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Qiang Cui
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of the Requirements for the Degree of Master of Science in Engineering and Management

Abstract

This Master's Thesis starts with an introduction to the radio frequency integrated circuits (RFICs) industry and a
discussion on the key problem of the existing RFIC development process: the need for multiple trial and error
iterations due to inaccurate simulations. This simulation inaccuracy happens because the existing electronic design
automation (EDA) software, and the underlying physics-based IC models, fail to fully capture the nonlinear,
frequency-dependent RF parasitic effects. To overcome this problem, in this thesis we propose the use of machine
learning in RFIC development. Machine learning uses statistical models to recognize hidden patterns from sample
data points, known as "training"; generalize patterns; and make predictions based on new data. In theory, machine
learning can capture the nonlinear, frequency-dependent RF parasitic effects very well thanks to the large variety of
nonlinear modelling techniques at its disposal, such as polynomial regressions and neural networks. Therefore, this
thesis investigates for the first time the feasibility of using machine learning in RFIC development to solve the
problem of inaccurate RFIC simulation.

Chapter two describes how to represent and collect the RF and spec data to be able to use them in machine learning.
The data needs to be represented in the format of {X: design parameters, Ysim: EDA simulation results, Ytrue: test
results}. Ideally, large datasets should be collected by testing fabricated ICs. However, in this thesis we used
electromagnetic-enabled mixed mode simulation data as an alternative to actual test data for demonstration
purposes. Chapter three summarizes the existing RFIC development flow and describes the three different blocks in
the flow where machine learning could be added: (1) between the customer specifications and the circuit design, or
specs-to-design; (2) between EDA simulation and circuit fabrication, or simulation-to-fabrication; and (3) between
lab test results and design revision, or test-to-re-design. Chapter four studies each block design level in detail by
applying two basic machine learning techniques: polynomial regression (PR) and neural networks (NN). Chapter
five provides case studies for developing RF switches using machine learning. The results show that machine
learning can significantly improve the prediction accuracy, which proves the feasibility of using machine learning in
RFIC development.

The research developed in this Thesis has strong potential to impact the RFIC industry. Unlike digital circuit design
where the high accuracy of EDA simulations allows for highly automated circuit development, the RFIC design
industry suffers from significant simulation inaccuracies. Hence, RFIC development typically requires multiple
time-consuming and costly design-fabrication iterations. Some researchers have already used machine learning to
improve the step between the initial specifications and design, but those solutions are not really effective because of
their large computational complexity. Those researchers in ran hundreds (if not thousands) of simulations using
existing EDA tool, and used those simulations to train neural network model so the model can learn how to design
circuit. The hundreds of simulations cause the computational complexity. In many cases circuit designs using these
techniques take even longer time than existing solutions in the industry. In contrast, this thesis focuses on the use of
machine learning to optimize block #2, that is between simulation and fabrication to provide accurate predictions.
The task of accurate prediction in this thesis needs less computation resource but provides more helpful to RFIC
development. This thesis shows that the simulation accuracy can be improved by 98%, which will dramatically
reduce the need for multiple design-fabrication iterations. This improvement means significant time and cost
reduction in RFIC products.

Thesis Supervisor: Dr. Tomas Palacios
Professor, MIT Electrical Engineering and Computer Science
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1. Introduction

Radio frequency integrated circuits (RFICs) are key components of most wireless

communication systems with applications in cellular, base station, automotive industry,

aerospace industry and the Internet of Things (loT). Since the first handheld cellular phone call

[7] was made on April 3, 1973, the cellular communication system has evolved significantly with

larger capacity and better quality. Now, the RFIC industry is transitioning from 4th generation of

communications (4G) to the 5th generation (5G). The design specs for RFIC companies are more

challenging than before because the operational frequencies are higher, the application system is

more integrated, and the circuit performance requirements are more stringent. On the other hand,

RFIC companies compete with each other fiercely on time-to-market to capture market share.

Because of such competitive pressure, good electronic design automation (EDA) software plays

a very important role in today's RFIC companies' design activity as the EDA software tools can

help engineers verify design parameters, and capture design errors before spending a lot of time

and money on mistakes. EDA software also serves as the data management tool in a typical

RFIC engineer's daily work as it provides an efficient data management interface between

simulation and tests.

EDA has been an independent industry since the early 1980s. Now, this industry becomes highly

mature and consolidated after four decades of evolution. The EDA software can solve digital IC

design problems very effectively with high prediction accuracy. However, for RFICs, EDA

software is much less accurate due to the hard-to-predict parasitic effects at high frequencies

(Giga Hertz or above). Generally, the higher the operation frequency is, the lower prediction

accuracy EDA provides. Because of the severe prediction inaccuracy, an existing RFIC
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development project requires multiple trial-and-error fabrication (also called "tape-out")

iterations. The problem is that each trial-and-error iteration is very expensive in both time (> 2

months) and cost (can be as high as $2M). Thus, the low EDA prediction accuracy is an

important bottleneck of the modem RFIC industry. This problem will be even worse in the future

as 5G has expanded the operating frequencies into the millimeter wave range, which is 10 times

higher than today's 4G frequencies.

EDA companies know about this problem and they have been working to try to fix it for the last

three decades. The first approach was simulation integration. Figure 1 describes three simulation

levels (device, circuit and system) and their relation with each other. The EDA companies

combined different simulation levels into one mixed-mode simulation, hoping to better model

the inter-coupling effects between different parts of the design. For example, they combined the

device level simulation and circuit level simulation into a single simulation, hoping to better

model inter-coupling effects between the two levels. This simulation integration approach has

two problems. First, the existing RF simulation accuracy at any given single level (such as

device or circuit level) is not good enough. When we mix simulations from different levels, the

inaccuracy will therefore be amplified, which may generate even worse simulation accuracy.

Second, the combined simulation will include a large number of coupled physics models, which

will make the simulation very time-consuming and unstable. It is not uncommon that a design

engineer spends one week to setup the simulation, and the simulation runs for two weeks but

fails to converge at 67% of the progress. Nevertheless, the EDA industry continues to pursue this

approach hoping they can provide more accurate simulation results. For example, Synopsys has

an EDA tool that can run mixed-mode simulations on both the device and the circuit component
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levels. Cadence has tools to do simulation on both the circuit and the system levels. This

approach to simulate across levels has also been reflected in the consolidation trend of the EDA

industry. Initially, the EDA industry was fragmented, and different companies had different

strengths in different simulation levels (e.g., Company A is good at device simulation, Company

B is good at circuit simulation). Due to the trend of integrated simulation, the EDA industry is

becoming more and more consolidated, so each company wants to integrate all the design levels

into their own simulation ecosystem.

