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Abstract—The networked nature of the air transportation
system leads to systemwide delays and cancellations as a result
of disruptions at an airport. A comprehensive analysis of system
performance requires understanding the inherent interdepen-
dencies between various airports, in order to characterize off-
nominal disruptions and to aid in recovery. In this work, we
apply Graph Signal Processing (GSP) techniques to the analysis
of flight delay networks, yielding two novel contributions: (1) We
use the notion of the total variation (TV) of a graph signal in
order to identify and quantify unexpected distributions of delays
across airports; and (2) we present a spectral eigendecomposition
analysis of airport disruption and delay networks. We investigate
and characterize different patterns of delay distribution based
on the relationship between TV and total delay, using 10 years
worth of operational data from major US airports. We show
that attributes of the resultant eigenvector modes and energy
contributions are useful metrics to characterize specific disrup-
tions caused by events such as nor’easters, Atlantic hurricanes,
and equipment outages at airports.

Keywords: Graph Signal Processing; graph Fourier analysis;
spectral methods; weather disruptions; airport operations; flight
delays

I. INTRODUCTION

The scale of air transport operations conducted within the
US National Airspace (NAS), along with the interconnected-
ness inherent within the NAS contribute to the challenges in
characterizing the resilience and predictability of the system
[1]. Obtaining a better understanding of these attributes are of
particular importance in the context of disruptive events that
affect the NAS, leading to systemic penalties such as conges-
tions, delays, and flight cancellations. The importance of this
line of research has been highlighted both domestically as well
as internationally; the Federal Aviation Administration (FAA)
and EUROCONTROL have identified the need for increased
resiliency (how tolerant, or robust, airport-airspace operations
are to operational perturbations) and predictability (reduction
in variability and uncertainty) within the air transportation
system.

Weather disruptions were responsible for 53% of all de-
lays experienced in the NAS in 2017 [2]. One particular
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meteorological phenomenon we examine in this work is the
nor’easter, a type of winter storm that predominantly affect the
Mid-Atlantic and New England region of the US. Nor’easters
significantly disrupt air traffic operations; the nor’easter that
occurred 22-24 January 2016 resulted in the cancellation of
over 11,000 flights, and was estimated to lead to financial
losses of $100 to $120 million USD to the US aviation industry
[3]. Airport and airline equipment outages also lead to delays
and cancellations. We examine two particular cases involving
a power outage at Hartsfield-Jackson Atlanta International
Airport (ATL) and a fire incident at the Chicago Air Route
Traffic Control Center (ZAU); both resulted in hundreds to
thousands of cancelled flights throughout the NAS [4, 5].

Furthermore, since each aircraft typically operates more
than one flight per day, it is well-known that both air traffic and
crew-induced delays tend to propagate throughout the system
(Section II-A). Moreover, combined with the increasing trend
of airline hub strengthening at a handful of major airports, the
share of traffic – and consequently, delays – is being handled
by a smaller subset of increasingly critical and interconnected
hub airport nodes. Due to the underlying networked structure
of the NAS, any analysis of airport disruptions that do not
consider the connectivities and interactions between airports
may result in myopic findings. To this end, we propose using
Graph Signal Processing (GSP) techniques (Section II-B)
to analyze the impact and dynamic signatures of different
categories of disruptions at major US airports. We present
insights into the delay impact of different types of disruptive
events (e.g. Atlantic hurricanes) and the nature of recovery
by analyzing the spectrum of the airport delay signals on the
underlying graph network.

A. Motivation: Delays in a network

High delays within the NAS are known to have significant
economic impacts. When analyzing system performance in-
volving multiple airports and routes, delay can be measured
in several ways. Since the airport is typically the bottleneck of
the system and the location where delay statistics are recorded,
airport-centric delay metrics are commonly used. For instance,



some classic metrics to quantify the performance of an airport
use the average delay of departing flights, or the total delay of
all the departing flights. However, due to the strong underlying
network connectivity, some airport delays are highly correlated
to other. This correlation leads to patterns of delay propagation
that are familiar to airport operators, airlines, and air traffic
controllers.

Within the NAS, system-wide disruptions can take on two
forms: (1) The obvious problematic scenario when delays are
high across all airports; (2) a subtler scenario when delays
are high, but distributed only across a limited set of airports.
The former can be identified via classical metrics, but the
latter is more difficult to discern. There are also important
operational implications of the second scenario. Consider an
example involving Boston Logan International Airport (BOS)
and LaGuardia Airport (LGA) in New York. Historically,
delays at BOS and LGA are strongly correlated due to factors
such as their geographical proximity and connectedness via
traffic flows. This means that when delays are high at one of
the two airports, it is likely that the other airport will be in
a state of high delays as well. Operationally, this relationship
is significant and may warrant air traffic controllers to coor-
dinate Traffic Management Initiatives such as Ground Delay
Programs and En Route Separation Programs to alleviate the
delays at both BOS and LGA, providing spatial and temporal
buffers for recovery. However, if there are high delays at only
one of the two airports, it would constitute an unexpected delay
pattern, potentially requiring a different approach towards
recovery at the network-level.

We would like to define the terms off-nominal, expected,
and unexpected in the context of our work. Continuing the
example above with BOS and LGA, envision the following
two scenarios: (1) BOS and LGA both have 90 minutes of
delay; (2) BOS has 10 minutes of delay whereas LGA has
170 minutes. In both scenarios, a singular or a series of
off-nominal events (e.g. pop-up thunderstorms, terminal area
congestion) resulted in delays at BOS and LGA. However,
the first scenario is an expected distribution of delays whereas
the second scenario is an unexpected one given historically
high correlations of delays at BOS and LGA. In short, the
magnitude of delays determines whether the system is nominal
or off-nominal, whereas the distribution of delays determines
whether the system is expected or unexpected. Operationally,
the two scenarios can have very different impacts, require
different TMIs, and necessitate different airline recovery tac-
tics. This example shows precisely why classical metrics fail
in these circumstances. To address this knowledge gap, our
work focuses on how graph-theoretic and spectral methods can
provide insights to these unexpected and off-nominal events.

