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Abstract

This thesis presents a sum-product inference algorithm for platform navigation
called Multi-modal iSAM (incremental smoothing and mapping). Common Gaussian-
only likelihoods are restrictive and require a complex front-end processes to deal
with non-Gaussian measurements. Instead, our approach allows the front-end to
defer ambiguities with non-Gaussian measurement models. We retain the acyclic
Bayes tree (and incremental update strategy) from the predecessor iSAM2 max-
product algorithm [Kaess et al., IJRR 2012]. The approach propagates continuous
beliefs on the Bayes (Junction) tree, which is an efficient symbolic refactorization
of the nonparametric factor graph, and asymptotically approximates the under-
lying Chapman-Kolmogorov equations. Our method tracks dominant modes in
the marginal posteriors of all variables with minimal approximation error, while
suppressing almost all low likelihood modes (in a non-permanent manner). Keep-
ing with existing inertial navigation, we present a novel, continuous-time, retroac-
tively calibrating inertial odometry residual function, using preintegration to seam-
lessly incorporate pure inertial sensor measurements into a factor graph. We cen-
tralize around a factor graph (with starved graph databases) to separate elements
of the navigation into an ecosystem of processes. Practical examples are included,
such as how to infer multi-modal marginal posterior belief estimates for ambigu-
ous loop closures; raw beam-formed acoustic measurements; or conventional para-
metric likelihoods, and others.
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Chapter 1

Introduction

This thesis is focused on developing simultaneous localization & mapping, to-
gether with high-bandwidth state estimation, following a tendency of convergence
among techniques towards a common state estimation, localization, mapping, and
trajectory planning navigation system.

A key problem faced in navigation systems today is how to perform robust
and efficient inference over many sensor measurements simultaneously, and how
to guide a system towards some user desired goal. Sooner or later a bad sensor
measurement or algorithmic decision will disrupt the consistency of a navigation
and control system’s estimates, resulting in unpredictable behavior and effectively
voids reliable use of such a system all together. A robotic navigation system should
create an artificial location and dynamic awareness of a vehicle over widely vary-
ing timescales, starting in the sub-millisecond through to sessions lasting multiple
hours.

Gyroscope and accelerometer measurements for inertial navigation are well es-
tablished for high-bandwidth navigation, but require additional aiding measure-
ments to overcome systemic inertial sensor errors, such as measurement bias, see
Farrell [56] Titterton et al. [229] or Groves [79]. In turn, all navigation sensory infor-
mation should be equally assembled into a consensus state estimate. Information
from multiple robots or sessions should also be aggregated into a larger common
world state estimate.

Existing data fusion approaches generally assume that all sensing modalities
have a Gaussian error distribution, however, in reality many measurements and
associations are ambiguous and require much more capable measurement likeli-
hood models. The community have generally suggested techniques to identify and
remove so-called “outlier” measurements, but we would rather allow the naviga-
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tion system designer freedom to propagate uncertainty—by means of more com-
plicated non-Gaussian measurement models—to the common inference system
and let consensus be found there in aggregate.

1.1 Motivation

Fig.|1-1{shows four different robotic platforms which had a direct influence on the
development of this thesis. Each enables development into more advanced au-
tonomy and robotics methods for helping people solve greater societal problems.
Robotic platforms in Fig. [1-1)were developed for data gathering in environments
which are too hostile or prohibitively expensive for humans to go in person, and
intended to advance the science, national security, or the monitoring of valuable
assets.

The Atlas robot can manipulate objects and was part of the DARPA robotics
challenge—which was officially motivated by the Fukushima nuclear disaster and
Deep Water Horizon explosion and oil spill events. The humanoid robot, in some
way, represents the perfect motivation for pursuing robotic systems: offloading
dangerous and difficult tasks, rather than risking human life, to replaceable hard-
ware which can interact with a world built for humans — climbing stairs, ladders,
opening doors and valves, pulling levers, using common power tools, etc.

We note among the platforms shown in Fig. WHOI's Sentry vehicle is the
most active. Simultaneously, Sentry’s underwater operations are some of the most
challenging, given the hostile environment at 6000 m depth in a hot to cold, corro-
sive and conductive environment; with limited access prior information since most
operations are in new unexplored areas; notable funding limitations being consid-
erably less than the comparable space industry, although the vehicle costs more
than twice that of the original BDi Atlas humanoids, and about five times one of
the SPHERES satellites; compounded by the major risk of vehicle loss; and severe
physical limitations such as having only acoustic signal propagation available for
communication and finding an on-board and mothership based navigation solu-
tion. The point being, that the more difficult the operating environment becomes,
the more feasible a robotic solution is.

Our motivation is well aligned with the views of Mindell [151] who illustrates
the perfect-five concept: Consider some task, such as robotic construction in space,
drilling for oil in the deep ocean, or displacing dull and dirty tasks such as cleaning
solar panels in the hot sun. Each of these tasks have levels of abstraction, starting
with low-level motor and actuator control up to general system guidance and deci-
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Figure 1-1: Robotic systems which gave direct motivation for this thesis. Top left
shows a long endurance solar power unmanned aerial vehicle using a GPS and
magnetometer aided inertial navigation system in 2010 [61,[241]. Top right shows
the SPHERES/VERTIGO experiment aboard the International Space Station dur-
ing early testing in 2013 of the visual relative object tracking and inertial navigation
experiments along with directional, synchronized time-of-flight acoustic beacons
for absolute ranging and reference [66,/67]. Bottom left shows the Team MIT’s BDi
Atlas humanoid robot (later 2013) for the DARPA robotics challenge, using a kine-
matic and lidar aided inertial navigation system, with the intention of remote user
manipulation of objects [54,223]. Bottom right shows the Woods Hole Oceano-
graphic Sentry autonomous under water vehicle before deployment at Juan de
Fuca ridge in 2014, using multiple inertial sensors and Doppler velocity log for
navigation; as well as independent acoustic and optical localization of equipment

deployed on the sea floor [85,[189]. Photo credit, top-right: NASA.
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sion making. We describe level one autonomy as the equivalent of joystick control
of the lowest level actuators, while level ten autonomy can be a hypothetical case
where we push a button and walk away while a robot does some value-adding
task.

Practical systems should enable human-in-the-loop decision making and in-
tervention while computational and manipulative autonomy deals with low-level,
mundane tasks that logically and defensibly follow from the user’s stipulated in-
tentions, see Mindell’s discussion on the Apollo guidance system [150]. For exam-
ple, a self driving car might take control in consistent traffic flows, or park itself
at slow speed in dedicated parking lots. Another example would be a hovering
robot in space, air or under water for inspection operations and might be moved in
increments with automated positional control from sparsely human defined way
points.

1.2 Applications of Interest

We list a few examples applications for which we would like a navigation solution.
While all the applications will require different front-end processes to interact the
different sensing modalities used, we would like to generalize as much of the so-
lution as possible. Our focus in this thesis is on the largest common denominator,
the back-end inference solution, and again note that these decisions are guided by
experience from the platforms shown in Fig.

1.2.1 Kinematic Robots

Humanoids or quadruped kinematic robots are well motivated as generic robotic
platforms interacting with objects in a man-made environment. Such kinematic
robots require both a high-bandwidth vehicle state estimate and a long-term sta-
ble and accurate navigation solution. Robot trajectory planning an manipulation
processes also require a map estimate of the local surroundings. To manipulate
objects, the automation also requires some virtual representation of objects that a
machine can understand how to interact with, which we shall call an affordance.
Consider a robot moving towards a local object in preparation for a manipula-
tion task, as illustrated in Fig. where a the robot has been instructed to walk
up to, reach out, open, and then walk through the doorway. The navigation and
control needs to plan forward in time and then, through control, guide the robot
along the planned trajectory towards the user specified goal. The relative state es-
timate between the robot and the door should improve as the robot approaches the
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Figure 1-2: Vision of what a centralized navigation system should be able to
achieve in terms of a kinematic robot manipulating objects in its surroundings.
This humanoid robot example is used throughout the thesis as a hypothetical use-
case, along with a secondary example in Fig.

intended manipulation target. Increased accuracy indicates some kind of feedback
between the localization and mapping estimation processes.

Focusing on the individual state estimation elements: Consider estimating the
position of the robot’s hands or feet relative to the robot body, and then also rela-
tive to the objects in the world surrounding the robot. The guidance and control
systems need to prevent object and self collisions while the robot kinematics are
being actuated and trajectories planned. From these and similar arguments, we
can see a strong common framework is required for expressing spatial relation-
ships between all robot kinematic components, physical objects in the world, and
context of the surrounding map.

A kinematic robot nominally has measurements from gyroscopes and ac-
celerometer triads, joint encoder kinematics, motion model predictions, cameras,
GPS satellite ranging, and possibly laser scanners and other body mounted rang-
ing equipment which should be combined into a consensus navigation state es-
timate. The question becomes how do we best combine these different sensing
modalities while achieving robustness in a high-bandwidth, real-time state esti-
mate.
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1.2.2 Wheeled Robots

Wheeled vehicles, such as industrial factory and packing robots, self driving cars,
and other domestic robots are popular platforms which require a robust navigation
solution. Wheeled robots commonly employ wheel odometry and steering angle
measurements, inertial measurement units, and can easily be fitted with multiple
cameras and Doppler radar sensors. More complicated sensing modalities such as
two dimensional and three dimensional laser scanners can also be added. Road
incline, engine throttle position, and steering angle can be monitored for predictive
modeling of future actions under multiple control policies. This thesis is intended
to contribute in how to combine each of the navigation measurement and trajectory
planning elements.

1.2.3 Flying Robots

Unmanned aerial vehicles (UAVs) are a popular reference for autonomous systems,
also known as drones. Automated flying vehicles date back to the first World War,
using mechanical gyroscopes, pendulums, and propeller turn counts, vehicle tra-
jectories could be planned and executed in crude fashion. State-of-the-art Kalman
filtering based inertial and GPS navigation systems are the foundation for intelli-
gent fly-by-wire control systems.

Many applications and operational requirements for aerial vehicles often dic-
tate that aerial navigation systems depend on on-board measurements only. Mea-
surements including GPS ranging, inertial measurements, passive camera, active
laser scanners, ground Doppler, range, and imaging radar are common sensing
modalities. Active ranging signals likely suffer adverse multi-path affects.

1.2.4 Marine, Ocean, and Space Robotics

Marine vehicles would greatly benefit from automation across vast oceans and
given the given the relative safety of automated operations during the early adop-
tion and development phases. A system failure during testing would in most sit-
uations result in the vehicle slowly drifting allowing hours or days to intervene,
opposed to aircraft or cars where severe damage swiftly follows from a system fail-
ure. Lastly, consider the relative payloads that can be carried by marine vehicles
— even a modest size vehicle can carry an enormous amount of stored energy and
computational resources.

Automation in marine and ocean engineering can allow missions where vehi-
cles go to sea for months at a time, and current news media has plentiful examples
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of increasing reliance on unmanned marine technology by both military and com-
mercial entities. The Woods Hole Oceanographic Institutions” (WHOI) Jetyak [122]
vehicle is a low-cost vehicle which in the scientific community has already been re-
placing manned operations for dull and dangerous data collection activities. An-
other example is a long history of bathymetric data collection, with recent prac-
tical demonstrations of behavioral control strategies of the Sentry AUV search-
ing for underwater oil plumes in during the Deep Water Horizon oil spill [28], or
transceiver localization and pursuit for optical data muling operations [85,(189].

Further opportunities for marine autonomy include security patrols for piracy
or narcotics; data collection and surveying for science and construction; au-
tonomous convoy shipping, rigging, and tugging operations; and rapid emergency
response to a vehicle in distress. Furthermore, underwater robotics equipment is
arguably some of the most advanced — such as deep sea oil and gas infrastructure,
exclusively assembly by remotely operated vehicles (ROVs).

Fig.[1-3|shows a hypothetical robot in a space or underwater setting, approach-
ing a known object over topographically known terrain, and illustrates how a robot
should be able to arrive at some user-defined position relative to existing equip-
ment on the surface. What is not emphasized in the figure is the level of unpre-
dictability in the environment or user intentions.

Looking at the sensing modalities common to marine systems, GPS measure-
ments are used for location at the surface as available, and sightings to remote
landmarks in coastal regions. Magnetic and gyrocompass systems are common,
along with a velocity log for dead reckoning navigation and bottom depth mea-
surements. Throttle and rudder positions may also be recorded for model based
dead reckoning. Boats and ships often have radar and possibly sonar imaging ca-
pabilities. When operating near structures or in rivers, we can expect above water
cameras and laser scanners.

Underwater vehicles generally only have access to inertial measurement and
magnetic measurements from passive sensors, and a motion model prediction. Ac-
tive acoustic ranging, such as fixed long and ultra-short base line (LBL & USBL),
and Doppler velocity logs (DVL) for sea floor or under ice operations are com-
mon. Imaging sonars or powerful laser scanners are also available but generally at
high cost. A camera might be present for near bottom or near structure operations
but cloudy water or any form of remote operation prevents use of visual data as
primary source of navigation. We note the enormous value of camera data as a
secondary source of navigational information. Lastly, consider moving over topo-
graphically interesting terrain from where we can back out likely locations using
a prior map of the area, altitude above ground and depth below the surface.
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Figure 1-3: Vision of what a centralized navigation system should be able to
achieve in terms of marine or space robotics, here showing a hypothetical inspec-
tion and light intervention case.

Many of these sensing modalities have highly non-Gaussian error distributions,
and are similar to what space robotic systems will use and considered part of the
discussion here.

1.2.5 Free-moving Navigational Devices

Many applications require estimating the position of some device or person in a
working volume. Consider estimating the position of a robotic end-effector rel-
ative to its mounting or work piece being manipulated. An nearly independent
navigational device that could be attached to a robot hand may be more cost ef-
fective than requiring high quality joint encoders and mechanics. Going back to
the kinematic robots discussed in Section [1.2.1, we could imagine a more extreme
situation where the hands and feet of a robot are jointly navigated with low-cost
inertial and ranging measurements, avoiding more complicated kinematic struc-
tures and joint angle measurements.

A slightly different example, such as in car manufacturing, an automated as-
sembly line assumes that each car will move through the line at exactly the same
location. Now consider mounting a temporary navigation device to each of the
objects being manipulated, as well as the robotic arms working in the volumes.
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If such a navigation system were able to track each device accurately, then the
tolerances along the assembly line can be relaxed and the robots be given more
autonomy to react to passing of each individual item.

Consider hand-held mobile devices to be used as personal navigation systems,
such as the Google Tango device [2], which will allow software applications to in-
teract with the physical world. People could use a the technology to better navigate
in a foreign train station, or be navigated away out of buildings during a fire emer-
gency, or be tracked in a dangerous environment such as a battlefield. Free-moving
devices must conform to strict size, power, weight, and computational restrictions.
Again, low-cost inertial sensors, magnetometers, and cameras can be included in
such devices. Acoustic or radio ranging, or even directional, beacons could be in-
corporated into a working volume. Alternatively, the device could be tracked by
statically mounted sensors.

The navigation modalities discussed in this section represent measurements
that may be highly unpredictable. Lower quality joint encoder measurements
would likely have backlash and poor transfer of angles due to hysteresis or oth-
erwise. Camera scenes might be very dynamic, or views often obstructed by the
robot, people, or moving objects in the scene; or could subject to adverse glare and
reflection problems. Acoustic and radio ranging measurements will likely suffer
from plentiful multi-path problems in confined spaces, or around many flat reflec-
tive surfaces. Magnetic sensors would likely be corrupted with metal structures or
electrical currents.

1.3 Problem Statement

General autonomous mobile (robotic) platforms require a computational infer-
ence and sensor modeling strategy for robust in-situ navigation solutions covering
timescales of milliseconds through multiple hours.

1.3.1 Premise

This research is directly focused on platform state estimation, taking lessons from
past navigation systems and projecting towards improved robustness and en-
hanced capabilities. The state estimate and multi-sensor robustness concerns are
treated separately and recombined into a common navigation system. Fig.
shows a conceptual illustration where a real-time state estimation is obtained
from a short dead reckoning segment which is “grounded” relative to some ro-
bust multi-sensor fusion algorithm which infers consensus navigation state from
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sensory data over some computational period. The duration of computation and
dead reckoning navigation are dictated by each application and performance re-
quirements.

Inertial sensor based
real-time estimate

A}
A}
A}
A}
A}

Robust multi-sensor

. short dead-reckon
inference

segment

Figure 1-4: Conceptual illustration of some robust multi-sensor data fusion oper-
ation, discussed in Chapter [5| which supports a short dead reckoning trajectory
segment from some odometry, where we will put more emphasis on using and
dynamically calibrating inertial measurements, discussed in Chapter 4 The com-
bination of state estimation and multi-sensor systems is discussed in Chapter

Chapter 2| discusses existing solutions and their limitations. Previous experi-
ence suggests that, when operating in unknown environments, factor graphs can
be used as a unifying abstraction language for building simultaneous localization
and mapping algorithms. Furthermore, factor graph and Bayes tree frameworks —
which are in used with the iSAM2Talgorithm — have been very successful at large
scale multi-sensor data fusion; the iSAM?2 algorithm, however, requires the nav-
igation system developer to only use normal distributed uncertainty (Gaussian)
measurement models.

The robustness of the iSAM algorithm is known to be a problem when “bad”,
inconsistent, or non-Gaussian measurements are added to the factor graph model
[181,219]. This thesis is charged as a remake of the iSAM2 algorithm, by using
the Bayes tree approach, but allowing non-Gaussian uncertainty models into the
factor graph — called the Multi-modal iSAM algorithm.

The intention is to expand modeling and inference, using factor graphs, to en-
capsulate multi-hypothesis tracking within the multi-modal framework by gen-
eralizing the iSAM2 algorithm with multi-modal belief propagation on the Bayes
tree. Generalizing to belief propagation allows inference with more complicated
likelihood and prior uncertainty models. The ability to defer uncertain associ-
ations to the back-end inference, will allow the inference technique to consider

lincremental Smoothing and Mapping, Kaess and Dellaert et al. [115}/116].
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the aggregate of all uncertainties and stand a much better chance of resolving the
correct associations. This new freedom allows us to more accurately describe the
measurement uncertainty models as the factor graph is constructed.

The premise of this work is to address the underlying crux problem known as
the Chapman-Kolmogorov transit integral, and is specifically discussed in Section
Our approach to the Chapman-Kolmogorov integral is divided into convolu-
tions and products of infinite functions, and was inspired by methods employed
by Tanner and Wong [221], Gelfand et al. [71], and Sudderth & Ihler et al. [218].

1.3.2 Research Scope

This thesis focuses on developing a navigation solution to establish a sufficient
level of location awareness for human supervised operations of an autonomous
systems mentioned in Section Given a working list of robotic applications,
we re-factor the problem and transition our focus away from a particular robot
and instead investigate the dominant sensing modalities, combined inference, and
state estimation in detail. This work includes computational intelligence — built
into the software and hardware computing elements — using the available sensing
modalities to arrive at navigation state estimate.

Our approach should allow the navigation system designer the maximum free-
dom to express measurement uncertainty models which may be encountered by
the variety of sensing modalities. In particular, we note that automated naviga-
tion systems involve a degree of computational decision making which may intro-
duce greater uncertainty in measurements, such as data association type problems
where valid measurements are made to ambiguous references in the world. Chap-
ter 3| details how a front-end robot navigation process can combine four groups of
factors for probabilistic modeling of the navigation problem with factor graphs.

1.3.3 The Multi-modal Aspect (Robustness)

By multi-modal we mean that almost all of the low likelihood hypotheses are not
important and will be discarded to reduce the computational burden. One contri-
butions of this thesis will be to discover how to develop an algorithm that focuses
computation on a couple of the most likely modes without sacrificing accuracy on
the dominant modes, and managing computational complexity with some hypo-
thetical dial where the user can select how many modes and/or fidelity the solu-
tion should try recover. Our’s is a full sum-product inference computation, rather
than max-product or loopy belief simplifications which are generally used.
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We decided to follow a nonparametric route, which encapsulates the notion
of multi-modal inference in belief, and bars us from individually tracking each
mode, and allows us to track highly non-Gaussian posterior probability densities.
A multi-parametric mixture model of say Gaussians, will allow multi-modal track-
ing, but not quickly returns to heuristic selection techniques. This choice would
further allow us to capitalize on existing theories and methods already developed
in other disciplines.

For example, work on Random Operator Theory shows the deep theoretical
study of generalized statistical inference, see Prokhorov [190] and Skorohod [209]
is an entry point into literature outside modern robotics. That work concentrated
on fixed point theorems and contraction mapping arguments for developing gen-
eral algorithmic approaches. Yet more work is looking into higher dimensional
Hilbert feature space embeddings to improve linearity, or trying to construct prob-
ability theory as groups as a powerful mechanism to analyze and develop algo-
rithms.

1.3.4 The Inertial Aspect (Bandwidth)

Inertial sensors are a corner-stone of modern high-bandwidth and real-time nav-
igation systems — see Farrell [56], Groves [79], or Titterton et al. [229] —, with
a difficult but successful history, see Mackenzie [144] and Mindell [150]. Inertial
measurements offer a means to “black box” dead reckoning, but suffer from mea-
surement bias offsets and nonlinearity errors. For example, large errors in the po-
sition estimate result from integrating a gyroscope bias offset, which produces an
orientation error and in turn results in incorrect gravity compensation being dou-
ble integrated.

We purposefully include inertial navigation as the gateway to real-time capable
and robust navigation. Besides the ability to track fast vehicle dynamics, inertial
sensors boast major statistical advantages, including highly repeatable behavior
of unimodal measurements (strongly Gaussian). The unimodal nature of inertial
navigation (odometry) will play a key role in making practical multi-modal sys-
tems viable, by helping to isolate dominant modes and discarding low likelihood
modes as the vehicle moves through the world — consider only a few possible hy-
potheses can exist from a collection of measurements with approximately known
odometry. The navigation systems for robots illustrated in figs. and [1-3| will
require proper inertial odometry type measurement models, which and is devel-
oped as a core contribution of this thesis.
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1.3.5 The Modeling & Prediction Aspect (Trajectories)

Knowing that state estimation, localization and mapping are generally used for
controlling a vehicle towards some user desired set points, we also discuss how
inference over past measurements blurs the line to future trajectory planning. Ex-
isting guidance and control systems assume a single time instant snapshot of ve-
hicle state and user intention, in order to simplify the connection. This simplifica-
tion, however, gives rise to methods like model predictive control and trajectory
optimization as mechanisms to cater for situations not covered by the single time
snapshot approach.

Predictive modeling of vehicle dynamics is the major connection between state
estimation and control of a dynamic platform. We know from trajectory optimiza-
tion and model predictive control that vehicle models can be used to enforce fea-
sible and under-actuated solutions in the vehicle state. In addition, model pre-
dictions can be used as a measurement to aid in the navigation state estimation
process with the expected dynamics of the robotic vehicle.

A unified state estimation and model predictive trajectory planning framework
should allow for tight integration between sensory information over some history
window of measurements the desired future state. This abstraction implies some
kind of joint inference between past and across real-time boundary to some hypo-
thetical future state.

Our investigation will combining navigational sensor measurements and
model predictions into the navigation system, and leave the actual actuator control
and feedback control loop structure as out of scope. This thesis should is intended
to support current development work towards a more common and centralized
navigation system, i.e. an automated location and dynamic awareness, and will show
how and where model predictive trajectories should be incorporated into the si-
multaneous localization and mapping framework. This thesis will not study how
model predictive trajectory planning performs, but will be part of our future work.
The far reaching extension is to capture multi-policy trajectory optimization with
a multi-modal belief representation.

1.3.6 Out of Scope

While the algorithmic development is focused on efficient computations, this is not
a one-size-fits-all, plug-and-play solution. The dominant focus of the thesis is how
to develop a back-end inference solution which is common to multiple robotic plat-
forms, as the largest common denominator in any navigation system. Front-end
processes, particular to each robot or mobile platform, will be required to construct
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the factor graph (see Chapter |3) which is then consumed and used for inference
computations by the back-end process.

In terms of computations, we are not attempting to place all computations as
a real-time system on a single small processing unit, and willing to explore larger
computational methods to advance the science of navigation. The thesis will ex-
plore how real-time architectures can be assembled, but will not validate real-time
performance on any particular platform. Multi-modal factor graph approaches
will likely require larger compute capability, and this thesis will investigate the
merits of such an approach while looking to identify ways to reduce the compu-
tational load. Finding reasonable system level architectures which would allow
robots to offload large computations, while maintaining statistical exactness and
achieving good robustness is more in line with this thesis.

We acknowledge that high quality results can be obtained with existing meth-
ods with large engineering teams, and are not competing with a highly engineered
system such as the Google Tango device [2], or high class inertial and GPS based
navigation systems. This study focuses on the architecture that would be feasible
with technology that is available today, rather than spend excessive time on en-
gineering solutions to one particular problem which has limited transferability to
other robotic platforms.

The outcome of this thesis is to find a viable theoretical avenue in robust nav-
igation, combined with high-bandwidth and real-time inertial navigation, and
through examples show that each of the specific elements discussed do in fact
work. The intention of this research is to explore navigation systems which, when
engineered, can achieve desired computation time and performance criteria in op-
erational environments which are not accessible with the solutions in use today.
This thesis marks a new direction for addressing current robustness problems,
rather than incrementally refining the prevalent unimodal, Gaussian, and null-
hypothesis assumptions found in literature today.

Regarding future model (trajectory) prediction and control: We are not working
to implement feedback control architectures for affecting system actuators, but do
spend some effort in advancing the integration of trajectory planning and model
predictive control strategies into a common navigation inference framework.

1.4 Thesis Roadmap

Chapter 1 identifies inference in robotic navigation as an important and open area
for research, and defines the scope of work covered in this thesis.
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Chapter 2 investigates previous work in state estimation and mapping, which
problems still need to be addressed, and how different principles of existing meth-
ods have inspired our work.

Chapter 3 describes how to assemble a consistent joint probability factor graph
representation over navigation variables of interest using existing — and introduc-
ing several new — parametric and nonparametric sensor likelihood models based
on measurements from real-world events.

Chapter 4 derives and details one of the measurement models in particular,
namely the new continuous time and second order inertial odometry measure-
ment factor for capturing high-bandwidth motion, and achieving real-time navi-
gation performance.

Chapter 5 relaxes parametric optimization to a more general nonparametric
inference over joint probability factor graph models described in Chapter 3, and
presents our inference algorithm called Mutli-modal iSAM (incremental Smoothing
and Mapping).

Chapter 6 is dedicated to canonical multi-modal examples to help understand
the nature of nonparametric solutions.

Chapter 7 discusses centralizing the factor graph around a navigation server
rather than using a central front-end robot process to pull different parts of the
solution together.

Chapter 8 presents results from real navigation use cases, including hand held
monocular visual-inertial navigation, the BDi Atlas humanoid robot, and under-
water beam forming acoustic robot, and a larger scale wheeled robot.

Chapter 9 draws conclusions about the work in this thesis and discusses future
directions that may be taken.

1.5 Critical Analysis

A navigation system can be analyzed with three fundamental questions: Is the
state estimate improving when more time is spent in the same area; does the rela-
tive state estimate between vehicle and objects improve as the robot moves closer
to the objects for the first time; and does the navigation system consider future tra-
jectories or only existing measurements. In this thesis we propose a solution that
answers affirmative to each of these questions.

Literature suggests a strong synergy between belief interpretations and consen-
sus among multiple hypotheses. Most existing methods try find ”outlier” mea-
surements and remove them as incorrect hypothesis, but such approaches are
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prone to parameter tuning heuristics, almost zero guarantees, and result in dis-
carding valid measurements which suffer from bad associations by the front-end
processing. The risk of not dealing with bad associations usually results in unpre-
dictable and catastrophic failure of the navigation state estimate, given that such
measurements are incorrectly treated as having Gaussian uncertainty.

A robust, multi-sensor data fusion system has long been sought after by the
inertial navigation community, and is one of the core contributions of this thesis.
Filtering solutions have long dominated inertial navigation, but we expect them to
transition to factor graph approaches in the future. This thesis intends to combine
high-bandwidth and real-time inertial navigation capabilities with robust multi-
sensor data fusion.

In general, common sensors perform well under controlled circumstances,
but only measure partial navigation state information through some uncertain
and nonlinear model. A generalized navigation scheme that can combine large
amounts of varying measurements and extract the most likely consensus modes
from sensor data, assuming that measurements from one reality will eventually
result in only a single plausible dominant mode estimate.

A core contribution of this thesis is to show that larger scale non-Gaussian,
multi-modal type uncertainty models can be successfully used in a factor graph,
and perform efficient inference over the ensuing factor graph models. Our ap-
proach will leverage the benefits of the Bayes tree from iSAM?2 [115] to allow more
powerforl factor graph representations for robust navigation systems of practical
sized problems.

Biological systems show that a generalized navigation system should be pos-
sible: Humans can take the controls of a wide variety of platforms, such as cars,
planes, helicopters, space ships, or submarines, and are able to resolve a dynamic
navigation state estimate from available data. Dynamic navigation in this context
means to have intuition about vehicle dynamics in the near future.

Autonomous systems are operated by people who need an intermediary in-
terface, which ultimately involves visualization of robot state and expression of
user intentions. User driven automation require a common reference frame so
that users can understand how the robot perceives the world, and the navigation
system is the key component that establishes the common reference frame.

Lastly, a navigation system is developed by a group of people using the tools
at their disposal. To this end, our development will focus on supporting design-
ers of navigation systems for robotic applications by simplifying sensor modeling
and data interaction tasks. Chapter [/| promotes a centralized factor graph in a
client-server model as the common platform to bring together all the pieces of a
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navigation system.

1.6 Conclusion

This thesis is about robot navigation and state estimation. This chapter motivates
why a reliable, high-bandwidth navigation solution is vital for increased auton-
omy in robotic systems — to let robots understand their surroundings with some
level of location and dynamic awareness. A navigation system must allow users and
algorithms to freely extract spatial relationships from a synthetic reconstruction of
the world, to support human instructed inspection or manipulation tasks.

Robust navigation will inevitably encounter non-Gaussian measurements and
will have to draw on a broader class of measurement uncertainties such that a
consistent navigation inference problem can be propagated to the back-end solv-
ing process. Current unimodal belief propagation on the Bayes tree should be ex-
tended with non-Gaussian models to accommodate, for the first time, multi-modal
belief propagation, without breaking the incremental update mechanics achieved
with the original iSAM?2 algorithm. The transition to nonparametric methods is
most heavily inspired by ground breaking work from Kaess & Dellaert et al. [115],
Tanner & Wong [221]], Gelfand et al [71], and Sudderth & Ihler et al. [218].

All the robotic platforms shown in Fig. [1-1|rely on Kalman filtering based data
fusion solutions as primary means of navigation. There are some secondary use
cases and developments with factor graphs on those platforms, but nothing to sug-
gest that factor graphs will take over as the primary means of doing state estima-
tion. This thesis is focused on promoting a multi-modal and non-Gaussian ap-
proach based on factor graphs as the primary means of navigation in automated
(robotic) platforms.
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Chapter 2

Literature Survey

Chapter(Ijisolates an area of research relevant to robotic navigation. In this chapter,
we consider previous work in state estimation and mapping. While our approach
makes a significant break for current approaches in SLAM] the principles from
inspiring works remain relevant. Chapters[3|and ] present new ways to construct
probabilistic likelihood models for a variety of sensor measurements. Chapter
discusses how inference with the newly developed parametric and nonparametric
sensor measurement likelihoods.

2.1 Introduction

Improvements in technology have fueled the development of many approaches to
state estimate of localization and mapping. A looming question is whether the
variety of state estimation techniques are leading towards towards a centralized
localization, mapping, and planning approach. Literature on state estimation, lo-
calization, mapping, signal processing and computer vision are all pertinent to
research on navigation systems.

Simultaneous Localization and Mapping (SLAM) research has been at the fore-
front of jointly estimating vehicle location and opportunistic features state in the
surroundings. The big question in state estimation, following the advent of the
Kalman filter in the early 1960’s, is which data fusion process or architecture will
replace existing filtering approaches.

The classic localization only problem is far simpler, with lower computational
cost and algorithm complexity. Localization only systems assume stable and

!Simultaneous Localization and Mapping
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unique long term references, for example GPS satellite signals, will be available
during vehicle operations. SLAM systems, however, face the key problem of si-
multaneously inferring state of the vehicle and unknown surrounding using many
partial and uncertain sensor measurements, while being robust to ambiguity in the
measurements and the navigation problem.

Navigation solution failures generally stem from inconsistent measurements
when data association to known references or features fail. Data association fail-
ure in ambiguous sensor measurements is the process whereby the navigation
software is forced to assume Gaussian only measurement models under incorrect
association between predicted and true references in the world.

The process of reducing all ambiguous measurements to Gaussian uncertainty
models inevitably result in inconsistent measurement models entering the naviga-
tion solution. Inconsistency here has the formal meaning, Groves [79]], that the user
models a measurement’s as a highly unlikely event — such that all measurements
do not adhere to the frequency of occurrence specified in the user model.

A strong synergy exists between probabilistic belief interpretations and con-
sensus among multiple ambiguous measurements, but thorough literature on us-
ing multi-modal belief uncertainty for the navigation task is less prevalent. This
chapter reviews literature from state estimation, mapping, and statistical inference
disciplines in preparation for our contributions towards multi-modal navigation.

Combining robust localization and mapping with high-bandwidth state esti-
mation will require computation over widely varying timescales. This combina-
tion produces a systems engineering question of how to assemble different sensing
and processing modalities into a common framework.

This chapter discusses different navigation sensing modalities, and look at how
inertial navigation systems came to play a central role in present day autonomous
systems. Followed by how the Kalman filter data fusion concepts develop deeper
understanding into more common multi-sensor inference inference, specifically
the cyclic factor graph graphical representation for navigation. Re-factoring the
cyclic factor graph to an acyclic tree have become a critical staple of parametric
optimization. Existing stochastic inference over graphical models, developed by
the statistics community, may well shed light on more general inference for non-
Gaussian type belief. The influence of technology on assembly of navigation solu-
tions is also briefly reviewed.
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2.2 Sensing Modalities

Broadly speaking, three major sensing types are of interest to navigation: (i.) active
reference from external sources such as radio or acoustic ranging; (ii.) passive,
self-contained measurements such as inertial measurements or camera; and (iii.)
active, self-contained measurements such as lidars or Doppler velocity logs. The
different sensing modalities lead to several trade-offs in how to fuse, into a coherent
estimate, information about the vehicle and world state.

2.21 Triangulation and Ranging

Triangulation and ranging remain the primary means of navigation in many lo-
calization systems used today, see Fig. for ranging type navigation example.
For example, common GPS navigation combines simultaneous ranging measure-
ments from several global navigation satellites [79] into a Kalman filter position
and velocity state estimate. Satellite based ranging measurements replaced previ-
ous hyperbolic radio ranging systems such as LOng RAnge Navigation (LORAN)
and Decca.

Key problems with ranging mechanisms [144] (although they can provide near
absolute navigation measurements) is that ranging to external reference systems
are comparatively slow to vehicle dynamics, and easily disrupted by natural or in-
tentional means. Additionally, time-of-flight distance measurements require ad-
ditional information such as global timing or location of reference beacons, which
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Figure 2-1: Illustration of ambiguous ranging navigation. Left, shows how abso-
lute timing allows absolute ranges to resolve two possible positions. Right, shows
relative timing between two concurrent time-of-flight signals for hyperbolic arcs
of possible vehicle location [239].
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in turn increases the cost of these systems. For example, hyperbolic ranging sys-
tems do not have access to an absolute time reference and measure the difference
between expected signals instead. As a result, combinations with other sensing
modalities, most notably inertial navigation, has became a popular trade-off.

2.2.2 Platform Inertial Navigation

The aerospace community have long contributed to in-situ navigation with work
on early aircraft instrumentation through missile guidance. Missile guidance led
much of the early development work on platform type navigation systems —
greatly influenced by Draper et al. [46] — , leading to patents such as the famous
Polaris ballistic missile system, Hall et al. [82]. Wonderful historical discussions on
the socio-economics precipitating from the space/arms race between the global su-
per powers were studied by Mackenzie [144], leading to the Apollo Lunar missions
navigation technology studied by Mindell [150].

In turn, platform based inertial navigation systems (INS) developed from ear-
lier gyrocompassing systems, which are commonly used for independent, self-
contained north finding and latitude estimation at sea. Gyrocompassing follows
from the discovery of the Foucault pendulum and early attempts by Van den Bos
in the 1880’s to develop prototypes had proved difficult to master.

Mechanical gyrocompassing platforms float level to gravity and use a control
system to steer measured earth rotation rate to zero [106|], thereby isolating East-
West orientation. A further capability for estimating latitude involves comparing
vertical and North aligned rotation rates which should sum to 15°/hr rotation rate.

Metal hull ships, during the first World War, obfuscated magnetometer read-
ings and kick started detailed technological and scientific development in inertial
guidance. The ferrous hull problem was exacerbated in submarines, leading to ri-
val gyrocompassing technologies between the earlier Antshutz-Kaempfe systems
from Germany and copied Sperry systems from the United States, calling on Albert
Einstein as expert witness for courtroom patent disputesﬂ

Work on gyrocompassing led to great scientific works, including that of Schuler
[243]], who derived the de-facto process-noise parameter selection criteria for iner-
tial navigation system, still in use today. The Schuler pendulum is specially chosen
to not be perturbed from the local vertical from any vehicle accelerations by choos-
ing the oscillation frequency at 84.4 mins — that is a pendulum having the whose
length is the radius of the earth.

ZHistoric article in Newsletter from the Institute of Navigation.
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Starting in the 1940’s, missile inertial guidance platforms used the gyroscopic
effect to establish a rotationally fixed reference frame in three dimensional inertial
space, see Britting [25]. The vehicle orientation angles could then be measured rel-
ative to the stable platform at any time. By mounting and integrating the measure-
ments from accelerometers on the platform, we can estimate changes in velocity
and even doubly integrated for position in the stable platform reference frame.

Over time, position estimates would be adversely affected from integration of
errors from gravity coupling due to platform misalignmentf| and accelerometer
measurement bias offsets.