4M#14

Device Level Circuit LevelSytm

Device Level

Circuit Level

Example Mixed-mode (Device and Circuit Levels) Simulation

Figure 1 Different levels of simulation and mixed-mode simulation example [9~12]

The second approach is focused on increasing modeling complexity, trying to represent parasitic

effects using very complex physics-backed mathematical models. EDA companies know that

parasitic effects dramatically differ between fabrication technologies. So, they spend a lot of time
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working with foundries that are developing new fabrication technologies. But the complexity of

parasitic effects slows down the development process significantly even though, many times, the

parasitic effects are still unpredictable. Due to the complexity of the different models, to revise

them to achieve more accurate performance is very time consuming. And also, it is well

recognized by industry veterans that even the most complex models today generate very bad

predictions in the first couple trials after a new fabrication technology is announced. The root

cause for this poor prediction performance is the nonlinear nature of parasitic effects, especially

at high operating frequencies. While EDA companies need long time to adapt their software and

modes to the newest fabrication technologies, the RFIC companies cannot afford to wait due to

competition pressure in the market. Thus, in practice, RFIC engineers bypass detailed EDA

simulations for new fabrication technologies. They directly fabricate the IC designs using several

trial-and-error design iterations and manually build back-fitting models'based on test results. As

mentioned before, this trial-and-error design iterations are very expensive in both time and cost.

This thesis attempts to solve this problem using a dramatically different philosophy. See Figure

2, this thesis focuses on prediction of parasitic effects based on the convolution of previous test

data, existing simulation results and design parameters. Instead of spending a lot of time building

complex, slow yet not-good-enough model for each fabrication technology, this thesis proposes

to quickly build machine learning blocks representing the parasitic effects and provide accurate

predictions without knowing the exact details of the parasitic mechanism. The proposed solution

takes advantage of both semiconductor physics (represented by existing inaccurate simulation

results) and machine learning (learning the delta between test results and simulation). Thus, as

we will see in the later chapters, this solution has excellent prediction accuracy.
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Test Data
(from other similar IC design projects)

I
Design Parameters Machine Accurate RFIC Predction

(i.e. channel lengths, resistor values) a acuratic edictio
Leaming (-eamed parasitic effects, so

Simulation Resuts Blvery accurate prediction)

Figure 2 Proposed Machine Learning Block between Simulation and Fabrication

It is worth mentioning that machine learning and IC design have interacted with each other for a

long time. These interactions are of two different types: (1) IC's for machine learning, and (2)

The use of machine learning in IC design. Examples for (1) are GPUs from Nvidia and other Al

accelerator vendors. Examples for (2) are several register transfer level (RTL) synthesis tools

from EDA companies such as Synopsys and Cadence. Those synthesis tools are used in digital

circuit design, and provide a first draft of designs based on design specifications, which then

engineers can make revisions on. However, for RFICs, to the best of our knowledge there is no

commercial synthesis tools except for several design parameters such as simple sub-circuits and

automatic layout generation. [1,2] This thesis tries to fill the gap of machine learning for RFIC

design.

More specifically, this thesis aims to fix the RFIC simulation inaccuracy problem with the help

of machine learning. We do this in a dramatically different way than existing solutions. The

existing machine learning for IC design efforts focus on generating schematics and layout based

on initial specs, but this thesis focuses on using machine learning to combine test results and

simulations to generate predictions with excellent accuracy in new technologies without well-

developed models. The success of the approach of this thesis when compared to other machine

learning techniques applied to RFIC design is based on (1) Existing RFIC design synthesis
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(machine learning for RFIC) is very slow due to simulation complexity plus the first draft

schematic designs have poor performance which limits its impact. The problem of slow

simulation speed is inevitable even with cloud-based computation. This is due to the fact that

RFIC designs and simulation models are very complex, which requires very large solution space

to meet the specifications. In this case, the machine learning needs to run over hundreds of

simulations to learn all the underlying semiconductor physics. (2) On the other hand, the

solution proposed in this thesis has strong advantages. The RFIC design companies already have

a vast amount of test data..They have invested heavily in generating data through IC fabrication

and testing. That data, however, is interpreted today by engineers using just intuition and

experience. If we aggregate all the data of the different fabrication technologies and circuit types,

it would become a perfect data set for machine learning training, which will then have enough

quality to produce accurate results.

This thesis consists of 5 chapters. Chapter 1 (this chapter) introduces the RFIC and EDA

industries, the existing problem of RFIC EDA simulation and research motivation. Chapter 2

discusses how to prepare RFIC simulation and test data for machine learning. It describes the

methods of data representation and data collections. Chapter 3 reviews the existing RFIC

development flow and describes the proposed revision of the RFIC development flow. The

proposed development flow includes 3 machine learning blocks. Chapter 4 reviews the 2

machine learning techniques: polynomial regression and neural networks. Chapter 5 studies the

RFIC development case that uses machine learning. Chapter 6 summarizes the whole thesis and

discusses the future research plan.

13



2. Data
2.1 Representation

In order to make data suitable for machine learning, we need to process the data into a machine

learning friendly format. In general, the prepared RFIC data should have three parts as shown in

Figure 3: (1) X: Design parameters such as transistor gate length, device width, inductor turns,

metal choices and so on; (2) Ysim: EDA simulation results such as s-parameters, power gain,

current consumptions; and (3) Ytrue: Actual test results for RFIC with design parameters listed

in (1). The format of Ytrue corresponds to the simulated items in (2) such as s-parameters, power

gain, current consumptions. The combination of {X, Ysim, Ytrue} makes one data point with

high dimensions. Because different types of RFICs have different set of design specifications, we

should use different data representations according to RFIC types. Fortunately, there are only a

few types of RFIC components: Switch, Power Amplifiers, Low Noise Amplifiers, Filters and

passive Matching Networks. Thus, we just have a few data representations for machine learning,

which make the proposed use of machine learning very convenient.