A priori knowledge that delays at two airports are not
strongly correlated can also be important operationally: The
lack of delay correlations provide a natural decomposition of
network control decisions that may advocate for operationally
independent recovery plans for these two airports. An example
in this case would be Phoenix Sky Harbor International Air-
port (PHX) and Detroit Metropolitan Wayne County Airport

(DTW), an airport pair that we found to have very low
delay correlations. It is important to identify and quantify
such historical delay dynamics in order to improve opera-
tional response and recovery planning. The main challenge
lies in identifying the expected performance with a network
perspective, where delays at multiple airports simultaneously
affect each other. Another challenge is defining what expected
patterns are, keeping in mind that even high delays, if present
in a consistent pattern, could be considered expected. Finally,
an open question in airline network operations is identifying
fundamental differences in delay dynamics caused by one type
of event (e.g., a nor’easter) as opposed to another (e.g., an
Atlantic hurricane), even when the resultant total delays are
the same. Our goal is a data-driven analysis at the network
level in order to (1) identify off-nominal days during which
unexpected delay dynamics occurred, (2) discuss the opera-
tional implications, and (3) demonstrate the value of such an
analysis using case studies.

II. LITERATURE REVIEW

A. Delays and disruptions

Due to the structure of air transportation networks, local
airport-level disruptions may spread to other airports and
persist in the system. The complex dynamics of delays are
primarily due to aircraft rotations, wherein a single aircraft
flies multiple trips in a given day between airport pairs.
Consequently, the delays at two airports are not indepen-
dent, and depend on the traffic between the airports, airline
scheduling and crew rotation policies, geographic proximity,
airline networks, and air traffic control procedures. Several
approaches, including queueing theory [6], network models
[7], simulations [8], and machine learning methods [9], have
been employed to understand delay dynamics.

Localized and NAS-wide disruptions cause delays and flight
cancellations requiring airlines to adjust their flight schedules,
re-assign crews, and accommodate stranded passengers. Typi-
cally, off-nominal events in the NAS are identified by looking
at delay statistics at airports or on specific routes. Recently,
clustering has been proposed as a tool for network-level
identification of similar delay patterns [10, 11]. However, these
network-level identification methodologies do not distinguish
nor decompose the observed delay patterns into components
that occur often (and therefore, would be expected to occur),
and ones that are more unusual (the unexpected components).
This paper addresses this open question.

B. Graph Signal Processing (GSP) and graph Fourier decom-
position

A foundational tool in classical signal processing is the
Fourier transform, an integral transform that decomposes a
time-based signal into its components in the frequency domain.
The Fourier transform is used in a wide selection of appli-
cations ranging from signal de-noising and reconstruction to
circuit analysis. Fourier transforms have been previously used
in aviation applications, including the modeling and prediction
of aircraft trajectories on final approach [12], the projection of



large trajectory data sets into feature spaces that can be easily
clustered and compressed [13], and the analysis of airport
capacity and delay profiles [14, 15]. This body of prior work
also considered the relationship between individual airports
in terms of delay propagation [15] . However, the underlying
graph structure of the NAS – a critical component contributing
to the behavior of delays and inefficiencies – cannot be taken
into account by the standard Fourier transform.

Given the natural occurrence of graphs and graph signals in
aviation, we use GSP techniques to analyze airport disruptions
due to weather and other outages. Our work builds off of
previous applications of spectral and graph wavelet analysis
on traffic congestion in networks [16, 17]. Continuous and
spectral graph wavelet transforms have also been used to
study air traffic flows [18, 19], albeit at the resolution of
Air Route Traffic Control Centers (ARTCCs) and with limited
interpretability of spectral results. We extend these approaches
by focusing on origin-destination airports. We focus on delays
rather than traffic, and provide theoretical results that map
spectral analysis to operational interpretations.

III. METHODOLOGY

We first present the graph-theoretic notations and basic
definitions, followed by Proposition 1 in which we show the
relationship between total variation and the graph spectral
decomposition. We then formally define the notions of signal
smoothness across a graph, setting the stage for Proposi-
tion 2 which relates correlation networks to smoothness and
unexpected events. We provide explicit probabilistic bounds
on unexpected events given our setup. Propositions 1 and 2
are the core of our theoretical contributions, and enable the
interpretability of our results when we apply GSP techniques
to airport delay networks. Due to the limitations of space, we
omit the proofs of these propositions in this paper; we refer
interested readers to [20] for proofs and additional theoretical
work on identifying outliers in graph signals.

A graph G is defined by a set of nodes N containing |N |=
N nodes, and edges E where an edge ei, j ∈ E connects a
pair of nodes (ni,n j) ∈N ×N . The weights on the edges
are represented by an adjacency matrix A ∈ RN×N , where the
element ai j is the weight on the edge from node ni to node
n j. We consider only undirected graphs, which implies that
A = Aᵀ. The degree of a node ni is given by

deg(ni) =
N

∑
j=1

ai j. (1)

The degree matrix D is a diagonal matrix with elements
dii = deg(i). Given a graph G along with its adjacency matrix
A and degree matrix D, we can define the combinatorial
graph Laplacian, L = D−A. The graph Laplacian L is a real
symmetric matrix with a full set of orthonormal eigenvectors.
We denote the Laplacian eigenvectors by vi ∈ RN×1 for
i ∈ {1, ...,N}. By orthogonality, we also have that vᵀi v j = δi j,
where δi j = 1 if i = j, and 0 otherwise.

