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We study the repeated prisoner’s dilemmawith randommatching, a ca-
nonical model of community enforcement with decentralized infor-
mation. We assume that (1) with small probability, each player is a “bad
type” who never cooperates, (2) players observe and remember their
partners’ identities, and (3) each player interacts with others frequently
but meets any particular partner infrequently. We show that these as-
sumptions preclude cooperation in the absence of explicit communica-
tion but that introducing within-match cheap talk communication re-
stores cooperation. Thus, communication is essential for community
enforcement.
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He that filches from me my good name
Robs me of that which not enriches him
And makes me poor indeed. —Othello, 3.3
I. Introduction
Everyday experience and a wealth of evidence from across the social sci-
ences indicate that communication about the reputation of third parties
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is a keymechanism of social cooperation.1 No one doubts that if theymis-
behave in a relationship with one (trading, business, romantic) partner,
word might spread and they may end up being excluded from valuable
future relationships. The threat of communication tomorrow and ostra-
cism the day after keeps us on good behavior today.
While the role of communication in the community enforcement of

cooperation seems familiar, it is not well captured by existing game the-
ory models of cooperation in large societies. In the classic community en-
forcement models of Kandori (1992) and Ellison (1994), where players
observe only their partners’ actions, cooperation is supported without
explicit communication by relying on contagion strategies, a form of col-
lective punishment: whenever a player sees anyone defect, she starts de-
fecting against everyone. Contagion strategies cause the fastest possi-
ble breakdown of cooperation following a defection and therefore the
harshest punishment for defection. Why then do real-world societies of-
ten rely on communication and individualized punishment rather than
contagion-like strategies? Are communication and individualized pun-
ishment truly necessary for supporting cooperation in large communi-
ties, or are they merely quirks of the particular cooperative equilibrium
in which we happen to find ourselves?
This paper establishes the necessity of communication and individual-

ized punishment in a version of the standard community enforcement
model with more realistic assumptions. First, with small probability, each
player is a “bad type” who always defects. In a companion paper (Sugaya
and Wolitzky 2020), we show that in games with anonymous players—
such as the anonymous prisoner’s dilemma studied by Kandori and Elli-
son—this assumption completely precludes cooperation in large socie-
ties, intuitively because collective punishment is too likely to be triggered
in the presence of bad types. We therefore consider here the more real-
istic case where players observe (and remember) their partners’ identi-
ties, so that individualized punishments (i.e., strategies that condition
on the partner’s identity) are technologically feasible. With observable
identities, the presence of a few bad types obviously poses no obstacle
to cooperation when each pair of players interacts frequently, because
players can treat the overall repeated game as a collection of two-player
1 Many references can be given. For instance, see Grief (1993), Dixit (2003), and Tadelis
(2016) in economics; Raub and Weesie (1990) in sociology; Ostrom (1990) and Ellickson
(1994) in political science and law; Gluckman (1963) in anthropology; Noon andDelbridge
(1993) in organizational behavior; Baumeister, Zhang, and Vohs (2004), Dunbar (2004),
and Feinberg, Willer, and Schultz (2014) in psychology; and Sommerfeld et al. (2007) in
evolutionary biology. Many of these papers refer to communication about third parties’ be-
havior as “gossip.” This terminology accords with the computer science literature on gossip
protocols (Hedetniemi, Hedetniemi, and Liestman 1988; Shah 2009), which we draw on.
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games, cooperating with each partner if and only if he has behaved well in
their bilateral relationship. We instead assume that, while each player in-
teracts with others frequently (i.e., the discount factor d is close to one),
she meets any particular partner infrequently (i.e., the population size N
is much larger than 1=ð1 2 dÞ). In sum, we consider community enforce-
ment with (1) a small chance of bad types, (2) observable identities, and
(3) patient players but infrequent bilateral interactions. We show that co-
operation in this environment is impossible in the absence of explicit
communication (theorem 1) but becomes possible if within-match cheap
talk—ordinary conversation betweenmatched partners—is allowed (the-
orems 2 and 3).
More precisely, our results hold fixed the payoff parameters of the pris-

oner’s dilemma stage game as well as an ε probability that each player is a
“commitment type” who always defects (independent across players) and
consider sequences of repeated games where the discount factor d and the
population size N change together. By viewing the overall repeated game
as a collectionof two-player games, it is trivial to support cooperation among
pairs of rational players along any sequence where ð1 2 dÞN → 0—that is,
whenever bilateral interactions become frequent.2

In stark contrast, our first main result (theorem 1) shows that average
payoffs converge to the mutual defection payoff along any sequence
where ð1 2 dÞN →∞—that is, whenever bilateral interactions become in-
frequent. The logic of this result combines ideas from repeated game the-
ory and information theory. Roughly speaking, the presence of bad types
renders collective punishment ineffective, so incentives can be provided
only by individualized punishment. When ð1 2 dÞN →∞, the population
is too large for individualized punishment to be executed bilaterally—in-
stead, a player’s misbehavior against a partner must affect third parties’
behavior toward her. Therefore, to support cooperation, players’ actions
must convey information about specific individuals’ past behavior. This
step is where information theory enters the picture: when actions are bi-
nary and explicit communication is not allowed, each player receives only
one bit of information per period (i.e., the opponent’s action). We show
that O(N ) bits are required to provide significant information about N
players’ individual actions (lemma 3). Hence, O(N ) periods of communi-
cation via actions are required to monitor N players’ actions. But this
speed of communication is too slow to provide meaningful incentives
2 To see why ð1 2 dÞN → 0 corresponds to frequent bilateral interactions, suppose that
players match once every D units of real time with fixed discount rate r > 0, so d 5 e2rD,
and hence ð1 2 dÞ ≈ rD. Since each pair of players interacts 1=ðD � ðN 2 1ÞÞ ≈ r=
ðð1 2 dÞN Þ times per unit of real time on average, ð1 2 dÞN → 0 means that each pair of
players interacts frequently, while ð1 2 dÞN →∞ means that each of pair of players rarely
interacts.
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when ð1 2 dÞN →∞. Thus, neither collective nor individualized punish-
ment is effective, and cooperation is impossible.3

We then show that allowing within-match cheap talk restores the possi-
bility of cooperation. Within-match cheap talk makes it technologically
feasible for information about everyone’s behavior to spread through
the population exponentially quickly, reaching all players within O (log N)
periods with high probability. Indeed, we establish that cooperation is
possible along any sequence where ð1 2 dÞ logN → 0.4 We first derive a
relatively simple version of this result (theorem 2), which shows that co-
operation can be achieved as an approximate Nash equilibrium using re-
alistic strategies where (1) each player keeps track of a “blacklist” of op-
ponents whom she believes have ever defected against a rational player,
(2) players share their blacklists with each other before taking actions,
and (3) each player defects against the opponents on her blacklist. How-
ever, such strategies form only an approximate equilibrium, because they
break down in the low-probability event that a large fraction of the pop-
ulation consists of bad types; moreover, the possibility that this event can
occur may unravel the equilibrium even in situations where no one as-
signs a high probability to this event.
Ourfinal result (theorem3) then shows that cooperation canbe achieved

as an exact sequential equilibrium by combining the simple blacklisting
idea of theorem 2 with more complicated, “block belief–free” strategies
that prevent unraveling. In our construction, players cooperate only after
learning through communication that a large enough fraction of the pop-
ulation is rational. Furthermore, a player who does not learn that there are
enough rational types can defect without fear of being punished (in the
event that there aremany rational types), because in this event subsequent
communication will reveal that her defection was justified by her failure to
learn.
Finally, the version of our model with communication can be extended

by decoupling the rate at which players meet to engage in payoff-relevant
interactions and the rate at which they meet to engage in cheap talk com-
munication. In this extended model, we give a fairly complete character-
ization of how the prospects for cooperation depend on the population
size and both meeting rates.
Related literature.—This paper contributes to the literatures on commu-

nity enforcement, the folk theorem in repeated games, and the role of
communication in supporting cooperation. Its most novel features are
analyzing how the rates at which d→ 1 and N →∞ affect the scope for
3 The same argument applies when each player receives K bits of information per period
for any number K fixed independently of N. Thus, theorem 1 holds for many information
structures besides the canonical one where players observe only their partners’ actions.