X: Yslm:
Design Parameters {EVASimulations}

Ytrue:
{Test Results)

Figure 3 Data Representation

2.2 Collection

Training data collection is important for any machine learning application. There are enough data

points in most RFIC companies to feed the machine learning blocks using internal data. For a

typical RFIC company, there are about 30 products per year, each product will have about 5

fabrication runs, and we can aggregate the RFIC designs over the past 5 years as the fabrication
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technology is normally unchanged for several years. This in total will provide 750 high-

dimensional data points. Even if we discount this number because of different IC types, there are

still enough data points (50-100) to generate accurate prediction accuracy. 50-100 data points

are enough because, as it will be shown, our results indicate that the training can converge stably

with 45 data points for different RFIC types under different conditions.

In the proposed machine learning solution, the ideal training data points (each data point is an

RFIC intellectual property, or IP) would come from the RFIC company. But it is hard to get 50

pieces of IP from RFIC companies for an academic research project like this. To overcome this

problem, this thesis generated data points using electromagnetic-enabled simulations.

2.2.1 Electromagnetic-enabled Mixed Mode Simulation

How do we generate a complete data point (especially the test result portion) just using

electromagnetic-enabled simulation? I will take a step back to answer this question. The purpose

of this thesis is to demonstrate the feasibility of using machine learning in the existing RFIC

development process for better prediction accuracy. The reason why current EDA simulation

fails in prediction accuracy is that the representations of parasitic effects in simulation and real-

world test are different. With electromagnetic-enabled simulation, we can generate two

simulations with different representations of parasitic effects but very close semiconductor

physics. Thus, we can assign one simulation as "Ysim: EDA simulation results" and the other

simulation as "Ytrue: test results". Specifically, I assign Cadence Spectre simulation as "Ysim",

and Keysight ADS Momentum Electromagnetic simulation as "Ytrue".
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An RF switch will be used as the example circuit to generate simulation-based data points. The

RF switch is a good starting point because: (1) it is straightforward enough to start with, so this

thesis can focus on verifying the concept of machine-learning assisted simulation method, (2) yet

it is complex enough to highlight the RF parasitic challenge [8] (3) moreover, RF switches will

be used widely in 5G Millimeter Wave ICs, as these chips will have an architecture based on a

phase array beam, hence there significant demand for RF switches.

Figure 4 shows the single pole single throw (SPST) switch designed for 2.7GHz (cellular band)

and 5.8GHz (WiFi band). For "X", this thesis included the gate lengths of the series transistor

and shut transistor. For "Ysim", this thesis included the scattering parameters (S-parameters) S21

at both 2.7GHz and 5.8GHz using Cadence Spectre. For "Ytrue", I used the mixed-mode

simulation of schematics simulator (see Keysight ADS schematic viewer in Figure 6) and

electromagnetic simulator (Keysight ADS's momentum viewer in Figure 5). Figure 5 shows the

3D electromagnetic simulation setup of RF switch's routing metal. The "Ysim" and "Ytrue" now

have different representation of parasitic effects but same representation of core semiconductor

physics model. With help of this data generation methods, this thesis will be able to demonstrate

the effectiveness of machine learning in providing much better prediction results.
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Figure 6 Electromagnetic-enabled Mixed Mode Simulation in Keysight ADS Momentum (Ytrue")

2.2.2 Actual Fabrication
A better method to generate about 50-100 data points is to fabricate actual chips. But the cost of

traditional chip fabrication is beyond the budget available for this thesis. To overcome this, we

simplified the RFIC design to significantly reduce the fabrication cost yet provide quality data to

validate the effectiveness of machine learning in RFIC development process. First, we found a

Multi Project Wafer (MPW) opportunity from Muse semiconductor. This cut the cost by 90%

because multiple research teams will share the cost of a wafer. The only down side is that we get

much fewer dies than what a traditional RFIC company would get. The MPW approach is not

enough as we need 50-100 data points. Moreover, if we use traditional RFIC chip fabrication in

MPW fashion, the 90% discounted cost times 50 is a still too expensive. Here comes the second

simplification. We designed a laser cut-friendly test structure in Figure 7. We have 3 laser cut

friendly input capacitors (left), 3 laser cut friendly output capacitors (right), and 1 laser cut

friendly inductor. From this one layout, we have (2A3-1)*( 2A3-1)* 2=4 9 configurations which

18
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will generate 49 different data points. By doing this, the writer further reduce the cost 98% less

than RFIC company. Now, this research can have enough training points from actual chip

fabrication with acceptable cost.
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3. System Design
3.1 Existing RFIC Development Flow

The RFIC design flow has not changed significantly in a long time. The core of the RFIC design

flow is trial and error as the EDA simulation is inaccurate. Because RFIC's EDA simulation

tools cannot accurately predict chip's performance, a typical RFIC design flow requires 3-5

iterations. Each design iteration is very expensive in both time and cost. In general, the RFIC

design flow contains the steps shown in Figure 8.

Specs

Design

Simulation

Fabrication

Results
Worse
than

Specs
Test

Results
Exceed
Specs

Production

Figure 8 Existing RFICDevelopment Flow
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Specifications: In a typical RFIC design company, the corporate technical marketing team keeps

continuous communication with the corporate's customers. One important job of the marketing

team is to help their customers define the detailed specifications of an RFIC product. The

specification definition takes time (can be as long as 1 year) as the customers themselves may

not even know what they want. Customer companies normally work with technical marketing

professionals from several RFIC companies at the same time and share specs with all of the

RFIC companies. The RFIC companies will start the competition after evaluating the product

specifications.

RFIC Product Design: If an RFIC company decides to bid for the specification provided by

their customers, it will assemble a team of engineers to design the product. The company assigns

design engineers, application engineers, test engineers, technical marketers and project managers

into one development team and this development team keeps on communication with customers.

The RFIC companies use a divide and conquer method. They divide the RFIC into different

functional blocks such as digital controller, analog bias circuit, radio frequency circuit, and

module integration. The development team almost always starts from previous RFIC products

with similar performance and make necessary revisions. Occasionally (<5% case), they make a

new design from scratch if the product specification is dramatically different from all the earlier

products.