The corresponding eigenvalues λi are given by solutions to
Lvi = λivi. The eigenvalues are sorted such that λ1≤ λ2≤ . . .≤

λN . By construction, the rows of the Laplacian sum to zero,
indicating that λ1 = 0 is always an eigenvalue. The multiplicity
of λ1 is the number of connected components of the graph.
Thus, for a fully connected graph, we would have 0 = λ1 <
λ2 ≤ λ3 ≤ . . .≤ λN .

The set of eigenvectors {v1, . . . ,vN} form the graph Fourier
basis for any graph signal x∈RN×1 on the nodes of the graph;
we will refer to x as a nodal graph signal, or simply a graph
signal with the understanding that it is supported on the nodes
of the graph. The graph Fourier transform of a graph signal
x is given by (α1, . . . ,αN), where each αi can be computed as

αi = xᵀvi. (2)

Intuitively, the graph Fourier transform (also known as
spectral decomposition) quantifies the “contribution” of each
eigenvector in the graph Fourier basis to x.

The total energy of the signal x is defined as ‖x‖2, which
is also equal to ∑i α2

i . The energy spectrum of a signal,(
α2

1 , ...,α
2
N
)
, quantifies the distribution of the energy across

different graph eigenvectors. α2
i is also referred to as the

energy contribution of the ith mode to the graph signal x.

Definition 1 (Total variation (TV)). The total variation (TV)
of a graph signal x on the graph G = (N ,E ,A) is given by:

TV = xᵀLx =
1
2 ∑

i6= j
ai j(xi− x j)

2. (3)

A graph signal with lower TV is said to be smoother relative
to another graph signal with a higher TV.

More precise definitions of graph signal smoothness are
made in Definitions 2 and 3.

A. Relationship between TV and spectral decomposition

Proposition 1. The following two statements are equivalent:
(i) Total variation (TV) of a signal x is xᵀLx

(ii) Let Lvi = λivi, for i = 1, ...,N, 〈vi,v j〉 = δi j, and x =

∑i αivi, for some scalars αi. Then the TV of x is ∑i α2
i λi.

B. Correlations, smoothness, and unexpected events

Given two nodes ni,n j ∈ N connected by an edge
ei, j = {ni,n j} ∈ E , observe k samples of the paired data{(

x(1)ni ,x
(1)
n j

)
, ...,

(
x(k)ni ,x

(k)
n j

)}
where x(`)n{i, j} is the `th observa-

tion of the pair of random nodal signals on nodes ni and n j,
for `= 1, ...,k. Let a pair of observations

(
x(`)ni ,x

(`)
n j

)
be drawn

from the bivariate Gaussian distribution given by(
X (`)

ni

X (`)
n j

)
∼N

(µ

µ

)
, σ2

 1 ρ
X(`)

ni ,X(`)
n j

ρ
X(`)

ni ,X(`)
n j

1

 . (4)

The Pearson correlation coefficient for random variables X (`)
ni

and X (`)
n j is ρ

X(`)
ni ,X(`)

n j
. We will now formalize the elements

ai j of the adjacency matrix A by defining them explicitly in
terms of a weight map. Let w : E → [0,1] : ei, j 7→ w(ei, j) =

ai j = r(k)xni ,xn j
be the weight map that maps an edge to the



projected sample Pearson correlation coefficient for a signal
on node ni and n j computed from k prior data observations{(

x(1)ni ,x
(1)
n j

)
, ...,

(
x(k)ni ,x

(k)
n j

)}
as

r(k)xni ,xn j
= max

0,

k

∑
`=1

(
x(`)ni − µ̂i

)(
x(`)n j − µ̂ j

)
√

k

∑
`=1

(
x(`)ni − µ̂i

)2
√

k

∑
`=1

(
x(`)n j − µ̂ j

)2

 . (5)

We use the notations µ̂i, µ̂ j and σ̂2
i , σ̂

2
j to represent the in-

sample mean and variance. Furthermore, r(k)xni ,xn j
is an estimate

(formally, a statistic) for the population Pearson correlation
coefficient ρ

X(`)
ni ,X(`)

n j
. We also formalize the notion of smooth-

ness by relating it to the TV for graph signals:

Definition 2 (Absolute smoothness). A signal
(
xni ,xn j

)
on two

nodes ni and n j is said to be smooth with respect to the edge
ei, j with weight w(ei, j) = r(k)xni ,xn j

if the contribution to the TV

of the graph signal approaches 0, i.e. r(k)xni ,xn j

(
xni − xn j

)2→ 0.

Since the pair of signals
(
xni ,xn j

)
is being drawn from the

joint distribution given in Equation (4), we modify the defi-
nition of smoothness to a weaker, probabilistic version. This
can be thought of as the data-driven definition of smoothness:

Definition 3 (Probabilistic smoothness). A signal(
xni ,Xn j |(Xni = xni)

)
on two nodes ni and n j at the `th

observation is said to be smooth in probability with respect to
the edge ei, j with weight w(ei, j) = r(k)xni ,xn j

if, given observation
xni , the contribution to the TV of the graph signal converges
to 0 in probability, i.e. r(k)xni ,xn j

(
xni −Xn j |(Xni = xni)

)2 p
⇀ 0.

The notation
p
⇀ indicates a convergence in probability.

The notation Xn j |(Xni = xni) indicates that Xn j is being
drawn from the conditional distribution of Xn j given an ob-
servation xni . Probabilistic smoothness can be interpreted as
follows: It is highly probable that the contribution to the TV of
the graph signal approaches 0. Our main proposition relating
smoothness and nodal signal correlation is as follows:

Proposition 2 (Smoothness and nodal signal correlation). The
following remarks relating graph signal smoothness via TV
and nodal signal correlation hold true:

(i) Given two weakly correlated nodal signals (r(k)xni ,xn j
→ 0),

the graph signal supported by nodes ni,n j and edge ei, j
is absolutely smooth.

(ii.a) Given two strongly correlated nodal signals (r(k)xni ,xn j
→ 1)

and an observation xni , the graph signals supported by
nodes ni,n j and edge ei, j is smooth in probability if and
only if

∥∥xni −Xn j |(Xni = xni)
∥∥

1
p
⇀ 0.