4 Conversely, it is straightforward to show that cooperation is impossible if there exists
r > 0 such that ð1 2 dÞ11r logN →∞.
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cooperation in a repeated random matching game, as well as showing
that introducing explicit communication dramatically affects the race
between d and N.
The literature on community enforcement in repeated games originates

with Kandori (1992) and Ellison (1994).5 These authors assume complete
information (no bad types) and show that the threat of collective punish-
ment via contagion supports cooperationwhenever ð1 2 dÞ logN → 0.Our
companion paper (Sugaya and Wolitzky 2020) shows that collective pun-
ishment breaks down in the presence of bad types, which motivates the
current paper’s focus on individualized punishment.6

Bad types are also considered in the community enforcementmodels of
Ghosh and Ray (1996) andHeller andMohlin (2018), but in these papers
bad types help support cooperation, by making players less tempted to
cheat their current partners and return to the matching pool (in Ghosh
and Ray’s voluntary separation model) or by stabilizing grim trigger-like
strategies by making the observation that a partner defected in the past in-
formative of his being a bad type (in Heller and Mohlin’s model). These
papers are therefore less closely related to ours.7

In many papers on the folk theorem in repeated games, implicit com-
munication through actions is found to be just as effective as explicit com-
munication through cheap talk when d is close to one. For example, this is
the case in Hörner and Olszewski’s (2006) folk theorem with almost per-
fect monitoring and in Deb, Sugaya, and Wolitzky’s (2020) folk theorem
for anonymous randommatching games. In contrast, implicit and explicit
communication are not equivalent in our model, because we take d→ 1
and N →∞ simultaneously (so communication speed matters) and explicit
communicationallowsmore information tobe transmitted in eachmeeting.8

Several papers on community enforcement and repeated games on
networks fix d < 1 and show that cooperation is easier to support when
the news that a defection occurred spreads more quickly (Raub and
Weesie 1990; Klein 1992; Ahn and Suominen 2001; Dixit 2003; Lippert
and Spagnolo 2011; Ali and Miller 2013; Wolitzky 2013; Balmaceda and
5 See also Harrington (1995) and Okuno-Fujiwara and Postlewaite (1995).
6 Kandori and Ellison were well aware of the importance of bad types but did not in-

clude them in their models. For example, Ellison wrote, “If one player were ‘crazy’ and al-
ways played D [defect] . . . contagious strategies would not support cooperation. In large
populations, the assumption that all players are rational and know their opponents’ strat-
egies may be both very important to the conclusions and fairly implausible” (578).

7 One result closer in spirit to ours is Heller and Mohlin’s theorem 1, which shows that
cooperation is impossible in the “offensive” (submodular) prisoner’s dilemmawith bad types,
while Takahashi (2010) showed that cooperative “belief-free” equilibria exist in this setting
without bad types. Dilmé (2016) considers a similar model where cooperation is robust to
introducing a small measure of bad types.

8 Deb (2020) establishes a folk theorem for anonymous random matching games with
explicit communication. In these games, communication has the distinctive role of serving
to relax anonymity, as players can identify each other via endogenous “names.” This role
does not arise in our model with observable player identities.
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Escobar 2017). This force differs from the role of communication in our
model, where introducing within-match communication does not increase
the speed at which the community learns that someone defected but rather
enriches the information that can be transmitted in eachmatch, so that the
community learns faster which players defected. The value of communica-
tion is thus tied to the need touse individualized rather than collective pun-
ishment, which in turn is necessitated by the presence of bad types (which
are absent in the above papers).9 Finally, a number of papers consider set-
tings where the need to provide incentives for honest communication
constrains community enforcement (Bowen, Kreps, and Skrzypacz 2013;
Wolitzky 2015; Ali and Miller 2016, 2020; Barron and Guo 2021). While
we of course also insist that communication is incentive compatible, theo-
rem 3 shows that this constraint is ultimately not binding in our model.
II. Model
A set I 5 f1, ::: ,N g of N players interacts in discrete time, t 5 1, 2, ::: ,
withN even. Each period, the players match in pairs, uniformly at random
and independently across periods, to play the prisoner’s dilemma:
C D

C 1, 1 2L, 1 1 G

D 1 1 G ,2L 0, 0
where G , L > 0 and G < 1 1 L, so D is strictly dominant but (C, C) max-
imizes the sum of stage-game payoffs.
Each player is rational with probability 1 2 ε and bad with probability

ε, for some ε ∈ ð0, 1Þ, independently across players.10 The number of bad
players thus follows a binomial distribution. Rational players maximize
expected discounted payoffs with discount factor d ∈ ð0, 1Þ. Bad players
always play D.
Matching is nonanonymous. That is, at the beginning of each period t,

every player i observes the identity (but not the type) of her period t part-
ner, which we denote by mi,t ∈ I nfig. A player then chooses her own ac-
tion ai,t ∈ fC , Dg and finally observes her partner’s action ami,t ,t at the
end of the period. Thus, player i’s history at the beginning of period t
is ht

i 5 ððmi,t, ai,t, ami,t ,tÞt21
t51, mi,tÞ, with h1

i 5 mi,1. In section IV, we augment
the game by allowing preplay cheap talk communication within each
match. The description of a history for player i will then also include
9 A very different role for explicit communication with high d (and small N ) is analyzed
by Awaya and Krishna (2016, 2019). They show that communication can in effect improve
monitoring by exploiting correlation between players’ signals.

10 We discuss generalizations to multiple “commitment types” and to correlated types in
sec. V.A.
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the history of messages sent by player i to her partners and received by
player i from her partners.
A strategy ji for player i maps histories ht

i to DðfC , DgÞ for each t. The
interpretation is that player i plays jiðht

i Þ at history ht
i when rational;

when bad, she always plays D. Given a strategy profile j 5 ðjiÞi, denote
player i’s expected discounted per-period payoff, conditional on the
event that she is rational, by Ui. Our measure of population average pay-
offs is U 5 oiUi=N , which is the average over players of their expected
payoffs conditional on the event that they are rational.11 Note that since
the minmax payoff is zero, bad types always take D, and the maximum
sum of stage-game payoff is 2, we have U ∈ ½0, 1� in any Nash equilibrium.
Since the payoff from mutual defection is (0, 0), we say that (some) co-
operation arises if and only if U ≠ 0.
For all of our results, we fix the stage-game payoff parameters G and

L and the “commitment probability” ε and simultaneously vary the pop-
ulation size N and the discount factor d. It is fairly trivial to see that
cooperation can occur in a Nash (or sequential) equilibrium if ð1 2 dÞN →
0, even without cheap talk communication, and that cooperation cannot
occur in any Nash equilibrium if there exists r > 0 such that ð1 2 dÞ11r

logN →∞, even with within-match cheap talk.12 In contrast, our main
results show that without cheap talk cooperation cannot occur if ð1 2 dÞ
N →∞ and that with cheap talk a folk theorem holds if ð1 2 dÞ logN → 0.
III. No Cooperation without Communication
We first show that cooperation without communication is impossible
when bilateral interactions are infrequent.
Theorem 1. For any sequence (N, d) where ð1 2 dÞN →∞ and any

corresponding sequence of Nash equilibrium population payoffs (U ),
we have U → 0.
The intuition is that (1) under incomplete information (ε > 0), coop-

eration requires separately monitoring the actions ofO(N ) players, (2) im-
plicit communication via actions can convey only one bit of information
per period, (3) O(N ) bits—and hence O(N ) periods of communication—
are required to monitor the actions ofO(N ) players, and (4) the promise
of reward or punishment O(N ) periods in the future is insufficient to
motivate cooperation when ð1 2 dÞN is large.
11 By focusing on players’ payoffs conditional on being rational, we avoid the need to
specify utility functions for bad types. An earlier version of this paper instead assumed that
bad types have the same utility function as rational types (while being constrained to always
play D) and considered ex ante expected payoffs. Our results hold verbatim for this alter-
native notion of average payoffs, except that the payoffs supported in theorem 3 must be
adjusted by an O(ε) term.

12 We establish the former result in sec. III.C and the latter (which is similar to proposi-
tion 3 of Kandori 1992) in sec. IV.
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We prove theorem 1 in section III.A, deferring some details to appen-
dix A. In section III.B, we discuss how the theorem extends when players
observe additional information beyond their current partner’s action.
We then present a partial converse—a folk theorem when ð1 2 dÞN →
0—in section III.C.
A. Proof of Theorem 1
We establish the stronger conclusion that U → 0 for any sequence of strat-
egy profiles j such that each player i obtains a higher expected payoff
from playing ji than from always playing D. That is, we relax the require-
ment that j is a Nash equilibrium to the weaker requirement that each
player i prefers ji to the strategy Always Defect. Furthermore, we show
that this conclusion holds even when we consider “extended” strategy
profiles j 5 ðjiÞi ∈ I , where ji can condition player i’s action not only
on her own partners’ identities but on the entire match realization. We
thus allow more potential equilibrium strategies than are actually avail-
able to the players while requiring that fewer potential deviations are
unprofitable.
Slightly abusing notation, let mt 5 ðmi,tÞi ∈ I ,t≤t denote the first t periods

of the match realization, let ht
i 5 ðai,t, ami,t ,tÞt21

t51 denote the history of player
i’s own actions and past opponents’ actions at the beginning of period t,
and let ji denote a mapping from ðht

i , m
tÞ to a mixed action. That is,

jiðht
i , m

tÞ is the (possibly mixed) action taken by player i in period t at his-
tory ðht

i , m
tÞ. (Note that mt includes the identity of i’s period t partner.) Fix

such an (extended) strategy profile j 5 ðjiÞi .
Let 0i (respectively, 1i) denote the event that player i is rational (respec-

tively, bad). For any xi ∈ f0i, 1ig and xj ∈ f0j , 1jg, let Prðht
i , h

t
j jxi, xj , mtÞ de-

note the probability that, under strategy profile j, ht
i and ht

j are the period
t histories of player i and player j, conditional on the event (xi, xj) and the
event that the first t periods of the match realization are given by mt.
When player i’s opponents play ðjjÞj≠i , the distribution over paths of

play of the repeated game when xi 5 0i but i deviates to Always Defect
is the same as that when xi 5 1i (in which case i is forced to play Always
Defect). We call the condition that the rational type of player i prefers her
equilibrium strategy ji to the strategy Always Defect “incentive compatibil-
ity,” since it requires precisely that this type prefers to follow her own
equilibrium strategy rather than the bad type’s strategy. This condition
appears in appendix A as equation (A1). The first step of the proof of
theorem 1 puts this condition in a more convenient form and averages
it over players i ∈ I . (Proofs of lemmas are deferred to app. A. In the fol-
lowing, for x ∈ R, ðxÞ1 ≔ maxfx, 0g.)
Lemma 1. If each player i prefers strategy ji to Always Defect (i.e., if

eq. [A1] holds for all i ∈ I ), then
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1 2 dð Þo
t

dt21o
mt

Pr mtð Þo
i

1

N o
ht
i

Pr ht
i j0i , m

tð Þ Pr jiðht
i , m

tÞ 5 Cð Þmin G , Lf g

≤ 1 2 εð Þ 1 2 dð Þo
t

dt21o
mt

Pr mtð Þ

�o
i,j≠i

1

N N 2 1ð Þoht
j

Pr ht
j j0i , 0j , m

t
� �

2Pr ht
j j1i, 0j , m

t
� �� �

1 1 1 Gð Þ:

(1)

Intuitively, the left-hand side of (1) is a lower bound on the average over
players i of the “cooperation cost” that player i incurs by following strategy
ji rather than Always Defect, and the right-hand side is an upper bound on
the average over players i of the “benefit from averted punishment” that
player i gains by following ji rather than Always Defect. The heart of the
proof of theorem 1 consists of showing that the average benefit from
averted punishment goes to zero if ð1 2 dÞN →∞. Roughly speaking, this
amounts to showing that the (expected, discounted, per-player average)
influence of player i’s type on the histories of players j ≠ i is small.
Lemma 2. If ð1 2 dÞN →∞, then the average benefit from averted

punishment (the right-hand side of [1]) goes to zero.
To see that lemmas 1 and 2 imply the theorem, note that

Ui ≤ 1 2 dð Þo
t

dt21o
mt

Pr mtð Þo
j≠i

1

N 2 1oht
j

1 2 εð Þ

� Pr ht
j j0i , 0j , m

t
� �

Pr jjðht
j , m

tÞ 5 C
� �

1 1 Gð Þ,

because player i’s payoff would equal the right-hand side of this inequal-
ity if her stage-game payoff were 1 1 G whenever her partner takes C and
zero whenever her partner takes D. By Bayes’ rule, Prðht

j j0i , 0j , mtÞ ≤
Prðht

j j0j , mtÞ=ð1 2 εÞ. Hence,

Ui ≤ 1 1 Gð Þ 1 2 dð Þo
t

dt21o
mt

Pr mtð Þo
j≠i

1

N 2 1

�o
ht
j

Pr ht
j j0j , m

t
� �

Pr jjðht
j , m

tÞ 5 C
� �

:

Averaging over i ∈ I , we have

U ≤ 11Gð Þ 12 dð Þo
t

dt21o
mt

Pr mtð Þo
j

1

N o
ht
j

Pr ht
j j0j , m

t
� �

Pr jjðht
j , m

tÞ5 C
� �

:

Since lemmas 1 and 2 imply that the right-hand side of this inequality
goes to zero if ð1 2 dÞN →∞, we have U → 0 as well.
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The proof of lemma 2 relies on the following information theory re-
sult, which implies that the average influence of N players’ types on a
k-dimensional binary random variable is nonnegligible only if k=N ↛ 0.13

Lemma 3. Let X1, X2, . . . , XN be i.i.d. binary random variables, with
PrðXi 5 1Þ 5 Prð1iÞ 5 ε, and let S be a k-dimensional binary random
variable defined on the same probability space. Let ε 5 minfε, 1 2 εg.
Then

o
N

i51
o

s∈ 0,1f gk

Pr sj0ið Þ 2 Pr sj1ið Þð Þ1 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2ð ÞkN

ε

s
: (2)

Let us provide some intuition and a proof sketch for lemma 3. The
k 5 1 case is the relatively familiar result that the average influence of
N independent “votes” on a binary outcome is maximized by majority
rule: if we let s 5 1 if and only if fi : Xi 5 1g ≥ εN , each voter i is pivotal
with probability approximately 1=

ffiffiffiffiffi
N

p
, and summing over voters gives a

“total influence” of oN
i51os∈f0,1gðPrðsj0iÞ 2 Prðsj1iÞÞ1 ≈ oN

i511=
ffiffiffiffiffi
N

p
5

ffiffiffiffiffi
N

p
.14

The lemma asserts that in general the total influence of N independent
votes on k binary outcomes is bounded by approximately

ffiffiffiffiffiffiffi
kN

p
. This

bound can be attained by splitting the population into k equal-sized
groups and running majority rule within each group; each voter is then
pivotal with probability approximately 1=

ffiffiffiffiffiffiffiffiffi
N =k

p
, and summing over voters

gives a total influence of approximately oN
i511=

ffiffiffiffiffiffiffiffiffi
N =k

p
5

ffiffiffiffiffiffiffi
kN

p
. Intuitively,

the bound is tight because more complex signals introduce correlation
between the different signal dimensions, which reduces the average influ-
ence of a vote.
The proof of lemma 3 proceeds as follows. First, we use Pinsker’s in-

equality and some manipulations to show that the influence of i’s vote,
os∈f0,1gkðPrðsj0iÞ 2 Prðsj1iÞÞ1, is at most

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð2ÞI ðS ; XiÞ=ε

p
, where I(S; Xi)

denotes the mutual information between S and Xi, measured in bits.
Elementary properties of mutual information, together with inde-
pendence of the Xi’s, imply that oi I ðS ; XiÞ is at most the entropy of S,
which in turn is at most k since S is a k-dimensional binary random
variable. Therefore, the sum of the squared influences is at most
logð2Þoi I ðS ; XiÞ=ε ≤ logð2Þk=ε, and hence the sum of the influences is
at most

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð2ÞkN =ε

p
by the ‘1 2 ‘2 norm inequality.15
13 We thank Omer Tamuz for suggesting a proof of this lemma.
14 See, e.g., lemma A of Fudenberg, Levine, and Pesendorfer (1998) and theorem 2 of

Al-Najjar and Smorodinsky (2000).
15 One could also try to prove lemma 3 by induction on k. This approach easily gives a

bound of order k
ffiffiffiffiffi
N

p
. This approach is used by Awaya and Krishna (2016, lemma 4; 2019,

lemma A.1) and is also reminiscent of proposition 1 of Fudenberg, Levine, and Pesendorfer
(1998). However, lemma 3 requires a bound of order

ffiffiffiffiffiffiffi
kN

p
, which seems difficult to establish

by induction.
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The proof of the theorem is completed by showing that lemma 3 im-
plies lemma 2. This final step uses one more mathematical fact, which is
that o∞

t51d
t
ffiffi
t

p
≤ ð1 2 dÞ23=2 for all d ∈ ð0, 1Þ.16 Now, since ht

j 5 ðaj ,t, amj,t ,tÞt21
t51

is a 2ðt 2 1Þ-dimensional binary random variable whose distribution,
conditional on xj 5 0j and mt, depends on the N 2 1 binary random var-
iables ðXiÞi≠j (which are themselves independent conditional on xj 5 0j

and mt), we have
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Hence, if ð1 2 dÞN →∞, then the right-hand side of (1) goes to zero.
B. Additional Signals
While theorem 1 concerns the canonical repeated prisoner’s dilemmawith
nonanonymous random matching, where players observe only their cur-
rent partner’s identity and action, it also extends to richer settings where
players observe additional signals. Suppose that at the beginning of every
period t, each player i privately observes an additional K-dimensional bi-
nary signal si,t ∈ f0, 1gK , where the distribution of si,t depends on the en-
tire history of matches, actions, and signals up to the end of period t 2 1,
ðmi,t, ai,t, si,tÞi∈I ,t≤t21, and these signals can be arbitrarily correlated across
players. For example, each player might observe the most recent action
of each of K randomly chosen players in the population, or she might
observe in which one out of 2K possible “bins” lies the total number of
16 This follows because, since
ffiffi�p
is a concave function, Jensen’s inequality gives
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players who cooperated last period, jf j ∈ I : aj,t21 5 Cgj.17 Theorem 1 ex-
tends to this more general model as follows.
Theorem 10. Suppose that each player observes an additional K-

dimensional binary signal in every period, for some K ∈ N that may vary
together withN and d. For any sequence (N, d,K ) where ð1 2 dÞN =K →∞
and any corresponding sequence ofNash equilibriumpopulation payoffs
(U ), we have U → 0.
Proof. If we redefine ht

i as ðai,t, ami,t ,t, si,tÞt21
t51 rather than ðai,t, ami,t ,tÞt21

t51,
the proof of theorem 1 goes through as written, except that ht

i now
has dimension ð2 1 K Þðt 2 1Þ rather than 2ðt 2 1Þ. This means that
(3) must be replaced byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1 Kð Þ log 2ð Þ
ε

