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A Few Bad Apples Spoil the Barrel:  
An Anti-Folk Theorem for Anonymous Repeated Games 

with Incomplete Information†

By Takuo Sugaya and Alexander Wolitzky*

We study anonymous repeated games where players may be “com-
mitment types” who always take the same action. We establish a stark 
anti-folk theorem: if the distribution of the number of commitment 
types satisfies a smoothness condition and the game has a “pairwise 
dominant” action, this action is almost always taken. This implies 
that cooperation is impossible in the repeated prisoner’s dilemma 
with anonymous random matching. We also bound equilibrium pay-
offs for general games. Our bound implies that industry profits con-
verge to zero in linear-demand Cournot oligopoly as the number of 
firms increases. (JEL C72, C73, D83)

The folk theorem of repeated games asserts that a group of rational players, how-
ever large, can cooperate if they are sufficiently patient and have enough informa-
tion about each other’s past behavior.1 But it seems more realistic to assume that, if 
a group is large enough, it probably contains some irrational agents. For example, 
Kandori (1992) and Ellison (1994) show that rational players can support coopera-
tion in the prisoner’s dilemma with anonymous random matching by relying on con-
tagion strategies: whenever a player sees anyone defect, she starts defecting against 
everyone. But Ellison (p. 578) also notes: “If one player were ‘crazy’ and always 
played ​D​ [defect] …  contagious strategies would not support cooperation. In large 
populations, the assumption that all players are rational and know their opponents’ 
strategies may be both very important to the conclusions and fairly implausible.”

In this paper, we show that the folk theorem fails for large groups when players 
are anonymous (so a player’s payoff depends only on her own action and the num-
ber of opponents taking each action) and may be “commitment types” who always 
take the same action. For example, in the prisoner’s dilemma with anonymous ran-
dom matching, population size ​N​, and discount factor ​δ​, cooperation is impossible 

1 The literature on the folk theorem is enormous. For a textbook treatment, see Mailath and Samuelson (2006).
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when ​N​ is large, even if ​​(1 − δ)​N​ is small. Similarly, in linear-demand Cournot 
oligopoly, industry profits converge to zero as ​N  →  ∞​, even if ​​(1 − δ)​N  →  0​.

The key assumption behind our results is that the distribution of the number 
of commitment types is “smooth”: roughly speaking, for every number  ​n  <  N​, 
the probability that ​n​ players are commitment types is close to the probability that 
​n + 1​ players are commitment types. For instance, this assumption is satisfied if 
each player is a commitment type with independent probability ​z​, for any fixed 
​z  ∈ ​ (0, 1)​​, and ​N  →  ∞​.

To see why the folk theorem fails with a smooth distribution of commitment types, 
observe that, if a rational player deviates from her equilibrium strategy by instead 
following the strategy of a commitment type, and if the number of “true” commit-
ment types is ​n​, then the population distribution of actions is exactly what it would 
have been if the rational player had not deviated and the number of commitment 
types had been ​n + 1​. Smoothness thus implies that a single deviation from the 
rational-type strategy to the commitment-type strategy has a small impact on the 
population distribution of actions. Therefore, the commitment type’s action can-
not perform much better than the rational type’s equilibrium strategy against the 
equilibrium action distribution (a fact we formalize in Lemma 1). Finally, in many 
games this fact implies that the rational type’s equilibrium strategy almost always 
prescribes the commitment type action, which yields an anti-folk theorem. For 
example, if the game is the prisoner’s dilemma and the commitment type’s action is 
defect, the rational type’s equilibrium strategy must almost always defect.

More precisely, we consider anonymous repeated games with one rational type 
and one commitment type.2 We first establish Lemma 1: the commitment-type 
strategy cannot yield a much higher payoff than the rational-type equilibrium strat-
egy, where the size of the gap depends on the smoothness of the distribution of 
the number of commitment types. We then consider games with a “pairwise dom-
inant”  action ​​a​​ ∗​​, meaning that, whenever one player takes action ​​a​​ ∗​​ and another 
player takes a different action ​a​, the player taking ​​a​​ ∗​​ obtains a strictly higher payoff 
than the player taking ​a​, and assume that commitment types take this action. For 
instance, defection is pairwise dominant in the prisoner’s dilemma. Our main result 
(Theorem 1) shows that, as ​N  →  ∞​, the pairwise dominant action is almost always 
taken in every Nash equilibrium. We then briefly consider implications of Lemma 1 
for games without a pairwise dominant action, showing in particular that industry 
profits converge to zero in linear-demand Cournot oligopoly as the number of firms 
increases.

The paper concludes by discussing implications of our approach beyond anony-
mous repeated games. One such implication is an elementary proof of a version of 
Mailath and Postlewaite’s (1990) impossibility theorem for public good provision in 
large populations, which unlike existing proofs allows types to be correlated.

Related Literature.—This paper relates to several branches of literature. Most 
directly, we contribute to the literature on repeated games with anonymous random 

2 Our results can be extended to allow multiple commitment types at the cost of additional notation. We discuss 
this extension in Section V.
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matching by showing that the existence of cooperative equilibria in such models is 
not robust to introducing a smooth distribution of commitment types.3

There are two related strands of literature on anti-folk theorems. First, several 
papers following Green (1980) and Sabourian (1990) consider large-population, 
complete-information games where the impact of each player’s action on the 
aggregate signal distribution is small.4 These papers give conditions, such that, for 
fixed ​δ​, all Nash equilibria of the repeated game converge to static Nash equilibria 
as ​N  →  ∞​; significantly, they do not give anti-folk theorems in the sense of per-
sistent inefficiency as ​δ  →  1​. In contrast, with incomplete information we allow 
arbitrarily informative signals of actions (e.g., perfect monitoring) and give condi-
tions, such that convergence to static Nash equilibrium obtains uniformly in ​δ​.

Second, like our paper, the “reputation” literature shows that introducing a small 
amount of incomplete information in repeated games can lead to anti-folk theorems 
(Mailath and Samuelson 2006). Reputation models typically consider a small num-
ber of long-run players (often only one), and are thus far from the large anonymous 
games we consider. In particular, the key argument that bounds a rational player’s 
payoff in this literature (due to Fudenberg and Levine 1989) is that, if a rational 
player follows the strategy of a commitment type, this eventually causes her oppo-
nents to start taking favorable actions in response. In contrast, the key argument that 
bounds a rational player’s payoff in our large anonymous games is that, if a rational 
player follows the strategy of a commitment type, this has only a small effect on the 
distribution of her opponents’ actions.

Finally, a literature closer to mechanism design considers measures of the piv-
otality or influence of a player’s type on an aggregate outcome, and gives condi-
tions under which most players’ influence must be small in large populations. For 
instance, al-Najjar and Smorodinsky (2000) show that, with independent types, 
players’ average influence on a bounded, real-valued aggregate outcome goes to 
zero as ​N  →  ∞​. This result is distinct from our condition that the distribution of 
the number of agents with a specific type does not vary much with a particular 
player’s type. And this distinction makes a difference: al-Najjar and Smorodinsky 
(2001) apply their notion of influence to continuation payoffs in repeated games to 
derive a Green-Sabourian-type result that depends on the order of limits between ​N​ 
and ​δ​, while our results are uniform in ​δ​.5

I.  Model

A symmetric ​N​-player stage game with action set ​A​ and payoff function 
​u  :  ​A​​ N​ → ℝ​ is anonymous if, for any ​i ∈ I = ​{1, … , N}​​, any permutation ​π​ on ​I\​{i}​​,  
and any action profile ​𝐚 = ​​(​a​j​​)​​j∈I​​ ∈ ​A​​ N​​, we have ​​u​i​​​(​a​1​​, … , ​a​i−1​​, ​a​i​​, ​a​i+1​​, … , ​a​N​​)​ 
= ​ u​i​​​(​a​π​(1)​​​, … , ​a​π​(i−1)​​​, ​a​i​​, ​a​π​(i+1)​​​, … , ​a​π​(N)​​​)​​: that is, a player’s payoff depends only 
on her own action and the number of opponents taking each action. Fix a finite, 
anonymous stage game, and normalize the range of ​u​ to lie in ​​[0, 1]​​. Throughout the 

3 Without allowing commitment types, Kandori (1992) and Ellison (1994) showed that mutual cooperation is 
supportable in the prisoner’s dilemma, and Deb, Sugaya, and Wolitzky (2020) established a general folk theorem.

4 See also Levine and Pesendorfer (1995); Fudenberg, Levine, and Pesendorfer (1998); al-Najjar and 
Smorodinsky (2001); Pai, Roth, and Ullman (2016); and Awaya and Krishna (2016, 2019).

