
n
] P *
F,=Zv,‘°R , R".=—ma‘.
i=1
P. <~ P
v '=2v,‘ui+v, , u = g
i=1 2

where F; is the generalized active force, F;* is the generalized inertia force, R;* is the inertia
force for particle P; in an inertial reference frame, and vPi is the velocity of this particle in
the same frame. v,Pi is the r-th partial velocity of particle P; in the inertial frame. Using a
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similar argument as above, it is easy to sce that since the partial velocity has to be correct to
first order in the generalized coordinates and speeds, and again this term is obtained
through differentiation of the velocity with 1espect to the generalized speeds, the velocity
has to be correct to second order in g; and ¥; until we form the partial velocities. This is
necessary if we want our equations of motion toc be consistently linear in the generalized
coordinates and speeds.

A.2 A SIMPLE EXAMPLE

We now present a simple yet very important example which will help to point out
the practical consequences of the above discussion. This example could equally well
represent either link of the manipulator which is the center piece of this thesis. Consider a
simple uniform beam cantilevered to a solid body free to move in the plane with mass
center at A* (see Fig. A.1). The frame N, defined by the unit vectors nj, nz, N3, is
inertial, and we introduce the rotating frame A defined by the unit vectors a;, az, a3,
attached to body A and whose a; axis lies along the undeformed neutral axis of the beam B
initially. Let us derive the consistently linearized equations of motion using both Kane's
and Lagrange's methods. We will ignore shear and rotary inertia effects (i.e., slender
beam assumption). For simplicity, we assume no external forces act on the system.

%

A ! > n,

Figure A.1: Single Beam Attached to a Moving Base
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A.2.1 Lagrange's Equations of Motion

First we form the kinetic and potential energies of our system:

_1l, 52 01 Noae av 1[5 PP
T—2IA9 +om, v oNy +Zjov'ov‘pdx
2
L 2
v=%f El(ﬂ)dx
0 ox2 1)

where m, is the mass of the rigid body A; I, is the moment of inertia of the rigid body A
about its mass center; NvA* is the velocity with respect to the inertial frame of A*; vP! is the
velocity with respect to the inertial frame of the centroid of a rigid differential element Py of
the beam; p and £ are the mass per unit length and bending stiffness of the beam
respectively; and, u;(x,r) and uy(x,r) are respectively the axial and transverse displacements
in frame A of the element P, a distance x along a, from point O. Now we form vP! from
the kinematics of the system:

A*P P

P A
vi=vAi®sad xp 147!

A*P

p '=(b+x+ uj)ﬁl+ U,
o =vh, , v,=6

vAT=NyAT=v A+,
AP . .
Vil + i, )
where @A is the angular velocity of frame A ; pA*P! is the position vector between A* and
P; and AvP! is the velocity of P; in A. At this point it is customary io discretize the
continuous variables u;(x,t) and uy(x,t). To this end we use an assumed rnodes apprcach
and state

u(xr )= 2.0,,0c)p,(t)
i=1

uy(x,0) = 20, (x)q,(8)
i=1 (3)
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where we choose ¢;; and ¢y; to be cantilevered beam mode shapes [18], and n is the
number of generalized elastic coordinates. Further recognizing that under the present
assumptions the axial displacements are at least an order of magnitude smaller than the
transverse displacements, it is tempting to neglect u;(x,f) entirely setting u;=0.

Both these approaches, however, are only correct to first order in the elastic
coordinates, as we will see. To obtain the correct relationships to second order, we need (o
turn to the nonlinear theory of elasticity as applied to beams, where we make use of
nonlinear strain-displacement relations. For our case, a slender beam in pure bending, the
strain-displacement relations become [20]:

&EyT €y, = Eyy = &, = &, =0

dl
do 2.
£xx=ezx+yxxp x;x=_dx, dx =sin =0

2 2
e'*z%*;(%) +(%)] @)

where the A indicates a quantity measured at the middle plane of the beam, i.c., the plane
containing the neutral axis in this case. Note we are able to set sin(6)=0 due to our
assumption of small elastic deflections. Now we consider the simpler case in which we
want to neglect independent axial displacements. The correct condition for this is to require

£x=0 5)
and this yields the familiar expression for axial strain under pure bending:

2
d'h,
dx? ©)

Ex="Y

Given the above nonlinear strain-displacement relations, we se= that equation (5) implies

%‘cl * %[(’Zj:l) + (d?ii) ]= 0 )

therefore to second order in the generalized elastic coordinates (g;):
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2
_ M 402) 1 S
(0 )=Bx, 1) -—IO 7(5 JO ‘E”Elwz, (©)¢,,;(©)dogq, o

where as above:

(x,0 )= Myx, £) = Dy, (x )q; (1)
i=1 ©)

So we see that if we pick ua(x,t) to be the independent transverse displacerent,
uy1(x,t) depends on u; to second order in the elastic coordinates. Now w= can form the
kinetic energy correct to second order. For completeness we note:

(%8 ) [ ZZ%, ()¢, (0)dog, 4,
0i=1j=1 (10)

In view of the previous discussion we might wonder if our potential energy as
given is correct to second order. To check this, we form the strain energy [14]:

= L[ nEndv = L[Eav
2 2
v v (11

where we ignore Poisson effects as customary for beam problems [30] and using equation

6):

2 2

d
S=%jEy -d—xu—)dxdydz—zj ( J
|4

(12)

Now we proceed to obtain the equations of motion correct to first order in g; and y;

(=dgy/d):

dL dL
t 3'9) 20 ~ =0,
dL oL
— |- =—=0, r=1...,n)
34r) oq, (13)

This yields:
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_ n -
m,+ mg 0 -Y.E,q, 0
) -
0 m,+ my bmy + e E, vi
n
2 X
_ZlEiq" bmy +e bmg+2b+Ip+1, ... BE+F, ..|v, |_
1= H
n d,
'.-Z:l“"f"" E, bE; + F, v Gy L]
_ n -
(m,+ mgW,v, + vgz(me +e) +2v32E‘. q;
-
n ]
~(my + my W, + v E;q,
~
n ]
—v2v32E‘.q‘. — vy,(bmy + e) +
=
n n n
2 2
- v3v1Ej + v ZlGﬁqi - v .Z'I(b#ij + n.j)q‘. - "2"32«1 K4
i= i= i=

. 0 -
0 o
o .[°
: q;
~H. .. |
ij
i - (14)
where following Kane et al. [10] we have defined:
L L
my = Iopdx, e= I:xpdx, Iy = Io xzpdx
L ., L
Hy= [ EI8,600;, )dx, Ep= [ 6, 00pd
L
F,= ,LLW% (x)pdx, G;= {4’2,- (x )¢, ; (x )pdx
(IJ =l,...,n) (15)
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and we have further defined:
L .x
uy=| o] 618, (0 )dods,
0

L x
n,;= Joxp J 04"2.-(")*‘":; (o)dodx (16)

The above equations are equivalent to those derived in [11] through the use of
geometric noniinear constraints. The centripetal term in equation (14) exhibits the
"geometric stiffening” terms (y;;,7;5) which are not obtained through the standard finite
element or assumed modes approach. We note that equation (14), correctly linearized in
the small elastic generalized coordinates and speeds, has been obtained from a totally
consistent approach to linearization. We mention in passing that the method presented
above to obtain the proper second order (in ¢; and ;) expressions fcr the elastic deflections
and speeds can be naturally extended to accommodate the case in which we are interested in
independent axial displacements. In this case, we discretize the axial strain at the neutral
axis and thus obtain the following expression for the axial displacement (at the neutral
axis):

b,=20,0)p,
i=1

i=1lj=

w(x )= ,-Ejo"’d(")d" P, - %jo 21_2;#2,. ()¢, (0)dou, g,

¢;(x) =] ¢;(0)do
u )= 0 -

A.2.2 Kane's Dynamical Equations



(F’)Exl =0, QA = %(QA)o aA ‘= %(N vA .)

P d(P .
1= & 1 = vi=
a dt(v ) r=20, q; ,....,n) )
(F)ext are generalized active forces due to external forces, and the time derivatives are with
respect to the inertial frame. We need now to form the partial velocities and partial angular
velocities correct to first order in g; and u;. This is simple enough using the second-order
expression for vP! derived in the previous example. The resuits are given in Table A.1:

rooof Nya* Vi

6 A, 0 ~ uf +(b+x)4,

v 0 a, i,

v, O a, a,

g 0 0 -X] 6,028,008, + 0,0,
i=1

Table A.1: Linearized Partial Velocities and Angular Veiocities

We have again ignored independent axial extensions. Table 1 agrees with the linearized
partial velocities obtained in [11]. And the equations of moticn given by

FoaFi=0, = 0dgndn) @

are the same as in equation A.2.1.14 as expected.



APPENDIX B: CALCULATION OF MODAL
INTEGRALS AND CONSTANTS

In this Appendix, modal integrals and constants that appear in the equations of
motion of Appendix C are defined and evaluated. For convenience, these will be divided
into three groups: 1) constants that are indeperdent of mode shapes; 2) mode shape
dependent constants that can be obtained with linear strain-displacement relations (see
discussion in Appendix A); and, 3) mode shape dependent constants that result from proper
linearization (and would be missing from the motion equations otherwise). These
constants are evaluated by three separate subroutines in the simulation code (see Appendix
D): CONSTANT, CONMOD, and FOREST respectively.

The constants below are evaluated for the physical manipulator parameters
presented in Table 4.1.

B.1 CONSTANTS INDEPENDENT OF MODE SHAPE

Li=b+1+b, L,=b,,+1,+b,
L, = 10668 L,=0.9779
m = pl my= Py
m, = 122472 m,=0.61236
1 1 2 1
a = Io xpydx = 5ml, a,= _[0 yp,dy = 5m,l,
a, = 0.559942 a, =0.279971
i 1 2 ‘2 1 2
— 2 = = = 2 ==
I = Io x“pdx = 3mlll I, = Io Yy p,dy = 3m,l,
1, =0.341341 1, =0.170670
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B.2 MODE SHAPE DEPENDENT CONSTANTS

Cantilever (clamped-free) mode shapes are assumed in the evaluation of the modal
integrals presented below. The mode shapes are given by [2]

A.s As As A.S
¥;(s) = cosh + — cos I‘— — 0| sinh —l'—— — sin —I‘-—-
J J J J
|9 o ox __{ 1,...n ,j=1
Tl s'{ y liy.m L j=2
where

sinh /'t‘. — sin Z,i

G = cosh A‘. + cos /1‘.

and 4; are the solutions in increasing order of the transcendental equation

cos Acosh A +1=0.

1.87510407 0.734095514
4.69409113 1018467319
=1 785475744 % =1 0.999224497
10.99554073 1. 000033553

The following orthogonality relations hold:

I [ 0, i #j
IOVE(S)VJ(S)ds =I ?";(S)S"”j(S)ds={ .
0

I, i=j
with
» (3%
T3]
£ Y

— V= .l
(lis) sy
AT "(T)

In all cases, the constants are evaluated for the first four mode shapes.
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B.2.1 Constants obtained using linear strain-displacement
relations

A,D)=9¢,U)+ b, ¢ W) B, (1,)=y;(,)+ by, (1)
2.229417 2.152944
Ad)e —2.796795 B.(L) = ~2.531196
i1 7 3308112 iv'2 7| 2872074
- 3.832654 ~3.221770

A=A UDA ()

[ 4.970302 -6.235223 7.375162 —8.544586 1
7.822060 -9.252109 10.719147

A;dp= 10.943603 — 12.678848
| symmetric 14.689239
B, () = B,(,)B,(I;)
- 4635172 —5.449527  6.183418 — 6.936292
o 6.406955 —7.269785  8.154931
i) = 3248812 —9.253162
| symmetric 10.379799 |
I A
£ =] g dr B = | wiromyy
0958946 | 0.479473
o _| 0531450 po_| 0265725
i | 0.311600 i 7| 0.155800
0.222774 0.111387
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3 . b
F= | xb,60p,dx Fr=] ywop

0.637019 0.318509

F oo 0.101648 . 0.050824
! 0.036303 ! 0.018151
0.018525 0.009263

!
1
G,= .“0 ¢ (x )9 (x)p,dx

122472 0 0 0

0 122472 0 0

%=l o 0 122472 0
0 0 0 122472

l
. 2
6y=] v w; o pyy

0.61236 0 0 0

. 0 061236 0 0

Si=| o 0 061236 0
0 0 0 061236

i
H,= | )¢, (x)x
0

1843.30 0 0 0
o= 0 72393 .95 0 0
Y 0 0 567580 .3 0

0 0 0 2179528.6
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)
Hy= [ @D W ()ay
0

226 .37 0 0 0
W= 0 8890.5 0 0
v 0 0 69702.8 0

0 0 0 267661.4

B.2.2 Constants obtained through proper linearization

x y
By)=] ¢,(0)¢, (020 Bi») =] v (@W, ©)o
C,i () = B(L) + by @, U D, (1)

© 5773586 —10.469668  8.248862  — 12728235
43.783916 -—38.123383  34.017360
ity = 106.991190 — 70.446206
| symmetric 200.355635 |

Crp = BLU) + by, A )V, (1)

- 5.543348 —9.670022  6.936073  — 10.889029
. 41006644 —33.563899  27.629564
i) = 99.505825 — 59.959278

| symmetric 185.663544 |

Il
“ij = IO P, ﬁij(x )dx

" 0742933  —0.565643 — 1.435918 — 1.169454
8.510827  2.532483 — 4.879840
Hij= 28.808327 11168055

| symmetric 62.730250
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ij

" 0.371467

| symmetric

1.461503

0.730751

symmetric

" J.’z .
M=l P,B;; (¥ )dy

—0.282822
4.255413

- 0.717959
1.265741
14.404163

I
1
m; = Io plxﬁij(x )dx

—0.839981
7.934011

- 0.970443
0.207477
21872910

l
2 *
wy=] opBirIay

- 0.419990
3.967006

—0.485221
0.103739
10.936455

—0.584727
—2.439920
5.584028
31365125

- 0.669203
—3.566202
4.010066
44.157753

—0.334602
- 1783101
2.005033
22.078876

The following constants are used in sections 3.3.2 and 3.3.3:

=—— =0.554689
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APPENDIX C: EQUATIONS OF MOTION

The 2+n+m ordinary differential equations of motion for the two-link, planar,
flexible manipulator are given below (refer to section 2.4.3). The motion equations are
given in the form of equation (2.4.3.2):

Mpp(x) Mpg ()] [0 0 I .
X + 0 K X = + F(x,x)
MER(X) ME (X) EE 0 (1)
where as in section 2.4.3 the following definitions have been made

XR T
X = = [07 ﬂ’ ql’ ven qpn, pl’ teo pm]
E

[ 1}
=
2 2)

In the rest of this Appendix, the individual entries in the mass matrix, the stiffness
matrix, and the vector of nonlinear forces are presented for the system defined in chapter 2.
The definitions of Appendix B and equation (2.3.10) are used together with the following
definitions to simplify the form of the entries.

L=t L+ JBI+ JBz+ I+ J,
I,,= JBz+ I+ J,

mTo‘= m2+ mBl + m82+ mC

Cg = COS B, $g =sin B

co

(= a,+ b22m2+ mBzezcos Y+ ”'cLz
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co,= mBzezsin %

€Oy, = Aj a)+ lelj ()

co,; = E;+ meB(I,)

cogy = 8 UDA U+ ¢,UDA ()
cog; = Aj (4)- Ll¢’j (1)

C.1 ENTRIES IN THE STIFFNESS MATRIX

(KEE)‘,J.= H‘.j, l',j =1...,n
(KEE)n+in+j=H‘;" i,j=Ll..,m
(KEE). .=(KEE) ,_=0- i=1...,n j=1..
Ln+) n+j,i

C.2 ENTRIES IN THE MASS MATRIX

(Mgp) 1 =

€)

ym

(D

2 2 2 2
[ro‘ + 2¢1.1bl + mlbl + 2a2b22 + m2b22+ meLl + my (el + 2Llelcos 71)

+ my e?2+ mCL2+2(co sp + co cﬂ + mB e, sin 71 ZlA (ll)q

m
. L]
~2my Lye;sin §oy ~2L,s, ZIE,. P, -2mcLys, .218,. () p;
= 1=

+ 2L 1(co, 2‘ - €0, ﬂ)
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(MRR)m:(MRR)m:

n
2 2
Loy +2aby, + myby, + my €2+ mo Ly +(coys, + coycy) DA, (1),
i=1

B2 B

- LlsleE: p;— mcL, sz (I,)p; + co cp - cozsp "
i=

(MRR)zz_

2 2
Loy +2a,by,+ mb , t mp e2+mCL2

(3)
(Mgg) = (J=L...,n)
il
2 2
Fj + blEj + ¢’j (ll)[JBl +1,,+2ab,, + myb,, + mBl(el + L,e, cos ¥,)
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Cc This is the maln program for the two—link flex. arm
(o] simuiation developed by Carlos E. Padilla for his M.S. thesis.
C DOUBLE PRECISION version.

Cootsnssstte sttt stdterstdttt sttt Ottt dssuttttsatdittetsdsnssdsne
Co ittt st et et st eserteet e retereessstednessstetseststttstsittistestidessse
INCLUDE *[USER.AVF.CARLOS.FORTRAN]JDCONSTANTS.FOR"®
INCLUDE °*[USER.AVF.CARLOS.FORTRAN]DTORQUES.FOR’
INCLUDE °’[USER.AVF.CARLOS.FORTRAN]DINVERSE.FOR’
INCLUDE °*[USER.AVF.CARLOS.FORTRAN]DARMAIN.FOR’
INCLUDE *[USER.AVF.CARLOS.FORTRAN]DARMNEW. FOR*

In order to run the simulation, it Is also necessary to
1ink the following files:
MATSAY.0BJ ,DODEINT.0OBJ ,DRKQC.0BJ ,DRK4.0BJ —for variable step
MATSAY.0BJ ,DRKDUMB .0BJ ,DRK4.0BJ —for plain RK

OOO0O0O0OO0OO0

PROGRAM ARM_SIMULATION
IMPLICIT REALe8 (A-Z)

INTEGER N,M,NR,NOK,NBAD,KMAX ,KOUNT , NSAV, MCOUNT , PMAX , NMAX
INTEGER NSTEP

PARAMETER (ZERO=0.0,NMAX=4,EPS=1.0D—6, TTLE=1.0D~3)
CHARACTERe8 DAT,TIM

REAL TINIT,TODE,TOUT

COMMON /PROP/ N,M

COMMON /INPU/ T1,T2,H1,PMAX,YSTART(8+4sNMAX)

COMMON /PATH/ KMAX ,KOUNT ,DXSAV

COMMON /DIAG/ HSAV, TSAV

COMMON /DIAG/ NOK,NBAD,H1SAV,DAT,TIM, TINIT, TODE, TOUT
COMMON /BUG/ HMIN, INTERVAL, FAVPT, TRA, TIM2,BETA,NSAV,CPS, THET
COMMON /BUG/ MCOUNT

This is the main program of the two—link flexible arm
simulation.

OO0

CALL DATE(DAT)
CALL TIME(TIM)

Input the arm constants from the input files ARMDAT.DAT
and INIDAT.DAT (both in the THESIS sub—directory) created
by ARMINP.FOR.

OO0O00

CALL INPUT

Using these constants, Iinitialize the mass matrix and
the updating coefficlents.

OO0

TINIT=SECNDS(0.0)
CALL INITIALIZE
TINIT=SECNDS(TINIT)

Dotermine number of points to be saved (KMAX) and the
save Interval (DXSAV).