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p 1ffiffiffiffiffiffiffiffiffiffiffiffi
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If ð1 2 dÞN =K →∞, then this expression goes to zero, which implies the
conclusion of theorem 1. QED
Since bilateral interactions between any two players become infre-

quent if ð1 2 dÞN →∞, a corollary of theorem 10 is that, if players observe
K-dimensional signals for any K ∈ N fixed independently of N and d, co-
operation is impossible when bilateral interactions are infrequent.
Theorem 10 also implies that the cheap talk communication we intro-

duce in section IV canmake a difference only if communication can con-
vey an unbounded amount of information in a single period. This can be
achieved by, for example, having each player convey a binary summary of
the “reputation” of every player in the population to her current partner.
The same conclusion also applies in situations (which are outside our
model) where players have rich action sets and implicitly communicate
through the fine details of their actions, as when bidders in an auction
communicate via the trailing digits of their bids (Cramton and Schwartz
2000).
C. A Converse: Cooperation with Frequent
Bilateral Interactions
We provide a partial converse to theorem 1, which shows that the pres-
ence of bad types does not hinder cooperation when bilateral interactions
17 Note that the signal is not allowed to depend on the identity of player i’s period t part-
ner, mi,t . This seemingly small point is actually very important. For example, if each player
is exogenously informed of the social standing of her current partner, then cooperation
can be supported even if ð1 2 dÞN is large (and indeed, even if the population is infinite).
Models of this type, which are quite different from ours, are studied by Kandori (1992,
sec. 5), Okuno-Fujiwara and Postlewaite (1995), and Clark, Fudenberg, and Wolitzky
(2021), among others.
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are frequent. The idea is simply to view the overall repeated game as a
collection of N ðN 2 1Þ=2 bilateral relationships, one for each pair of
players, and use grim trigger strategies within each bilateral relationship.
Let F 5 cofð0, 0Þ, ð1, 1Þ, ð1 1 G ,2LÞ, ð2L, 1 1 GÞg denote the con-

vex hull of the feasible payoff set in the two-player prisoner’s dilemma.
Let F h 5 fðv1, v2Þ ∈ F : v1, v2 ≥ hg denote the set of feasible payoffs where
each player receives payoff at least h > 0. Given parameters (N, d), let
E ⊆RN denote the set of rational player sequential equilibrium payoff
vectors; that is, ðviÞi ∈ E if there exists a sequential equilibrium where
Ui 5 vi for all i ∈ I .
Proposition 1. Fix a constant h > 0 and a sequence (N, d)l indexed

by l ∈ N satisfying liml →∞ð1 2 dlÞNl 5 0. For each l ∈ N and each i, j ∈ Il
with i ≠ j , fix ðvi,j , vj ,iÞ ∈ F h. There exists �l > 0 such that, for all l > �l , in
the game with parameters (Nl, dl) there is a payoff vector v ∈ El satisfying

1

Nl 2 1oj∈Iln if g 1 2 εð Þvi,j
� �

2 vi

����
���� < εh for all i ∈ Il:

Proof. See appendix A, section C. QED
The proof of proposition 1 uses bilateral grim trigger strategies to

show that any profile of bilaterally feasible and strictly individually ratio-
nal payoff pairs is sustainable in sequential equilibrium when bilateral
interactions are frequent. We conjecture that an even larger set of payoffs
can be supported using more complex strategies. For example, player 1
may be willing to accept a negative present value payoff in her relationship
with player 2 if she is compensated with a positive payoff in her relation-
ship with player 3. In principle, such payoff vectors can be supported by
having players occasionally communicate implicitly via actions.18 We do
not pursue such a result here.
One can also consider the case where d→ 1 and N →∞ at the same

rate, so the bilateral interaction frequency stays constant. Here partial
cooperation is possible: the maximum equilibrium value of U can ex-
ceed zero, but a folk theorem typically does not hold (as follows from ap-
plying the proof of theorem 1 when ð1 2 dÞN is constant but large).
IV. Cooperation with Communication
We now show that if players can exchange cheap talk messages with
their partners before taking actions, cooperation is possible whenever
ð1 2 dÞ logN → 0. We assume that the set of possible messages is finite
but can be taken arbitrarily large relative to the population size,N. Rational
types communicate strategically to maximize their expected utility. As for
18 Of course, such communication would have to be incentivized.



2608 journal of political economy
bad types, we require that their communication strategy does not affect the
distribution of opposing actions they face in any period. This implies that
if we endowedbad types with utility functions that dependon the sequence
of opposing actions they face, the strategies we construct would form an
equilibrium for any such functions (although our analysis does not involve
specifying utilities for bad types).19

We prove versions of our result for two solution concepts: robust h-
Nash equilibrium and robust (exact) sequential equilibrium, where in
both cases the word “robust” refers to the property that a bad type’s com-
munication strategy does not affect the distribution of actions she faces
in any period. In this section, a strategy ji for player i specifies, as a func-
tion of her type and history, both a distribution over messages to send to
her partner and a distribution of actions, where the specified action is
always D when the player’s type is bad.
Definition 1. For any h > 0, a strategy profile j 5 ðjiÞi∈I is a robust

h-Nash equilibrium if the following conditions hold for each i ∈ I :

1. If player i is rational (xi 5 0), any deviation by player i improves
her expected per-period payoff by at most h: for any strategy ~ji ,

Ej 1 2 dð Þo
∞

t51

dt21u ai,t , ami,t ,tð Þjxi 5 0

� 	
≥ E~ji ,j2i 1 2 dð Þo

∞

t51

dt21u ai,t , ami,t ,tð Þjxi 5 0

� 	
2 h:

2. If player i is bad (xi 5 1), her communication strategy does not af-
fect the distribution of actions she faces in any period: for any
strategy ~ji (which always takes D when xi 5 1),

Prj ami,t ,t 5 C jxi 5 1ð Þ 5 Pr~ji ,j2i ami,t ,t 5 C jxi 5 1ð Þ:

This is a permissive version of approximate equilibrium, because (ra-

tional) players’ gains from deviating are required to be small only in ex
ante terms. This permissiveness allows a simple equilibrium construc-
tion, which we subsequently complement with a more complicated con-
struction for exact sequential equilibrium.
Theorem 2. Fix a sequence (N, d)l satisfying ð1 2 dÞ logN → 0. With

cheap talk, for any h > 0 there exists�l > 0 such that, for every l ≥ �l , in the
game with parameters (Nl, dl) there is a robust h-Nash equilibrium in
which rational players always cooperate with each other along the equi-
librium path of play.
Our proof of this result (in app. A, sec. D) involves strategies that seem

fairly realistic. Each player keeps track of a blacklist of players (other than

19 An even more demanding equilibrium concept would require that the rational types’

strategies remain optimal against any communication strategies for the bad types. Our con-
structions do not satisfy this stronger requirement.
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herself ) who she believes have ever previously played D against a rational
opponent. Every period, players communicate their blacklists to their
partners and then update their own blacklists before taking actions.
Players take C against opponents who are not on their blacklists and take
D against opponents on their blacklists.
To see that these strategies form an h-Nash equilibrium whenever

ð1 2 dÞ logN → 0, note that since the only consequence of communica-
tion is that players stop cooperating with opponents on their blacklists, a
player is always indifferent between reporting any two blacklists to her
partner (recalling that a player never appears on her own blacklist).
Moreover, in equilibrium all blacklisted players are indeed bad, so it is
optimal to take D against players on one’s blacklist. It remains to show
that it is approximately optimal to take C against players who are not
on one’s blacklist (on the equilibrium path).
To show this, observe that if a player defects against a rational oppo-

nent, she is added to his blacklist, and her blacklisted status then spreads
through the population exponentially quickly, regardless of her own fu-
ture behavior. We formalize this observation with a lemma on diffusion
processes. Consider random matching among N agents. For each i ∈ I ,
agent i’s state at time t is si,t 5 ðsi,j ,tÞj∈I ∈ f0, 1gN . When agents i and i

0

match at time t, the jth component of each of their states updates to

si,j ,t11 5 si 0,j ,t11 5 max si,j ,t , si0,j ,t

 �

if  j ∉ i, i 0f g,
si,j ,t11 5 si,j ,t  and si 0,j,t11 5 si0 ,j ,t if  j ∈ i, i 0f g:

An interpretation is that si,j ,t 5 1 means that agent i knows a rumor
about agent j at time t, and agents share all the rumors they know with
their partners, except for rumors concerning themselves. The following
lemma says that if agents i and i 1 1 initially know a rumor about i (for
each i), then the probability that all N agents know all N rumors by time
T converges to one exponentially in T.
Lemma 4. Consider the above diffusion process with si,i,1 5 si,i11,1 5 1

and si,j ,1 5 0 for all i and j ∉ fi, i 1 1g. There exist constants c > 0 and
Z > 0 (independent of N ) such that, for all T > Z logN ,

Pr si,j ,T 5 1 for all i, j ∈ I
� �

≥ 1 2 exp 2
cT

logN

� �
:

Frieze and Grimmett (1985) prove a similar result when each agent
shares a rumor with a randomly selected receiver, rather than having
players meet in pairs as in the current model.20 Since pairwise matching
20 Frieze and Grimmett also do not consider the possibility that a single agent refuses to
spread the rumor. While we need to take this feature into account (since we cannot rely on
a deviant player to self-incriminate), it has little effect on the proof of lemma 4.
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yields a different stochastic process for the number of informed players,
we provide a complete proof in appendix B, section B.1 (app. B is avail-
able online). The basic idea is the same as in Frieze and Grimmett
(1985). So long asmost players are uninformed, informed players are un-
likely to meet each other, so the number of informed players grows expo-
nentially. Then, once most players are informed, uninformed players are
unlikely to meet each other, so the number of uninformed players
shrinks exponentially. The spread of each rumor thus approximates a lo-
gistic curve, as in standard diffusion models.
By lemma 4, a player who takes D against a rational opponent is very likely

to find herself completely excluded from cooperation within O(log N )
periods.Hence, if ð1 2 dÞ logN ≈ 0, takingD against a rational opponent
is unprofitable (at an on-path history where one has not yet been black-
listed). Moreover, lemma 4 also implies that all bad types are very likely
to be blacklisted within O(log N) periods. Hence, if ð1 2 dÞ logN ≈ 0, a
rational player’s payoff loss from cooperating with not-yet-blacklisted bad
types is small. The prescribed strategies thus form an h-Nash equilibrium.
Several challenges arise in attempting to transform this h-Nash equilib-

rium into an (exact) sequential equilibrium. The most serious concerns
the low-probability event where a player learns that the fraction of ratio-
nal types in the population is actually much smaller than 1 2 ε. In the ex-
treme, suppose that player 1 observes (and/or is told about) a large num-
ber of defecting players and eventually comes to believe that player 2 is
the only other rational player in the population. When player 1 subse-
quently meets player 2, if ð1 2 dÞN ≈ ∞, she should play D against him
even if he is not on her blacklist, because players 1 and 2 now effectively
find themselves in a two-player repeated game with discount factor
dN21 ≈ 0 (since they meet on average once every N 2 1 periods). More-
over, this problem cannot easily be avoided by specifying that players take
D if they learn that there are few other rational players: under such strat-
egies a player must assess whether her opponents believe that there are
few rational players, whether they believe that their opponents believe
this, and so on, and the equilibrium can easily unravel.
We therefore need a more sophisticated approach to construct an ex-

act Nash or sequential equilibrium. The basic idea is to prescribe coop-
eration only after a player learns through communication that a large
enough fraction of the population is rational, while preventing unravel-
ing by excusing players who defect at “erroneous” histories where they
failed to learn that there are enough rational types. To identify when a
player’s history was erroneous in this sense, her opponents must aggre-
gate their information about her history, which by lemma 4 can be achieved
in O(log N) periods with high probability. Note that a given player’s oppo-
nents can collectively identify her history through their own past obser-
vations; moreover, by making their continuation payoffs independent of
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whether she is rewarded or punished, they can be induced to communicate
this information honestly.21 This proof approach lets us support a wide
range of payoffs as sequential equilibria. However, not surprisingly, the
strategies used in the proof (in app. B, sec. B.2) are much more compli-
cated than those used to prove theorem 2.
To state this more general theorem, first fix N and d and denote the

(random) set of rational players by v* ⊆ I . For each v*, let F ðv*Þ⊆Rjv*j de-
note the set of payoff profiles for the rational players that are feasible
when rational types always take D against bad types. That is, letting
ai :f2ig→fC , Dg specify an action for player i as a function of her op-
ponent’s identity, player i’s expected payoff as a function of a 5 ðajÞj ∈ I
equals ûiðaÞ 5 ð1=ðN 2 1ÞÞojuiðaið jÞ, ajðiÞÞ. We then define F ðv*Þ 5
coðfûiðaÞgi ∈ v*,a ∈ Aðv*ÞÞ⊆Rjv*j, where Aðv*Þ 5 fa : aið jÞ 5 D if  i ∉ v* or j
∈= v*g. Let F *ðv*Þ 5 F ðv*Þ \ R

jv*j
1 denote the set of individually rational

payoff profiles in F(v*). Note that F *(v*) implicitly depends on N but
not on d. Finally, for any v* ∈ f0, 1gN , a ∈ ð0, 1 2 εÞ, and h ∈ ð0, 1Þ, we de-
fine the set F a,hðv*Þ⊆ F *ðv*Þ as follows:

1. If jv*j ≥ aN , then

F a,hðv*Þ

5 vv* ∈ R
v*j j
1 :

Y
i∈v*

vv*
i 2 h, vv*

i 1 h
h i

⊆ F * v*ð Þ for all i ∈ v*
n o

:

2. If jv*j < aN , then F a,hðv*Þ is the one-element set consisting of the
zero vector in Rjv*j.

Intuitively, if jv*j ≥ aN , then F a,hðv*Þ is the set of payoff profiles for the
rational players that are feasible and individually rational with h slack,
while if jv*j < aN , then F a,hðv*Þ consists of the payoff vector that results
from mutual defection. It is not hard to show that F a,h(v*) is nonempty
whenever h < a=2.22

Theorem 3. Fix a sequence (N, d)l satisfying ð1 2 dÞ logN → 0, and
fix any a ∈ ð0, 1 2 εÞ, h ∈ ð0, a=2Þ, and g > 0. With cheap talk, there ex-
ists �l > 0 such that, for any l > �l and any ðvv*Þv* satisfying vv*∈ F a,hðv*Þ
for all v* ⊆ Il , in the game with parameters (Nl, dl) there is a robust se-
quential equilibrium j satisfying
21 This approach to incentivizing communication was introduced by Compte (1998) and
Kandori and Matsushima (1998) in the context of general repeated games with private
monitoring.

22 This is true by definition when jv*j < aN , so suppose that jv*j ≥ aN . Since a matched
pair of rational players can obtain any payoff pair in the square co{(0, 0), (0, 1), (1, 0),
(1, 1)}, we have ðwiÞi∈v* ∈ F *ðv*Þ for any ðwiÞi∈v* satisfying wi ∈ ½0, pv* � for each i ∈ v*, where
pv* ≔ ðjv*j 2 1Þ=ðN 2 1Þ gives the probability that a rational player meets another rational
player. Since pv* > jv*j=N ≥ a > 2h, we have

Q
i ∈ v* ½a=2 2 h, a=2 1 h� ⊂ F *ðv*Þ, and hence

ða=2, ::: , a=2Þ ∈ F a,hðv*Þ.
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Ej 1 2 dð Þo
∞

t51

dt21u ai,t , ami,t ,tð Þjv*
� 	

2 vv*
i

����
���� < g for all v* ⊆ Il  and i ∈ v*:

Proof. See appendix B, section B.2. QED
The following proposition (which is similar to proposition 3 of Kan-

dori 1992) shows that the ð1 2 dÞ logN → 0 sufficient condition in the-
orem 3 is nearly the best possible.
Proposition 2. Fix a sequence (N, d)l satisfying ð1 2 dÞ11r logN →∞

for some r > 0. There exists �l > 0 such that, for any l > �l , in the game
with parameters (Nl, dl) the unique Nash equilibrium is Always Defect.
Proof. The maximum number of players who can possibly learn

about a single player’s deviation within t periods is min{2t, N}. Hence,
the difference in a player’s total continuation payoff when she conforms
rather than deviates is at most

o
∞

t51

dt min
2t

N
, 1

� 
1 1 G 1 Lð Þ,

where here 1 1 G 1 L represents the maximum difference between any
two stage-game payoffs. Note that for any h ∈ ð0, 1Þ,

o
∞

t51
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5 o
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t51

dt
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N
1 o
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dt min
2t

N
, 1
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≤ o
⌊ hlog2N ⌋

t51

2t

N
1

d⌊ hlog2N ⌋

1 2 d

≤
⌊ hlog2N ⌋�N h

N
1

exp 2 1 2 dð Þ ⌊ hlog2N ⌋ð Þ
1 2 d

,

(4)

where the last inequality follows because the first term in the second line is
the sum of ⌊hlog2 N⌋ terms that are each less than 2⌊ hlog2N ⌋ ≤ N h, and
d⌊ hlog2N ⌋ 5 expð⌊ hlog2N ⌋ log dÞ ≤ expð2ð1 2 dÞ ⌊ hlog2N ⌋Þ. Note that (4)
goes to zero whenever there exists r > 0 such that ð1 2 dÞ11r logN →∞.
Thus, if ð1 2 dÞ11r logN →∞ for some r > 0, the uniqueNashequilibrium
is Always Defect. QED
The remainder of this section previews the equilibrium construction

for theorem 3 (sec. IV.A) and extends the model to decouple the fre-
quencies at which players interact and communicate (sec. IV.B).
A. Sketch of the Equilibrium Construction for Theorem 3
The proof of theorem 3 proceeds by constructing a block belief–free
equilibrium. Block belief–free equilibria were introduced by Hörner
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and Olszewski (2006) in the context of repeated games with almost-
perfect monitoring, and they were extended to anonymous randommatch-
ing games by Deb, Sugaya, and Wolitzky (2020) and to ex post equilibria
in games with incomplete information by Sugaya and Yamamoto (2020).
The current proof combines elements from these three papers. The main
novelty is that since cooperation is impossible in the rare event that there
are few rational types, we must keep track of players’ beliefs about the
number of rational types. In particular, the equilibrium cannot be ex post
with respect to the set of rational types. On the other hand, the availability
of cheap talk makes providing incentives for truthful communication eas-
ier, as compared with the case where communication can be executed
only through payoff-relevant actions.
The proof shows that strategies of the following form give a sequential

equilibrium. In the very first period of the repeated game, all rational
players are supposed to cooperate. Given the realized period 1 action pro-
file, we let v⊆ I denote the set of playerswho cooperated inperiod 1.Thus,
v is always a subset of v*, and in equilibrium v equals v*. As we will see, all
players will eventually abandon cooperation in the event that jvj < aN . Pe-
riod 1 thus plays a distinguished role in the equilibrium construction.
Following period 1, the repeated game is viewed as an infinite sequence

of finite blocks of T ** consecutive periods, where T ** is a large number
specified in the proof. At the beginning of each block, each player i selects
her state profile ðxv

i Þv⊆ I ∈ ðfG , BgÞv⊆ I for the block, which specifies a state
xv
i ∈ fG , Bg for each possible realization of v, the set of players who coop-
erated in period 1.23 Intuitively, even if at some point in the game player i
comes to believe with probability one that the set of players who cooper-
ated in period 1 was v, she continues to entertain the possibility that the
set of period 1 cooperators was actually some v0 ≠ v, and she keeps track
of a state xv0

i ∈ fG , Bg for each possible set v0.
The interpretation of player i’s state is as follows: as in Hörner and