Simulation: After the initial RFIC design, the engineers want to predict the IC performance

before fabrication by using simulations. This step is very important for de-risking the design, as

the engineers can use simulation to verify if the circuits will work as intended and to see if there

are potential bugs. As the RFIC circuits get more complex, the simulation can take several
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weeks. Like the product design step, the simulation step also uses divide and conquer method.

Engineers divide the simulation job into circuit functional blocks such digital controller part,

analog bias circuit part, radio frequency part and module level integration part. Accuracy is

crucial in this simulation step as the results directly impact engineers' design decisions and RFIC

performance after fabrication. In today's RFIC design industry, simulation is never accurate in

the first iteration because of the hard-to-model parasitic effects. The current solution is that

engineers manually fit the models [13~15] based on trial and error design iterations, and offset

the simulation errors in the next design iteration. If the measurement results after second design

iteration are still far off from the fitted models, engineers will try another iteration to fit the

models and make the design meet the required specifications. It is worth mentioning that those

fitted models can't be generalized to other RFIC designs. For each RFIC design, the engineers

need to repeat model fitting efforts using iterations.

Fabrication: Engineers will submit design data to the semiconductor manufacturers (called

"foundry" or "fab") for fabrication (called "tape out") after the design and simulation step. The

foundry could be inside the organization if the RFIC company is an integrated design

manufacturer (such as Qorvo, Analog Devices) or outside organization if the company is a

fabless design company (such as Qualcomm). Whether the foundry is from inside or outside, the

whole engineering team do nothing at this step but wait. The waiting period is about 2 months

depending on fabrication complexity. Sometimes engineers design other products when this

product is in fabrication, sometimes they read technical documents for next project or simply

take vacation.
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Test: The integrated circuits finally come back after several months. The engineers become busy

again. They will have technicians test the ICs based on the long list of parameters from the

customer specifications. There can be hundreds of test conditions, out of which 20 or so are key

test condition. Usually the first version of the design can meet no more than 70% test conditions

mostly because the earlier simulation step provides inaccurate predictions. The engineers need to

go back to re-design, simulation and come to test again in a trial and error manner. A typical

RFIC design requires 3 to 5 iterations due to inaccurate simulations. On the contrary, digital

circuit development only needs 1 design iteration thanks to the high accuracy of digital

simulations.

Production: If the IC design meets 100% of the design specifications, the engineering team will

move on to mass production step. Now they need to worry about the process variation and wide

distribution of the test results. Sometimes, they will need to go back to the re-design step if the

issue in mass production is due to a design problem. For example, if the top metal or metal

capacitors have cracking issues, they may change the design into smaller piece of metal or

capacitors. At the production step, the engineering team hands over the product to the product

management team in the RFIC company. The development ends here.

The biggest problem of the existing RFIC development process is that it requires multiple

iterations from test back to design (see Figure 8). The number of design iterations in RF IC

development is much larger than in digital IC development, because RFIC simulation is very

inaccurate due to hard-to-predict parasitic effects. If we can improve the RF simulation accuracy

to the accuracy level in digital IC simulation, we can significantly speed up the design process,
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reduce the time to market and development cost. This thesis will use machine learning in the

RFIC development process to significantly improve RF simulation so that we can solve this

fundamental problem in RFIC development.

3.2 Proposed RFIC Development Flow

A proposed RFIC development process is shown in Figure 9. The revised development process

has three machine learning blocks (highlighted in blue) added. This thesis describes all the three

blocks but focuses on the second block between simulation and fabrication. This machine

learning block #2 provides much more accurate simulation based on existing simulation, test data

and current design. The three machine learning blocks are trained with the same set of data

formatted as Figure 3. We can aggregate the high dimensional data points at company level or

even industry level if a data sharing agreement is reached between companies. Even if the data

aggregation only happens at the company level, a typical RFIC design company has enough data

points to effectively train machine learning blocks because there are many design re-use cases in

the IC company plus many designs are sharing the same fabrication process.
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Figure 9 Machine Learning Powered RFIC Development Flow

The three machine learning blocks have the same structure as shown in Figure 10. The three

blocks are trained with the same set of data with the {X, Ysim, Ytrue} format in Figure 3. But

they may have different models such as different designs of neural networks. The three machine

learning blocks all use two pieces (two inputs) of information to predict one piece (one output) of

information.
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3.2.1 Block #1: Specs-to-Design

Machine learning block #1 fits between specs and design steps. This block is trained on the

shared data set which has {X : Design Parameters, Ysim : EDA Simulations, Ytrue : Test

Results} as data format. See Figure 11, this block has two inputs (Ysim, Ytrue) and one output

(X). It is worth mentioning that X, Ysim and Ytrue, as inputs or outputs of the machine learning

block, may have different meanings than what is suggested by its naming. For machine learning

block #1, Input Ysim means EDA Simulations (same meaning as suggested by naming), but

Input Ytrue means specifications (different than the meaning suggested by naming) and Output

X means suggested design parameters (not the meaning of existing design parameters suggested

by naming). The Inputs and Outputs keep the labels of "X", "Ysim" and "Ytrue" so that they can

match to the data set format for prediction. After customized training, this machine learning

block will be able to suggest its output based on inputs with a reasonable quality. There are many

matured machine learning blocks (also called synthesis tools) in digital ICs area but only a few in



RFICs. For example, Guo Zhang and Hao He from MIT CSAIL Professor Dina Katabi's lab are

doing some research to automate analog circuit design based on massive number of simulations.

[3] Hanrui Wang in MIT Professor Song Han's group and Professor David Pan from University

of Texas also have some machine learning for analog IC design automation papers published.

[4,5] In those publications, the researchers generate hundreds (if not thousands) of data points

using computer-aided simulations, which makes their training process very slow. The machine

learning block #1 in this thesis uses a very different approach than the existing research of

machine learning for RFIC design. This block is trained on data set which has both design

parameters ("X"), EDA simulations ("Ysim") and test results ("Ytrue"). This block predicts the

output ("X", suggested design parameters) using two inputs ("Ysim", EDA simulations; "Ytrue",

specifications). Because machine learning block #1 aggregated previous test data as training data

set, it does not need the time-consuming massive simulations required in [3~5].