OO0 0

KMAX=PMAX
DXSAVa(T2-T1)/PMAX
INTERVAL=DXSAV
FAVPT=SAVPTS
TIM2=T2



OO00

OO0

00 0000

OO0 O0

THET=YSTART {3-+N+M)
BETA=YSTART (44N+M)
NSAVeN

CPS=EPS

MCOUNT=0

Determine the trial initial time step If not provided.

IF (Ht .EQ. ZERO) THEN
CALL INITIME(H1)

ENDIF

H1SAV=H1

HMIN=TTLE®H1

Solve the differential equations for the given time interval
with the given initial conditions.

NR=2+N+M
Initial conditions for "integration checks."

YSTART(1+2¢NR)=ZERO

YSTART (2+2¢NR)=ZERO

YSTART (3+2vNR)=ZERO

YSTART (4+2sNR)=ZERO

TODE=SECNDS(0.0)

CALL ODEINT(YSTART,4+2eNR,T1,T2,EPS,H1,HMIN,NOK,NBAD)

The following lines implement the RKDUMB R.—K. integration.

NSTEP=INT((T2-T1)/H1¢10.6)

PRINT o, *NSTEP=",NSTEP

CALL RKDUMB(YSTART,4+2¢NR,T1,T2,NSTEP)
TODE=SECNCS(TODE)

Output data from simulation to MATPLOT.DAT and DATFILE.DAT
and dliagnostics to ARMDIAG.DAT.

TOUT=SECNDS(0.8)
CALL OUTPUT
TOUT=SECNDS(TOUT)
CALL OUT_DIAGMOSTICS
END
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c
c
c
c

This short program is used to interface with the user and
create appropriate input data files for the arm simulation.
It Is written by Carlos E. Padilla as part of his M.S. thesis.
DOUBLE PRECISION version.

c.....‘....'.'.......1“..‘.“.".."".‘.‘.“.‘.‘.‘.““.0..1...“.l“.
c......“.“...“‘.‘.“““".‘."".".“.‘.."......‘.“t‘...“““.t‘
PROGRAM CREATE_INPUT
IMPLICIT REAL+8 (A-Z)
INTEGER N,M,FORE, I,CHOICE, BRANCH, PMAX , ANGMO, NMAX , RLINE , MDAMP
INTEGER FONL
PARAMETER (ZERO=® .0, NMAX=4)
DIMENSION BM(8),RL(4),LA(NMAX),EI(4),MM(4),JIM(4),Y(B+4sNMAX)
DIMENSION KSI (2¢NMAX)
OPEN (3,FILE='[USER.AVF.CARLOS.THESIS]INIDAT®,STATUS="NEW"® ,

& FORM="FORMATTED")
PRINT »,’Short or long version of input? (@-short,1-long)"
READ «,CHOICE
PRINT »,°’Enter Initial and final times for simulation:’
READ ¢,T1,T2
PRINT »,'Entor §# of pts. to be saved (6-defaults to 200; max. 500):°*
READ o ,PMAX

IF (PMAX .EQ. ©) PMAX=200
PRINT ,'Ignore foreshortening? (@—No,1-Yes)’

READ «,FORE

PRINT »,’Include anguiar momentum and energy checks? (2—No,1-Yes)’
READ «,ANGMO

PRINT »,‘Use ruthless equations? {@—No,1-Yes)’

READ »,RLINE

IF (RLINE.EQ.1) THEN
PRINT »,’'Use foolish linearization? (@-No,1-Yes)’
READ »,FOOL
ENDIF
PRINT e, 'Enter §# of modes for links 1 and 2 (separated by spaces):’
READ +,N,M
PRINT o, 'Enter displacement initlal conditions for joint angles(rad):’
READ «,Y(1),Y(2)
PRINT e, 'Enter veiocity Initial conditions for Joint angles(rad/sec):’
READ «,Y(3+N+M),Y(4+N+M)
PRINT »,'Use default(all zero)initlal cond. for 1inks?(d-N,1-Y)*
READ «,BRANCH
IF (BRANCH .EQ. 1) THEN
DO 850 I=1,N
Y(2+1)=ZERO
Y (44+N+M+] )=ZERO
50 CONTINUE
DO 60 I=1.,M
Y(2+4H1)=ZERO
Y (44+20N+M+1 )=ZERO
60 CONTINVE
ELSE
DO 100 I=t,N
PRINT o, ’Enter diapl. Initlial cond. for link 1 mode’,I,":"*
READ ,Y(2+1)
100 CONTINUE
DO 200 I=1,M
PRINT »,’Enter displ. inltial cond. for link 2 mode’,I,":"’
READ »,Y(2+h+1)
200 CONTINVE



DO 300 I=1,N
PRINT ,’'Enter vel. Initiai cond. for link 1 mode’,I,"':"
READ o, Y(4+N+M+I)
300 CONTINUE
DC 420 I=1,M
PRINT »,’Enter vel. initial cond. for link 2 mode’,I,":"
READ »,Y(4+2eN+M+])
400 CONTINUE
ENDIF
PRINT s, °*Enter initial time step (0.0 will yield default):*
READ =,H1
IF (CHOICE .NE. 1) GOTO 1200
OPEN (1,FILE='[USER.AVF.CARLOS. THESIS]ARMDAT®,STATUS="NEW",
& FORM=" FORMATTED* )
PRINT »,°Enter lengths b1, b21, b22, bt, b, b*:’
READ «,BM(1),BM(2),BM(3),BM(4),BM(5),BM(6)
PRINT o, °‘Enter angles betal2 and betal2‘:’
READ o ,BM(7),BM(8)
PRINT ¢,’Enter rhot, rho2, 11, 12:°
READ ¢,RL(1),RL(2),RL(3),RL(4)
PRINT ¢, ‘Enter lambda(l):’
READ #,LA{1),LA(2),LA(3),LA(4)
PRINT »,'Enter E and I of link 1 and then of link 2:°
READ «,EI(1),EI(2),EI(3),EI(4)
PRINT s, °*Include modal damping?(@-N,1-Y)"’
READ s ,MDAMP
IF (MDAMP.EQ.1) THEN
PRINT o, ’'Saome damping for all modes (link 1)?(@N,1-Y)"’
READ o ,CHOICE
IF (CHOICE.NE.®) THEN
PRINT =, °Enter damping coefficient (ksi):’
READ ¢,TA
DO 700 I=1,NMAX
KSI(I)=TA
700 CONTINVE
ELSE
DO 800 I=1,NMAX
PRINT o, °Enter domping coeff. (ksi) for link 1 mode’,I,':"
READ ,KSI(1)
800 CONTINUE
ENDIF
PRINT e, °Some damping for all modes (link 2)?(e-N,1-Y)’
READ ¢,CHOICE
IF (CHOICE.NE.®) THEN
PRINT o, *Enter damping coefficlient (ksi):’
READ ¢,TA
DO 800 I=m1,NMAX
KST(NMAX+I )=TA
900 CONTINUE
ELSE
DO 1100 I=1,NMAX
PRINT »,’Enter damping coeff. (kal) for link 2 mode’,I,":"’
READ » ,KSI(NMAX+!)

1100 CONTINUE
ENDIF
ELSE
DO 1200 I=1,26NMAX
KSI(1)=ZERO
1200 CONTINUE

ENDIF




PRINT »,'Enter masaes ma, mb1l, mb2, mci:’
READ o, MM(1),MM(2) ,MU(3),MM(4)
PRINT »,'Enter lInartias ja, jb1, jb2, jei:’
READ o,JM(1),JM(2),JM(3),JIM(4)
WRITE(1,¢)BM(1).BM(2) ,BM(3) ,BM(4)
WRITE(1,+)BM(5),BM(6).BM(7) ,BM(8)
YRITE(1,2)RL(1) ,RL(2),RL(3),RL(4)
WRITE(1,¢)LA(1),LA(2),LA(3),LA(4)
WRITE(1,e)EI(1),EI(2),EI(3),EI(4)
WRITE(1,«)MM(1) ,MM(2) ,MM(3) ,MM(4)
WRITE(1,¢)JM(1),IM(2),3M(3),IM(4)
WRITE(1,¢) (KSI(I),I=1,NMAX)
WRITE(1,¢) (KSI(NMAX+I),I=1,NMAX)
CLOSE (1)

1000 CONTINUE
WRITE(3,¢)T1,T2,H1,N,M
WRITE(3, «)FORE, ANGMO, RLINE, FOOL
WRITE(3,¢)Y(1),Y(2),Y(3+NM) , Y (4+N+M) , PMAX
DO 500 I=1,N

WRITE(3,¢)Y(241),Y{4+NHHI)

500 CONTINUE

DO 609 I=1,M
WRITE(3,*)Y(24M+]1), Y(4+2eN+MHT )

600 CONTINUE
CLOSE (3)
END
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This fiie contains the subroutines that take care of the main
steps of the two—link fiexible arm simulation. All of the
following were written by Carlos E. Padilla as part of the M.S.
thesis work.

DOUBLE PRECISION version.

Cresetestssssusssstt sttt st tststttssotdtssdsesdstssssnttdsontttnsndnentn
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SUBROUTINE INPUT

IMPLICIT REALe8 (A-2)

INTEGER N,M,FORE, I,PMAX,ANGMO,NMAX, SING,RLINE, FOOL
PARAMETER (NMAX=4)

COMMON /CONTROL/ FORE,ANGMO, SING,RLINE, FOOL

COMMON /PROP/ N,M,BM(8),RL(4),LA(NMAX),EI(4) ,MM(4),JM(4)
COMMON /PRCP/ KSI (2¢NMAX)

COMMON /INPU/ T1,T2,H1,PMAX,YSTART (8+4+NMAX)

COMMON /BUG/ TRA,TRE,TRI,DX2

This subroutine is in charge of obtaining the constants
necessary for the arm simulation from the file ARMDAT.DAT.
The constants are in turn placed there In the appropriate order
by the user—interface program ARMINP.

OPEN (1,FILE='[USER.AVF.CARLOS.THESIS]ARMDAT* ,STATUS="0LD",
FORM=' FORMATTED* )
OPEN (3,FILE='[USER.AVF.CARLOS.THESIS]INIDAT®,STATUS="0LD",
FORM="FORMATTED " )
READ(1,+)BM(1),BM(2) ,BM(3) ,BM(4)
READ(1,+)BM(5) ,BM(6) ,BM(7) ,BM(8)
READ(1,#)RL(1),RL(2),RL(3),RL(4)
READ(1,¢)LA(1),LA(2),LA(3).LA(4)
READ(1,)EI(1),EI(2),EI(3).EI(4)
READ(1, «)MM(1) ,MM(2) ,MM(3) ,MM(4)
READ(1,)JM(1),JM(2),IM(3) ,JM(4)
READ(3,¢)T1,T2,H1,N,M
READ(1,#) (KSI(I),I=m1,NMAX)
READ(1,+) (KSI(NMAX+I),Im1,NMAX)
READ(3, ») FORE , ANGMO, RLINE, FOOL
READ(3, #)YSTART(1),YSTART (2) , YSTART (3+N+M) , YSTART (4+N+M) , PMAX
DO 500 I=1,N
READ(3, #)YSTART(2+1) , YSTART (4+PHM+1)
CONTINUE
DO 620 I=1,M
READ(3, #) YSTART (24N+1) , YSTART (4+2cN+M+1)
CONTINUE
DX2=SAVPTS
CLOSE (1)
CLOSE (3)
RETURN
END

SUBROUTINE INITIALIZE

IMPLICIT REALe8 (A-Z)

INTEGER N,M,NR,1,J,N2,N3,M2,M3, FORE ,ANGMO , NMAX
PARAMETER (ZERO=0.0, TWO=2.@,NMAX=4)

COMMON /CONTROL/ FORE, ANGMO

COMMON /PROP/ N,M,BM(B),RL(4),LA(NMAX),EI(4),MI(4),5M(4)
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COMMON /PROP/ KSI (2¢NMAX)

COMMON /FIX/ MF(242¢NMAX,2+2¢NMAX ) ,CO(3¢NMAX+8) , COM(3#NMAX , NMAX)
COMMON /FIX/ E1(4sNMAX),G1(3¢NMAY,NMAX) , E2(4eNMAX) ,G2 (3+NMAX , NMAX)
COMMON /FIX/ BIJ1(39NMAX,NMAX) ,BIJ2(3¢NMAX ,NMAX)

COMMON /FIX/ ET1(NMAX,NMAX) , ET2(NMAX , NMAX)

COMMON /ANG1/ AN(3¢NMAX+4)

This routine dotermines whether foreshortening constants are
to be evaluated or not, and then It evaluates all constants needed
for the simulation and initliallizes the mass matrix in MF and the
updating constanta in CO and COM.

DIMENSION CONL1(8),CONL2(6) ,PHI(NMAX,4),BI(NMAX),SI(NMAX)
DIMENSION DAIJ(2+2+NMAX, 2+2+NMAX)

NR=2+N+M

N2=2¢N

M2=2eM

N3=30oN

M3=3 M

Determine all integration constants from the Input constants.

CALL CONSTANT(CONL?,CONL2)
CALL CONMOD(E1,G1,E2,G2)
IF (FORE .EQ. ©) THEN
CALL FOREST(BIJ1,BIJ2)
ELSE
CALL CMODES(N,LA,RL(3),RL(3).BI,PHI,SI)
DO 100 I=1,N
DO 206 J=1,N
BIJ1(Y,J)=ZERO
BIJ1(N+I,J)=ZERO
BIJ1(N2+1,J)=8M(2)sPHI(I,2)PHI(J,2)
CONTINUE
CONTINUE
CALL CMODES(M,LA,RL(4).RL(4),BI,PHI,SI)
DO 300 I=1,M
DO 400 Jmi,M
BIJ2(1,J)=2ERO
BIJ2(M+I,J)=ZERO
BIJ2(M2+1,J)=BM(4)sPHI (1,2)sPHI(J,2)
CONTINUE
CONTINUE
ENDIF

Determine fixed parts of the mass matrix.

SUM=JM(3)+JM(4)+CONL2(3)+TWOsCONL2(2) +BM(3)

SUM=SUMACONL2( 1) »BM(3) sBM(3)-+HMM(3) sBM(6) sBM(8)

MF (2, 2)=SUMHVM(4) sCONL2(4) «CONL2(4)

BASIC=MF(2,2)

MF(2,1)=BASIC

MF(1,2)=MF(2,1)

SUM=BASIC+JM( 1)+JM(2)+CONL1 (3)+TWOsCONL1(2) +BM(1)

SUM=SUMHCONL1(1)»BM(1)BM(1)

SUM=SUMHM(2) » (BM(5) «BM(5) +TWOsCONL1(4) *CONL1(5))

MASS=CONL2(1)+HM(2)+WM(3)+WM(4)

MF(1,1)=SUMHMASSeCONL1(4) +CONL1(4)

DO 500 J=1,N
SUM1=BASIC+JIM(2)+WM(2) « (BM(5) «BM(5)+CONL1(4)*CONL1(5))
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SUM1mE| (N3+J) #SUM{

SUM1=SUMI+E1 (N2+J) » (MASSeCONL1{4)+MM(2) «CONL1(5))

MF(24+J, 1)=SUMI+ET (N+3)+BM( 1) #E1(J)

MF(1,2+J)=MF(24J,1)

MF(2+J,2)=E1(N3+J)sBASIC

MF(2,24J)=MF(24J,2)

DO 600 I=1,J
SUM2=BASIC+JIM(2)+MM(2) +BM(5) +BM(5)
SUM2=E1 (N3+J) *E1(N3+1) «SUM2
SUM2=SUM2+G1 (N2+1,J) sMASS
FAC=E1(N3+J)eE1(N2+1)+E1(N2+J)*E1(N3+I)
SUM2=SUM2+WM(2) sCONL1(5) ¢SAC
MF(24J,2+1)=SUM24G1(1,J)

IF (1 .NE. J) THEN
MF(2+1,2+J)=MF(24J,2+1)
ENDIF
CONTINUE

CONTINUE
DO 700 J=1,M

SUM=E2 (M34+J ) o JM(4)+E2(M+J ) +BM(3) #E2(J)
MF(2+N+J, 1)=SUMHE2 (M2+J ) sMM(4) sCONL2( 4)
BASIC2=MF (24N+J,1)
MF (1, 24N+ )=MF (24N+d, 1)
MF(24+M+J, 2)=BASIC2
MF (2, 24N+J ) =MF (24844, 2)
DO 800 I=1,N
MF(2+N+J, 2+1 )=E1 (N3+1) sBASIC2
MF(2+1, 24N+J )=MF (2404d , 241)
CONTINUE
DO 900 I=1,J
SUM=E2 (M3+J) ¢ E2(M3+1) e JM(4)+G2( T, J)+HM(4) oG2(M2+1 ,J)
MF (2+N+J , 24N+ J=SUM
IF (I .NE. J) THEN
MF(24N+1 , 24N4J )=MF (240HJ , 24N+ )
ENDIF
CONTINUE

CONTINUE

Determine the coefficlents for updating the mass matrix

and the offset vector b.

CO(1)=CONL2(2)+BM(3) sCONL2(1)+MM(3) *CONL2 (5)+MM(4) sCONL2(4)
CO(2)=MM(3) ¢CONL2(8)

CO(3)=CONL1(4)

CO(4)=MM(4)

CO(5)=MM(2) *CONL1(6)

CO(8)=MASS

CO(7)=MM(2) *CONL1(5)

CO(8)=CONL2(4)

DO 1000 Jui,N

CO(8+J)=E1 (N24J)4CONL1(4) ¢E1 (N3+J)
CO{B+N+J )mE1 (N2+J)—CONL1 (4) *E1(N3+J)
DO 1180 l=1,J
COM(J, I)=E1 (N3+1)oE1(N24J)+E1 (N3+J) oE1(N241)
COM(NAJ, 1)=BIJ1(N+I,d)4+BM(1)eB1I1(1,4)
IF (I .NE. J) THEN
coM(I,d)=CoM(J,1)
COM(N+I, J)=COM(N+J, 1)
ENDIF
CONTINUE
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CONTINUE
DO 1200 J=1,M
CO(B+N2+J YmE2(J)+MM(4) «E2(M2+J)
DO 1300 I=1,J
COM(N2+J, 1)=BIJ2(M+1,J)+BM(3)eB1J2(1,J)
IF (I .NE. J) THEN
COM(N2+I , J )mCOM(N2+J,1)
ENDIF
CONTINUE
CONTINUE

Determine constant diagonal modal domping matrix.

DO 1600 Iai,N
ET1(I, I)=TWOsKSI(I)eSQRT(G1(N+I,1)eG1(I,1))
DAIJ(2+1,2+1)=ET1(I,1)

DO 1700 Jm1,I-1
ET1(1,J)=ZERO
ET1(J, I)=ZERO
DAIJ(2+1,244)=ET1(1,J)
DAIJ(2+J,241)=ET1(J,1)
CONTINUE

CONTINUE

DO 1800 I=1,M
ET2(1,1)=TWOeKST (NMAX+1)eSQRT(G2(M+I,1)eG2(I,1))
DATJ (24N+1, 24N+1)=ET2(1, 1)

DO 1900 Jm1,I-1
ET2(1,J)=ZERO
ET2(J,1)=ZERO
DAIJ(2HHI, 24N+J)=ET2(1,9)
DAIJ (2404, 24N+1)=ET2(J, 1)
CONTINUE
CONTINUE
CALL WRMATRIX(NR,NR,DAIJ, 'DAMP’, *CMATTO"')

Determine the coefficients to update angular momentum
1f needed.