5 Another way to appreciate the difference is to note that we allow correlated types.
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paper, whenever we write a player’s payoff as ​u​(𝐚)​​ (without an ​i​-subscript on ​u​), 
the first element of ​𝐚​ refers to the player’s own action and the remaining elements 
refer to the opponents’ actions, which by anonymity can be ordered arbitrarily: thus, 
​u​(​a​i​​, ​a​−i​​)​​ is player ​i​’s payoff when she takes action ​​a​i​​  ∈  A​ and her opponents take 
actions ​​a​−i​​  ∈ ​ A​​ ​(N−1)​​​. In contrast, ​​u​i​​​(𝐚)​  = ​ u​i​​​(​a​1​​, … , ​a​i−1​​, ​a​i​​, ​a​i+1​​, … , ​a​N​​)​​.6

The stage game is played repeatedly in periods ​t = 1, 2, … ​. After taking an 
action in period ​t​, each player ​i​ observes a signal ​​y​i,t​​​ drawn from a probability distri-
bution that depends on the history of past actions and signals ​​(​​(​𝐚​τ​​  , ​𝐲​τ​​)​​ τ  =1​ t−1 ​, ​𝐚​t​​)​​, where 
​​𝐲​τ​​  = ​ (​y​1,τ​​ , … , ​y​N,τ​​)​​ and ​​𝐚​τ​​  = ​ (​a​1,τ​​ , … , ​a​N,τ​​)​​. A history for player ​i​ at the begin-
ning of period ​t​ is thus ​​h​ i​ t​  = ​​ (​a​i,τ​​  , ​y​i,τ​​)​​ τ  =1​ t−1 ​​, with ​​h​ i​ 1​  =  ∅​. A strategy ​​σ​i​​​ for player ​i​ 
maps histories ​​h​ i​ t​​ to ​Δ​(A)​​ for each ​t​.

Each player ​i​ has a type ​​θ​i​​  ∈ ​ {R, B}​​, where ​R​ is the rational type and ​B​ is the bad 
(commitment) type.7  Rational types maximize expected discounted payoffs with 
discount factor ​δ  ∈ ​ [0, 1)​​. Bad types always play a particular action ​​a​​ ∗​  ∈  A​; we 
call this strategy Always ​​a​​ ∗​​. A strategy profile ​σ  = ​​ (​σ​i​​)​​i​​​ specifies the strategy ​​σ​i​​​ 
that each player ​i​ follows when she is rational; of course, when she is bad, she plays 
Always ​​a​​ ∗​​.

There is a common prior ​p​ on the set of players’ types ​​​{R, B}​​​ N​​, which we assume 
is symmetric: for every permutation ​π​ on ​I​ and every type profile ​​(​θ​1​​, … , ​θ​N​​)​​, 
​p​(​θ​1​​, … , ​θ​N​​)​  =  p​(​θ​π​(1)​​​, … , ​θ​π​(N)​​​)​​. The repeated game is thus parameterized by 
the tuple ​Γ  = ​ (N, A, u, δ, ​a​​ ∗​, p)​​. We denote the probability that a player is bad by 
​z  = ​ ∑ θ:​θ​i​​=B​   ​​  p​(θ)​​.

Given a strategy profile ​σ​, denote player ​i​’s expected discounted per-period pay-
off conditional on type profile ​θ​ by ​​U​i​​​(θ)​  ∈ ​ [0, 1]​​, and denote player ​i​’s expected 
payoff by ​​U​i​​  = ​ ∑ θ​   ​​ p​(θ)​ ​U​i​​​(θ)​  ∈ ​ [0, 1]​​. Since this expectation includes the possi-
bility that ​​θ​i​​  =  B​, we implicitly assume that bad types have the same utility func-
tion as rational types.8

Our results concern the set of equilibrium values of per-capita utilitarian social 
welfare, ​​∑ i​ 

  ​​ ​U​i​​ / N​. This set is only expanded by letting the players access a public 
randomization device. Since the stage game and prior are symmetric, when pub-
lic randomization is available any social welfare level attainable by an asymmetric 
strategy profile is also attained by the symmetric profile where public randomization 
is first used to randomly permute the players’ strategies. We therefore allow public 
randomization and restrict attention to symmetric strategy profiles (and often drop 
the ​i​ subscript from ​​U​i​​​(θ)​​ and ​​U​i​​​).

Note that we allow ​δ  =  0​, so our results apply equally to one-shot games.

6 Note that symmetry and anonymity do not constrain the dimensionality of the set of feasible and individually 
rational payoffs.  Indeed, this set is full-dimensional in all examples considered in this paper.

7 We discuss the case with multiple commitment types in Section V.
8 One could alternatively consider player ​i​’s expected utility conditional on the event ​​θ​i​​  =  R​. This would 

involve a little more notation while giving essentially the same results.
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II.  Preliminaries

A. Lower Bound for Rational Players’ Payoffs

We first show that the bad type’s action cannot perform much better than the 
rational type’s equilibrium strategy against the equilibrium action distribution 
(Lemma 1). This lower bound for rational players’ payoffs will later drive our 
anti-folk theorem, which in particular implies an upper bound for payoffs.

For ​n ∈ ​{0, 1, … , N}​​, let ​​​n​​​ denote the event that the realized number of bad 
types is ​n​, and let ​​p​n​​​ denote the probability of this event. Conditional on the event 
that a given player ​i​ is rational (​​θ​i​​  =  R​), let ​​q​n​​​ denote the probability that ​n​ out of 
the remaining ​N − 1​ players are bad. Since symmetry implies that

	​ Pr​(​​n​​ ∧ ​θ​i​​  =  R)​  = ​  N − n _ 
N  ​ ​p​n​​,​

we see that ​​q​n​​​ is given by

	​ ​q​n​​  =  Pr​(​​n​​ | ​θ​i​​  =  R)​  = ​ 
Pr​(​​n​​ ∧ ​θ​i​​  =  R)​

  _____________  
Pr​(​θ​i​​  =  R)​ ​   = ​  N − n _ 

N  ​ ​  ​p​n​​ _ 
1 − z ​.​

We also let ​​q​N​​ = 0​ by convention. Next, conditional on the event that a given player 
is rational, denote the probability that ​n − 1​ out of the remaining ​N − 1​ players are 
bad by

	​ ​q​ n​ −​  = ​ q​n−1​​  for n  ∈ ​ {1, … , N}​,​

with ​​q​ 0​ −​ = 0​ by convention. Note that, given the convention that ​​q​N​​ = ​q​ 0​ −​ = 0​, 
​q  = ​​ (​q​n​​)​​ n=0​ N  ​​ and ​​q​​ −​  = ​​ (​q​ n​ −​)​​ n=0​ N  ​​ are both probability distributions on ​​{0, … , N}​​. 
Denote the total variation distance between these probability distributions by

(1)	 ​​Δ​q,​q​​ −​​​  = ​   max​ 
⊂​{0,… , N  }​

​​​|​ ∑ 
n∈

​ 
 
 ​​ ​ (​q​n​​ − ​q​ n​ −​)​|​.​

Note that if a rational player deviates by playing Always ​​a​​ ∗​​ instead of her equilib-
rium strategy and the realized number of bad types is ​n − 1​, then the population dis-
tribution of actions is the same as it would be if this player had not deviated and the 
realized number of bad types were ​n​. Thus, from the perspective of a rational player 
(and assuming that the equilibrium strategy of rational players is something other 
than Always ​​a​​ ∗​​), ​​q​n​​​ is the probability that ​n​ players in the population play Always ​​a​​ ∗​​ 
when she follows her equilibrium strategy, and ​​q​ n​ −​​ is the probability that ​n​ players 
in the population play Always ​​a​​ ∗​​ when she deviates to Always ​​a​​ ∗​​. The distance 
between the distributions ​q​ and ​​q​​ −​​, ​​Δ​q,​q​​ −​​​​, is therefore a measure of the detectability 
of a deviation by a rational player from her equilibrium strategy to Always ​​a​​ ∗​​.

Fix a symmetric Nash equilibrium ​σ​. For ​n  ∈ ​ {0, 1, … , N}​​, let ​​u​n​​​ denote the 
expected payoff of a random player in the population when there are ​n​ bad types, 
given by

	​ ​u​n​​  =  E​[​U​i​​​(θ)​ | ​​n​​]​.​
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Let ​​u​ n​ R​​ denote a rational player’s expected payoff when there are ​n​ bad types, given 
by

	​ ​u​ n​ R​  =  E​[​U​i​​​(θ)​ | ​θ​i​​  =  R, ​​n​​]​.​

Let ​​u​ n​ B​​ denote a bad player’s expected payoff when there are ​n​ bad types, given by

	​ ​u​ n​ B​  =  E​[​U​i​​​(θ)​ | ​θ​i​​  =  B, ​​n​​]​.​

Note that, for each ​n​, we have

	​ ​u​n​​  = ​  N − n _ 
N  ​ ​u​ n​ R​ + ​ n _ 

N ​ ​u​ n​ B​.​

Moreover,

	​ U  = ​  ∑ 
n=0

​ 
N

  ​​ ​p​n​​ ​u​n​​.​

We let ​​u​ 0​ B​  =  1​ by convention. This convention makes the following lemma, which 
gives the desired lower bound on rational players’ payoffs, as strong as possible.