(ii.b) Given two strongly correlated nodal signals (r(k)xni ,xn j
→

1), the graph signals supported by nodes ni and n j, and
edge ei, j is not smooth with probability 1− p, where p
is defined as

p = Pr
(
xni −S ≤ Xn j ≤ xni +S |Xni = xni

)
(6)

where S = tp,k−2σ̂ j

√
1+ 1

k +
(xni−µ̂i)

2

(k−1)σ̂2
i

is half of
the width of the (100p)% prediction interval for
Xn j |(Xni = xni), with tp,k−2 as the (100p)th-quantile of
a t-distribution with (k−2) degrees of freedom.

IV. DATA PROCESSING AND SETUP

We consider the top airports (FAA Core 30) in terms of
passenger and airline activity in the US for our analysis. We
extract the total hourly departure and arrival delays at each
of these 30 airports for the period 2008-2017. The signal
vector for each day x is obtained by summing over the hourly
departure and arrival delays from 0000Z to 2300Z.
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Fig. 1: Heat map of the adjacency matrix displaying the
delay correlation between the top 30 airports, computed from
Equation (5).

Fig. 2: Network with the top 30 airports as nodes and delay
correlation as edge weights. Higher edge weights are also
shown with a wider line.

We construct a graph using these 30 airports as nodes.
The edge weight between any two nodes of the graph is
the correlation coefficient between the delays at the two
airports. We use FAA ASPM data for September 2018 to
obtain the edge weights via Equation (5). The set of nodes



and edge weights forms the airport-delay correlation graph,
on whose nodes we observe an airport performance signal x
for each day. Figure 1 displays the value of the correlation
coefficient between different airports. The same information
is presented with geographical context in Figure 2, which has
the 30 airports as nodes, and the edge weight representing the
correlation.

The highest correlations are observed between the airports
in the Northeast region. This means that the delays in these air-
ports tend to move in the same direction. High traffic between
airports in the Northeast region is one contributing factor
to high correlations. Another instance of a high correlation
pair of airport is ORD and MDW. While there is no traffic
between these two airports (they are less than 20 miles apart),
they almost always have the same weather impact. However,
geographical proximity alone does not lead to similar delay
trends, as the network connectivity of the two airports may
be completely different. For instance, San Diego (SAN) and
Los Angeles (LAX) are about 120 miles apart, and yet have a
much lower correlation than LAX and Salt Lake City (SLC),
which are 750 miles apart.

V. IMPLICATIONS OF PROPOSITIONS 1 AND 2 FOR NAS
DELAY NETWORKS

In this section, we aim to provide intuition for our theoreti-
cal results by interpreting TV and the spectral decomposition
in the context of airport delays. The two main ideas we wish
to convey are: (1) TV is a useful metric to help identify
when a certain spatial distribution of delays across the air
transportation network is unexpected; (2) Unexpected delays
can be analyzed and interpreted by examining its spectral
signature. Proposition 2 quantifies the likelihood of observing
a certain spatial distribution of delays using the TV as a metric,
whereas Proposition 1 relates the TV of the airport delays to
the graph spectrum and identifies the specific patterns that are
unexpected.

The key setup that enables our analysis is the edge weight
being the correlation of delays between two airports. If delays
at two highly-correlated airports are very close to each other,
then r(k)xni ,xn j

(
xni − xn j

)2 is small, since
(
xni − xn j

)
is small (case

(ii.a) of Proposition 2). If an airport pair is uncorrelated, then
r(k)xni ,xn j

is small, so the product r(k)xni ,xn j

(
xni − xn j

)2 is small
regardless of the values of xni and xn j (case (i) of Proposition
2). Note that the term r(k)xni ,xn j

(
xni − xn j

)2 is the mutual pairwise
contribution of airport nodes ni and n j to the TV.

Recall that since TV is the sum of the terms
r(k)xni ,xn j

(
xni − xn j

)2 over all airport node pairs ni and n j, if
all airport node pairs have delays that follow expected trends
(i.e., the airport delays on a particular day follow historical
correlations), then the TV is small. On the other hand, when
the airport delays at historically highly-correlated airports do
not follow typical correlations on a particular day, the signal
would have a high TV. The spatial distribution of delays across
airports is said to be smooth if the TV is small (Definitions 2
and 3). Thus, spatial delay distributions at airports that follow
historical trends tend to be smooth.

vvviii ARTCC(s) Trend 1 Trend 2
v1 Constant Constant Constant

v2
ZAB, ZLA, ZJX,

ZMA, ZOA, ZSE, ZTL MCO, FLL, CLT SFO, SAN, ABQ
LAS, PDX

v3 ZJX, ZLA, ZOA, ZTL CLT MCO, SFO, LAX

v4
ZAB, ZJX, ZLA

ZMA, ZTL FLL, ABQ CLT, MCO, LAX

v5

ZAU, ZBW, ZDC, ZDV,
ZFW, ZJX, ZLA, ZLC,
ZMA, ZNY, ZOA, ZOB

ZSE, ZTL

PDX, LAS, SAN
DEN, SLC, SFO

All other airports
in the ARTCCs (∗)

v6
ZDV, ZLA, ZMA

ZOA, ZSE DEN LAS, PDX, MIA
SFO

v7 ZDV, ZLA, ZSE PDX LAS, SAN, DEN

v8
ZBW, ZDC, ZLA
ZMA, ZNY, ZSE PDX, FLL, LAX Same as (∗)

v9
ZJX, ZLA, ZLC

ZMA, ZOA, ZSE, ZTL MIA, SAN, SLC LAS, SFO, ATL
MCO

v10
ZDV, ZJX, ZLA, ZMA,

ZOA, ZSE, ZTL
SFO, SEA, MIA

DEN Same as (∗)