IF (ANGMO.EQ.1) THEN
SUM=JM( 1)4+JM(2)+CONL1(3)+TWOSCONL1(2) BM(1)
SUM=SUMHCONL1 (1) sBM( 1) #BM(1)+CO(8)+CONL1{4)+CONL1(4)
AN(1)=SUM+MM(2) »BM(5) #BM(5)+TWO#CO(7) sCONL1(4)
SUM=JM(3)+JIM(4)+CONL2(3)+TWOsCONL2(2) BM(3)
SUM=SUMICONL2( 1) sBM(3) «BM(3)+MM(3) sBM(68) #BM(6)
AN(2)=SUMHIM(4) «CONL2(4) sCONL2(4)
AN(3)=JM(2)-+MM(2) #BM(5) #BM(5)+CONL1(4)+CO(7)
AN(4)=JM(4)
DO 1400 I=1,N
AN(4+1)=E1 (N+I)+B34( 1) oE1 (1)
CONTINUE
DO 1500 I=1,M
AN(HNHT)=E2(M+1 )+BM(3) o E2(1)
AN(4HNHHT )=E2 (M3+1)
CONTINVE
ENDIF
RETURN
a0
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SUBROUTINE UPDATE(T,Y,TCR,MU,BU)

IMPLICIT REAL*8 (A-2)

INTEGER N,M,I,J,N2,N3,M2,M3,MCOUNT ,NMAX , NRE

INTEGER FORE, ANGMO, SINGUL, RLINE, FNT, FOOL

PARAMETER (ZERO=0.2,TWO=2.8, NMAX=4)

COMMON /CONTROL/ FORE ,ANGMO, SINGUL, RLINE, FOOL

COMMON /PROP/ N,M

COMMON /FIX/ MF(2+2¢NMAX,2+28NMAX) , CO(3¢NMAX+8) , COM(34NMAX , NMAX)
COMMON /FIX/ E1(4eNMAX),G1(3oNMAX,NMAX) , E2(4eNMAX) ,G2(32NMAX , NMAX)
COMMON /FIX/ BIJ1(3eNMAX,NMAX) ,BIJ2(3eNMAX, NMAX)

COMMON /FIX/ ET1(NMAX,NMAX) , ET2(NMAX , NMAX)

COMMON /ANG2/ AQ,ADQ,PQ,PDQ, EP,EDP,BP,BDP, FNT

COMMON /DAMP/ DDQ(NMAX) , DDP (NMAX)

COMMON /BUG/ TRA,TRE,TRI,TRO, TRU,CRA,NRE,CRI,CRO

COMMON /BUG/ MCOUNT

COMMON /OUS/ SAV(12,NMAX)

This routine is called by the DERIVS routine used by the
differential equation solver to determine the current value of
the derivatives to be Integrated. UPDATE returns In MU and BU
the current value of the mass matrix and offset vector b, given
the current "state" vector Y, and the current valuss
of the command Joint torques TOR.

DIMENSION MU(2+2¢NMAX, 24+2+NMAX)

DIMENSION BU(2+2¢NMAX),TOR(2),Y(3+4¢NMAX)

DIMENSION CQ(NMAX),GQ(NMAX) ,NBMQ(NMAX) , AAQ(NMAX) , HQ(NMAX )
DIMENSION LCQ(NMAX),UP(NMAX),CP(NMAX),GP(NMAX) ,NBMP (NMAX )
DIMENSION BBP(NMAX) ,HP(NMAX) , LCP (NMAX)

DIMENSION DDQ(NMAX) ,DDP (NMAX)

N2=2eN

M2=2eM

N3=3eN

M3=3 M

Generate time dependent factors. Link 1.

CB=COS(Y(2))
SB=SIN(Y(2))
AQ=ZERO
PQ=ZERO
ADQ=ZERO
PDQ=ZERO

If rate—linear eqs. flag set, make mass matrix Indep. of
elastic deflections q and p, too.

IF (RLINE.EQ.1) THEN
DO 110 J=1,N

ca(J)=2ERO

6Q(J)=ZERO

NBMQ(J )=ZERO

AAQ(J)=ZERO

HQ(J)=ZERO

DDQ(J)=ZERO

DO 210 I=1,N
HQ(J)=HQ(J)4G1 (N+1,J) oY (241)
DDQ(J )=DDQ(J)+ET1(1,J) oY (44N )

CONTINUE

LCQ(J)=ZERO
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CONTINUE
ELSE
DO 189 J=1,N
AQuAQH+ET (N2+J) eY(24J)
PQ=PQ+E1 (N3+J) oY (24J)
ADQwABQHE T (N24J ) oY (44+NMEY)
PDQ=PDQHET (N34+J ) oV (4-+NHHJ )
€Q(J)=ZERO
6Q(J)=ZERO
NBMQ(J )=ZERO
AAQ(J)=ZERO
HQ(J)=ZERO
DDQ(J)=ZERO
DO 200 I=1,N
CQ(V)=CQ(J)+BIJ1(N2+1,d)sY(2+I)
GQ(J)=GQ(JI)+G1(1,J)sY(241)
NBMQ( J )=NBMQ(J)+COM(N+1,J) oY (2+1)
AAQ(J)=AAQ(J)+G1 (N2+1,J) oY (2+]1)
HQ(J)=HQ(J)4G1 (N+],J) oY (2+4])
DDQ(J)=DDQ(J)+ET1(1,J) oY (44NHHT)
CONTINUE
LCQ(J)=CO(3)+CQ(J)
CONTINUE
ENDIF

Generate time dependent factors. Link 2.

CAB=CB-SB+PQ
SAB=CB<PQ+SB
CAB=COS(Y(2)+PQ)
SAB=SIN(Y(2)+PQ)
EP=ZERO
BP=ZERO
EDP=ZERO
BDP=ZERO
IF (RLINE.EQ.1) THEN
DO 316 J=1,M
UP(J)=ZERO
CP(J)=ZERO
GP(J)=~ZERO
NBMP(J )=ZERO
BBP(J)=ZERO
HP (J)=ZERO
DDP(J)=ZERO
DO 410 I={ ,M
HP(J)=HP(J)4G2(MHI, J) oY (24N+])
DOP(J)=DDP (J)+ET2(1,d) e Y(4+N2+M+])
CONTINUE
LCP(J)=ZERO
CONTINUE
ELSE
DO 300 J=1,M
EP=EP+E2(J) oY (24N4+J)
BP=BP+E2(M2+4 ) oY (24N+J)
EDP=EDP+E2(J) oY (44+N24M+J)
BOP=BOP+E2(M24J ) oY (44N24H+J)
UP(J)=ZERO
CP(J)=ZERO
GP(J)=ZERO
NBMP(J )=ZERO
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BBP(J)=ZERO

HP(J)=ZERO

DOP(J)=ZERO

DO 402 I=1,M
UP(J)=UP(J)+B1J2(1,J)sY(24N+1)
CP(J)=CP(J)+B1J2(M2+1,J) oY (24N+1)
GP(J)=GP(J)+62(1,J)sY(24N+1)
NBWP (J )=NBMP (J ) +COM(N2+1 , J) oY (24N+1)
BBP(J)=BBP (J)462(M2+1,J) sY(24N+1)
HP(J)=HP (J)4+G2(MH1 , J) oY (2+N+1)
DDP(J)=DDP (J)+ET2(1,J) oY (4+N2+M+1)

CONTINUE

LCP(J)=C0(8) *CP(J)

CONTINUE
ENDIF

This branch statement cllows the omission of mass
matrix updates when UPDATE is called from the FORCING
routine by setting 7<0.0.

IF (T.LT.ZERO) GOTO 2000
Update the moss matrix.

MU(2,2)=MF(2,2)

SUM=(CO(1) #SB+CO(2) +CB) +AQ-CO(3) +SB+EP

SUM=SUM—CO(4) sCO(3) #SB#BP+CO( 1) +CO(3) +CAB

SPEC=SUM-C0(2)+C0O(3)+SAB

MU(2, 1)=SPECHMF(2,1)

MU(1,2)a8U(2,1)

MU(1, 1)=TWOs (SPEC+CO(S) sAQ-CO(5) #CO(3) sPQ)+MF(1,1)

DO 500 J=1,N
SUM=(CO(1)¢SB4CO(2) +CBHCO(5) ) «E1(N3+J) #AQ
SUM=SUM-CO(53) #CO(8+J) sPQ-CO(8+J ) +SBeEP
SUM=SUM~CO(4) »CO(8+J)¢SB+BP
SAV(1,J)m=(CO(1)sSB+CO(2) +CB+CO(5))+CQ(J)
SUM=SUMH(CO( 1) #SB+CO(2) +CB4+CO(5) )»CQ(J)

MU(2+J , 1)=SUMH(CO( 1) #CAB—CO(2) +SAB) sCO(8+J )+MF (244, 1)

MU(1,244)=(CO(1)+CB—CO(2)SB)*CO(8+J)+HMF(1,2+J)
MU(1,2+d)=MI(24J,1)

SUM=—E1(N2+J) #SB«EP—CO(4) *E1(N2+J ) »SB+BP
SAV(2,J)=(CO(1)*SB+CO(2)+CB)+CQ(J)
SUM=SUM+(CO( 1) »SB4+CO(2) »CB) +CQ(J)

MU(2+J,2)=SUM+(CO(1) $CAB—CO(2) »SAB) oE1 (N2+J ) +MF(2+J,2)

MU(2,2+J)=(CO(1)sCB-CO(2) ¢SB) #E1(N2+J )4MF(2, 2+J)
MU(2,2+0)=MU(2+,2)
DO 600 I=i,J

¢ changed cab to cb, sab to sb

MU(2+J,2+]1)=COM(J, 1) (CO(1)eCB-CO(2)#SB)+MF(2+J,2+1)

IF (I .NE. J) THEN
MU(2+41,240)=MU(24J,2+1)
ENDIF
CONTINUE

500 CONTINUE

DO 700 J=1 M
SAY(3,4)=C0(3)SBsUP(J)
SAV(4,)=CO(4)+CO(3)*SBeCP(J)

SUM=CO(8+N2+J) sSB#AQ-CO(3) SBeUP (J)—CO(4) «CO(3) #SBsCP(J)

MU(24N+J , 1)=SUMHCO(3) sCO(B+N2+J ) s CABHMF (24N+J , 1)
MU(1, 24N+ )=CO0(3) #CO(B+N2+J ) sCBAMF (1, 240J)



c MU(1,24N+d )=MU(24NHS, 1)
MU(24NH+J , 2)=MF (24040, 2)
MU(2, 24N40)=MF (2, 240N44)
DO 806 I=1.N
C changed cb to cab. and back.
MU(24N+0, 241)=mE1 (N241) «CO(B+N2+J ) «CBHMF (24N4-J, 241 )
MU(2+1, 24N4J )=MU (24N+J, 2+1)
800 CONTINUE
DO 900 I=1,J
MU( 24N+, ZHNH )M (240N4J , 24N+1)
IF (I .NE. J) THEN
MU(2+N+1, 24N+d ) mMU (2404, 24+0N+1)
ENDIF
900 CONTINUE
700 CONTINUE
if ((t.gt.1.4684185).and.(t.1t.1.5)) then
print e,’cb’,cb
print s,°y’,y(1),y(2),y(3)
print o,'y2°,y(4),y(5).y(8)
endif

Update the offset vector b=tor+f—kx.

OO0 0 o0 0 o

2000 CONTINUE

OM3=Y (3HNHM)

OOM3mY (4+NHM)

1f ((abs(om3).gt.1.015).0r.(abs(oom3).gt.1.615)) then
print «,’y from UPDATE’,y
singul=13
goto 5000

endif

LOMB=0OM3+00M3

LOMB2wOM3 » OM3+TWO « OM3 ¢ OOM3+-00M3 s OOM3

LIFOM=LOMB2-OM3+OM3

FNT is a control variabla used to allow the mass matrix
to be evaluated w/o q terms, while the non—linear vector Is
evaluated consistently. FNT=1 does the above.

OO0 O0

FNT=9

(2]

IF ((RLINE.EQ.1).AND.(FNT.EQ.1)) THEN
DO 120 J=1,N

AQ=AQHE1 (N24J) eY(2+J)

PQ=PQ+E1 (N3+J)*Y(24J)

ADO=ADQHE1 (N24J ) o Y (4+N+H+J)

POQ=PDQHE1 (N3HJ) o Y (44N+M+J )

€Q(J)=ZERO

GQ(J)=ZERO

NBWQ(J )=ZERO

AAQ(J)=ZERO

HQ(J)=ZERO

DDQ(J)=ZERO

DO 228 I=1,N
€Q(J)=CQ(J)+BIJ1(N2+1,J)sY(2+1)
GQ(J)=GQ(J)+G1(1,d)sY(2+1)
NBMQ(J ) =NBMQ(J ) +COM(N+I WJ)eY(2+41)
AAQ(J)=AAQ(J)+G1(N2+1,J) oY (2+1)
HQ(J)=HQ(J) 461 (N1, J) oY (241)
00Q(J)=DDQLJI)+ET1(1,J) oY (44+N4M1)



220 CONTINUE
LCQ(s)=CO(3)+CQ(J)
120 CONTINUE
c CAB=CB-SB+PQ
c SAB=CB+PQ+SB
CAB=COS(Y(2)+PQ)
SAB=SIN(Y(2)+PQ)
DO 320 Jm=1,M
EP=EP+E2(J) ¢ Y(24MJ)
BP=SP+E2(M2+J) oY (2+N+J)
EDP=EDP+E2(J) oY (4+N2+WJ)
BOP=BDP+E2(M2+J ) oY (4+N2+M+J)
UP(J)=ZERO
CP(J)=ZERO
GP(J)mZEROC
NBMP (J )=ZERO
BBP(J)=ZERO
HP(J)=ZERO
DDP(J)=ZERO
DO 420 I=1,M
UP(J)=UP(J)+B1J2({1,J) sY(24M+1)
CP(J)=CP(J)4BIJ2(M2+1,J)sY(24N+1)
GP(J)=GP(J)4G2(1,J) eY(2+HH1)
NBMP (J ) =NBMP (J ) +COM(N2+1 , ) oY (2+N+1)
BBP(J)=B8P (J)+G2(M2+1,J) oY (2+N+1)
HP(J)=HP (J)+G2(M+1, J) s Y(24MN+1)
DDP (J)~DDP (J)+ET2(1,d) oY (44+N2+HM+1)
420 CONTINUE
LCP(J)=CO(8) ¢CP(J)
328 CONTINUE
ELSE
IF (FOOL.EQ.1) THEN
BU(1)=TOR(1)
BU(2)=TOR(2)
DO 1200 J=1,N
BU(2+J)=—HQ(J)-DDA(J)
1200 CONTINUE
DO 1300 Jwi M
BU(2+N+J )=—HP(J)-DDP(d)
1300 CONTINUE
GOTO 3000
ENDIF
ENDIF

The above IF statement allows the simulation of rate—linear
equations. 1/20/89- Modified to simulate rate—linear In emall
elastic rates, but non—linear in rigld body rates.

O0O0O0O0OCQ0Q

OMB=OM3+00M3+PDQ

NOMB2=TWOs (OM3+00M3 ) «PDQ

OMB2=LOMB24+NOMB2

DIFOMa=LOMB24+NOMB2~-0M3 « OM3

COEF=(~CO( 1) sCB4CO(2) 0SB) sAQ+CO(3) ¢CBe EP
COEF=COEF+CO(4)+CO(3)+CBeBP4CO(3)+CO(1)*SAB
COEF=COEF4CO(3)+CO(2) ¢CAB

SUM=-TWO+OM3 e ( (CO( 1) #SB+CO(2) ¢CB4CO(5) ) e ADQ-CO(5) +CO(3) +PDQ)
SUM=SUM+L1FOMeCOEF-+NOMB2+ (CO(3) +CO( 1) ¢SB4+CO(3) +CO(2) #CB)
SUM=SUM+TWO+ LOMB s (CO(3) «SBs EDP4CO(4) «CO(3) »SB+BDP)
BU(1)=SUM+TOR(1)

SUM=—OM3¢0M3+COEF~TWOsOM3 s (CO( 1) #SB4+CU(2)+CB) »ADQ
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BU(2)=SUMTOR(2)

DO 1000 J=1,N
SAV(5,J)=NBMQ(J)
SAV(8, J)=CO(8)+LCA(J)
SUM1=GQ(J )—NBMQ(J)+C0(8) »AAQ(J)—CO(B)eLCQ(J)
SUM1=SUM1+(CO(1)CB—CO(2) +SB4CO(7) ) +E1 (N3+J) #AQ
SUM1=SUMI4CO(7) sCO(8+N+J) sPQ-E1 (N3+J ) #0(3) #CBeEP
SAV(7,4)=CO(7)+CQ(J)
SUM1=SUM1-E1(N3+J) «CO(4)+CO(3) +CBsBP-CO(7)+CQ(J)
SUM1=SUM1—-E1 (N3+J)  (CO(1) sSABHCO(2) +CAB) +CO(3)
SUM1=SUMI4CO(5) sCO(B+N4+J)
SUM2s=CB+ EP+CO(4) sCBBP+CO( 1) #SAB+CO(2) sCAB
SAV(8, J)=(—CO(1)¢CB+CO(2) +SB) +CQ(J)
SUM2=E1 (N2+J) sSUM2+(~CO( 1) #CB4CO(2) #SB) +CQ(J)
SUM3=E1(N3+J) ¢ (CO(1)+SB+CO(2) «CB4CO(5) ) «ADQ
SUM3=SUM3-CO(5)*E1(N2+J)*PDQ
SUM=0M3 »OM3 » SUM 1 +LOMB2 ¢ SUM2—-TWO +OM3 » SUM3
SUM=SUNNOMB2E1 (N2+J)  (CO(1) #SB+CO(2) +CB)
SUM=SUMHTWO < LOMB+E1 (N2+J ) » (SBoEDP+CO(4) »SB+BDP)
BU(2+J)=SWHHQA(J)-DDQ(J)

CONTINUE

DO 1160 J=1 .M
SAV(9,J)=CO(4)+CO(3)+CB+CP(J)
SAV(1@,J)=CO(3)+CBeUP(J)
SAV(11,J)=NEMP(J)
SAV(12,J)=CO(4)+LCP(J)
SUM1m—CO(B+N2+J ) sCBSAQHCO(4) +CO(3) «CBeCP(J)
SUM1=SUM14CO(3) ¢CBUP(J)+CO(3) +CO(B+N24J ) +SAB
SUM2=GP (J ) —NBMP (J)+CO(4) * (BBP (J)~LCP(J))
SUM=—OM3 «OM3 « SUM1+LOMB2 ¢ SUM2-TWO+OM3¢CO (8+N2+J ) »SB+ADQ
BU(24N+J )=SUM—HP (J )-DDP(J)

CONTINUE

CONTINUE

RETURN

END

INCLUDE *[USER.AVF.CARLOS.FORTRAN]JDARMSEC.FOR’

This last command includes the reat of the malin subroutines
that are placed in ARMSEC.FOR for ease of handling.
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These FORTRAN subroutines evaluate the constants to be used

by the INTIALIZE and UPDATE routines In the two—link flexible

arm simulation. Written by Carlos E. Padilla for his M.S.

thesis on 7-9-88.

DOUBLE PRECISION version.
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REAL+8 FUNCTION SINH(X)
REAL*8 X
SINH=(EXP(X)-EXP(-X))/2.0
RETURN
END

REAL#8 FUNCTION COSH(X)
REALe8 X

CNSH=(EXP (X)+EXP(-X) ) /2.0
RETURN

END

As of now, given § of m.s. N, lambdai, length L, argument X,
the subroutine returns the modeshapes and the first three
derivatives J/dx In PHI(NMAX,4). Also the betalmlambdal/L
are roturned in array BI(NMAX). Further, the sigmal are
returned In SI(NMAX).