LEMMA 1: For any anonymous game and any symmetric Nash equilibrium, the 
following bounds apply:

	 (i)	 Rational player payoff bound: ​​ ​​∑ n=0​ N−1 ​​​q​n​​ ​u​ n​ 
R​  ≥ ​ ∑ n=0​ N−1 ​​​q​n​​ ​u​ n​ 

B​ − ​Δ​q,​q​​ −​​​​.

	 (ii)	 Social welfare bound: ​U  ≥ ​ ∑ n=0​ N  ​​ ​p​n​​ ​u​ n​ 
B​ − ​(1 − z)​ ​Δ​q,​q​​ −​​​​.

PROOF:
In any Nash equilibrium, a rational player must prefer her equilibrium strategy 

to deviating to Always ​​a​​ ∗​​. A rational player’s equilibrium payoff is ​​∑ n=0​ N−1 ​​​q​n​​ ​u​ n​ R​​. If a 
rational player instead plays Always ​​a​​ ∗​​, then for each realized number of “true” bad 
types ​n​, she receives the same payoff as that received in equilibrium by a bad type 
when the true number of bad types is ​n + 1​. Thus, her expected payoff from such a 
deviation is ​​∑ n=0​ N−1 ​​​q​n​​ ​u​ n+1​ B  ​​. Now note that

(2)	 ​​ ∑ 
n=0

​ 
N−1

​​​q​n​​ ​u​ n+1​ B  ​  = ​  ∑ 
n=0

​ 
N−1

​​​q​n​​ ​u​ n​ B​ + ​ ∑ 
n=0

​ 
N−1

​​​q​n​​ ​u​ n+1​ B  ​ − ​ ∑ 
n=0

​ 
N−1

​​​q​n​​ ​u​ n​ B​ 

	 = ​  ∑ 
n=0

​ 
N−1

​​​q​n​​ ​u​ n​ B​ + ​ ∑ 
n=1

​ 
N

  ​​​q​ n​ −​ ​u​ n​ B​ − ​ ∑ 
n=0

​ 
N−1

​​​q​n​​ ​u​ n​ B​ 

	 = ​  ∑ 
n=0

​ 
N−1

​​​q​n​​ ​u​ n​ B​ + ​ ∑ 
n=0

​ 
N

  ​​​q​ n​ −​ ​u​ n​ B​ − ​ ∑ 
n=0

​ 
N

  ​​​q​n​​ ​u​ n​ B​ 

	 = ​  ∑ 
n=0

​ 
N−1

​​​q​n​​ ​u​ n​ B​ − ​ ∑ 
n=0

​ 
N

  ​​​(​q​n​​ − ​q​ n​ −​)​ ​u​ n​ B​ 

	 ≥ ​  ∑ 
n=0

​ 
N−1

​​​q​n​​ ​u​ n​ B​ − ​Δ​q,​q​​ −​​​.​



3823SUGAYA AND WOLITZKY: A FEW BAD APPLES SPOIL THE BARRELVOL. 110 NO. 12

Here, the third equality follows because ​​q​ 0​ −​  = ​ q​N​​  =  0​, and the final inequality 
follows because (recalling that ​​u​ n​ B​  ∈ ​ [0, 1]​​)

	​​  ∑ 
n=0

​ 
N

  ​​​(​q​n​​ − ​q​ n​ −​)​ ​u​ n​ B​  ≤ ​   ∑ 
n:​q​n​​≥​q​ n​ −​

​ 
 
 ​​​ (​q​n​​ − ​q​ n​ −​)​ ​u​ n​ B​  ≤ ​   ∑ 

n:​q​n​​≥​q​ n​ −​
​ 

 
 ​​​ (​q​n​​ − ​q​ n​ −​)​  = ​ Δ​q,​q​​ −​​​.​

This establishes the rational player payoff bound.
To derive the social welfare bound, let ​​r​n​​  =  Pr​(​​n​​ | ​θ​1​​  =  B)​​, and note that

	​ ​p​n​​  = ​​
⎧
 

⎪
 ⎨ 

⎪
 

⎩
​​​
​(1 − z)​ ​q​0​​

​ 
if n  =  0

​   ​(1 − z)​ ​q​n​​ + z​r​n​​​  if 1  ≤  n  ≤  N − 1​    
z​r​N​​

​ 
if n  =  N.

 ​​ ​

Putting this together with the definition of ​U​ and the rational player payoff bound, 
we obtain

  ​  U  = ​ (1 − z)​​ ∑ 
n=0

​ 
N−1

​​​q​n​​ ​u​ n​ R​ + z​ ∑ 
n=1

​ 
N

  ​​​r​n​​ ​u​ n​ B​ 

	 ≥ ​ (1 − z)​​(​ ∑ 
n=0

​ 
N−1

​​​q​n​​ ​u​ n​ B​ − ​Δ​q,​q​​ −​​​)​ + z​ ∑ 
n=0

​ 
N

  ​​​r​n​​ ​u​ n​ B​ 

	 = ​ (​(1 − z)​ ​q​0​​ + ​(​ ∑ 
n=1

​ 
N−1

​​​(1 − z)​ ​q​n​​ + z ​r​n​​)​ + z ​r​N​​)​ ​u​ n​ B​ − ​(1 − z)​ ​Δ​q,​q​​ −​​​ 

	 = ​  ∑ 
n=0

​ 
N

  ​​ ​p​n​​ ​u​ n​ B​ − ​(1 − z)​ ​Δ​q,​q​​ −​​​.​ ∎

B. Smooth Type Distributions

The payoff bounds established in Lemma 1 are most significant when ​​Δ​q,​q​​ −​​​​ is 
small. We say that a sequence ​​​(N, p)​​N​​​ with ​N → ∞​ (where, for each ​N​, ​p​ is a sym-
metric prior on ​​​{R, B}​​​ N​​) has a smooth distribution of bad types if

	​ ​ lim​ 
N→∞

​​ ​Δ​q,​q​​ −​​​  =  0.​

Similarly, a sequence of games indexed by ​N​, ​​​(Γ)​​N​​​, has a smooth distribution of bad 
types if this true of ​​​(N, p)​​N​​​. We now discuss when a sequence ​​​(N, p)​​N​​​ has a smooth 
distribution of bad types.

Suppose ​p​ is log-concave: ​​p​n​​/​p​n−1​​  ≥ ​ p​n+1​​/​p​n​​​ for all ​n  ∈ ​ {1, … , N − 1}​​.9  
Then the maximum in (1) is attained by a set ​​ that takes a “threshold”  form 
​  = ​ {​n​​ ∗​, … , N}​​ for some threshold ​​n​​ ∗​  ∈ ​ {0, … , N}​​. This yields

	​ ​Δ​q,​q​​ −​​​  = ​ q​​n​​ ∗​−1​​  = ​  N − ​n​​ ∗​ + 1 _ 
N  ​  ​ ​p​​n​​ ∗​−1​​ _ 

1 − z ​.​

9 See Bagnoli and Bergstrom (2005) for a survey of log-concave probability distributions, with many examples.
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Therefore, when ​p​ is log-concave, the sequence ​​​(N, p)​​N​​​ has an smooth distribution 
of bad types if and only if ​​max​n≤N−1​​ ((N − n)/N) ​p​n​​  →  0​.

This is a mild condition. For example, when the players’ types ​​​(​θ​i​​)​​i∈I​​​ are indepen-
dent, ​p​ is log-concave,10 and ​​max​n≤N−1​​ ((N − n)/N) ​p​n​​  →  0​ whenever ​z​ remains 
bounded away from ​0​ and ​1​ as ​N  →  ∞​. More generally, a log-concave distribution 
of bad types is smooth if the probability that the number of bad types takes on any 
particular value ​n​ converges to zero as ​N  →  ∞​.

For an example where the distribution of bad types is not smooth, consider inde-
pendent types with ​zN​ held constant at some ​​n –​  ∈  ℕ​ as ​N  →  ∞​, so the distribution 
of the number of bad types converges to a Poisson distribution with parameter ​​n ¯ ​​. 
Then

	​ ​Δ​q,​q​​ −​​​  = ​ q​​n –​​​  = ​  N − ​n –​ _____ 
N ​​ (​ N    ​n –​ ​)​ ​​(​ ​n –​ __ 

N ​)​​​ 
​n –​
​ ​​(​ N − ​n –​ _____ 

N ​ )​​​ 
N−​n –​−1

​.​

For instance, if ​​n –​  =  1​ (i.e., on average, there is exactly one bad player in the pop-
ulation) then

	​ ​Δ​q,​q​​ −​​​  = ​​ (​ N − 1 _ 
N  ​)​​​ 

N−1
​  ∼ ​  1 _ e ​.​

Thus, Lemma 1 can provide a meaningful bound even if on average there is only 
a single bad player. If instead ​​n –​​ is sufficiently large, then Stirling’s approximation 
gives

	​ ​Δ​q,​q​​ −​​​  = ​  N − ​n –​ _____ 
N ​​ (​ N    ​n –​ ​)​ ​​(​ ​n –​ __ 

N ​)​​​ 
​n –​
​ ​​(​ N − ​n –​ _____ 

N ​ )​​​ 
N−​n –​−1

​  ∼ ​   1 _____ 
​√ 

___
 2π​n –​ ​
 ​.​

Thus, Lemma 1 can provide a tight bound even if the expected number of bad types 
stays finite as ​N  →  ∞​.