The best solution was to combine long term stable navigational references as
a calibration reference to correct the platform predicted navigation solution and
implicitly estimate sensor bias offsets. Celestial star tracking was an early popular
choice, which worked at high altitude for missile and aircraft guidance, but was
not ubiquitously available in all weather or covered operation regimes.

The Apollo lunar program of the 1960’s provided a great backdrop for showing
what a celestially aided inertial navigation was capable of doing: Rocket launch,
lunar landings, and lunar orbital rendezvous, inter-celestial travel, and re-entry
were all critically dependent on inertial navigation based fly-by-wire systems [150].

With the Apollo lunar program, the Command and Lunar module’s onboard
inertial navigation system was aided through a Kalman filtering process, using
observations from a sextant star sighting mechanism [144]. Early uncertainty and
the unexpected complexity of the Apollo onboard inertial navigation system had
resulted a project level decision to switch the primary navigation to stereographic
ranging measurements from radio stations on earth [150]. The onboard inertial
navigation did play a critical role in lunar landings, where the system was also
combined with a ground referenced Doppler radar velocity system. A further
interesting aspect is that the space traveling Module navigation state parameters
could be updated or reset by controllers from ground based computers.

After the Apollo program, inertial navigation went through a difficult develop-
ment period, and only became popular for commercial use with the requirement
of a bespoke system to be used on the Boeing 747 intercontinental airliner. From
this point, security in the field of inertial navigation was established, but develop-
ment in data fusion techniques slowed down and most development was done at
sensor computational hardware level [229].

Digital technology and more computational resources has had a major influ-
ence on inertial navigation: towards reducing the mechanical complexity and er-
rors, size, power consumption, extending maintenance intervals, and reducing

3Problem of the vertical
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cost. Strapdown inertial navigation became a mainstream commercial technology
by the mid 1980’s [203]]. Strapdown systems keep track of the rotationally fixed
reference frame through electronic propagation of the rotational estimates [30].
Gyroscope technology favored closed-loop—or nulling—measurement strategies,
with dynamically tuned, ring laser, tuning fork, hemispherical, and fiber-optical
gyroscopes offering great performance/cost trade-offs [229].

A common theme from previous work in inertial navigation is that sensor er-
rors can be well modeled and dynamically estimated in real-time, resulting in a
major improvement in velocity and position estimation which in turn support real-
time tracking of opportunistic references.

Industrialization of INS/GPS type navigation systems became the priority.
The next big break would follow the commercial introduction of micro machined
electro-mechanical (MEMS) gyroscopes and accelerometers, and how to combine
them with alternative localization and mapping algorithms developed by the
robotics community. We identify this as an area this thesis can contribute to, and
direct the reader to Chapters [3|and @] for more details on inertial odometry. We also
note our contribution is not limited to low-cost inertial sensing, but actually fo-
cused on high quality computation that can easily be replicated between high and
low cost sensor technologies.

2.2.3 Towards Digital Multi-sensor Fusion (INS/GPS)

Aided inertial navigation systems have become the workhorse for nearly all au-
tonomous vehicles today. Inertial navigation solutions are usually aided by in-
dependent measurements beacon range or bearing, or Doppler velocity (body or
global relative) measurements. Chapters 3| and |4 presents our understanding of
modern inertial odometry in concert with other navigation measurements.

Widespread public access to the American GPS satellite navigation system,
starting in the 1990’s, allowed self contained and high-bandwidth inertial navi-
gation systems to be combined with slower but stable absolute position updates
from GPS satellite ranging systems [57]. The dominant data fusion method that
emerged from this work is an extended Kalman filter (EKF) design, estimating
either the total or error states of the system, in feed-forward or feed-back con-
figurations. Industrial applications commonly use Kalman filters to dynamically
estimate a single time-slice of many IMU and GPS sensor calibration parameters;
orders as high as 90 system error states have been reported. Inertial navigation
systems are described in great detail by Titterton et al. [229], Groves [79] and Far-
rell [56].
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A common approach is to use inertial sensors for capturing high bandwidth
dynamics and gravity measurements while radio based ranging measurements,
such as a global navigation satellite system (GNSS), preserve the long term ac-
curacy of the navigation solution. GNSS aiding is either done by cascading the
INS/GNSS filter behind the GNSS solution filter (loosely coupled), or directly us-
ing pseudo range satellite measurements in the INS/GNSS measurement model
(tightly coupled) [49]. In the extreme, inertial information is used to also aid satel-
lite signal tracking (deeply coupled) [229]. The Kalman filter as data fusion tech-
nique is discussed in Section [2.4| following the discussion on relevant navigation
sensing modalities. Recent work by Barfoot [14] gives a survey of current data
fusion strategies used by the robotics community.

2.24 Emergence of New Sensing Modalities

The quest for ever more autonomy and improved low-cost navigation systems
has fueled research into alternative navigation methods. Notably, efforts by the
robotics community to navigate autonomous vehicles in in-door or sub-sea (GPS
denied) environments, and have demonstrated a vast array of new localization and
strategies. Many technological improvements, such as computational power re-
sources, lower cost sensors, and better sensor performance have allowed signifi-
cant progress in the navigation data fusion discipline.

Terrain Relative Navigation

Many situations such as submarine guidance, flying out of range — or in radio si-
lence — prohibit access to active external navigation beacons. Instead, passive ref-
erencing mechanisms were developed whereby a computational system can help
resolve a navigation solution using features of interest in the world surrounding
the vehicle. Early aircraft systems could be pre-loaded with reconnaissance im-
agery which are then re-observed by cameras onboard the vehicle. Feature de-
tection and recognition systems would then produce prior estimates of where the
vehicle was in relation to the previously surveyed area [79]. These techniques are
known as terrain relative (referenced) navigation, or TRIN.

Terrain relative and celestial navigation aides were complimentary given the
operation altitude and can be integrated with the inertial navigation system
through some feedback correction or data fusion process. However, the size,
power, computation and cost constraints of celestial or TRN aiding would often
limit a system to only include a smaller subset of these aiding measurements. Ter-
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rain relative or celestial navigation are both still limited by weather conditions.
As a result of high availability requirements on cruise missiles and other stand-
off type systems, topographic and altitude type terrain referencing systems were
developed.

Topography based navigation, as is common on Tomahawk missiles today, use
a histogram filter to correlate a short history of measured altitude over ground
measurements with a pre-loaded topographic map of the area. The combination
of local odometry estimates with the varying ground altitude quickly constrains
the navigation solution position uncertainty to a small area over the known topog-
raphy map. Histogram filters are a type of recursive filtering technique (discussed
in Section 2.4) using a fixed grid of possible world or body frame positions.

Velocity over Ground (Doppler Measurements)

Maritime and underwater navigation generally do not have access to clear imagery
or topograhical information of the sea floor terrain, see Kinsey et al. [123] or Paull et
al. [186] for in depth surveys on state-of-the-art underwater navigation techniques.
Sonar measurements, and specifically Doppler acoustics, can provide velocity over
ground estimates.

Underwater autonomous vehicle navigation has further developed aided iner-
tial integration strategies using a Doppler velocity log (DVL). INS/DVL systems
combine accurate body relative acoustic Doppler velocity measurements, near the
sea floor, with rotation rate and acceleration measurements in a similar Kalman
filter data fusion architecture [56].

Body relative ground velocity estimates can be integrated into position esti-
mates relative to the starting position, often using an attitude only estimate from
and IMU to de-rotate vehicle dynamics into a stable vehicle centered reference
frame. Similarly, there are many situations where aerial vehicles may be flying
over unknown terrain, but have access to Doppler radar type measurements See
Farrell [56] for a similar loosely coupled Kalman filtering architecture to combine
body relative Doppler measurements with inertial navigation type dead reckoning
state predictions.

Ultra Short Baseline (USBL) Receivers (Nonparametric)

The relative geometry of received radio or acoustic wavefronts can be determined
through beam-forming calculations from a transducer array to measure varying
arrival times of incoming signals. Beam forming techniques, Van Trees [233], can
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recover the orientation angle from where a signal originated. Time-of-flight rang-
ing techniques are discussed separately in Section[2.2.1]

Beam forming techniques allow the array size to be reduced to the order of sig-
nal wavelength. As a result, higher frequencies allow receivers to be small and
portable. USBL systems have become popular for underwater robotic operations
for both tethered and untethered vehicles. However, automated fusion of USBL
data with solutions from vehicle inertial navigation systems have been limited. The
predominant use case of ship mounted USBL systems in the underwater robotics
case, seems to involve human in the loop operations for all measurement interpre-
tation and integration into the operational system at hand. Automated inclusion
of USBL type measurements in robotic platforms seems to be limited.

The most recent technological development is a chip scale atomic clock [44],
at relatively low-cost. The combination is leading to several new developments
in autonomous vehicle navigation sensors, such as a one way travel time vehi-
cle mounted inverted (iUSBL) system [163]. Both acoustic and radio based beam
forming measurements provide an excellent source of navigational information,
but easily corrupted by noise or multi-path interference in crowded and confined
spaces.

As a result, the signal processing and understanding of these type of sensors
become critical to their industrial application. It is critical to have have a data fu-
sion approach which is able to interpret highly non-Gaussian measurement uncer-
tainties and fuse the information with other sensing modalities for a coherent state
estimate. A core contribution of this thesis is the ability to combine nonparametric
type measurement likelihood beliefs into a common factor graph description and
be able to perform meaningful sum-product type inference on system state vari-
ables.

Laser Scanners and Depth Fields (Lidar)

Two dimensional and three dimensional depth fields type sensors have had a major
influence on navigation and mapping type algorithms. These sensors, when com-
bined with feature detection and tracking processing, provide strong range and
bearing constraints for any navigation solution. Bry et al. [27] show how an iner-
tial navigation solution can be combined with a planar laser scanner and a prior
known map to successfully guide a small aerial vehicle indoors on a prescribed
trajectory amongst many objects.

The Carnegie Mellon Multisense stereo camera and spinning lidar used by BDi
Atlas during the DARPA Robotic Challenge [54] provides great three dimensional
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position constraints and object detection [55], however, this system separates map-
ping and localization tasks into separate stages and avoids the desirable, fully fluid
mapping and localization framework discussed in Chapter

Self driving cars, starting with the DARPA self driving car challenges, has made
considerable use of spinning lidars for mapping the surroundings slaved to a sep-
arate INS/GPS localization solution. MIT’s approach to the DARPA urban chal-
lenges relied on autonomous decision making from a locally computed map of the
surroundings [134]. Instead the winning Stanford approach followed (with GPS) a
preplanned route more closely and avoided locally observed obstacles that would
interfere with the intended trajectory path [155].

Tracking and Mapping

Methods such as Parallel Tracking and Mapping, Klein et al. [126], use laser scan-
ner, lidar, or camera measurements for separated localization and mapping tasks.
Parallel tracking and mapping approaches are a preamble to simultaneous local-
ization and mapping approaches.

Autonomous underwater inspection operations, much like self driving cars,
are another area seeing significant development, where vehicles are now able to
successfully use lidar measurements to map underwater structures. Similar to the
earlier self driving car technologies, and INS/DVL type navigation solution is used
for localization, while lidar measurements are slaved to the location solution to
produce a secondary map estimate, see Lockheed Martin’s approach [148] is an-
other example where maps are generated after localization has been solved.

Red-green-blue and depth (RGB-D) sensors, such as the Microsoft Kinect, have
greatly influenced development in 3D mapping, see Han et al. [83] for a general re-
view of recent work. Three dimensional lidar measurements (such as RGB-D) give
extremely dense information, sufficient to compute the localization and mapping
solutions in parallel. For example, Newcombe et al. [173]] and [171] demonstrated
dense tracking and mapping (DTAM), which was able to resolve both location and
mapping using only a RGB-D sensor. Later work by Whelan et al. [236] proposed a
method to combine sparse and dense methods using RGB-D, and deformable map
objects in DynamicFusion by Newcombe et al. [172]. These approaches compare
consecutive three dimensional point clouds to find an odometry solution [235],
and the points are reprocessed into mesh map of the local surrounding objects.

Earlier work from Klein et al. [126] uses multiple passive cameras for paral-
lel tracking an mapping (PTAM). It is assumed that a PTAM derivative, using a
loosely coupled inertial navigation solution through a Kalman filter framework is
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used in the Microsoft Hololens project]

These and similar approaches produce visually appealing reconstructions of
the surroundings, while solving the localization problem of the sensor platform.
These approaches are, however, totally dependent on the lidar sensed information.
Localization and mapping fails when the scene is obscured by sunlight, fog, dust
or silt. Each of these approaches stand to benefit a great deal from data fused
results where other sensor modalities can improve the resolution and robustness
of the estimation process.

Lidar based approaches are also information intensive, often imposing band-
width constraints on both the motion of the sensor, as well and the electronic com-
munication and processing. Long term maps produce large volumes of data, in-
tricately tied to the map itself, see Whelan [237,238]]. Johannsson [105] suggests
a long term solution by combing a sparse index of location to which starves the
surrounding map information to a separate data store.

A last example of using planar lidar information is one state estimation and
mapping solution used for the BDi Atlas humanoid robot. The state estimate sys-
tem described in [55] uses an iterated mapping and localization solution. The robot
starts at some initial condition, standing based on position, velocity and orienta-
tion estimates from a inertial navigation state estimate. A spinning lidar from a
Carnegie Multisense device is used to generate a three dimensional map of the lo-
cal surroundings, based on the current position state estimate.

The mapping process is then paused and a localization service then takes over,
using the map as staring environment to produce position updates, in a loosely
coupled fashion, to the inertial navigation solution, using the same code developed
by Bry et al. [27]. The data fusion is done with a common 9 state loosely coupled
Kalman filter framework: position, velocity and orientation. Inertial sensor bias
terms are not estimated. Once the robot approaches the end of the current mapped
region, the localization process is paused and the mapping process is again used
to develop a new map local to the current robot location. Robot leg kinematics,
using joint angle measurements, are also used for navigation position updates and
footstep location estimation.

Kinematic Linkages

The advent of kinematic biped and quadruped robots, requiring great balancing
finesse, have fused local inertial navigation solutions with leg kinematics. Joint
encoder angles are used together with kinematic models to estimate the position of

“Speculated.
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footsteps and the body relative to some starting position, see for example Koolen et
al. [128]. Similar solutions, including Bloesch, Alacantarilla, Rotella et al. [5,24,199]
respectively, use Kalman filtering to infer the state as a single snapshot estimate,
using only a single snap transform to place new footstep estimates in the world.

From experience, two major problems complicate the use of joint encoder an-
gles. Uncertainty in mechanical tolerance and backlash of actuators result in large
kinematic uncertainty. Second, contact estimation with the floor or objects such as
stairs or platforms can be difficult, and results in a delicate parameter tuning ex-
ercise of balancing foot contact accuracy with tolerance to bumping and dragging
actuators against surfaces and obstacles.

Experience with this type of system has helped motivate the suggested ap-
proach discussed in Chapter |3, where trajectory planning and factor graph type
inference are combined for a more resilient robot navigation framework. See Fig.
and related discussion for more details.

Camera only (Monocular or Stereo)

Cameras are a self contained and passive sensing modality, see Harley and Zisser-
man [88] for an in depth look at imaging geometry. The Apollo program started
using cameras for remote sensing, using imagery to build topographically accu-
rate surface maps. Bundle Adjustment, Triggs et al. [231], and Structure from
Motion (S5fM), Horn [93], techniques were developed to combine multiple images
into a simultaneous localization and mapping solution. Later methods would ex-
tract distinct features of interest, such as Harris corners [87], and SIFT descriptors,
Lowe [139], which can be corresponded across images. Multiple feature detec-
tions are then used to assemble a least squares objective, which is minimized to
find a mean parameter estimate (maximum likelihood or otherwise). The solution
for monocular only solutions have the additional problem of unconstrained scale,
since no depth or odometry information is available.

The relative transform between nearby images can be measured using Nister’s
eight point [175] or Horn’'s relative orientation [94] techniques. These techniques
amount to visual odometry methods. Kanade-Lucas-Tomasi (KLT) feature track-
ing [230] is an in-situ method to track how feature points move through an image
sequence, and used as a common base for several of the methods discussed above.
As a side note, our discussion returns to these relative transformation techniques
in Section where a new compound factor, or multiple feature factors, is as-
sembled.

Continuing with visual odometry techniques, Davidson [40] suggested adding
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a constant velocity model to visual feature tracking, using a Kalman filtering
framework, to fuse the camera only measurements into a real-time SLAM solution.
Monocular camera LSD-SLAM, Engel et al. [51], avoids regularizing assumptions
such as constant velocity but resorts to explicitly parameterizing a map scale pa-
rameter, thereby isolating the non-observable scale problem. The parameterized
solution can the be fit to metric scale using additional information.

In 2001, Qian et al [191] suggested incorporating inertial data with a structure
from motion procedure to aid in scale observability; this was later suggested by
authors such as [177] as well. This data fusion further enables high-resolution tra-
jectory estimation between camera frames and coasting through featureless image
sequences. However, these methods do not model raw inertial sensor error terms,
and in effect require high-performance IMUs or ultimately incur little dependence
on poor inertial measurements.

Loop Closures (Vital Data Association)

Loop closures are not limited to any particular sensor and can involve any of the
sensing modalities. The term loop closure refers to positively identifying a geo-
metric relation to previous objects or pose positions seen by the navigating plat-
form, and has been the subject of many investigations as summarized by Lowry
et al. [140]. A loop closure could be as simple as a user input statement, confirm-
ing that the navigating platform has been returned exactly to a previous position,
using some accurate mechanical alignment technique. On the other hand, loop
closures could complicated interactions of suspected observations of previously
identified features or objects in the world. Observations of objects could be via
radar, sonar, camera, or otherwise.

Loop closures provide a fantastic source of navigation information, since an en-
tire loop and many sensor error parameters can compensated knowing a segment
of the trajectory produces a loop to the same location. In a relative mechanization,
as suggested by Leonard et al. [135] and others, the loop closure point means two
parts of a time separated poses are known with high accuracy to each other, and the
midpoint in the trajectory between the loop closure points is in greatest error. The
problem with loop closures is to automate a data association framework that does
not make mistakes, or miss too many potential loop closures. Incorrectly accepting
an erroneous loop closure can have catastrophic consequences to a SLAM type ap-
proach, given the inconsistency of the measurement and prevalence of Gaussian
error assumptions.
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2.3 State-of-the-art Fusion Strategies

The availability of vast amounts of navigational sensory data raises the question on
how best to fuse multi-sensory data into a common state estimate. Our discussion
follows the a similar chronology as scientific development in the understanding
of inference, using aided inertial navigation as a preamble to Kalman filter dom-
inated techniques. By generalizing the Kalman filter to a hidden Markov model,
and working our way towards general factor graph models, currently algorithms
to infer state using factor graphs is discussed.

2.3.1 Loosely and Tightly Coupled INS/GPS

Starting in the 1990’s, the popularity of INS/GPS systems lead to three major cat-
egories of Kalman filter based state estimator coupling schemes. Loosely coupled
schemes compare the INS position output with that of an independent GPS re-
ceiver (which internally also uses a Kalman filtering framework), Farrell and Barth
[57]. Since Kalman filters assume that all process inputs and observational mea-
surements are statistically independent, the tightly coupled scheme directly pre-
dicts and measures individual satellite time-of-flight range measurements in one
centralized Kalman filter [229]. The deeply coupled system, Gustafson et al. [80],
establishes bi-directional data fusion by using the inertial solution to predict where
GPS correlator tracking loops should find satellite ranging signals.

Attitude heading and reference systems (AHRS) generally combine gyroscope
derived orientation with accelerometer measured gravity in a Kalman filtering
framework, Farrell [56]. AHRS are not considered inertial navigation systems,
since they do not exploit double integration of acceleration measurements. Our
focus is on fully fledged inertial navigation solutions.

2.3.2 Loosely Coupled Visual-Inertial Filtering

A strong synergy between visual and inertial sensors [36]] has resulted in various
visual-inertial navigation systems (VINS) being developed. Loosely coupled visu-
ally aided inertial navigation by Veth et al. [145,234] combines position or velocity
measurements from visual odometry as updates to a Kalman filter, similar to IN-
S/GPS systems. This arrangement can be considered as loosely coupled, since
separate position estimates are compared.
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2.3.3 Tightly Coupled Visual-Inertial (MSC-KF)

Major contributions to visual-inertial odometry came in 2007 with the introduction
of the Multi-State Constrained Kalman Filter (MSC-KF) by Mourikis et al. [157,
158] and inertial structure from motion by Jones et al. [107,]108]. Both employ
tight coupling between inertial measurements and visual feature tracking, in that
feature position estimates are directly dependent on the state estimates from the
visual-inertial Kalman filter.

The MSC-KF approach has one additional modification from a singular
Kalman filter approach, in that landmark position states are separated out in a
Rao-Blackwell fashion. That is the previous pose locations are estimated with
Kalman filter, assuming the landmark positions are fixed. Once new pose esti-
mates are available, the position of landmarks is estimated using a least squares
approach, keeping pose positions fixed. Null projection, using the Schur compli-
ment, is used to marginalize out pose information from landmark estimates before
they are again used for updating the pose localizations, Mourikis et al. [158]]. The
motivation for this approach is to reduce the cubic dimension cost of Kalman filter
updates. However, the MSC-KF approach is very similar to EKF-SLAM discussed
in Section and is known to be computationally less efficient than graphical
model approaches, Dellaert et al. [41].

Refinements to the MSC-KF have improved filter consistency by restricting the
state updates to respect the unobservable nullspace of the system, see Huang,
Hesch and Li et al. [90,98,138], which enters the state through linearization as-
sumptions and numerical computational issues. Filtering style visual inertial nav-
igation system (VINS) generally estimate a single snapshot estimate of inertial sen-
sor biases. There are several further works on visual inertial localization by filter-
ing but are general variations of these presented above.

One notable issue with visual inertial filtering solutions is that both the predic-
tion and measurement models are non-linear. It has been noted that performance
may be improved by improving linearization points through iteration of the up-
dates to the state vector. Since filter update steps are in essence Gauss-Newton
updates steps, the work of Bell [16] stands a good middle ground between filter-
ing and smoothing solutions.

2.4 Recursive Hidden Markov Model (Filtering)

The discussion will now focus on existing data fusion approaches, starting with the
Kalman and particle filters as recursive implementations of the underlying hidden
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Markov model.

2.4.1 The Kalman Filter (HMM)

The Kalman filter [118] was developed in the early 1960’s and has become a popu-
lar method for data fusion into a common state estimate, and following the Apollo
program defined a common blueprint for many state estimation systems in use
today. All measurements y and inputs u are assumed Gaussian and uncorrelated,
resulting in a recursive least squares solution to the state vector x.

The filter operates in two stages, namely prediction steps according to model
f (x, u) which are driven by Gaussian input u; and various update steps using sen-
sor model y = h (z), driven by measurements y. Kalman filter prediction steps are
generally done at very high rate, with a few measurement update steps between
from different aiding measurements, Groves [79] & Farrell [56]. The prediction of
Gaussian state x and covariance P is described by:

d .
FXx=fxu+KF-y) (2.1)
d
aP = FP + PF” + Q - KRK". (2.2)
with Kalman gain K = PH"R ™!, where process noise Q and measurement noise
R covariances are used. Linearizations of the prediction F = ;2% and measure-
ment H = 2% models are used for estimating the covariance.

Discrete time evolution equations are found by integrating the equations,
which produces discrete state and covariance estimates x(;41)" and P(k+1)+- Pre-
diction steps which increase uncertainty and update steps reduce uncertainty, Gre-
wal [78]]. At each time step, the posterior belief is marginalized to the current state
and used as a prior. The state prior represents all previous information that has
been marginalized out, while the current state variables x(;) and measurement
prediction y ;) are kept fluid.

Fig. illustrates a graphical model representation, at time (k) of the state
z(y T and covariance estimate P;)* which are propagated forward in time and up-
dated by measurements y;), and is commonly referred as a hidden Markov model
(HMM). Markov, since each next state is only dependent on the previous state, and
hidden since the deterministic instantiation of state vector x may contain latent
variables that are not directly observable through the measurement model pro-
ducing y. The probabilistic understanding of the hidden Markov model was in
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Figure 2-2: Factor graph based hidden Markov model interpretation of a
Kalman filtering process. The previous posterior marginal state belief is
[ X" | Vi, Yio,...], and predicted next state is [ Xy41~ | Vi, Yio1,...]. Measure-
ment observations y;, are related to the state z;, through the measurement model.
Under the all Gaussian measurement and prediction model assumption (Kalman
filter), only the covariance P is needed to fully describe the belief states.

part developed from the understanding of recursive filtering with Gaussian vari-
ables, as discovered by Kalman [118].

Zarchan and Musoff [244] present linear, polynomial, continuous, and ex-
tended Kalman filtering equations, and relate them to weighted least squares so-
lutions. In particular Zarchan and Musoff (in later chapters) show how an aug-
mented state vector can be updated in iterated Gauss-Newton update steps to si-
multaneously estimate the least squares solution to all variables of interest.

A major advantage of Kalman filter systems is that predictable computation
times can be used to design and develop real-time data fusion or signal tracking
system. This predictable nature of Kalman filtering has had a major influence in
adoption of the filter, but also prevented designers from adopting a different kind
of inference system.

The sigma point—or unscented—Kalman filter proposed by Julier & Uhlmann
[110] uses the sigma point transform [109] to better propagate the measurement
noise uncertainty P,1;)” through a nonlinear transform f (x,u). The transform
propagates several sigma points from the current covariance P(;)" through the
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nonlinear transform f (-) and refits a new Gaussian belief to the sigma points to
estimate the new priori covariance estimate P(;1)~, Van Der Merwe et al. [232].
All states are still assumed to be normally distributed.

Taking the Bayesian view of a forward pass on the HMM, the prediction of

stochastic state variables X to time step X (;;1) corresponds to a convolution
with a conditional proposal distribution [ X 1) | X (%), U |,

[ X1y | U bt1), 201, | 0</ [ X1y | Xy, Uy ] x
X
[ X 1 Uq,n) 2y | dXry, (2.3)

with model input Uy, and previous marginal belief | Xy | U1, k), z() |- The con-
ditional belief is the probabilistic likelihood understanding of the state transition
model f (), which is commonly calculated as the time integral from a dynamics
model

X =f(X,U). (2.4)

The previous state X is marginalized out by integrating over the entire alphabet
x € X. Note, the measurement z = Sy @ y represents the on-manifold residual
between model predicted and sensor measured observation states y. Also note the
shorthand, as per Gelfand et al. [71], where probability densities are represented
with square braces, p(-) = [-].

The predicted state X(41)” = [ X(e41) | Z(1,..1) | is combined with observational
data through the product between infinite belief functions

[ X 1200 ] [206000) | Xy |
[ 2 ki) | 20 ]
o [ X 20,0 ] [2040) | X ] 5 (2.5)

[X(k+1) |Z(1,..,k+1)> } =

where consecutive measurements are assumed independent, i.e. [ Z(1,. k1) | Z(k) } is
uniformly distributed. Furthermore, the input vector u is generalized to a “mea-
surement” to our predictive transition model, and wrap the associated variable
in as part of the measurement vector z;. The measurement likelihood model
[ Z(k11) | X(s+1) | implicitly defines the stochastic variable Y ) = y(), when given
a measurement z ).

Work by Dellaert et al. [41] in 2005 shows that the Kalman filter is a computa-
tionally poor choice for SLAM style inference, and closer investigation shows that
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graphical models present a more efficient approach to describing the navigation
inference problem.

2.4.2 Particle Filtering (HMM)

Many different measurements are useful to inferring a navigation state estimate,
but may have highly non-Gaussian measurement uncertainties. Data associa-
tion ambiguities (multi-modal errors), topographic derived position likelihood re-
gions, or correlator outputs from acoustic or radio beam formed processing with
USBL systems are clear examples. Many navigation systems, which fundamen-
tally rely on such non-Gaussian measurement likelihoods—such as Rypkema et
al. [163]—have opted for particle filtering for approximating belief over the state
variables of interest.

Particle filtering implements the Bayesian forward recursive solution to the hid-
den Markov model, as presented by eqs. and and shown in Fig. As
the name suggests, particle filtering uses “particles”, or samples, from the esti-
mated marginal belief over state vector variables. The histogram of particles rep-
resent the belief estimate over the variable of interest, reduces computational com-
plexity down from infinite belief functions by using a /N number of samples. For
example, consider the Monte Carlo approximation of the expectation operation
given the marginal over some state estimate | X |z, ) |:

HX = ]EX(k)‘z(l,”,k) [h (X)]

N
~ Y h(zi) . z~ [ Xyl 20,0 ] (2.6)
=1

The prediction step or time propagation step, as shown in eq. (2.3), is achieved
by propagating forward each particle through the prediction model, given in
eq. (2.4). This step approximates the convolution of the current best estimate belief
with the prediction model (conditional likelihood), [ X | z(1,..x) | [ X1y | X |-

Critically, what makes the particle filter, is the product operation between the
measurement likelihood belief and state predictions which is done with impor-
tance weighting and resampling [224]. Importance sampling is algorithmically
simple but suffers several detrimental weakness as a result, Doucet et al. [45]]. Tak-
ing the measurement model as function h (X), as shown in eq. (2.5), the product
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between two infinite functions over the alphabet A" can be taken as

(20 | Xk ] X [ Xpsny [ 20, ]
=h(X) x [X(k-‘rl) | Z(l,..,k:)} . (2.7)

This concludes convolution and product approximations used for a recursive parti-
cle filtering framework that implements the hidden Markov model shown in Fig.

2l

Representing the belief over variables of interest allow the user to track un-
certainty over variables of interest. The great benefit lies in the ability to track
non-Gaussian, possibly multi-modal, belief for each variable. Particle filtering by
itself, however, has two significant disadvantages. Firstly, weighted particles with
importance weighting assumes that particles will be available in all parts of the do-
main (alphabet) X which are of interest. The influence of measurement functions,
using the Monte Carlo approximation shown in eq. (2.6)), can only be supported if
that part of the domain is represented by particles.

Furthermore, when repeatedly weighting many particles by measurement
functions, many particles end up have very small weights. The number evenly
weighted particles can be recovered through a technique called resampling [224]],
but the approach drastically reduces the regions of the state space with support.
The problem is exponentially exacerbated as the dimension of state vector X is
increased. This leads to the common particle depletion problem for higher dimen-
sions.

The second disadvantage is a consequence of the hidden Markov model ap-
proach, and involves complexity associated with inferring the posterior belief over
higher dimension state variables. Although the problem is also endemic to Kalman
filtering approaches, the complexity is more obviously visible with particle filter-
ing. Consider augmented state systems, such as trying to estimate the previous
pose positions and observed landmark positions in a simultaneous localization
and mapping setting, see for example FastSLAM [226].

The high dimensional augmented state variable X, when updated in a hidden
Markov (filtering) framework, becomes prohibitively difficult to compute. Kaess
et al. [115] and others show that exploiting the structure within the problem can
significantly reduce computational cost, over a simplified hidden Markov model
approach. Classically these structure exploiting approaches have focused on para-
metric optimization.
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2.4.3 Transitioning to Optimization Approaches

The simplicity of filtering approaches also pose some problems, namely the com-
plexity associated with estimating posterior distribution of high dimensional
state variables (especially non-Gaussian estimates), and a rigid design philoso-
phy which limits the flexibility in combining various measurements of opportu-
nity. One clear example of the rigidity of filtering solutions is the MSC-KEF, visual-
inertial navigation algorithm [158]]: Introduce wheel odometry or leg kinematic
type measurements into the state estimate will require a near total re-engineering
to develop a new Kalman filter solution with the required measurement update
cycles. Furthermore, Mourikis et al. [159], proposed a dual-layer approach to in-
clude loop closures into the MSC-KF, but resulted in a complicated loop whereby
old measurement information is reused multiple times and thereby solving an in-
consistent problem.

In contrast to an Apollo style filtering state estimate solution, robotic localiza-
tion and mapping systems developed with heavy emphasis on wheeled odome-
try, visual odometry [96], and loop closures [105]. Other modalities still have tried
to use lidar or underwater sonar [196], along with a motion model of how the
robot might be moving, or mapping the RMS Titanic from camera image data [53].
Even more techniques use model priors to aid the mapping and localization pro-
cess [183]. These highly varied systems, and lack of GPS solutions in in-door set-
tings, has resulted in the development of simultaneous localization and mapping
methods.

2.5 Parametric Simultaneous Localization & Mapping

The navigation systems discussed above all use the a hidden Markov model—
predominantly the Kalman filter—to combine inertial prediction steps with state
measurement updates for aiding information sources. We will now look at meth-
ods developed by the robotics community to navigate robots in GPS-denied envi-
ronments.

2.5.1 Miniaturizing Digital Computers (Least Squares)

Over many centuries, cartographers had developed many localization and map-
ping techniques but the advent of miniaturized computers had started a new au-
tomated direction in navigation. During the 1980’s, Smith, Cheeseman [210] and
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others help start the discussion on automating a localization and mapping frame-
work. Their starting point — without human involvement — was that a robot
would be switched on and have to navigate and map the world from nothing
but the available (onboard) sensors, software, and computational resources. Their
work was able to identify that either the mapping or localization could
be done with some stochastic representation.

Leonard et al. and others — in early the 1990’s — transitioned towards si-
multaneous localization and mapping (SLAM), which could be achieved by writ-
ing all sensor measurements in a relative reference frame. For example, instead of
writing the navigation solution as the result of absolute measurements from rang-
ing or bearing measurements to know landmarks, all position variables are kept
fluid and measurements are only defined between them. Lu and Milios [141], in
1997, introduced a common notation based on Lie Groups and Algebra for a two
dimensional simultaneous localization and mapping framework.

The ability to perform both localization and mapping, by analogy, allows the
navigation system “to pick itself up by its shoestrings”. Similarly in the early
1800’s, Gauss had formulated a system of equations in a relative coordinate frame
to estimate the positions and distances between objects from bearing only geo-
graphic surveys, and is embodied on the ten Deutsche Mark banknote shown
in Fig. Gauss developed a least squares solution, assuming normally dis-
tributed measurement measurement errors, thereby estimating an multivariate
normal posterior distribution to represent the uncertainty in position estimates.

& Zehn
* Deutsche Mark

AIYW IHOSLNIA NHIZ

Figure 2-3: Deutsche Ten Mark showing a relative coordinate frame optimization
problem, bottom right, in honor of Gauss for mapping and localizing positions
from bearing only measurements.
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During the same period, starting with the Apollo lunar missions, techniques
such as bundle adjustment (BA) and structure from motion (SfM) had been de-
veloped to build three dimensional reconstructions of from photographic data,
as shown by the work of Brown in the mid 1970’s [26]. A modern look at Bun-
dle Adjustment and Structure from Motion techniques was published by Triggs
et al. [231] in 2000, and heavily focused on parametric optimization techniques to
perform inference on large scale photometric data. These techniques use Gaussian
parametric representations with a Quasi-Newton iterative optimization process to
infer maximum likelihood estimates (MLE) for variable assignments. Section
discusses parametric optimization in the context of factor graphs in more detail.

2.5.2 EKF-SLAM

The discussion above shows how our understanding develop from using abso-
lution navigation measurements, from a GPS for example, had to evolve into a
relative frame representation. With a relative frame representation, we can write
down how wheel odometry develops a rigid transform between two pose loca-
tions as a robot is traveling through the world. The next question was how to use
relative frame mechanizations to develop an online state estimate in the location
of the robot, with the additional by product of a local map of the surrounding
environment.

Following success from INS/GPS or INS/DVL Kalman filtering solutions for
multi-sensor fusion processes, a natural step was to use an extended Kalman filter
to infer state estimates for simultaneous localization and mapping, [212]. Many
authors, including Leonard et al. [135] , Bailey [10] and Durrant-Whyte [11} 48],
resorted to an augmented state vector EKF approach. Previous pose positions and
landmark locations in some world reference frame would be stacked into a large
augmented state vector © = [X; X,,...,Ly,..].

A trivial EKF transition model is used as all variables are assumed static in the
world frame, but a large measurement function would be used to produce resid-
uals z(;) between predicted y) = h (@(k)) and actually observed measurements

Y )
k) = 2y = Yy — 0 (Ow)) - (2.8)

Note, the problem time step counter - (). With measurement residuals in hand, a
Kalman gain K can be used to update the state vector estimate with usual Kalman
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filter update equation:
@(k)Jr — @(k,)i + KZ(k) (2.9)

The major cost of the EKF-SLAM algorithm is in inverting the high dimension
state covariance matrix P for each Kalman measurement update step. Similar to
the MSC-KF, the computational cost could be reduced by Rao-Blackwellized land-
mark states — that is removing landmark variables from the Kalman filter state,
and iteratively optimizing landmarks relative to current pose states. Pose states
are then resolved, through Kalman filter update models, according to the latest
landmark state estimates. Double counting of information can be avoided with a
null-projection, as done by Mourikis et al. [158].

2.5.3 Sparse Information Filters

The next major development in SLAM came in the early 2000’s with the realization
that inverting the state covariance matrix P would result in a sparse information
matrix, P~!. Methods, such as Thrun et al. [225] or Eustice et al. [52], developed
SLAM based algorithms directly in the inverted information space, greatly reduc-
ing the cubic computational cost of inverting the covariance matrix at each step.

The problem with information state filters is difficulty in tracking which terms
of the information matrix should be kept, and which should be discarded since the
inherent structure of the matrix was not yet obvious. New developments would
soon show that the hidden Markov model assumption was an over simplification,
and that far better computational performance could be achieved while still com-
puting the exact solution for a Gaussian distributed system.

2.5.4 Monte Carlo Localization

Another facet to HMM-type localization and mapping approaches was inspired
by particle filtering methods. Monte Carlo localization, by Dellaert et al. [43], es-
timates the posterior belief of the latest pose and landmark states using a particle
filter approach. The approach allows non-Gaussian beliefs to be used for measure-
ment and prediction update cycles to the state vector. These approaches suffered
from particle depletion in high dimensions, and therefore maintained relatively
small augmented state vectors.

To improve on depletion, the FastSLAM [226] approach is conceptually sim-
ilar by emphasizing a subset of Gaussian parametric solutions. FastSLAM is a
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midway between belief methods and multi-hypothesis parametric solutions. In
FastSLAM, a set of particles are used to approximate the belief of all possible tra-
jectories, where each particle represents an entire trajectory.