OO0OO0O0O00OO0

SUBROUTINE CMODES(N,LA,L.X,BI,PHI,SI)

IMPLICIT REAL+8 (A-Z)

INTEGER N, I,J,NMAX

PARAMETER (NMAX=4)

DIMENSION LA(NMAX),PHI(NMAX,4),BI(NMAX),SI(NMAX)

DO 100 I=1,N
SI(I)-(SINH(LA(I))—SIN(LA(I)))/(COSH(LA(I))+COS(LA(I)))
1e0 CONTINUE

DO 200 J=1,N
BI(J)=LA(J)/L
BX=BI (J)eX
SX=SIN(BX)
CX=COS (BX)
SINHX=SINH(BX)
COSHX=COSH(BX)

PHI(J, 1)=(COSHX-CX-SI(J)» (SINHX-SX))
PHI(J,2)=B1(J) o (SINHX+SX-SI(J)+ (COSHX-CX) )
PHI(J,3)=BI(J)BI(J)+(COSHX+CX-SI (J) (SINHX+SX))
PHI(J,4)=BI(J)+B1(J)*BI(J)e(SINHX-SX-SI(J)+ (COSHX+CX))
200  CONTINUE
RETURN
END

OO0

SUBROUTINE CONSTANT(CONL1,CONL2)
IMPLICIT REAL#8 (A-2)

INTEGER N,M

COMMON /PROP/ N,M,BM(8),RL(4)
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This routine evaluates constants that do not depend on the
mode shapes. CONL1 on exit contains the constants for link 1
while CONL2 contains the constants for |link2.

DIMENSION CONL1(6),CONLZ(6)
Determine constants for link 1.

CONL1(1)=RL(1)*RL(3)
CONL1(2)=CONL1(1)eRL(3)/2.0
CONL1(3)=CONL1(2)+RL(3)+2.0/3.0
CONL1(4)=BM(1)+BM(2)+RL(3)
CONL1(5)=BM(5)=COS(BM(7))
CONL1(6)=BM(5)»SIN(BM(7))

Determine constants for Iink 2.

CONL2(1)=RL(2)*RL(4)
CONL2(2)=CONL2(1)RL(4)/2.0
CONL2(3)=CONL2(2) +RL(4)+2.0/3.0
CONL2(4)=BM(3)+BM(4)4RL(4)
CONL2(5)=BM(8)+COS(BM(8))
CONL2(8)=BM(8)sSIN(BM(8))
RETURN

END

SUBROUTINE CONMOD(E1,G1,E2,62)

IMPLICIT REALe8 (A-Z)

INTEGER N,M,1,J,N2,N3,M2,M3,NMAX,NR
PARAMETER (ZERO=0.0, TWO=2.0,NMAX=4 , SCALE=1.0)
COMMON /PROP/ N,M,BM(8) ,RL(4),LA(4).EI(4)

This routine evaluates constants that depend on the mode
shapes but that do not Include foreshortening. N ig the §
of modes for link 1. M le the § of medes for link 2. On exit
E1 contains the aingle—indexed mode constants for link 1 and
G1 contains the double—~Indexed mode constants for Iink 1.
Likewise for link 2.

DIMENSION E1(4sNMAX),G1(3sNMAX,NMAX) , E2(4eNMAX) , G2 (3eNMAX , NMAX )
DIMENSION BI(MX).PH!(MX.4).SI(MX).KSIF(2+20INAX.2+2»&MX)
DIMENSION MMASS(2+2¢NMAX, 2+2¢NMAX)

L1=RL(3)

L2=RL({4)

NR=2-4+NH

N2=2sN

M2=2eM

N3=3eN

M3=3eM

SCA2=SCALEsSCALE

Dotermine constants for link 1.

CALL CMODES(N, LA,L1,L1,BI,PHI,SI)

DO 100 I=1,N
E1(1)=SCALEsTWOSRL(1)sSI(I)/BI(1)
E1(N+1)=SCALEsTWO#RL()/(BI(1)+BI(1))
E1(N241)=SCALE« (PHI(1,1)+BM(2)sPHI(I,2))
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coordinates stiffness matrix.
of the constant modal masa matrix.

E1(N3+1)=SCALEsPHI(I,2)
G1(I,1)=SCA2+RL(1)*RL(3)
G1(N+I,1)=SCA2¢BI(I1)*BI(1)eBI(1)eBI(I)sRL(3)¢EI(1)+EI(2)

Note: KSIF Is used to save the values of the constant flex.
MMASS is used to save the values

MMASS(2+1,241)=G1(1,1)
KSIF(241,2+1)=G1(N+1,1)
G1(N2+1,1)=E1(N2+1)+E1(N241)
DO 200 J=1,I-1
G1(1,J)=SCA2¢ZERO
G1(J,I)=G1(I,J)
G1(N+1,J)=SCA2¢ZERO
G1(N+J, I1)=G1(N+1,J)
MMASS (241 ,2+J)=G1(1,J)
MMASS(2+J,241)=G1(J,1)
KSIF(2+1,24J)=G1(N+1,J)
KSIF(2+J,2+1)=G1(N+J,1)
G1(N2+1,Jd)=E1(N2+1)«E1(N2+J)
G1(N2+J,1)=G1(N2+1,J)
CONTINUE

CONTINUE

Determine constants for |ink 2.

CALL CMODES(M,LA,L2,L2,BI,PHI,SI)

Note: LA is the same as for the above case in our special

case of catilever modes for both |inks.

DO 300 I=1,M

E2(1)=SCALE«TWO+RL(2)+SI(I)/BI(I)
E2(M+I)=SCALE«TWOsRL(2)/(BI(I)*BI(1))
E2(M241)=SCALEs (PHI(1,1)+BM(4)sPHI(1,2))
E2(M3+1)=SCALE+PHI (1,2)
G2(I,1)=SCA2+RL(2)*RL(4)
G2(M+1,1)=SCA2¢BI(1)*BI(1)«BI(I)*BI(I)*RL(4)+EI(3)+EI(4)
MMASS (2441, 24N+1)=G2(1,1)
KSIF(2+N+1, 2404+1 )=G2(M+1,1)
G2(M2+1, I)=E2(M241)sE2(M2+1)
DO 409 J=i,I-1
G2(1I,J)=SCA2¢ZERO
G2(J,1)=62(1,4)
G2(M+1,J)=SCA2¢ZERO
G2(M+J, 1)=G2(M+1,d)
MMASS (24N+1, 24N+J)=G2(1,J)
MMASS (24N+J , 24N+1 )=G2(J, 1)
KSIF(24N+1, 24N+J )=G2(M+1,J)
KSIF(24+N+J , 240N41)=G2(M4J, 1)
G2(M2+1,J)=E2(M2+1) ¢E2(M2+4J)
G2(M2+J , 1)=G2(M2+1,J)
CONTINUE

CONTINUE

CALL WRMATRIX(NR,NR,MMASS, "MMAS® , "MMATTO' )
CALL WRMATRIX(NR,MR,KSIF, STIF®, "KWATTO" )
CALL MATMATRIX(NR,NR,KSIF, STIF®, "KMATTO')

RETURN
END
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SUBROUTINE FOREST(BI1J1,BI1J2)

IMPLICIT REAL+8 (A-Z)

INTEGER N,M,I,J,N2,M2,NMAX,NR

PARAMETER (ONE=1.0,TWO=2.0,NMAX=4,SCALE=1.0)
COMMON /PROP/ N,M,BM(8),RL(4),LA(4)

This subroutine evaluates the modal constants that arise
due to foresortening. N is the § of modes for link 1, and
M is the § of modes for !ink 2. On return BIJ! will contain
the constents (all double Indexed) pertalning to link 1.
Likewise, BIJ2 will contain those of link 2.

DIMENSION BIJ1(3¢NMAX,NMAX) ,BIJ2(3+¢NMAX,NVAX), BT (NMAX)
DIMENSION PHI(NMAX,4),SI(NMAX),BI3(NMAX) ,BI4(NMAX)
DIMENSION MUIJ(2+2¢NMAX, 2+24NMAX) , ETIJ (2+2¢NMAX , 242«NMAX)
DIMENSION CIJ1(2+2¢NMAX,2429NMAX)

L1=RL(3)

L2=RL(4)

NR=2+N-+HM

N2=2¢N

M2=2eM

SCA2=SCALESCALE

Detcrmine constants for link 1.

CALL CMODES(N,LA,L1,L1,BI,PHI,SI)
L13=L1elielL1
L12=L1eL1/TWO
DO 100 I=1,N
BI3(I)=BI(1)BI(I)+BI(1)
BI4(1)=BI(1)+BI3(1)
SUM=3.0/TWO—11.0/8.0¢S1(1)BI(1)eL1
SUM=SUMIONE/TWOs (ST (I)eBI(I)eL1)#»2
BIJ1(I,1)=SCA2¢RL(1)*SWM
MULJ(241,241)=B141(1,1)
S‘H.0/4.00L1+L13/(12.0-Bl4(l)).PHI(l.4)-PHI(I.4)
SUM=SUM-ONE,/6 . 0sL13+PHI (I,1)#PHI(1,3)
SUM=SUMHL13/12.0sPHI(1,2)+PHI(I,2)
BIJ1(N+T, 1)=SCAZeRL(1) e (SUM-L12¢SI(1)+BI(I))
ETIV(2+1,241)=BIJ1(N+1,1)
SUM=ST (1)#BI(1)s(TWO+SI(1)#BI(1)eL1)
BIJ1(N2+1, 1)=SCA2¢ (SUMBM(2) sPHI (1,2) ¢PHI(1,2))
CIJ1(2+1,2+1)=BIJ1(N2+1,1)
DO 200 J=i,1-1
DIV=BI4(1)-BI4(J)
COEF=RL(1)/DIV
SUM=8.0+DI4(1)¢(BI(1)sBI(J))ee2/DIV
SUM=SUMES . 04B14(J) ¢ (BI (1) +BI(J))++2/DIV
SUMSUM-(—1.0) oo (1+J)+16.0+B14(1)+BI4(J)/DIV
LAC1=4 ,0¢BI(J)*BI(J)eBI3(1)eSI(I)
LAC2=4.0+BI(1)+BI(I)*BI3(J)*SI(J)
SUM=SUM-L13LACT+L1sLAC2
B81J1(1,J)=SCA2+COEF+SUM
B1J1(J,1)=B141(1,V)
MUIJ(2+1,2+44)=B1J1(1,J)
MUTJ(24d,2+41)=B1J1(J,1)
SUM=—4.00BI4(1)2BI14(J)/DIVeL1sPHI(I,1)sPHI(J,1)
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FAC1=L1ePHI(I,2)sPHI(J,4)
FAC2=L1ePHI(I,4)sPHI(J,2)
FAC=—FAC1+L1ePHI (I,3)#PHI(J,3)-FAC2
SUM=SUM-TWO+ (BI4(1)+814(J))/DIVeFAC
SUM=SUMHPHI (1,1)ePHI(J,4)-PHI(I,4)+PHI(J,1)
SUM=SUM-TWOSPHI (I,2)*PHI (J,3)+TWOsPHI (1,3)«PHI(J,2)
SUMSUM-FAC2+FAC1-L12sLAC1
BIJ1(N+I,J)=SCA2¢COEF s (SUM+L12¢LAC2)
BIJ1(N+J,1)=BIJ1(N+1,J)
ETIJ(2+1,2+J)=B1J1(N+1,J)
ETIJ(24J,2+1)=B1J1(N+J, 1)
SUM1=ST (J)#BI4(1)BI(J)-SI(1)eBI4(J)eBI(I)
SUM1m4 . @ (~ONE) o » (I+J ) *SUM1 /DIV
SUM=4 .0+ (BI(1)eBI(J))es2¢(SI(1)eBI(I)-SI(J)eBI(J))/DIV
SUM=SUM1-SUM
BIJ1(N2+1,J)=SCA2¢ (SUMBM(2) «PHI (I,2)*PHI(J,2))
BIJ1(N2+J,1)=BIJ1(N2+1,J)
CIJ1(2+1,2+J)=BIJ1(N2+1,J)
C1J1(2+J,2+41)=BIJ1(N241,4)
CONTINUE
CONTINUE

Determine conatants for link 2.

CALL CMODES(M,LA,L2,L2,BI,PHI,SI)
L23=1 20222
L22=L2¢L2/TWO
DC 300 I=t .M
BI3(1)=BI(I)eBI(1)eBI(I)
BI4(1)=BI(1)eBI3(I)
SUM=3.0/TWO-11.0/8.0¢SI(1)eBI(1)sL2
SUM=SUMHONE/TWO# (ST (1) #BI(I)e(2)es2
BIJ2(I,1)=SCA2¢RL(2)+SUIM
MULJ (24N+1, 24N+1)=BTJ2(1,1)
SUM=S.0/4.00L2+123/(12.0¢B14(1))sPHI(I,4)sPHI(I,4)
SUM=SUM-ONE/S .0+ L23ePHI (1,1)sPHI(I,3)
SUM=SUMHL23/12.0¢PHI(1,2)#PHI(I,2)
BIJ2(M+1,1)=SCA2#RL(2)*(SUM—L22eSI(1)BI(I))
ETIV(24N+1, 24N+ )=BIJ2(M+]I, 1)
SUM=ST(1)eBI(I)e(TWO+SI(I)eBI(1)sL2)
BIJ2(M2+1, I)=SCA2¢ (SUMHBM(4)#PHI (1,2)PHI(I,2))
CIJ1(24N+1 , 24N+1)mBIJ2(M2+1,1)
DO 400 J=1,I-1
DIV=BI4(1)-BI14(J)
COEF=RL(2)/D1V
SUM=8.0¢B14(1)+(BI(I)+BI(J))s+2/DIV
SUM=SUM+8.0+BI4(J)+(BI(I)+BI(J))*e2/DIV
SUM=SUM-(~1.0)ve(I4+J)2168.04B14(1)#BI4(J)/DIV
LAC1=4.0+BI(J)*BI(J)*BI3(1)eSI(I)
LAC2=4.9+BI(1)eBI(I)eBI3(J)*SI(J)
SUM=SUM-L2¢LAC1+L2¢LAC2
B1J2(I,J)=SCA2¢COEFsSUM
BIJ2(J,1)=B142(1,9)
MUTJ 24N+, 24N4+d)=B1J2(1,J)
MUTJ(24N+d , 2404+ 1)mBIJ2(J, 1)
SUM=—4.0¢B14(1)+BI4(J)/DIVeL2ePHI(I,1)ePHI(J,1)
FAC1aL2«PHI(I,2)*PHI(J,4)
FAC2=L2¢PHI(1,4)sPHI(J,2)
FAC=—FAC1+L2¢PHI(1,3)sPHI(J,3)~FAC2
SUM=SUM-TWO+ (B14(1)+B14(J))/DIVeFAC
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SUM=SUMHPHI (I,1) sPHI (J,4)—PHI(1,4)+PHI(J,1)
SUM=SUM=TWOPHI (I,2) *PHI (J,3)+TWOsPHI (I1,3)«PHI(J,2)
SUM=SUM—~FAC2+FAC1-L224 LAC1
BIJ2(M+I,J)mSCA2eCOEFs (SUMHL223 LAC2)
BIJ2(M+d, 1)=BIJ2(M+],J)
ETIJ(24N+1, 24N+J ) =BIJ2(M+1, J)
ETIJ(2+N+J , 24N+1 )=BIJ2(M+J, 1)
SUM1=S1(J)«BI4(1)eBI(J)-SI(I)eBI4(J)BI(I)
SUM1m=4 . Qs (—~ONE) s (1+J)sSUM1/DIV
SUM=4.0s (BI(I)*BI(J))ee2¢(SI(1)*BI(I1)-SI(J)BI(J))/DIV
SUM=SUM1-SUM
BIJ2(M2+1,J)=SCA2e (SUMHBM(4) PHI(I,2) +PHI(J,2))
BIJ2(M2+J, 1)=BIJ2(M2+1,J)
CIU1(24N+1, 24N+J)=BIJ2(M2+1,J)
CIU1(24N+J, 24N+1 )=BIJ2(M24J, 1)
CONTINUE

CONTINUE

CALL WRMATRIX(NR,NR,MUIJ, 'MUIJ’, 'MUIJTO")

CALL WRMATRIX(NR,NR,ETIJ, ETIJ*, *METATO")

CALL MATMATRIX(NR,NR,MU1J, 'MUIJ’, 'MUIJTO®)

CALL MATMATRIX(NR,NR,ETIJ, ETIJ’, 'METATO")

CALL WRMATRIX(NR,NR.CIJ1,°CIJ1*, CIJ1TO")

RETURN

END
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Thie file contalins the rest of the main subroutines for the

two—tink flex. arm simulation. The following are all written
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SUBROUTINE DERIVS(T,Y,DYDT)
IMPLICIT REALe8 (A-Z)
INTEGER N,M,1,J,NR,FCRE,ANGMO,SINGUL , NMAX , COUNT
PARAMETER (ZERO=®.0,NMAX=4)
character date9,tim«9,AC(9)
COMMON /CONTROL/ FORE, ANGMO, SINGUL
COMMON /PROP/ N,M
COMMON /DAMP/ DDQ(NMAX) , DDP (NMAX)
COMMON /ENER/ ME(.+2¢NMAX, 24+2¢NMAX)

This Is the user provided routine to determine the
time derivative of Y, DY/UT, used by the numerical recipes
ODEINT routine to solve the differential equations.

OO0O0OOO0

DIMENSION Y(8+4¢NMAX) »DYDT (E+48NMAX) ,MU(2+2¢NMAX , 242eNMAX)
DIMENSION BU(2+2¢NMAX),TOR(2)

dimension be(2+2¢nmax)

NR=2+N+HM

DYDT(1)mY(14NR)
DYDT(2)=Y(2+NR)
DO 100 I=1,N
DYDT(2:+I)=Y(2+NR+1)
160  CONTINUE
DO 200 I=1,M
DYDT( 24N+ JuY (24NR+N+1 )
200  CONTINUE

CALL FORCING(T,Y,TOR)
CALL UPDATE(T,Y,TOR,MU,BU)
If ((t.gt.0.5993199).and.(t.1t.0.6)) then
print o, t
print »,y(2)
do 110 i=1,nr
print »,(mu(l,}),]=1,nr)
110 continue
ondif
IF (SINGUL.NE.®) GOTO 3000

o 0 0 0 0 0 o0

This le to output MU aond BU for a small number of times.

DATA AC/"l‘.'2".'3’.’4'.'5'.'0'.'7'.'8’.'9’/
IF (T.GE.0.5993211) THEN
IF (COUNT.LE.8) THEN
PRINT »,T,y(2),Y(nr+2)
COUNT=COUNT+1
CALL MATMATRIX(NR,NR,MU, ‘MUST*, "MUSIM' //AC(COUNT))
CALL MATMATRIX(NR,1,BU, *BUSI*, 'BUSIM’ //AC(COUNT))
ENDIF
ENOIF

OO0 0 0 600600 0OOOC



Derivatives for "integration checka." Angular momentum,
energy due to torques, and energy dissipation due to domping.

OO0

DYDT(142¢NR)=TOR(1)
OYDT(2+2+NR)=TOR(1)eY(14NR)
DYDT(3+20NR)=TOR(2) s Y(2+\R)
SUM=ZERO
DO 800 I=1,N
SUM=SUMHDDQ( 1) oY (24NR+1)
800 CONTINUE
DO 900 I=1 .M
SUMSUMHCOP (1) oY (24NRHNT)
900 CONTINUE
DYDT(4+20NR)=SUM

I1f checking of energy ies on, save MU in ME.

o000

it (t.eq.zero) then
IF (ANGMO.EQ.1) THEN
DO 409 I=1,NR
be(1)=bu(l)
0O 360 Jmi,l
ME(I,J)=Mu(1,J)
IF (I.NE.J) ME(J,1)=MU(J,I)
806 CONTINUE
400 CONTINUE
ENDIF
else
do 600 l=1,nr
dc 700 j=i,1
au(i, J)=me(l,})
it (1.ne.j) mu(j,i)=me(],1)
760 continue
o2 continus
endif

The following lines do row scaling of the system MUg=BU
80 as to improve the conditioning of the mass maotrix by
setting the Infinity norms of the rows to 1.