If ​p​ is not log-concave, then ​​Δ​q,​q​​ −​​​​ need not converge to ​0​ even if 
​​max​n≤N−1​​ ((N − n)/N) ​p​n​​  →  0​. For example, ​​Δ​q,​q​​ −​​​  =  1​ if the number of bad 
types is known in advance to be even. In this (rather artificial) case, the conclusion 
of Lemma 1 is vacuous.

III.  Anti-Folk Theorem for Games with a Pairwise Dominant Action

We say that an action ​​a​​ ∗​  ∈  A​  is pairwise dominant if there exists a positive num-
ber ​c  >  0​ such that, for any action ​a  ≠ ​ a​​ ∗​​, if player ​i​ takes ​​a​​ ∗​​, player ​j​ takes ​a​, and 
the remaining players take any actions ​​a​−ij​​  ∈ ​ A​​ ​(N−2)​​​, then player ​i​’s payoff exceeds 
player ​j​’s by at least ​c​: that is,

	​ u​(​a​​ ∗​, a, ​a​−ij​​)​ − u​(a, ​a​​ ∗​, ​a​−ij​​)​  >  c    for all a ​ (≠ ​ a​​ ∗​)​  ∈  A, ​ a​−ij​​  ∈ ​ A​​ ​(N−2)​​.​

To interpret this definition, note that if the impact of a single opponent’s action 
on a player’s payoff is small, then ​u​(a, ​a​​ ∗​, ​a​−ij​​)​  ≈  u​(a, a, ​a​−ij​​)​​, so the definition of 

10 Here ​​p​n​​  =  ​(​N   n ​)​ ​ε​​ n​ ​​(1 − ε)​​​ N−n​​, and hence ​​p​n​​/​p​n−1​​  =  ((N − n + 1)/n)( ε/(1 − ε))​, which is decreasing in ​n​.
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a pairwise dominant action reduces to that of a dominant action, with ​c​ equal to 
the minimum payoff gain from taking ​​a​​ ∗​​ rather than another action. For example, 
this equivalence holds in large-population anonymous random matching games, 
where ​u​(​a​i​​, ​a​−i​​)​  = ​ (1 / ​(N − 1)​)​​∑ j≠i​   ​​ ​ u ˆ ​​(​a​i​​, ​a​j​​)​​ for some function ​​u ˆ ​  :  ​A​​ 2​  →  ℝ​ fixed 
independent of ​N​. More generally, a dominant action is also pairwise dominant if it 
imposes a negative externality on other players, in that ​u​(a, ​a​​ ∗​, ​a​−ij​​)​  ≤  u​(a, a, ​a​−ij​​)​​ 
for all ​a, ​a​−ij​​​; and a non-dominant action can be pairwise dominant only if it imposes 
a sufficiently large negative externality.

In this section, we assume that the action ​​a​​ ∗​​ played by bad types is pairwise dom-
inant.11 Denote social welfare when everyone takes the pairwise dominant action 
by ​​U​​ ∗​  =  u​(​a​​ ∗​, … , ​a​​ ∗​)​  ∈ ​ [0, 1]​​. We also let ​b  >  0​ denote the greatest impact on 
social welfare that can result from a player switching from ​​a​​ ∗​​ to another action, 
given by

	​ b = ​  sup​ 
​a​ i​​∈A,​a​−i​​∈​A​​ ​(N−1)​​

​​​| ​ ∑ 
j=1

​ 
N

 ​​​(​u​j​​​(​a​1​​, … , ​a​i−1​​, ​a​i​​, ​a​i+1​​, … , ​a​N​​)​ − ​u​j​​​(​a​1​​, … , ​a​i−1​​, ​a​ i​ ∗​, ​a​i+1​​, … , ​a​N​​)​)​|​.​
Example 1 (Prisoner’s Dilemma with Anonymous Random Matching): Suppose 

that in each period players match in pairs (uniformly at random and independently 
across periods) to play the prisoner’s dilemma stage game

(3) ​C​ ​D​

​C​ ​​  1 + L _ 1 + G + L ​, ​  1 + L _ 1 + G + L ​​ ​0, 1​

​D​ ​1, 0​ ​​  L _ 1 + G + L ​, ​  L _ 1 + G + L ​​

where ​G, L  >  0​. This is an anonymous ​N​-player game, where a player’s stage-game 
payoff when she takes action ​a  ∈ ​ {C, D}​​, ​m​ out of her ​​(N − 1)​​ opponents take 
action ​D​, and her remaining ​​(N − m − 1)​​ opponents take action ​C​, is given by

	​ ​ N − m − 1 _ 
N − 1  ​ u​(a, C)​ + ​  m _ 

N − 1 ​ u​(a, D)​.​

In this game, it can be easily checked that action ​D​ is pairwise dominant, with

	​ c  = ​   1 _ 
1 + G + L ​​(min​{G, L}​ + ​  1 _ 

N − 1 ​​(1 + max​{G, L}​)​)​,​

	​ b  = ​ 
1 + ​|G − L|​

  _ 
1 + G + L ​.​

Our main result is the following anti-folk theorem for anonymous repeated games 
with a pairwise dominant action.

11 We thus consider games that have a pairwise dominant action. Clearly, any game has at most one such action.
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THEOREM 1: For any anonymous repeated game ​Γ​ with a pairwise dominant 
action, in any Nash equilibrium social welfare ​U​ satisfies

(4)	 ​​|U − ​U​​ ∗​|​  ≤ ​ (1 − z)​b ​ 1 + c _ c  ​ ​Δ​q,​q​​ −​​​.​

In particular, for any sequence ​​​(Γ)​​N​​​ of anonymous repeated games with a pair-
wise dominant action satisfying ​​lim inf​N→∞​​ ​c​N​​  >  0​ and ​​lim sup​N→∞​​ ​b​N​​  <  ∞​ and a 
smooth distribution of bad types, and any corresponding sequence of Nash equilib-
rium social welfare levels ​​​(U)​​N​​​, we have

(5)	 ​​ lim​ 
N→∞

​​​|​U​N​​ − ​U​ N​ ∗ ​|​  =  0.​

For example, consider the repeated prisoner’s dilemma with anonymous random 
matching where bad types always defect. If we fix the payoff parameters ​G​ and ​L​ 
and vary ​N​ and ​δ​, then along any sequence with a smooth distribution of bad types, 
social welfare converges to the payoff from mutual defection, ​L / ​(1 + G + L)​​. 
Crucially, this conclusion does not depend on how ​δ​ varies along the sequence: for 
instance, it applies even if ​​(1 − δ)​N  →  0​.

To see the intuition for Theorem 1, note that as in Lemma 1, bad players’ expected 
discounted equilibrium payoffs cannot be much greater than rational players’. 
However, since ​​a​​ ∗​​ is pairwise dominant, bad players’ payoffs exceed rational play-
ers’ by at least ​c​ multiplied by the expected discounted frequency with which ratio-
nal players take actions other than ​​a​​ ∗​​. Therefore, this frequency must be small: that 
is, rational players must almost always take ​​a​​ ∗​​. Finally, when bad players always 
take ​​a​​ ∗​​ and rational players almost always take ​​a​​ ∗​​, social welfare is close to ​​U​​ ∗​​.12

PROOF:
Fix a symmetric Nash equilibrium ​σ​. For ​n  ∈ ​ {1, … , N − 1}​​, let ​​γ​n​​​ denote the 

“expected discounted frequency” with which a rational player takes an action other 
than ​​a​​ ∗​​ when there are ​n​ bad types, given by

	​ ​γ​n​​  = ​ (1 − δ)​​ ∑ 
t=1

​ 
∞

 ​​ ​δ​​ t−1​ ​∑ 
​h​ i​ t​
​ 

 
 ​​ ​ Pr​​ σ​​(​h​ i​ t​ | ​θ​i​​  =  R, ​​n​​)​​(1 − ​σ​i,t​​​(​h​ i​ t​)​​[​a​​ ∗​]​)​.​

We note that

(6)	 ​​u​ n​ B​  ≥ ​ u​ n​ R​ + ​γ​n​​ c  for all n  ∈ ​ {1, … , N − 1}​.​

This inequality holds because, in any period where a rational player takes an action 
other than ​​a​​ ∗​​, a bad player’s payoff exceeds her payoff by at least ​c​. So if a rational 
player takes an action other than ​​a​​ ∗​​ in period ​t​ with probability

12 More precisely, we show that rational players take actions other than ​​a​​ ∗​​ with frequency at most 
​​(​(1 + c)​ / c)​ ​Δ​q,​q​​ −​​​​. Since the probability that a given player is rational is ​1 − z​ and the payoff impact of 
switching a single player’s action from ​​a​​ ∗​​ to another action is at most ​b​, we see that ​​|U − ​U​​ ∗​|​​ is at most 
​​(1 − z)​b​(​(1 + c)​ / c)​ ​Δ​q,​q​​ −​​​​.
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	​ ​γ​n,t​​  = ​ ∑ 
​h​ i​ t​
​ 

 
 ​​ ​ Pr​​ σ​​(​h​ i​ t​ | ​θ​i​​  =  R, ​​n​​)​​(1 − ​σ​i,t​​​(​h​ i​ t​)​​[​a​​ ∗​]​)​,​

a bad player’s expected period-​t​ payoff exceeds hers by at least ​γ ​n, t​​  c​​​​, and taking 
a discounted sum over periods implies that a bad player’s repeated game payoff 
exceeds a rational player’s by at least ​​(1 − δ)​​∑ t=1​ ∞ ​​​δ​​ t−1​ ​γ​n,t​​ c  = ​ γ​n​​ c​.