All trajectory poses and landmark positions are stacked in one vector, and each
vector represents one particle. Each vector is then augmented with new pose infor-
mation, using the odometry model, to update the entire system. Multi-hypothesis
approaches therefore would require exponentially many particles to explore the
entire space of possible solutions. FastSLAM offloads the problem of hypothe-
sis selection to the user, and internally loses hypotheses at the resampling step.
Lost modes cannot be recovered, and represents a fundamental difference in the
method for multi-modal inference.

Furthermore, the augmented state variables can be Rao-Blackwellized, such
that landmarks are separated out and estimated in an iterative fashion alongside
the pose state variables. For example, under correct data association, a single parti-
cle can be used to recover the full SLAM solution. However, FastSLAM does not ex-
ploit structure within the joint probability distribution, unlike the Bayes tree [115].
Critically, the Bayes tree precisely encodes the type of structure needed for multi-
hypothesis tracking, but this has not previously been studied in detail.

While the FastSLAM approach is able to track non-Gaussian belief, each vari-
ation across the entire trajectory and landmark positions requires a different par-
ticle. In turn, exponentially many particles are needed to encompass all the vari-
able dimensions for an accurate posterior estimate — this is prohibitively ineffi-
cient. Since belief complexity scales exponentially in the dimension of a particle,
one would rather use more particles who each represent a much smaller state vec-
tor. Our approach will instead work on a particles per marginal belief basis, where
marginal belief dimension is kept small.

2.6 The Factor Graph Representation

Probabilistic inference and high dimensional nonlinear optimization are closely
related through Bayes rule by using Gaussian distributed measurement likeli-
hood models. The factor graph interpretation, Kschischang [129], makes this com-
mon understanding possible. Chapters 3land [5|discuss how nonparametric factor
graphs can be assembled, and how non-Gaussian, multi-modal state estimates are
inferred.

During the early 2000’s, along with new understanding of using information
rather than covariance representations, graph based description of SLAM became
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started becoming more popular, for example Bailey [12]. The pivotal factor graph
representation was described by Kschischang et al. [129] in 2001. Dellaert et al.
[41,42] connected the square root information matrix (of previous EKF-SLAM sys-
tems) to the factor graph representation.

Factor graphs provide a tractable language (unifying perspective) for large
scale, non-linear, and belief space interactions of many variables and factors (likeli-
hood models). The interaction of information from various sensors is naturally de-
scribed by adding the associated measurement likelihood model (algebraic func-
tions) between variable nodes as a graph. Furthermore, factor graphs can then be
used to develop the associated inference algorithms to produce the desired state
estimates.

Dellaert et al. [41] illustrates how to write measurement likelihoods as a fac-
tor graph model, and how to employ known linear systems solvers, such as [6],
to recover mean parameter estimates. These tools include pivoted Cholesky or
QR factorization for quasi Newton type optimization routines, and we direct the
reader to a thorough development by Rosen et al. [198] which describes how to
use trust-region methods to overcome many of the numerical problems of quasi-
Newton methods.

In particular, a Gaussian factor graph solution when represented as the hidden
Markov type model in Fig. [2-2| produces the same parameter estimate result as a
Kalman filter. Solving over all variables produces a smoothing result, while solv-
ing and marginalizing forward along the HMM produces exactly the same set of
equations used for the Kalman filter.

Consider, for example, a robot exploring a building room to room, and that
new information from a later room has little impact on the geometry of a previ-
ously visited room. Kaess & Dellaert et al. [111] realized that a full batch solution
over all variables does not have to be computed at each step, allowing for incre-
mental quasi-Newton routines and leading to the iSAM1 algorithm [116]. The first
key insight to incremental updates was to keep a triangular decomposition of the
square root information matrix, new variables would add columns and measure-
ments would add rows. The triangular nature of the augmented information ma-
trix could be restored with Givens rotations (or Householder reflections) to modify
only a small portion of the matrix and thereby recycling previous computations.

Maintaining the triangular component of the information matrix still had one
lingering difficulty: linearization. The components in the matrix represent lin-
earizations from the nonlinear measurement functions and would periodically be
updated as state estimates changed. Further research into using graphical struc-
tures similar to the elimination tree would result in development of the Bayes tree.
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2.6.1 The Bayes Tree

During the late 1980’s, before the definition of factor graphs, Pearl’s seminal book
[187] introduced Bayesian networks for graphical models in statistical inference.
A Bayesian network is topographically similar to the factor graph, as it is assem-
bled by eliminating one variable at a time from the graph. The Bayes network en-
codes the conditional dependence structure and establishes the chordal property
through implicit cliques. In turn, cliques can be discovered with the maximum car-
dinality search algorithm from Tarjan et al. [222], producing an acyclic graphical
model description, also known as a Junction tree.

Many methods have been developed to find an acyclic refactoring of variables
in a cyclic graphical model. Koller et al. [127] point to cluster trees, rake-and-
compress trees and bucket elimination trees. Alongside junction trees, the so
called elimination tree from sparse linear algebra all basically represent the same
desire of finding the acyclic conditional dependency structure between the vari-
ables. Many different tree factorizations are possible, where the best trees have
many cliques with small dimension each. While elimination strategies vary for
each of the trees mentioned, the variable ordering in which the tree is assembled
is a common and vital step to finding a good Bayes network and tree.

The Bayes tree by Kaess et al. [114] is a specific form of the Junction tree where
a root clique is carefully selected, and where the conditional dependence struc-
ture is directed from the root to the leaves cliques. The Bayes tree is assembled
with a variable ordering obtained with the column approximate minimum degree
ordering (COLAMD) algorithm developed by Davis et al. [39] published in 2004.
Empirical study shows the variable ordering obtained from COLAMD, while be-
ing a heuristic method, is within a few percent of the optimal ordering for a wide
variety of cases. The COLAMD for variable ordering is the current best known
method for finding the acyclic Bayes tree.

Algebraic operations and assembly of the Bayes tree is discussed in Section[5.3.]]
as part of our development and defer the reader there for more detail. In broad
terms, small, local pieces of the factor graph are grouped into cliques, in such a
manner that an acyclic tree structure is formed. The Bayes tree represents a sym-
bolic refactoring of the original factor graph model, from where an inference algo-
rithm can consider operations at cliques level. A solution is found by ”combining”
information from the outermost leaf cliques up towards the one root clique. Once
a solution has been found at the root, the combined information is sent back down
the tree towards the leaves to recover the full posterior state estimates.

In the case of a singular Gaussian system, as used by the iSAM2 algorithm
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from Kaess et al. [115], dense linear matrix operations can be used to locally solve
portions of the information matrix. The entire Bayes tree represents how differ-
ent dense portions of the triangular factor of the square root information factor is
put together. The advantage of this approach approximations and estimates are
local to measurement functions withing each clique rather than in batch over the
entire information matrix. In iSAM?2, this allows relinearization of measurement
functions only in cliques that see larger shifts in parametric state estimates.

Furthermore, incremental updates to the entire system becomes more natu-
ral on the Bayes tree structure. By forcing the most likely affected variables to be
near the root of the Bayes tree, large parts of all the branches remain unaffected as
new variables and factors are added to the factor graph. In turn, these unaffected
branches can be “unhooked” from the tree and be reattached after the root portion
is re-eliminated with updated factor graph. Inference information only needs to
passed up from the reattach point in the new tree, and downward passing only
needs to propagate as far as meaningful updates to the states estimates are made
— known as the wildfire algorithm.

Interestingly, Paskin et al. [185] had, in 2003, suggested a “thin” junction tree
approach to a HMM style filtering solution to EKF-SLAM. The approach also kept
the dimension of the problem small by marginalizing out old states to achieve
a fixed lag smoother type of operations. The major difference was that Paskin’s
approach did not have the COLAMD algorithm to select a variable ordering from
a factor graph definition.

The Bayes tree has a broader interpretation than a singular and pure Gaussian
model which has been used in iSAM2, and continue the discussion of more general
stochastic inference on the Bayes tree in Section

2.6.2 Adding Inertial Measurements to Factor Graphs

As discussed earlier, inertial navigation plays a vital role in almost all autonomous
system platforms in use today. SLAM research has lead us away from HMM-type
inference algorithms such as the Kalman filter, favoring relative frame represen-
tations captured by a factor graph model. The introduction of inertial odometry
factors for general use of inertial navigation-type measurements is a core compe-
tency for navigation and will be discussed in more detail in Chapter 4

Indelman et al. [102] initially proposed to use individual inertial sensor mea-
surements for odometry constraints in a factor graph, creating a new pose for each
sensor measurement. However, the rapid increase in the number of poses makes it
difficult to compute real-time solutions for large problems. Their later work [103]]
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adopted the preintegrals of Lupton [143], but again did not present an analytical
version of the inertial sensor model they employed.

Martinelli [147] proposed a closed-from solution for visual-inertial odometry
constraints, but only considered accelerometer biases during his derivation. While
accelerometer bias certainly is an important error source, it is not the most signif-
icant. Platform misalignment, which is predominantly driven by gyroscope bias,
results in erroneous coupling of gravity compensation terms. This gravity mis-
alignment, when integrated, is a dominant error source in all inertial navigation
systems [229].

Recently Leutenegger et al. [137] published work on a visual inertial SLAM so-
lution, which does indeed estimate bias terms. Their work presents an excellent
overview of visual inertial systems, but does not present complete analytical mod-
els for compensated interpose inertial constraints; their work does mention the
need for compensation Jacobians, but are not presented.

Work by Forrester et al. [59] was conducted in parallel with this thesis work and
similarly presents an exponential manifold type residual function for interpose
constraints with retroactive sensor bias estimation, however, we are able to extend
on their work. The interpose residual function, based on preintegrated inertial
measurements, is currently unknown, and methods listed above use a linear, first
degree approximation of the unknown compensation function.

2.7 Robust Optimization Methods

The sections that follow discuss work on robustness to try overcome many of the
errors associated with non-Gaussian measurements being introduced as Gaussian
measurement likelihood models. Several robustness efforts have focused identi-
fying and removing “bad” measurement factors from the factor graph. The as-
sumption of bad factors implies incorrect measurements were made, either by bad
data association or otherwise, and should be removed from the inference prob-
lem. Many methods in SLAM either avoid “bad” measurements with highly-
engineerined front-end processes, or preprocessing of an existing factor graph be-
fore actual variable inference is done. For example, Latif et al. [132] show the value
of finding consensus at the front-end stage, delaying loop closure constraints until
several new constraints agree and adding them to the factor graph as a batch of
new constraints. This section takes a brief look at some of these methods.

69



2.7.1 Null-hypothesis Approaches

Switch variables were proposed in 2012 by Sunderhauf et al. [220] as binary slack
variables into the optimization that can enable or disable each measurement. Mea-
surements which are inconsistent with the rest of the graph are discarded through
multiplication by zero. An additional variable, being one or zero, is added to that
factor in the least square sum objective function, and introduced as part of the
inference procedure. A user specified penalty is used to ensure some attempt is
made to keep the factor active during the optimization process. Switch variables
are comparable to a null-hypothesis approach [181], and has the disadvantage of
ignoring information and relying heavily selecting the correct penalty values.

Further Olson et al. [181] points out that switch variables increase the num-
ber of variables and increases fill-in during inference which may result in notable
computational performance loss. Furthermore, the null hypothesis approach may
easily discard lonely, but valid, measurements and thereby ignore true data.

More recently, Graham [76] suggests using an expectation maximization (EM)
approach to smoothly transition poorly matched measurements to assumed ”out-
liers” by adjusting their measurement covariance. The EM algorithm is used to
iterate between covariance weight selection and optimal variable assignments and
thereby suppresses outlier-like measurements and emphasizing the majority of
constraints which form consensus.

Moving closer to benefits offered by the symbolic structure of the Bayes tree, the
hybrid continuous-discrete inference by Segal et al. [205,206] uses discrete states to
enable or disable measurements, much like switch variables. The difference, how-
ever, is that the likelihood of enabling or disabling a factor is encapsulated by a
discrete belief. By explicitly splitting posterior belief and optimal variable assign-
ment computations, a best fit solution is found by searching for the posterior belief
over all the discrete variable, in multiple passes over the Bayes tree, relative to the
initialized state. Segal’s work suggests an underlying synergy between ambiguity
through belief and consensus amongst multiple hypotheses.

2.7.2 Max-Component Approach (Max-product)

Olson et al. [180,181] proposed the max-mixtures approach which selects the local
maximal weighted Gaussian from a mixture of Gaussians before continuing with a
parametric optimization routine. Their approach is akin to max-product inference,
which greatly simplifies the inference problem by discarding all but the most likely
hypothesis for each factor before inference, using a local if statement. Once each
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factor has locally selected the most likely Gaussian hypothesis, a usual solution (as
discussed above) is used.

2.7.3 Multi-hypothesis Approaches

Rather than retrofitting a single parametric solution with a null-hypothesis, an-
other approach, as recently suggested by Huang et al. [97], suggest solving mul-
tiple parametric problems in parallel and then picking the most likely solution.
The FastSLAM approach of Thrun et al. [226] (mentioned earlier) also maintains
parallel trajectories, but keep all permutations in separate particles with very high
dimension.

While multi-hypothesis approaches seem appealing, one should not underesti-
mate the complexity associated with tracking all possible hypotheses in a system.
Consider a case where several data association uncertainties, such as loop closures
to objects, is to be deferred to the back-end solution. Following only the forward
trajectory in time, each new binary decision introduces a doubling in the possible
permutation of choices.

Therefore, if ten binary associations are to be tracked, there are 1024 possible
hypotheses. FastSLAM had skirted this problem by requiring the front-end pro-
cess to not request all hypotheses, assuming a local solution where only the most
dominant modes in the current trajectory are being tracked, but the user must
make the decision as to which modes are dominant. This behavior is a contrast to
our proposed method where the back-end inference solution determines through
consensus which modes are dominant, purely based on all uncertainty modeled
in the factor graph.

Consider the factor graph view of parametric multi-hypothesis methods. Each
possible solution permutation (hypothesis) is explicitly solved with a slightly dif-
terent factor graph. If all possible permutations are tracked, the correct solution
will be contained in one of the many available solutions. It is important to note that
using a method like RANSAC on such a collection of solutions is not valid, since
each solution represents a different problem and not a Monte Carlo style variation
on the same problem which may express consensus.

Intuitively, the factor graph encodes a random field where the belief interpreta-
tion can capture all the uncertainty in the system. The Bayes tree is a data structure
which precisely encodes the type of structure needed for multi-hypothesis track-
ing, by aggregating all information during the upward pass from leaves to root.
Consensus should occur as information is combined from sibling cliques. Fur-
thermore, the inference algorithm selected modes are passed back down the tree
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with the full posterior result already available during the downward pass.

The matrix permanent method introduced by Atanasov et al. [8] for semantic
based mapping is considered a multi-hypothesis approach where object recogni-
tion with semantic labels are used to help discard false loop closure proposals and
help detect other possible loop closures. The matrix permanent computation is
used to search across all possible hypotheses and extract the consensus set, in-
cluding discrete labels on object semantics. The matrix permanent computation is
equally expensive as considering all possible combinations and does not support
incremental inference offered by the Bayes tree approach.

2.8 Stochastic Inference (Nonparametric Techniques)

This section discusses work on stochastic inference which was done outside the
robotic or guidance and control communities. Techniques already developed in
the statistical inference literature will be used in our algorithm development. The
discussion presented in this section is by no means complete, but represents a
bridging between two research communities.

2.8.1 Belief Propagation Methods

Beyond the robotics community, Cowell [37] discusses how Gaussian likelihoods,
using the graphical model as guide, propagate information between variables on
the graph. For example, Cowell shows the triples method passing three parametric
numbers between variables and shows how a complete posterior belief for each
variable can be constructed.

Loopy belief propagation by Ranganathan and Dellaert [194] transmit belief
directly on the factor graph. Their method still assumes that all posterior distribu-
tions have a Gaussian distribution, but does show that methods other than linear
algebra optimization are possible. Loopy belief propagation requires repeated it-
eration of message passing across the entire network which contains loops, in a
seemingly random pattern, with little guarantee that an acceptable solution will
emerge. In robotic navigation, loop closures introduce cycles in the factor graph.

The expectation propagation algorithm [152] sends summarizing statistics as
messages on the factor graph structure. For example, the first two or three statis-
tical moments of the posterior can be propagated across the network, rather than
sending an estimate an entire density function. This option may not be well suited
for drawing accurate metric solutions from multi-modal distributions, since two
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modes imply two different solutions are possible. The first moment of a distribu-
tion is its mean, which would incorrectly collapse distinct possibilities into a single
parametric value between the modes.

The work of Kuehnel [130] in 2004 investigated Bayesian sampling-type infer-
ence techniques with focus on posterior estimation for structure from motion. His
work illustrates that non-parametric representations can be used for localization
and mapping type approaches. Our work will pursue approximating the poste-
rior distribution of variables and will avoid cyclic graph inference by propagating
belief on the Bayes tree instead.

2.8.2 Belief Propagation on the Junction Tree

Given the analytic appeal of acyclic re-factorizations, and the desire for fully
fledged posterior belief estimation for each variable in the system, we should ex-
pect to find existing techniques in literature that have explored this approach.
Indeed the CHURCH algorithm, from the mid 1990’s in statistical inference by
Kjaerulff [125] perform belief propagation type inference on the junction tree. Pre-
vious work on belief propagation have mostly avoided using tree representations
due to the increase of dimensionality in cliques. Advent of the Bayes tree, and
improvements of technology help us address three existing difficulties.

The CHURCH algorithm was developed before the COLAMD algorithm [39]
existed and suffered from poorer variable orderings for larger problem sizes. The
improved variable ordering of COLAMD produces lower dimension cliques in the
Bayes tree, which greatly reduces the exponential complexity for each clique.

The second problem area is working with nonparametric beliefs. The
CHURCH algorithm was developed before the multi-scale Gibbs sampling algo-
rithm from Sudderth & Ihler et al. [218]. Rather than trying to deal with how
parametric models interact in a junction tree, as CHURCH requires, any continu-
ous belief can be approximated with a kernel density estimate, and then use the
generalized multi-scale Gibbs product as suggested by Sudderth and Ihler.

The last aspect is driven by technology and computational power. The
CHURCH algorithm did not have access to greatly enhanced computational per-
formance, or more powerful programming languages such as Julia [19] which we
use almost exclusively in our development.
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2.8.3 Markov Chain Monte Carlo (Sampling)

Markov Chain Monte Carlo (MCMC) estimation of posterior distributions has re-
ceived considerable attention, dating back to work by Gibbs and Markov type pro-
cesses in the early 1900’s. These statistical inference methods were mostly used for
distribution estimation in the physics community, to infer hidden parameters with
non-Gaussian distribution types or higher levels of uncertainty. As we discussed
earlier, parametric optimization-type systems are difficult to solve for nonsingular
systems.

Metropolis & Hastings et al. [31] connected Komolgorov’s criteria for reversibil-
ity with Markov chain processes with an expression called detailed balance. De-
tailed balance ensures that a reversible Markov chain has a stationary distribution,
and that a balanced sampling scheme stochastically produce samples from the em-
bedded stationary distribution. The hybrid (Hamiltonian) Monte Carlo scheme
was devised during the 1980’s by Duane [47] and further explained by [86}91,167]
is the best know mechanism to conduct truly non-parametric posterior inference.
Oh et al. [178] points out many of the MCMC [165] methods have been focused on
unimodal probability densities, with difficulty exploring multi-modal posteriors.

The multi-modal problem complexity is dramatically inflated as the dimen-
sion of the posterior increases. Starting in the 1990’s, many authors have proposed
approaches, such as tempered sampling or multi-scale methods, to both improve
speed of MCMC sampling and effectiveness in finding all modes. Latent variables
introduce a further layer of complexity in the sampling process, but are funda-
mentally part of any SLAM solution and our approach must therefore be able to
cater for this case. To this end, our approach will rely on consistency of likelihood
measurement models for wide mode proposal.

Metropolis-Hastings sampling of multi-modal posteriors has proved exceed-
ingly difficult, and several works by Langevin [7], Neal’s tempered transitions [166]
and a few others [58,74] have been proposing methods for circumvent the mode
discovery problem. Further samplers, including importance sampling using the
mixture importance function [178] and Stratified importance sampling have also
been proposed. The Avramidis AISDE importance sampler, Wang-Landou sam-
pler [131] or many of the Equi-Energy sampler adaptations, such as [13]], are worth
mentioning. These samplers all intend to improve multi-modal performance but
still have limitations in discovering removed modes in the posterior distribution.

The usefulness of Gibbs sampling was popularized in 1984 with a image recon-
struction algorithm from Geman and Geman [72]], and shows that Gibbs sampling
can be affectively used for higher dimensional problems. Gibbs sampling uses the
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actual conditional beliefs, assuming they are available, as proposal distributions in
the sampling process. This direct use of the user-defined conditional beliefs allows
such likelihoods to introduce multiple modes into the proposal distributions.

The imputation method from Tanner and Wong [221] in 1987 further expanded
the notion of Gibbs sampling to include approximation of the belief functions
themselves using only the current states and user-defined models. Tanner and
Wong were able to show the accurate recovery of a bi-modal posterior distribution
and rapid convergence rates, although the probability masses were still relatively
closely spaced. Their work showed that function approximation could be done us-
ing a Gibbs sampling, and was furthered by Gelfand et al. [71] and Celeux et al. [29]
during the 1990’s. All these methods showed several variations to the Gibbs-type
sampling strategies produce high quality results.

A powerful generalization of the Gibbs sampling scheme was presented by
Sudderth and Ihler et al. [217,218] in 2003 and 2010. Their approach uses a multi-
scale Gibbs sampling scheme [101] to estimate the product between approximate
and multi-modal belief functions. Coarser scales are used to explore the entire
space between modes, which is then refined down to the actual belief in at the
finest scale. In particular their approach is built around kernel density estimation
for continuous belief approximations, see Silverman [208], and is a major part of
our development. Please see a more detailed discussion in Section[5.5.1]

Other methods such as progressive Bayes by Schrempf et al. [204], or repro-
ducing kernel Hilbert spaces presented by Smola, Song, Fukumizu, and Gret-
ton [69,77,213}214] indicate active research in nonparametric inference methods.
Work in kernel Hilbert spaces are promising, since much of the theoretical ground
work has already been developed, see Nashed et al. [164] from 1991 as one exam-
ple. As well as more recent work on developing samplers directly in the embedded
teature space, see Beskos [17].

2.9 Varying Timescales

An objective assessment of SLAM solutions suggest that many applications do not
necessarily require a high speed SLAM solution to achieve low latency navigation.
Concurrent smoothing and filtering work by [117] makes deeper assessment on
how fast a large SLAM solution needs to be, and finds a robust, elegant analytical
method to separate the low latency estimate from the large data fusion (or SLAM)
process. This line of reasoning allows us to investigate slower, but much more
versatile data management strategies, such as a database-centric approach.
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Large volumes of data and robust inference techniques require larger compu-
tation resources, such as multi-processor architectures, which in turn places large
concurrency demands on the design of a robotic computational system.

2.10 Database driven SLAM

A last aspect is the technological development which may have a major impact on
future robot navigation-type systems, and involves Database systems for achieving
concurrency between multiple actors. Classically databases have been used as a
common data store, however, it’s usefulness extends to online transactional-type
systems. This section briefly looks at some of the SLAM based systems which have
utilized database technologies.

Previous work by Newman et al. [174] used a database and querying language,
in the context of SLAM, as an aid to finding loop closures from robot data. Con-
sider an even bigger dataset [38] where common locations are searched by working
through large amounts of camera image data from a car driving multiple kilome-
ters. The requirement for efficient storage and concurrent computation becomes
critical as long-term, multi-vehicle solutions are considered [162].

Database systems have traditionally been used for storing large amounts of
transactional data, in which tabulated data mostly adheres to a set relational struc-
ture. Table and relations are designed beforehand, so that an operational system
can add new rows and manipulate values in existing columns.

Relational databases perform well for a variety of applications [149], but are
limited when the connections between data are rapidly changing; a dominant fea-
ture in SLAM systems being used and developed in the robotics community today.

Recent work by Nelson et al. [170] strongly argues for database driven long-
term storage and data retrieval in robotics. Such data accumulation systems show
performance benefits when using a database for searching over temporal and spa-
tial cues, or integrating the back-end navigation solution to a database server
[34,162].

However, past work has focused on using a relational database structure as the
primary mechanism of data storage, together with SQL queries for data retrieval.
The required Entity-Relationship model for designing such databases assumes a
specific mechanism of mapping and localization acting on the raw data, a mecha-
nism which might not satisfy the interface needs of a new technique [161]. More-
over, these database methods require validity checking for each new datum and
are not able to integrate new data into the map online [162]. This method doesn’t
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scale because of the necessary re-incorporation of all data for each query of metric
computation, thus precluding online augmentation of the map [161].

2.11 Critical Analysis

Localization and mapping strategies developed in recent years have focused on
cameras or laser scanners as primary navigation sensors. Simultaneous localiza-
tion and mapping (SLAM) has been extensively studied by the robotics community
and is converging towards a factor graph representation [129] of robot localization
and mapping measurements. The literature suggests a period of independent de-
velopment between the Aerospace type guidance and control community having
developed the deeply coupled INS/GPS system and MSC-KF visual-inertial al-
gorithms, and the robotics communities having developed factor graph based in-
ference for SLAM. A shortcoming in incorporating inertial measurements at high
fidelity into a factor graph model is identified, while supporting retroactive sensor
calibration.

A navigation and mapping framework that can operate over varying timescales
is also not clearly defined in literature, and a future area where this thesis can
contribute. Realistically, robust inference and high-bandwidth inertial odometry
should be combind for real-time state estimation, while extracting aiding infor-
mation from a variety of sensing modalities. There are several areas of literature
where greater convergence between classic state estimation and SLAM communi-
ties are possible.

Table2.1{shows current state-of-the-art methods using inertial information for
localization. There are many complimentary aspects between the works. Many of
the existing works focus on visual (monocular and/or stereo) aiding only.

Most SLAM systems today require the data association process to be completed
in the robot front-end process. A few works have investigated back-end solver adap-
tations to deal with “bad” factors. Our opinion is the probabilistic interpretation
of outliers must be updated to fit reality better. We propose an incrementalized
belief propagation algorithm which is capable of dealing with such multi-modal
constraints, while maintaining as much of the parameterized unimodal simplifi-
cations as possible.
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Table 2.1: Existing inertial navigation/localization techniques, using either factor
graph (FG) or filtering (HMM) inference methodologies.

Infern. Aiding IMU  biases§(-) nonparm.
Multi-modal iSAM FG Any so(3) 2™ d/dt X
Lupton et al. [[143] FG Camera Euler  numeric
Indelman et al. [[103] FG Any so(3) numeric
Leute.. et al. [137] FG Camera so(3) numeric
Forster et al. [59] FG Any so(3) 15t At
MSC-KF [90,098,158] | HMM Camera instant.
Jones et al. [107]] HMM Camera instant.
INS/GNSS [229] HMM GPS  instant.
FastSLAM [226] HMM  Laser N/A X
2.12 Conclusion

There is rapid growth navigation technology and algorithm development as the
prospect of widespread robotics increases. More people today are actively work-
ing on state estimation type task, to enable technologies such as self driving cars
or industrial and domestic robots. Literature suggests a strong synergy between
belief interpretations and consensus among multiple hypotheses, but this has not
previously been studied in detail. The advent of: (i.) the Bayes tree, with near op-
timal clique dimension size, outperforms previous ad-hoc tree construction meth-
ods; (ii.) a better understanding of Bayesian inference to advance factor graph
inference to support highly non-Gaussian posterior distributions; and (iii.) in-
creased computational performance, will allow us to pursue multi-modal solu-
tions to navigation-type factor graphs. We believe a multi-modal approach to
navigation-type factor graphs will contribute significantly to the shortcomings in
our capabilities in robotic navigation, as discussed in Chapter 1l This thesis will
combine combing many of the existing techniques in a novel way and arrive at,
what we believe is the first, larger scale multi-modal inference solution for robotics
and more general computation.
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Chapter 3
Probabilistic Modeling

Chapters [I| and [2| identify several limitations in current robotic navigation strate-
gies. This chapter provides an overview and introduces new parametric and non-
parametric sensor measurement models, and discusses how a front-end process
can construct more realistic factor graph representations of real-world measure-
ment uncertainties. Chapter |4 details the high-bandwidth, real-time nature of a
new inertial odometry measurement factor. Once a nonparametric factor graph is
assembled, the Multi-modal iSAM algorithm—discussed in Chapter [fl—performs
the required inference task.

3.1 Introduction

In broad terms, a platform (robot) navigation system should be able to interpret
measurements from multiple sensors and fuse them into a consistent statistical
estimate of platform location and world states. States vary from application to
application, but generally include positions, velocities, orientations of objects in
the world, includding key points along the platform trajectory called poses. A
chain of previous poses is then also used to represent a set of relative relations to
landmark features in the world.

SLAM casts robot navigation as a statistical inference problem. To obtain esti-
mates of state variables with measurements from non-ideal sensors, we need an
inference system and language for describing practical measurement uncertain-
ties. Rather than use only Gaussian error models, nonparametric representations
can represent non-Gaussian and multi-modal belief densities.

This chapter discusses several new parametric and nonparametric factors that
allows the front-end designer more flexibility in modeling real world measure-
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ment uncertainties, and focus on the importance in defining a residual function
when constructing conditional likelihoods. Our discussion will focus around four
major factor groups. A humanoid robot navigation example is used to illustrate
how a front-end process can assemble a factor graph from nonlinear residual func-
tions and probabilistic densities. The importance of marginalizating discrete vari-
ables, as well as consistent modeling, is also emphasized.

3.2 Probabilistic Modeling

Fig. illustrates a navigation-type factor graph—derived from [129]—as the
graphical modeling language of choice to describe relations between state vari-
ables and sensor measurements. The figure shows a hypothetical factor graph de-
picting desirable sensor measurement likelihood models.

After a brief prelude, the four major factor groups are discussed in the follow-
ing sections. Fig.[3-1|shows pure inertial odometry constraints, aided by forward
kinematics from the legs and monocular visual feature sightings through the head
mounted camera; a trusted loop closure feature sighting is also incorporated at
pose P,. The figure further illustrates a multi-modal alternative to loop closure
sighting, while using semantic level information to aid the inference. Fig. also
illustrates future (possibly multi-modal) trajectory planning towards manipulat-
ing an object affordance.

A factor graph should be interpreted as the product between independent sen-
sor measurement likelihood functions ¢ (-) and unary priors 7 (-), also known as
potentials in Markov Random Field theory [42]. In the Bayesian sense, this product
is the unnormalized joint posterior of all the variables and encodes a multivariate
probability density, using a short-hand notation from Gelfand et al. [71]:

p(©1Z)=[0]Z] o [][Z:]6:] []16;] (3.1)

i J

where O, = {X, X5, ..., X,,,} is a high dimensional random variable containing all
the state variables to be estimated, and all measurements Z;, = {Z;, Zs, ..., Zy }.
A necessary condition to make the factor graph a Markov random field[[|is that
all factors only dependent on variables according to edges to variables. Note the
shorthand for probability densities p (Z; | ©;) = [Z; | ©; ], involving a subset of vari-
ables ©;.

'The Markov property dictates that modifications to variable estimates are only dependent on
the current state of the system and not any previous states.
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Figure 3-1: Illustration of a nonparametric, multi-modal joint probability density
factor graph representing a humanoid robot navigating towards some object (as
illustrated in Fig.[I-2). A front-end process is used to construct such a factor graph
description. Figs. and 3-11]discuss the four major factor groups of this

figure in detail. Our posterior inference algorithm (back-end solution) is discussed
in Chapter

Regarding the size of the inference problem: A variety of reasons influence
how many variables should be used for joint inference. Over time, as the plat-
form (robot) moves around, more variables and measurements are collected and
added to the joint probability product. In turn, the system size can be reduced by
marginalizating out older variables. The incremental inference algorithm is opti-
mized to efficiently recycle previous computations with the addition of new mea-
surements and marginalization of old variables in the constantly changing joint
distribution [ O | Zy |.

The complexity of inference is also affected by the types of probabilistic error
density distributions that are used. Most existing SLAM solutions reduce com-
plexity by using Gaussian noise assumptions for all measurements, implying one
large multivariate Gaussian belief [Oy) |Zy) ] = N (1= 041" ). By 04" we
mean the unimodal mean solution for Gaussian belief Eg o Z ) [@(k) .

While several navigation measurements can be assumed to fit a Gaussian uncer-
tainty many, many situations do not, including incorrect loop closures, robot wheel
slip, physical measurement ambiguity, topographic measurement, beam formed
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acoustics/radio, or other nonparametric measurements that simply do not fit the
Gaussian assumption. In addition, weakly constrained variables may have am-
biguous solutions, producing highly non-Gaussian posterior beliefs. We will see
an example of weakly constrained variables in Section Our Multi-modal iSAM
algorithm is a belief space approach, but does not exclude hybrid parametric and
nonparametric approaches for performing inference, which we discuss in Section
This chapter aims to describe non-Gaussian and multi-modal measurement
likelihood representations for general factor graph use.

Assuming a suitable inference procedures is available, we must also specify
how to interpret the belief space inference result. The Multi-modal iSAM process,
described in Chapter 5, does indeed provide a marginal posterior belief [ ©; | Z ) |
over any system variable of interest ©,. Atsome point, however, we require a single
point value estimate rather than full belief for variable ;. There are a variety of
ways to obtain a single point estimate value. In the case of a strong unimodal
posterior belief, we may choose to fit a normal distribution to the belief and extract
the parametric values: mean yo = E [0,] and covariance E [(1e — ©;)” (1o — ©)].
For multi-modal beliefs we may instead be interested in the maximum a posteriori
(MAP) estimate

G(k)* = argmax [@(k) | Z(k)} (32)

e(k)EE

where 0" € = represents the most likely point value assignment.

3.3 Importance of Residual Functions

The joint posterior belief is assembled from likelihood prior and conditional be-
liefs, see eq. (3.1)). By residual function we mean a process or equation that equates
to zero between a local system of variables, such as differencing a measurement
and prediction. The conditional beliefs in particular are assumed to depend on
some residual function which relates the associated subset of variables O, € =;.

§:5 =R (3.3)

The space =; is taken as the union of continuous and discrete domains on which 6;
may exist. Assuming real world events are approximated by an algebraic residual
expression, we can develop a practical sensor measurement model z; ~ [Z; | ©; ].
The residual function is assumed locally differentiable, and the residual value ex-
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ists in a regular real vector space of dimension d. In general, the on-manifold (© &
©) residual has vectorized prediction h subtracted from measurement y;,

5k = @h () ©® Yi. (34)

The residual function ¢ (-)—which is likely non-linear—is used in combination
(or composed o) with a probability density function p’ € P, from the space of all
probability density functions P, to construct the sensor likelihood model

z; ~ [Z;]10;] = p(Zi|©;) = (p' 0 9) (Oi; \i) - (3.5)

Where A; represents additional parameters to complete the likelihood model. We
note, all elements 0, € =; make out the alphabet of possible events for the mea-
surement likelihood model p € P. The measurement z, € Z; represents a sample
from the space of possible measurement residuals Z;.

We call eq. the generic measurement likelihood potential and note that all
measurement potentials discussed in this work are based on this equation. For
example, a simple linear, normally distributed (on-manifold) conditional density
might be defined as

2~ [ 2 XY ) =N (=0 (xy),0), d(z,y) = —y+2z+3. (3.6)

We note the algebraic equivalencetoy =y +d =2z +3+1n, n~ N (0,0).

The remainder of this chapter is devoted to illustrating how different residual
functions are composed into measurement likelihood functions, and ultimately
how the collections of measurement likelihoods in a factor graph (Fig. describe
the robot navigation problem as sketched for a humanoid robot in Fig.

3.4 Navigation-type Factor Graphs

This section discusses several parametric and nonparametric factor types that a
user front-end process could use to assemble a navigation-type factor graph. The
discussion builds around a step-by-step example of a humanoid robot would nav-
igate up to a door and grabbing the handle to open, as illustrated in Fig.

The humanoid example (Fig. [1-2/from Chapter 1) illustrates four major groups
of factors used to model the robot navigation task in factor graph form: (i.) multi-
sensor data fusion; (ii.) high-bandwith and real-time state estimation; (iii.) multi-
modality and nonparametric measurement likelihoods; and (iv.) future trajectory
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planning tightly coupled to the state estimation process.

Fig.[3-T|illustrates a factor graph representation which allows the state estimate
accuracy to fluidly improve as the humanoid robot approaches the door. The fig-
ure shows how all opportunistic measurements such as leg kinematics, inertial
odometry, and visual sightings—including loop closures—can interact in a com-
mon framework. Furthermore, future motion planning can be included by en-
forcing vehicle model predictions up to some desired goal. For example, a future
footstep location or how the robot hand should be placed on a virtual object rep-
resentation (affordance?).

In Fig. the green nodes represent robot pose state variables in the world
frame “(-), such as vehicle position “p, orientation ;’q, velocity “v, and possibly
sensor calibration parameters such as IMU bias " b:

Ux; = [*§ b, “v “p bb,]" (3.7)

The factor graph illustration shows several poses and many footsteps “fs, but is
collapsed between pose nodes P, and P,. Footsteps

“fsp = [44 “v vp]’, (3:8)

accompany all body poses as the robot is walking or standing. Separate landmark
variables “1; require only a position estimate in the world frame

(3.9)

Visual feature sightings from a camera are shown as mustard color factors,
and brown factors represent joint encoder derived kinematic factors between the
robot pelvis and feet. Footstep locations are estimated as the light blue nodes with
zero velocity priors, leaving the footstep locations and orientations to be estimated
from as many leg measurements as possible. Inertial odometry constraints are also
shown for one inertial measurement unit (IMU) between pose locations. We note
many more factors, such as vehicle model dynamics, or multiple IMUs, or cameras
can be included in a similar manner.