DO 1100 I=1,NR
SON=MU(I, 1)
DO 1200 J=2,NR
IF (SON.LT.MU(1,J)) SON=MU(I,J) -
1200 CONTINUE
DO 1300 Jm1,NR
MU(T,d)m1.0/SONeMU(T , J)
1300 CONTINUE
BU(1)=1.08/SONeBU(I)
1100 CONTINUE

Invert the mass matrix %o obtaln the acceleration vector.

upm
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it (t.eq.zero) call matmotrix(nr,nr,mu, "MUTO’, 'MUMATX")
It (t.eq.zero) call wrmatrix(nr,nr,mu, 'mutd’, ‘MeWRIT®)
CALL LUDEC(NR,NR,MU)
if (singul.ne.8) then
open (1,file="[user.avf.carios.thesis]overflow’,status="unknown’,
& access='append’,form=’'formattad’)
call date(dat)
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call time(tim)
write(1,s)dat,’ ", tim
write(1,¢) tm’ ¢t
write(1,s)'y=’'y
close (1)
1t (angmo.eq.1) then
call matmatrix(nr,nr,me, "MUSI®, "MUMATX")
call wrmatrix(nr,nr,me, ‘musi’, "MUWRIT')
endif
endif
IF (SINGUL.NE.@) GOTO 1000
CALL LUSOLVE(NR,NR,MU,BU)
IF (SINGUL.NE.®) GOTO 2000

DO 300 I=1,NR
DYDT(NR+I)=BU(1)
CONTINUE

The following two |ines aro tc be used to freeze the
shoulder link for purposes of spinning of second |ink only.
They shouid be commented out during normal simulations.

dydt(1)=zero

dydt(1+nr)m=zero

GOTO 5000

PAUSE °'Mass matrix non—positve—definite. Aborting.’
call matmatrix(nr,nr,me, 'musi’, musimx’)

GOTC 5000

PAUSE ’'Stote vector growing without bound. Aborting.’
call matmatrix(nr,nr,me, 'musi’, 'musimx’)

call matmatrix(nr,1,be, 'besi’, besimx’)

call matmatrix(nr,1,bu, busi’, busimx’)

GOTO 5000

PAUSE °'Rates too large In UPDATE. Aborting.’

call matmatrix(nr,nr,mu, 'musi’, ‘musimx*)

CONTINUE

RETURN

END

SUBROUTINE INITIME(T)

IMPLICIT REALe8 (A-Z)

INTEGER N,M,NMAX

PARAMETER (ONEw=1.0,TWO=2.0,NMAX=4 ,APT=3. 141592654 ,SAFETY=0.9)
COMMON /PROP/ N,M,BM(8) ,RL(4),LA(NMAX),EI(4)

This subroutine determines a trial initial time step 'H1’
which Is returned in T. It Is based on the highest fregq.
mode shape times a safety factor.

L1=RL(3)
L2=RL(4)
FlmLA(N)#»2/(TWOsAPIaL1eL1)eSQRT(EI(1)*EI(2)/RL(1))
F2=LA(M) s92/(TWOSAPI oL 26 L2) #SQRT (EI (3) +EI(4)/RL(2))
IF (F1 .GT. F2) THEN

F=F1
ELSE

F=F2
ENDIF
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T=ONE/10.0¢SAFETY*ONE/F
RETURN
END

SUBROUTINE AMOMENTUM(T,Y,H,DELH)

IMPLICIT REALeS (A-Z)

INTEGER N,M,1,J,FORE, ANGMO,N2,NMAX,NR, SING,RLIME, FNT

PARAMETER (ZERO=®.0, TWOm2.0,NMAX=4)

COMMON /CONTROL/ FORE,ANGMO, SING,RLINE

COMMON /PROP/ N.M

COMMON /FIX/ MF(2+2¢NMAX , 2+20NMAX) , CO(3oNMAX+8) , COM(3oNMAX , NMAX)
COMMON /FIX/ E1(49NMAX),G1(3eNMAX,NMAX) , E2(43NMAX) , G2( 3o NMAX , NMAX)
COMMON /ANG1/ AN(3eNMAX+4)

COMMON /ANG2/ AQ,ADQ,PQ,PDQ,EP,EDP,BP,BOP, FNT

COMMON /ANG3/ HREF

Thie routine determines the angular momentum of the arm.
It is called by ODEINT If the control variable ANGMO I8 set
to 1 by the Input progroam. It uses the conastants CO and
AN evaluated In the INITIALIZE routine and the time variables
evaluated in the UPDATE routine placed in the CCMMON block
ANG2.

DIMENSION Y(8+4¢NMAX)
N2=2sN
NR=24+NHM

Determine time dependent factors not in COMMUN block.

CB=C0S(Y(2))
SB=SIN(Y(2))
OM3mY ( S+NHM)
OOM3=Y ( 44+N+M)
LOMB=0OM34-00M3
IF ((RLINE.EQ.1).AND.(FNT.NE.1)) THEN
DO 300 J=t,N
AQAQHET (N24J) »Y(2+J)
PQ=PQ+E1 (N3+J) oY (24J)
ADQuADQHE1 (N24J ) o Y (44+NHMHJ)
PDQ=PDQ+ET (N3+J) o Y(4-+NHHJ)
CONTINUE
DO 409 J=1,M
EP=EP+E2(J) oY (24N+J)
BP=BPHEZ(M24+d ) oY (24N+J)
EDP=EDP+E2(J) oY (4+N2+M+J)
BDP=BDP+E2 (M24+J) oY (4+N2+H+J)
CONTINUE
ENDIF
CAB=CB-SB*PQ
SAB=CB+PQ+SB
CAB=CGS(Y(2)+PQ)
SAB=SIN(Y(2)+PQ)
OMB=OM3+00M3+PDQ
FBEQw=ZERO
FBEP=ZERO
PDP=ZERO
DO 100 I=1,N
FBEQuFBEQ+AN(4+1) oY (44NM+1)



OCOO0OO0OOOOO0OO0

(2 N <]

100

200

200

100

CONTINUE
DO 200 I=1,M
POP=PDP+AN( 4-+HNHWHT ) oY (44N2HHI)
FBEP=FBEP+AN(4+N+1) oY (4+N2+W+1)
CONTINUE
SUM=OM3 (AN(1)+TWO+CO(5) #AQ~TWG+CO(3) «CO(5) +PQ)
SUM=SUM+OMB*AN(2)
FAC=CO( 1) #CO(3) sCAB-CO(2) #CO(3) s SAB-CO(3) #SBeEP
FAC=FAC+(CO(1) #SB+C0(2) +CB) +AQ—CO(4) +CO(3) +SBBP

On 1/23/89 changed omb to lomb to linearize consistently.

SUM=SUMH(OM3+LOMB ) s FAC+AN(3) +PDQ

SUM=SUM+PDQs (CO( 1) +CO(3) «CB~CO(2) #CO(3) SB)
SUM=SUM4(CO(8) ¢CO(3)4C0(7)4C0( 1) +CB~CO(2) #SB) +ADQ
SUM=SUMHCO(3) «CB+EDP+(CO(8)+C0(3) +CB) «CO(4) «BDP
H=SUM+AN( 4) «PDP+FBEQ+FBEP

IF (T.EQ.ZERO) HREF=H

DELH=H-(Y( 1+2oNR)+HREF)

RETURN

END

SUBROUTINE ENERGY(Y, TENER)

IMPLICIT REALe8 (A-Z)

INTEGER N,M,I,J,NR,NMAX

PARAMETER (ZERO=D.0, TWO=2.0, NMAX=4)

COMMON /PROP/ N,M

COMMON /FIX/ MF(2+2¢NMAX, 2+26NMAX) , CO(3oNMAX+8) , COM(3sNMAX , NMAX )
COMMON /FIX/ E1(4oNMAX),G1(3eNMAX, RMAX) , E2(4oNMAX) , G2 (3sNMAX , NMAX)
COMMON /ENER/ MU(2+2¢MMAX, 242eNMAX)

This routine Is determines the total energy of the arm.
It is called by ODEINT If the control variable ANGMO is set
to 1 by the input program. It uses the constants Gt and G2
evaluated in the INITIALIZE routine and the variable MU
evaluated In the UPDATE routine placed in the COMMON block
ENER In the subroutine DERIVS.

DIMENSION Y(8+4¢NMAX)
NR=24N+M

Determine the arm Kinetic Energy.

KE=Z2ERO
DO 100 I=1,AR
SUM=ZERO
DO 200 Jm=1,NR
SUM=SUMEMU( T, J) oY (NR+J)
CONTINUE
KE=KE+SUMeY (KR+1)
CONTINUE

Determine the arm Potential Energy.

PE1=ZERO

PE2=ZERO

DO 300 I=1,N
SUM=ZERO
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00 409 J=1,N
SUM=SUMEGT (N+1,J) oY(24d)
CONTINUE
PEI=PE1+SUMsY (2+1)
CONTINUE
DO 500 I=1,M
SUM=ZERO
DO 800 J=1 .M
SUM=SUMHG2(M+L , J) oY (24N+J)
CONTINVE
PE2=PE2+SUMe Y (24N+1)
CONTINUE

Return the total energy of the arm.

TENER=1.0/TWOe (KE+PE1+PE2)
RETURN
END

SUBROUTINE OUTPUT

IMPLICIT REAL8 (A-Z)

INTEGER N,M,KMAX,KOUNT,NR,I,J,N2, NMAX

PARAMETER (ZERO=0.0,NMAX=4 ,SCALE=1.0)

COMMON /PROP/ N,M,BM(8) ,RL(4),LA(NMAX),EI(4),MM(4)

COMMON /PATH/ KMAX,KOUNT ,DXSAV,XP(500),YP(24,500) ,HP(500),EP(300)
COMMON /PATH/ ME(500,18),DHP(500),TOR(2,500) ,SFOR(508),STIC(500)

This routine takes care of the output from the simulation.
It does any necessary calculations to the raw output from
ODEINT and stores it in MATRIXx format in MATPLOT.DAT. It
will also be able to store output data in tabular form In
DATFILE.DAT. Both files will be stored in the THESIS sub—
directory.

DOUBLE PRECISION X(509,21),XM(500,16)

DIMENSION Y1(5@0),Y2(500),DY1(500),DY2(5008),PDQ(500)

DIMENSION BI(NMAX),PHI(NMAX,4),ST{NMAX),PHI2(NMAX,4)

OPEN (1,FILE='[USER.AVF.CARLOS.THESISIMATPLOT® ,STATUS="NEW",
FORM="'FORMATTED " )

OPEN (3,FILE=’[USER.AVF.CARLOS.THESIS]DATFILE® ,STATUS='NEW’,
FORM="'FORMATTED® )

OPEN (4,FILE=’[USER.AVF.CARLOS.THESIS]BUGFILE’ ,STATUS='NEW’,
FORM=’ FORMATTED' )

NR=2-+N4HM

N2=2eN

Li=RL(3)

L2=RL(4)

Determine small tip deflections of both links from the
output modo! omplitudes and the mode shapes evaluated at the
tip.

CALL CMODES(N, LA,L1,Li,BI,PHI,SI)
CALL CMODES(M, LA, L2,L2,B1,PHI2,S1)
DO 100 J=1,KOUNT

Y1(J)=ZERO

DY1(J)=ZERO

PDQ(J)=ZERO
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Y2(J)=ZERO

DY2{J)=ZERO

DO 200 I=1,N
Y1(J)=mY1(J)+SCALESPHI (I,1)eYP(2+1,J)
DY1(J)=DY1(J)+SCALESPHI (I, 1) e YP(4+N+M+1, J)
PDQ(J)=PDQ(J ) +SCALESPHI (1,2) o YP(4+N+M+1,J)

CONTINVE

0O 320 I=1,M
Y2(J)mY2(J)+SCALESPHI2(I, 1) s YP(24N+1,J)
DY2(J)=DY2(J )+SCALESPHI2(I, 1) o YP(44+N2+W+1,J)

CONTINUE

CONTINUE

Copy values to MATRIXx-ready array, and store.

DO 400 I=1,KOUNT
X(1,1)=xP(I)
X{1,2)=YP(1,1)
X(1,3)=YP(2,1)
X(1,4)=Y1(1)
X(1,5)=Y2(1)
X(1,6)=YP(3+N+M,1)
X(1,7)=YP(4+M4M,1)
x(1,8)=DY1(I)
x(1,9)=DY2(1)
X(1,10)=HP(1)
X(I,11)=EP(1)
X(I,12)=DHP(1)
X(1,13)=TOR(1,1)
X(I,14)=TOR(2,1)
X(I,15)=YP(2¢NR+1,1)
X(1,18)=YP(20NR4+2,1)
X(1,17)=YP(2+NR+3,1)
X(1,18)=aYP(2¢NR+4,1)
x(1,19)=PDQ(1)
X(I,20)=SFOR(I)
X(1,21)=STIC(1)
YM(T, 1)=X(1,1)

DO 800 J=1,15
YM(I,J+1)=ME(I,J)
CONTINUE

CONTINUE

CALL MATSAV(1, *DATAX’,500,KOUNT,21,0,X,DUMMY, * (1P2E24.15)")

CLOSE (1)

CALL MATSAV(4, *DATAX®,500,KOUNT,16,0,XM,DUMMY, * (1P2E24.15) )

CLOSE (4)

Copy raw data to file.

NR=2-4+NHM
WRITE(3, ¢)N,M,KOUNT ,RL(3) ,RL(4)
WRITE(3, o )MM(1) ,MM(2) ,MM(3) ,MM(4)
WRITE(3,¢)LA(1),LA(2),LA(3),LA(4)
DO 500 I=1,KOUNT
WRITE(3,«)XP(I),YP(1,1),YP(2,1)
DO 600 J=1,N
WRITE(3,¢)YP(24J,1),YP(24NR+J, 1)
CONTINUE
00 780 J=1 .M
WRITE(S, o) YP(2404+J, 1), YP(24NR+N+J, I)
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CONTINUE
CONTINUE
CLOSE (3)
RETURN

SUBROUTINE OUT_DIAGNOSTICS

IMPLICIT REALeS (A-Z)

INTEGER NOK,NBAD,NSAV,N,M,NR,MCOUNT , FORE , ANGMO , SINGUL
INTEGER NCO

PARAMETER (AMIN=80.0)

CHARACTERe9 DAT,TIM

REAL TINIT,TODE, TOUT

COMMON /CONTROL/ FORE , ANGMO, SINGUL

COMMON /PROP/ N,M

COMMON /DIAG/ HSAV,TSAV

COMMON /DIAG/ NOK,NSAD,H1SAV,DAT,TIM, TINIT, TODE, TOUT
COMMON /DIA2/ NCO

COMMON /BUG/ HMIN,DXSAV,SAVPTS,DX,TIM2,BETA,NSAV, EPS, THETA
COMMON /BUG/ MCOUNT,Y(24)

This routine outputs dicgnostics messages to the file
ARMDIAG.DAT In the subdirectory THESIS.

OPEN (1,FILE=’[USER.AVF.CARLOS.THESIS]JARMDIAG® ,STATUS="UNKNOWN" ,

ACCESS="APPEND" , FORM=' FORMATTED* )
WRITE(1,+)’Date ond time of start of simuiation:’,DAT,* ', TIM
WRITE(1,¢) Number of good steps taken:’, NOK
WRITE(1,+) 'Number of bad but retried steps taken:' ,NBAD
WRITE(1,¢)'Inltlial time step tried:’ HISAV
WRITE(1,+)'Final time step used:’ ,HSAV
WRITE(1,¢)°# of loope In RKQC for last time step:’,NCO
WRITE(1,¢)'Time at end of simulation:’,TSAV
IF (TINIT .GE. AMIN) THEN
TINIT=TINIT/AMIN
WRITE(1,¢)'Time to complete Initialization (min.):’,TINIT
ELSE
WRITE(1,¢)°'Time to complete initialization (sec.):*,TINIT
ENDIF
IF (TODE .GE. AMIN) THEN
TODE=TODE/AMIN
WRITE(1,¢)'Time to soive O.D.E. (min.):*,TODE
ELSE
WRITE(1,+)’'Time to eolve O.D.E. (sec.):’',TODE
ENDIF
IF (TOUT .GE. AMIN) THEN
TOUTaTOUT/AMIN
WRITE(1,¢)'Time to complete output sequonces (min.):’,TOUT
ELSE
WRITE(1,¢)'Time to complete output sequences (sec.):’,TOUT
ENDIF
IF (SINGUL.NE.@) THEN
WRITE(1,9)°900000800650000000800600000000000000¢0000°
WRITE(1,¢)°Simulation aborted.’
WRITE(1,¢)°See .LOG file for error message.’
UR]TE(1,o)'c--ooooo.oocoaoocoooooooo.oo-o-----o-oooo'

ENDIF



Debugging dlagnostics.

WRITE(1,+) "OEBUGGING DIAGNOSTICS:'
WRITE(1,9) SINGULm *,SINGUL
WRITE(1,¢) "HMIN= * HMIN
WRITE(1,¢) 'Number of HMIN exceeds: °,MCOUNT
WRITE(1,¢) "DXSAV= °* ,DXSAV
WRITE(1,¢)'T2= *, TIM2

WRITE(1,¢) °THETA DOTa *,THETA
WRITE(1,¢) 'BETA DOT= ° ,BETA
WRITE(1,9)"N= *,NSAV
WRITE(1,0) M= * M

WRITE(1,¢) EPS= '’ ,EPS

NR=2-+HNHM

WRITE(1,¢)°Y(I) Y(NR+I)*

DO 100 I=1,NR
WRITE(1,¢)Y(I),Y(NR+I)

100 CONTINVE
CALL DATE(DAT)
CALL TIME(TIM)
WRITE(1,2)'Date and time of end of simulation:’,DAT,* *,TIM
WRITE(1,e)* °*
CLOSE (1)
RETURN
END
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c Thie file contains subroutines written for the two—Iink
(o arm eimulation from 4-29-89 on. It is written by Carlos E.
(o] Padilla as part of his M.S. thesis.

c DOUBLE PRECISION version.

c.....‘.....“'....‘..‘......‘....‘..........0........'..“'..““‘..‘“
c‘....a‘........“.........0‘..Q“...‘O“.........‘.0“..‘....‘...‘.....
SUBROUTINE STABICHK(Y,DYDT,OUT)
IMPLICIT REALe8 (A-Z)
INTEGER N,M,I,J,NR,N2,NMAX, FORE
PARAMETER (ZERO=®.0,NMAX=4)
COMMON /PROP/ N,M,BM(8)
COMMON /CONTROL/ FORE
COMMON /FIX/ MF(2420NMAX, 2420NMAX) ,CO(3oNMAX+8) , COM(3sNMAX , NMAX )
COMMON /FIX/ E1(4sNVAX),G1(3eNMAX,NMAX) , E2(4oNMAX) ,G2(3eNMAX , NMAX)
COMMON /FIX/ BIJ1(3sNMAX,NMAX) ,BTJ2(3eNMAX , NMAX)
COMMON /FIX/ ET1(NMAX,NMAX) , ETZ(NMAX , NMAX)
COMMON /ANG2/ AQ,ADQ,PQ,PDQ

This subroutine checks the dynamic parameters of |ink
two of the two—link manipulator, to see if the stabillty
boundary for the consistent model predictions ls exceeded.
If M=2, then the "exact" dynamic stiffness eigenvaluos are
checked for non—positive definiteness. A time trace of the
fowest elgonvalue is returned on output.