Input = Ysim
(EDA Simulations) Machine

Learning =4 Output = x
Block #1 (Suggested design parameters)Input = Ytrue E k#

(Specs, or Desired Test Results)

X Sim {X: (Design Parameters),
Ysim : {EDA Simulations),

Data Set y,,,, .•. Ytrue: (Test Results))

Figure 11 Machine Learning Block #1, between Specs and Design

3.2.2 Block #2: Simulation to Fabrication

Figure 12 shows the structure of the machine learning block #2 between the simulation and

fabrication steps. This machine learning block uses the same data set for training. The block

predicts Output ("Ytrue", predicted test results) by two Inputs ("X", design parameters and
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"Ysim", EDA simulations) without actual fabrication. As will be shown in the case study of

chapter 5, this machine learning block can provide very accurate predictions after customized

training on reasonable number of data points (less than a hundred). On the contrast, the trainings

on reference [3,4,5] requires large number of simulation results. The reason why trainings in

reference [3,4,5] require more data points is that the machine learning approaches in [3,4,5] have

very different learning objectives than machine learning block #2 here. The machine learning

block #2 just need to learn the difference between test results and simulation results. The

difference (delta part) is just parasitic effects, which can be well represented by frequency-

dependent nonlinear LRC networks. Though parasitic effects are hard to model using physics-

backed math equations, they are relatively easy to fit using simple machine learning techniques

such as polynomial regression and neural networks in section 0. Therefore, machine learning

block #2 only needs less than a hundred data points for training. On the contrast, the machine

learning block's learning objectives in reference [3,4,5] is the entire RFIC design, which includes

all the complex semiconductor physics and circuit knowledge, thus they require at least

thousands of simulation points. As will be shown in case study in section 0, machine learning

block #2 can provide excellent prediction accuracy. This level of prediction accuracy is very

helpful to reduce the required number of design iterations which means significant time and cost

reduction for the RFIC design industry.

28



Input = x
(Design Parameters) Machine

Learning Output = Ytrue
(Predicted Test Results)

Input = Ysim Block #2
(EDA Simulations) Training

X Sim 4{X: (Design Parameters),
Ysim : (EDA Simulations),

Yru """Ytrue: (Test Results))

Figure 12 Machine Learning Black #2, between Simulatian and Fabricatian

3.2.3 Block #3: Test to re-Design

Figure 13 shows the structure of machine learning block #3 at the rework loop from test to re-

design steps. It uses the same data set as the other 2 machine learning blocks. Similar to block

#1, this machine block #3 has "Ysim" (EDA simulations) and "Ytrue" (specifications, or desired

test results) as two Inputs and "X" (suggested design revisions) as the Output. The main

difference from machine learning block #1 is that the newly acquired test data (see Figure 13) is

added to the data set and is assigned heavier weight during the re-training. Because the newly

acquired data point is directly relevant to the desired design revision, the prediction of machine

learning block #3 is theoretically more effective than machine learning block #1. In Figure 13,

the newly acquired data point is added to data set for re-training the machine learning block. An

alternative approach is to feed the newly acquired data point into machine learning block #3 as

the third Input (not drawn). This thesis did not compare the effectiveness of machine learning

block #3 in Figure 13 and its alternative, but has listed it as future work.
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3.2.1 Input and Output of Three Machine Learning Blocks
In the proposed machine learning-powered RFIC development flow, there are three machine

learning blocks: between specs and design, between simulation and fabrication, and between test

and re-design. The three blocks share the same data set but use different inputs to predict the

output. Table 1 summarizes the Input and Output configurations for the 3 blocks. The naming of

"X", "Ysim" and "Yture" is tailored for the shared data set. For different machine learning

blocks, the naming (such as "Ytrue" for ML Block #1) may have slightly different meaning

(such as desired test results, or specifications for ML Block #1). This table aims to clarify the

meaning of Input and Output of three blocks.
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Table 1 Summary of Input and Outputfor Three Machine Learning Blocks

*Note: ML Block #1 and ML Block #3 have same input, output setting but ML
points in data set

"X" "Ysim" "Ytrue"
Data Set design parameters: EDA simulations: test results:

parameters such as gate such as s-parameters, actual test results such as s-
lengths, capacitor sizes. power gain. parameters, gain.

ML Block #1 Output: Input: Input:
design suggestions such EDA simulations such desired test results, or
as how to set gate as s-parameters. specifications
lengths.

ML Block #2 Input: Input: Output:
design parameters such EDA simulations such Predicted RFIC test results
as gate lengths, as s-parameters. such as s-parameters.
capacitor sizes. Generally, it is much more

accurate than simulation.

*ML Block #3 Output: Input: Input:
design suggestions such EDA simulations such desired test results, or
as how to set gate as s-parameters. "desired specifications"
lengths. I I

31

Block #3 has one more relevant data



4. Block Design
This thesis uses two simple machine learning techniques: polynomial regression and neural

networks for implanting the machine learning block. As will be shown in chapter 5, both

regression and neural networks provide significant prediction accuracy. RFIC companies could

use even more sophisticated algorithms (Long short-term memory, random forest, and so on) to

customize the machine learning block based on their circuit types and fabrication technologies,

and more sophisticated machine learning blocks should provide even better prediction

performance than regression and neural networks in this thesis. However, the work demonstrated

in this thesis is just a proof of concept. The thesis will not discuss those advanced machine

learning algorithms since this thesis focuses on feasibility research of machine learning in RFIC

development flow instead of machine learning optimization.

4.1 Polynomial Regression

Polynomial regression is a basic machine learning technique that analyzes the relationship

between different independent variables (commonly named as "xl", "x2" and so on) and the

dependent variable (commonly named as "y") by polynomial equations. Regression often comes

with regularization, a technique that adds additional weight into modeling to represent the system

offset. There are two types of regressions: linear polynomial and nonlinear polynomial

regression. Linear regression is the regression without polynomial transformation but with

regularization. Nonlinear regression has both polynomial transformation and regularization. In

the machine learning training implemented in this Thesis, the polynomial order was limited to

less than 5, and regularization between 0 and 20 with 0.1 as sweeping step. The data was cross

32



validated by data using 90% of the data as training and 10% as validation. The root mean square

error (RSME) was used as performance indicator for the training.