The next sections present an overview of parametric and nonparametric fac-
tors in our approach to achieving fluid location awareness for a robotic system.
Factor graphs to combine the wide variety of parametric and nonparametric mea-
surement likelihoods factor into a common graph representation. The inference

2 Affordances are discussed in Section
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Figure 3-2: Group I: Shaded factor graph illustration from Fig. |3-1| of a humanoid
robot state estimation process, multi-sensor data fusion.

process solves the navigation problem by finding approximations to the posterior
belief represented by the factor graph.

3.4.1 Group I: Multi-sensor Data Fusion (SLAM)

We group general parametric models as the first of four factor groups, and are
most similar to existing SLAM factors. We stress, however, the likelihood prior and
conditional models can consist of distributions from which we can draw samples,
and are no longer restricted to a Gaussian only assumption. Fig.[3-2|illustrates a
portion of our humanoid example factor graph (from Fig. where sensor data
is collected into a common multi-sensor data fusion framework through a variety
of measurement likelihood factors. The next factor group discussion discusses
ambiguous measurements by allowing multiple parametric values to ”coexist” in
the same factor.

Prior: Regular Parametric Prior

Consider the body pose positions connected through kinematic relations by joint
encoders in the legs from body to foot. Fig. illustrates taking multiple mea-
surements to multiple footsteps in the recent history. Assuming the feet do not
slip, we can constrain each footstep X, ,.; with a zero velocity prior, represented
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by a red unary factor. We note this is a partial factor which only constrains the
velocity terms in the foot step variables. For illustration, assume the prior density
[ X, ] is Gaussian (but could be any density which can generate samples):

Xjvel ™ [Xj,vel] = N(,U =0, E) . (310)

Conditional: Range and Bearing

A different sensing modality may include a relative measurement between two
variables, similarly illustrated by the visual sighting factor in Fig. Consider
laser scanner measurements taking range and bearing between the sensor X ; and
teature “L;, positions in the world frame. The conditional belief is defined with the
appropriate on-manifold residual function:

D — || Alys||

0= Y — atan2 (Al,, Al,) |’

Al = 67X, @ "Ly, =, T"L (3.11)
On-manifold operations are achieved by the transform operator from the special
Euclidean group { T € SE(n), consisting of the rotation and translation from
world to sensor frame. The resulting vector from the robot sensor to the land-
mark feature is Al, and the measured range residual D is obtained by differencing
and norm of the vector Al. The bearing measurement residual is the difference
projected angle on the scanner plane using the arc tangent and measurement . A
conditional density is obtained by composing the residual function with a multi-
variate normal

ZN[Z]Xj,Lk]:N(u:5(x,l),22{%ﬂ JOwD (3.12)

Conditional: Range only measurements

Radio or acoustic ranging information, although not shown in Fig. has been
the backbone of most navigation systems. We define a range residual between two
positions in the same reference frame "(-) with a simple residual function

) (TXZ', 71Xj) = eri,pos - TXj,posH- (313)

Note that this function only induces a one degree of freedom potential on the sys-
tem (single relative constraint relation). In the nonparametric factor group in Sec-
tion we will see how multi-path errors can be modeled, which is a common
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error source in time-of-flight ranging systems [79].

Conditional: Bearing only (Image Features)

Bearing measurements can be both two and three dimensional, eq. (3.11). Visual
features (from camera), are a common three dimensional bearing measurement.
Image features are generally introduced as sparse feature points with projection
and back projection functions. We refer the reader to references [89,93] for a regu-
lar treatise of projective geometry when using cameras features. For example, the
projective geometry pinhole camera model with intrinsic distortion matrix K can
be used to construct a measurement residual between pose “X; and feature point
"L, as follows

6 ("X;,"Ly) =m—K[R(“X;) t(*X;)]h(“Ly). (3.14)
The camera measurement (u,v) is stacked in a vector m = [u v 1]T, and
landmark position into homogeneous coordinate h(“L;) = [z y =z 1}T.

Camera extrinsic rotation and translation pose information is collected with
[R(“X;) t(“X;)]. We note this residual has two degrees of freedom, while the
pose has six and the landmark has three. Multiple residuals can be composed to-
gether into a single, higher-dimensional factor and are discussed more in Section

B.4.6

Conditional: Non-Gaussian

Nonparametric inference allows the user more flexibility in the error distributions
that can be used. For example, one factor of interest for acoustic structure from
motion [99], which we will show in Chapter|[§ is a normally distributed range and
bearing constraint as well as uniform elevation distribution, giving the measure-
ment likelihood:

N (:U’ = 5range7 Jr)
[Z]©:] = [N (1 = vearing; 7) (3.15)
U (£fov)

where “fov’ implies vertical field of view from the linear array type sensor. Our
inference algorithm requires that samples can be generated from the probability
density or distribution.
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Conditional: Kinematic constraints

Fig.[3-2|shows kinematic constraints between body pose and foot positions. In this
example, kinematic constraints are considered as any direct, on-manifold, rigid
transform relation originating from the joint kinematics of the robot legs or arms.
Kinematic relations in three dimensional space enforce six degrees of freedom
(DOF) in the reference frame "(-),

§ (X, X;) =eiAX e (67X, @7X;), (3.16)

with a relative measured separation zAf( The on-manifold operations can be im-
plemented with the special Euclidean group transform T € SE(3) in n dimensions

S"A @"B=T"'("A) T("B). (3.17)

The SE(n) group is based on the rotation and translation of each pose variable
[32]. These relations give the inference process a relative distance and orientation
constraint between the body end-effector of the vehicle.

By extension, several practical situations require a rigid transform operation
with additional ambiguities, for example the mechanical backlash through a gear-
box. Such uncertainty are best modeled with non-Gaussian, multi-modal or non-
parametric measurement likelihoods. We discuss the nonparametric factor group
in more detail in Section B.4.3]below.

3.4.2 Group II: Real-time Odometry (Inertial Sensors)

We discuss odometry measurements as a time separated form of kinematic re-
lations. Odometry generally involves solving an ordinary differential equation
(ODE) from velocity or acceleration measurements. Interpose odometry mea-
surements are treated similarly to any other measurement model, as suggested
in eq. (8.5), while using the kinematic relation similar to eq. (3.16). The difference
in ODE-type kinematics is that the interpose measurement ;AX is created by in-
tegrating platform velocities or accelerations.

Conditional: ODE-type Kinematic (Odometry)

Noisy body relative velocity measurements v, such as vehicle wheel odometry
or Doppler based measurements, are accumulated into a relative distance traveled
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Figure 3-3: Factor Group II: Shaded factor graph illustration from Fig.[3-1|for high-
bandwidth and real-time inertial navigation aspects of a humanoid robot state es-
timation process. A more elaborate example is shown in Fig.

b AX since the last pose X,
J 7

t; 4
PR=1] / [Pw.] dr b AX s = / DRV dr, (3.18)
t=t; /1 ti

where "R represents the vehicle body rotation in the previous pose % (-) frame.
Rotation could be computed from angular rotation rates ‘w. This expression uses
Lie algebra [*w,| € so(n) to mechanize the rotation manifold.

However, in preparation for nonparametric measurement model discussion,
consider a situation with robot wheel slip, which we will model with non-
Gaussian, multi-modal or nonparametric distribution.

Conditional and Prior: Body Relative Velocity (Doppler Velocity Log)

Underwater autonomous vehicles (AUVs) generally use a Doppler velocity log
combined with an inertial measurement unit to perform sea floor relative navi-
gation [56]. We show a separate factor graph illustration in Fig.[3-4|for using body
relative velocities as a navigation aid.
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Figure 3-4: Example of a navigation-type factor graph for autonomous underwa-
ter vehicle navigation. Green nodes represent vehicle poses relative to the world
frame, separated body frame velocities shown as V;, V,. Integrated Doppler mea-
surements between poses are shown in light red, as well as absolute velocity snap-
shots as priors on body frame velocity states. This illustration also shows a land-
mark feature of interest being estimated from nonparametric-type acoustic factors.

Fig. B-4illustrates an AUV near the sea floor, where an onboard inertial mea-
surement unit, acoustic Doppler velocity log and acoustic ranging measurements
are available. Inertial odometry factors are in blue along with integrated velocity
measurements from a Doppler velocity log in light red. Mapping of an acoustic
feature landmark measurement is also shown, and we note an example a nonpara-
metric acoustic measurement is shown in Fig.

The factor graph description shown in Fig. [3-4]is grounded by a marginal prior
on the pose X, which is based on the previous event leading up to the estimated
position of the vehicle at X,. The factor graph segment shown spans the time
between the marginal prior and real-time indicated on the right. We can think
of this factor graph segment as a fixed lag smoothing framework, whereby the
marginal prior is updated and moved forward simultaneous to new poses being
introduced on the right, as real-time progresses. We use the inertial odometry
factor to project the real-time state estimate from the last pose in the factor graph.

We discuss the time scales of computation and inertial odometry factor in the
next section.
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Conditional: Real-time Inertial Odometry (Preintegration)

In this section, we provide an overview of using inertial odometry factors in con-
cert with all other measurement likelihoods. Chapter [2| describes conventional
methods for processing and fusing inertial sensory data into a navigation solu-
tion, generally using Kalman filtering techniques. These methods have become
a crucial component of all high-bandwidth, real-time state estimation systems to
date [229], and note that factor graph style inclusion of inertial measurements will
play an increasingly vital role in all future agile robots.

Sensor bias and scale factor errors result in significant dead reckoning drift
when integrated without dynamics calibration and compensation. These errors
are a main driver developing dynamical calibration and retroactive compensation
models particularly for inertial measurement units (IMUs). Calibration is done
in concert with other, possibly lower bandwidth, navigational information. In-
ertial sensor measurement errors have the advantages of being well understood,
strongly unimodal, and accurately modeled with a Gauss-Markov process. In-
ertial sensor noise input terms are normally distributed, resulting in highly uni-
modal relative odometry trajectory segments. The strong unimodal nature of iner-
tial measurements has an additional advantage in multi-modal inference schemes,
which search for consensus among various sensor data sources. Strong unimodal
conditional likelihoods may still transmit multi-modal belief, but quickly help cull
out low likelihood modes from other ambiguous measurements, resulting in a re-
duced computational burden.

The intricate manifold on which the gyroscope and accelerometer bias terms
influence an long interpose residual function is not yet been well understood. Con-
sider long interpose integration times with rapidly varying orientation of the plat-
form. Knowing how much to correct the velocity, position, and orientation dimen-
sions for a change in each of the sensor error terms becomes intricate.

A major contribution of this thesis is the analytic derivation of an efficiently
computable residual function for pure inertial odometry with retroactive sensor bias
compensation, shown as the blue factors in Fig. This residual function approx-
imates the sensor error manifold with a higher order Taylor expansion. The newly
developed inertial odometry measurement likelihood model can then be used as a
generic measurement factor in any combination with other factors in a navigation-
type factor graph. Chapter[]is dedicated entirely to the analysis of the new inertial
odometry-type factor (measurement preintegration) and defer the reader there for
an in depth discussion.

As illustrated in Fig. the inertial odometry factors collapse an IMU
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Figure 3-5: Conceptual overview of using pure inertial odometry constraints be-
tween world frame poses at time ¢; and ¢;. Any opportunistic constraint would aid
dynamic sensor calibration.

measured trajectory—using inertial navigation-type equations in preintegration
form—between two poses X, X1 to calculate a relative and noisy preintegral
measurement Z§+1AX. Through the process described in Chapter |4, we define a
prediction function to exploit the sensor error parameter manifolds,

2§+1AX = (fs o fp) (X4, y Xi1) - (3.19)
The combination of preintegral measurement and prediction produces a residual
function between the two poses

8 (X, Xip1;Mg) =t AX — (fo 0 ) (X0, Xip1) (3.20)

The inertial odometry residual is a linear map embedding similar to the kine-
matic relations in eq. (3.18). The residual function contains all high bandwidth
platform motion dynamics, as well as measured gravity “g and sensor biases.

We also note that the nonparametric factor graph solution may result in multi-
modal estimates of sensor calibration terms, even though the inertial odometry is
itself generally combined with a multivariate normal error distribution.

Any number of inertial odometry factors can be assembled from separate IMU
measurements in the same factor graph for centralized inference. We specifically
note the possibility of placing IMUs on each of the robot’s feet, hands or head for
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better joint estimation for the extremities. The ensemble of IMUs is then individ-
ually calibrated from the aggregate of all sensor information.

Inertial odometry factors give statistical equivalence between all navigation
measurements in the centralized factor graph inference scheme. The strong uni-
modal Gaussian nature of inertial measurements is a great boon for finding con-
sensus amongst other nonparametric, multi-modal sensor measurements.

The inertial odometry measurement likelihoods, as shown in Fig. play two
vital parts in the overall data fusion process. The inertial odometry factor intro-
duces a dynamic calibration-type factor, where sensor error terms are retroactively
estimated in concert with all other available sensory information in the data fu-
sion inference process, while supplying a strong unimodal odometry measure-
ment likelihood.

Before addressing the second advantage of real-time state estimation, we note
the principle of feed-forward sensor calibration. The topic is more thoroughly dis-
cussed in Section but we briefly mention the feed forward aspect here. The
residual function in eq. is approximated relative to the true rotation rates and
accelerations the platform is subjected to. By slowly moving the bias estimates out
of the factor graph and into the sensor processing, we can asymptotically improve
the approximated residual function accuracy. We assume feed forward corrections
are being applied to the real-time state estimate discussion in the next section.

Prior: Intrapose Boundary Marginal (Real-time)

The second major advantage of inertial odometry factors is the ability to obtain a
real-time state estimate. We can use the most current inertial odometry preintegral
to make real-time state estimate predictions relative to one of the recent poses.
We indicate the real-time dead reckoning with an inertial odometry factor and
arrow in Fig. Using precisely the same inertial odometry residual function, we
can produce an algebraically equivalent state estimate solution to a conventional
inertial navigation system:

vox =0 ("x,,0;"g) YxX = X B piox, (3.21)

where "ix,; keeps only the bias estimate from pose X; and zeros all other terms.
The residual function performs gravity and bias compensation to produce ! dx
relative to pose ;' X;. The @ operation stands off, or projects, the current inertial
odometry derived trajectory segment to the real-time state estimate. We select the
reference pose location from a marginal belief estimate j'x = argmax, [y X;|Z].
These computations are fairly small and can be done at full sensor rate. These steps
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are the preintegral equivalent to previous recursive inertial navigation schemes.
We emphasize that the real-time prediction does not need to consist of a purely
inertial odometry factor.

ROBUST INFERENCE - _h_i_s_tg_ry__: uninferred (new) graph segment

“._latest SLAM
pose

nonparametric

SLAMInDB server prior

DUPLICATION

Duplicate local inference
[Xn1Z]

bandwidth limited

S intrapose boundary
communication layer

marginal priors #

pure inertial
[LQ | Z] odometry
I REAL-TIME
HOURS - MINUTES MINUTES - SECONDS MILLISECONDS

Figure 3-6: Timescales illustration of combining real-time state estimate with ro-
bust inference. The top part of the figure illustrates robust inference on a large
factor graph, with the most recent inference result for poses X;,, £ =1,2,...,non
the left. A smaller duplicate solution beyond pose X,,, grounded by two boundary
marginals, is shown on the bottom part. The real-time state estimate is achieved
with most recent inertial odometry factor. This arrangement allows for both slower
robust computation times and fast hard real-time state estimation. Information
between the SLAM server and local inference task travels across a limited commu-
nication layer.

Fig.[3-6|illustrates the real-time state estimation process further. We can choose
to project the current inertial odometry preintegration residual from a recently
inferred SLAM pose. We can also make a local duplicate copy, shown in the bottom
part of the figure, which fuses the most recent sensor data. A previous suggested
approach, concurrent filtering and smoothing [117], advocates a serial mechanism
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where a smaller local factor graph solves variables first and then pass factors and
variables over to the larger solution.

In contrast, we suggest duplicating a portion of the factor graph in two copies
and solving simultaneously, while “grounding” the smaller graph against the in-
trapose boundary marginal prior from the larger solution. We call the marginal
belief on the intermediate pose the intrapose boundary marginal. A smaller si-
multaneous factor graph can immediately duplicate all new factors and variables
beyond the intrapose boundary marginal, even though the larger solution will still
be computing on the previous factor graph snapshot. The replicated small factor
graph structure is solved much faster and in parallel to the larger factor graph. The
combination of large robust factor graph, small local duplicate factor graph, and
inertial odometry residual function allows great flexibility and longer computation
time, while maintaining real-time state estimation capability. This duplication pro-
cess between local shorter and larger long term factor graphs was recently shown
to also occur in biological systems: Research in memory mechanisms shows that
mammals simultaneously create both long and short term memories [124], and do
not transfer short term to long term memory as many researchers had thought.

The larger factor graph takes longer to compute, but shares the most recent
inferred pose marginals to the smaller local factor graph solution as new marginals
become available. Once a new marginal prior is available from the larger solution,
we insert a new boundary condition on the local duplicate. The smaller local factor
graph is then reduced in size and the process continues. Note the current inertial
odometry preintegral is grounded against the most stable pose in recent history to
give a real-time state estimate.

3.4.3 Group III: Nonparametric Measurement Likelihoods

Fig. 3-7| highlights the nonparametric likelihoods in the common humanoid fac-
tor graph example. Gaussian measurement model assumptions are often over-
simplifications of true events which do not correctly capture the underlying un-
certainty or ambiguities. Nonparametric inference allows for likelihood models
that pass more enhanced measurement uncertainties to the back-end solver, over
pure Gaussian-type SLAM techniques. Nonparametric factors result in a multi-
modal, nonparametric posterior which describes the possible states causing the
particular sensor measurements to be made.

Consider the humanoid robot in Fig. [I-2]being uncertain about foot-to-ground
contact events, gearbox backlash, or repeated patterns observed by a camera or
laser scanner. Each of these measurement uncertainties is poorly described by
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Figure 3-7: Factor Group III: Shaded factor graph illustration from Fig. for
multi-modal and nonparametric measurement aspects of a humanoid robot state
estimation process.

the normal probability distribution. In the sections that follow, we look at new
nonparametric-type measurement likelihoods, allowing for multi-modal belief to
exist in the factor graph posterior distribution. We refer the reader to Chapter
for the in-depth discussion on marginal posterior estimation of these navigation-
type factor graphs. We also emphasize that the nonparametric factor types are
intended to remain unchanged in the factor graph structure before, during and af-
ter inference, unlike a prefiltering-type approach where the structure of the graph
is changed before inference is performed.

Conditional: Multi-modal Loop Closures (Uncertain Data Association)

We first look at the multi-modal data association type factors which introduce un-
certainty through a discrete selection variable, as indicated by the multi-modal
factor between the two features in Fig. A major challenge in all SLAM based
systems is obtaining a high degree of certainty in proposed loop closures, before
introducing the factor into the factor graph. By loop closure, we mean a previously
observed feature of interest is re-observed, creating a relative constraint between
two time separated portions of the factor graph. An alternative approach com-
mon in the SLAM literature uses marginalized interpose transformations as loop
closures instead.
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Consider ambiguous measurements where we are not sure if a new feature
observation corresponds to a previously observed feature. Describing this uncer-
tainty in a Gaussian unimodal measurement model is impossible. To this end, we
introduce multi-modal constraints, as shown in Fig.

semantic likelihoods

Figure 3-8: Multi-modal data association measurement model, where poses P» and
P, are separated by some long chain of events in a larger factor graph. A feature,
first sighted from pose P, may or may not have been sighted again at pose F,. A
multi-modal constraint indicates the measurement sample obtained could be from
a possibly new feature, or the same feature as before. A feature re-sighting should
enforce a loop closure as strong piece of navigation information.

The multi-modal constraint between two features in Fig.|3-7|shows a measure-
ment likelihood model where the user is uncertain about the data association of
a particular measurement. Rather than make a hard decision about which fea-
ture actually produced the measurement, we can instead introduce uncertainty
through a multi-modal measurement and let the back-end inference process de-
cide. In turn, consensus in the nonparametric posterior distribution estimate re-
duces all unknown data association decisions to a limited number of multiple
likely modes.

A categorical distribution is a natural choice for describing the decision v on
which landmark feature the measurement originated from. We can define the
residual function between the pose and possible landmark features as

0 (Xu Lla L27 7) = @Xz ¥ L’ya e Cat (p) . (322)

The weight vector p represents the likelihood statistics of a true or false loop clo-
sure. For a practical example, consider a normally distributed range measurement

97



from current pose X; to one of two equally probable targets L;, L,

y~irt=car (o= 2]).

z~[Z]X;, L, Ly, '] =N (n=0(Xi, Ly, L2, 7),0). (3.23)

Note, we are omitting the numbering of measurements Z;=Z.

Once the categorical sampling weights are known, the overall factor graph in-
ference procedure can then recover the correct multi-modality in concert with all
factors and variables. We may either know the probabilistic weighting p as a hy-
per parameter as specified by the user, or by selection from knowing additional
information. We now turn our attention to the case where more information is
available and use semantic information as the working example, and note that a
further discussion on how ambiguous associations arise is illustated and discussed

in Fig.

Dirichlet process for Incorporating Semantic Labels

Semantic priors can be incorporated with multi-modal factors for uncertain data
association between two features, as shown in Fig. Intuitively speaking, se-
mantic information should factor into the loop closure data association process
when such measurements are available. Consider a simple example where objects
in the world are detected by some process, with likelihood predictions for their
semantic label (say class A or B). The platform later returns to the same area and
sights an object with likelihood of being either object B or C. In the case where the
first and second sightings of objects were strongly classified with semantic labels
A, C respectively, the odds of being a valid loop closure is low.

In the alternate case, we may have two objects within the odometry drift un-
certainty where both sightings are strongly of the same label B, B, improving the
odds of a loop closure. We note in the later B, B case that two of the same objects
may well be in close proximity, and we are still not sure if a loop closure is in fact
in effect. It is important to note that a correctly modeled factor graph should not
care if a loop closure is valid or not, but rather the consistency. The measurement
likelihood models are representative of the measurement uncertainty. The infer-
ence driven posterior belief estimates will then allocate probable belief using all
available information. A last case involves measurement pairs A, B or B,C. We
also note the classification system could be in error or weakly preferring one label
over another.
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We can account for the different cases listed above by introducing a new vari-
able T, indicating the odds of the first and second sighting have the same semantic
classification label, and the associated conditional belief [I'| T ]. For example, we
can adjust the weighting p of eq. according to visual segmentation [9] like-
lihoods of classified objects. The weighting vector p is affected by semantic like-
lihoods and guides the categorical prior likelihood [T |- ] of the multi-parametric
model:

[Z0 | X5, Ly, Lo o Y [ Z | Xi Ly, Lo, T x > [T T][Y]. (3.24)

r T

The new conditional is defined as

same _ 105 0.5
{F: 2= [different” - [0.1 0.9} ' (3.25)

We take I' = 1 as associating the original feature measurement with the first land-
mark feature — thereby enacting that loop closure. Similarly, I' = 2 implies asso-
ciating the feature measurement with the alternate landmark feature. We choose
[T'| T =same] = Cat ([0.5,0.5]) uniform in the case that two semantic measure-
ments are the same, since two instances of the same object may exist in close prox-
imity. Conversely, we choose [I'| T = different] = Cat ([0.1,0.9]) to favor land-
marks L, L, being different features and thereby avoiding the loop closure. We
keep 0.1 uncertainty to allow for errors in classification which would otherwise
result in a false negative. This factor type can be used in any combination between
teatures and landmarks resulting in interesting loop closure dynamics. We could
also increase the uncertainty to any M number of proposals, v € {1,2,3,...M}.

As a side note, Dirichlet priors are a natural proposal distribution for the Cat-
egorical distribution

p ~ Dir(a), (3.26)

based on the concentration parameter «, in which a simulated system can use the
parameter to propose valid or invalid loop closures. Large values of o would cor-
respond to very strong data association likelihoods and indicate whether a valid
loop closure has been found. Small values of o would allow large variability in the
eventual sampled loop closure decision . From this we deduce Dir (o) is repre-
sentative of a real loop closure proposal situation. Small values of o correspond to
situations where it is difficult to conduct data association accurately.
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Conditional: Multi-modal (Multi-parametric)

At the bottom left in Fig.[3-7lwe show a different type of multi-modal belief, in this
case associated with a kinematic constraint. We note that parametric residuals, as
discussed in[3.4.T} can be enhanced to multiple measurement modes using a cate-
gorical selection process similar to the selection process described above. Instead
here we show how a regular parametric model can be associated with uncertain
parameters. The residual function between variables ©, could be affected by any
number of parameter selections A.:

d (617 A’y) ) Al = M1, A2 = M2, Y Cat (p) : (327)

This is an ambiguous measurement likelihood, and is represented by select-
ing different measurement values along with an existing parametric measurement
model. For example, the gearbox in a kinematic joint may have a certain amount
of play, which results in additional uncertainty in the kinematic position of joints.
Another example may be estimating kinematic contact with objects in the world,
but are corrupted with multiple observed “contact events”. For example, the foot
of a robot may prematurely hit an obstruction while trying to estimate the ground
position.

A clear example of this multi-parametric case is when a humanoid robot, while
walking, is trying to estimate when a foot-to-ground contact event has occurred.
Consider the robot busy putting one foot down on the ground, while receiving
varying messages from the foot mounted force sensor, depending on how weight
and balance are transferred. From experience, we know this trigger of foot con-
tact is critical to estimating state accurately. In the multi-modal framework, we
can store the possible measurements to represent simultaneously in contact and
not in contact states. The back-end inference will through consensus with other
information allocate or defer which of the modes were actually in effect at each
measurement factor.

The concept extends to other ambiguous measurements. Consider backlash
between gears or joints in the robot kinematic structure. We can model each of the
two extremes as two modes, assuming a kinematic structure under load will push
to either of the extremes:

d (Xbody7 Xfoota AX'y) = @Xfoot > (Xbody > AX'y) ) v~ Cat (,0) ) (328)

where AX, represents either of the body-to-foot transforms.
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Conditional: Nonparametric

The idea of a multi-parametric relative constraint, by means of a residual function,
can be extended to a fully nonparametric representation. Consider defining a non-
parametric relative transform between variables in the system. Beam forming type
measurements, where a heat map of acoustic or electromagnetic signals are pro-
duced, can be approximated by a nonparametric belief. Fig.|3-9shows an actual
relative range and correlator output recovered from an underwater acoustic ultra
short baseline acoustic system. A range and bearing measurement is made as to
where a ping originated from, relative to the acoustic microphone array. We would
have to convolve the correlator output with a channel model to obtain a more ac-
curate belief estimate, but concepts for working with nonparametric factors are the
same. Consider using a nonparametric measurement such as Fig. as a factor in
the factor graph.

0 100 200 300 400
Range [m]
-1 0 1 2 3 4 5 6 7

Bearing [rad]

Figure 3-9: A nonparametric, relative range and bearing measurement from un-
derwater beam formed acoustic data.

We approximate the underlying belief with a nonparametric kernel density es-
timate [208] function, from which relative sample points can easily be generated.
We can use the samples to estimate the convolution between a nonparametric con-
ditional and a transmitted belief.

Futhermore, we can use nonparametric conditional beliefs to represent a new
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and emerging type of intepose relation, originating from convolutional neural net-
works. Consider a recognition system that has been trained to transcribe camera
images of familiar objects into beliefs of the relative pose between the camera and
a familiar object [84]. These beliefs can be approximated in much the same way
as shown in Fig. 3-9|and introduced into our general nonparametric factor graph
model.

Prior: Nonparametric and Multi-session Priors

Figure 3-10: Nonparametric navigation example, showing measurement likeli-
hood function on the left and corresponding true position over known topographic
terrain on the right. Given a known map and altitude measurement above the ter-
rain, shown as red line and dot, we can construct a nonparametric measurement
function of the likely position of the vehicle.

Next, we discuss the nonparametric prior, shown as the red cross unary factor
in Fig. Consider a navigation measurement which limits the likely position
of the platform to some region of the state space, but is poorly approximated by
any parametric model. For example, consider trying to incorporate topographic
information from a known map into a navigation solution, given an estimate of
altitude above or below mean sea level, as illustrated in Fig. Current state-of-
the-art parametric factor graph descriptions are not able to represent such general
prior likelihood beliefs. We suggest a unary nonparametric factor as a natural and
elegant way to fully utilize such measurements in a centralized manner. Fig.[3-10}il-
lustrates the nonparametric style measurement obtained when using the exponent
of negative squared difference of altitude from a known topography heightmap.
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Furthermore, consider that the posterior from a previous navigation state esti-
mate may also be nonparametric and highly non-Gaussian. We will later see with
the SLAM-e-donut canonical example — in Section |6.5|— that a purely Gaussian
factor graph can indeed result in a highly non-Gaussian posterior distribution. We
suggest a nonparametric prior belief, using kernel density estimation [208], to our
SLAM state estimation process.

Next, we consider using the marginal belief estimate of landmark features in
one robot navigation session as a prior in a separate or parallel robot navigation
session. We avoid an in-depth discussion on multi-session robot navigation and
mapping here, but introduce the idea of using multi-parametric or nonparametric
priors from adjacent sessions as prior information to a current robot session.

Consider either the same robot, or multiple robots, operating in the same space
observing the same landmarks in the world. We would like to incorporate infor-
mation from all sessions together into the same inference for better global map
accuracy and coverage. By using a common set of landmark features and latest
marginal estimates from each session, we can form a relation between each of the
navigation solutions. At the start of a new inference cycle — using the centralized
architecture discussed in Chapter [/]— we take the marginal position beliefs from
common landmarks found in other robot navigation sessions and create a new
prior for on the same landmark in the local factor graph session. Each of the factor
graph inference sessions are then left to continue independently, but update the
stacked nonparametric inter-session priors at the start of each inference iteration
for each of the robots individually.

3.4.4 Group IV: Trajectory Planning

Trajectory planning relates to the last highlighted grouping of factors in the generic
factor graph overview. The future trajectory planning of the robot state is shown
to the right in Fig. Although we will not analyze these factors in detail, it
is important to note their significance in the robot navigation task. Furthermore,
a nonparametric inference solution will allow the user more flexibility in multi-
policy trajectory planning.

Conditional: Vehicle Dynamics (Knot Points)

Given the residuals above, and in particular the ODE-type kinematic examples,
we can define residual functions based on predictive dynamic models of the vehi-
cle. Each evaluation of the model prediction factor internally performs integration
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Figure 3-11: Factor Group IV: Shaded factor graph illustration from Fig. 3-1| of fu-
ture trajectory planning (and possibly multi-modal) aspects of a humanoid robot
state estimation process.
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of an ODE model, producing a relative interaction between possible future poses
states. This approach is essentially an embedded version of well known trajec-
tory optimization or model predictive control strategies. We note, however, our
approach requires the belief space understanding of vehicle states. Instead, with
the belief formulation, we limit the possible state of control actuators output as a
likelihood model — what is the likely value of actuator output.

With the humanoid robot example (shown in Fig. [I-2), consider guiding the
robot toward a user specified foot stance position while reaching out with a hand
actuator to grab the handle on a door. The factor graph in Fig. indicates the
desired foot stance position with the red unary prior, and the hand manipulator
constrained to an affordance of the door handle. Affordances are discussed in Sec-
tion[3.4.5, but note here that an affordance is a virtual representation of some object
of interest. The virtual model affordance position is aligned and tracks the true
position of the door handle, and constrains the factor graph future hand position
estimate to the required kinematic position (or relative relation).

Conventionally, open or closed loop model dynamics are modeled between
“knot points” in the trajectory, to constrain future motion using an optimization
problem. Platform dynamics are constrained through penalty functions or hard
equality constraint terms. For illustration, we discuss a model much simpler

than the humanoid robot. Consider a two dimensional x = [z y 0] T veloc-
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ity model representing vehicle dynamics, with throttle and steering angle input
u=["v %U}T such that

tnt1
x =f(x,u), 0 (X, Xpp1,u) =X, B X, & (/ Xdr) . (3.29)
tn

Where we assumed some transition function f which describes the model dy-
namics between two possible future pose states X,,, X,,;;. Future pose states are
commonly referred to as knot points. The integration between the predicted pose
points is repeated at each inference step and can be simplified to reduce computa-
tion complexity. The inference residual function now includes states u relating to
the required input to modify the trajectory of the vehicle towards the user desired
goal.

Multi-policy Inference

While existing trajectory optimization methods consider a mean, or single mode,
one could also simultaneously introduce multiple policies through a categorical se-
lection criteria — similar to the multi-parametric residual case above. Multi-modal
planning is then directly based on the centralized robot state estimation process.
Consider navigating around either the left or right side of an obstruction. These
two options can be considered as as two policies (modes) in the planning mechan-
ics.

3.4.5 Affordances

The last aspect of our humanoid example factor graph is the affordance node, in
Fig. Affordances [54] play a vital role in robot manipulation, and will likely
play a major role in robot navigation and state estimation as well. An affordance is
a virtual geometric representation for an object of interest. Computer software can
be developed to manipulate and interact with an affordance, rather than raw sen-
sor data, which may be difficult to interpret. In turn, the geometric position of any
or all affordances must be aligned with the real positions of the objects they rep-
resent. We can include object models with known relative kinematic constraints
to mapped features in the real world, thereby incorporating object tracking, map-
ping, state estimation and trajectory planning into a central “location awareness”
inference framework.
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3.4.6 Compound Factors Example: Multiple Features

Landmarks

Figure 3-12: Multiple features factor, illustrating compound functions for higher
dimension factors in a two dimensional robot navigation example. The factor
contains multiple bearing measurements combined together for full dimension
constraints between poses X and landmarks L. The factor represents a balance
between computational expedience and robustness in a multi-modal inference
framework. Landmarks Lj,, L3, represent data association uncertainty between
observed features.

In the earlier sections, we discussed measurements which may have lower de-
grees of freedom than the variable nodes they depend on. As a result, probabilis-
tic inference by convolution of the conditional belief becomes more difficult, but
not impossible. In the bearing measurement section we suggested a compound
type factor be used, where multiple measurements are accrued into a single factor
which has higher dimensionality. In this section we present an example were mul-
tiple bearing measurements can be combined into a single factor between multiple
variables in the factor graph. As an added benefit, we incorporate some data asso-
ciation uncertainty to create a new type of navigation factor which blends compu-
tational considerations with robust inference techniques, called the multiple fea-
tures factor.

Fig. shows an example factor between two poses and several landmarks,
composed from multiple bearing measurements. The factor represents the analytic
solution between all variables given three independent bearing measurements to
different landmarks L. This is a two dimensional example where we can com-
pletely resolve the three degrees of freedom, position and orientation, of either
pose X, or X relative to the other variables and the three bearing measurements
associated with that pose. In addition, we allow for data association uncertainty
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if two bearing measurement associations to features are uncertain, as indicated by
Lj,, Ls,. There are eight bearing measurements 1, two pose and four landmark
associations built into the factor illustrated in Fig. We can write down the
required six dimensional residual function, using the bearing function V¥ (-)

%,1 - (Xml )
w’b 2 = (X’L71 )
0 (Xia Xi+1, 117 127 13(17 13b7 7) = Q;/)Z o _ v ((XZ7 13 ]) ) v Cat (p> : (330)
i1 — W (X, 1)
1/1i+1,2 - (Xz+1, 12)
| Vir1,3y — ¥ (Xig1,135) |

This residual function can be combined with a probabilistic density to form a full
dimension, robust probabilistic measurement likelihood.

The multiple features factor can similarly be extended to three dimensions for
camera based feature measurements, and is then equivalent to common five or
eight point relative orientation estimation approaches [93}]176]. We note that this
factor can be formed from randomly selecting groupings of tracked features into
a couple multiple feature factors, along with the data association ambiguities to
form a robust interpose odometric inference procedure. This procedure should,
through consensus, find the so called “inlier” set of features by ignoring bad asso-
ciations. The compound factor solves inefficiencies associated our current Gibbs
sampling based nonparametric inference procedure, and refer the reader to Chap-
ter Bl for more details.

3.4.7 Null-hypothesis

A turther aspect common to all factors is how to handle the null-hypothesis case
and do inference over such as factor, or lack thereof. In principle, a null-hypothesis
implies that a relation between variables is void and should be ignored. Null-
hypothesis implies the factor that exists in the factor graph should not be con-
sidered during the inference procedure. We note that our approach is aimed at
keeping the structure in the factor graph constant during the inference procedure,
and emulate the null-hypothesis case through a categorical distribution. We do
not ignore the constraint, but instead inject a large amount of entropy to the vari-
able of interest under the null-hypothesis case. Through this mechanism we are at
least able to explore the local region around the current state of variables during
the inference procedure and negate any factors influence through consensus with
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other measurement information. We note the extreme case where all factors have
the possibility of being null-hypothesis, which would result in a uniform belief
over all system variables. We argue that by introducing large uncertainty to each
factor in the region of the current state emulates the local unform uncertainty.

3.5 Marginalizing out Discrete Variables

Many, but not all, of the measurement likelihood models described above in-
troduce multi-modality through a discrete variable . We propose to always
marginalize out the decision variables when taking the product between different
belief functions. The marginalization of discrete decision variable produces multi-
modality in the remaining continuous domain variables. Therefore, in general, we
expect to marginalize out discrete variables from any such sensor measurement
likelihood functions, and will only happen at inference time, as follows:

T
(Z]©;1=)_[Z|T,0,][7], (3.31)

5

where, the prior belief [ ' | represents the data association certainty obtained from
user input, or some other likelihood process, represented by the weighting vector
p-

A key advantage in our approach of marginalizing out discrete variables at
inference time is that that all transmitted beliefs will be in a common continuous
domain. We will see in Chapter[5|how convolution and infinite product operations
are standardized around continuous nonparametric belief functions. By marginal-
izing all discrete variables, the contents of a particular measurement likelihood is
“black boxed” and standardizes the inference operations. New factors or variables
allow the inference process to incorporate new information, which may focus com-
putation on an altered subset of dominant modes — without having to update any
discrete variables. This approach allows deferred data association decisions to be
left as late as possible, and treat the Categorical weighting p as a hyper parameter.

3.6 Inconsistent Modeling

This section discusses a further restriction on the types of problems to be consid-
ered, and relates to the issue of model consistency. A factor graph could be con-
structed with any random variables and likelihood potentials between them, but
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Figure 3-13: Illustration of inconsistent modeling, where assumed model as gray
bell curve is a poor probability density estimate of actual value shown by Dirac
spike (black arrow) on the right. The bottom figure shows a different multi-modal
likelihood which does support probability mass around the true value which is
considered a consistent likelihood model for the true event.

is not representative of any true sequence of events. Alternatively, we could model
a system of variables with extremely wide uncertainties, resulting in a correct but
uninformative posterior distribution.