If MO2, then a first order approx. is used using the stab.
boundary derived in Ch. 3 of my M.S. thesia. The relative
distance

of u2 to the boundary (given uidot and u3) !s returned on
output.

D000 OOOO0O0OO0OO0

DIMENSION Y(8+4sNMAX) ,DYDT(8+4+NMAX)

IF (FORE.EQ.1) GOTO 5000

IF (M.EQ.0) GOTO 5000

N2=2eN

NR=2-4+N-+HM

BETA=Y(2)

DTHE=Y( 1+NR)

DOTHE=DYDT ( 14NR)

DBE=Y(2+NR)

SB=SIN(3ETA)

CB=COS(BETA)

SAB=PQ+CB+SB

CAB=CB-PQeSB

L1=CO(3)

B22-BM(3)

DADQ=ZERO

DO 100 I=1,N
DADQ=DADQHE1 (N2+1) »DYDT(24NR+1)

100 CONTINUE

U3=DTHE4+DBE+PDQ

U2=DTHE+AQ+SB+ADQ+CB+L1+DTHE+CAB

U1D0T=—(DDTHE+AQ+2¢DTHE*ADQ) «CB-DTHE«DTHE+L1+CAB

U100T=U1DOT+DDTHE L 1¢SAB+(DADQ-DTHE*DTHE#AQ) +SB

IF (M.EQ.2) THEN
COE1=U2¢U3+U3+U3+B22-U1DOT
A=G2(M+1,1)4+COE1eBIJ2(1,1)+U3eU3e(BIJ2(M+1,1)-62(1,1))
B=G2(M+1,2)4COE1B1J2(1,2)+U3eU3¢ (BIJ2(M+1,2)-62(1,2))
D=G2(M+2,2)+COE1eB1J2(2,2)+U3eU3s (BIJ2(M+2,2)-62(2,2))



S1m0. 5+ (A+DHSORT( (A-D) e +244B4B))
S$2=8, 80 (A+D-SQRT((A-D) »+2+44B¢8B))
IF (S1.LT.S2) THEN

OUT=S1
ELSE

OUT=S52
ENDIF

ELSE

H11=G2(M+1,1)

MU11=B142(1,1)

ETA11=B1J2(M+1,1)

611=62(1,1)

IF (U3.NE.ZERO) THEN
CECK=—1/U3¢ (H11/MJ11-U1DOT)
CECK=CECK-U3e (B22+ETA11/MU11-G11/MJ11)
IF (CECK.NE.ZERO) THEN

OUT=(CECK—U2)/CECK
ELSE

OUT=ZERO
ENDIF

ELSE
OUT=0

ENDIF

IF

CONTINUE
RETURN
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These subroutines were written by Carlos E. Padilla for

18.335 P.S. §#6. They are used here for his M.S. thesis arm

simulation Iin order to Invert the symmetric mass matrix

using Cholesky decomposition for maximun savings In execution

time.

DOUBLE PRECISION version.

On 9/9/88 routines were added to allow PA=LU decomposition,

i.e., LU decomposition with partiel pivoting, to handle mass

matrices that are asymmetric due to |’nearlzation.

Co280000060000000800000080000000000080000600000980¢003000800080000000000RE
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c
C Use Cholesky factorization. Overwrites lower A with G — Cholesky
c triangle.
c

SUBROUTINE CHOLESKY(M,N,A)

INTEGER NRA,NRE,NSING, NMAX

REAL+8 ZERO

PARAMETER (ZERO=0.0,NMAX=10)

COMMON /CONTROL/ NRA,NRE,NSING

INTEGER M,N.K,P,1

REAL*8 A(NMAX,NMAX),S

IF (M .NE. N) THEN
PRINT o, 'Matrix not square — Cholesky aborted’
RETURN
ENDIF
DO 10 K=1,N
S=9.0
DO 15 P=1,K-~1
S=S+A(K,P)eA(K,P)
15 CONTINUE
IF ((A(K.K)-S).LE.ZERO) GOTO 1000
A(K,K)=SORT(A(K,K)-S)
e if (a(k,k).1t.3.4e~3) print »,'chol’, k,a(k,k)
DO 20 I=K+1,N
S=0.0
DO 25 Pw1,K-1
S=S+* " ,P)eA(K,P)
25 CONTINUE
A(I,K)=(A(I,K)-S)/A(K,K)
20 CONTINUE
10 CONTINUE
GOTO 5000
1000  NSING=1
5000 CONTINUE
RETURN
END
c
C Solve for y s.t. Lymb, L n-by-n lower triangular. Overwrites b with y.
c
SUBROUTINE FORWARD(NDIM,N,L,B)
INTEGER NMAX
PARAMETER (NMAX=10)
INTEGER NDIM,N,I,J
REAL®8 L(NMAX,NMAX) ,B(NMAX)

DO 49 I=1,N



DO 48 J=1,1-1
B(I)=8(I)-L(1,J)*B(J)

45 CONTIHUE
B(I)=B(1)/L(1.I)
490 CONTINUE
RETURN
END
¢

C Solve for x s.t. Uxmy, U n=by-n upper triangular. Ovorwrites y with x.
c

SUBROUTINE BACKWARD(NDIM,N,U,Y)

INTEGER NMAX ,NRA,NRE,NSING

PARAMETER (NMAX=10,HUGE=1.0E35)

COMMON /CONTROL/ NRA,NRE,NSING

INTEGER NDIM,N,I,J

REALe8 U(NMAX,NMAX) ,Y (NMAX)

DO 50 I=N,1,-1
DO 85 J=I+1,N
Y(1)=Y(1)-U(1,4)eY(J)
ss CONTINUE
Y(1)=v(1)u(1,1)
IF (ABS(Y(1)).GT.HUGE) THEN
NSING=2
GOTO 5000
ENDIF
e CONTINUE
5000 CONTINUE
RETURN
N>

OO0

SUBROUTINE TRANSPOSE(M.N,A,B)
INTEGER NMAX

PARAMETER (NMAX=10)

INTEGER M,N,1,J

REAL#8 A(NMAX,NMAX) , B(NMAX , NMAX)

DO 30 [=1,M
DO 35 J=i,N
8(J,1)=A(1,9)
35 CONTINUE
30 CONTINUE
RETURN
END

SUBROUTINE LUDEC(NDIM,N,A)

IMPLICIT REALeS (A-Z)

INTEGER NDIM,N,NMAX,T,J,K,P, IPVT

INTEGER NRA,NRE,NSING

PARAMETER (ZERO=0.0,0NE=1.0,NMAX=18, TINY=1.0E-12)
COMMON /CONTROL/ NRA,MRE,NSING

COMMON /LUBLOC/ IPVT(NMAX)

DIMENSION A(NMAX,NMAX) , W(NMAX)

This gubroutine determines the LU decomposition
of matrix A using partial plivoting. It le based on

000



aligorithm from Golub and von Loan. The subroutine returns
the permutation vactor IPVT(N) (used Iin LUSOLVE), and

o unlt lower triangular matrix in A(1>]) and an upper
triangular matrix in A(l<=}).

0OO0O0O0O0O00

IPVT(N)=1
DO 100 K=1,N-1
Pai
DO 200 I=i+1,N
IF (ABS(A(I,K)).GT.ABS(A(P,K))) P=I
200 CONTINUE
IPVT(K)=P
IF (P.NE.K) IPVT(N)=—IPVT(N)
IF (ABS(A(P,K)).LE.TINY) GOTO 1200
DO 300 J=1,N
T=A(P,J)
A(P,J)=A(K,J)
A(K,J)=T
W(J)=T
300 CONTINUE
DO 406 Ie=K+i,N
T=A(I,K)/A(K,K)
A(1,K)=T
DO 500 J=K+1,N
A(L,J)=A(1,d)-TsW(J)
500 CONTINUE
400 CONTINUE
100  CONTINUE
DET=IPVT(N)
DO 600 I=1,N
DET=DET#A{I,1)
600  CONTINUE
IF (ABS(DET).GT.TINYsTINY) GOTO 5000
1000  NSING=1
5000 CONTINUE
RETURN
END

SUBROUTINE LUS/)LVE(NDIM,N,A,B)

IMPLICIT REALe8 (A~2)

INTEGER NDIM,N,NMAX,I,J,K,P,IPVT
PARAMETER (ZERO=.0,ONE=1.0,NMAX=10)
COMMON /LUBLOC/ IPVT(NMAX)

DIMENSION A(NMAX,NMAX),B(NMAX) ,DIAG(NMAX)

This subroutine solves the matrix equation
PAx=Pb, where A Is LU=PA from subroutine LUDEC.
It returns the value of x in B.

OO0 O

DO 100 Kw=1,N-1
P=IPVT(K)
T=B8(P)
B(P)=8(K)
B(K)=T

180  CONTINUE

DO 200 I=1,N
DIAG(I)=A(I,1)
A(I,1)=ONE



200 CONTINUVE

Ensure LwA(I>=]) is unit lower triangular, then
solve Ly=Pb,

0O0O0O06

CALL FORWARD(NDIM,N,A,B)
DO 300 I=1,N

A(Z.1)=DIAG(I)
CONTINUE

Ensure U=A(i<=]) is upper triangular again, then
golve Uxmy,

OOOOs

CALL BACKWARD(NDIM,N,A,B)
RETURN
END

o000

SUBROUTINE MATMATRIX(N,M,A,NAM,NFIL)
IMPLICIT REALe8 (A-Z)

INTEGER NMAX

PARAMETER (NMAX=10)

INTEGER N,M,1,J

DIMENSION A(NMAX,NMAX)

DOUBLE PRECISION X(NMAX ,NMAX)
CHARACTERe4 NAM

CHARACTERe6 NFIL

This subroutine writes the matrix A to the MATRIXx dato
file FILE.DAT In the subdirectory THESIS.

OO0

OPEN (1,FILEw’[USER.AVF.CARLOS.THESIS]'//NFIL,STATUS="NEW’,
& FORM=' FORMATTED " )
DO 180 I=1,N
DO 200 J=i,M
X(1,d)=A(1,9)
200 CONTINUE
180  CONTINUE
CALL MATSAV(1,NAM,NMAX,N.M,0,X,DUMMY, * (1P2E24.15) ")
CLOSE (1)
RETURN
END

OO0

SUBROUTINE WRMATRIX(N,M,A,NAM,NFIL)
IMPLICIT REALsS (A-2)

INTEGER NMAX

PARAMETER (NMAX=10)

INYEGER N,M,1,J

DIMENSION A(NMAX, NMAX)

CHARACTER+4 NAM

CHARACTER#8 NFIL

This subroutine writes the ratrix A to the ouput file
FILE.DAT In the subdirectory THESIS.

OO0 0

OPEN (1,FILE=’[USER.AVF.CARLOS.THESIS]®//NFIL,STATUS="NEW’ ,
& FORM=* FORMATTED* )




WRITE (1,1180) NAM,N,M
DO 100 I=1,N
WRITE (1,1000) I,(A(I,J),J=1,INT(M/2))
WRITE (1,1006) I,(A(I,J),J=M=INT(M/2)+1,M)
100  CONTINUE
1000 FORMAT (I3,<d/2>(D18.10))
1180  FORMAT (* MATRIX °,A4,°(°,I2,* BY',I3,')')
CLOSE (1)
RETURN
END
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This file contalns INCLUDE commands that ensures all the

necessary fliles are compiled in order to solve the ODE's for

the two=link flex. arm using Runge—Kutta fourth order with

varlable step—size. (See Numerica Recipes for reference.)

This wao written as part of the simulation package for

Carloo E. Padilla’s M.S. thesls.

OOUBLE PRECISION version.
Cororetteittsssserssseeeneotetitttnetstotttsete st sttt st intssdessestis
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Cren et sttt stersteertttcittttestcieteretttetterttesieteisteusoReosisnenes
INCLUDE °* [USER.AVF.CARLOS.FORTRAN]DRK4.FOR’
INCLUDE °’[USER.AVF.CARLOS.FORTRAN]DRKQC.FOR'®
INCLUDE *[USER.AVF.CARLOS.FORTRAN]DODEINT.FOR’



1

SUBROUTINE ODEINT(YSTART,NVAR,X1,X2,EPS,H1,HMIN,NOK,NBAD)
IMPLICIT INTEGER (I-N)
IMPLICIT REALe8 (A-H,0-2)
PARAMETER (MAXSTP=350000, NMAX=24 , TWO=2.0,ZERO=0.0, TINY=1.D-30,
& APl=3,141592634)
COMMON /PATH/ KMAX,KOUNT ,DXSAV,XP(500),YP(24,500) ,HP(500) ,EP(509)
COMMON /PATH/ SM(500,15),0HP(500) ,DOR(2,500),SFOR(500),STIC(509)
COMMON /ENER/ SME(10,10)
COMMON /CONTROL/ NFORE,NANG,NSING
COMMON /PROP/ N,M
COMMON /DIAG/ HSAV,TSAV
COMMON /BUG/ TRA,TRE,TRI,TRO,TRU,CRA,NRE,CRI,CRO
COMMON /BUG/ MCOUNT , YW(NMAX)
COMMON /0US/ FORT(12,4)
DIMENSION YSTART(NMAX),YSCAL(NMAX),Y(NMAX) ,DYDX(NMAX),TOR(2)
XmX 1
H=SIGN(H1,X2-X1)
XFRAC=0 .0
XSTE=(X2-X1)/10.0
NCHECK=0
MPREV=0
NOK=Q
NBAD=
KOUNT=0
NR=m2+N-+HM
NSING=9
YMAX=ZERO
DO 11 I=1,NVAR
Y(1)=YSTART(I)
CONTINUE
XSAV=X-DXSAVe TRO
DO 168 NSTPmi ,MAXSTP
IF (X.GE.XFRAC) THEN
PRINT =, 'Current time:’,x, ’out of:*, x2
XFRAC=XFRAC+XSTE
ENDIF
IF (NSTP.GE.NCHECK) THEN
PRINT o,'$ of steps so far:’ ,NSTP,’ HMIN exceeds:’,MCOUNT
MD I FubiCOUNT~-MPREV
MPREV=MCOUNT
NCHECK=NCHECK+1000
IF (1000-MDIF.LE.300) THEN
NSING=14
PRINT o, HMIN oxceeds 70X of last 1000 steps taken.’
print o,’'yscalm’ ,yscal
print s, ’'ym’ y
GOTO 3000
ENDIF
ENDIF
CALL DERIVS(X,Y,DYDX)
IF(NSING.NE.O) GOTO 5000
DO 309 I=1,NVAR
IF ((1.67.2).AND.(I.NE.NR+1).AND.(I.NE.NR+2)) THEN
IF ((ABS(Y(I))+ABS(HeDYDX(I))).GT.YMAX) THEN
YMAX=ABS(Y(1))+ABS(HsDYOX(1))+TINY
ENDIF
ENDIF

360 CONTINUE

D0 12 l=1,NVAR
IF ((1.GT.2).AND.(I.NE.NR+1).AND.(I.NE.NR+2)) THEN



¢ IF (I.NE.(142¢NR)) THEN
YSCAL(1)=ABS(Y(1))+ABS(HsDYDX(1))+TINY
ELSE
c IF (ABS(Y(1)).GT.API) THEN
YSCAL(1)=ABS(Y(1))+ABS(HeDYDX(I))+TINY
c ELSE

° YSCAL(I)=API
c ENDIF
ENDIF
12 CONTINUE
IF(KMAX.GT.0) THEN

IF(ABS(X~-XSAV).GT.ABS(DXSAV)) THEN
IF(KOUNT . LT.KMAX=1) THEN
KOUNTaKOUNT+1
XP (KOUNT )=X
DO 13 I=1,NVAR
YP(1,KOUNT)=uY(1)
13 CONTINUE
IF(NANG.EQ.1) THEN
SFOR(KOUNT)=FORT(2,1)
CALL AMOMENTUM(X,Y,AMOM,DAM)
CALL ENERGY(Y,ENER)
CALL FORCING(X,Y,TOR)
CALL STABICHK(Y,DYDX,STAB)
DOR(1,KOUNT)=TOR(1)
DOR(2,KOUNT)=TOR(2)
HP (KOUNT ) =mAMOM
DHP (KOUNT )=DAM
EP(KOUNT )=ENER
STIC(KOUNT )=STAD
SM(KOUNT, 1)=SME(1,1)
SM(KOUNT , 2)=SME(2,1)
SM(KOUNT , 3)=SME(J, 1)
SM(KOUNT , 4)=SME(3,2)
SM(KOUNT, 5)=SME(3, 3)
SM(KOUNT ,6)=SME(4,1)
SM(KOUNT ,7)=SME(4,2)
SM(KOUNT ,8)=SME(4, 3)
SM(KOUNT ,9)=SME(4,4)
SM(KOUNT , 10)=SME(S, 1)
SM(KOUNT, 11)=SME(5,3)
SM(KOUNT , 12)=SME(S,4)
SM(KOUNT, 13)=SME(8,1)
SM(KOUNT . 14)=SME(E,3)
SM(KOUNT , 15)=SME(68,4)
ENDIF
XSAVeX
ENDIF
ENDIF
ENDIF
IF((X+i-X2)e (X+#-X1) .GT.ZERO) HmX2-X
CALL RKQC(Y,DYDX,NVAR,X,H, EPS,YSCAL,HDID,HNEXT)
IF(NSING.NE.0) THEN
print ¢,’yscai’,yscal
GOTO 5000
ENDIF
IF(HDID.EQ.H) THEN
NOK=NOK+1
ELSE

OOGOOOODODDOODOODOOOO



14

DOODOODOANOODOOHOHOOO

c

NBAD=NBAD+1
ENDIF
DO 100 I=1,NVAR
W(I)=Y(I)
CONTINVE
IF((X=X2) ¢ (X2-X1) .GE.ZERO) THEN
DO 14 I=1,NVAR
YSTART(I)=Y(1)
CONT INUE
IF(KMAX .NE. @) THEN
KOUNT=KOUNT+1
XP (KOUNT )=X
DO 15 I=1,NVAR
YP(I,KOUNT)=Y(1)
CONTINUE
IF(NANG.EQ.1) THEN
SFOR(KOUNT)=FORT(2,1)
CALL AMOMENTUM(X, Y, AMOM, DAM)
CALL ENERGY(Y,ENER)
CALL FORCING(X,Y,TOR)
CALL STABICHK(Y,DYDX,STAB)
DOR(1,KOUNT )=TOR( 1)
DOR(2,KCUNT )=TOR(2)
HP (KOUNT )=AMOM
DHP (KOUNT )=DAM
EP (KOUNT )=ENER
STIC(KOUNT)=STAB
SM(KOUNT , 1)=SME(1,1)
SM(KOUNT , 2)=SME(2, 1)
SM(KOUNT , 3)=SME(3, 1)
SM(KOUNT , 4)=SME(3,2)
SM(KOUNT , 3)=SME(3,3)
SM(KOUNT , 8)=SME(4,1)
SM(KOUNT , 7)=SME(4,2)
SM(KOUNT , 8)=SME(4,3)
SM(KOUNT ,9)=SME(4,4)
SM(KOUNT, 10)=SME(S, 1)
SM(KOUNT, 11)=SME(S, 3)
SM(KOUNT , 12)=SME(5, 4)
SM(KOUNT , 13)=SME(S, 1)
SM(KOUNT, 14)=SME(S,3)
SM(KOUNT, 15)=SME(S, 4)
ENOIF
ENDIF
HSAV=H
TSAVaX
RETURN
ENDIF
IF (ABS(HNEXT).LT.HMIN) THEN
HNEXT=HMIN
MCOUNT=MCOUNT+1
ENOIF
IF(ABS(HNEXT).LT.HMIN) GOTO 1200
HeHNEXT