One interesting observation about linear regression is that it is the technique most similar to

engineers' interpreting efforts in today's RFIC development flow. In today's trial and error

RFIC development flow, engineers interpret the discrepancy between test and simulation in a

linear fashion. For example, if the power output of the RF power amplifier is 10% less than the

required specification, engineers would increase the device size linearly by 10%. This intuitive

correction will not always work because in reality, the RFIC performance is nonlinear. This

nonlinearity can be easily captured by nonlinear regression machine learning techniques (such as

neural networks) but very hard for today's engineers to interpret in a linear regression manner.

4.2 Neural Networks

Artificial neural network is a network of neurons that calculate the output based on inputs,

weights and activation functions. Its name comes from the weak similarity between the

mathematical equations that govern its behavior and biological neural networks. The most

fundamental building block of neural networks is the single "Neuron" (also called "Perceptron"

if the activation function is the step function) shown in Figure 14. A single "Neuron" has one

constant unit (1) and n inputs (xl-xn). wO represents the weight for constant unit, and wl-wn

represents the weights for inputs xl-xn. The neuron first sums up xl*wl+..+xn*wn+wO, then

feeds a output activation function to determine if the output is 1 or 0. Neuron networks is very

powerful in predicting RFIC parameters because each building blocks can represent different

degrees of nonlinearity hence can model the nonlinear parasitic effects much better than humans

can. That is why we will see the significant prediction improvement in chapter 5.
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Figure 14 Building Block of Neural Networks, "Perceptron" or single "Neuron" [6]

Figure 15 and Table 2 show the dimensions of different feedforward neural networks (NNs). In

this thesis, the NN were customized for different types of RFIC circuits (such as switches, PAs,

LNAs, matching networks or other circuits) and different ranges of operating frequencies. Since

the learning problem in the machine learning block #2 in Figure 12 is a regression problem, the

activation function in the output layer was set to be linear. But the activation functions in the

hidden layers were set as rectified linear unit (ReLU) to enable the nonlinear representation of

RFIC parasitic effects.

dim 1I- ReLU dim 2 -eReLU dim 3 -LOLnea

Layer I Layer 2 Layer 3

Figure 15 Block Diagram of Neural Networks

Table 2 Dimensions of Neural Networks
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Dimension 1 Dimension 2 Dimension 3
NN1 256 128 1
NN2 128 64 1
NN3 64 32 1
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5. Case Study

This chapter will demonstrate the effectiveness of the machine learning block #2 (simulation to

fabrication) with the case of RF switch. The "test" data (Ytrue) comes from the electromagnetic

enabled mixed-mode simulations described in section 2.2.1. Though the data is non-ideal, it is

real enough to demonstrate the effectiveness of machine learning block #2 because it has

completely different parasitic effects from schematic-only simulations (Ysim). This situation is

very similar to the real world, where the test data has completely different parasitic effects from

simulation.

5.1 Circuit

Figure 16 shows the first case study: a single pole single throw (SPST) RF switch. There is a

series MOSFET transistor on the top left and a shunt MOSFET transistor on the bottom. The two

transistors operate in a complementary way and they are biased at gate terminal and body

terminal through resistors (gate resistors Rg se, Rgsh and body resistors Rbse, Rb-sh). The

Vdd is set at 2.5V. See Table 3, when this SPST switch operates at ON state, series MOSFET is

ON and shunt MOSFET is OFF. The controlling voltages are Vgse=2.5V, Vbse=OV, Vgsh=-

2.5V, Vbsh=-2.5V. When the switch operates in the OFF state, the series MOSFET is OFF and

the shunt MOSFET is ON. The controlling voltages are Vgse=-2.5V, Vbse=-2.5V, Vgsh=2.5V,

Vbsh=O. The series shunt MOSFET structure and negative charge pump voltage (-Vdd=-2.5V)

are used here for better signal isolation between RFin and RFout.
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Figure 16 Case Study: RF Switch

Table 3 Bias Voltages of RF Switch

RF Switch ON RF Switch OFF

Series MOSFET ON OFF

Vgse 2.5V -2.5V

Vbse OV -2.5V

Shunt MOSFET OFF ON

Vgsh -2.5V 2.5V

Vbsh -2.5V OV

5.2 Parameters

This case uses data collected from electromagnetic-enabled mix mode simulatiori. The data is

formatted as {X, Ysim, Ytrue} shown in Figure 3. For this RF switch case, the parameters are

listed in Table 4. For X (design parameters), I choose the channel length of series MOSFET and

shut MOSFET as parameters because channel length is the most important feature that
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determines the RF Switch's electrical performance. For Ysim (EDA simulation results), I use

S21's magnitude, dB representation, imaginary part, real part and phase in Cadence Spectre

simulator as they cover the typical parameters that RFIC engineers watch in the design. For

Ytrue (test results), I use same set of S21 parameters in Ysim (such as magnitude and so on)

collected from electromagnetic enabled simulations in Keysight ADS momentum.

Table 4 List ofParameters

Parameter Parameter Description

Name Type

pWse X Normalized channel length of series transistor

pWsh X Normalized channel length of shunt transistor

CDSmag Ysim CDS simulation result ofthe gain (S21) magnitude

CDSdB Ysim Decibel version value ofthe gain (S21)

CDSimg Ysim The imaginary part of simulation gain (S21) magnitude

CDSreal Ysim The real part of simulation gain (S21) magnitude

CDSphase Ysim The phase of simulation gain (S21) magnitude

EM-mag Ytrue Test of gain (S21) magnitude

EM-dB Ytrue Decibel Version test of gain (S21)

EMi1mg Ytrue The imaginary part of test gain (S21)

EM-real Ytrue The real part of test gain (S21) magnitude

EM phase Ytrue The phase of test gain (521) magnitude

deltamag Ytrue The difference between test and simulation result

DeltadB Ytrue The difference between decibel version test and simulation result
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5.3 Prediction Tasks

Table 5 listed 15 basic prediction tasks for the RF Switch. For each task, we can predict "Ytrue"

based on "X" (if any) and "Ysim" (if any) using machine learning block #2 trained on

aggregated {X, Ysim, Ytrue} data set. Let us take task 4 as an example. The input "X" represents

the design parameters pWse (normalized channel length of series transistor) and pWsh

(normalized channel length of shunt transistor). The input EDA simulation result "Ysim" is

CDS_mag (Electromagnetic simulated gain (S21) magnitude in Cadence Spectre environment).