By means of an example, consider a two pose system where a robot drives 10
units in a one dimensional world. We instantiate a prior position unary factor to
the first pose and pairwise odometry measurement likelihood factor to the second
pose. The odometry factor can be made inconsistent by specifying an exceedingly
unlikely situation. For example, the odometry measurement uncertainty could
be taken as normally distributed with mean of 5 units traveled, with only 1 unit
standard deviation (¢0); resulting in the actual 10 units traveled being extremely
unlikely (50). We would consider this situation inconsistent, and illustrated graph-
ically in the top portion of Fig. We contrast a consistent multi-modal likeli-
hood belief in the bottom portion of Fig.

In the case of loop closures, we note that the odometry drift estimates must be
representative of the actual drift accumulated. We regard a loop closure potential
between two variables, which by odometry are unlikely to be in close proximity
as an inconsistent model. Our inference algorithm will use user supplied mea-
surement likelihood functions to propose regions of the state space that must be
explored. The posterior solution is found by stacking all likelihood proposals and
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resolving the regions of consensus.

3.7 Conclusion

Most, if not all, SLAM systems to date perform inference using squared error cost
functions aggregated into a optimization objective function. The squared cost im-
plies a normally distributed measurement likelihood model, which we have shown
as too restrictive in many situations. The difficult cases arise from ambiguous mea-
surements. For example, a normally distributed measurement model biases data
association uncertainty, or makes poor use of information when underlying un-
certainty is non-Gaussian. Instead, we choose to use kernel density estimation
for approximating all marginal beliefs in the system, and naturally encapsulates
multi-hypothesis and nonparametric type beliefs that an associated inference pro-
cedure can exploit for more representative posterior estimation. This approach
allows us to perform inference on a static factor graph structure, without trying to
modify the graph structure before or after inference.

This chapter introduces a number of nonparametric measurement likelihood
functions by focusing on the importance of defining an on-manifold measurement
residual function combined with a consistent probabilistic error distribution. The
measurement models presented in this chapter provide a solution for many of the
problems faced by current SLAM type measurement factors in use today. We show
several measurement likelihood potentials to be used in any combination for con-
structing nonparametric navigation-type factor graphs. To our knowledge, none of
the current SLAM solvers are able utilize semantic information in a factor graph
during inference without modifying the actual structure of the graph. Our ap-
proach is able to perform incremental inference over semantically labeled and the
ever changing factor graphs, and recover the most dominant modes according to
all available measurement information.

The measurement likelihood functions presented are by no means a complete
list. In particular, we discussed how inertial odometry factors (inertial sensor
preintegrals) play a special role in real-time, high-bandwidth state estimation.
We illustrated how longer running computation times required for robust multi-
sensor data fusion that can be combined with a smaller duplicate factor graph
inference task for a combined fast localization and robust mapping system. Chap-
ter[d investigates the inertial odometry factor in detail and Chapter 5|discusses the
Multi-modal iSAM incremental inference algorithm to user specified nonparamet-
ric factor graphs.
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Chapter 4

Inertial Odometry

In Chapter[3, we described new parametric and nonparametric measurement like-
lihood models for navigation type factor graphs. This chapter derives and details
the new continuous time and second order inertial odometry measurement factor
for high-bandwidth, real-time aspects of the navigation-type factor graph descrip-
tions. Robust multi-sensor fusion through nonparametric inference with Multi-
modal iSAM is discussed in Chapter

4.1 Introduction

Inertial sensors are a corner-stone of high bandwidth navigation systems. They
offer a means to “black box” dead reckoning, but suffer difficulties in double or
triple integration of sensor errors. Inertial sensors capture vehicle dynamics and
other effects such as gravity at high rate, but also include measurement errors.
For example, a gyroscope bias offset results in accrued orientation error, which
in turn results in incorrect gravity compensation of acceleration measurements.
Integration of misaligned gravity quickly results in significant positioning error.

Over the past two decades, simultaneous localization and mapping [135] has
been a major area of navigation-related research. Sparse factor graph methods
have been developed to allow a new perspective on navigation and localization,
bringing into question whether Kalman filtering [56] is still the best way of infer-
ring inertial sensor calibration parameters.

Fig.{4-1|illustrates how summarized inertial odometry constraints can be used
in navigation type factor graphs. The figure shows how leg kinematics, inertial
odometry and visual sightings of opportunistic features as well as loop closures
can interact in a centralized framework. We note that a pure inertial odometry
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Figure 4-1: Factor graph showing pure inertial odometry constraints, aided by for-
ward kinematics from the legs and monocular visual feature sightings through the
head mounted camera (associated with Section (8.3).

constraint can also be used to predict real-time state estimates based on a robust
factor graph inference result, as shown. Future motions can also be optimized by
enforcing vehicle model dynamics towards a desired goal.

However, when we try to use inertial measurements as odometry likelihoods in
a factor graph formulation, we find that compensation of sensor errors (dynamic
calibration) is not trivial. We further find that use of pure inertial sensory infor-
mation in factor graph based navigation systems is limited, due to the lack of a
clear inertial odometry measurement residual or likelihood model. We identify
the need for a computationally tractable inertial odometry measurement likelihood
model for easy integration of multiple sensors in factor graph based methods.

Fig.[d-2 conceptually shows how a smooth trajectory is discretized into discrete
poses, and how high-rate inertial information summarized into direct ZJ Az terms.
Our approach follows from the work of Lupton et al. [143], who suggested raw
inertial measurements are first integrated and offset compensation is only done
later. These directly integrated inertial sensor values are called inertial preintegrals.

We emphasize that allocating error to the inertial sensor bias terms is very dif-
ferent from just allocating error to position or orientation states, sometimes also
called “bias”. By modeling native inertial sensor bias terms, we introduce a mech-
anism to compensate position and orientation errors along the entire trajectory
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Figure 4-2: Conceptual overview of using pure inertial odometry constraints be-
tween world frame poses at time ¢; and ¢;. Any opportunistic constraint would aid
dynamic sensor calibration. Analytical description in Section4.3|

according to their true sensor measurement errors. Note that by allocating error
to inertial sensor biases, we effectively require reintegration of sensor error influ-
ences across each affected odometry likelihood model.

In this chapter we improve on the preintegral method by condensing high-rate
gyroscope and accelerometer measurements into lossless inertial preintegral terms
with a continuous time and exponential parameterization residual model. We de-
scribe the accumulation of a second set of values, referred to as inertial odometry
compensation gradients, which are simultaneously accumulated at sensor rate.
The compensation gradients can then later be used for retroactive estimation of
sensor bias terms by means of a residual function, defined in eq. (4.21). We also
discuss propagation of the covariance matrix of the inertial odometry terms. The
inertial odometry process is illustrated with examples in Section Chapter
further explores navigation examples with a hand-held inertial with monocular
camera localization solution; and concept demonstration on a Boston Dynamics
Atlas humanoid robot.

Our work presents a theoretical development of inertial preintegral bias com-
pensation models and best relates to work by [143]], [103] and [137]. Our work
extends that of [103] and [143] by presenting a continuous time analytical deriva-
tion of a Taylor expansion of the sensor error terms manifold inside each odom-
etry likelihood function. To the best of our knowledge, an analytical continuous
time gradient model derivation together with higher order Taylor expansion of

113



the residual function for retroactive calibration is not yet available, and is the main
contribution of this chapter.

This chapter is structured as follows: We present a motivation for our work
alongside contributions from other authors. Our development begins with fa-
miliar interpose odometry constraints and is then extended into the retroactive
inertial sensor calibration model. We discuss computation of the required com-
pensation gradients. Finally, validation experiments from synthetic and specific
purpose recorded data is discussed at the end of the chapter.

4.2 Approach

Dynamic calibration of inertial measurement unit (IMU) errors is a vital aspect of
inertial navigation. To this end, we define the standard gyroscope and accelerom-
eter sensor models [56|(79,229]. We take the gyroscope measurements w as the
sum of true rotation w plus a Gauss-Markov style process for additive bias b,, and
additive noise v,,:

"0 ="'w+ b, + v,. (4.1)

Similarly, the accelerometer measured force 5f in the body frame include true ac-
celeration “a, bias *b,, non-inertial gravity in the local level frame ‘g and high fre-
quency noise v,

f —=ta+ b, —'R'g. (4.2)

Note, we treat gravity as only vertical, such that the wandering azimuth local and
world referenced gravities coincide, i.e. 'g = “g.

4.2.1 Strapdown inertial computations

The current state-of-the-art relies upon various Kalman filtering architectures to
produce an in-situ estimate of sensor errors [56,|79,[229]. Sensor error estimates
are often fed back, much like a control loop, to compensate for sensor errors in
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real-time before integration is performed:

ij — //tj wadTQ
ti

vp, = / /t ’ <’,§”R (b}" _ Ba) n wg) dr?. (4.3)
0

This equation represents a position estimate at time ¢;, relative to a starting condi-
tion at time ;.

Filtering solutions in inertial navigation only have one opportunity to compen-
sate estimated sensor biases when producing a naive odometry constraint. Fur-
thermore, use of pre-marginalized odometry constraints from a separate filtering
process as odometry relations in a SLAM solution may incorrectly reuse measure-
ments, as was the case in [159]. Access to an independent and pure inertial odom-
etry factor graph measurement likelihood function is desirable.

Instead, we argue that information from each sensor should only contribute to
one measurement likelihood in a factor graph, but we lack the models for incor-
porating pure inertial sensory information in a computationally feasible manner.
Inference on factor graphs models can offer robust multi-sensor data fusion, as
discussed in Chapters 3/ and 5| Pure inertial odometry measurement likelihood
models — in a factor graph context — would allow aiding from any other available
measurements, without suffering permanent sensor bias errors currently inhibit-
ing filtering style approaches.

4.2.2 Computing preintegrals

Lupton [143] suggested the preintegral method where the navigation integral
eq. (4.3) is distributed and sensor bias terms are only compensated after inertial
measurements have been integrated into the factor graph model,

t - t tj
g;Af,:// ZszdeTQ—// ZbeTbadTg-f-// ZRYgdr?. (4.4)
tz‘ 4 ti T ti

The approach rests on the assumption that outside contributions, such as raw sen-
sor bias or gravity, vary much slower than the dynamics of the system and can be
efficiently subtracted later using low order integration assumptions.

To make the definition of the preintegrals explicit: We accumulate the change in
position, velocity and orientation from the ' to the ;' pose, as shown in Fig.
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Accelerations are resolved to the previous pose’s body frame, %(-). The accumu-
lated quantities represent the noisy change in vehicle state, as well as integrated
gravity and other effects.

Interpose changes in position, velocity and orientation are computed at sensor
rate tp_1 — ty:

tg
nAP" =y Ap'+ / " Avdr
tk—1
b b e bib
b;Av = b;,lAv +/t SRt dr
k—1

PR=1 R} 'R=1 Rexp([Apy)) (4.5)

T obp—1

where Ap £ ftt:_l bw dr. Numerical integration is commonly used to estimate (4.5).
Coning, sculling and scrolling compensated multi-rate algorithms, such as those
developed by Savage [201}2202], can also be used.

For completeness, we could represent the orientation estimate with quater-
nions. The body orientation of the i*" pose with reference to the world frame * can
be written as ' R = R (}’q), which is the conversion from positive scalar quater-
nion to an equivalent rotation matrix. Orientation propagation is then achieved

by:

upl =1 (4.6)

where the Hamiltonian quaternion product is assumed, and 2;p is the orientation
of the body, at high frequency instant k, relative to the previous (i"*) body pose.

4.3 Model Derivation

Two pieces of machinery enable dynamic, efficient, retroactive gyroscope and ac-
celerometer bias compensation: First, we require a measurement preintegration
process. Second, we need a mechanism to retroactively compensate sensor error
terms at each pose, based on the measurement error model given in Section We
stress that the same machinery can then also be used for real-time state estimation
of platform motion, as shown in Fig.

We preemptively note that the inertial odometry process involves accumulating
three sets of numbers at sensor rate during the interpose integration period. The
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preintegrals, compensation gradients which describe how retroactive compensa-
tion is done, and the measurement covariance matrices to correctly weigh the error
contributions from error sources in the integration process.

Fig. conceptually shows an inertial odometry constraint 2J Az = [[¥Rladr?

between the i and ;" pose positions and is a summary of the true high band-
width trajectory segment. We note the odometry measurement, Z; Az, is relative to
the previous body pose in the chain and not integrated with respect to a gravity
aligned global frame.

Pose definition

We now extend standard SLAM pose vectors to contain not only position and ori-
entation but velocity and inertial sensor bias estimates also. The elements for pose
“x, are therefore:

vx; = [1§ b, “v Up "b,]" 4.7)

where }'q is the orientation quaternion, velocity and position “v, “p, which are
with respect to world frame, *(-). World to pose orientations are represented with
quaternions to avoid singularities. Gyroscope ‘b, and accelerometer b, bias
components are maintained with respect to each pose also.

Inertial measurements

We define inertial preintegrals from eq. (4.5) as a vectorized sensor measurement:
bi ne _ [bis b AT bias b AnT biAE ]
b AX = oAb, AV AP P AD | (4.8)
We take the preintegral measurement with error slack variable v as

= 0 Ax + v, (4.9)

Note the interpose constraint is defined relative to body pose at time ¢;. Probabilis-
tically, our measurement z;; is a sample from the generating process

zij ~ p (L] X5, X;) o p (YX| Xy, Zig) p(X5) (4.10)
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The first term expression on the right eases the marginalization operation in a re-
cursive filtering context (hidden Markov model), but conjugate terms obscure the
underlying convolution. In reality though, a robot is certainly moved between two
distinct points—the expression on the left—while an uncertain odometry mea-
surement is collected between them. We assume no prior pose information is
known, making p (X;) uniform and only affected by the scale of the expression
on the left.

4.3.1 Interpose definitions

We begin our derivation with the standard interpose odometry representation, but
vary the standard notation of Lu and Milios [141] slightly, where the body pose “x;
at time ¢; is spatially separated from the body pose “x; at time ¢;:

o in ) jo = f@ (in, jo) y (411)

We must somehow incorporate the influence of sensor biases and gravity,
which have been integrated into the preintegral measurements. We argue intu-
itively that some function fg (-) exists, such that fz captures the measured effects
of sensor bias, gravity, and additional error terms. For convenience we collect iner-
tial compensation terms, accelerometer and gyroscope biases as well as accelerom-

eter measured gravity as B 2 {b,, by, g}. More error sources can be included in
the model as desired.

We propose the to-be-defined composition (- o -) of standard interpose distance
[ with this compensation function fg. We do not know whether this function has
a closed-form expression.

We do not yet have an analytic understanding of how f5 influences the mea-
surement constraint function. An intuitive example of (fs o fg) is, consider if the
roll gyroscope had a constant bias offset during pre-integration, the accrued orien-
tation error would produce erroneous gravity coupling into the horizontal chan-
nels of the navigation solution. Also see Fig.4-3|for graphical illustration of prein-
tegral prediction function.

Elaborating on the residual function, the measurement model prediction for
preintegral measurements can be written as:

0y ("xi x5'g) = 2y — h(Vx, %)

= P A% — (f5 o fp) (“xi,"X;) 4.12)
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Figure 4-3: Illustration of inertial odometry (f5 o fg) (“x;, xj computation com-
ponents. The true interpose distance trajectory between “x;, “x; is the solid line,
where introduction of biases and gravity to the preintegral is shown by the dashed
lines.

where J;; represents the residual between the measured and predicted preintegral.

Measurements from inertial sensors are strongly unimodal, and measurement
errors are well modeled with a Gauss-Markov process plus random Gaussian-
white noise. We will make the assumption that each preintegral measurement,
from a random variable Z,;, is independently sampled from a multivariate normal
distribution:

zij ~ P (Zij| "Xy, X5) = N (g, i) i = (fs o fp) (Vxi, %) . (4.13)

We note that each new interpose trajectory segment from an IMU essentially cre-
ates a new measurement likelihood model p (Z;;|"X;,“X;), where we only afford
a single sample from that likelihood. By assuming the normally distributed struc-
ture, we are able to continue our inference development.

However, the complications begin when we try to recover the actual hidden
states (odometry dynamics) which form the preintegral likelihood measurement
model, p(“X;,"“X,|Z;;). To illustrate the difficulty, consider that during pre-
integration the gravity and accelerometer errors are accumulated at various ori-
entations with respect to the previous pose frame (-)’ and that the orientation
estimate itself is in error given gyro biases.
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The headache

The main difficulty arises from the non-commutative nature of rotations, R1R, #
R,R;. More explicitly for our case, the pre-integration of noisy gyroscope mea-
surements is a product of exponentials. At each IMU measurement we compute

an update in orientation which introduces some orientation error due to gyro bias,
be,dtx].
)

Z;R ~ e[wétx]e[bwistx]e[wétx]e[bwtstx] o e[wtstx]e[bw(stx] (414)

We see individual bias errors are baked into the product that cannot easily be sep-
arated out. A further complication arises because the erroneous orientation esti-
mate is used at each IMU measurement epoch to compute velocity and position
deltas, as shown in eq. (4.5). From this, we see that predicting the compensation
function f3 is not straight forward, and we would need a different approach.

4.3.2 Multidimensional Taylor Expansion

Finding a closed from solution to (fs o f5) in eq. has proven difficult, and
we are not aware of any other available in literature. Instead, we will resort to a
Taylor expansion and develop its terms in more detail.

To predict the preintegral measurement ZJ Ax, consider the partial Taylor series
approximation about bias terms in B, = V' (fs o fp) and gravity G; = V' (fs o
f5) of eq. (£.12). We use a vectorized form of state (;; to induce a linear operator
framework, and stack terms B’ = [0;5 b, 05 ‘b, 03}T and G = [0y “g }T.
We also note that higher derivatives are enabled through tensor products ®:

Z;Af(: (fo ofp) (Gj) = B+ B1+ Ba+ ...+ G
By = (fs o fB)\B+ Gij = (fo) Gij

0 (fsof
By = Vg (f9 o fB) Q‘j = [%] Cz’j

(Ve (fo o fp) ¢2)° (4.15)

ij

Blg —

DN | —

Where (+), 5, indicates the Taylor expansion around the additive identity of B, that
is b, = b, = 0 and “g as the known local gravity acceleration. We separate out
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gravity as an infinite partial expansion

G = Z Vo' (fo o f8)C5 (4.16)

We simplify the zeroth terms to a known linear interpose mapping
By = (fs ofp)\p, Gij =Ly (4.17)

given a constant gravity assumption, which allows us to write down a simple
closed form expression for the gravity component. For convenience, we collapse
gravity G, and first order bias B’ contributions into a common linear operator:

— Cy Gy = B + G (4.18)

The major advantage of interpreting the integral of bias offsets as a Taylor ex-
pansion is that the second order Taylor terms follow directly from the derivation
for first order terms, which we will see in Section Note however that higher
order terms require tensor products to correctly embed higher dimension opera-
tions into a linear map, for example the second order bias compensation term

(] 17"

% (V% (fs o fp) (B)° = —%cg9 2 (4.19)
We will see in the next section how many terms in the second order tensor expan-
sion are zero — we find only seven nonzero second order gradients and therefore
limit C5 ¢, ; to a simplified definition. The second order gradients are organized
into a new linear map, but still satisfy eq. (4.15). We elaborate on the tensor product
® and element wise product © at eq. (4.28).

We populate each of the gradient matrices L, C;, C5 in the next section, but
tirst complete our understanding of the Taylor expansion given above. The Taylor
expression given in eq. approximates the manifold on which inertial sensor
error terms such as biases and gravity operate. With access to the gradient matri-
ces and state vector (;;, we can retroactively predict the preintegral measurements
made by during the process outlined in eq. (4.5):

Q

L - Gil Gy - 5C5¢? (4.20)
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We can exploit slow sensor error dynamics to make the post-integration com-
pensation computationally tractable. The slow sensor error dynamics allow the
first, second and third order approximation of (fs o fg) to be computationally
tractable while remaining reasonably accurate.

To reiterate, during inference we would like to compute the residual §;; between
the noisy interpose premtegral measurement . A% and likelihood prediction ? AX.
Following from eq. ( , we can write this re51dua1 computation as:

biéij (wxi7 wxjv wg) - (Z;AX T V) o IIZ Ax
— Q;Ai —[L-Ci]¢;

o 1
= p A% — ([L —Ci] Gy — 505‘9 ;‘?2) : (4.21)

where the uncertainty v ~ N (0,%;;) accounts for measurement and computa-
tional approximation errors.

At this point, we do not yet have expressions for the gradient matrices
L,C,, C?, and must therefore find a mechanism to describe them. Fortunately,
we do have access to the attitude and velocity error models the inertial mecha-
nization, based on our inertial sensor error models egs. and (4.2). We also
have access to the boundary condition for what each of the compensation matrix
terms should be at the start of an integration cycle of eq. (4.5).

Therefore, our approach finds the time differential equations for each of the
gradient matrices in the Taylor expansion, eq. (4.15), and uses their boundary con-
ditions to compute numerical solutions for L, C;, CS. Furthermore, an unlimited
number of interpose measurements can be made in this manner, recorded and then
used in combination with other outside information to recover the best estimate
sensor bias terms retroactively, by using the inertial odometry residual function in
a factor graph as depicted in Fig.

The next section discusses assembly of the gradient matrix terms and how the
ordinary time differential equations are assembled and solved. Finally, in Section
4.3.6|we will derive the required time differential equations for computing the Tay-
lor gradient matrices discussed in eq. (4.15).

4.3.3 Linear Maps

For practical computational appeal, we construct a vector (;; as a vectorized func-
tion ¢ (“x;,“x;; g), which maps states from poses “x;, “x; € R'® and outside in-
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fluences, such as gravity “g € R?, into a column vector ¢;; € Rgo:

¢ RO X RIS xR —» R

(4.22)

Gj =1 ("%, %x5;"'g) =

The vector ¢;; contains all the information relating to the relative interpose in-
ertial measurement from ¢ — j. Other inputs may include effects such as earth
rotation, Coriolis or transport rate.

The interpose rotation ZJ ¢ is a vectorized matrix exponentials parameterization
of interpose rotation and can be computed by Lie group to Lie algebra logarithm
mapping [32]:

i = (logeos (MRER) ) bl < m (4.23)

The logsos) function and vee operator are defined in Appendix

Zeroth Gradient Matrix

Given Qj, we can construct a linear transformation L to operate mapping
(fo o fp)\ g, (+), such that the interpose odometry is predicted between poses
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X, Xj

L : RY —» R"
L=[L Ly
T 0 0 0 O
00 0 0 O
Li=10 0 "R 0 0
00 0 %R 0
00 0 0 O
[0 0 0 00
0 0 0 00
Ly=10 -%R 0 00 (4.24)
0 -%RAt -%R 0 0
0 0 0 00

First Gradient

Still with eq. (4.15), we construct the first order bias and gravity compensation
transform operator C;, and note that it will depend on a linearization point.

C, : R¥® — R, (4.25)

The matrix-vector product C, (;; computes the first order dynamic inertial bias
compensation term, along with the full gravity compensation G, in the last col-
umn.

012[01,1 01,2}
[0 0 000
01000
Ciy=10 0 0 00
000O0O
00 001
ser 0.0 0 0
-1 00 O 0
Cip= |apr 0 0 g —NRA? (4.26)
sir 0 0 g —URAC
0 00 I 0 |
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The partial derivative gradient terms in C is of particular interest, since we do
not yet have expressions which govern them. In Section we will find time
differential equations, and — starting from known boundary conditions — find
each of the partial gradient terms numerically at or near sensor rate.

Second Gradient Matrix

We first complete our description of the Taylor expansion terms (gradient matri-
ces), from eq. (4.15). We take the second order gradient matrix as

CY : R® — RY, (4.27)

2

which is operates on a vector (7, ;:

cp : R — RS
bjbg,z'
b
bjbw,j O] bjba,j
biba; @by ;|
bibw,i ® bi ba,i
_biba,i ® bibwﬂ'_

(o =02 (Gij) = (4.28)

where u®? = u © u is the Hadamard product and implies element wise multi-
plication of terms. We note C5 for compactness only represents non-zero coef-
ticients, unlike C';. Furthermore, the two cross terms are in fact equivalent, but
kept separate here for illustration of the tensor product expansion, *b,,; ® b, ; =
"ba; © by

We deduce all the second degree terms of gyro and accelerometer biases
#, #, resulting from the tensor decomposition in eq. {#.15), and provide their
derivation in Section[4.3.6] We first provide matrix C5 here as an overview:

_ 52 -
0 8—][)3)% 0 0 0 0
0 0 0 0 0 0
v v v
3 5 2
0 ;b?z 00 _agggg agggg
o 0 00 0 0

We note that the given Taylor gradient matrices only involve the previous pose
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bias error terms. To include the next pose bias terms with the midpoint rule in-
volves halving and duplicating the gradient terms in the space provided for both
b;,b;.

We now have a model for inertial preintegral compensation gradients. The
two linear transformations L, C, give the first order Taylor approximation in B for
eq. (#.15), and can be extended to include second order Taylor terms with C3'(?, ;.
We turn our attention towards high speed accumulation of the inertial compensa-
tion gradients in Cy, C5.

4.3.4 Continuous time model

We do not yet have analytical expressions for the compensation gradients present
in egs. (£.26), (#.29), but we can determine a starting boundary condition at the
start of a preintegration cycle. We understand that if the preintegral integration
occurs over zero time, At = t; —t; = 0, then the measurement will be zero, S;AX =
0. Similarly, the Taylor expansion prediction function in eq. should then
also be zero. Given that the first term L(;; = 0, we know all the compensation
gradient terms of C;, CY, . .. should also be zero. Considering bias estimate terms
are not zero, we therefore know all the gradient components should also be zero,
and thereby determine the boundary condition.

With a boundary condition in hand, we can develop a matrix system of ordi-
nary differential equations (ODE) to calculate each of the compensation gradient
matrix terms. In the sections hereafter, we analytically derive each sensor error
time differential equation model. We are able to assemble the ODE into a multidi-
mensional, linear time-varying state space system:

(=F¢+G
9 16 Fii Fiof [& Gy
v = | ’ + 4.30
ot [52] |:F2,1 Fao| [&2 Go (4.30)
where G contains affine terms associated with the time evolution of £. Note, G
is not multiplied by an input vector, since this is a coordinate-free representation.

We are accumulating the directions in which sensor error terms affect an interpose
trajectory segment, and therefore have unit directions G x L

For first order Taylor approximation, we collect the relevant compensation gra-
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dients in the matrix &, € R!*3:

b; T
& = 9o ov v dp dp ) (4.31)
obIl bl bl  8bL  FbT

We also extend the matrix linear system for second order Taylor expansion {; €
R21x3.

5 9% 8% v 9% p 8% v 9% p 8% v 9% p T (432)
27 |obZ2 9bZ? 9bZ?  ObIbL  ObIbL  Oblbl  Oblbl :

The process outlined above can be used to continue adding the desired number of
Taylor expansion terms.

In the next section we discuss integration to a discrete time propagation of ¢,
followed by the analytic derivation of the matrices ', G thereafter.

4.3.5 Continuous to Discrete

The next important component is our ability to accurately integrate the continu-
ous time matrix systems with a discrete time integration process. In this section
we briefly present the trapezoidal method used for all the continuous to discrete
integration. Through integration, we propagate both the compensation gradients
and the covariance estimate forward at sensor rate k.

We collapse eq. into single terms

)
b [ﬂ M H M) = [g ((ﬂ . (4.33)

We note the terms in matrix M(;) depend on various values, including gyro, ac-
celerometer measurements, preintegral rotation estimates ;' R, and more. Since
some terms are dependent on these terms, we only have M, available at each
sensor measurement epoch k.

We define the sensor rate time increment 6t = ¢, — t; and solve the differ-
ential system using the matrix exponential. Either a zeroth order or trapezoidal
integration schemes for eq. can be used:

F(igl)} ~ exp [M) 0t FI(I;)}

FUE”} ~ (exp [-Mgy §1) 7 exp M) 3] FIU;)] ' (*.34)
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We use the Pade” approximation for all matrix exponentials exp [-]. Lastly, when a
new pose is instantiated, we take &;; = {, at time ¢;, = ¢; and reset to the boundary
condition {y = 0. The interpose period is the total time £ = 1,2, .., K, giving
At=t; —t; =S8 it

4.3.6 Accumulating compensation gradients

Unlike filtering, we do not need accurate bias estimates at integration time. In-
stead, we knowingly integrate erroneous IMU measurements into their summa-
rized preintegral form (Section and compensate error terms later. The com-
pensation gradients, discussed in Section describe the manifold with which
we correct measurement errors at inference time. We discuss feed-forward bias
compensation in Section

For example, orientation error is predominantly caused by gyroscope bias b,
and we will use the first order bias gradient %Bw to account for accumulated bias

error in the noisy ¢ — j rotation preintegral measurement Z] P:

0o -
by, 4.35
b7 (4.35)

bi =~ bi
b, P Ny, Pt

J

where ¥ is the true rotation increment of the body relative to previous pose frame
(-

In order to calculate the bias gradients, we require time propagation models of
bias influence on each preintegral measurement. This implies we need the partial
derivative for each gradient against time. We now derive a differential equation
for each bias gradient.

First order Attitude error model

We convert rotation into its matrix exponential parameterization, which is essen-
tially a manifold expression at each pose and allows locally linear manipulation of
rotations. We use the closed form Lie algebra to Lie group exponential mapping
eXPgo (¢) = el# given in eq. (A4).
Take the partial derivative to gyro bias model, see eq. {¢.I), with temporary
shorthand [p«] = [¢],
0 0

el — gl

obT g 71

w

(4.36)
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0 _0

Take partial scalar derivative to time 2 25 el#~!
o 0 0 0 d [0¢
IR () I P (%] o] _~ |ZX
3t b, (ate ) abT e g [81&]
dpl 0 0 |0p
— al¥l i I I
¢ Qat} b7 7t g {61&]) (+:37)
Premultiplying by the inverse rotation
0 0 dp| 0 0 [0y
o] Z 7 Ll — | 2 R B
¢ " oiopr® [ﬁt} I RrTS) [8t} | (4.38)
Next, we evaluate the vector derivative % by looking at each of the three

dimensions in b,, independently. We are going to embed the above expression,
which require group operations in SO (3), into a new linear system with only al-
gebraic operations in the associated algebra so (3). This enables linear bias com-

pensation as proposed in eq. (4.35).

Recall, the decomposition of skew-symmetric matrices associated with a
smooth curve on SO (3) is

0 0

with usual Lie algebra basis elements {Ew, Ey, EZ} We also note, from [32], the

N \%
Vee operation on basis elements (Ex> = €1, where ¢; are the natural basis.
We take the vectorized gyroscope bias contribution along E, of eq. (#38) as:

0o 122

v b s,z
(e[@]gaew) — [8_@1 g)& + 2 ;b& (4.40)

Ot Oby, 4 ot By ot Bor

Bbw@ 8bw,z
Keeping in mind dw = —0b,,, accumulation on the local manifold is given by

Ap = ftt:“ ‘wdr, and that at infinitesimal angles operations on the vector field
can commute [32], we find

0 oeld\" deldel\ v
a9 T
(e o1 abw,x) Ay (e agox) (441)
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We repeat the vectorization and augment each column to produce a new set of
linear equations, one for each of the three rotational degrees of freedom.

OR " OR\" OR\"
Jr=|(R" R"— R" 4.42
* K 0%) < &Oy) ( 3%) } 44
This is the right differential, or Jacobian, acting as a mapping from the smooth

rotation rate manifold into Lie group. Gyroscope bias is coincident with the body
frame rotation at each point in time.

We note the Rodriguez formula [33], given in eq. (A.4), can produce a closed
form expression for the right differential, as shown in Park [184] in Lemma 2.1:

_ 1 —cosfle|

ol Lol snlel we

Jp=1
lel®

Finally, we can rewrite eq. (4.38) as a differential equation of bias gradients on
a linear manifold at each point in time

lim —Jp (Ap) = [Pwy] 9o 000

Am b, + 91 9b. (4.44)

and concludes the first order attitude error model.

Second order Attitude model

As before, there is no direct coupling from accelerometers to attitude. Aside, re-
verse coupling happens through the velocity error model.

0 Py (4.45)
ot (abaT)2 - ’
0 Py
01 5b, b (4.46)
o 02y
D ob T (47

The second order gyro bias term, together with eq. (4.1) we have 6b8 7 [Pwy] =
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a9 e ) oo 9Jg

_ b
Ot (9b,7)" b7 ("] ob, T ob,T

ol 2 bi
NI LT () R & (4.48)
db,, (9b.,")
First order Velocity error model
The measured acceleration in the previous pose’s (i) frame is given by:
by = BR (b}" _ ba> iR vg (4.49)

where true force is equal to measured force minus accelerometer bias *f = *f — b,.
We take true body force as body acceleration minus gravity, which is a noninertial
force, °f = ba — ’g.

We find velocity dependence on gyroscope bias with the partial derivative to

gyro bias, and by using the relation given by eq. (A.4)

O gy = 9 e (b? - ba>

obT ~  Obl
= el e (b))
_liex a“’ R b
= e[ ]3bg ( [ fx] v+ [bax] 90> (4.50)
and since % = 0, we have
9 9 bio . |diex by agj
5 - el'e] (1be] - [£]) ot (4.51)

However, we do not have access to an accelerometer bias estimate during the pre-
integration and must therefore ignore the term [b, x|.

2 v b
ot obT b

R [bh] gig (4.52)

Although, we do note that if bias estimates are accumulated and compensated at
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the sensor, the error introduced by this assumption decreases.
Next, we find velocity dependence on accelerometer bias directly through the
second partial derivative:

biv = IR (4.53)

Second order Velocity model

The second order terms for velocity are:

2 b;
ga_v2 —0 (4.54)
ot (8baT)
0 0*biv %)
S SN (%)
DLob,ob,T . Ob.T (.55)
and
0 0?biv 0 ¢ oA
I S ) b i N %) Y R
ot (ob, 1 (8b T M) ) G 7 [ (9b,7)?
a0 (4% ¢
— _el¥l bF, —e g ] —
e b, — | ]abwT e ['f,] (8bwT)2
0" Y 1 9y 21 0o
~ _alvl b _ elel |b v
T [f} b, [f] (abwT)2 (456)

tically computing, we start with the uncompensated accelerometer measurement
’f = bf b, until better bias estimates become available. We also break the implicit
expression by using the previous sensor time-step gradient 22
the implicit equation for continuous time interpretation.
The second order velocity error to accelerometer bias is obtained with the par-

k=
b T’ ' but maintain

tial derivative, again using abaT [Pt ] = — (-1):
b;
LS A el 9 — ['f,] 0y
ot b, ob,," ob,” ob,”
— WRSZ a“” (4.57)
ob,,T



First order Position models
We directly know relations for positions:

0 0, 0 9

oo ot P~ gpr 0 obT

8 b, abiv
JE— Zp —

5 6T (4.58)

This concludes the derivation of the inertial error models. We proceed to de-
velop a computational framework for computing matrix C;.

Second order Position models
The second gyro bias derivative gives

0 0%bp _ 0% biy

ot (ob.1)*  (ob,")’
0 0*hp 0%ty

9t 0b,Tob, T b, ob,T

While the second accelerometer bias derivative gives

2 o2 bip B 5?2 b"V B
O (ob,")" (")
o 82 bip 62 biV

otob,Tob,” — ab,Tob,T

(4.59)

(4.60)

(4.61)

(4.62)

This concludes the second order derivatives required for the second order time
differential equation needed for the Taylor expansion in eq. (4.15).

4.3.7 Defining F and G

We have derived an entirely continuous time inertial sensor error model for the
inertial odometry residual function, to be used as a measurement likelihood in a
factor graph framework. Recall the continuous time linear system equations es-
tablished in Section and continuous to discrete solution presented in Section
In this section we populate the matrices F, G with the derived time differen-
tial models required for computing the compensation gradient terms in eq. (4.30).
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The first order only system matrix is

w3

0[]0
[ —['wx] 0 0 0 0] —-Jz("dy) ]
—R ] 0 0 0 0 0
_ 0 0000 —}R
B 0 I1 000 0 (1.63)
0 0100 0
|0 0000 0

We can also define the second order matrix terms as, see eq. (4.30), F1 2 = 02115
and

Ilg’ 1 03X18 [ [wa} I3><3 O3><15_
_giR%w].fw_T) <] Osx1s —'R [Pf]  Isxs  Osxis
0353 03518 0356 I3x3  Osx12
Fo1~ R 0318 Foo = 0321 (4.64)
033 03515 039 I3z Osxo
—ZZR 03><18 03><21
0545 03418 | Osx15 I3 Osx3 |

This concludes our definition of the continuous time compensation gradients
model. To reiterate, we integrate this model as discussed in Section and use
the result to construct the Taylor gradient matrix terms discussed in Section

We now turn our attention to the error covariance computed during preinte-
gration.

4.3.8 Covariance propagation

In eq. we described how to collect a preintegral measurement. In this section
we look at the accumulation of measurement uncertainty. The measurement co-
variance is the third of three sets of values accumulated at sensor rate, along with
preintegrals and compensation gradients.

We take the true error covariance as from the residual function defined in
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eq. (4.21),
(SZZ‘J‘ = Zij — iij
— [6p biov Ydp bisb, bisb,]". (4.65)
Producing the measurement covariance

E [[0Z:]"[6Z:,]] (4.66)

Using either the continuous or discrete time Ricatti equation definitions — sim-
ilar to covariance propagation in Kalman filtering —, we write the progression of
uncertainty as

P = ®,P.®7 + Qy

v, — | —Fk | GQG,"
g 0 | F,”
x| @ Qi
T, = [ 0 &7 (4.67)

where we compute the discrete noise matrix based on standard INS error accu-
mulation models [56]. Integration of the elements in ¥} is done with zeroth or
trapezoidal rule, described in Section[4.3.5] The discrete time integrated result Y,
is influenced by the integrated process noise matrix Qi = P (<I> k_le).