Olszewski (2006), Deb, Sugaya, and Wolitzky (2020), and Sugaya and Ya-
mamoto (2020), player i can be viewed as the arbiter of player i 1 1’s pay-
off, meaning that player i 1 1’s equilibrium continuation payoff is high
when player i is in the good state G, and player i 1 1’s equilibrium contin-
uation payoff is low when player i is in the bad state B. Specifically, xv

i 5 G
means that, if in the coming block the players reach agreement that the set
of period 1 cooperators was v, then player i prescribes a high continuation
payoff for player i 1 1 (which is delivered both by player i cooperatingwith
player i 1 1 herself and by player i instructing other players to cooperate
with player i 1 1); similarly, xv

i 5 B means that, if agreement is reached
23 These states have nothing to do with the states of the diffusion process analyzed in
lemma 4.
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that the set of period1 cooperators was v, thenplayer iprescribes a low con-
tinuation payoff for player i 1 1 (and thus defects against player i 1 1 her-
self while also instructing others to defect against player i 1 1).24 While it
might seem unnecessary for the players to form a belief about v anew in
every block (since, of course, the true value of v is determined once and
for all by the period 1 actionprofile), this approach conveniently preserves
the equilibrium’s recursive structure.25

The defining feature of a block belief–free equilibrium is that, for each
i and v, all players other than player i 1 1 (including player i herself ) are
indifferent as to whether player i selects state xv

i 5 G and xv
i 5 B, while

player i 1 1 is better off when player i selects xv
i 5 G . Player i can thus

be prescribed to randomize between xv
i 5 G and xv

i 5 B with a probabil-
ity depending on her history in the previous block, so as to provide incen-
tives for player i 1 1 in the previous block.Wenowdescribe how a block is
constructed so as to ensure that players are incentivized to both take the
prescribed actions and communicate honestly.
Each block is divided into several subblocks. In the first portion of the

block, players defect while communicating about who cooperated in pe-
riod 1 so as to reach agreement about v, as well as communicating their
state profiles ðxv

i Þv⊆ I .
26 Then, in each of Kmain subblocks (which together

comprise the vast majority of the block and hence determine the equilib-
rium payoffs), for multiple periods players take their prescribed actions
(which depend on their states, the period 1 history, and the history within
the block so far), and players then communicate about their observations
within theblock so far. Importantly, if the agreed-on state v satisfies jvj < aN ,
then all players are prescribed defection in the main subblocks.
Communication is always executed through a protocol that facilitates

truth telling. In essence, when player imeets player j, she reports her past
direct observations to him (i.e., her past actions and her past opponents’
identities and actions), and also, for each third party k ∉ fi, jg, she tells
him all information that she has previously learned via a chain of players
that excludes player k. Players thus “tag” each piece of information with
24 “Agreement” here means that all players learn the same set of period 1 cooperations,
according to a communication protocol described below. The players can reach agreement
without it being common knowledge that they have done so.

25 This aspect of the construction is facilitated by specifying that “trembles” are much
more likely in earlier blocks. Thus, if the players’ communications in a prior block indi-
cated that the set of period 1 cooperators is v, while their communications in the current
block indicate that it is v0 ≠ v, all players believe that the communications in the earlier
block were erroneous and proceed in the current block as if the true set were v0.

26 Technically, the first portion of the block is divided into three subblocks: one to reach
agreement about v, one to reach agreement about the state profiles, and one to ensure
that, if communication in the first two subblocks was unsuccessful (e.g., if a player deviated
or if the matching process took on an unlikely realization that prevented all players from
meeting and thus reaching agreement), this fact becomes known to all players with high
probability.
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the identities of the players who have previously conveyed it; for example,
one piece of information might be, “I heard from Alice that she heard
from Bob that Carol defected against David in period 5.” Since tagging oc-
curs at each step, so long as players other than player k have not deviated,
player j can trust any information he receives that is tagged as coming from
a chain that excludes k. As a consequence, a player cannot unilaterally af-
fect others’ inferences about any variable other than her direct observa-
tions.Moreover, since a player’s direct observations in any period t are also
observed by her period t partner, a player cannot unilaterally affect others’
inferences about these variables either.
The communication protocol thus ensures that each player cannot

prevent her opponents from aggregating information about her own be-
havior. Together with the threat of punishment (which takes the form of
both blacklisting within the block and reduced continuation payoffs at
the beginning of the next block), this strategy ensures incentive compat-
ibility at on-path histories. To ensure incentive compatibility at off-path
histories, other players reward player j for punishing player i in period t
if and only if they confirm through a chain that excludes player j that
player j ’s period t history was one where he was prescribed to punish
player i. Since player j ’s continuation payoff is determined solely by
the state of player j 2 1, which does not affect the payoffs of players other
than j, it is optimal for player j ’s opponents to communicate her history
honestly.
Finally, at the end of the block, each player i learns the player i 1 1’s

history in the block through a chain that excludes i 1 1. She then uses
this information to adjust her state mixing probability at the beginning
of the next block, so as to deliver the promised continuation payoff to
player i 1 1.
B. Decoupling Interaction Frequency
and Communication Frequency
Suppose that rather than matching every period to communicate and in-
teract (i.e., play the prisoner’s dilemma) with the same partner, players in-
stead form “communicationmatches” (where they exchange cheap talk mes-
sages but do not play the prisoner’s dilemma) every DM units of time and
“interactionmatches” (where they play the prisoner’s dilemmabut do not ex-
changemessages) everyDA units of time, where players rematch uniformly at
random in eachmeeting. The proofs of theorems 2 and 3 do not rely on the
assumption that players communicate and interact with the same partner
each period, so if DM 5 DA 5 D and we fix a real-time discount rate r, we re-
cover these results for any sequence (N, D) satisfying D logN → 0 (because
1 2 d 5 1 2 e2rD ≈ rD). More interestingly, if DM ≠ DA, it is straight-
forward to show that the conclusions of theorems 2 and 3 hold for any



2616 journal of political economy
sequence (N, DM, DA) satisfying DA → 0 and DM logN → 0. That is, what
these results really require is that players interact frequently (so that the
discounting between interaction matches, 1 2 e2rDA , is small) and that in-
formation spreads through the population quickly when players share
all their information in every communication match. Since information
spreads exponentially in the number of communication matches (by
lemma 4), the latter condition requires only that DM logN → 0. We ex-
plain this point further in appendix B, section B.3.
Putting our results together, we can characterize the prospects for co-

operation for a wide range of combinations of the parameters N, DM, and
DA. In particular, a folk theorem holds if either

1. DAN → 0 (regardless of DM; this is a version of proposition 1) or
2. DA → 0 and DM logN → 0 (by modifying theorem 2 or 3 as just

discussed).

Conversely, population average payoffs converge to zero in any Nash
equilibrium if either

1. DA →∞ (regardless of DM; this is obvious),
2. ðminfDA, DMgÞ11r logN →∞ for some r > 0 (this is a version of

proposition 2), or
3. DAN →∞ and DAN =DM → 0 (this is an extension of theorem 1—

which directly applies when DAN →∞ and DM 5 ∞—to the case
where DM is large but finite; we omit the proof ).

Thus, if we focus on the case where DA=DM ↛ 0, so the communication
frequency is not much less than the interaction frequency (as seems re-
alistic), we obtain either a folk theorem or an impossibility result when-
ever DA converges to either zero or ∞, DAN converges to either zero or ∞,
and either DM logN → 0 or D11r

M logN →∞ for some r > 0.
V. Discussion

A. Possible Extensions
We discuss the prospects for extending our model in some technical di-
rections, deferring a broader discussion of future research to the next
subsection.
1. Multiple Commitment Types
While the simple “bad types” we consider seem natural and realistic,
there is little reason to rule out additional behavioral types that are
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committed to strategies other than Always Defect. Let us continue to as-
sume that each player is bad with probability ε, while introducing a prob-
ability ε0 that each player may be committed to some other (arbitrary) re-
peated game strategy. Theorem 1 extends immediately to this more
general setting, with the modified conclusion that lim infU ≤ ε0ð1 1 GÞ
(to account for the fact that the ε0 commitment types may cooperate).
Theorem 2 also extends, provided that ε0 is sufficiently small: if instead
ε0 is large, then the other commitment type strategies could provide in-
centives that overturn those in our construction—for example, by re-
warding players for defecting against rational opponents.27 Finally, we
conjecture that theorem3 extends if ε0 is sufficiently small and in addition
the set of commitment types has the property that there exists a pure
strategy for the rational types and a finite time T such that, when the ra-
tional types follow this strategy, each commitment type takes a different
action than the rational types at some time t < T . (Under this property,
the first T periods may collectively replace period 1 in the proof of theo-
rem 3.) But we have not verified this conjecture.
2. Correlated Types
Our analysis of anonymous games in Sugaya and Wolitzky (2020) allows
players’ types to be correlated, so long as the distribution of the number
of bad types satisfies a smoothness condition. In the present paper, inde-
pendence is used critically in lemma 3. As correlation is introduced, the
exponent on N in equation (2) increases and the required condition on
d and N in theorem 1 becomes more stringent, eventually becoming im-
possible to satisfy when types are perfectly correlated.28 In contrast, the
proofs of theorems 2 and 3 can easily accommodate correlated types.
3. Independent Noise
An interesting open question is how theorem 1 might extend with i.i.d.
noise, where each player is forced to play D with independent probability
ε in every period, rather than with probability ε being forced to play D in
all periods. Ellison (1994, proposition 2) shows that contagion strategies
(which require only ð1 2 dÞ logN → 0) are robust to i.i.d. noise if ε→ 0
for a fixed N. If instead N →∞ for a fixed ε > 0, contagion strategies
27 However, if each commitment type takes a deterministic sequence of actions and mes-
sages (rather than responding to its opponents’ behavior), then theorem 2 holds for any
ε0.