And the output test result "Ytrue" is the electromagnet-enabled simulation (decibel version) of

magnitude EM_mag. Those prediction tasks provide the method to check the effectiveness of the

machine learning block #2 in RFIC development flow.

It is worth noting that the size of {X, Ysim, Ytrue} data set is intentionally set at 50 though

many more data points can be collected from electromagnetic-enabled mix mode simulation.

Here is the reasoning for that: A typical RFIC company has at least 50 data points available for

one kind of RFICs. This thesis intentionally uses the worst-case situation to demonstrate

effectiveness of machine learning in the real world. If the data set size is relaxed to be larger, the

prediction accuracy will generally be better but will saturate at certain number depending on data

distribution and the circuit condition to be predicted.
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Table 5 Prediction Tasks

Task ID IiIVF"Ysim" To be predicted: "Ytrue"

1 n/a CDSmag EM_mag

2 n/a CDS-dB EM-dB

3 pWse, pWsh n/a delta_mag

4 pWse, pWsh CDSmag EM_mag

5 pWse, pWsh CDSmag delta_mag

6 pWse, pWsh n/a delta-dB

7 pWse, pWsh CDS-dB EM-dB

8 pWse, pWsh CDS-dB delta-dB

9 pWse, pWsh CDSimg EM_img

10 n/a CDSi1mg EM_1mg

11 pWse, pWsh CDS-real EM-real

12 n/a CDS-real EM-real

13 pWse, pWsh CDS phase EM phase

14 n/a CDS phase EM phase

15 pWse, pWsh CDSimg delta_1mg

5.4 Results

As briefly mentioned in chapter 5, this thesis uses 4 machine learning techniques: polynomial

regression, and neural networks with 3 different dimensions (Table 2). And the predictions are
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made at both cellular band frequency (2.7GHz) and WiFi band frequency (5.8GHz). Therefore,

there are 120 cells in Table 6. In each cell there is a number between 0 and 100, which is the

percentage improvement of root mean square error (RMSE) representing prediction accuracy

with machine learning versus EDA simulation only. Figure 17 explains the calculation of

percentage improvement of RMSE in details. Basically, this calculation uses percentage

improvement to compare the RMSE with the machine learning and RMSE with only EDA

simulations.

Table 6 Simulation RMSE Improvement (%) using Linear Regression (LR) with less than 5 orders and Neural Networks (NN)

Cellular Band Frequency (2.7GHz) WiFi Band Frequency (5.8GHz)

Task ID PR(%) NN1 (%) NN2 (%) NN3 (%) PR(%) NN1 (%) NN2 (%) NN3 (%)
1 99.90 99.10 98.96 98.59 98.93 98.90 98.85 98.89
2 99.88 99.62 99.68 99.66 98.51 99.62 99.58 99.44
3 1.17 1.34 1.33 2.24 93.15 98.67 98.34 98.37
4 99.92 98.97 99.07 98.53 99.26 99.35 98.95 98.74
5 1.24 1.03 0.17 1.00 97.47 98.65 97.58 98.02
6 1.39 1.50 1.46 1.53 88.87 99.79 99.71 99.50
7 99.95 99.76 99.68 99.25 98.96 99.53 99.83 99.65
8 1.50 1.50 1.28 1.61 94.83 99.75 99.69 99.62
9 99.97 99.85 99.65 99.63 99.14 99.82 99.79 99.69

10 99.92 99.73 99.71 99.73 93.78 95.11 93.77 93.76
11 99.90 98.96 98.83 98.85 86.65 98.73 97.08 96.79
12 99.83 98.95 98.64 98.91 72.68 96.85 96.80 96.02
13 99.99 99.78 99.64 99.56 99.73 99.63 99.73 99.51
14 99.99 99.82 99.86 99.56 99.18 99.94 99.91 99.87
15 1.39 1.39 0.92 1.62 89.10 98.02 98.61 96.81
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N

(Predicted1- Actual,)2
RMSE =

N
(a)

Raw Data

1.6 -1.0 -1.28 -1.27
1.8 -1.2 -1.32 -1.34
2.0 -1.4 -1.37 -1.38
2.2 -1.6 -1.44 -1.45

RMSE for EDA Simulation Prediction

_ -1. _ -1.28
2 -1.2 -1.32
3 -1.4 -1.37
4 -1.6 -1.44

RMSE for Machine Learning

1 -1.27 -1.28
2 -1.34 -1.32
3 -1.38 -1.37
4 -1.45 -1.44

Percentage

RMSE = Improvement of RMSE

0.1727 = (0.1727-0.0132)/0.1727
=92.36 (%)

RMSE =

0.0132

(b)
Figure 17 Calculation of percentage improvement of Root Mean Square Error (RMSE) (a) Definition of RMSE (b) Calculation

Example demonstrating Percentage Improvement of RMSE

For all the 15 prediction tasks, the machine learning block #2 makes better prediction than

original EDA simulation results. Except for task 3, 6, 8, 15 (explanations will be given below),

most of the tasks will have more than 98% improvement of accuracy. This is an exciting result.

Typically, the RFIC simulation has RMSE of about 10%. An improvement of 98% means the

RMSE is only 0.2%, which means the RFIC development has very high chance to be successful

after first design-fabrication iteration. If one-time pass happens, this will save about 80% of

development time and cost!
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Table 7 Best ML Methods for different parameters under differentfrequency

Prediction Cellular Band Frequency (2GHz) WiFi Band Frequency (5.8GHz)

"Ytrue" "X" and Best ML % Improv. "X" and Best ML % Improv.

"Ysim" "Ysim"

EM_mag pWse, LR 99.92 pWse, NN1 99.35

pWsh, pWsh,

CDSmag CDSmag

EMdB pWse, LR 99.95 pWse, NN2 99.83

pWsh, pWsh,

CDSdB CDSdB

pWse, LR 99.9 pWse, NN1 98.73

pWsh, pWsh,

EM_real CDSreal CDSreal

pWse, LR 99.97 pWse, NN1 99.82

pWsh, pWsh,

EMimg CDSimg CDSimg

pWse, LR 99.99 CDSphase NN1 99.94

pWsh,

EMphase CDSphase

deltamag pWse, NN3 2.24 pWse, NN1 98.67

pWsh pWsh
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pWse, NN3 1.61 pWse, NN1 99.79

pWsh, pWsh

deltadB CDSdB

pWse, LR 1.39 pWse, NN2 98.61

pWsh, pWsh,

delta img CDSimg CDS_img



To find more insights, this thesis rearranged the predictions into Figure 7, where only the best

prediction methods (X, Ysim to Ytrue) for each prediction task are listed. There are several

interesting findings of machine learning based prediction perfornance.