O,I; 0 0 0
B 0 Oy I3 0 0
Q=KX 0 0 Onrols 0 (4.68)
0 0 0 Oprals

The continuous process noise matrix, Q, is defined by sensor noise character-
istics [244]. We use a scaling factor, x, as a safety factor to ensure that we allocate
sufficient uncertainty to accommodate measurement noise and computational er-
rors.

This approach clearly does not accurately model colored noise, but is common
practice in the inertial navigation. Increased process noise Q only reduces the in-
ertial odometry weight in the SLAM solution. The typical range for « is around
two to ten.

Allan variance testing [50] may be used to estimate each of these noise parame-
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ters. Spectral densities, ©,, are generally supplied with the inertial sensor package
and commonly related to 1 o deviations according to [244]:

o, =) —. (4.69)

We refer the reader to yet more references at [229] for more details on uncer-
tainty growth in inertial navigation systems.

4.3.9 Compensating earth rotation rate, and Gyrocompassing

We can extend the attitude and velocity error models to compensate for earth rota-
tion. This would enable factor graph style gyrocompassing, and direct the reader
to the authors earlier work [68]. The preintegral accumulation stays unchanged,
but would use updated compensation terms in eq. (4.30). The development starts
with the updated attitude propagation formulation:

/

9 lrex] = o] glirex] ol

- ] (4.70)

The uncertainty covariance propagation will be affected.

4.3.10 Observability

We will just highlight a few key points of inertial sensor bias observability from
great works by [92}]107,121,147,[153,193]. Jones et al. [107] used indistinguishable
trajectories to analyze observability properties of an visual-inertial sensor pairing.
Mirzaei et al. [153] used Lie derivatives for a similar purpose.

Mirzaei [153] avoids estimation of the gravity vector, and shows there are cases
where not all parameters in the system are observable. Accelerometer biases can
only be estimated if subjected to varying motion, while being constrained by aid-
ing information. Jones’ [107] observability analysis considers the simultaneous
estimation of the local gravity vector. This work notes degenerate cases between
accelerations and the gravity estimates, and appear when the system is subject to
insufficient excitation dynamics. More specifically, Jones states that gravity can
be estimated when subjected to varying accelerations and sufficient features are
sighted nearby the camera.

Kelly et al. [120,121,227] published a detailed Lie derivative nonlinear observ-
ability analysis for visual-inertial systems. Kelly showed that with sufficient ex-
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citation of the visual-inertial sensor pair, absolute scene scale; the local gravity
vector; the IMU biases; and 6DOF transform between the camera and IMU are all
simultaneously observable. More specifically, this result is shown to hold while
the system is simultaneously rotated about two axes while measuring non-zero
acceleration (excluding gravity) on at least two dimensions.

4.4 Validation and Analysis

The best navigation systems are able to dynamically calibrate the IMU from aiding
information. The examples that follow intend to illustrate retroactive sensor cali-
bration, which is distinct from Kalman filter style IMU calibration, and the premise
that this new inertial odometry technique is more powerful and capable than ex-
isting Kalman filter techniques.

4.41 Synthetic Examples

Alongside the inertial preintegral measurements eq. (4.5), we use the contin-
uous analytic model in eq. with trapezoidal integration to discrete time
for computing compensation gradients. The compensation gradients are used
to assemble the matrix C;, as shown by eq. (4.26). As shown in eq. (.21), the
weighted residual is the difference between measured preintegrals and prediction
(fo o fB) (“xi,"%;), which is computed via compensation gradients.

We can form the residual in eq. to construct a residual function fit for in-
ference and bias recovery. Crucially, sensor bias terms are inferred after raw sensor
integration has completed, unlike filtering where sensor bias terms are first esti-
mated and subtracted before integration. We also note the uncertainty estimates,
or preintegral covariance shown by eq. (4.67), are also accumulated at sensor rate.

4.4.2 Inference by nonlinear-least-squares

A variety of inference techniques exist. Non-linear least-squares optimization is
used for the examples presented in this section, to demonstrate how preintegrals
and compensation gradients achieve retroactive bias recovery:

argmin

I (6,7 5, 0. @)
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Where the preintegral covariance ¥;_,; is propagated according to the uncertainty
model presented in eq. (4.67).

Basic averaging, not moving

Consider an IMU standing stationary for duration of time. Naming the IMU start
and end position poses as “x;, “x; respectively. A pose is taken to represent the
position and orientation relative to some world frame. Dynamic sensor calibration
can be obtained from integrated gyroscope & and accelerometer *f measurements.
Assume IMU measurements are integrated according to the preintegral strategy
in eq. between time ¢; and ¢;.

tj to
b Av,; + / badr + A = / fdr (4.72)
t; t;

The integration should show natural effects such as gravity ’g and earth rota-
tion (omitted), as well as integrated errors A. By knowing “Av;_,; = 0 as a form
of aiding information, we can take the integrated sensor values as a summary of
all the errors A. In this case we use knowledge about both poses “x;, “x;, can be
used compare the IMU preintegrals with the expected pose positions. Note that,
in general aiding information may include any information pertaining to any the
pose states, depicted in eq. (4.7). The factor graph methodology will allow us to
reason over all available data in a centralized framework. In this basic example,
compensation gradients did not seem necessary, since nothing happened. The ex-
amples that follow build in complexity until the need for compensation gradients
is clear.

Perfect sensor not moving

Consider an ideal IMU in a resting position with XYZ axes pointing North-West-
Up (NWU) in the presence of gravity, and temporarily omitting earth rotation rate.
We expect to see rotation rate measurements *w = [0, 0, 0]” and accelerations °f =
0,0, g.]. Where the transpose is indicated by © and earth’s gravity is illustrated as
ge = 1 m/s? in these examples. Let the timer run for 1 second and find measured

preintegral values (according to eq. (4.5))

~ ~ T
AR, = [331@ Ab, AV, Apis;t Aba] (4.73)
=003 05 0 0 10 0 0 5 0 (4.74)
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The transpose of compensation gradients vector &;_,; = fttj ¢ dr as presented by
eq. (4.31), for this example is depicted below

value

[ IO.S

-- -- 0.0
5 10 15 0.5

j 1o

Solving the resulting least squares minimization problem, we find:
b= [b, v, =][03 03] (4.75)

Since the residual, eq. (4.21), balances to zero any change in pose z;’s bias esti-
mates will result in an in-balance and non-zero residual.

Basic gyroscope bias, not moving

Now consider the same example with a stationary NWU facing IMU , but with a
slight bias of 0.001 rad/s on the x-axis gyroscope. During preintegration of sen-
sor measurements, eq. (4.5), we find the orientation estimate lb’JR slowly rolling

about the x-axis. As a result, the term "' Rf projects the measured gravity from
accelerometer measurement °f = [0,0, 1]7 into the y-axis of the pose-i reference
frame. This projected acceleration measurement results in velocity along the y-
axis. Therefore the preintegral measurement after 1 second of integration is

biAiHj% [0.001 05 0 —0.0004995 1 0 —0.000166417 0.5 03} (4.76)

The associated compensation gradient vector, &, ;" is depicted in the figure below.
This vector has numerical differences from the perfect IMU example above.

value
| 1
0.0
0.5
5 10 15 10

j s
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Again, at some later time the preintegrals, compensation gradients and error
covariances are used — along with the constraint information that pose °x;, "x; are
coincident — to retroactively infer the sensor bias estimates. Using the non-linear
least squares optimization technique with covariance weighted residual, we find:

residual= 0.0 after 308 iterations (returned XTOL_REACHED)
Truth: [0.001,0.0,0.0,0.0,0.0,0.0]

Estim: [0.001,0.0,0.0,-1.0e-6,3.0e-6,1.0e-6]

error: [0.04,-2.64,-0.01,7.24,-30.6,-14.79] %

The above text shows computer output for true b and estimated b gyro and ac-
celerometer biases. The error output is used to show the percentage accuracy, com-
puted according to difference between true and estimated bias values, stabilized
by € = le — 5 to prevent division by zero:

b—b
b + €

percentage error = 100 x (4.77)

Note, however, division of relatively larger numerators by e still occurs in the ex-
amples that follow, resulting in seeming large errors. These fictitious errors should
be read in context of what true sensor performance would allow.

Basic accelerometer bias, not moving

We can repeat the experiment for a y-axis accelerometer bias error of 0.05 m/s?,
with accompanying preintegrals:

YAz, ;=07 005 1 0 0.025 05 0] (4.78)

Computing the minimization, we find:

residual= 0.24 after 274 iterations (returned SUCCESS)
Truth: [0.0,0.0,0.0,0.0,0.05,0.0]

Estim: [-8.9e-5,-0.0,-0.0,-0.0,0.049567,2.0e-6]

error: [894.15,0.05,0.0,0.24,0.87,-21.47] %

Firstly note the y-axis accelerometer bias is estimated within less than 1 % error.
The large error percentage for x-axis gyroscope is a consequence of noise models
and expected performance from the IMU. The estimated value of —8.9¢ — 5 rad/s
is small relative to the sensor characteristics used for this example. The seemingly

140



large percentage value 894.15 % is also subject to our choice of stabilizing number
¢, and more an artifact of how we compute the error.

An important point must be made here, that the error characteristics of the
IMU are a vital part of recovering sensor bias estimates. The sensor error covari-
ance from a perintegration period, >;_,;, represents our certainty in each of the
preintegral numbers. In this example, the seemingly large percentage error for the
x-axis gyroscope is a consequence of the sensor performance characteristics spec-
ified in eq. (4.68). The bias estimate of —8.9¢ — 5 rad/s is well below the specified
noise performance used to calculate ¥£,_,; in this example. Modifying the noise pa-
rameters will accordingly modify the scale of bias estimates. Separately, the wide
frequency noise performance depends on the quality of the inertial sensors.

In general, we enforce a notion of smoothness in inertial biases across consecu-
tive interpose inertial odometry constraints, owing to the Gauss-Markov assump-
tion in eqs. and (4.2). The error in x-gyroscope bias estimate we see here will
result in increased residual errors in neighboring interpose constraints and will be
constrained through a combination of multiple observations over time. This ar-
gument is similar to observability arguments made for Kalman filter style inertial
navigation solutions. Observability is discussed further in Section

Concurrent gyroscope and accelerometer bias errors, not moving

In the more general case, we expect some variation in all sensor biases. Here, we
illustrate a similar example with the IMU standing still facing NWU over a 1 second
period in an environment with gravity “g. = [0,0,1]” m/s?, but allow a random
bias on all sensor axis. Let

b = [0.0013,0.0015, —0.0005, —0.0004, —0.0015, 0.0003]" (4.79)
We find the preintegrals

biAfci_)j ~ [0.0013,0.0015, —0.0004, 05, 0.00035, —0.00215, (4.80)
1.0003, 5.0e — 5, —0.00097,0.50015, 03]” (4.81)

At this point we note that changes in bias terms Ab,,, Ab, are not yet used in these
examples, and seen as the two 03 elements in the preintegral measurement vector
given above.

Using the compensation gradients ;_,; to again construct the residual function,
eq. (£.21), we can retroactively search for sensor bias estimates as before:
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residual= 0.001 after 234 iterations (returned XTOL_REACHED)
Truth: [0.0013,0.0015,-0.0005,-0.0004,-0.0015,0.0003]

Estim: [0.00128,0.001459,-0.000504,-0.000419,-0.001531,0.000309]
error: [-0.14,0.06,-0.12,0.22,-1.1,-1.9] %

All the bias errors are recovered within 1 or 2 % of the true values. Imagine that
the errors baked into the preintegral measurement vector comes from a randomly
drifting and gravity coupled integral estimate. The compensation gradients cap-
ture the directions in which errors would propagate, and project them back into
the previous pose “x; reference frame %(-). The inference process can then use
this summary of directions, i.e. the compensation gradients, to predict the errors
integrated into the preintegral measurements.

Bias estimates while moving, the power of compensation gradients

All the above examples can easily be reproduced by simple averaging of the mea-
surements, since we know the IMU did not move during the integration period.
Now consider an example in which the integration interval the IMU is flipped onto
its side for half of the 1 second integration period, after which the IMU returned to
a NWU orientation before the integration period expires. Averaging alone would
not know how much time to spend in which direction and ultimately estimate
completely the wrong bias estimates. The preintegral measurement is again made
in the presence of random IMU biases and the IMU is turned 90° about its y-axis
in the presence of gravity “g. = [0,0,1]":

biAf{i_U- ~ [0.00063, 0.0009, 0.00059, 05, 0.0007, —0.00027, (4.82)
1.00095, 0.00027, —8.0e — 5,0.50048, 03, ] (4.83)

As before, the compensation gradients vector £i_>jT, depicted in the figure be-

low, is accumulated at the same time as the preintegral measurements and stored
for later retroactive inference.

value
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Inference with the measurement model and pose constraints, as used in previ-
ous examples, results in bias estimates as follows:

residual= 0.132 after 249 iterations (returned XTOL_REACHED)
Truth: [0.001,0.0001,0.0003,0.0003,0.0009,0.0007]

Estim: [0.00089,0.000443,-0.000297,5.9e-5,0.000895,7.2e-5]
error: [8.23,-408.57,203.01,79.19,0.21,87.82] %

The bias estimation error of —408.57 % is immediately obvious, and a result of ac-
cumulation of integration errors during the preintegration process. This indicates
one of the vital claims of this work, that improved integration of compensation
gradients and preintegrals is paramount. If we repeat the above experiment with
at a simulated sensor rate of 10000 H z, as opposed to 1000 H = rate used above, we
tind greatly improved accuracy:

residual= 0.001 after 256 iterations (returned XTOL_REACHED)
Truth: [0.0015,0.0002,0.0,0.002,0.0011,0.001]

Estim: [0.00152,0.000235,3.7e-5,0.001977,0.001052,0.000995]
error: [0.18,-0.57,15.3,0.05,0.01,0.04] %

A marked improvement is seen, indicating the importance of sensor side precom-
putation of the preintegral, compensation gradient and noise covariance compu-
tations. The improvement due higher rate accumulation is summarized in the sec-
tion hereafter. Again, the importance of continuous time preintegral models is not
obvious, which this analysis contributes not found in other literature works.

Bias estimates from two different pose locations

As a last basic example, we show how the compensation gradient terms operate
when the IMU is moved between different pose locations during the integration
interval. Consider an IMU, starting at rest, moved from the zero position in some
world coordinates at pose “x;, along some complicated and varying dynamic tra-
jectory, to a pose “x; at position [0.7,0, 0] and tilted 90°. The preintegral measure-
ment vector is

%A%, ;& [1.5723,—0.0011,0.00103, 0.0013,
— 0.0005, 1.0004, 0.7008, 0.0001, 0.500603, | (4.84)

As before, the compensation gradients vector &_)]-T, which was accumulated

at the same time as the preintegral measurements and depicted in the figure be-
low, is stored for later retroactive inference. Notice how these values differ greatly
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from the examples before. This implies the direction information throughout the
interpose period is captured in this &;_,; vector.

value

- - I1.0

To complete the example, inertial sensor

residual= 0.016 after 293 iterations (returned XTOL_REACHED)
Truth: [0.0015,-0.0011,0.001,0.002,0.0011,0.001]

Estim: [0.001608,-0.001575,9.3e-5,0.001988,0.000699,0.001115]
error: [-7.14,42.81,89.82,0.6,36.1,-11.4] Y%

These errors presented here represent the observability from a single trajectory
segment, as well as a lower integration speed. As discussed before, multiple trajec-
tory segments together have higher likelihood of full observability, coupled with
the regularized bias (Gauss-Markov) assumption. Integration speeds will also be
much higher, as discussed in the next section.

4.5 Update speed and feed-forward update

Fig. 4-4illustrates the importance of high speed accumulation of preintegrals and
compensation gradients. As the update frequency increases, the accuracy ofthe
bias estimate over this single interpose constraint increases. Furthermore, if feed-
forward compensation is applied, the Taylor expansion eq. becomes better
aligned and the accuracy can be further improved.

4.5.1 Real data Analysis

Experimental validation was done with a handheld IMU moved around in a VI-
CON motion capture room. We moved a Microstrain GX3-25 IMU with VICON
markers around for about one minute, in a trajectory snaking from one corner to
the opposing corner of the room. Motion capture provides a reference measure-
ment of the sensor package’s position in some world frame. The purpose of these
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Figure 4-4: Accuracy of inferred inertial sensor biases using compensation gradi-
ents computed at higher and higher speeds. Three lines show 1o level for ran-
domly generated gyroscope, rad/s, and accelerometer, m/s?, biases over a single
interpose period. The y-axis shows the mean of the maximum among gyroscope
and accelerometer biases divided by the actual bias, for 500 Monte Carlo runs. Bias
error is denoted true sensor bias minus inferred bias, §b = b — b. Note for this plot,
a stabilizing term ¢ = le — 5 has been added to avoid division by zero.

validation tests are not to demonstrate an independent robot localization solution,
but to investigate retroactive bias estimation.

Once confidence has been gained in our ability to estimate biases, we present
localization and mapping solutions using inertial odometry in combination with
aiding measurements such as a camera or kinematics. Results from a localization
solution is presented in section [8.2.2]

For analysis, we use ground truth position, but not orientation, measurements
(3 degrees of freedom) as priors to every 4 seconds (fourth pose) in the trajectory,
as shown in Fig. this setup is similar to EKF style INS/GPS systems, and used
here to validate and demonstrate the bias estimation characteristics of the pro-
posed inertial odometry factors. Incremental solutions to the constructed SLAM
problem were computed with a modified iSAM1.7 algorithm [116] using Powell’s
Dog Leg trust region method extension [197}[198].
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Figure 4-5: Sample factor graph used for validation of preintegral inertial sen-
sor compensation model. Green poses are node points separated by pure inertial
odometry constraints, red unary factors represent 3DOF position constraints from
a GPS or Vicon position.

0.004 ‘ ‘

— Vrrb(’o

3 0.002° —+g

S — ¢

3 | S - A

5

(%—0-002W
—0.004, 20 40 60

Time [sec]

Figure 4-6: Gyro bias perturbation test to validate the Taylor expansion manifold
assumption.

Retroactive bias estimation

The continuous time inertial odometry residual model relies on a local Taylor ex-
pansion, eq. (4.15). To experimentally explore that this assumption holds, we pro-
pose measuring a sufficient region of interest around the operating point of the
expansion. We note the Taylor expansion represents an approximation of the man-
ifold on which bias and gravity terms influence the inertial preintegral terms. Our
region of interest is defined by the expected inertial sensor bias performance and
availability of aiding information.

Using the Microstrain data in the VICON room data, as shown in Fig. we
quantify the repeatability of gyroscope bias estimation when it is perturbed by a
known amount e. The same SLAM solution is computed for three different cases
while we artificially inject or remove sensor biases. The first is the nominal case,
where all variables are estimated and bias estimates supposedly represent native
errors in the system. We use this as a control experiment.

The experiment is then repeated twice, each with an artificial gyroscope bias
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offset of ¢ = +0.0025 rad/s added to the © — azis rate measurement. The three
traces in Fig.[d-6|correspond to the resulting gyroscope bias estimates for each test.
Visually we can see the distinct pattern repeated with the expected £0.0025 rad/s
offset. More quantitatively, if we look at the ratio of the remaining error:

(bx — 13:6) —€
std. dev. | F 15%. (4.85)

The error associated with the 15% discrepancy is attributed to the stationary
bias assumption; first order bias only compensation, eq. (4.15); ignoring of accel-
eration biases in eq. ; and errors in the computation of matrix exponentials.
Also note the 15% average includes possible division by zero, when the control bias
estimate is zero. We therefore state the repeatability is likely much better than 85%
for gyro terms, and note the gyro bias coupling is the most complicated.

Paying more attention to the sensor calibration process while estimating all sen-
sor bias terms, we can gain insight into the overall operation of inertial odometry
residual inference. Fig.[#-7/shows the accelerometer and gyroscope bias estimates
for the same Microstrain IMU trajectory, as enforced by XYZ position measure-
ments from a VICON system once every 4 seconds. We instantiate a new pose ev-
ery 1 second. The x-axes show the pose number for three difference time instances
in the IMU trajectory of around 1 minute, namely at 27 5,42 s, 53 s. We specifically
note the dashed and solid lines are sensor bias estimates for the same trajectory
but at difference times. The curves show the bias estimates updating retroactively
as observability changes. We also note, especially with gyro biases, that the ear-
lier poses are better constrained with less variation as the trajectory evolves. The
z gyro bias (horizontal) sees a significant update (change in observability) after
42.5 s, visible as the jump in the solid to dashed blue curve.

We emphasize that no VICON orientation measurements where used to esti-
mate world frame rotations, yet we are able to recover a gyro bias estimates —which
were baked into the preintegrals — with strong repeatability. Cross coupling of
gravity into horizontal velocity states allow us to observe pitch and roll, while sev-
eral separate reference position measurements constrain heading with respect to
the world frame.

The retroactive bias estimates shown in Fig.[d-7]are interesting from an observ-
ability perspective. We note in Fig. the estimates still vary between the 27 s
and 53.5 s systems. In contrast to Fig. where the z gyro bias estimates are
pretty stable between the 42.5 s and 53.5 s systems. Note a larger change in the
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Figure 4-7: Left, inferred accelerometer bias estimates which are improved as more
information is collected in the factor graph. The solid lines represent the incremen-
tal SLAM solution at the 27 s point, the dashed line is the same trajectory but at
53.5 s into the trajectory. Incremental solutions were computed with a modified
version of iISAM1.7. Right, smoothed gyroscope bias estimates as more informa-
tion is collected along with growth in the trajectory history.

z gyro bias. The stability of the bias estimates come down to observability of the
different error characteristics. The x adn y gyro biases are well observed at 42.5 s.
Improved bias observability, more sensor data or future loop closures all allow for
better inertial bias estimation.

4.5.2 Gravity Estimate Validation

A last validation example involves the same Microstrain IMU trajectory discussed
above, but processed to analyze the accuracy and importance of the gravity term
“g. Using the residual eq. together with the covariance eq. (£.67), we use a
modified iSAM 1.7 implementation to perform non-linear least squares optimiza-
tion. We also construct the factor graph description of the problem as given in
Fig. where inertial odometry likelihoods are regularly aided with the 3 degree
of freedom (z, y, z) position priors.

We repeat the optimization multiple times, varying the gravity scale value a lit-
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Figure 4-8: Gravity estimation with inertial odometry in a VICON room. The z —
axis shows the different gravity values and the y — axis shows the least squares
objective values (black dots) obtained from real data described in a factor graph
for repeat solutions.

tle each time and recording the least squares objective value at the solution. Fig.
shows a quadratic cost bowl which is minimized at —9.815926 m/s?. After obtain-
ing accurate local gravity information sheets, we find that our approach correctly
estimates local gravity better than twice the best sensor bias stability performance.

Table 4.1: Gravity estimation accuracy using Microstrain GX-25 inertial odometry
and VICON position measurements for a ~ 1 minute trajectory segment in a factor

graph as shown in Fig.

Description Value [m/s?|
Microstrain GX-25 1o performance at 1g 0.02500
Inertial Odometry with VICON position (3DOF) 9.81593
MIT, Cambridge reference (1970/77) 9.80399
WHOI, Woods Hole reference (1989) 9.80312
Error (doubled sensor performance) ~ 0.01200

149



4.6 Critical Assessment

Modeling of inertial sensor errors in pose graph form allows us to incorporate
inertial measurements at a sufficiently low rate to be tractable, while capturing all
motion dynamics. By analogy, a well calibrated inertial sensor solution is a very
high quality motion model. Modeling of raw inertial sensor errors only allows for
improved localization if sufficient aiding information is available to constrain the
parameter estimates.

The value of the residual function at an optimal variable assignment should
represent the accumulated measurement noise and approximation errors. Inte-
grated gyro bias errors with gravity coupling are the dominant error source in
inertial systems. Incorrect compensation of sensor errors ultimately results in a
significant increase in the noise covariance Q. Increasing process noise signifi-
cantly increases the navigation system’s dependence on other aiding information,
thereby limiting many of the benefits an inertial navigation system can offer.

The error influences on the system vary from case to case, so it is important to
keep in mind that these sensor bias estimates may very well contain more infor-
mation than just sensor bias. For example, we did not yet model sensor errors such
as scale factor errors and will show up in various other dimensions of the SLAM
inference process.

Unlike filtering, factor graphs are more adept to asynchronous and opportunis-
tic measurement events in the wild. The factor graph language allows us to readily
add any aiding information that is available, alongside the inertial odometry con-
straints. The inertial solution observes gravity, producing a strong constraint on
pitch and roll estimates in the SLAM solution.

We feel modeling of gyroscope and accelerometer bias terms with a succinct
analytical derivation is well motivated. We argue such a derivation is not straight
forward and the existence of such a sensor model will contribute to the commu-
nity. Furthermore, we hope the explicit derivation will aid future investigations to
derive yet more faithful models, including sensor scale factor error, temperature
variation terms and more. We analytically derived continuous time, multidimen-
sional, linear state system, outlined in eq. (4.30), which is more general than other
proposed methods which have linearized and assumed zeroth order integration
much earlier in the analytic development.
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4.7 Conclusion

Our work promotes the use of pure, and dynamically calibrated, inertial measure-
ments for odometry constraints in a factor graph (incremental smoothing) context.
The inertial odometry residual function developed in this chapter can directly be
used to construct a measurement likelihood model for least squares or nonpara-
metric inference, which we discuss in Chapter

While inertial sensors have been incorporated into smoothing style solutions,
their error models have not yet fully exploited the smoothing computational struc-
ture. Most notably, gyroscope and accelerometer biases are generally not estimated
in a fully-fluid manner. Fully-fluid implies the sensor bias error parameter esti-
mates can be retroactively updated at any point in the trajectory history.

Incremental batch smoothing, along with the appropriate inertial sensor
model, make retroactive sensor calibration possible and computationally tractable.
The error model we present in this thesis is intended as a mechanism to naturally
incorporate integrated raw inertial measurements in a factor graph formulation.

The ability to perform retroactive sensor calibration enables two desirable as-
pects. First, the ability to extract strong unimodal navigational aiding information
from IMUs. Second, to integrate information from various sensors, as well as op-
portunistic loop closures containing powerful drift compensation information, in a
succinct manner. We show that inertial odometry computations can fit well within
the computational requirements for a real time system, with the caveat we only
need to compute the incremental updates to a factor graph and these updates are
reasonable in size.
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Chapter 5

Multi-modal Inference

Chapters3|and |4{expand our ability to model uncertainties captured in real-world
measurements with new nonparametric and parametric likelihood functions for
navigation-type factor graphs. This chapter avoids parametric optimization and
establishes a more general non-parametric inference algorithm called Mutli-modal
iSAM (incremental Smoothing and Mapping). Several canonical examples are pre-
sented in Chapter[pland demonstrate that the approach is applicable beyond simul-
taneous localization and mapping problems.

5.1 Introduction

Many situations in robotic navigation rely on measurements which, realistically,
require more powerful probabilistic representations than are currently offered by
existing unimodal, parametric back-end solvers. Chapter [3|discussed how a robot
front-end process assembled an arbitrary factor graph [129], as illustrated in Fig.
[l

This chapter develops an inference algorithm for non-Gaussian and multi-
modal factor graphs, by inferring the marginals of all variables in the posterior joint
probability function. The discussion follows in two parts, called the interclique
and intraclique operations of the entire algorithm. Cliques emerge as groupings
of variables and factors during symbolic refactoring of the factor graph into a Bayes
tree [115].

Our algorithm, Multi-modal iSAM, exploits structure in the problem to convert
a highly non-Gaussian, multi-Gaussian-hypothesis problem into a tractable and
useful inference solution. Our discussion is focussed on understanding marginal
density belief functions as a points in some feature space, and study how our Gibbs
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Figure 5-1: A nonparametric, multi-modal factor graph representing a joint prob-
ability density for the navigation of a humanoid robot (shown in Fig. which
is assembly by some front-end state estimation process, as discussed in detail in
Chapter

(Markov Chain Monte Carlo) method performs from the feature space perspective,
and predict that mean map embeddings and contractive mapping proofs will play
a vital role in development of non-Gaussian inference. Reversability of likelihood
functions are required to establish detailed and global balance which ensures the
inference algorithm will make progress. Canonical examples and real data tests
are used in later chapters to empirically validate that the sum-product style infer-
ence algorithm performs as expected.

The algorithm is built around the idea of cliques, and discussed in two parts,
namely interclique and intraclique operations. The first part of the chapter dis-
cusses interclique operations, also commonly referred to as belief propagation on
the acyclic Bayes tree structure. The Bayes tree was originally developed as part of
the parametric only iSAM?2 algorithm [115]. Section[5.3.T|combines the sum-product
inference methodology (using marginal densities) with the symbolic structure of
the Bayes tred!| to efficiently estimate the posterior beliefs of all variables.

!The Bayes tree is a derivative of the Bayes net similar Junction tree [37], but specialized with
specialized controls to improve problem specific performance.
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The latter half of the chapter discusses intraclique operations, which involves
solving the Chapman-Kolmogorov integral equation. While the Bayes tree sup-
plies an exact symbolic refactorization of variables and required passing structure
for interclique operations, the intraclique operations are dominated by a general
form expression known as the Chapman-Kolmogorov transit integral. A unique
Chapman-Kolmogorov expression must be solved at each clique as part of the in-
ference algorithm.

The intraclique operations decompose into continuous convolutions and prod-
ucts of infinite functions, which are discussed in Section Our approach is
inspired by the iterative sampling procedures of Tanner et al. [221] and Gelfand
et al. [71]], which retain asymptotic correctness of solution. Our approach makes
minimal approximation error on dominant modes, but discards almost all low like-
lihood modes to reduce computational complexity. Convergence to a solution is
based on reversability property of convolutions with conditionals and detailed bal-
ance of the nested-block-batch Gibbs sampling scheme.

The tractability of interclique and intraclique operations rests on multiple
computational principles listed in Table The combination of these princi-
ples circumvent or limit the impact of the possible exponential complexity (curse-
of-dimensionality) associated with non-Gaussian posterior distributions. We will
show that our approach is able to dynamically explore the entire range space of pos-
sible multi-modal solutions — defined in Section [5.2.2|

Table 5.1: Computational Principles

Principle *clique | Area Accuracy
1. | Symbolic Bayes tree [113] | inter | re-factoring | exact
2. | Recycling compute [115] | inter | re-factoring | exact
3. | Parallel compute both re-factoring | exact
4a. | Function approx. [208]] intra | prod.& conv. | asympt.
5. | Iterative approx. [221] intra prod. & conv. | asympt.
6. | Nested structure [125] intra prod.& conv. | exact
7. | Convolution approx. intra convolution | asympt.
8. | Modal consensus intra product asympt.
9. | Product approx. [218] intra | product asympt.
4b. | Hybrid functions intra | prod.& conv. | epsilon

The key insight among the nine computational principles is that one can save
computation by tracking only the dominant modes in the marginal beliefs, while
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only incurring only a (very minor) approximation loss. Modes are created by con-
volutions between likelihoods and culled by multiplications in a process of con-
sensus. Note that multi-modal inference across all marginal beliefs is far more
encompassing than a multiple hypothesis filtering approach where only a single
time snapshot state estimate of plausible hypotheses is maintained.

To the best of our knowledge, this is the first larger scale sum-product style infer-
ence algorithm—allowing retrieval of marginal beliefs from the full joint posterior
of any system variable—that can be applied to moderately large SLAM problems.
Algorithm 1| presents a general overview of Multi-modal iSAM.

5.2 Joint Probability Distribution

Broadly speaking, inference algorithms typically fall into one (or a combination)
of two main approaches: sum-product or max-product. To understand their relation-
ship, we must start with the framework of a joint probability distribution.

From the Bayesian perspective, estimating any set of variables © involves trying
to understand the joint probability distribution. We describe probability distribu-
tions through their densities as a function from space P over alphabet =. Recall
from Chapter 3, the joint belief [© |Z]| € P is modeled with a factor graph, as
shown in Fig. By Chain Rule, the product of independent measurements Z,
through likelihoods and variable prior potentials [ Z; | ©;] and [ ©, ], represents the
posterior joint probability density [129],

CIHEIIRACIRIICAE (5.1)

i J

Measurements Z;, are made from hidden states ©;, according to an assumed mea-
surement model. The inference task is to invert the system and estimate the belief
over state variables O, that likely produced the measurements seen.

To infer the belief of likely state over all variables, we focus on constructing the
best possible joint probability density estimate. Joint distributions, however, are
generally very complex and intricate — the details matter. While not true of every
case, the computational complexity of a joint distribution can be exponential in
the number of variables. That is, it is possible for each variable in the system to
be affected by the state of any other variable in the system. Furthermore, these
interactions are likely non-linear.

Assuming we can find the marginal posterlr beliefs for each variable, we can
extract a point variable assignment according to some assumption, such as mean,
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Algorithm 1: General overview for root clique marginal posterior belief—
using sum-product style inference—over an entire nonparametric joint proba-
bility factor graph as part of upward message passing. Perform similar down-
ward passing for recovering all marginals, and evaluate algorithm progress
as discussed in Section5.4.2]

1 Identify new portions of the joint probability factor graph from last iteration;

2 Extract the adjacency matrix of the modified portion of joint probability
factor graph, and pass to CCOLAMD algorithm to get a good variable
elimination order;

3 Starting from the root of the Bayes tree, unhook and store branches with
unaffected symbolic structure by the changes to the factor graph;

4 Re-eliminate the modified portion of factor graph to cliques in a Bayes net
(according to Algorithm [2), followed by reassembling the partial Bayes tree
(according to Algorithm [3), and reattach stored branches at the correct
location in the tree;

5 Note, belief of each variable is approximated by finite dimensional and
smooth kernel density estimates, as discussed in Section[5.4.1

6 foreach (concurrently) clique j in a branch, starting from the leaves of the tree do

7 if clique j is unmodified during Bayes tree update then

8 Recycle clique marginal beliefs M;y (O¢;)

9 Pass marginal belief over clique j separator variable to parent clique

| My (©g;), as illustrated in Fig.

10 else

11 Obtain the clique association matrix (CAM) for clique j, with an
example shown in Table

12 Conduct Algorithm @ Approximate clique marginal My (©¢;)

(Section as defined by the Chapman-Kolmogorov (CK) transit
equation given by eq. (5.14)) — using nested structure seen in CAM
and conceptually illustrated by Fig. The steps are dominated by
approximate convolutions (discussed in Section [5.4.4) and products
of infinite belief functions (discussed in Section [5.5);

13 Marginalize clique frontal variables according to CK eq. (5.15),
My (Os;) f” ity (Oc;) dbr;
14 Pass marginal 1y (Og,;) upward (belief propagation) according to

| Fig. and Fig.
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Max-product Sum-product
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multi-
hypothesis MEME
iISAM 1 & 2
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Kalman Filter
Ensemble Kalman Filter
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Figure 5-2: Conceptual illustration of the joint probability being estimated by sum-
product versus max-product style robotic navigation inference solutions. We are pro-
moting Mutli-modal iSAM as a fundamentally different algorithm that recovers a

approximate function that estimates the marginal posterior distribution of a vari-
able.

max, or fitting. The most probable point on the soution is assigned through max-
imization: 0, = argmax, p (0|Z). For our purpose, we recover the full marginal
beliefs rather than focusing on just the maximum-a-posterior estimate at this time.

The potential for exponential complexity will manifest at some point in any reli-
able inference procedure. One such manifestation is the curse-of-dimensionality, syn-
onymous with computational complexity of multi-hypothesis type approaches.
The potential for exponential complexity often leads to the use of assumptions
or heuristics in any particular inference system. Common assumptions are to sim-
plify or ignore interactions between variables, or reduce the resolution (granular-
ity) of predicted uncertainty models of system variables.

We solidify the logic surrounding a factor graph model, shown in Fig. as
follows: Each time a platform is navigated, we are able to observe a single sam-
ple from the large joint density, which is approximated by the factor graph model.
The joint probability is the distribution of countless repetitions of a similar trajec-
tory under varying conditions. The joint distribution should summarize the un-
certainty of infinitely many repeats of the same trajectory under all the remaining
uncertainty from the measurement process.

In this thesis, we restrict our attention to sparse problems. By ”sparse” we mean
that the factor graph model is a sparse graph — this corresponds to the existence of
a nontrivial factorization of the joint density which can be exploited for computa-
tion gains. Regardless of whether we use Gaussian or non-Gaussian measurement
likelihoods, or factors, exploiting the sparse structure in the problem is critical for
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efficient inference. Computing the full joint posterior over the entire factor graph,
especially a non-Gaussian or multi-modal posterior, is extremely complex. Our
only hope is to build the computations around structure within the problem.

We use the factor graph, as depicted in Fig. to model structure in joint
distribution, as shown in eq. (5.1), assuming all measurement likelihood functions
have sufficient statistical independence [129]. In the next section, we adapt the
existing Bayes (Junction) tree re-factorization to maximally exploit structure within
the factor graph, and cast our approach as a sum-product type algorithm.

Before diving into the Bayes tree mechanics, we indicate the max-product type
approach as a special case of sum-product, and show how the major computational
simplification in max-product is a achieved through a significant loss of informa-
tion. Thereafter, we discuss the Bayes tree as a general joint probability inference
tool, and its relation to asymptotic information retention. The sum-product ap-
proach, discussed in the Section[5.3.1, makes the asymptotic information retention
possible.

5.2.1 Current State-of-the-Art Assumptions

Mainstream solutions for high dimension joint probability problems follow from
the max-product approach,

H*Zarggnax[@]Z]:arggnaXH[Zi|®i]H[@j]. (5.2)

The nominal method, as developed by authors Legendre, Gauss [70] and Laplace
from common averaging, is to assume quadratic measurement errors as a para-
metric Gaussian likelihood model [188]. The normally distributed likelihoods
[Z10;] =N (u=24(6;),%) resultin a common weighted least squares (maximum
likelihood) optimization, Dellaert et al. [41]]:

0" = arg;nlﬂ —log (H €xXp (—§H 6 (0;, 2) H%))

= argmin Y _[|[©h (6;) & z]3. (5.3)
0 -

The optimization problems can be defined using on-manifold residual functions
d(+), here depicted as 6 = ©h(-) @ z. More generally designers utilize existing
linear algebra mechanics through careful linearization, § ~ z — 7k (-). Also note
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that constant scaling factors are insignificant under the argmax,.