28 Specifically, independence implies that oi I ðS ; XiÞ ≤ k, where I(S; Xi) represents the
mutual information between S and Xi (see eq. [A3]). As the Xi’s become correlated, the
upper bound of k increases toward N, which increases the upper bound in (2).
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break down, but also our proof of theorem 1 does not apply.29 In this
case, determining the critical discount factor for supporting coopera-
tion as a function of N seems to require a more intricate analysis of se-
quential rationality constraints.
B. Conclusion
This paper has analyzed community enforcement in the presence of
“bad types” who never cooperate. We established two main results. First,
without explicit communication, community enforcement is ineffective,
in that cooperation is sustainable only if bilateral interactions are fre-
quent. Second, introducing ordinary conversation (cheap talk) between
matched partners enables cooperation with infrequent bilateral inter-
action, so long as the population size is not exponentially greater than
1=ð1 2 dÞ. Together, these results show that communication is essential
for supporting cooperation in large populations. We believe that our
model and results provide a more realistic perspective on large-group co-
operation than earlier analyses that focused on anonymous agents and
collective punishment.
There are a few promising ways in which the theory could be brought

even closer to reality. First, while we have shown that communication en-
ables cooperation under realistic-seeming strategies that are approxi-
mately optimal (theorem 2), our proof for exact sequential equilibrium
(theorem 3) relies on muchmore complicated strategies that should not
be taken literally as a description of real-world behavior. A natural next
question is whether and how cooperation can be supported in sequen-
tial equilibrium using simpler strategies, perhaps while allowing commu-
nication devices that are more powerful than plain cheap talk.
Richer communication devices must also be introduced to support

cooperation in populations where N is exponentially greater than
1=ð1 2 dÞ (or where N 5 ∞), as well as to model real-world informa-
tional institutions such as fiat money, credit bureaus, and online ratings
systems. Recent papers on this topic include Heller and Mohlin (2018),
Bhaskar and Thomas (2019), and Clark, Fudenberg, andWolitzky (2021).
Individuals’ incentives to provide information to such institutions re-
main relatively poorly understood, as does these institutions’ robustness
to dishonest or malicious reporting (e.g., what happens if some agents
are “bad communication types,” in addition to the “bad action types”
we considered?).30
29 With i.i.d. noise, the probability that a player is forced to play D for k consecutive pe-
riods is εk. We could thus apply lemma 3 to this model with εk in place of ε. But this bound is
too loose to yield the conclusion of theorem 1.

30 There is, however, an interesting empirical literature on these issues in the context of
online ratings systems, which is surveyed in sec. 5 of Tadelis (2016).
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Finally, in reality large cooperative groupsmay not bewell approximated
by the canonical uniform random matching model studied here. Intro-
ducing incomplete information (e.g., bad types) into more structured
populationmodels—such asmodels with voluntary separation, assortative
matching, or network structure—is another interesting direction for fu-
ture research.
Appendix A

Omitted Proofs

The condition in the proof of theorem 1 that player i (when rational) prefers
strategy ji to Always Defect is given by
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where u(⋅, ⋅) represents the stage-game payoff function, extended to mixed ac-
tions in the usual manner.

A. Proof of Lemma 1

Since uðD, DÞ 5 0 and uðC , DÞ 5 2L, (A1) is equivalent to
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Subtracting a like term from both sides, this inequality may be rewritten as
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Since uðC , aÞ 2 uðD, aÞ ≤ 2minfG , Lg and uðD, aÞ ∈ f0, 1 1 Gg for each a ∈
fC , Dg, this inequality implies that
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Summing this inequality over i and dividing by N yields (1).

B. Proof of Lemma 3

For random variables A and B taking values in setsA and B, we denote entropy by
H(A), conditional entropy by H ðAjBÞ, and mutual information by I(A; B). We
have
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Recall that, for any random variables A1, ... , An, B, we have H ðA1, ::: , AnjBÞ ≤
on

i51H ðAi jBÞ.31
Let X 5 ðXiÞNi51 be a collection of i.i.d. binary random variables with

PrðXi 5 1Þ 5 ε, and let S be a k-dimensional binary random variable defined
on the same probability space. Recall that H ðX Þ 5 oiH ðXiÞ (by independence)
and H ðSÞ ≤ k. Denote the “influence” of Xi on S by

Mi Sð Þ 5 o
s∈ 0,1f gk

Pr S 5 sjXi 5 0ð Þ 2 Pr S 5 sjXi 5 1ð Þð Þ1:

Letting ε 5 minfε, 1 2 εg, we wish to show that
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31 This and other basic facts about entropy and mutual information used in the proof
can be found in, e.g., Cover and Thomas (2006).
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Note that
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where DKLð�jj�Þ denotes Kullback-Leibler divergence (measured in bits). Note
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where the last inequality follows because DKLð�jj�Þ is nonnegative and
ffiffiffi
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ffiffiffi
b

p
≤ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffi

a 1 b
p

for nonnegative a, b by the ‘1 2 ‘2 norm inequality, and the last equal-
ity is the definition of mutual information.

We next show that

o
i

I S ; Xið Þ ≤ k: (A3)

To see this, first note that

k ≥ H Sð Þ ≥ I S ; Xð Þ 5 H Xð Þ 2 H X jSð Þ 5 o
i

H Xið Þ 2 H X jSð Þ,

where the last equality follows from independence of ðXiÞi . Hence, H ðX jSÞ ≥
oiH ðXiÞ 2 k, and therefore

o
i

H Xi jSð Þ ≥ H X jSð Þ ≥ o
i

H Xið Þ 2 k:

Since H ðXi jSÞ 5 H ðXiÞ 2 I ðS ; XiÞ, we have

o
i

H Xið Þ 2 I S ; Xið Þð Þ ≥ o
i

H Xið Þ 2 k ⇔ o
i

I S ; Xið Þ ≤ k:

Combining (A2) and (A3), we have

o
i

Mi Sð Þ2 ≤ log 2ð Þo
i

I S ; Xið Þ
ε

≤
log 2ð Þk

ε
,

or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
i

Mi Sð Þ2
r

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2ð Þk

ε

s
:

Finally, by the ‘1 2 ‘2 norm inequality, in an N-dimensional space jxj1 ≤
ffiffiffiffiffi
N

p jxj2.
Hence,

o
i

Mi Sð Þ ≤
ffiffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
i

Mi Sð Þ2
r

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2ð ÞkN

ε

s
:

C. Proof of Proposition 1

By lemma 2 of Fudenberg and Maskin (1991), there exists �d < 1 such that, for all
ðvi,j , vj ,iÞ ∈ F h, there exists a sequence of pure action profiles whose discounted
average payoffs equal (vi,j, vj,i) and whose continuation payoffs starting from
any time t are within h=2 of (vi,j, vj,i). Call this action path ðai,j

t Þt∈N .
Suppose that each player i conditions her behavior against each player j ≠ i

only on the history of outcomes in past (i, j) matches, and in particular follows
ðai,j

t Þt∈N if this path has been followed so far in the (i, j) matches, and otherwise
reverts to D in these matches forever. By construction, this strategy profile is a
sequential equilibrium if, for all i ≠ j , we have
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1 2 dð Þmax G , Lf g ≤
d

N 2 1
1 2 εð Þ vi,j 2

h

2

� �
:

Since vi,j 2 ðh=2Þ ≥ h=2 for all i ≠ j by hypothesis, a sufficient condition for this
profile to be a sequential equilibrium is d ≥ 1=2 and

1 2 dð ÞN ≤
h 1 2 εð Þ

4max G , Lf g :

If limlð1 2 dÞN 5 0, there exists �l > 0 such that this inequality is satisfied for all
l > �l .