Combining the rational player payoff bound from Lemma 1 with (6), and recall-
ing that ​​u​ 0​ B​  =  1​ by convention, we obtain

	​ ​Δ​q,​q​​ −​​​  ≥ ​  ∑ 
n=0

​ 
N−1

​​ ​q​n​​​(​u​ n​ B​ − ​u​ n​ R​)​  ≥ ​  ∑ 
n=1

​ 
N−1

​​ ​q​n​​​(​u​ n​ B​ − ​u​ n​ R​)​  ≥ ​  ∑ 
n=1

​ 
N−1

​​ ​q​n​​ ​γ​n​​ c.​

Now define ​γ  = ​ ∑ n=0​ N−1 ​​​q​n​​ ​γ​n​​​. Since ​​q​0​​  = ​ q​0​​ − ​q​ 0​ −​  ≤ ​ Δ​q,​q ′ ​​​​, we have

	​ γ  = ​ q​0​​ ​γ​0​​ + ​ ∑ 
n=1

​ 
N−1

​​ ​q​n​​ ​γ​n​​  ≤ ​ Δ​q,​q​​ −​​​ + ​ 1 _ c ​ ​Δ​q,​q​​ −​​​  = ​  1 + c _ c  ​ ​Δ​q,​q​​ −​​​.​

Finally, the ex ante probability that a given player takes an action other than ​​a​​ ∗​​ 
in period ​t​ equals ​​(1 − z)​​∑ n=0​ N−1 ​​​q​n​​ ​γ​n,t​​​. Hence, (per-capita) expected social welfare in 
period ​t​ differs from ​​U​​ ∗​​ by at most ​​(1 − z)​b​∑ n=0​ N−1 ​​​q​n​​ ​γ​n,t​​​. Therefore, ex ante expected 
welfare differs from ​​U​​ ∗​​ at most by

	​ ​(1 − z)​b​(1 − δ)​​ ∑ 
t=1

​ 
∞

 ​​ ​δ​​ t−1​ ​ ∑ 
n=0

​ 
N−1

​​ ​q​n​​ ​γ​n,t​​  = ​ (1 − z)​bγ  ≤ ​ (1 − z)​b ​ 1 + c _ c  ​ ​Δ​q,​q​​ −​​​.​

This yields (4), and taking ​​Δ​q,​q​​ −​​​  →  0​ yields (5). ∎

Let us clarify the difference between dominant and pairwise dominant actions 
under the conditions on payoffs required by Theorem 1. If an action ​​a​​ ∗​​ is strictly 
dominant, the minimum payoff gain from taking ​​a​​ ∗​​ rather than another action is 
bounded away from ​0​ as ​N  →  ∞​, and the total externality ​b​ imposed by switching 
from ​​a​​ ∗​​ to another action is bounded as ​N  →  ∞​, then ​​a​​ ∗​​ is pairwise dominant for 
sufficiently large ​N​, and thus Theorem 1 implies that ​​a​​ ∗​​ is almost always played. 
But the converse is false: even when ​N  →  ∞​ while ​c​ and ​b​ remain bounded (so the 
payoff conditions of Theorem 1 are satisfied), a pairwise dominant action does not 
need to be dominant. Therefore, Theorem 1 applies in some games without a strictly 
dominant action.

For example, suppose that ​A  = ​ {​a​​ 0​, ​a​​ 1​, ​a​​ ∗​}​​ and payoffs are given by

    ​    u​(​a​i​​, ​a​−i​​)​  = ​​
⎧
 

⎪

 ⎨ 
⎪
 

⎩
​​​
1 / 2

​ 
if  ​a​i​​  = ​ a​​ ∗​

​  1​  if  ​a​i​​  = ​ a​​ 1​  and  ​a​j​​  = ​ a​​ 0​  for all j  ≠  i​    
0

​ 
otherwise.

  ​​​

Note that ​​a​​ ∗​​ is pairwise dominant with ​c  =  1 / 2​, since whenever some player 
takes ​​a​​ ∗​​ and another player takes a different action, the first player’s payoff is ​1 / 2​ 
and the second player’s payoff is ​0​; however, ​​a​​ ∗​​ is not dominant, because ​​a​i​​  = ​ a​​ 1​​ 
is the unique best response when ​​a​j​​  = ​ a​​ 0​​ for all ​j  ≠  i​. Moreover, ​b​ is also equal 
to ​1 / 2​: switching a player’s action from ​​a​​ ∗​​ to ​​a​​ 1​​ changes her own payoff by ​1 / 2​ 
without affecting anyone else’s payoff; and switching her action from ​​a​​ ∗​​ to ​​a​​ 0​​ 
decreases her own payoff by ​1 / 2​, while either affecting no one else’s payoff or 
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increasing a single other player’s payoff by ​1​. Thus, assuming a smooth distribution 
of bad types, Theorem 1 implies that ​​a​​ ∗​​ is almost always played.

However, when ​N  →  ∞​ a pairwise dominant action ​​a​​ ∗​​ does satisfy the weaker 
condition that, for any other action ​a​, ​​a​​ ∗​​ is a strictly better-response than ​a​ against 
any mixture of ​a​ and ​​a​​ ∗​​ actions.

PROPOSITION 1: Fix a sequence of stage games ​​​(N, A, u)​​N​​​ with a pairwise domi-
nant action ​​a​​ ∗​​ satisfying ​​lim inf​N→∞​​ ​c​N​​ > 0​ and ​​lim sup​N→∞​​ ​b​N​​ < ∞​. There exists ​​
N 
–
 ​​ such that, for all ​N  > ​ N 

–
 ​​, all ​a  ∈  A​, and all ​M  ∈ ​ {0, … , N − 1}​​, we have

	​ u​(​a​​ ∗​, ​​(a)​​​ M​, ​​(​a​​ ∗​)​​​ N−M−1​)​  >  u​(a, ​​(a)​​​ M​, ​​(​a​​ ∗​)​​​ N−M−1​)​,​

where ​​​(a)​​​ M​​ is the vector of ​M​ ​a​ terms and ​​​(​a​​ ∗​)​​​ N−M−1​​ is the vector of ​​(N − M − 1)​​ 
​​a​​ ∗​​ terms.

PROOF:
The proof follows easily from the definitions of ​c​ and ​b​ and is thus omitted.  

We also note that Theorem 1 generalizes to stochastic games where the payoff 
function ​u​ depends on the profile of players’ histories ​​h​​ t​  = ​​ (​h​ i​ t​)​​i∈I​​​. Specifically, 
letting ​​u​​ t​​(a; ​h​​ t​)​​ denote the period-​t​ stage-game payoff at action profile ​a​ and history 
profile ​​h​​ t​​, assume that

(7)  ​​u​​ t​​(​a​​ ∗​, a, ​a​−ij​​; ​h​​ t​)​ − ​u​​ t​​(a, ​a​​ ∗​, ​a​−ij​​; ​h​​ t​)​  >  c,  ∀a  ​(≠  ​a​​ ∗​)​  ∈  A, ​a​−ij​​  ∈  ​A​​ ​(N−2)​​, t, ​h​​ t​,​

and let

  ​  b =  ​  sup​ 
​a​i​​∈A,​a​−i​​∈​A​​ ​(N−1)​​,t,​h​​ t​

​​​| ​ ∑ 
j=1

​ 
N

 ​​​(​u​ j​ t​​(​a​1​​, … , ​a​i−1​​, ​a​i​​, ​a​i+1​​, … , ​a​N​​; ​h​​ t​)​ 

	 − ​u​ j​ t​​(​a​1​​, … , ​a​i−1​​, ​a​ i​ ∗​, ​a​i+1​​, … , ​a​N​​; ​h​​ t​)​)​|​.​
With these values for ​c​ and ​b​, Theorem 1 holds verbatim for stochastic games, by 
the same proof.