Finding 1: There is significant improvement if we feed machine learning models with both

existing EDA simulations ("Ysim") and geometric design parameters ("X"), regardless of

frequency bands or what parameter to predict.

Explanation 1: In order to predict an integrated circuit's parameters (such as EMmag: the

measured Ytrue of gain magnitude), we need to consider 3 possible factors: (1) underlying

semiconductor physics, which is represented by input simulation (such as CDSmag), (2) design

parameters input by engineers (such as pWse, pWsh), and (3) frequency-dependent parasitic

effects (represented by learned weights "Th"s). In the industry, engineers only considered (1)

and (2), which is well modelled in their electron design automation (EDA) simulation. They also

tried to represent (3) using Maxwell's equations with uniform parameters. However, we believe

(3) is where the major discrepancy shows up in existing simulation method because parasitic is

not linear! On the other hand, the proposed machine learning techniques (both polynomial

regressions and neural networks) are perfect tools to represent non-linear frequency-dependent

parasitic effects. That is why we see significantly improved RMSE result for the held-out test

data.

Finding 2: For lower frequency (2.7GHz) data set, polynomial regression provides best RMSE

improvement, but for higher frequency (5.8GHz), neural networks provides much better RMSE

improvement.
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Explanation 2: As mentioned in explanation 1, the machine learning blocks try to learn the

frequency-dependent parasitic effects. The parasitic effects are highly dependent on frequency.

In RF semiconductor area, one important parasitic effect is called "harmonics". Harmonics has

different orders, 1st order, 2nd order, 3rd order etc. At lower frequency, 1st order is dominant.

As frequency moves higher, higher order (2,3,...,n,..) harmonics will be more dominant. Neural

networks have intrinsically better prediction ability on non-linearity for higher order

"harmonics" prediction. Therefore, we see at 5.8GHz data sets, neural networks demonstrated

better prediction than polynomial regression. We are in the transition from 4G to 5G. One

important change in 5G is that it expands from sub-6GHz frequency range to mmWave

frequency range (27GHz, 37GHz). I expect that customized neural networks at higher frequency

will provide excellent prediction results for radio frequency integrated circuit design at 5G era.

Finding 3: For lower frequency (2.7GHz) data set, the delta mag and deltadB of the gain

difference ("deltapart") between test data (Ytrue) and simulation prediction improvement is

marginal but very remarkable in high frequency (5.8GHz) data.

Explanation 3: This is an interesting phenomenon, probably caused by "harmonics" found in RF

semiconductor physics. At lower frequency, the existing EDA simulation is less off from the test

result, the "delta part" is mostly influenced by the 1st order of "harmonics" and absolute value of

"delta" is small hence could be impacted by test (here is electromagnetic-enabled enabled mix.

Mode simulation) convergence noise floor. So, it is harder to improve the prediction RMSE. On

the other hand, as frequency increases to 5.8GHz, the gain difference ("deltapart") between test

(Ytrue) and simulation prediction improvement is large enough, and also dominated by higher

order of "harmonics". Therefore, the simulation improvement is much higher. I expect the
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machine learning will help mmWave frequency integrated circuits design much more than sub-

6GHz frequency.

Finding 4: For high frequency WiFi Band (5.8GHz), high dimensional neural networks (NN1)

provides better improvement than other low dimensional neural networks (NN2 and NN3).

Explanation 4: At higher operating frequency (5.8GHz), the higher order harmonics cause non-

linear discrepancy between simulation and test results. Such harmonics come from different

pieces of integrated circuits design such as input stage, output stage, Vdd, grounds, inter-stage

nodes etc. A typical integrated circuit has hundreds of net list nodes (pieces of integrated

circuits). Each net list node can have tens of orders of harmonics impact. So, we need around

1,000 weights to account those parasitic effects. That is why for the higher frequency WiFi Band

(5.8GHz), we get best prediction improvement from NN1, which has larger number of tunable

weights. This means as integrated circuit gets more complex, deeper neural networks with more

weights may be needed to predict better results.
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6. Conclusions
This thesis proved the feasibility of using machine learning to improve RFIC development

process. Chapter 1 introduces the RFIC design and EDA industry. Chapter 2 explained how to

generate and structure the {X, Ysim, Ytrue} data set. Chapter 3 first reviewed the existing RFIC

design flows and its key problem: highly iterative trial-and-error development process due to

EDA simulation inaccuracy. Then, the existing RFIC development is revised by adding 3

machine learning blocks (specs to design, simulation to fabrication, and test to design). Chapter 4

described the machine learning techniques in each block. Finally, Chapter 5 demonstrated the

effectiveness of machine learning using RF Switch as the example. For RF Switch example,

Cadence Spectre simulation is used as EDA simulation results "Ysim" and ADS Keysight

Momentum's Electro-magnetic enabled simulation is used as "Ytrue" for demonstration purpose.

Four machine learning methods (one polynomial regression, and three different neural network

designs) are used to 15 prediction tasks at both cellular band frequency (2.7GHz) and WiFi band

frequency (5.8GHz). It is clearly that machine learning trained on early tape-out data can

dramatically improve the simulation accuracy by > 98%. At higher frequency, neural networks

are more powerful than polynomial regression.

We plan to continue this project after graduation. For this project, I have assembled a team of

electrical engineers, machine learning engineers, business developers as well as industry

mentors. The team has gets accepted by MassChallenge and received pre-seed funding from MIT

Sandbox and National Science Foundation (NSF) i-Corps program. The future work is to get real

world RFIC data to improve machine learning blocks. We will start to collaborate with

university IC labs to aggregate RFIC data, and use the data to improve machine learning blocks
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in different fabrication technologies. With the better machine learning blocks, the writer will

then be able to approach RFIC design companies for more RFIC data and customize the machine

learning blocks for each company.
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