This family of approaches recovers the mean parameter, or first statistical mo-
ment, of the assumed multivariate Gaussian posterior. Marginal covariances (sec-
ond moments) are computed separately. We note the posterior to be a multivariate
normal distribution, as all terms are conjugate normal likelihoods and priors.

Only considering a time window of variables, in the least squares sense, is
popularly known as sliding window smoothing. Information from much older
measurements are marginalized together and influence the current state estimate
through priors on the oldest variables in the sliding window.

The well known Kalman filtering expressions result from a further assumption:
by reducing the sliding window length to a single snapshot of state, storing older
information as a marginal Gaussian prior with state vector and covariance matrix
as first and second statistical moments. To emphasize, parametric smoothing and
tiltering approaches mentioned here are special cases of the max-product approach,
discussed above and in Section The Kalman filter does do recursive Bayesian
inference if all the Gaussian and uncorrelated assumptions are met.

5.2.2 Multi-modality: Displacing Assumptions

With modern computation, a normally distributed posterior may be overly restric-
tive for many real world events. We argue that SLAM type state estimation systems
must contend with asynchronous and hard to predict events. The unpredictabil-
ity of events makes it difficult to parse all sensor data perfectly, even with well-
developed software procedures. As an extreme example, consider that even hu-
mans, albeit at much higher sophistication, are rarely able to correctly parse events
when a magic trick is performed.

Given the unpredictability and potential obscurity of real world events, we
should accept it as unlikely that a perfect front-end sensor processing system will
always be available, regardless of the level of engineering effort spent. There will
always be another corner case.

A perfect front-end would imply that perfect data association is achieved every
time among vast amounts of sensory data. For example, a robot might think a
camera is re-observing a previously detected "Exit’ sign, but in reality this could
be either true or false. There is an inherent uncertainty associated with any such
identification.

Much development effort has been spent on developing conservative front-end
processes that only act when a high degree of certainty about true or false asso-
ciations is available. Conservative front-end processes suffer both in loss of infor-
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mation, such as significant loop closures, and lack transferability between applica-
tions. The really hard part comes when the uncertainty of multiple associations is
roughly of the same scale and the front-end process is essentially ‘splitting hairs’
on whether or not to accept or reject potential associations.

Our discussion thus far has focused on discrete true or false decisions, a con-
sequence of entrenched max-product style thinking. In the sections that follow, we
will show how to efficiently deal with fully continuous uncertainty with our Multi-
modal iSAM solution.

A multi-hypothesis approach is one avenue to mitigate the effect of binary data
association uncertainties, and has been widely studied in target tracking applica-
tions, Reid, Fortman, Clark, et al. [35,60,195]. A multi-hypothesis system reduces
data association uncertainties into decisions of yes or no, and at each fork in the
road a separate max-product type inference procedure is started for the alternative
decision. By tracking the separate likelihood uncertainty weights of each solution,
such as Huang et al. [97], one could use heuristics to momentarily select a domi-
nant solution among the exponentially many options.

We can algebraically demonstrate the exponential explosion in complexity as-
sociated with a full multi-hypothesis approach, by again looking at the joint proba-
bility distribution. Consider the product of likelihoods as shown in eq. where
two of the likelihood functions happen to be bi-modal, i.e. sum of (a, b) two equally
likely normal distributions N (1, 32),

[01Z] o [Z:]61] [Z2]0:] [] [Ze]0k] [][O0]

= (Mo +Nip) Nojo +N3y) H [Z,| O] H (O]

:(H>+<H>+<Hk>+(nk) (5.4)

These expressions show that the distributive law, which itself is an implicit con-
volution, produces four major terms in the joint probability density expression.
Similarly, each additional multi-modal density results in an exponential increase
in the number of summands in the joint probability expression.

We should immediately stress that many of the terms, while algebraically vis-
ible, have very low probability. Between all measurements, most modes collapse
since the probability of the front-end actually observing those sequence of events
is extremely unlikely.

Fig. attempts to graphically illustrate the exponential complexity associ-
ated with a full multi-hypothesis approach as the upper curve. In contrast, the
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Figure 5-3: Illustration of unimodal vs. multi-hypothesis solution, with expanding
space of possible multi-modal solutions.

unimodal parametric max-product solution (presented in Section is a special
case where each decision hypotheses is assumed correct and final, such that no
alternatives are considered in parallel solutions. The lower curve illustrates the
unimodal parametric case.

Fig.[5-3|also illustrates the enormous space between parametric unimodal and
full blown multi-hypothesis solutions, which we will call the range space of possi-
ble multi-modal solutions. While the figure may initially seem trivial, the author
believes there is a deeper observation; where we allow the front-end process to
defer a reasonable amount of association uncertainties to the back-end inference
procedure and let consensus happen there.

The question becomes, what do deferred association solutions look like? For
example, consider a point on the lower right just above the unimodal paramet-
ric curve: (i) What is the complexity of tracking a limited number of hypothe-
ses across the entire solution (FastSLAM [81]) versus tracking more modes in re-
gions of the solution? (ii) Can we do better than assumed ”outlier” approaches
where measurements are de-weighted as null-hypotheses, such as switch type vari-
ables [76/,206,219]? (iii) Can we select a piece of the problem where clear uncertain-
ties exist and then treat just that portion in some special manner, leaving the rest
as a conventional max-product parametric solution? (iv) Does a common algorithm
exist where we can choose the granularity of the solution based on computational
resources?

The questions boil down to a deeper question on the relation between approx-
imated beliefs (nonparametrics) and multi-modality. We use structure within the
problem to convert a highly complex multi-hypothesis, nonparametric system into
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a more tractable multi-modal solution. The Bayes tree significantly reduces com-
putation while still checking all uncertainty, as captured in the factor graph, and
extracting consensus among all data.

The Bayes tree allows us to solve the complete problem while working at a per
clique level and considering only local interactions, which is a direct consequence
of the nontrivial factorization of the factor graph. Certain inference related op-
erations are more efficient on the tree structure than a naive approach operating
randomly over all variables in the factor graph. For example, updating all vari-
ables with a Hidden Markov Model type approach, such as a Kalman or particle
filter, would terribly inefficient — as the square root smoothing and mapping algo-
rithm [41,42]] showed over and above the inefficiencies of the earlier EKF-SLAM
algorithm [11,448]].

We believe the correct avenue is to pursue an algorithm which can estimate
multi-modal, non-Gaussian marginal posterior density functions, while maintain-
ing asymptotic correctness properties. Granularity can then be varied based on
available computational resources. The direct benefit of a varialbe granularity (res-
olution) algorithm is the ability to relax requirements on the front-end process.
Given more powerful measurement models, as in Chapter |3} the user can be more
optimistic when introducing measurement information. We stress that changing
to non-Gaussian posteriors does not preclude use of the Bayes (Junction) tree [113]],
but instead actually casts the Bayes tree as a general framework for reducing com-
putational complexity, regardless of the form and shape of likelihood functions
used to assemble the factor graph.

Our purpose is therefore to reevaluate the set of operating assumptions from
what has previously been used, such as in Section to enable dedicated solu-
tions that explore the range space of possible multi-modal solutions.

The next section describes the exact interclique operations on the Bayes tree,
followed by a discussion on the asymptotically correct intraclique operations in
Section 5.4l

5.3 Interclique: The Bayes Tree and Sum-Product

This section investigates the first of nine computation principles: Exploiting the
symbolic structure in the joint probability density, which is critical for computa-
tional expedience. A general factor graph, as described by eq. (3.1I), describes the
inherent structure associated with the complicated joint probability.
Furthermore, we know the complexity in the factor graph is in part associated
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with cycles in the graph [127]. The cycles create implicit algebraic loops which
are hard to analytically compute. In the next section, we follow the Bayes tree
algorithm [115] which successfully handles cycles in a near optimal manner.

5.3.1 The Bayes (Junction) Tree

We can convert a cyclic factor graph (through a variable elimination algorithm) into
cliques in a Bayes network, and from there construct an acyclic tree representation
which is algebraically equivalent to the original factor graph system.

Variable elimination games have been developed to re-factor a graphical model,
like the factor graph, into an equivalent Bayes network, Pearl [187]. The variable
elimination process can be viewed as an algebraic re-factoring of the same sys-
tem. To illustrate, consider reorganizing factors in the joint probability into special
groupings. We will refer to these groupings of likelihood factors as cliques.

An example joint probability that is randomly re-factored might look as fol-
lows:

[O]Z] < (...)([Z7]©7,0:][Z,]0:2][O2]) ... (..). (5.5)

Note, the number of possible factor grouping permutations is large. This space of
permutations is related to the potential exponential complexity mentioned earlier
in Section[5.2] A ”bad” re-factoring will result in higher computational complexity.

By analogy, the original iSAM algorithm [116] connects poor re-factorings to a
previously known problem, fill-in (in the case of Gaussian distributions). Fill-in is
also a term familiar in the pivoting of rows and columns during of Cholesky fac-
torization. The correspondence of refactoring permutations and fill-in is no coinci-
dence, and formal methods (such as variable elimination games) have been devel-
oped to carefully find good re-factorizations, Koller et al. [127] and Kjearulff [125].

Algorithm 2: Extracting the Bayes network from factor graph

1 foreach 0; <— Variable Order do

2 | Remove from the factor graph all factors [ Z; | ©; | that are adjacent to 6;;
3 | Form the local joint density [OF;,Os; | Z; ] x [[,[Z:|©;] [1, [©O ];
4 Using the Chain Rule, separate the frontal and separator variables

[©r;,05,;1Z;] = [Or;|0s;,2;][Os; | Zj].

The elimination process algorithm, which produces the special groupings of
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likelihood factors, requires a variable ordering as input. A good variable elimina-
tion order is one that maximizes the number of minimum dimension cliques, and
is analogous in the parametric case to minimizing fill-in. The algorithm, modified
from [115], is presented in Algorithm [2l The resulting Bayes network is chordal,
meaning there are no large cycles in the re-factored model.

A
]
]
1
:
xloxzo®

Figure 5-4: Elimination procedure to convert a factor graph into an equivalent
Bayes network re-factoring of the underlying joint probability distribution. Green
and blue circles show variables and factors, respectively. Condensed example
from [115], using variable ordering [;,l,, z1, x5, x5, and working along the rows
from the factor graph top left to the equivalent Bayes network bottom right. The
elimination process is illustrated with red dashed lines.

Following from iSAM1 and iSAM2 [115, 116], we use the Constrained-
CHOLMOD heuristics [39] to obtain good variable orderings. Fig. |5-4|illustrates
how the elimination process converts a factor graph segment into an equivalent
Bayes network. The factor graph represents the product of six likelihood factors:

(OZ]) o[ X1 ][ 21| X1, X [ 22| Xy, Ly ] X
[ Z3| X2, X3] [ Z4| Xo, L1] [ Z5 | X3, Lo ]. (5.6)

We illustrate the elimination procedure, as shown in Fig. The vari-
able L; is eliminated first, which involve connected, and thus far unclaimed,
factors [Zy| Xy, L1],[Zs| X2, L1]. We combine the factors in a local product,
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Algorithm 3: Extracting Bayes tree from Bayes network, Kaess et al. [115].

1 foreach 0; < Reverse Variable Order do

2 if no parent (Og; = {}) then

3 L start a new root clique ©pr with ©;;

4 else

5 identify parent clique C), so that it contains the first eliminated
variable of Og ; as a frontal variable;

6 if Op, U Og,, of parent C, is equal to separator Og ; conditional then

7 L insert conditional into clique C,;

8 else

9 L start new clique C” as child of €, containing ¢;;

[ X1, Xo, Ly | Zs, Zy) o [Za| X1, L1][Zs| Xo, L1], and then use the Chain Rule to
obtain a conditional and marginal, [ Ly | X3, Xs, Z5, Z, | and [ X5, X | respectively.

Variables {X;, Xy} are the only ones connecting L, to the rest of the factor
graph, and is called the separator set for L;. We denote the separator as Og,.
We note that the new marginal [ X, X, ] is added to the factor graph, as indicated
in Fig.

The illustration does not directly show how all cycles in the graph have now
been concentrated into new groupings of likelihood functions, which are called
cliques. More than that, cliques are a maximally-connected proper subset [222].

We extract the cliques from the Bayes network by reading off the Bayes tree,
with the maximum cardinality search algorithm [222] and the reversed variable
ordering from before. The process of extracting cliques is summarized in Algo-
rithm 3| and the resulting tree from our example is show in Fig. For example
the left leaf clique j contains ©; = {X;, L1, X»}.

Each clique j represents a conditional belief over a subset of variables,
|Z;|©OF;,0s;]. Note, the associated measurement likelihoods are carried with
the respective cliques as Z;. Each clique is associated with a non-overlapping set
of likelihood factors. We can now use all cliques to obtain the original joint prob-
ability density, which is the product of these r cliques:

r

©1Z) < [ [ 1Z;10¢,]- (5.7)

J=1
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Figure 5-5: Bayes tree refactoring of example factor graph shown in Fig.

For convenience, we take all variables of clique j as the union of frontal F' and
separator S variables, ©¢; = Op; U Og;. In eq. we will swap the clique
measurement variables Z_ with a more meaningful definition of Y..

The Bayes tree re-factoring has a number of special properties [114]. Clique
variables are a strict subset of all variables ©.; C ©. Frontal and separator vari-
ables in each clique are always disjoint, Op; N Og; = (), and frontal variables
between any cliques are also disjoint, Op; N Op; = 0, i # j. Along any branch
with the root having no parents, cliques do not contain variables already in frontal
variables of their children, ©¢; N Opnia = 0. Cliques are only related through
their separator variables Og c1ilq € O¢,;.

The conditional independence represented by the Bayes tree factorization, fol-
lowing from the Bayes network chordal property, allows us to consider only local
interactions at each clique. Since each clique in the tree represents a partial poste-
rior over the local frontal and separator variables, we can exploit the local structure
in a sum-product methodology, similar to [37]. This local encoding has much lower
dimension than the full posterior distribution.

5.3.2 Sum-Product Perspective (Belief Propagation)

We now proceed to develop belief propagation along the symbolic structure of the
Bayes tree rather than the original factor graph. By using the conditional indepen-
dence structure of the acyclic Bayes tree, i.e. its chordal property, we only need use
local interactions at each clique to focus computational effort and find the system
solution.

The original iSAM2 algorithm assumes the max-product approach along with
Gaussian models, as outlined in Section We will instead follow the sum-
product approach and simultaneously allow non-Gaussian likelihoods.

We focus computation, first to clique level, by marginalizing out all variables
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but those in {i} from the joint probability distribution,

/[@|Z]d@\{i}=[@i|217

(5.8)

to produce the full marginal posterior distribution of ©; given all measurements
in the factor graph Z. By using the Bayes tree re-factored joint probability, we can

marginalize to any of the cliques

(0r,12] = [ [0]2] dO\(r)
(5.9)

oc/_ H[Zk’@c,k] dO\(F,j}
= k=1

By considering the root clique, j = 1, as somewhat special (no separator vari-
ables), we realize that marginalizing all but the root frontal variables © z; produces

a special cascading result:
[@F,IIZ]O(/_ [Z2|@C,2]/_ [Z3|@c’3]...d@F’3X

/ 1Z,0c,] ... dOr;dOps. (5.10)

1]

=7

The integral operations of variables are over their respective complete alpha-
bets 05 ; € =}, and can be separated based on the structure of frontal and separate
variables of cliques lower down in the tree. In our example © p» must be marginal-

ized last but other variables, such as © 3, can be marginalized sooner.

We recognize that the leaves of the tree have no children and we can readily

marginalize out their frontal variables first,
(5.11)

[Z;|©¢;] dOFy,

M

J

and calculate the expression by using the likelihood potentials and priors associ-
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Acyclic Acyclic
Bayes Tree Bayes Tree

Figure 5-6: Conceptual Bayes tree, showing multi-modal beliefs being passed up
from leave cliques towards the root clique. The shaded leaf cliques illustrate the
Chapman-Kolmogorov transit integral operation has been completed, after which
up-message passing occurs and the process repeats in the parent clique. Fig.
continues the discussion on intraclique operations.

ated with each clique j,

[©5;1Y;]lj=2 = /_ [©c,;1Y;] dOF;

=j

o / [Y;[Oc¢,;]| dOF;

=

Cj

Cj
:/_ I1 12104 T] (0] x 1O, (5.12)

k/

We collect measurement variables Z;, starting from the leaves L towards the root,
in a new variable Y; = {{J-’ Z;}. In the initial case of the leaf clique itself, we
have Y; = Z;, and at the root we have all measurements Y, = Z. Section[5.4.4
discusses the mechanics of working with the likelihood potential functions.

We view each clique as a conditional density, or a partial posterior, over the
separator variables. The parent clique relies on the separator variables O ; from
the child cliques. For convenience, the marginal belief [Og ; | Y, | of each clique is
dubbed a belief message. The beliefs contained in the outgoing message from the
clique is written as

mjy (Os;) = [0s;Y;]. (5.13)

Fig. illustrates multi-modal belief messages being propagated up from the
leaves towards the root of the Bayes tree.
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Again, we compute the partial posterior over the clique variables using the local
likelihoods, as well as the incoming belief messages from the child cliques, and
introduce a message-marginal shorthand My € P:

Cj C;
My (©c)=[0c; | Y] oc [ [Zr O] [ [00] [[mury Osa).  (5.14)
k K’ u

As before, we marginalize out the frontal variables which are not present in the
parent clique, leaving a belief function over clique separator variables Og ;

mjy (©s;) =[Os,; | Y] M]w (©c;) dOr. (5.15)

The density obtained from this marginalized product is passed up the tree as an-
other belief message to the next parent clique. The parent clique then repeats the
process, multiplying all incoming densities with local potentials and marginaliz-
ing out all frontal variables, as illustrated in Fig.

Figure 5-7: Illustration of belief propagation for clique j with marginal partial pos-
terior Mjy, during the upward pass with multiple children u;, £ = 1,2,3 and a
single parent clique. Belief propagation messages myy (Os), k = J, u1, ug, u3 are
illustrated.

The product and marginalization of potentials continue up the tree until the
root node is reached. Since the root has no parent clique, a marginal of the full sys-
tem posterior density has been obtained. These steps compute all the integral and
product steps listed in the marginal joint probability density shown in eq. (5.10).

We summarize the process described by egs. (5.14), in Fig. This pro-
cessis equivalent to the Chapman-Kolmogorov transit integral operation. Practical
computation of eq. requires convolutions and products of infinite functions
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between functions, as shown by eq. (5.14). We discuss these processes separately
in Section 5.4

Once all belief messages up the tree and marginalization has completed, we
recover the first complete marginal beliefs of the frontal variables in the root,
[©p1 | Z]. If we require all variable marginals, we can pass similar belief messages
back down the tree to all the child cliques and compute the complete marginal
posteriors for each variable.

We stress egs. and represent a sum-product inference computation.
The messages traveling on the tree encapsulate multi-modal and non-Gaussian be-
liefs for each of the variables available at that stage in the computation. We also
stress that the interclique messages are marginals and not inter-variable condition-
als from leaf Lto 7, [©,|Y;] #[0;|Y;, 01,

To illustrate the benefit of the Bayes tree, we contrast belief propagation on the
tree against loopy belief propagation directly on the factor graph [194], which must
repeatedly iterate belief propagation in a seemingly random order across the en-
tire network until a stationary solution is found. Loopy belief propagation may
not converge to a stationary solution since the order of variable propagations can
change, and as a result there is a lack of guarantee for overall algorithm perfor-
mance.

5.3.3 Incremental Belief Propagation

This section completes our discussion of exact interclique operations with the sec-
ond of nine computational principles, namely incremental recycling of computa-
tions. Asymptotic solution to the required Chapman-Kolmogorov transit integral
operation is discussed next, in Section

Modification of the factor graph is common in state estimation and simultane-
ous localization and mapping problems. As more information is accrued by the
front-end process, major computational savings are available through basic sym-
bolic operations on the tree.

Consider a modification to our example factor graph shown in Fig. |5-8 where
the number of system variables is increased by O 5, as well as more measurement
information Zx;. The updated Bayes tree with one recycled clique is also shown

in Fig.@
(O Zs] =[O, On¢| Zy, Zae ] (5.16)

We emphasize the set of continually changing variables with the time subscript .
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Figure 5-8: Left, modified factor graph (E.), and Bayes network from Fig. show-
ing new variable X, with two new factors to X3 and L,. Right, updated Bayes tree
previously shown in Fig.[5-5/- notice how the shaded clique can be recycled using
new variable ordering [y, l5, 21, x2, x3, z4. Note, this illustration is not an optimal
elimination order.

Accordingly, the joint probability density is changed, but this results in limited
changes to the tree. If we are careful about how the variable ordering is updated
we need not recompute the entire tree. By paying close attention to the message
passing operations on the trees, we see that full branches below an unchanged
clique can be recycled.

The variable-ordering heuristics used to construct the Bayes tree can be mod-
ified to specifically minimize both clique dimension as well as modifications to
the tree when the underlying factor graph is modified. By controling the variable
elimination order such that much of the previous variable ordering remains un-
changed, the required changes to the tree are reduced. The regions for symbolic
modification are either at the root or leaves of the tree, where the upward messages
flow from leaves to root along a particular branch.

Variable Ordering: Optimizations for Exploration

By keeping modifications localized near the root of the Bayes tree, we can unhook
large branches, re-factor the modified factor graph section, and reattach previous
branches onto the new tree’s near root segment. Reattaching previous branches at
the correct location in the tree keeps intact all their internal computations. This al-
lows us to keep track of large amounts of sensor measurements without sacrificing
inference performance or repeating computations, as illustrated in Fig.

Using CCOLAMD, the most likely changes are forced to the top of the tree by
placing the most recent variables at the end of the variable ordering. Recall the
tree is constructed with the reverse variable ordering. Maximizing the number of
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Figure 5-9: Illustration of incremental belief propagation by recycling computa-
tions associated with older and stable branches in the Bayes tree. The two shaded
cliques and associated upward belief messages are recycled given limited changes
to the factor graph.

unchanged variables earlier in the ordering results in larger branches lower down
on the tree which results in the best turn-on-turn recycling of computations.

The down side of constantly updating only the back of the variable ordering
is that the global variable ordering quality decreases. We control this parasitic
effect by balancing the update size and global variable ordering quality. Very large
graph applications might benefit from periodic global variable reordering, thereby
updating the entire tree and requiring fresh intraclique computations.

Changes to the near root region of the tree minimize computations for the ini-
tial upward message passing operations, but new information influences all vari-
able beliefs during the downward message passing phase. Computations can be
limited by stopping downward propagation when changes to beliefs become in-
significant. Kaess et al. [115] refer to this procedure as the wildfire algorithm.

Variable Ordering: Fixed-lead/lag Operation (Marginalization)

Fine grain control of variable ordering can also be used to semi-permanently
marginalize older branches into a fixed upward belief message at some new de-
fined leaf boundary clique. This is equivalent to marginalization in a filtering
context where previous states are marginalized into the previous posterior model
estimate.

By forcing older factor graph information downwards in the tree, a boundary
can be found where no changes happen below that point in the branch. By lim-
iting the upward propagation of information from that boundary, all information
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lower down is effectively marginalized to a fixed state. Sliding window operation
is achieved by considering only upward belief messages from the boundary cliques
as the limits of computation. Practically this involves the user marking variables
for marginalization and then forcing those variables to the back of the elimina-
tion order. Stale portions of the tree below the boundary cliques can be deleted or
archived.

5.3.4 Parallel Computations

The third computational principle is parallel computation, and is a benefit from the
statistical independence structure of the Bayes tree. As with eq. (5.10), we identi-
tied that multiple branches hang from the root clique of the tree. Each of these
branches are independent and can be computed separately.

Consider the upward message passing phase, as shown in Fig. We start by
computing each of the leaf intraclique operations in parallel, as given by eq. (5.12),
producing belief messages to be passed up to each of the parents. The process
repeat then repeats in the parent clique as messages propagate up the tree.

There are fewer parent cliques towards the root, and finally a sigle intraclique
operation at the root where the first complete posterior beliefs are computed. The
downward pass increases the number of messages and child cliques allowinf for
greater parallel computation. There is further structure and room for parallel com-
putation within a clique operation, but the discussion is deferred to upcoming sec-
tions.

5.4 Intraclique: Chapman-Kolmogorov Integral

In the previous sections, we discussed the how information flows on the Bayes
tree during interclique operations, as illustrated by Fig. To complete the sum-
product methodology, in this section, we discuss the intraclique operations, also
shown by Fig. A convenient algorithm summary is presented in Section 5.6|

To complete the interclique message passing process, we require the marginal
joint density for each clique, as defined by eq. (5.14). Fig. p-7| with eq. (5.14) il-
lustrate how incoming messages, m;y € P, and local potentials are multiplied
together. Fig. previews the product between incoming messages, which con-
tains three modes each but only two significant modes in the product result. Note,
the discussion on products between approximated functions is discussed in detail
in Section 5.5 hereafter, while this section discusses where and how the product of
infinite functions is used in the inference procedure.
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Figure 5-10: Illustration of the Chapman-Kolmogorov transit integral operation on
a clique, shown during the upward pass on the Bayes Tree.

We further discuss the computational principles associated with intraclique op-
erations (listed in Table 5.1). All the computational principles (approximations)
associated with the intraclique operations maintain the exactness property, main-
taining focus on fewer dominant modes as computational resources are restricted.
Computational load is scheduled by computing the dominant (most likely) modes
and stochastically pruning lower likelihood modes.

5.4.1 Functional Interpretation

From eq. (5.1), we seek a solution to the joint probability density on a function
space P over the domain =; of each clique

[6¢,;1Y;]€P, = R x X (5.17)

with variables over some combined continuous and discrete space O ; € =;. Con-
tinuous and discrete variable dimensions are n and d respectively. A probability
density function is taken as:

p:Z =R, and /p(e)dezL VpeP (5.18)
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where true beliefs p are assumed to already exist in a bounded Banach space, and
may have infinite degrees of freedom.

A measure of similarity d (p1, p2) between belief functions p;, p» € P is useful
for analysis,

d:PxP =R, (5.19)

A common measure of dissimilarity, d (-, -), is the KL-divergence D/, (-||-)

p(s
Dict (1 (6) 2 (©)) = [ p(5) 1052} s, (5:20)
which is not symmetric and does not obey the triangle inequality, but does satisfy
the Pythagoras theorem discussed later at eq. (5.27). Ideally we would like to work
with a true metric distance which does satisfy the identity element, symmetry and
triangle inequality properties. We can also consider the L,-metric:

d@bm>=/"@mm—pxmfda (5.21)

The Wasserstein probabilistic metric [75] is considered a robust option should the
analysis require. We may also consider the distances between mean embedded
features spaces,

d(p,q) = |[Ey [¢(©)] — Eq [0 (O)] ], (5.22)

which is discussed more in Section 5.4.1]

The exact clique marginal belief [O¢ ; | Y; | € P has potential exponential com-
plexity in the dimension of the variables directly influenced by Y; C Z. A practical
algorithm to estimate this belief must therefore approximate the belief

(@) (4)

(00 151 =My ~ |00, 1Y | =Ny (5.23)

at the i'" iteration of some inference process. Note the shorthand for clique
marginal M,y from eq. (5.14). We use the hat in M € P to indicate that an ap-
proximation of the belief function is made. We discuss the function approximation
space P € P in the next section.
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Best approximation
to true belief

Figure 5-11: Conceptual description of manipulating an approximated belief func-
tion [@ ] Z] as a point from cyan to black with and operator 7'. The best approxi-
mation to the true belief is shown as the red dot inside an error tolerance e—ball.

Consider operator 7'

A (i)

T: PP, Ny ©

=TM;y (5.24)

the mechanism by which the current clique marginal belief M/ j|y(i) is updated to
(i+1)

a more accurate belief My . Fig.[5-11illustrates how an approximate function
is modified to a point which is “closer” to the actual marginal belief, through the
action of some operator 7. We are careful about the term “closer”, since our choice
of belief function significantly influences how close we can get to the true marginal
belief.

We want the accuracy of the approximation process to improve based on some
tunable computational load parameter O, as indicated by the measure dissimilar-

ity d ('7 ’)/

d (Mj‘y, QMﬂy) <d <Mj|y, Q/Mj|y> Ql < Q. (525)

Therefore, we seek a transformation operator 7' to modify the belief approxi-

mation towards the best approximation of the true belief conditioned on the infor-
mation Y at clique j, i.e. a contraction mapping

d (Myy, My ™) < d (Myy, My ) (5.26)
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After obtaining a sufficiently accurate estimate of d <Mj|y,1\/[j‘y> < €,

eq. marginalizes out frontal variables ©p ; as the new message to be passed
further up the tree. We note that frontal variables ©p; C O¢; only contain in-
formation from Y;, which denote all measurements from the current and lower
cliques of this branch in the tree.

The statistics and artificial intelligence communities continue to conduct re-
search into posterior estimation, and we mention a few works which have influ-
enced ours [29,71,166,228]. We choose to follow an approximate belief propagation
approach with the intention of tracking the dominant modes across the entire so-
lution, but without permanently discarding dormant modes which may become
active as more information is gathered.

Propagation of summarizing statistics beyond Gaussian-only parametrics, such
as expectation propagation [152], are popular avenuesbut statistical moments
alone are not well suited for multi-modal densities. Approximating belief func-
tions directly (such as Kernel density estimators, or KDEs) is another more direct
approach that we will follow.

The next sections discuss how we choose to approximate the marginal beliefs
and how, for algorithm analysis, to project functions onto a point in some high
dimensional space. We also present how to benchmark the inference using the
Bellman optimality equation. Section continues with a substitution based
sampling algorithm to perform multi-modal inference.

Function Approximation

The fourth computational principle, Table 5.1} involves approximating belief func-
tions to finite accuracy. An e approximation error tolerance from the true marginal
density allows the algorithm stochastic freedom along with associated computa-
tional benefits. The computational benefits express in two forms: limited domi-
nant modes and approximation of nonparametric belief functions.

A true belief function from space P may not be continuous and have infinite
degrees of freedom. We limit ourselves to approximate belief functions as finite
dimensional and continuous subset of all possible belief functions P € P. The

A (@)

approximated probability density functions in ©; as |:@j | ] € P are over the

alphabet of real numbers M (=), where we use M to indicate all discrete variables
are marginalized into the continuous belief functions. We additionally employ a

shorthand notation p (6,) = [ 0, ® |
atinfinity and are at least L, bounded, which limits the belief that can be expressed

: ] . All approximate belief functions vanish
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Figure 5-12: Illustration of best function approximation p € P to the true probabil-
ity density from the considered family of approximating functions p € P.

(such as Cauchy distributions).
We use the Pythagoras property of the dissimilarity distance d (-, -),

d(p,q) >d((p,p) +d(p,q), Vp,g € P
st. p=argmin d(p,p), (5.27)
peP

to identify the best function approximation of the belief p € P. Fig. illustrates
the family of approximating functions and best approximation p as the red dot.

In the multi-modal case, we observe that each hypothesis can still be repre-
sented as a separate Gaussian term. Furthermore, for non-Gaussian beliefs we can
use kernel density estimation [208] to approximate the belief function. We choose
to use kernel density estimates for function approximation using a sum of Gaus-
sians

) N
[éj(Z) ’ :| = Z U)jjk(z)./\/’ (9]‘; on = Xng(z)) Ang(Z)) = kde ({.Tj}k(z)}évzl) (528)
k=1

at the (i)‘th iteration of the inference procedure; z; ;) is the k‘th kernel sample
position, along with even weighting factor and common bandwidth parameter.

The N limited number of particles, along with evenly weighted particles
w; " = w;, and common bandwidth parameter A;;® = A, define our func-
tion approximation family of choice. We do however maintain separate bandwidth
parameters on each of the individual scalar dimensions A; = [);1, ...]. Fig.
shows a target belief function and two approximations, in this case a mixture of
half Beta and Uniform distributions.
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Figure 5-13: Top, illustration of approximate probability density function using
kernel density estimation, showing a target density and two approximate func-
tions. Two basis functions ¢..s/s:, are also shown. Bottom shows arbitrary wavelet
obtained by modulating and translating the true and approximated belief func-
tions with the basis function ¢..

We use leave-one-out likelihood cross validation (LOOCYV), Silverman [208],
to compute an appropriate bandwidth A for the KDE. We have found that in the
multi-modal case many of the heuristic methods drastically over-smooth the band-
width estimates. To limit the length of discussion here, we refer the reader to Sil-
verman [208]] for more details on kernel density estimation and bandwidth selec-
tion.

The function approximation introduces a ¢ loss of information relative to the
true underlying belief, d (p, p) o e. The approximation error diminishes asymptot-
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ically as the NV number of samples are increased. If required, more accuracy can
be obtained by releasing the common bandwidth, or even weighting constraints.

The sum of Gaussian kernels results in an exponential increase of terms as
multi-modal likelihood potentials are multiplied together — similar to the discus-
sion surrounding eq. (5.4). However, we can limit the number of kernels in the
resulting product and the inference process can instead focus on estimating domi-
nant modes in each marginal. The infinite function product discussion is deferred
to Section

Hilbert Embeddings with Explicit Basis (Wavelets)

In this next two sections we will take an unusual step, in order to better understand
our upcoming inference algorithm. In the previous section we describe how an
infinite probabilistic belief function p € P is instead approximated by a smooth
tinite dimensional approximation function p € P. Generally speaking we have
little insight into how the inference procedure influences the approximated belief
function, other than variations in the density distribution.

Instead we will look at feature space projections of the approximated belief
functions and evaluate how the inference procedure is progressing in that space.
We use the Hilbert space of inner products on infinite functions to project functions
onto some basis and then study the projection points. We note that if approximated
functions have N degrees of freedom, then projecting the function onto /N inde-
pendent basis functions provides a complete picture of the function in the original
space.

We would like a robust method to study the influence of an inference operator
T on approximate functions belief p € P, which have many degrees of freedom.
We can project, with an inner product, over a function’s entire domain with a set
of orthogonal basis functions ¢. onto a point in some high dimensional (Hilbert)
feature space g € H=:

pe =E,[¢(©)] =(p(©), ¢;(©))
_ / p(6) 3;(0)db = / 5@ dp () (5.29)

where ¢ represents complex conjugation. A more direct representation of using
a probability measure dp (-) could also be used. A Monte Carlo approximation of
the embedding from samples 6, ~ p(©), k = 1,2,.., N weighted by «; is used in
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practical application,

N
pe & jlo = Z%‘ ¢ (0jk) - (5.30)

k=1

This has the effect of reducing the dimensionality of some true density func-
tion from space P down to a limited family of approximations P C P with finite
degrees of freedom. We can then represent an approximated function p € P ac-
cording to a set of independent basis functions ¢ up to the same degree of freedoms
as the original approximation. Many operations during the inference process are
easier to understand in this feature space, than in the original approximated func-
tion space.

The Fourier series is built from a convenient dictionary of infinitely many or-
thogonal basis functions ¢ (6;) = €™/ . We can project our belief functions using
a composition of modulation E,_»,; and centering translation D, operators, with
by = E; [©], and in inner product as

tojr = Eu Dy p(0;) = (p(0; — by), e, (5.31)

Where individual quadrature frequency coefficients yi; ; € C are complex. We
can view the product p x ¢ as producing a wavelet function, since our belief func-
tions vanish at infinity, as shown Fig.

The expansion coefficients represent a point in frequency feature space, where
low frequencies are less influenced, and high frequencies alias or ”oscillate” for
subtle changes in the approximated function.

The embedding allows us to consider belief functions as a point moving around
in some space, as shown in Fig. We draw the analogy to conventional para-
metric optimization, where variable assignment effectively moves a point around
on an objective function surface. Note, we could also reparameterize the high di-
mensional point to a continuous curve along three dimensions, with sine and co-
sine quadrature on two and frequency along the third dimension.

For our analysis, we can select frequencies f € F' as a multiple x according to
the standard deviation of the initial belief

f= ! : (5.32)

K \/]E:ﬁ [(©; = 1)"]

while limiting high frequencies to a user-defined alias tolerance. This interval of so
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called mid-frequencies F' can be used to select a usable set of N’ orthogonal basis
vectors, {¢; .1,

We briefly illustrate point projections of frequency coefficients of our approxi-
mating family of functions P in Fig. Two orthogonal basis vectors ¢, r; (/) =
cos 2 f (6 — b) and ¢ 14 (0) = cos 2w f (6 — b) are also shown in Fig. for a par-
ticular frequency and mean value such that x = 4.

b=1.67, freq.=0.178
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Figure 5-14: Two dimensional projection of fifty approximated belief functions
onto orthogonal Fourier series coefficient such that k = 4. Basis vectors are shown

in Fig.[5-13]as ¢..

Example projections of many approximated functions are shown in Fig.
with one special “best” approximation. The best point was calculated from a very
high accuracy approximation of the true belief function, i.e. very large number of
kernels N.

An illustration of our algorithm, considering functions as high dimensional
points, is given in Chapter|[6in Section[6.2] We wish to not limit ourselves with any
particular choice of basis functions and rather defer the choice to a fit-for-purpose
decision as the situation requires. In the next section, we discuss an extension with
specific family of implicit basis functions ¢ (feature maps) known as reproducing
kernel Hilbert spaces.
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Reproducing Kernel Hilbert Spaces and Implicit Basis

The Reproducing Kernel Hilbert Space (RKHS) method is a different approach to
function approximation with mechanics for convolution and product approxima-
tions, which are discussed in Sections|5.4.4/and 5.5.4|respectively. In this section we
connect function approximation and Hilbert space embedding to using a special
class of reproducing kernels, and emphasize the difference to smoothing kernels
used for kernel density estimation above.

A reproducing kernel Hilbert space (RKHS) describes functions f : = — Rin
inner product space F over domain =’ as formed by a kernel k (6;,6;), [69,77,214].
The inner product projection in eq. (5.29) is combined with an implicit feature map
to form

£(0.0) = (6(8), 0(6)) . (5.33)

Many kernels & (-, -) satisfy the reproducing property, which we shall call Mer-
cer kernels, owing to Mercer’s theorem [77] which states that continuous, sym-
metric and non-negative definite kernels have an infinite orthonormal basis (eigen
functions e;, and eigen values \y):

k=1

A kernel satisfying the reproducing property allows

(FC) k(@ ))r=f(2), (5.35)

and implies evaluation of a function f at point z can be replaced with an inner
product. As a side note, the frequency series decomposition discussed above does
have a Mercer kernel and can therefore be interpreted as a Hilbert embedding [77]],
and is an example where a basis is selected and an accompanying kernel is found.