Example 2 (Non-Uniform Matching): Consider again the prisoner’s dilemma 
with anonymous random matching and payoff matrix (3), but now allow the match-
ing process to be non-uniform, non-stationary, and history-dependent. Specifically, 
assume that, given history profile ​​h​​ t​  = ​​ (​h​ i​ t​)​​i​​​ at the beginning of period ​t​, players ​i​ 
and ​j​ meet in period ​t​ with probability ​​ψ​ij​​​(​h​​ t​)​​. Continue to assume that the matching 
process is symmetric across players ex ante: for any permutation ​π​ on ​I​, we have 
​​ψ​ij​​​(​​(​h​ k​ t ​)​​k​​)​  = ​ ψ​π​(i)​π​(j)​​​​(​​(​h​ π​(k)​​ 

t  ​)​​k​​)​​ for all ​​(i, j, t, ​h​​ t​)​​. In order for the action ​D​ to remain 
pairwise dominant, we must assume that the meeting probabilities between any two 
players cannot be too unequal: otherwise, some player who takes ​D​ could receive 
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a lower payoff than another player who takes ​C​, if the latter player is much more 
likely to meet a partner who takes ​C​. In particular, letting

	​ R ≔  ​ 
​sup​i, j,t,​h​​ t​​​ ​ψ​ij​​​(​h​​ t​)​

  ___________  
​inf​i, j,t,​h​​ t​​​ ​ψ​ij​​​(​h​​ t​)​ ​,​

we assume that

	​ ​R​​ 2​  <  1 + G.​

This assumption implies that action ​D​ remains pairwise dominant, so Theorem 1 
holds with the appropriate choice of ​c  >  0​.13

(To see why ​D​ is pairwise dominant whenever ​​R​​ 2​  <  1 + G​, suppose player ​i​ 
takes ​D​, player ​j​ takes ​C​, and fraction ​​α​−ij​​​ of the remaining players take ​C​. Note 
that, for any set of players ​ ⊂ I​, any ​​h​​ t​​-measurable events  and ​​ ′ ​​, and any ​k ∈ I​, 
we have

	​ 1 / R  ≤  ​ 
Pr​(​μ​k​​​(t)​  ∈   | )​

  _____________  
Pr​(​μ​k​​​(t)​  ∈   | ​ ′ ​)​ ​   ≤  R.​

Hence, by Bayes’ rule, the probability that player ​i​ meets an opponent who takes ​C​ 
is at least ​​α​−ij​​ / R​, and the probability that player ​j​ meets an opponent who takes ​C​ 
is at most ​min​{R​α​−ij​​, 1}​​. So the difference between player ​i​’s payoff and player ​j​’s 
payoff is at least

	​ ​ 
​α​−ij​​ _ 
R  ​ + ​(1 − ​ 

​α​−ij​​ _ 
R  ​)​ ​  L _ 

1 + G + L ​ − min​{R​α​−ij​​, 1}​ ​  1 + L _ 
1 + G + L ​.​

This expression is strictly positive whenever ​​R​​ 2​  <  1 + G​.14)

IV.  General Games

The payoff bounds established in Lemma 1 can also be useful in games without 
a pairwise dominant action. As an example of such an analysis, in this section we 
derive an implication of Lemma 1 involving the concave closure of the payoff func-
tion, and use it to show that industry profits in linear Cournot oligopoly converge to 
zero as the number of firms increases.

Fixing a strategy profile ​σ​, let ​​α​t​​​(σ)​  ∈  Δ​(​A​​ N​)​​ denote the resulting distribution 
over action profiles in period ​t​. Let ​α​(σ)​  = ​ (1 − δ)​​∑ t=1​ ∞ ​​​δ​​ t−1​ ​α​t​​​(σ)​  ∈  Δ​(​A​​ N​)​​. That 
is, for each action profile ​𝐚  ∈ ​ A​​ N​​, ​α​(σ)​​ is the “discounted frequency” with which ​𝐚​ 
is played under ​σ​.

Next, let ​U​(𝐚)​  = ​ (1 / N)​​∑ i=1​ N  ​​​u​i​​​(𝐚)​​ denote social welfare at action profile ​𝐚  ∈ ​ A​​ N​​, 
and let ​U​(α)​  = ​ ∑ 𝐚∈​A​​ N​​ 

  ​​ α​[𝐚]​U​(𝐚)​​ denote expected social welfare at action profile dis-

tribution ​α  ∈  Δ​(​A​​ N​)​​. Let ​​U 
–
 ​  :  Δ​(​A​​ N​)​  → ​ [0, 1]​​ denote the concavification of ​U​: that 

13 And with the same value of ​b​ as in the uniform random matching case: ​b  =  ​(1 + ​|G − L|​)​ / ​(1 + G + L)​​.
14 This follows from straightforward algebra, considering separately the cases where ​R​α​−ij​​  <  1​ and ​R​α​−ij​​  ≥  1​.
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is, the smallest concave function ​​U 
–
 ​​ that satisfies ​​U 

–
 ​​(α)​  ≥  U​(α)​​ for all ​α  ∈  Δ​(​A​​ N​)​​. 

Finally, let ​​ u ¯ ​  :  Δ​(​A​​ N−1​)​  → ​ [0, 1]​​ denote the convexification of the function 
​u​(​a​​ ∗​, ⋅)​  :  Δ​(​A​​ N−1​)​  → ​ [0, 1]​​ given by ​u​(​a​​ ∗​, ​α​−i​​)​  = ​ ∑ ​a​−i​​∈​A​​ ​(N−1)​​​ 

  ​​ ​ α​−i​​​[​a​−i​​]​u​(​a​​ ∗​, ​a​−i​​)​​: 
that is, the greatest convex function ​​ u ¯ ​​ that satisfies ​​ u ¯ ​​(​a​​ ∗​, ​α​−i​​)​  ≤  u​(​a​​ ∗​, ​α​−i​​)​​ for 
all ​​α​−i​​  ∈  Δ​(​A​​ N−1​)​​.

PROPOSITION 2: For any anonymous game and any symmetric Nash equilib-
rium ​σ​, we have

	​​ U 
–
 ​​(α​(σ)​)​  ≥ ​  u ¯ ​​(​α​−i​​​(σ)​)​ − ​(1 − z)​ ​Δ​q,​q​​ −​​​.​

Proposition 2 follows from the social welfare bound of Lemma 1, because (as the 
proof shows) ​​U 

–
 ​​(α​(σ)​)​  ≥  U​ and ​​ u ¯ ​​(α​(σ)​)​  ≤ ​ ∑ n=0​ N  ​​​ p​n​​ ​u​ n​ B​​.

PROOF:
Let ​​α​t​​  = ​ α​t​​​(σ)​​ and ​α  = α​(σ)​​. We have

	​​ U 
–
 ​​(α)​  = ​ U 

–
 ​​(​(1 − δ)​​ ∑ 

t=1
​ 

∞ 
 ​​​δ​​ t−1​ ​α​t​​)​  ≥ ​ (1 − δ)​​ ∑ 

t=1
​ 

∞ 
 ​​​δ​​ t−1​​U 

–
 ​​(​α​t​​)​ 

	 ≥ ​ (1 − δ)​​ ∑ 
t=1

​ 
∞ 

 ​​ ​δ​​ t−1​ U​(​α​t​​)​  =  U,​

where the first inequality follows because ​​U ¯ ​​ is concave and the second follows 
because ​​U 

–
 ​​ is everywhere greater than ​U​. Similarly, we have

​​ u ¯ ​​(​α​−i​​)​  = ​  u ¯ ​​(​a​​ ∗​, ​(1 − δ)​​ ∑ 
t=1

​ 
∞ 

 ​​ ​δ​​ t−1​ ​α​−i,t​​)​  ≤ ​ (1 − δ)​​ ∑ 
t=1

​ 
∞ 

 ​​ ​δ​​ t−1​ ​ u ¯ ​​(​a​​ ∗​, ​α​−i,t​​)​ 

	 ≤ ​ (1 − δ)​​ ∑ 
t=1

​ 
∞ 

 ​​ ​δ​​ t−1​u​(​a​​ ∗​, ​α​−i,t​​)​  ≤ ​  ∑ 
n=0

​ 
N

  ​​​p​n​​ ​u​ n​ B​,​

where the first inequality follows because ​​ u 
¯ ​​ is convex, the second follows because ​​ u ¯ ​​ 

is everywhere less than ​u​(​a​​ ∗​, ⋅ )​​, and the third follows because of our convention 
that ​​u​ 0​ B​  =  1​. The result follows from combining these inequalities with the social 
welfare bound of Lemma 1. ∎ 

EXAMPLE 3 (Linear Cournot Oligopoly): Suppose that in every period 
each of ​N​ firms produces quantity ​​a​i​​  ≥  0​ and payoffs are given by ​​u​i​​​(​a​i​​, ​a​−i​​)​  
=  max​{1 − ​∑ j=1​ N  ​​​a​j​​, 0}​ ​a​i​​​.15 We assume that bad types always take the static Nash 
equilibrium action, so ​​a​​ ∗​  =  1 / ​(N + 1)​​. (An interpretation is that bad types are not 
aware that the other firms are trying to collude, and thus expect the static equilib-