v11

ZBW, ZDC, ZDV
ZFW, ZHU, ZJX
ZLA, ZMA, ZMP

ZNY, ZOA, ZOB, ZTL

FLL, MCO, SFO
SAN, DEN Same as (∗)

v12 ZJX, ZMA, ZTL ATL, FLL MCO, CLT

v13

ZAU, ZDC, ZFW, ZHU,
ZJX, ZLA, ZLC,

ZMA, ZMP, ZNY, ZOA,
ZOB, ZSE, ZTL

ATL, MCO, SFO
SAN Same as (∗)

v14
ZAU, ZDV, ZHU
ZLA, ZMA, ZOA LAS, DEN MIA, IAH, ORD

SFO

v15

ZAU, ZBW, ZDC, ZFW,
ZHU, ZJX, ZMP, ZNY,

ZOB, ZSE, ZTL

CLT, BWI, IAD
SEA Same as (∗)

v16
ZDV, ZLA, ZMA

ZSE, ZTL ATL, DEN MIA, LAS, SEA

v17

ZAU, ZBW, ZDC, ZFW,
ZHU, ZJX, ZMP, ZNY,

ZOB, ZSE, ZTL

MSP, CLT, SEA
ATL, DFW Same as (∗)

v18

ZAU, ZBW, ZDC, ZFW,
ZHU, ZJX, ZMP,

ZNY, ZOB, ZSE, ZTL

ORD, MDW, DTW
SEA, CLT, ATL Same as (∗)

v19
ZBW, ZDC, ZFW, ZJX,
ZLC, ZMP, ZNY, ZTL TPA, CLT Same as (∗)

v20

ZAU, ZBW, ZDC
ZFW, ZHU, ZJX
ZMP, ZNY, ZSE

IAH, DFW, ORD Same as (∗)

v21
ZDC, ZDV, ZFW, ZLA,
ZJX, ZMA, ZOB, ZTL

ATL, LAS, TPA
MIA

DFW, DEN, DTW
IAD

v22
ZAU, ZBW, ZDC
ZFW, ZHU, ZNY DFW, MDW Same as (∗)

v23
ZAU, ZBW, ZDC

ZNY, ZOB MDW Same as (∗)

v24
ZAU, ZBW, ZDC

ZNY, ZOB BWI, MDW Same as (∗)

v25 ZBW, ZDC, ZNY IAD Same as (∗)

v26 ZBW, ZDC, ZNY LGA, IAD JFK, EWR, PHL
DCA

v27 ZBW, ZDC, ZNY DCA, PHL IAD, BWI, JFK
v28 ZBW, ZDC, ZNY BOS, EWR JFK, LGA, DCA
v29 ZBW, ZDC, ZNY EWR BOS
v30 ZBW, ZDC, ZNY PHL Same as (∗)

TABLE I
DESCRIPTION OF EIGENVECTORS, DELAY TRENDS (TRENDS 1 AND 2

MOVE IN OPPOSITE DIRECTIONS), AND THE IMPACTED AIRPORTS AND
ARTCCS. FIGURE 5 PROVIDES A VISUALIZATION OF v24 AND v29 .

As an illustrative example, take a pair of airports with
perfectly correlated delays (i.e. their correlation coefficient is
1). The contribution to the TV from this pair of airports is
always 0, since any new delays at both airports would be
equal to each other with probability 1. However, in reality,
such correlations may be close to, but not equal to, 1. Thus,
given delays at one airport, the delays at the other cannot be



deterministically known and instead follow some probability
distribution. Case (ii.b) of Proposition 2 characterizes this
distribution and specifies a prediction interval for the second
airport’s delay (with probability p). For airport pairs with a
higher correlation, the interval width would be smaller. In other
words, the difference between the delays at both airports would
be bounded by an interval of width 2×S (Equation 6 in case
(ii.b) of Proposition 2) with probability p. The contribution
of this airport pair to the TV would be small with probability
p. On the other hand, with probability 1− p, the airport pair
would have an unexpected distribution of delays, resulting in
a larger contribution to the TV.

In practice, there are many airport pairs with a correlation
coefficient between 0 and 1. In such cases, they will contribute
to the TV whenever their delays are not the same. Thus, it
is important to remember that even an expected distribution
of delays would result in a non-zero TV. Furthermore, with
increasing delays at airports, the TV is expected to grow
quadratically (Equation 3). Therefore, it is important to only
draw comparisons of TVs between days with similar quantities
of delay. With these considerations, it is possible to conclude
whether or not a distribution of delays is unexpected (i.e. not
smooth) with respect to historical patterns.

While Proposition 2 allows for an airport-pair-specific de-
composition of TV and interpretation of unexpected events,
Proposition 1 provides a more global interpretation via spectral
decomposition (Equation 2). The graph Fourier decomposition
of airport delays into eigenvector modes provides a set of
“templates” or spatial delay patterns (see Table I) in the
form of eigenvectors that can be used to reconstruct any
particular day’s delay patterns across our airport graph. These
eigenvector modes represent a set of airport delay patterns
each with varying abilities to contribute to the TV (Proposition
1). Furthermore, the contribution of each eigenvector mode to
the TV is proportional to its eigenvalue. Due to case (ii.b) of
Proposition 2, delay patterns with higher TV are less likely
to occur. Proposition 1 tells us that having more energy at
higher eigenvector modes leads to a higher TV. Conversely,
when higher TVs are observed, there is more energy in the
higher eigenvector modes. This duality is highlighted by our
case studies in Table II.

In Figure 3, we plot the total delay and corresponding TV
for each day in the US NAS from 2008 to 2017. This plot
enables us to visualize and interpret Proposition 2. The red line
is the best quadratic fit for the data, and the dashed red line
shows the 99% prediction interval for the quadratic fit. Recall
that TV is expected to grow quadratically with total delay
due to Equation 3. However, days with a significantly higher
or lower TV for a given level of total delay are unexpected;
the delays on those days were distributed across airports in a
manner not seen previously. In the 10-year period we analyzed,
291 days (7.9%) fell outside of the 99% prediction interval.