CONTINUE
PAUSE °Too many steps.’
GOTO 5000

1000 PAUSE 'Stepsize smaller than minimum.’
85000 CONTINUE

HSAVHMEXT



TSAV=X
DO 206 1=1,NVAR
YW(I)=Y(I)
200 CONTINUE
RETURN
END



1

12

SUBROUTINE RKQC(Y,DYDX,N,X,HTRY,EPS,YSCAL,HDID,HNEXT)
IMPLICIT INTEGER (I-N)
IMPLICIT REAL#8 (A-H,0-2)
PARAMETER (NMAX=24, FCOR=.0868666667, PGROW=—0.20, PSHRNK=—0. 25,
. ONE=1. ,SAFETY=0.9, ERRCON=6 .D—4)
EXTERNAL DERIVS
COMMON /CONTROL/ NRA,NRE,NSING
COMMON /DIA2/ NCO
DIMENSION Y(NMAX),DYDX(NMAX) , YSCAL(NMAX)
DIMENSION YTEMP(NMAX),YSAV(NMAX) ,DYSAV(NMAX)
PGROW=—0 . 20
PSHRiK=—0 .25
XSAV=X
DO 11 I=1,N
YSAV(I1)=Y(I)
DYSAV(1)=DYDX(I)
CONTINUE
H=HTRY
NCO=90
HH=9.SeH
CALL RK4(YSAV,DYSAV,N,XSAV, HH, YTEMP,DERIVS)
IF(NSING.NE.@) THEN
NSING=NSING+3
GOTO 5000
ENDIF
XmXSAVHH
CALL DERIVS(X,YTEMP,DYDX)
IF(NSING.NE.®) THEN
NSING=3
GOTO 5000
ENDIF
CALL RK4(YTEMP,DYDX,N,X,HH,Y,DERIVS)
IF(NSING.NE.®) THEN
NS ING=NSING+8
GOTO 5000
ENDIF
X=XSAVHH
IF(X.EQ.XSAV) GOTO 1000
CALL RK4(YSAV,DYSAV,N,XSAV,H,YTEMP,DERIVS)
IF(NSING.NE.®) THEN
NSING=NSING+9
GOTO 5000
ENOIF
ERRMAX=Q,
D0 12 I=1,N
YTEMP(1)=Y(1)-YTEMP(1)
ERRMAX=MAX (ERRMAX , ABS (YTEMP (1) /YSCAL(1)))
CONTINUE
ERRMAX=ERRMAX/EPS
IF(ERRMAX .GT .ONE) THEN
H=SAFETYsHe (ERRMAX e ¢ PSHRNK )
NCO=NCO+1
GOTO 1
ELSE
HOID=H
IF(ERRMAX.GT . ERRCON) THEN
HNEXT=SAFETY«He (ERRMAX ¢ ¢PGROW)
ELSE
HNEXTe4 . o4
ENDIF



ENDIF
DO 13 I=1,N
Y(I)=Y(I)+YTEMP(1)eFCOR

13 CONTINVE

GOTO 5000
1000 PAUSE ’Stepsize not aignigicant In RKQC.'
5000 CONTINUE

RETURN

END
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SUBROUTINE RK4(Y,DYDX,N,X,H,YOUT,DERIVS)
IMPLICIT INTEGER (I-N)
IMPLICIT REAL*8 (A-H,0-2)
PARAMETER (NMAX=24)
COMMON /CONTROL/ NRA,NRE,NSING
DIMENSION Y(NMAX) ,DYDX(NMAX) , YOUT (NMAX)
DIMENSION YT(NMAX),DYT(NMAX),DYM(MMAX)
HH=H+0.58
HG=H/6.
XH=X+HH
DO 11 I=1,N
YT(1)=Y(I)+HHeDYDX(I)
CONTINUE
CALL DERIVS(XH,YT,DYT)
IF(NSING.NE.®) THEN
NSING=1
GOTO 5008
ENDIF
DO 12 I=1,N
YT(1)aY(1)+HHeDYT(I)
CONTINUE
CALL DERIVS(XH,YT,DYM)
IF(NSING.NE.®) THEN
NSING=2
GOTO 5000
ENDIF
DO 13 I=1,N
YT(I)=Y(1)+HeDYM(I)
OYM(1)=DYT(I)+0YM(I)
CONTINUE
CALL DERIVS(X+H,YT,DYT)
IF(NSING.NE.®) THEN
print ¢,’rk4 x and h:’,x,h
print o,°rk4 state vector:’,yt
NSING=3
GOTO 5000
ENDIF
DO 14 I=i,N
YOUT(I)=Y(I)+HS8o (DYDX(I)4DYT(I)+2.eDYM(I))
CONTINUE
CONTINUE
RETURN
END



c‘....‘.““.....‘..“‘....“‘..““.‘.“....‘.“.......tt..““.“#‘t.t

c..‘.““‘".‘....‘0....0.‘“.0.“‘...l..‘o‘t...“.‘.....““0.##“..‘.‘
This flle contains the INCLUDE commands that ensures that

the appropriate files are compiled for solving the ODE's for

the two—link flex. arm simulation using Runge—Kutta fourth order

with no variabie step size. This was written as port of the

simulation package for Carlos E. Padilla’s M.S. thesis.

DOUBLE PRECISION version.

CHe ettt eddst st ettt ittt ettt ddddtadeet sttt dtttdd it aRaddsnaeRededons
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INCLUDE °*[USER.AVF.CARLOS.FORTRAN]DRK4.FOR’
INCLUDE °*[USER.AVF.CARLOS.FORTRAN]DRKDUMSB. FOR*
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SUBROUTINE RKOUMB{VSTART,NVAR,X1,X2,NSTEP)
IMPLICIT INTEGER (I-N)
IMPLICIT REALe8 (A-H,0-2)
PARAMETER (ZERO=0.0,TWO=2.0,MAXw24)
COMMON /PROP/ N,M
COMMON /PATH/ KMAX,KOUNT ,DXSAV,XP(500),YP(24,500) ,HP(500),EP(500)
COMMON /PATH/ SM(500,15),DHP(500),DOR(2,500),SFOR(500)
COMMON /ENER/ SME(10,10)
COMMON /CONTROL/ NFORE,NANG,NSING
COMMON /DIAG/ HSAV,TSAV
COMMON /BUG/ TRA,TRE,TRI,TRO, TRU,CRA,NRE,CRI,CRO
COMMON /BUG/ MCOUNT, YW(NMAX)
COMMON /OUS/ FORT(12,4)
DIMENSION VSTART(NVAR),V(NMAX),DV(NMAX),TOR(2)
KOUNT=0
DO 10 I=1,NVAR
V(1)=YSTART(I)
CONT INUE
X=X1
XSAV=X-DXSAVeTWO
He=(X2~X1)/NSTEP
XFRAC=0.0
XSTE=(X2-X1)/10.0
NCHECK=0
NSING=9
NRw2-4+N4M
DO 13 Km1,NSTEP
IF (X.GE.XFRAC) THEN
PRINT o, °'Current time:*,x,’out of:*,x2
XFRAC=XFRAC+XSTE
ENDIF
IF (K.GE.NCHECK) THEN
PRINT o,'§ of steps so far:’,K
NCHECK=NCHECK+1000
ENDIF
CALL DERIVS(X,V,DV)
IF (NSING.NE.®) GOTO 5000
IF(KMAX.GT.@)THEN
IF(ABS(X-XSAV) .GT .ABS (DXSAV) ) THEN
IF(KOUNT.LT.KMAX~1)THEN
KOUNT=KOUNT+1
XP('COUNT )mX
DO 11 I=1,NVAR
YP(I,KOUNT)=V(1)
CONTINUE
IF(NANG.EQ.1) THEN
SFOR(KOUNT )=FORT(2,1)
CALL AMOMENTUM(X,V,AMOM,DAM)
CALL ENERGY(V,ENER)
CALL FORCING(X,V,TOR)
DOR(1,KOUNT)=TOR(1)
DOR(2,KOUNT)=TOR(2)
HP (KOUNT ) =AMOM
DHP (KOUNT )=DAM
EP (KOUNT )=ENER
SM(KOUNT, 1)=SME(1,1)
SM(KOUNT ,2)=SME(2,1)
SM(KOUNT , 3)=SME(3,1)
SM(KOUNT , 4)=SME(3,2)
SM(KOUNT , 5)=SME(3, 3)



SM(KOUNT, 8)=SME(4,1)
SM(KOUNT, 7)=SME(4,2)
SM(KOUNT, 8)=SME(4,3)
SM(KOUNT ,9)=SME (4, 4)
SM(KOUNT , 10)=SME(5, 1)
SM(KOUNT, 11)=SME(5, 3)
SM(KOUNT, 12)=SME(5, 4)
SM(KOUNT, 13)=SME(6, 1)
SM(KOUNT, 14)-SME(8.3)
SM(KOUNT, 15)=SME(S, 4)
ENOIF
XSAV=X
ENDIF
ENDIF
ENDIF
CALL RK4(V.DV.NVAR.X.H.V.DE!IVS)
IF (NSING.NE.®) GOTO 5000
IF(X+H.EQ.X)PAUSE °*Stepsize not significant In RKDUMB.'
TSAV=X
IF (K.EQ.NSTEP)THEN
KOUNT=KOUNT+1
XP (KOUNT )=
DO 12 I=1,NVAR
YP(I,KOUNT)=V(1)
12 CONTINUE
IF(NANG.€Q.1) THEN
SF('R(KOLNT)-FORT(Z .1)
CALL AWENTW(X.V.AM.DAM)
CALL ENERGY(V,ENER)
CALL FORCING(X,V,TOR)
DOR(1 +KOUNT)=TOR(1)
DOR(2, KOUNT )=TOR(2)
HP (KOUNT ) mAMOM
DHP (KOUNT )=DAM
EP(KOUNT )=ENER
SM(KOUNT, 1)=SME(1,1)
SM(KOUNT , 2)=SME(2, 1)
SM(KOUNT, 3)=SME(3,1)
SM(KOUNT, 4)=SME(3,2)
SN(KG.NT.5)HSME(3.3)
SM(KU.NT.G)-SME(4. 1)
SM(KO(.NT.7)-SME(4.2)
SI(KG.NT.B)-SME(4.3)
SM(KOUNT, 9)=SME(4, 4)
SM(KOUNT , 10)=SME(5, 1)
SM(KOUNT, 11)=SME(S, 3)
SM(KOUNT, 12)=SME(5.4)
SM(KOUNT, 13)=SME(8,1)
SM(KOUNT, 14)=SME(6,3)
SM(KOUNT, 15)=SME(6,4)
ENDIF
ENDIF
XwX4+H
13 CONTINUE
5000 CONTINUE
TSAV=X
DO 100 I=1,NVAR
wW(I)=v(I)
100 CONTINUE
RETURN
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(o This file containas the routine thot determines the form of
c the forcing functions for the two—link flex. arm simulation.

c That is, It determines the joint torques. This was written by
C Carlos E. Padilla as part of his M.S. theais work.

c DOUBLE PRECISION version.

c.....0“‘.‘.“..‘.."‘.....‘.“.....‘..‘00...0.““‘““‘l..“....‘.“‘
c......“....‘.....“‘..............‘.......‘..“.........‘.......‘..O..

SUBROUTINE FORCING(T,Y.TOR)

IMPLICIT REALe8 (A-Z)

INTEGER N,M,I,J,NMAX,NR, FORE, ANGMO, SING,RLINE, SRLINE

PARAMETER (ZERO=0.0,NMAX=4,PI=3.141592654)

COMMON /CONTROL/ FORE,ANGMO, SING,RLINE

COMMON /FROP/ N.M

This subroutine determines the joint torques given the
time T and the state vector Y (for use In feedback control
laws). The values of the torques are returned in TOR(2).

O0O000

COMMON /FORC/ A®,A1,A2,A3,A4,A5,80,B1,B82,B3,B4,B5

The above common biock is for use In this subroutine ex—
cluaively to avold recalculation of constantes.

OO0 O0

DIMENSION Y(8+49NMAX) ,YD(8+4sRMAX ), TOR(2) ,DUM(2)
DIMENSION MD(2+2¢NMAX,2+2¢MMAX ) , BD(242¢NMAX)

(2]

NR=24N+H4
X=—1.0

If x .It. zero, the mase matrix Iis not updated.

OO0 O0

X=1.0
DUM(1)=ZERO
DUM{2)=ZERO

The following variabla dotermines the time scaling of the
trajectory.

OaGCOO0

AL=2.0

The folloaing asaumes angular rates and accelerations
are desired zero at t=0 and t=tf.

OO0 0

IF (T.EQ.ZERO) THEN
THEI=0.0
THEF=PI
BEI=0.0873
BEF=0.0
TF=8.0
TF2=TFeTF
TF3=TFoTF2
TF4=TFeTF3
TFS=TFeTF4
AO=THEI
A1=ZERC
A2=ZERO
A3=(20. s THEF-20. ¢ THEI ) /(2. oTF3)
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200

A4=(30. 011 ]-30.011Her ) /(2. 071 4)
AS=(12. s THEF=12. e THEI ) /(2. ¢TF5)
Bo=BE1
Bi=ZERO
B2«=ZERO
B3=(20.9BEF-20.¢BEI)/(2.¢TF3)
B4=(30. ¢BEI-30. ¢BEF) /(2. ¢TF4)
BS=(12. eBEF-12.BEI)/(2.sTF5)
ENDIF
TA=ALeT
TA2aTATA
TA3=TAeTA2
TA4=TAeTAS
TAS=TAsTA4
IF (TA.LE.TF) THEN
YO(1)=A0+A1oTA+A2¢ TA24A3e TASHA4 e TA4+AS¢TAS
YD (2)=80+810TA+820 TA2+83 TAS+B40 TA4HBS¢ TAS
YO(14NR)=ALe (A142, 0A2¢TA+3. ¢A3e TA24+4 . eA49TASHS e ASeTA4)
YD(24NR)wALe (B142. ¢B20TA+3. B30 TA2+4 . ¢B4eTAS+S . sB5eTA4)
ACtImALeALe (2. 0A248. A0 TA+12. 0A40TA2420. sASeTA3)
AC2=mALeALe(2.9B248.¢B3¢TA+12.9B4sTA2420.9B5¢TA3)
THETA=YD(1)
BETA=YD(2)
ELSE
YO(1)=THETA
YD(2)=BETA
YD(14NR)=ZERO
YD(24NR)~ZERO
AC1=2ERO
AC2=ZERO
ENDIF
DO 100 I=1,N
YO(2+1)=zero
YO(24NR+1)=zoro
CONTINUE
DO 200 J=1 M
YO(2+N+J)=zero
YD(24NR+N+J )mzero
CONTINUE

CALL UPDATE(X,YD,DUM,MD,BD)
TOR(1)=MD(1,1)eACI+MD(1,2) ¢AC2-BD(1)
TOR(2)=MD(2, 1) #ACT4MD(2,2) *AC2-BD(2)

RETURN
END
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This flile containe the routine that determines the form of

the forcing functions for the two—link flex. arm simulation.

That is, it determines the Joint torques. This was written by

Carlos E. Padilla ae part of his M.S. thesis work.

DOUBLE PRECISION version.

Cevnseciesestttstntisttstedstittsttttottttstdotooesstentonsdsstusseintes
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SUBROUTINE FORCING(T,Y,TOK)
IMPLICIT REAL8 (A-2)
INTEGER N,M,I,J,NMAX,NR, FORE,ANGMO,SING,RLINE,SRLINE
PARAMETER (ZERO=9.0,NMAX=4,PI=3.141502654)
COMMON /CONTROL/ FORE,ANGMO,SING,RLINE
COMMON /PROP/ N,M

This subroutine determines the joint torques gliven the
time T and the state vector Y (for use in feedback control
laws). The values of the torques are returned in TOR(2).

OO0 0

COMMON /FORC/ A®,A1,A2,A3,A4,A5,B0,B1,82,B3,B4,85

The above common bleck Is for use In this subroutine ex-—
clusively to avold recalculation of constants.

O0O0O0OO0

DIMENSION Y(8+4¢NMAX),YD(8+4¢NMAX),TOR(2),DUM(2)
DIMENSION MD(2+2¢NMAX, 2+2¢NiAX ) , BD (242 ¢ NMAX)

[v]

NR=2+HN+M
X=1.0

If x .It. zero, the mass matrix Is not updated.

OO0

X=1.0
DUM(1)=ZERO
DUM(2)=ZERO

The following variable determines the time scailng of the
trajectory.

OO0 0

AlL=2.0

The following assumes angular rates and accelerations
are desired zero at t=d and tmtf.

OO0OO0O0

IF (T.EQ.ZERO) THEN
THEI=-1.570796
THEF=D.2617994
BEI=2.887060
BEF=0.8726648
TF=4.0
TF2=TFeTF
TF3=TFeTF2
TF4=TFeTF3
TFS=TFeTF4
Ad=THEI
A1=ZERO
A2=ZERO
A3=(20.eTHEF-20.9oTHEI)/(2.¢TF3)
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Ad=(30. e THEI-30. s THEF) /(2. ¢ TF4)
AS=(12.eTHEF-12.eTHEI)/(2. ¢ TFS)
Bo=BEI
Bi=ZERO
B82=ZERO
B3=(20.¢BEF-20.9BE1)/(2.¢TF3)
B4=(30.eBEI-30.¢BEF)/(2.+TF4)
BS=(12.eBEF-12.9BE1)/(2.¢TF5)

ENDIF

TA=ALeT

TA2=TAeTA

TAS=TAeTA2

TA4=TATA3

TAS=TAeTA4

IF (TA.LE.TF) THEN
YO(1)=AGH+AT1 ¢ TA+A2e TA2+A3 e TAS+A4 e TA4+ASeTAS
YO(2)=Bo+B1eTA+B2¢TA24B3¢TA3+B4+ TA4+B5¢TAS
YO(14NR)=AL# (A142. sA20TA+3. *A3eTA2+4 . sA4s TASHS. sASeTA4)
YD(24NR)=AL¢ (B1+2.0B20TA+3.#B39TA2+4.0B4eTA4S, *B5¢TA4)
AC1=ALsAL®(2,0A248. sA3eTA+12. ¢A4¢TA2+20. sA5¢TA3)
AC2mALeAL#(2.9B246.9B3¢TA+12. ¢B40TA2420.¢B5¢TA3)
THETA=YD(1)
BETA=YD(2)

ELSE
YO(1)=THETA
YD(2)=BETA
YO (14+NR)=ZERO
YD(2+NR)=ZERO
AC1=2ERO
AC2=ZERO

ENDIF

DO 100 I=1,N
YO(2+1)=zero
YO(24NR+1 )=zero

CONTINUE

DO 200 J=1,M
YD(2+N+J)=z8r0
YD (2+\NRH\N+J )=zero

CONTINUE

CALL UPDATE(X,YD,DUM,MD,BD)
TOR(1)=MD(1,1)eAC1HD(1,2)AC2-BD(1)
TOR(2)=MD(2, 1) sAC14MD(2,2)+AC2-8D(2)

RETURN
END
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This file contains the routine that determines the form of
the forcing functions for the two—link flex. arm simulation.
That Is, it determines the joint torques. This was written by
Carlos E. Padilla as part of his M.S. theais work.