It remains to show that, for l sufficiently high, each player i’s expected payoff
(when rational) in the resulting sequential equilibrium satisfies

vi ∈
1

N 2 1oj≠i 1 2 εð Þvi,j 2 εh
� �

,
1

N 2 1oj≠i 1 2 εð Þvi,j
" #

:

When player j is rational, player i obtains payoff vi,j against player j. When player j
is bad, i obtains the payoff from action path ðai,j

t Þt∈N until j deviates from this path
and then obtains payoff zero forever. Suppose that the first deviation by j from
action path ðai,j

t Þt∈N occurs in period t. Then i’s payoff against j is at least ð1 2
dtÞu<t

i,j 1 dtð1 2 dÞð2LÞ, where u<t
i,j is i’s average payoff from the first t 2 1 periods

of action path ðai,j
t Þt∈N . Note that u<t

i,j satisfies

1 2 dtð Þu<t
i,j 1 dtu≥t

i,j 5 vi,j ,

where u≥t
i,j represents i’s average payoff starting from period t under action path

ðai,j
t Þt∈N , and u≥t

i,j ≤ vi,j 1 h=2. Hence,

1 2 dtð Þu<t
i,j ≥ 1 2 dtð Þvi,j 2 dt

h

2
≥ 2

h

2
:

Therefore, for d sufficiently high that ð1 2 dÞL ≤ h=2, i’s payoff against j is at least

1 2 dtð Þu<t
i,j 1 dt 1 2 dð Þ 2Lð Þ ≥ 2

h

2
2

h

2
5 2h:

Moreover, i’s payoff against j is nonpositive, since j always defects. Hence, i’s ex-
pected payoff against j is at least ð1 2 εÞvi,j 2 εh and at most ð1 2 εÞvi,j . Averaging
over j ≠ i yields the desired bounds for vi.
D. Proof of Theorem 2

Consider the following strategies, which do not depend on l.
Equilibrium strategies.—Each player i enters each period t with a blacklist I D

i,t ⊆ I .
Let I D

i,1 5 ∅ for each i.
In period t, player i truthfully reports Ii,t to her period t opponent mi,t (whether

or not i is rational). When rational, i then takes action C if mi,t ∉ I D
i,t and takes D

if mi,t ∈ I D
i,t . Bad types always take D.

Denote the report of player i’s opponent by Î D
mi,t ,t . At the end of period t, i’s

blacklist updates to
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I D
i,t11 5

I D
i,t [ Î D

mi,t ,t if  mi,t  played C  or i is bad,

I D
i,t [ Î D

mi,t ,t [ mi,tf g if  mi,t  played D and i is rational:

(

Fix h > 0. We prove that, for sufficiently large l, these strategies form an h-Nash
equilibrium. To do so, we (1) compute lower bounds on the equilibrium payoffs
of rational and bad types, (2) compute upper bounds on the payoffs of rational
and bad types from any unilateral deviation, and (3) show that the latter cannot
exceed the former by more than h.

Rational type equilibrium payoff.—Suppose that i is rational, let S denote the set of
bad players, and suppose that jS j 5 n. Fix any T, Z ∈ N with Z > �Z (with �Z defined
as in the statement of lemma 4). The probability that every bad player meets a ratio-
nal player at least once by periodT is at least 1 2 nððn 2 1Þ=ðN 2 1ÞÞT . Conditional
on this event, by lemma 4, I D

i,T1Z log2N
5 S with probability at least 1 2 expð2cZÞ.

Hence, with probability at least 1 2 nððN 2 nÞ=ðN 2 1ÞÞT 2 expð2cZÞ, starting
fromperiodT 1 Z log2N player i obtains payoff one when shemeets a rational type
and obtains payoff zero when she meets a bad type, for an expected payoff of
ðN 2 1 2 nÞ=ðN 2 1Þ. For the first T 1 Z log2N periods, and with probability at
most nððN 2 nÞ=ðN 2 1ÞÞT 1 expð2cZ Þ for the rest of the game, player i’s payoff
is at least2L. In total, rational player i’s equilibriumexpected payoff, conditional on
the event jS j 5 n, is at least

N 2 1 2 n

N 2 1
2 min

T∈N ,Z>�Z
1 2 dT1Z log2N
� �

1 n
n 2 1

N 2 1

� �T

1 exp 2cZð Þ
� 

1 1 Lð Þ:

Taking the expectation with respect to n, rational player i’s equilibrium uncondi-
tional expected payoff is at least

o
n

pn
N 2 1 2 n

N 2 1
2o

n

pn min
T∈N ,Z>�Zf 1 2 dT1Z log2N

� �
1 n

n 2 1

N 2 1

� �T

1 exp 2cZð Þg 1 1 Lð Þ,

where pn 5
�
N
n

�
εnð1 2 εÞN2n denotes the probability that there are n bad types.

We will show that, for sufficiently large l,

o
n

pn
N 2 1 2 n

N 2 1
2o

n

pn min
T∈N ,Z>�Zf 1 2 dT1Z log2N

� �
1 n

n 2 1

N 2 1

� �T

1 exp 2cZð Þg 1 1 Lð Þ

≥ o
n

pn
N 2 1 2 n

N 2 1
2

2

3
h:

(A4)

First, fix some â ∈ ð0, 1 2 εÞ, and fix some Z > �Z such that expð2cZ Þ ≤
h=ð4ð1 1 LÞÞ. Here â and Z are independent of l. By the central limit theorem,
for sufficiently large N (or l ), the probability that there are more than ð1 2 âÞN
bad types, on≥ð12âÞN pn , is less than ð1=12Þð1=ð1 1 N 1 expð2cZ ÞÞÞðh=ð1 1 LÞÞ.
Since ð1 2 dT1Z log2N Þ 1 nððn 2 1Þ=ðN 2 1ÞÞT 1 expð2cZÞ ≤ 1 1 N 1 expð2cZ Þ
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for each N, n ≤ N , and T ∈ N , to establish (A4) it suffices to show that, for suffi-
ciently large l, there exists T such that, for each n ≤ ð1 2 âÞN , we have

1 2 dT1Z log2N
� �

1 n
n 2 1

N 2 1

� �T

1 exp 2cZð Þ
� �

1 1 Lð Þ ≤
7

12
h:

By definition of Z, expð2cZÞð1 1 LÞ ≤ ð1=4Þh. Hence, it remains to show that,
for sufficiently large l, there exists T such that, for each n ≤ ð1 2 âÞN , we have

1 2 dT1Z log2N
� �

1 n
n 2 1

N 2 1

� �T� �
1 1 Lð Þ ≤

1

3
h: (A5)

To establish (A5), for a given value of l, let T ∈ N be the smallest integer such
that N ð1 2 âÞT ≤ h=ð4ð1 1 LÞÞ. Note that T ≤ ĉlog2N for some constant ĉ. Now,
for all n ≤ ð1 2 âÞN , we have

n 2 1

N 2 1

� �T

≤ 1 2 âð ÞN 1 2 âð ÞN 2 1

N 2 1

� �T

≤ 1 2 âð ÞN 1 2 âð ÞT ≤
h

4 1 1 Lð Þ :

Hence, to establish (A5), it suffices to show that, for sufficiently large l, we have

1 2 dT1Z log2N
� �

1 1 Lð Þ ≤
1

12
h: (A6)

Finally, we have

1 2 dT1Z log2N ≤ 1 2 dð Þ T 1 Z log2Nð Þ ≤ 1 2 dð Þ ĉ 1 Zð Þlog2N ,

and ð1 2 dÞlog2N → 0 as l →∞ by hypothesis. This establishes (A6) (and hence
[A4]), as desired.

Bad type equilibrium payoff.—Here we take the trivial bound that, when player i
is bad, her equilibrium payoff is nonnegative.

Rational type deviation payoff.—We derive an upper bound for player i’s payoff
under any unilateral deviation. To this end, suppose that player i can observe
whether her opponent is rational or bad before acting and always takes D against
bad opponents. Moreover, suppose that player i’s opponents blacklist her if they
learn that she took D against a rational player through a chain of players that ex-
cludes player i herself; that is, if player i played D against a rational opponent in
period t, then a rational player j takes D against i in period t > t if there exists
a sequence of players ( jt, jt11, ... , jt21) such that jt 5 mi,t, j ∈ f jt, ::: , jt21g,
i ∉ f jt, ::: , jt21g, and jt 011 5 mjt 0 ,t

011 for each t 0 ∈ ft, ::: , t 2 2g. By lemma 4, if
player i takes D against a rational player in period t, then, for every Z > �Z , with
probability 1 2 expð2cZ Þ everyone takes D against player i starting from period
Z log2N . Hence, player i’s expected payoff is at most

o
N21

n50

pn
N 2 1 2 n

N 2 1
1 min

Z>�Z
1 2 dZ log2N
� �

1 exp 2cZð Þ
 �
1 1 Gð Þ:

First fixing Z such that expð2cZÞ ≤ h=ð3ð1 1 GÞÞ and then taking l →∞, we see
that 1 2 dZ log2N ≤ ð1 2 dÞZ log2N → 0, so for sufficiently large l this is at most

o
N21

n50

pn
N 2 1 2 n

N 2 1
1

1

3
h:
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Comparing this upper bound with the lower bound (A4), we see that the equi-
librium strategy is h-optimal.

Bad type deviation payoff.—Since player i always takes D when bad, if she meets
a rational player for the first time in period t, for every Z > �Z , her continua-
tion payoff starting from period t 1 Z log2N is zero with probability at least
1 2 expð2cZ Þ. (As in the case where player i is rational, this holds regardless
of player i’s own behavior following period t.) Since player i’s payoff against
bad opponents is nonpositive, her payoff under any unilateral deviation is at
most

dtmin
Z>�Z

1 2 dZ log2N
� �

1 exp 2cZð Þ 1 1 Gð Þ
 �
:

As we have seen, this converges to zero as l →∞. Hence, the equilibrium strat-
egy is h-optimal.
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