It is worth noting that these days with unexpected spatial
distribution of delays are not the same as days with high
total delays. Furthermore, unexpected days (in terms of TV)
may or may not also have high delay; one attribute does not

imply the other, and vice versa. Specifically, what characterizes
unexpected days is the fact that a very unusual and unexpected
spatial distribution of delays were observed across the airports
within the network.

28 Dec 2010
2 Feb 2015

27 Jan 2011

3 Feb 2014

8 April 2016

17 Dec 2016

Fig. 3: TV versus Delay plot for 2008-2017.

Fig. 4: TV versus Delay plot for specific types of disruptions
(nor’easters, hurricanes, airport equipment outages, and NAS-
wide disruptions, in 2008-2017.

VI. ANALYSIS OF SPECIFIC OFF-NOMINAL EVENTS

We chose four categories of off-nominal events that have
the potential to cause severe disruptions: Atlantic hurricanes,
nor’easters, airline-specific outages, and NAS-wide days when
the entire system experiences significant delays, classified by
[10]. Each event is recorded in Table II on a per-day basis. For



each day of a specific off-nominal event, we compute the total
delay, the TV, and the graph Fourier decomposition. We also
compute the energy contribution of each of the 30 eigenvector
modes.

For each day, we selected the most energy-contributing
eigenvectors and constructed a set {v1, ...vi} of eigenvectors,
ordered by their decreasing energy contribution. Typically, the
constant eigenvector v1 contains the majority of the energy.
Using a threshold of 80% of the total spectrum energy,
we construct the minimal set of eigenvectors such that the
total energy of that set of eigenvectors meets or exceeds the
threshold. We selected the 80% energy threshold in order to
retain the most important eigenvector modes while maintaining
interpretability. Each row in Table II corresponds to a particu-
lar day of an off-nominal event; we give the eigenvector index
i ∈ {1, ...,30} as well as its individual energy contribution as
a percentage.

A. Hurricanes

While hurricanes are known to cause major disruptions
for airlines and airports, our spectral analysis shows that
hurricane-induced disruptions tend to result in spatial delay
distributions with lower TV across our system. In Figure
4, we see that days during three major Atlantic hurricanes
(Sandy in October 2012, Harvey in end of August/beginning
of September 2017, and Irma in September 2017) cluster
towards the lower end both in terms of total delay and TV.
More relevant in the context of the interplays between TV,
smoothness, and unexpected events, the TVs exhibited by
hurricanes do not exceed the 99% prediction interval. This
indicates that, at least for the three hurricane events we
examine, the airport delay distributions across the system are
not considered to be unexpected.

This noticeable lack of graph signal variation for hurricane-
related disruptions could be explained by a combination of
operational and airline policy-driven responses specific to hur-
ricanes. Typically, the most probable impact areas for Atlantic
hurricanes are limited to the Southern and occasionally Mid-
Atlantic portions of the US. These projected impact areas are
continuously updated as the hurricane approaches, allowing
airlines to preemptively cancel and re-position flights and
crews. For example, once Hurricane Sandy was projected to
make landfall on the East Coast, more than 7,000 flights were
canceled ahead of Hurricane Sandy’s East Coast landfall on
October 29, 2012 [21]. This action may have reduced the
TV induced by Hurricane Sandy’s impacts due to the non-
activation of East Coast modes (eigenvectors v25 through v30,
see Table I). The highly-correlated airports on the East Coast
did not experience unexpected differences in their total delays.

We can also observe some interesting temporal trends in
both total delay and TV for disruptions caused by hurricanes.
For all three hurricanes, the recovery phase (i.e. the last one or
two days of the off-nominal event) is typically characterized by
a drop in both total delay and TV. In the context of Proposition
2, this trend suggests that the recovery phase towards the
end of a hurricane’s impact is smooth and as expected.

This distinguishes hurricanes from nor’easters, where the TV
towards the end of a nor’easter may increase dramatically
(e.g. the January 2016 nor’easter), even though the total delay
continues to dissipate. In other words, our spectral analysis
suggests that airline recovery responses towards hurricanes
versus nor’easters may differ in nontrivial ways.

B. NAS-wide high delay days

Recall that these days were selected from clusters identified
in [10] wherein the overall delays experienced by airports
within the NAS were large. Even within this small selection of
NAS-wide high delay days, there are some interesting observa-
tions. For example, the total delays on January 3 and January 5,
2014 are comparable (4.61×104 versus 4.58×104 minutes),
but the TV exhibited within our delay graph on January 3
is almost twice as high (146.17× 106 versus 75.39× 106

minutes squared). The TV exhibited in the delay graph of
the former day exceeds the 99% prediction interval of the
TV versus total delay curve, whereas the latter day does not.
In the context of Proposition 2, the delay graph exhibited on
January 3 represents an unusual event, even if the total delay
was comparable to the total delay two days later.

A large contributing factor resulting in the unusual delay
graph on January 3 is the activation of eigenvector v26, wherein
delays at LGA and IAD are not trending with delays at JFK,
EWR, PHL, and DCA, even though their delay signals are
historically highly correlated. This is a highly energetic mode,
providing a large contribution to the TV. Other highly energetic
modes such as v23 and v24 – the latter of which was also
activated on January 3 – capture delay trends at BWI and
MDW moving out of sync with other major airports in ZAU,
ZBW, ZDC, ZNY, and ZOB ARTCCs. In contrast, we only see
the activation of a medium-energy eigenvector v17 on January
5 – the behavior of this mode summarized in Table I suggests
that airlines with hubs at MSP, SEA and ATL, or at CLT and
DFW may be operating in a way that causes the delays at
these five airports to not trend with other major airports in the
listed ARTCCs for v17.