15 We thus normalize marginal costs to zero, and assume that prices are bounded by zero to keep payoffs 
bounded. The assumption that the kink in the demand curve is located at marginal cost is not essential. Also, as our 
proofs have covered only finite games (although they extend to the case where ​A​ is a compact metric space and ​u​ is 
continuous), the set of feasible quantity levels may be taken to be finite.
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rium to be played.) We also assume that the distribution of the number of bad types 
is smooth. Under these assumptions, expected industry profits ​​∑ i=1​ N  ​​​U​i​​​ converge to 
zero along any sequence of Nash equilibria as ​N  →  ∞​ (regardless of how ​δ​ may 
vary with ​N​, including the case where ​​(1 − δ)​N  →  0​).16

To see this, first note that ​​u​ n​ B​  ∈ ​ [0, 1 / ​(N + 1)​]​​ for each ​n​. This implies that ​​Δ​q,​q​​ −​​​​ 
can be replaced by ​​Δ​q,​q​​ −​​​ / ​(N + 1)​​ in the statements of Lemma 1 and Proposition  
2.17 Moreover, it is without loss to restrict attention to symmetric equilibria in which 
industry output ​​∑ i​ 

  ​​ ​a​i​​​ is bounded by ​1​ with probability ​1​.18 Note that the proof of 
Proposition 2 involves only on-path action profiles, so the resulting payoff bound 
continues to apply if we restrict attention to output profiles where ​​∑ i​ 

  ​​ ​a​i​​  ≤  1​ when 
defining ​​U 

–
 ​​ and ​​ u ¯ ​​. With this restriction, industry profits are concave in ​​∑ i​ 

  ​​ ​a​i​​​, and 
hence in ​a​. Therefore, ​​U 

–
 ​​(α)​  =  U​(α)​​ for all ​α  ∈  Δ​(​A​​ N​)​​. Similarly, ​u​(​a​​ ∗​, ​a​−i​​)​  

= ​ (1 − ​a​​ ∗​ − ​∑ j≠i​   ​​  ​a​j​​)​ ​a​​ ∗​​, which is linear in ​​∑ j≠i​ 
  ​​ ​ a​j​​​, and hence in ​​a​−i​​​. Therefore, 

​​ u ¯ ​​(​α​−i​​)​  =  u​(​a​​ ∗​, ​α​−i​​)​​ for all ​​α​−i​​  ∈  Δ​(​A​​ N−1​)​​. Letting ​α  = α​(σ)​  ∈  Δ​(​A​​ N​)​​, 
Proposition 2 now implies that

	​ U​(α)​  ≥  u​(​a​​ ∗​, ​α​−i​​)​ − ​Δ​q,​q​​ −​​​ / ​(N + 1)​.​

To complete the proof, let ​​a –​  = ​ E​​ α​​[​∑ i=1​ N  ​​​a​i​​]​​. Since ​​(1 − ​∑ i=1​ N  ​​​a​i​​)​​∑ i=1​ N  ​​​a​i​​​ is con-
cave in ​​∑ i=1​ N  ​​​a​i​​​, we have

	​ U​(α)​  ≤ ​  1 _ 
N ​​(1 − ​a –​)​​a –​.​

Similarly, since ​​E​​ α​​[​∑ j≠i​   ​​​ a​j​​]​  =  ((N − 1)/N)​a –​​ by symmetry, we have

	​ u​(​a​​ ∗​, ​α​−i​​)​  = ​ (1 − ​ N − 1 _ 
N  ​ ​a –​ − ​  1 _ 

N + 1 ​)​ ​  1 _ 
N + 1 ​.​

We conclude that

​​(1 − ​ N − 1 _ 
N

  ​​a –​ − ​  1 _ 
N + 1 ​)​​  1 _ 

N + 1 ​ − ​ 1 _ 
N

 ​​(1 − ​a –​)​​a –​  ≤ ​   1 _ 
N + 1 ​ ​Δ​q,​q​​ −​​​,  or​

	​ 1 − ​ N − 1 _ 
N  ​​a –​ − ​  1 _ 

N + 1 ​ − ​ N + 1 _ 
N  ​​(1 − ​a –​)​​a –​  ≤ ​ Δ​q,​q​​ −​​​.​

16 In this example we consider total payoffs rather than per-capita payoffs, since with a fixed demand curve the 
maximum feasible per-firm profits go to zero as ​N  →  ∞​.

17 In particular, the last step of the derivation of (2) uses the fact that ​​u​ n​ B​  ∈  ​[0, 1]​​ to conclude that 
​​∑ n=0​ N−1 ​​​q​n​​ ​u​ n​ R​  ≥  ​∑ n=0​ N−1 ​​​q​n​​ ​u​ n​ B​ − ​Δ​q,​q​​ −​​​​; if the upper bound for ​​u​ n​ B​​ is replaced by ​1 / ​(N + 1)​​, the corresponding conclu-
sion is ​​∑ n=0​ N−1 ​​​q​n​​ ​u​ n​ R​  ≥  ​∑ n=0​ N−1 ​​​q​n​​ ​u​ n​ B​ − ​Δ​q,​q​​ −​​​ / ​(N + 1)​​.

18 This follows by considering the relaxed problem where the only available strategies are the rational-type 
equilibrium strategy and the bad-type strategy. In this relaxed problem, if industry output ever exceeds ​1​, the output 
of rational types can be reduced so that industry output exactly equals ​1​ without affecting anyone’s payoff from 
following either strategy.
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This inequality implies that if ​​lim​N→∞​​ ​Δ​q,​q​​ −​​​  =  0​ then ​​lim​N→∞​​​a –​  =  1​ as well. 
(Otherwise, the left-hand side would not converge to ​0​.) Finally, industry profits 
equal ​NU​(α)​  ≤ ​ (1 − ​a –​)​​a –​​, which converges to zero when ​​lim​N→∞​​​a –​  =  1​.

V.  Discussion

We conclude by assessing the prospects for extending our results to settings with 
multiple types, to mechanism design problems, and to non-anonymous games.

A. Multiple Commitment Types

Our results extend straightforwardly to the case with one rational type 
and ​K​ commitment types, each of whom is committed to an arbitrary repeated 
game strategy ​​σ​​ k​​. In this case, let the vector ​𝐧  ∈ ​​ {0, … , N}​​​ K​​ count the real-
ized number of players of each commitment type, and let ​​q​𝐧​​​ be the probability 
of ​𝐧​ conditional of the event that a given player is rational. For each commit-
ment strategy ​​σ​​ k​​, let ​​q​ 𝐧​ ​σ​​ k​​​ denote the probability that the realized number of play-
ers of each commitment type differs from ​𝐧​ in that one fewer player is committed 
to  ​​σ​​ k​​. Note that, if a single rational player deviates by playing ​​σ​​ k​​, then ​​q​ 𝐧​ ​σ​​ k​​​ is the 
probability that number of players who play each commitment strategy is given 

by ​𝐧​. Let ​​Δ​q,​q​​ ​σ​​ k​​​​  = ​ max​⊂​​{0, … ,N}​​​ K​​​​|​∑ 𝐧∈​   ​​​ (​q​𝐧​​ − ​q​ 𝐧​ ​σ​​ k​​)​|​​. A straightforward extension 

of Lemma 1 then implies that ​​∑ 𝐧​ 
  ​​​q​𝐧​​ ​u​ 𝐧​ R​  ≥ ​ ∑ 𝐧​   ​​​q​𝐧​​ ​u​ 𝐧​ ​σ​​ k​​ − ​Δ​q,​q​​ ​σ​​ k​​​​​ for every commitment 

strategy ​​σ​​ k​​, where the sum is taken over all vectors ​𝐧​, and ​​u​ 𝐧​ ​σ​​ k​​​ is the expected utility 
of the ​​σ​​ k​​ commitment type conditional on vector ​𝐧​. Finally, in games with a pair-
wise dominant action ​​a​​ ∗​​, Theorem 1 holds with ​​Δ​q,​q​​ Always ​a​​ ∗​​​​​ in place of ​​Δ​q,​q​​ −​​​​ (by the 
same proof), with the slight modification that an additional ​+ bz​ term must be added 
to the right-hand sides of equations (4) and (5) to reflect the fact that commitment 
types other than the Always ​​a​​ ∗​​ type can take actions besides ​​a​​ ∗​​.

Although our results extend to  the case with multiple commitment types, we 
have focused on the case with a single commitment type because calculating ​​Δ​q,​q​​ ​σ​​ k​​​​​ 
(the total variation distance between two ​K​-dimensional probability distributions) is 
much simpler when ​K  =  1​. However, in two leading special cases computing ​​Δ​q,​q​​ ​σ​​ k​​​​​ 
for arbitrary ​K​ is not much harder than it is when ​K  =  1​. The first is when types are 
independent across players: in this case, to compute ​​Δ​q,​q​​ ​σ​​ k​​​​​ we need only keep track 
of the number of ​​σ​​ k​​ commitment types, as in the ​K  =  1​ case. The second is when 
types can be correlated but, conditional on the event that a given set of players are 
not rational, their specific commitment types are determined independently: in this 
case, to compute ​​Δ​q,​q​​ ​σ​​ k​​​​​ we need only keep track of the number of ​​σ​​ k​​ commitment 
types and the number of rational types, and thus calculate the distance between 
two ​2​-dimensional distributions.