DOUBLE PRECISION version.
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SUBROUTINE FORCING(T,Y,TOR)

IMPLICIT REAL8 (A-Z)

INTEGER N,M,I,J,NMAX,NR, FORE,ANGMO, SING, RLINE, SRLINE
PARAMETER (ZERO=0.0,NMAX=4 ,PI=3.141592654)

COMMON /CONTROL/ FORE,ANGMO,SING,RLINE

COMMON /PROP/ N,M

This common block Is for use In this subroutine exclusively,
in order to prevent repetition of constants from call to call.

COMHMON /FSAVE/ BESAVE,OMSAVE, TSAVE, IB,M8, L8

This subroutine datermines the jolnt torques given the
time T and the state vector Y (for use in feedback control
laws). The values of the torquee are returned in TOR(2).

DIMENSION Y(B+4+NMAX) ,YD(8+4sNMAX) , TOR(2) ,DUM(2)
DIMENSION MD(2429NMAX, 2+2¢NMAX) , BD(2+2+NMAX)

NR=24+NHM
X=—1.0
If x .1t. zero, the mass matrix is not updated.

X=1.0

TORM1=1.5

SCAL1=SQRT(1.8/(TORM1/15.962871))
TORM2=(TORM1/(15.962871+1.9225763) ) o 1.9225768
SCAL2=SCAL1

INC=1.2

Switch control of shoulder torque.

TS1m1 . 136SCAL1¢INC
TS2m1.44¢SCAL1¢INC
TS3=1.77eSCAL1#INC
TF1=2.91eSCAL1sINC
IF (T.LE.TS1) THEN
TOR(1)=—TORM1
ELSE
IF (T.LE.TS2) THEN
TOR(1)=TORM!
ELSE
IF (T.LE.TS3) THEN
TOR(1)=—TORM1
ELSE
IF (T.LE.TF1) THEN
TOR(1)=TORM?
ELSE
TOR(1)=ZERO



ENDIF
ENDIF
ENDIF
ENDIF

Switch contro! of e!bow torqus.

OO0

TE1=1.42sSCAL2¢INC
TF2=2.84¢SCAL2¢INC
IF (T.LE.TE1) THEN
TOR(2)=TORM2
ELSE
IF (T.LE.TF2) THEN
TOR(2)=-TORM2
ELSE
TOR(2)=2ZFRO
ENDIF
ENDIF
print e,t, tor(1),tor(2)
tor(1)=zero
tor(1)=zero

OO0 00

RETURN
END
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This flile contalnc the routine that determines the form of

the forcing functions for the two—link flex. arm simulation.
That ls, It determines the joint torques. This was written by
Cartos E. Padilla as part of his M.S. thesis work.

DOUBLE PRECISION version.
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SUBROUTINE FORCING(T,Y,TOR)
IMPLICIT REALe8 (A-Z)
INTEGER N,M,I,J,NMAX,NR,FORE, ANGMO,SING,RLINE,SRLINE
PARAMETER (ZERO=0.0,NMAX=4,PI=3, 141592654)
COMMON /CONTROL/ FORE,ANGMO,SING,RLINE
COMMON /PROP/ N,M

c
c This common block is for use ir this subroutine exclusively,
c in order to prevent repetition of constants from call to call.
c
c COMMON /FSAVE/ BESAVE,OMSAVE,TSAVE, 18,M8,LB
c
c This subroutine determines the joint torques given the
Cc time T and ‘he state vector Y (for use In fesdback control
c taws). The values of the torques are returned in TOR(2).
c
DIMENSION Y(8+4sNMAX), YD (8+4+NMAX), TOR(2),DUM(2)
DIMENSION MD(2+2¢NMAX,2+2¢NMAX) ,BD(2+2¢MMAX)
]
c
C This forcing scheme is used to do smooth spin—up maneuver of elbow
c link wiht "Kane's" formula. Twe statements in DARMSEC.FOR are
C used to freeze the shoulder angle.
c
NR=2+N+M
c
c X=—1.0
c
c If x .1%t. zero, the mass matrix Ies not updated.
c
DUM({1)=ZERO
DUM(2)=ZERO
X=1.0
BEI=B.®
TF=15.0
OMF=8.0
O=2.0¢P1/TF
FAC=OMF/TF

IF (T.LE.TF) THEN
YD(2)=FACe (ToT/2.4+1./(OMeOM) s (COS(OMeT)—1. ) )4+BEI
YD(24NR)=FACs (T—1./OMeSIN(OMsT))
AC2=FAC#(1.-COS(OMsT))
BETA=YD(2)
TB=T

ELSE
YD(2)=OMF  T+BETA—OMF s TD
YO (24NR )=OMF
AC2=ZERO

ENDIF

YO(1)=ZERO

YD (14NR)=ZERO
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AC1=ZERO
DO 100 I=1,N
YO(2+1)=ZERO
YO(24NR+1)=ZERO
CONTINUE
DO 208 I=1,M
YD(24N+1 )=ZERO
YO(24NRN+1 )=ZERO
CONTINUE
CALL UPDATE(X,YD,DUM,MD,BD)
TOR(1)=MD(1,1)sAC1+MD(1,2) *AC2-8D(1)
TOR(2)=MD(2, 1) »AC1+MD (2, 2) sAC2-BD(2)

RETURN
END
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This FORTRAN program acts as a post—processor for the
tabulated data from the two—link flex. arm simulation. It was
written by Carlos E. Padillia as part of his M.S. thesls work In
order to prepare data to be transferred to an IBM PC to be
used In o graphice demonstration of the arm motion.

This program tokes raw data from the file DATFILE.DAT and
tranolates it Into BASIC compatible data in the file ARMGAT.DAT
which Is transferred to the PC.
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INCLUDE °*[USER.AVF.CARLOS.FORTRAN]CMODES.FOR®

FAC establishes the scaling of the flex. deflactions
for max. visibility In graphics animation.

PROGRAM POST_PROCESS

PARAMETER (ZERO=®.@,NMAX=4,FAC=1.0,SCAP=1.0)

IMPLICIT REAL (A-2)

INTEGER N,M,KOUNT,I,J,K,NR

DIMENSION T(500),YP(20,500),XR(20),YR(20),X2R(20),Y2R(20)

DIMENSION LA(NMAX),BI(NMAX),PHI (NMAX,4),ST(NMAX)

OPEN (1,FILE=’[USER.AVF.CARLOS.THESIS]DATFILE’,STATUS="0LD",
FORM=' FORMATTED"

OPEN (3,FILE=’[USER.AVF.CARLOS.GRAF JARMGAT * , STATUS="'NEW" ,
FORM=* FORMATTED " )

Recd in data from DATFILE.DAT.

READ(1,~)N,M,KOUNT, L1,L2
READ(1, #)M1,M2A,M2B, M3
READ(1,¢)LA(1),LA(2),LA(3).LA(4)
NR=2+NHM
DO 100 I=m1,KOUNT
READ(1,s)T(I),YP(1,1),YP(2,1)
DO 200 J=1,N
READ(1,¢)YP(2+J,1),YP(24NR+J, 1)
CONT INUE
DO 300 J=1,M
READ(1,#)YP(24N+J, 1), YP(24NR+N+J, 1)
CONTINUE
CONTINUE
CLOSE (1)

Manipulate data.

CHad1
IF (M2.GT.CH) CH=M2
IF (M3.GT.CH) CH=M3
IF {CH.EQ.ZERO) THEN
R1=,225
R2=,025
R3=,025
ELSE
Changed from .25 to .13 on Jan. 11,1989.



MR=. 13/CH
Ri=MReMt
IF (R1.£Q.ZERO) Ri=.025
R2=MReM2
R3=MRoM3
IF (R3.LE.0.025) R3=.028
ENOIF
CHalL1
IF (L2.GT.CH) CH=L2
LR=1.0/CH
WRITE(3,¢) FAC
WRITE(3,¢) KOUNT,R1,R2,R3
DO 400 I=1,KOUNT
STH=SIN(YP(1,1))
CTH=COS(YP(1,1))
AL=ZERO
TY1=ZERO
CALL CMODES(N,LA,L1,L1,BI,PHI,SI)
DO 800 K=1,N
AL=AL+SCAPePHI (K,2) ¢ YP(24K,1)
TY1=TY14SCAPoPHI (K, 1) YP(24K, 1)
800 CONTINUE
TY1=FACsTY1
AL=FACeAL
XR(20)=LRe {L1¢CTH-TY1¢STH)
YR(20)=LRe (L1sSTH+TY1¢CTH)
BETA=YP(1, I)+AL+YP(2,1)
SBE=SIN(BETA)
CBE=COS(BETA)
AL2=ZERO
TY2=2ERO
CALL CMODES(M,LA,L2,L2,BI,PHI,SI)
DO 900 K=1,M
AL2mAL24SCAPSPHI (K, 2) o YP(24N4K, 1)
TY2uTY24SCAPsPHI (K, 1) o YP(24N4+K, 1)
900 CONTINUE
TY2=FACeTY2
AL2«FACeAL2
X2R(20)=LRe¢ (L2¢CBE-TY2¢SBE)
Y2R(20)=LRe (L2¢SBE+TY2¢CBE)
X=XC+R1eCTH
YaYCAR1¢STH
DLX=LENGeCTH
DLY=LENGeSTH
DX1e1./20. oLi
TX1=DX1
DX2=1./20.¢L2
TX2=DX2
DO 500 J=1,10
CALL CMODES(M,LA,L1,TX1,BI,PHI,SI)
TY1=2ERO
DO 800 K=1,N
TY1uTY14SCAPePHI (K, 1) ¢ YP(24K, 1)
6ee CONTINUE
TY1=FACeTY?
XR(J)=LRe (TX12CTH-TY1¢STH)
YR(J)=LRe (TX1eSTHHTY1+CTH)
TX1=TX14DX1
CALL CMODES(M,LA,L2,TX2,B1,PHI,SI)
TY2aZERO




DO 700 K=1,M
TY2=TY24SCAPPHI (K, 1) e YP(24N4K, 1)
700 CONTINUE
TY2=FACsTY2
X2R(J)=LRe (TX2¢CBE-TY2¢SBE)
Y2R(J)=LRe (TX2¢SBE+TY2CBE)
TX2=TX240X2
500 CONTINUE
XC2=X+XR(20)4+R2COS(YP(1,1)+AL)
YC2mY+YR(20)+R2¢SIN(YP(1,1)+AL)
X2=XC2+R2¢CBE
Y2=YC2+R2¢SBE
DLX2=LENG*CBE
DLY2=LENG*SBE
XC3=X2+X2R(20)+R3+COS (BETA+AL2)
YC3=Y2+Y2R(20)+R3sSIN(BETA+AL2)
WRITE(3,)T(1)
WRITE(S3, ¢)X,Y,DLX,DLY
WRITE(3, ¢)XC2,YC2,X2,Y2
WRITE(3, ¢)DLX2,DLY2,XC3,YC3
DO 1000 J=1,20
WRITE(3, ¢)XR(J),YR(J) .X2R(4) , Y2R(J)

1000 CONTINUE
400  CONTINUE
CLOSE (3)
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PROGRAM ANIMATE _ARM

Thie animation progrom Iis written by Carlos E. Padilla as part
of his M.S. theslis to snact an animation of a two—link flexible
arm. It ls based on the example set by the CUBE.FOR program
in the VWSDEMO directory in the microvax.

IMPLICIT INTEGER (A-2)

EXTERNAL ENABLE_WINDOW_RESIZE

INTEGER UIS$CREATE_DISPLAY,UIS$CREATE_WINDOW

REAL VP_WIDTH,VP_HEIGHT ,WC_X1,WC_Y1,WC_X2,WC_Y2

REAL RETX,RETY,x|

REAL XC1,YC1,R1,R2,R3,S,XS,YS,XD,YD

REAL X(500),Y(500),XR(29,500),YR(20,500),XC2(500),YC2(500)
REAL X2(5€@),Y2(500),X2R(20,500),Y2R(20,500),DLX2(500)
REAL XC3(520),YC3(300),T(500),DLX(500),DLY(500),DLY2(500)
PARAMETER (TINY=0.02)

CHARACTER#12 TIME(500),FAC

COMMON WC_X1,WC_Y1,WC_X2,WC_Y2,VP_WIDTH, VP_HEIGHT

COMMON NEW_ABS_X ,NEW_ABS_Y ,WD_ID,VD_ID

VP_WIDTH=50.
VP_HEIGHT=50.

WC_X1=-3,
WC_Yi=—3.
WC_X2=3.
WC_Y2=3,

XC1=0.0
YC1=0.0

Input data from ARMGAT.DAT.

OPEN (1,FILE="[USER.AVF.CARLOS.GRAF]ARMGAT* ,STATUS="0LD",
FORM=' FORMATTED " )
READ(1,3020) FAC
READ(1,+) KOUNT,R1,R2,R3
DO 820 I=1,KOUNT
READ(1,3000) TIME(I)
READ(1,¢) X(I),Y(1),0LX(I),DLY(I)
READ(1,) XC2(I),YC2(1),X2(1),Y2(1)
READ(1,s) DLX2(I),DLY2(I),XC3(1),YC3(I)
DO 700 J=1,20
READ(1,9) XR(J,1),YR(J,I),X2R(J.1),Y2R(J,I)
CONTINUE
CONTINUE
CLOSE(1)
FORMAT (A12)

Create display.

VO_ID=UiS$CREATE_DISPLAY (WC_X1,WC_Y1,WC_X2,%C_Y2,
VP_WIDTH,VP_HEIGHT)

CALL UIS$DISABLE_DISPLAY_LIST(VD_ID)

WD_ID=UIS$CREATE_WINDOW(VD_ID, * SYSSWORKSTATION',
*TWO-LINK FLEXIBLE ARM')
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CALL UIS$SET_RESIZE_AST(VD_ID,WD_ID,ENABLE_WINDOW_RESIZE,,
NEW_ABS_X,NEW_ABS_Y ,VP_WIDTH, VP_HEIGHT)

CALL UIS$SET_WRITING_MODE(VD_1D.0.1.9)

CALL UIS$SET_WRITING_MODE(VD_ID,?,2,3)

Write permanent text to window.

CALL UVIS$TEXT(VD_ID,2,°Time (sec):*,-2.8,-2.8)
CALL UIS$GET_ALIGNED_POSITION(VD_ID,1,RETX,RETY)
CALL UIS$TEXT(VD_ID,2,°Flex. scale:'//FAC.1.6,-2.8)

Draw crosshairs.

CALL UIS$PLOT(VD_ID,2,XC1-0.5,0.,XC1+0.5,0.)
CALL UIS$PLOT(VD_ID,2,0.,YC1-0.5,0.,YC140.5)

Enter arm loop.

PRINT »,‘'Leave trace? (@—No,1-Yes)’
READ «,TRACE
IF (TRACE.EQ.@) THEN
PRINT »,’Plot guidea? (&—No,1-Yes)'’
READ «,GUID
STEPw75
ELSE
GUID=2
STEP=1
ENDIF
CALL UISS$CIRCLE(VD_ID,2,XC1,YC1,R1)
JM=1
DO 2000 J=1,KOUNT
CALL UIS$TEXT(VD_ID,2,TIME(J).RETX,RETY)
XS=X(J)
YS=Y(J)
XD=x2(J)
YD=Y2(J)
CALL UIS$CIRCLE(VD_1D,2,XC1,YC1,R1)
IF (GU1D.EQ.1) THEN
call uls$plot(vd_id,2,xs,ye,xs+dIx(]),ys+dly(]))
EMDIF
CALL UIS$PLOT(VD_ID,2,XS,YS,XS+XR(1,J),YS+YR(1,4))
DO 200 I=2,20 '
CALL UIS$PLOT(VD_ID,2,XS+XR(I-1,J),YS+YR(I-1,4),
XS+XR(1,J),YS+YR(1,J))
CALL UIS$PLOT(VD_ID,2,XS+XR(I-1,J),YS+YR(I-1,J))
CONTINUE
CALL VIS$CIRCLE(VD_ID,2,XC2(J),YC2(J),R2)
IF (GUID.EQ.1) THEN
call uls$plot(vd_1d,2,xd,yd,xd#dix2(]),yd+dly2(j))
ENDIF
CALL UlS‘PLOT(VD_lD.2.XD.YD.XD+X2R(1.J).YD-+Y2R(‘.J))
DO 300 I=2,20
CALL VUIS$PLOT(VD_ID,2,XD+X2R(I-1,d),YD+Y2R(I-1,J),
XD+X2R(1,J),YD+Y2R(1,J))
CALL UIS$PLOT(VD_ID,2,XD+X2R(1-1,J),YD+Y2R(1~1,J))
CONTINUE
CALL UIS$CIRCLE(VD_ID,2,XC3(J),YC3(J),R3)
IF (TRACE.EQ.1) GOTO 5000



The following three lines draw the tip trajectory.
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it (J.ne.1) then
cail ule$plot(vd_id,2,xc3(j—-1),yc3(j-1).xc3(]).yc3(]))
endif
IF ((J.NE.1).AND.(J.NE.JM).AND. (J.NE.KOUNT)) THEN
c CALL UIS$CIRCLE(VD_'D,2,XC1,YC1,Rt)
IF (GUID.EQ.1) THEN
call uis$plot(vd_Iid,2,xs,ys,xs+dIx(}),ys+dly(]))
ENDIF
CALL UIS$PLOT(VD_ID,2,%S,YS,XS+XR(1,J),YS+YR(I1,J))
DO 400 I=2,20
CALL UIS$PLOT(VD_ID,2,XS+XR(I~-1,J),YS+YR(I-1,J),
& XS+XR(1,J),YS+YR(I,J))
CALL UIS$PLOT(VD_ID,2,XS+XR(I-1,J),YS+YR(I-1,4))
400 CONTINUE
CALL UVIS$CIRCLE(VD_ID,2,Xc2(J),YC2(J),R2)
IF (GUID.EQ.1) THEN
call uie$plot(vd_id,2,xd,yd,xd+d1x2(]),yd+dly2(j))
ENDIF
CALL UIS$PLOT(VD_ID,2,XD,YD,X2(J)+X2R(1,V),
& YD+Y2R(1,J))
DO 500 I=2,20
CALL UVIS$PLOT(VD_ID,2,XD+X2R(I~1,J},YD+Y2R(I-1,J),
& XD+X2R(1,J),YD+Y2R(I,J))
CALL VIS$PLOT(VD_ID,2,XD4+X2R(I-1,J),YD+Y2R(I-1,J))
LT CONTINUE
CALL UIS$CIRCLE(VD_ID,2,XC3(J),YC3(J).R3)
ELSE
JM=JIM+STEP
ENDIF

5000 CONTINUE
CALL UISSTEXT(VD_ID,2,TIME(J),RETX,RETY)
2000 CONTINUE
CALL UIS$TEXT(VD_ID,2, TIME(KOUNT) ,RETX,RETY)
¢ CALL UIS$CIRCLE(VD_ID,2,XC1,YC1,.R1)
PRINT s, 'Repeat? (e-No,1-Yes)°’
READ »,A
IF (A.EQ.1) THEN
CALL UIS$DELETE_DISPLAY(VD_ID)
GOTO 6000
ENDIF
CALL UIS$SOUND_BELL(*SYSSWORKSTATION®)
END
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SUBROUTINE enable_window_resize

This routine will allow the user to change the size of the window.
The user may not specify a window width or helght of less than
3/10 of a centimeter. This routine is called from the resize

ast routine.
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COMMON wec_x1,wc_y1,we_x2,we_y2,vp_width,vp_height
COMMON new_abs_x,new_abse_y,wd_Id,vd_id

IF (vp_width .LT. .30) vp_width = .30




IF (vp_helight .LT. .30) vp_height = .30
CALL UIS$RESIZE_WINODOW(vd_id,wd_Id,new_ubs_x,new_abs_y,

1 vp_width,vp_helight,
2 wo_x1,wc_yl,we_x2,wc_y2)
RETURN