C. Nor’easters

As mentioned earlier, nor’easters are known for severely
impacting aviation operations, particularly around the East
Coast and Mid-Atlantic regions. The severity of these off-
nominal events often forces airlines to preemptively cancel
flights in order to lessen the propagative effects of more
tactical delays and cancellations, as well as to better position
aircraft and crews for a quicker recovery.

From Table II, we note that nor’easter-type off-nominal
events tend to activate many eigenvectors that encapsulate
very high variations, i.e. vi’s where i ≥ 20. In particular,
eigenvectors v24 and v29 (visualized in Figure 5) appear 7 and 5
times, respectively. We can further augment our analysis from
a geographic perspective by observing which airport nodes
activate in the two prevalent eigenvectors v24 and v29. Recall
that all East Coast and Mid-Atlantic airports tended to be
strongly positively correlated in terms of total delay (Figures



Event Date 1st 2nd 3rd 4th 5th Total Delay Total Variation
(×104min) (×106min2)

Hurricane 10/28/12 1 (83%) – – – – 1.51 7.01
10/29/12 1 (77%) 18 (4%) – – – 0.89 3.01
10/30/12 1 (77%) 9 (4%) – – – 1.11 5.23
10/31/12 1 (86%) – – – – 1.24 4.04
11/1/12 1 (87%) – – – – 1.45 4.57

Hurricane 8/24/17 1 (87%) – – – – 1.63 4.01
8/25/17 1 (88%) – – – – 1.63 2.98
8/26/17 1 (58%) 20 (35%) – – – 1.39 19.84
8/27/17 1 (74%) 20 (13%) – – – 1.59 12.03
8/28/17 1 (78%) 18 (4%) – – – 1.65 10.21
8/29/17 1 (91%) – – – – 1.50 3.76
8/30/17 1 (91%) – – – – 1.26 1.66

Hurricane 9/9/17 1 (85%) – – – – 1.06 2.41
9/10/17 1 (77%) 19 (4%) – – – 0.96 2.99
9/11/17 1 (47%) 13 (17%) 12 (16%) 11 (4%) – 1.43 22.42
9/12/17 1 (89%) – – – – 1.39 2.89

NAS-wide 1/2/14 1 (68%) 23 (9%) 17 (7%) – – 4.33 113.44
1/3/14 1 (71%) 26 (6%) 24 (5%) – – 4.61 146.17

NAS-wide 1/5/14 1 (78%) 17 (4%) – – – 4.58 75.39
1/6/14 1 (79%) 5 (4%) – – – 3.87 41.92

NAS-wide 6/17/15 1 (67%) 20 (21%) – – – 2.19 33.39
Nor’easter 2/25/10 1 (69%) 24 (9%) 5 (5%) – – 2.29 35.08

2/26/10 1 (60%) 24 (10%) 26 (5%) 5 (4%) 29 (4%) 2.89 90.30
2/27/10 1 (87%) – – – – 1.69 5.67

Nor’easter 1/30/11 1 (87%) – – – – 1.14 2.95
1/31/11 1 (74%) 6 (8%) – – – 1.64 9.69
2/1/11 1 (71%) 22 (10%) – – – 2.82 44.38
2/2/11 1 (72%) 24 (5%) 28 (4%) – – 2.25 32.25
2/3/11 1 (82%) – – – – 1.85 8.84

Nor’easter 2/7/13 1 (80%) – – – – 1.59 7.66
2/8/13 1 (86%) – – – – 1.73 8.51
2/9/13 1 (65%) 26 (11%) 29 (7%) – – 1.50 23.17
2/10/13 1 (75%) 15 (7%) – – – 1.64 11.33
2/11/13 1 (72%) 5 (5%) 27 (5%) – – 2.13 26.23

Nor’easter 2/11/14 1 (88%) – – – – 1.63 3.64
2/12/14 1 (76%) 13 (6%) – – – 2.31 16.87
2/13/14 1 (70%) 24 (5%) 5 (5%) – – 3.48 74.23
2/14/14 1 (86%) – – – – 2.82 15.87

Nor’easter 1/26/15 1 (74%) 5 (6%) – – – 1.94 16.68
1/27/15 1 (83%) – – – – 1.18 5.49
1/28/15 1 (84%) – – – – 1.28 4.18
1/29/15 1 (89%) – – – – 1.49 3.88
1/30/15 1 (79%) 24 (7%) – – – 2.05 14.15

Nor’easter 1/21/16 1 (90%) – – – – 1.72 4.55
1/22/16 1 (80%) – – – – 2.37 15.45
1/23/16 1 (58%) 29 (13%) 28 (8%) 12 (3%) – 1.61 36.30
1/24/16 1 (56%) 24 (11%) 29 (6%) 30 (6%) 25 (5%) 1.85 50.93
1/25/16 1 (68%) 29 (12%) 24 (5%) – – 1.79 28.60

Outage 11/15/12 1 (93%) – – – – 1.55 2.18
Outage 9/26/14 1 (73%) 18 (10%) 2.33 25.71
Outage 9/17/15 1 (80%) – – – – 1.73 8.02
Outage 7/20/16 1 (84%) – – – – 2.05 11.26

7/21/16 1 (77%) 18 (9%) – – – 2.74 26.50
Outage 8/8/16 1 (70%) 13 (7%) 12 (5%) – – 2.72 31.35

8/9/16 1 (87%) – – – – 2.23 6.69
Outage 1/22/17 1 (79%) 13 (8%) – – – 3.09 16.66
Outage 12/17/17 1 (65%) 13 (12%) 12 (10%) – – 1.64 14.86

TABLE II
DIFFERENT OFF-NOMINAL EVENTS; COLUMNS “1ST ” THROUGH “5TH ” CONTAIN THE HIGHEST-CONTRIBUTING EIGENVECTORS AND THEIR ENERGY

CONTRIBUTION, IN DESCENDING ORDER.