B. Multiple Rational Types, Incentive Compatibility, and Mechanism Design

Lemma 1 can also be extended to settings with multiple rational types. 
Suppose there are ​K​ rational types and (for simplicity) no commitment types. 
Let ​𝐧  ∈ ​​ {0, … , N}​​​ K​​ count the realized number of players of each type. Fixing  
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a pair of types ​​(​θ​i​​, ​​θ ˆ ​​i​​)​​ and conditioning on the event that a given player has type ​​θ​i​​​, 
let ​​q​ 𝐧​ ​θ​i​​​​ be the probability of ​𝐧​, let ​​q​ 𝐧​ ​θ​i​​,​​θ ˆ ​​i​​​​ denote the probability that the realized num-

ber of players of each type differs from ​𝐧​ in that one fewer player has type ​​​θ ˆ ​​i​​​ and 

one more player has type ​​θ​i​​​, and let ​​Δ​​q​​ ​θ​i​​​,​q​​ ​θ​i​​,​​θ ˆ ​​i​​​​​  = ​ max​⊂​​{0,… ,N}​​​ K​​​​|​∑ 𝐧∈​   ​​​ (​q​ 𝐧​ ​θ​i​​​ − ​q​ 𝐧​ ​θ​i​​,​​θ ˆ ​​i​​​)​|​​. 
Next, fixing a symmetric Nash equilibrium, let ​​u​ 𝐧​ ​θ​i​​​​ denote the equilibrium expected 
utility of a type ​​θ​i​​​ player conditional on the vector ​𝐧​. Let ​​u​ 𝐧​ ​θ​i​​,​​θ ˆ ​​i​​​​ denote the expected 
utility that a type ​​θ​i​​​ player receives from following the equilibrium strategy  
of a type ​​​θ ˆ ​​i​​​ player, conditional on ​𝐧​. (Put differently, ​​u​ 𝐧​ ​θ​i​​,​​θ ˆ ​​i​​​​ is the expected utility 
according to the type ​​θ​i​​​ utility function of the equilibrium outcome obtained by type ​​​θ ˆ ​​i​​​ 
conditional on ​𝐧​.) Lemma 1 then implies that ​​∑ 𝐧​ 

  ​​​q​ 𝐧​ ​θ​i​​​ ​u​ 𝐧​ ​θ​i​​​  ≥ ​ ∑ 𝐧​   ​​​q​ 𝐧​ ​θ​i​​​ ​u​ 𝐧​ ​θ​i​​,​​θ ˆ ​​i​​​ − ​Δ​​q​​ ​θ​i​​​,​q​​ ​θ​i​​,​​θ ˆ ​​i​​​​​​.
Of course, we have simply shown that this inequality is one implication of incen-

tive compatibility: the fact that a type ​​θ​i​​​ player prefers to follow her own equi-
librium strategy rather than the equilibrium strategy of type ​​​θ ˆ ​​i​​​. But it may be a 
useful implication in some mechanism design problems. For example, this form 
of Lemma 1 can be used to give an elementary proof of a version of Mailath and 
Postlewaite’s (1990) impossibility theorem for large-population public good pro-
vision, assuming that the type space is discrete and the prior is symmetric and sat-
isfies ​​lim​N→∞​​ ​Δ​​q​​ ​θ​i​​​,​q​​ ​θ​i​​,​​θ ˆ ​​i​​​​​ = 0​ for all ​​(​θ​i​​, ​​θ ˆ ​​i​​)​​ but is not necessarily independent. (In 
contrast, Mailath and Postlewaite’s proof requires independence, as do all other 
proofs of their result that we aware of, such as that of al-Najjar and Smorodinsky 
2000.19)

The proof can be easily sketched: recall that a type ​​θ​i​​​ player receives util-
ity ​​θ​i​​ y − ​t​i​​​, where ​y  ∈ ​ {0, 1}​​ is the public provision level and ​​t​i​​​ is the player’s 

payment. Thus, ​​∑ 𝐧​ 
  ​​​q​ 𝐧​ ​θ​i​​​​(​u​ 𝐧​ ​θ​i​​,​​θ ˆ ​​i​​​ − ​u​ 𝐧​ ​θ​i​​​)​​ equals the difference between the expected pay-

ment of a type ​​θ​i​​​ player and a type ​​​θ ˆ ​​i​​​ player, according to the beliefs of a type ​​θ​i​​​ 
player. Taking ​​​θ ˆ ​​i​​​ to be the lowest type and normalizing this type to zero, individ-
ual rationality for type ​​​θ ˆ ​​i​​​ implies that this type makes non-positive payments, so 
​​∑ 𝐧​ 

  ​​​q​ 𝐧​ ​θ​i​​​​(​u​ 𝐧​ ​θ​i​​,0​ − ​u​ 𝐧​ ​θ​i​​​)​​ weakly exceeds the expected payment of a type ​​θ​i​​​ player 
according to her own beliefs, ​t​(​θ​i​​)​​. Thus, for each type ​​θ​i​​​, Lemma 1 implies that 
​t​(​θ​i​​)​ ≤ ​Δ​​q​​ ​θ​i​​​,​q​​ ​θ​i​​,0​​​​.20 Since ​​lim​N→∞​​ ​Δ​​q​​ ​θ​i​​​,​q​​ θ​i​​ ,​​​0​​​ = 0​ for each ​​θ​i​​​, we have ​​lim​N→∞​​ t​(​θ​i​​)​ = 0​ 
for each ​​θ​i​​​. Taking an expectation over ​​θ​i​​​ and applying the law of iterated expec-
tations then implies that ex ante expected per-capita payments converge to zero 
as ​N  →  ∞​. Therefore, if the per-capita cost of providing the good is positive and 
constant in ​N​ (as Mailath and Postlewaite assume), the probability that it is provided 
also converges to zero as ​N  →  ∞​.

19 Independence (combined with full support) is much stronger than our condition that ​​lim​N→∞​​ ​Δ​​q​​ ​θ​i​​​,​q​​ ​θ​i​​,​​θ ˆ ​​i​​​​​ = 0​ for 
all ​​(​θ​i​​, ​​θ ˆ ​​i​​)​​. For example, our condition is satisfied whenever types are conditionally independent with full support 
(given some common random variable). On the other hand, Mailath and Postlewaite allow continuous types and an 
asymmetric prior. We can allow continuous types if the prior satisfies an appropriate continuity condition, but sym-
metry is crucial for our approach. Also, while Mailath and Postlewaite’s proof requires independence, in Appendix 
2 of their paper they present an example with correlated types, the logic of which is similar to that of our result.

20 Recall that Lemma 1 assumes bounded utilities, which in the current context implies bounded transfers. 
This explains why mechanisms like those of Crémer and McLean (1988) are not effective. Note that Mailath and 
Postlewaite’s Appendix 2 example similarly assumes bounded transfers.
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C. Non-Anonymous Games

Our analysis depends critically on the anonymity assumption: a player’s payoff is 
a function of her own action and the number of opponents taking each action. This 
assumption is what makes the distribution of the number of bad types so important. 
To apply our approach in more general games, one would need to find some sta-
tistic ​ω​ of the vector of players’ types ​​​(​θ​i​​)​​i∈I​​​ with the properties that (1) a player’s 
payoff depends only on her own action and type and ​ω​, and (2) the distribution of ​ω​ 
is not very responsive to a change in a single player’s type. In anonymous games, ​ω​ 
is the number of players of each type. In games with multiple populations (e.g., 
buyers and sellers) where players are anonymous within each population (as in the 
“semi-anonymous” games studied by Kalai 2004), ​ω​ could be taken to be the num-
ber of players of each type in each population. Whether there are other interesting 
classes of games where such a statistic can be found is an open question.

An important example to which our results do not directly extend is the repeated 
prisoner’s dilemma with non-anonymous random matching (where players observe 
their partners’ identities before taking actions). In this game, for any ​N​ and any 
distribution of the number of bad types, it is straightforward to support cooperation 
among rational types when ​δ​ is sufficiently high: simply prescribe “bilateral grim 
trigger strategies,” where each player views herself as playing a separate 2-player 
repeated game with each opponent and plays grim trigger in all of them.

However, some trace of the negative conclusion of Theorem 1 does survive in 
non-anonymous random matching games. Bilateral grim trigger strategies are robust 
to allowing bad types but support cooperation only if ​​(1 − δ)​N  →  0​, and are thus 
ineffective in very large populations. In contrast, Kandori (1992) and Ellison (1994) 
showed that contagion strategies support cooperation whenever ​​(1 − δ)​log N  →  0​; 
however, such strategies are not robust to bad types. In a companion paper (Sugaya 
and Wolitzky 2020), we generalize this observation to show that introducing bad 
types logarithmically decreases the maximum population size for which coopera-
tion is sustainable in the repeated prisoner’s dilemma with non-anonymous random 
matching.
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