1 and 2), reflecting both the operational interconnectedness
as well as the geographic proximity between these airports.
Hence, the delay distribution is expected to be smooth (case
(ii.a) of Proposition 2). However, we note that during the
off-nominal conditions imposed by various nor’easters, the

delays at BWI are not behaving in an expected manner
when compared to other East Coast airports (eigenvector v24).
Similarly, the delays at BOS and EWR are not behaving in the
expected pairwise manner, as represented by eigenvector v29.
Thus, our spectral analysis suggests that nor’easters, more so



Fig. 5: Eigenvectors v24 (top) and v29 (bottom).

than other off-nominal events, drive the NAS into historically
unexpected modes.

Even within nor’easter-type events, there are interesting
differences in the temporal distribution of the high-energy
contributing eigenvectors. For example, the February 2010
nor’easter peaks on February 26, driving the NAS into a
very unexpected delay mode requiring five eigenvectors to
characterize, three of which contain high levels of graph signal
variance (i∈{24,26,29}). However, an abrupt recovery occurs
between February 26 and 27, with the NAS settling back to
a state where delay signals are smooth across the entire NAS
(i.e. only v1 is required to fulfill the 80% energy threshold)
in just one day. This does not appear to be the case for the
February 2013 nor the January 2016 nor’easter, where the
recovery process was much less smooth in the context of
graph signals. We hypothesize that this observation points to
a non-trivial difference in recovery strategies beween different
nor’easters – some strategies result in a more “even” network-
wide recovery, whereas others result in recoveries that are
less smooth and isolated. Future research that attempts to link
different operational features in airline irregular operations
(IROPs) recovery strategies with excited eigenvector modes
would be of interest.

D. Airport- and airline-specific outages

Our spectral analysis shows that the airport- and airline-
specific outages examined in Table II did not produce un-
expected delay signals across our graph. Many of these off-
nominal days (November 15, 2012; September 17, 2015; July
20, 2016; August 9, 2016) did not require additional eigen-
vectors past v1 to pass the 80% energy threshold, indicating
low levels of TV in the airport delays. Even though the total
delay in the system was at a significant level for some of these
days (e.g. 2.05 ×104 and 2.23 ×104 minutes of delay for July
20, 2016 and August 9, 2016, respectively), the TV was low

and well within the 99% prediction interval that delineates an
expected versus unexpected spatial delay distribution.

Furthermore, even when additional eigenvectors are required
to achieve the 80% energy threshold, the eigenvectors tend to
be less energetic, providing less contribution to the TV. For
example, the two outages on August 8, 2016 and December
17, 2017 suffered by Delta Air Lines due to power outages at
ATL identically triggered eigenvector modes v12 and v13. Just
from the index of the eigenvectors we can see that these are
low-contributing modes to the TV. Both modes record delay
signals at ATL trending opposite to delay signals at other
airports within the NAS, but the delays at these other airports
are weakly correlated to ATL (i.e. r(k)xni ,xn j

→ 0), thus explaining
the low contributions to the TV. If we examine Figures 1 or 2,
we see that delay signals at ATL are more strongly correlated
with East Coast airports such as BOS, DCA, EWR, LGA,
and PHL, but these were not the airports whose delay signals
were trending opposite to ATL’s delay signals in eigenvector
modes v12 and v13 (case (i) of Proposition 2). Recall that
these eigenvector modes have airport-specific geographical
interpretations; v12 and v13, as described in Table I, implicate
delays at ATL trending opposite to delays at other southeast
airports such as MCO and CLT.

Operationally, it may be the case that airport- and airline-
specific outages cause severe disruptions, but these disruptions
are mostly localized to one particular airport node. In addition,
for the cases of airport- and airline-specific outages that we
examine, the airport node that was affected did not have a
strong a priori positive correlation in terms of delay with other
airports experiencing fluctuations in their delay signals. In
other words, whatever delay signal fluctuations were occurring
between the affected airport and other airports within the graph
were not significant contributions to the TV, due to the weak
correlation coefficient edge weights.

VII. SUMMARY AND FUTURE WORK

We analyze the networked behavior of airport delays within
the US NAS using GSP techniques in order to take into
account the underlying airport graph structure and delay
correlations. In doing so, we compute the TV of our de-
lay signals across our graph, and examine their eigenvector
(spectral) components. Underpining our spectral analysis is
our theoretical work linking together nodal signal correlation,
the TV (smoothness) of a graph signal, and unexpected events.

Motivated by the knowledge gap in characterizing nominal
or off-nominal disruptions with expected or unexpected airport
delay dynamics at a network-level, our work resulted in two
primary contributions. The first contribution – a systematic
method, grounded in theory, to identify days with unexpected
delay distributions at a network scale – has far-reaching impli-
cations for airlines and traffic managers. Through Proposition
2, we are able to show that, given historical delay correlations,
a new delay signal induced by events such as hurricanes,
nor’easters, and airport outages could be classified with ex-
plicit probabilistic bounds as expected or unexpected. Enabled
by GSP techniques, this classification inherently accounts for



both historical trends and underlying connectivities, allowing
for insightful, network-level interpretations of delay dynamics.
Our second contribution stems from our case studies in Section
VI, leading to the observation of fundamental differences in
how delays begin, evolve, and dissipate between different
categories of disruptive, off-nominal events (e.g. nor’easters
versus Atlantic hurricanes).

In future work, we intend to explore the temporal dynamics
of TV as a disruptive event unfolds; this direction already
looks promising from our case study observations, hinting at
deeper connections between TV and airport recovery proce-
dures. We also will expand our case study to include all days
classified as unexpected, enabling us to analyze other types
of disruptions besides nor’easters, hurricanes, airport outages,
and NAS-wide high delay days. Finally, we will compute
airline-specific graph Laplacians and delay signals, leading to
further, more detailed operational insights.
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