The alternative is to choose a convenient kernel, and leave the basis functions
as implicit definitions. The squared difference kernel is a common choice

k(6,0') =exp (—ol0 —0'|*) (5.36)

While computing the complete and infinite inner product with some kernel can
be very difficult, we can instead use a Monte Carlo approximation of the embed-
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ding a mean map (representer theorem), similar to eq. (5.30)
fio (x) =Y aik (0;,x) . (5.37)
=1

We defer further discussion of RKHS at this point, and will return when com-
puting convolutions and products of infinite function approximations in Sections
b.4.4/and 5.5.4, With embedding logic in hand, we turn our attention to inference
procedure optimality.

Consider the frequency projection of some marginal belief where low fre-
quency coefficients are mostly unchanged, while high frequency coefficients show
repeated cycles as the belief moves towards the target distribution. The bulk work
therefore seems to be contained in the mid-frequency region where coefficients are
moved one point to another. This would suggest we can better focus computation
for efficient inference, and return to this argument with multi-scale computations

in Section[5.5.11

5.4.2 Bellman Optimality (Momentum)

We proceed in using functional projections to better understand optimality in our
inference procedure. Later, we will show how Bellman optimality arguments can
be used to show inefficiencies in our inference procedure. We expect to use the
Bellman optimality as a starting point for developing more efficient algorithms in
future developments of the general inference procedure.

Fig. illustrates how an inference procedure could evolve the marginal be-
lief over some variable in multiple steps. An algorithm could either take a big step
towards the desired belief, if the required direction was known, or explore the
space with several shorter steps. The figure also illustrates a convergence bound-
ary which may result in chaotic behavior in the inference procedure.

The Bellman equation can be used to benchmark the performance of an infer-
ence procedure, which in turn can be used to better design the inference algo-
rithms. The Bellman equation is defined as

Vv (ﬁ(o)) — {CLI%})?;O ; 57' F (]5(7')7 a(l))

P =T (p,a) (5.38)



where cost-to-go F (p, a(?)) is attributed by the current belief state p) and oper-
ator T as influenced by action a'”) from plausible policies I' (p().

Readers familiar with trajectory planning and path planning should recognize
the correspondence in the future segment of the factor graph in Fig. |5-1| with the
Bellman equation analysis of the inference process here. Multiple policies can be
interpreted as multi-modal beliefs in predicted future states.

When ground truth is available, we can use a cost-to-go function which incor-
porates the discrepancy of the current and target beliefs, F (p\), p, a)). In general
when ground truth is not available, we might consider using direction informa-
tion from the function point motion. The gradients of mid-frequency coefficients
might be useful, and can be considered some form of momentum preservation.

A more direct approach could be to “regularize” the direction of belief function
modification, again using the Pythagoras property p = argmin, . d(p,q), from
the family of functions P, = {p, : opo + (1 — 0) p1, 0 € [0, 1]}. We can then define

-~
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Figure 5-15: Illustration of how a functional point projection can iteratively be
moved from an initial state towards the desired belief state as the red dot, and
can interpret the process as a cost-to-go requirement for Bellman optimality.
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the cost-to-go function as

o A A
F=——1d(p»9,7)|-1|d(py,p?
Q(at)l (p ) )| | (pg,p )|
s.t. 17; = argmin d (pg,ﬁ(i)) : (5.39)

Pe€Po

By choosing py = p'”) as the initial state and p; = T (p, a(")) as the next state,
the inference procedure 7' is rewarded for taking big steps in the same direction.
The computational quality parameter Q (a(*)) is also considered, and can be simply
linked to the expected computation time to reward faster algorithms.

While our analysis is limited to discrete steps in the functional feature space,
it is worth noting that some continuous modification of a belief function would
result in a continuous change of the embedding point. It is therefore possible to
collapse the Bellman cost-to-go steps into a continuous domain. This insight is im-
portant as it allows us to consider smooth gradients of modifications to functional
embeddings in the feature space.

Note, the Bellman equations give us a relative benchmarking technique, but
no convergence guarantees. We can use the benchmark to evaluate algorithm effi-
ciency on any or all marginals in the Bayes tree structure. We return to the use of
the Bellman equation in Section [5.4.5|

5.4.3 Functional Fixed Points and Detailed Balance

In the previous sections, we identified a continuous probability density function
approximation scheme, using a restricted form of kernel density estimation. We
defined the inference procedure under a function operator 7', which would modify
approximated beliefs over variables in each clique of the Bayes tree.

In this section we make the connection between stable functional fixed points
of the embedded feature space and detailed balance equations from Markov chain
Monte Carlo (MCMC) sampling, discussed in the next section. Our intraclique
inference operation 75 implements nested, block, batch Gibbs sampling as a spe-
cial case of the Metropolis-Hastings algorithm which satisfies the detailed balance
equations [242],

CRICACAS R CAICAEA] (5.40)
The conditional proposal beliefs [©)|©;, -] and [©,|©], -] are in fact the user
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Figure 5-16: llustration of stochastic functional fixed point for some marginal be-
lief over a variable in ©; of true clique posterior Mjy.

supplied likelihood factors from the factor graph, and [éz} is the approximated

marginal belief over variable ©;. By ensuring reversability of these proposal be-
liefs (a requirement which is pass on to the user), implies that global balance can
be found by marginalizing out ¢; on either side.

Convergence guarantees are subject to the probabilistic model provided by the
user via the factor graph, and guarantees are therefore problem specific. We re-
strict our attention to consistent problem descriptions onlu — consistent and incon-
sistent models are discussed in more detail in Section 3.6l

We are working our way through the definition of operator 7 for solving the
intraclique Chapman-Kolmogorov transit integral operation, and now need to de-
fine how our technique corresponds to a high dimensional (infinite function) fixed
point.

Stochastic Fixed Points in Feature Space

We believe there is a connection between stochastic fixed points in an embed-
ding space, that corresponds with stationary distributions in Markov Chain Monte
Carlo methods. With the methods developed here, we will in Chapter [f| empiri-
cally show how embedded mean mappings converge to a region of the embedding
space, an argument that is trivially satisfied by the feature map embedding of a
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MCMC chain’s stationary distribution itself.

By operator fixed point we mean a value to which some mapping converges.
For example, consider the contractive mapping g which counts the number of writ-
ten letters of the incoming word, and converges to four:

g (ten) — g (three) — g (five) — g (four) — g (four) ... (5.41)

We take the expanded fixed point concept as an infinite function of the inference
operator Tp : P — P, following from eq. (5.24). If we could prove operator Tg to be
a contraction mapping, see eq. (5.25)), we will know that the process will converge
to a fixed point in the high dimensional function space. We already know that the
true joint posterior marginals have some embedding in the feature space, but we
need to understand when the inference operator 7" will contract to a fixed point
which is close to or on the true belief embedding point.

Again, the problem is we do not know ahead of time what the user likelihood
functions might be, but we can restrict the user to reversible likelihood models that
are only dependent on their current state. Then we can use results for MCMC as a
necessary condition for T to be a contractive mapping. We can further define that
our approach only uses Gibbs sampling, which is well known to satisfy detailed
balance with reversible likelihoods.

We define a stochastically stable functional fixed point M. j|y* (0;) as

~ *

My (8;) = wiry = lm By, 0 [#(6))
1
~AT Y B0 [0(0)], 1<l <1 (5.42)

with bounded approximation error ¢ around the expected value of the marginal
belief embedding, i.e.

d (Mj,y, (TgiMﬂY*» Ze,  VieN,. (5.43)

Strictly speaking, infinitely many approximations are concentrated around the
fixed point and not explicitly less than some fixed bound €. We intend ¢ as a sigma
multiple of covariance, or high quantile, limit for infinitely many approximations
around the fixed point. As before, the quality parameter Q represents increased
granularity /resolution for higher computational availability.

We can visualize the function in the region around the current state using an
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orthogonal basis projection i1 = (p, ¢ ). Fig. illustrates a stochastic fixed point

Mj|y* € P, the best approximation Mﬂy € P and operator Tg's region of attrac-
tion as a simplified ball p. An example of function approximation accuracy e is

practically shown in Fig.
Fig. also shows the separation A

A=d (Mjw, MjIY*> : (5.44)

and is defined as the distance between the clique’s best posterior belief approxi-
mate M;y = [0,]Y;] and functional fixed point of M;y*. We must show that
there is no separation between the best approximation and the fixed point, i.e.
A — 0. We turn our attention to understanding the contractive operator Ty, as
given in eq. (5.24), and the relationship between the fixed point and best function
approximation.

The lingering question is: how do we know that stochastic fixed point My " ac-
tually exists? The question is further complicated by not knowing what the factor
graph and likelihood models are. We do know that some joint probability density
must exist (maybe not in closed form) since there is physical action to the variables
of interest. We can accept that the joint probability density can be embedded as a
point in the feature space. Our discussion will now connect with existing Markov
Chain Monte Carlo theory to establish at least one operator T that will contract
and stabilize around some point in the feature space. The details as to whether
that point is actually close to the true joint posterior embedding is highly problem
specific.

Our approach will restricting the user into staying as close as possible as pos-
sible to the requirements for a Markov random field, where convolution with the
user likelihood functions can be performed on current state varialbes and indepen-
dently sampled noise parameters. By ensuring the likelihood functions are only
dependent on their current state and that the likelihood models are reversible, can
we satisfy the Kolmogorov criterion and thereby detailed balance. Keeping to this
Markov property will let us establish detailed balance. With detailed balance, as
discussed in the next section, we are assured that a stationary distribution to each
clique level operation exists. As a marginal belief estimated is updated with the
progress of the inference algorithm, we expect to see the embedding point estimate
to migrate and settle around a stable region in the feature space. Indeed, we will
empirically show for various different likelihood models that the mean embedding
point does converge to a stable region.

190



Intraclique Gibbs Sampling (Stationary Distributions)

By example, consider the Wikipedia: Getting to Philosophy [240] operator Ty over the
space of non-orphaned Wikipedia pages, which proceeds to follow one of the first
hyperlinks in the article body. Inevitably this process leads to either the Philosophy,
Knowledge, Science or Experience pages, and stays in an orbit nearby these articles.
To quote the article directly (for first link only visiting),

”As of February 2016, 97% of all articles in Wikipedia eventually lead to
the article Philosophy”.

The Wikipedia operator Ty establishes a Markov chain, since the probability of vis-
iting any next page, [ X*! | -] only depends on the current page X" = 2() and
local probability of which link will be visited:

[ XD = (D 2O 0 0] = [ X 20)] (5.45)
By stationary distribution we mean a posterior probability distribution over states
visited in state space, given some Markov chain operation defined by operator 7.

Our approach for general sum-product inference operator 7" similarly employs a
Markov chain inspired by Gelfand [71] and Tanner [221]. The Gelfand and Tanner
approaches iteratively approximate marginalized beliefs over each variable. In our
case, variables of of a clique O ;.

Successive approximation procedure follows a Gibbs sequence, popularized
by [72], and relies on access to all conditional distributions of each variable in clique
J- The conditionals act as proposal distributions for transition between states over
space Zj.

Consider a clique with frontal variables 6,6, and separator variable 5. We
iterate over all variables, and at each iteration, we wish to draw N samples from
the approximated conditional distributions:

{ej,l,laej,l,% .. le} (@+1) éjl | é%aé%:Y]
{0;21,0;22,...,0;2 N} (@+1) Oj2| @ () @yg, ]
{00,052, 035w} ~ [6516077, 605, v, ] (5.46)

By iterating the chain expressed in eqgs. (5.46) and (5.54), we obtain a se-
ries of samples from the marginals of the approximated clique partial posterior
[©¢,; | Y;]. Afteriterating through all clique variables, the process is repeated and
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the marginal belief estimates for each of the variables in the clique are updated.
One iteration of the batch sampling produces new samples which are then used
to approximate a new belief for each variable. The marginal estimates are them-
selves improved by enforcing all local likelihood factors and incoming message
information (per clique) as the Markov chain progresses.

In order to implement the imputation (successive approximation) block, batch
Gibbs sampling approach, we need to construct each conditional distribution
based on user supplied likelihood functions within each clique of the Bayes tree.
Each conditional distribution, as illustrated in eq. (5.46), is formed by taking the
required product between local likelihoods, priors and incoming belief message
functions involving that variable. Examples of how to construct the different con-
ditional distributions required is presented in the next section.

We will soon discuss how to practically generate the conditional probability
density functions from the user-defined likelihoods, but first discuss how to relate
the Markov chain to the contractive mapping requirement. We can show the Gibbs
style Markov chain has a stationary distribution by satisfying the stronger condi-
tion of detailed balance among the conditional proposal distributions. Recall that
the user is defining the likelihood factors at run-time.

The detailed balance arguments ensure that the successive approximation
Gibbs sampling operator T results in an operation that contracts the mean em-
bedding point toward a stable point in the embedding space. Reversibility of the
conditional transition probabilities ensures detailed balance (Kolmogorov’s crite-
rion, Kelly Chapter 1 [119]), which ensures global balance and the existence of a
stationary distribution.

At this point we do not know if there is just one unique fixed point in some set
of possible solutions, however, we expect multiple fixed points to exist given prac-
tical compute limitations. Previous work in operator fixed point analysis and ran-
dom operator theory indicates methods who approximate complicated posteriors
should exist. Most notably we cite Bharucha-Reid [20] and Itoh [104] as examples
of intensive study in belief approximation approaches.

An empirical convergence test involves monitoring the incremental updates
to belief of each variable in the clique. The Markov chain is assumed to have
approached the stationary distribution when the dissimilarity between consecu-
tive approximated marginal beliefs drops below the operator quality Q bound:
¢ (MJ\Y(Z+1)> My
relation to here, and refer the interested reader to the analysis done by Tanner and
Wong [221].

Regarding Bellman optimality in eq. (5.38), the speed of convergence for Tg

< €g. We do not present a derivation of the Q : ¢ bound
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depends on the combination of the cost of one iteration of T, and the number of

iterations required to satisty d < My, MjIY(i)) s

Optimizations for Nested Intraclique Structure

Previous work on nested junction tree computation [125] is applicable and is
the fifth computational principle we address. Each clique partial posterior
Mjiy (©¢,j) = [©c, | Y, ] retains a certain amount of internal structure. The struc-
ture in the joint belief Mjjy (©¢ ;) € P results from local priors and incoming mes-
sage densities which are independent.

The independence of some potential functions allows us to improve the intr-
aclique operations and exploit the independence structure. The structure within
a clique can be represented with a graphical model, but we will instead use an
association matrix to optimize the Gibbs sampling sequence.

An example clique association matrix for clique j with partial posterior M¢ ; (-)
is shown in Table including three binary measurement likelihood potentials
¢r (+), two priors 1, (-), and an incoming density messages 17,y (O3) = [@3 1Y, } )
Clique j defines an upward partial posterior belief message m;y (©5) over the
only separator variable 05 € =;. Pairwise or singleton (unary) potential functions
¢ and ¢ are described in Section[5.4.4]

To sample from any conditional in a clique, as shown in eq. (5.46), we first in-
spect the relevant column of the clique association matrix, which relates incoming
messages and local potentials to variables of the clique. Each column guides run-
time assembly of conditionals. Table 5.2|is carefully chosen to illustrate specific
symbolic structure which can be used for expedited clique marginal belief estima-
tion.

For example, message belief 13y (Og) is a separator with no interaction with
other clique variables, and can be passed directly as part of the next upward belief
message. Variable O, is computed as the direct product between two incoming
messages

[64 | in| X m1|Y (@4) m4‘Y (@4) . (547)
Variables O, k = 1,2, 3,5 must be estimated through the iterative Gibbs pro-
cedure as illustrated by eq. (5.46)), since they are interconnected via binary mea-

surement likelihood functions ¢y, (), & = 1,2, 3. Conditional transition beliefs for
variables Oy, k = 1,2, 5 are assimilated from the product of two beliefs each, while
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Table 5.2: Example clique association matrix over frontal variables 6, k € [1..4]
and separator k € [5,6]; with local binary potentials ¢, %, k& € [1..3], and unary
potentials ¥, k € [1,2] and incoming messages beliefs 1,y (-) , u € [1..4]. Arrows
on O, indicate correspondence with the process outlined in Fig. We note
potentials can have n-ary dependency.

l
Oj1 Oj2 O3 Oj4 |65 O
Pil X X
¥j,2 X X
¥j,2 X X
Vja X
V2 X
ml‘y X
mz‘y X
mg‘y X
m4‘y X
T
©3 depends on three potentials,
A ) A A @ A 1A
05" 16,0,05, 7| < [0316," 25| [05165" 25| [05],  (5.49)
where Z = = indicates actual measurements made, along with user supplied

likelihood potentials ¢ and . The prime superscript implies possible variation
(i) = (i) or (i') = (i + 1) in Gibbs sampling order.

In order to compute the conditional belief for Gibbs sampling (Chapman-
Kolmogorov transit integral), we need to perform two major steps: convolutions
with individual likelihood conditionals, and taking the product between infinite
belief function approximations. The sections that follow cover each of these as-
pects.

5.4.4 Conditionals: Approximating Convolutions

In the previous sections we identified how conditional probability densities are
used to construct a operator Tq for estimating the marginal clique partial posterior
density distribution function, My . In this section we continue the intraclique op-
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eration description with the penultimate part: how to incorporate user likelihood
factors as conditional probability functions for computing convolutions between
dimensions. Section[5.5|will cover the last part of the inference process, taking the
product between infinite functions.

To solve the Chapman-Kolmogorov transit integral using Gibbs eq. (5.46), con-
sider sampling a clique conditional 6, 5 5 ~ |:(':)j72 | - } , k € [1..N], we inspect the O,

column of the clique association matrix, see arrows in Table and see associa-
tions to beliefs on ©; and O, via two pairwise likelihoods ¢; and ¢, respectively:

A A (@) oA (1) A A (1)
@j,2|@j,1 ,@j,:a 7Yj7Zj]O<|:@j,2‘@j,l 7Yj7212] X

S e @
[@j,Z‘@j,S 7Yj7223] (5.49)

The expression implies we need to bring existing beliefs |:@j7]g(i/) | } , k€
[1,3] into the space #;, € =;,. Let’s focus on approximating the first term,
[@j@ | éj,l(i/), Y;, 2o ] , which involves an implicit convolution with the underly-
ing factor graph likelihood potential [ Z15 | ©;1,0;2].

For generic convolution with a user-defined measurement likelihood model
(parametric, or nonparametric, and non-linear), we take a coordinate relative prior
7 (-) which will be available during the later belief products process

[Z12]©;1,02] o< [02]0j1, Z12] 7(6;1)
= @jon (051, Z12) ™(0j1), (5.50)

where ¢; 51 indicates the conditional potential function from the factor graph, be-
longing to clique j. We use a Monte Carlo approximation to the convolution

/— (021 ©s1, Z12] [éj’l(l) | ] doy ~ [éj72|éj,1(l)7']
= kde <{9j,2,k(i/) kaflk/> , (5.51)
where samples 9j,2,k(i’) ~ [é)m | é)j,l(i/)’Yj,Zj,u] are drawn from (computed
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Figure 5-17: Monte Carlo approximation of a convolution between sample approx-
imated belief and conditional likelihood ¢, by transmitting points in spaces =; and
=3 to =, while including i.i.d. sampled points from the measurement noise model.
The illustration corresponds to arrows indicating column ©; 5 in Table

with),

Hj,Q,k(i/) = Pja (@j,l = ej,l,k(i/)a Zig = 7712,k>

/

= ¥j21 (Qj,l,k(i ), 77j,12,k> ) (5.52)

and 7,2, is sampled i.i.d. from the noise distribution associated with that measure-
ment likelihood, as discussed in Chapter |3l We note that up sampling to N x £’
points in the convolution result is possible, hence the £’ index. This increases the
granularity of the convolution approximation process, and is illustrated in Fig.

v/

We find N x & values of 6;,") by enforcing the user-defined residual function
d (+), which describes the measurement likelihood model. Note also that the use
of limited samples constitutes a further approximation information loss. Larger
values of NV x £’ will improve estimation accuracy, but also increase computational
load.

The most desirable formulation is through a root finding framework which al-
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Figure 5-18: Example Monte Carlo convolution approximation between multi-
modal likelihoods: Top, prior belief 7 (©;) with three modes in red and user-
defined bimodal likelihood [©,|©;] in green. Bottom, approximate convolu-
tion result showing six modes, using eq. and a simple linear dependence
) (92,77 ((91)) = (92 —n,n-~ N(,U =—1"x5+ (91,0' = 05) , Y~ Cat ([05,05])

lows user-defined non-linear and implicit residuals:

0;24") = ;1 <9j,1,k(i/)»77j,12,k>

= solve |:6j,12 <0j’17k(i/)7 0j,277]j,12,k’) = 0} : (5.53)

0,2

We generalize the convolution using user likelihood potential expression with in-
dex placeholder

07 (@ J\k@,zj) = solve [5j (95@,%) - 0] . (5.54)

ekC@j

Fig. shows an example where two beliefs with three and two modes each
are convolved to produce a six-mode belief result. Convolutions with likelihood
functions are a source of new modes and is part of the mechanism to promote all
measurement modes in the proposal distributions.

With low-dimensional residual functions, we opt for a minimization approach
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where user residual is composed with an optimization objective O (9)

o7 (@ J\k“),zj) = argmin [(9 <5J (9&,%))} . (5.55)

0,CO s

Low-dimensional factors mean that not all dimensions can be transited through
that specific factor conditional. Our solution is twofold: Firstly, we try combine
factors into fewer factors of higher dimension, which is algebraically equivalent
but better focuses computations (less MCMC thinning is required).

In the event unconstrained dimensions cannot be avoided, we randomize
which variables are optimized by eq. or (5.55), and introduce uniform noise
when applicable. This approach increases the correlation between successive
Gibbs iterations, which is overcome with simply increasing the iterations of op-
erator 1.

Unary factors (priors) are considered a special case and assumed to intro-
duce information though direct sampling of the underlying distribution function

Vi (O k5 Zjk)-

Conditionals with Kernel Hilbert Embeddings

The convolution operation is closely related to a series of inner products in some
Hilbert space. This section follows from the reproducing kernel Hilbert spaces
(RKHS) discussion in Section as an alternative method to approximate ar-
bitrary functional convolution operations which are associated with conditional
probability densities, such as eq. (5.48).

In the previous section we discussed how to approximate a convolution op-
eration with run-time defined user likelihood functions, and remains an impor-
tant method for transmitting belief to unknown parts of the range space. Recent
work by Song et al. [214] on conditional kernel embeddings claim a method of ap-
proximating the convolution at much higher computational speed than competing
methods.

It is important to understand the covariance embedding between any two vari-
ables. We briefly reduce notational burden to just variables ©;, ©,. Fukumizu [69]
defines a covariance operator Ce, o, : F — F for functional embeddings in kernel
Hilbert space F. The covariance operator allows us to compute the expected value
of a product between functions directly as a linear matrix operation:

Ee, e, [f(0i)g(0;)] = ([, Coi0,9)F (5.56)
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The covariance operator is computed by tensor product ®, of the feature map ¢ (-)
Coro, = Ex,x, [0(0;) ® 9(0;)]. As an extension of the direct mean embedding
from eq. (5.30), using evenly weighted samples {(6;1,0;1), .., (0;.m,0;.m)}, we can
approximate the covariance embedding with:

m

N 1
w0, ~Core; = > b (6ix) © ¢ (0 (5.57)

k=1

Ce

Based on the Schur complement [69], these expressions allow us to compute
the expectation of a conditional density:

Ee,j0; [f (©:)] = ( f, Ee,p0, [¢ (©:)] ) 7
f, Cev0,Ca,0,0(0;) )7
fs Co,0,0(0;) )r
[ He;lo; )Fs (5.58)

-1

o~ o~~~

where we have used the shorthand Ce, 9, = Ce,0,(Ce,e,)

The significance of eq. (5.58) is an implicit convolution operation, [O7 | -]
[ [©i]©;][©7] db;. Focusing on the conditional mean mapping of an entire func-
tional embedding

18,10, = Ee, [Co,l0,0 (0;)] = Co,j0,Ee, [¢ (©))]
~ Coyjo, il (5.59)

where we construct the “input” embedding using existing samples from the distri-
bution 7. By expanding the tensor products and using a proper kernel & (¢;,0;) =
(¢ (6;), ¢ (0;)),such as the square exponential & (, ) = exp (—c||6; — 6,|*), a matrix
expression is found [214]

o0, (¥) = Coye, i, = ®i" (Gij + AI) " Gja™, (5.60)

where the Gram matrix elements are based on training samples
{(911,@1) iy Bin, 05} is Gy = k(&lkﬁ]k) The second Gram matrix
Gl = k (leﬁ] ") uses samples from “input” embedding [15,, and a weight-
ing vector from “input” samples a™ = [y, .., ax] (see eq. (5.37)). The transposed
leading vector is @7 (z) = [k(6;1,2) ... k(0im,x)]. Finally, from experi-
ence [69,214] a regularization (hyper-) parameter ) is used to prevent overfitting
and produce a smooth estimate. We direct the reader to Song et al. [214] for more
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Figure 5-19: Reproducing kernel conditional density embedding demonstration.
Reproducing kernel conditional density embedding demonstration of [Y | X |,
given sample points from a bi-modal joint density which transmit belief from a a
normally distributed prior belief | X | -|. Transmitted beliefs for two priors is
shown, and conditional embedding support is visible from (—30, 60).

many more details on reproducing kernel Hilbert space embeddings.

For the purpose of our further discussion, an example conditional embedded
convolution is shown in Fig. A normally distributed prior belief [ X7 |-] is
used with a conditional belief [Y | X | which introduces a new bi-modal uncer-
tainty. The conditional belief is trained with samples from a user-defined func-
tion which either does or does not introduce a bias of 30, y = = + v x 30, v ~
Cat ([0.5,0.5]). Notice, however, that the region of support is visible from around
[—30, 60], outside which the convolution will be inaccurate. The region of support
is dictated by the training samples used for the conditional embedding.

In robotic navigation, the user defines the structure of the joint distribution at
run-time, resulting in a completely unknown posterior distribution, see eq. (5.I).
We do not have access to the posterior joint distribution prior to inference, which
is critically assumed and used in [214]. The conditional embedding approach in-
volves approximating conditional beliefs based on available samples over the like-
lihood model.

The successive approximation inference procedure described above migrates
to a small region of the state space, where the conditional kernel embedding can
be approximated for useful convolution approximation, as illustrated in Fig.
We can use a direct numerical method in the vicinity of interest around the current
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state, to produce training samples for calculating the conditional embeddings.

54.5 Common-Mode ¢/c/A-Tolerance in Bayes Tree Depth

Thus far, we have focused on approximating the stationary distribution of each
clique M,y with some error tolerances ¢; and ¢, as illustrated in Fig. Under-
standing how the error tolerances accumulate across the Bayes tree during belief
propagation is important, and we briefly consider the propagation of error across
the Bayes tree in this section.

Consider the error tolerance surrounding the target distribution of some clique
marginal and propagate the ¢/c/A-tolerance up the tree, as though a message.
Each parent clique introduces additional €/ /A slop in the next marginal estimate
based on incoming message beliefs.

The increase in €/c/A error is counter-acted by parallel branches in the tree.
A parent clique with multiple children will have a stationary distribution as the
aggregate mean between incoming messages. Differential mode errors between
the children will cancel out to some extent, while common-mode errors among all
cliques will become more entrenched.

The downward belief message pass would work to remove differential mode er-
rors from all marginal beliefs. This point has further importance, in that multiple
up and down passes on the tree would be required to remove differential-mode
errors from all marginal belief estimates. Common-mode errors among cliques
would go unchanged beyond the first upward-downward message passing oper-
ations.

Using the Bellman equation (5.38), we see that global benefit is had when con-
straining the leaves of the tree to higher accuracy, while reducing to lower com-
putational accuracy at the root. This would reduce computation time with few
branches near the root, but maximize accuracy in wide parallel computation near
the leaves. The Bellman equations allow us to therefore effectively aid in decision
making during algorithm design.

5.4.6 Importance of Consensus

The seventh computational principle is in consensus, where decay of unlikely
modes occur during the product operation between proposal beliefs, see eq. (5.14).
The convolution operation, illustrated graphically in Fig. introduces new
modes to the proposal distributions, while the product operation between differ-
ent proposal distributions produce only limited consensus among the beliefs, as
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illustrated in Fig. We call this consensus in belief. Computations are better
spent on consensus modes, while lower likelihood modes are only recovered at
higher computational cost Q.

The traces in Fig. represent proposal beliefs from sensor measurements
over some variable © in the same space =, in accordance with the illustration in
Fig. Now we take the product between proposal beliefs in ©. Their true
product posterior, shown in black, represents the joint probability over the given
likelihood functions. Notice that six modes are possible in the product between
the green and red traces, however, the product only has two meaningful modes.
The other modes are unlikely and can be reasonable ignored, which reduces the
computational requirements.

The sky blue trace in Fig. is an approximated version of the true poste-
rior probability density shown in black. In Section [5.5|we discuss the next major
computational principle (see Table [5.1), which involves reducing computational
complexity associated with taking products between infinite functions.

The idea is that measurement likelihoods have some consensus about real
world events which translates into concentrated belief on only a few modes in
each of the marginals. This approach is a cornerstone of our method and allows us
explore the range space of possible multi-modal solutions with limited practical com-
putation resources. The number of modes recovered by the inference procedure
should only be limited by computational resources.

Consensus repeats during belief propagation over the Bayes tree from clique to
clique. Iterations of inference operator 7o may see different modes as influenced
by the available information. The concept extends to multiple up and down mes-
sage passing iterations. Modes initially ignored during the upward message pass-
ing may well be re-introduced from other cliques during the downward message
passing phase.

5.5 Methods for approximate density products

The last major required component in computing the Chapman-Kolmogorov inte-
gral, egs. & (5.15), is the ability to take the product between approximate be-
lief functions in the same function space. In our case we will be taking the product
between run-time discovered proposal beliefs for batch Gibbs sampling, as shown
in eq. (5.46). In this section we briefly review existing function space product ap-
proximation methods, and note several communities that have been developing
various techniques in this area.
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Figure 5-20: Consensus in approximated posteriors when multiplying several in-
finite belief functions together. True posterior is shown in black, while an approx-
imated multi-modal posterior is shown in sky blue. Only two of the six possible
modes are likely to occur in the product, which we call consensus. Approximate
posterior product computed with product method from [218].

203



To reiterate, we need to compute the product between multiple multi-modal
(nonparametric) proposal beliefs following a convolution operation, where the low
likelihood modes are dropped according to computational resource restrictions.
The clique frontal variables are marginalized out of the partial posterior result,
and new messages are formed to propagate on the Bayes tree, see eq. (5.15). In
this section we discuss various product approximation strategies to complete the
Chapman-Kolmogorov intraclique operation.

We will briefly reference the major known techniques, namely: (i.) Importance
weighting with resampling (a form or rejection sampling); (ii.) Nonparametric
Belief Propagation (NBP), [217]; (iii.) Particle Belief Propagation (PBP) [100]); (iv.)
Progressive Bayes: a homotopy type ODE product [204]; and (v.) Kernel Belief
Propagation (KBP) [214,216]).

Importance weighting with resampling, as used in particle filtering, is the sim-
plest method of approximating the product between two infinite functions. Con-
sider evaluating the product at a set of points {x;}, such that f (z4) % g (xy) =
ai X g (zr), where o, = f (x1). We can similarly approximate the product of many
terms through importance weighting [45], however, as dimensionality and terms
increase we need increasing numbers of sample points to accurately represent the
product space. We can use resampling to reduce the number of samples, but would
have to reject many small weight samples for an accurate representation. As a re-
sult importance sampling over-simplifies the product operation, resulting in ran-
dom guessing of important regions in the product space. We will pursue a differ-
ent avenue instead.

5.5.1 Nonparametric Belief Propagation

Sudderth and Ihler [101}217,218] developed an efficient method of directly com-
puting the product between multiple kernel density estimates (KDEs) through
multi-scale Gibbs sampling. Their method employs an internal KD-tree represen-
tation for kernel density approximation and multi-scale sampling. The product
between approximate densities is computed using Gibbs sampling, but iterations
are staged across increasingly finer and finer scales to promote sampling from all
modes.

NBP product operation assumes incoming densities [ 0;|- } are kernel density

estimates, Section [5.4.1, and each has the same number N of Gaussian mixture
components, eq. (5.28). The goal is to draw a set number of samples from the
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product of d mixtures,

[éj\-]un [é”']i‘ (5.61)

For comparison, if sampling is done from the exact product with N¢ Gaussian mix-
ture components, we would need to compute the parameters for each component
L = [li,..,14) similar to an earlier discussion at eq. (5.4). We compute the product
between Gaussian mixture components with

szzl wliN (0j; Hi; s Az_l)
N(Qj;MlL,AZI)

wi, =

d d
) Ap = Z Ay, Appr = Z N, (5.62)
i=1 i=1

where ji7,, A;' are the mean and variances of one component L of the product.

A Gibbs sampling strategy over the indices of incoming mixture components
is used to select individual components in the product to sample from. Working
backwards, to draw a single sample from an individual mixture component in the
exact product of N¥ mixtures, we understand the product mixture originates from
the specific selection of d components from each incoming mixture of N compo-
nents. We use Gibbs sampling to stochastically select the combination of d incom-
ing mixture components, and then compute them according to eq. (5.62). This
individual component of the product mixture is used to sample a new indepen-
dent variable 6; sample from the posterior product. This process asymptotically
draws samples from the product of incoming densities.

The label Gibbs sampling process starts (so that we can pick the next label /;)
by randomly selecting d — 1 labels of the incoming mixture densities {/; };;:

0N [11|z§0>,z§°>,...,z§°)} = Cat ([p1, p2, -+, pxi=0)

ISEN [zzugU,ng),...,zf,O)} = Cat ([p1, 2, s px]ict) - (5.63)

Each of the sampling weights {p;} ¥, is computed by normalized weighting of each
mean of the NV components in mixture j against the quasi-product

Pik = /\/;Sf) (Mzi; MLJ-,AZj) (5.64)
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of input densities defined by L; = {/;};»;. The quasi-product is computed with
the d — 1 conditional components, see eq. (5.62):

N (s, ALL) =TIV (e AT (5.65)
it

Lastly note, incoming mixtures are assumed to have equal weight components
wy, = %, Vi € [1,N]

The approach described above requires a large number of Gibbs iterations to
thoroughly explore multiple mode beliefs — precisely the type of beliefs we are
interested in. Thler et al. [101] extends the Gibbs method to multiple scales using a
KD-tree representation, where component means of a kernel density estimate are
split based on their direction of largest variance. The binary tree structure develops

a depth of log, N, where the leaves represent the all the samples used to construct
the kernel density estimate, eq. (5.28).

Accurately approximating the true product density is accelerated by starting
with coarser scale approximate models at the root of the KD tree, and then allow-
ing the Gibbs process to more rapidly explore the concentrated regions of the state
space moving towards the leaves in the tree. Kernel density estimation with Gaus-
sian models simplifies the coarse to fine transition approach, since all beliefs are
conjugate. We invite the reader to follow Ihler et al. [101] for more details.

Lastly, sufficient samples from the posterior product multi-scale Gibbs pro-
cess are used to assemble a smooth kernel density estimate belief approximation,
eq. (5.28). The bandwidth parameter is recovered using leave-one-out-likelihood
cross validation [208], as other heuristics tend to oversmooth multi-modal beliefs,
see Section 5.4.1] for more details.

Density Products on Manifolds

We can extend the NBP approach to include density products on manifolds. We
focus on the 3D rotation manifold extension of eq. (5.62), where rotation R € SO(3)
is a Lie group element [32]. The process is illustrated in Fig.

Consider taking the product between two bodies in world rotation components
[¥R1|-] X [{Rg| -], resulting in a single element [};"f{| ] given the inputs are con-

jugate pairs. We can use the exponential parameterization of rotation elements, i.e.
Lie algebra [32], to define the product space. We implicitly take the exponential
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Figure 5-21: Illustration of density product on rotation manifold of parametric
Gaussian product in eq. (5.62).

expansion point about the resulting product [}j’f{ |- ] , which is initially unknown
VR = exp [Z”M 7 (5.66)

where [g%ﬁx} € so(3) is the corresponding Lie algebra element. We compute the
product density (eq. (5.62)) iteratively from a midway a starting point

d
Ap ™D =37 Ay pAp®, (5.67)
=1

where })”Aw,fk) = loggsos) (})"RiT }fR), and A; ' is the covariance of the exponential

expansion about each individual [}'R; | -] component. The logmap is defined in

eq. (4.23)

5.5.2 Particle Belief Propagation

Ihler et al. [100] later proposed a direct particle belief propagation (PBP) scheme
which is slightly more efficient than NBP at solving the Chapman-Kolmogorov
transit integral equations give in eqs: (5.14) and (5.15). Ihler’s proposal is an im-
portance sampling based particle belief propagation step, where the convolution
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step (Section [5.4.4) is used as a proposal distribution W (-):

mjiy (©s,;) = Eo,nw; | ©) (903 H My (Osu)| (5.68)
which is approximated as
R . 1 <& ¥; @C]
iy = - Z ©; <@C,j(k)>@C,j( ) ( > H Myly (9 () ) , (5.69)

o W(@cj )

where samples @g?j are drawn from a sampling (weighting or proposal) distribu-
tion at node s.

The highest computational expense comes from sampling the product of mes-
sages. To reduce computational load, Ihler suggests the belief-based sampling ap-
proach:

(O My y (©
miy (Os5) = > 1 (Bcy) 2 0”111 (@Cj)( ci) (5.70)

where computations are reduced by storing and updating belief values (the nu-
merator). In contrast, NBP draws new samples to represent the product density,
while PBP uses existing sample points and avoids the need to smooth the sample
set. We refer the reader to Ihler et al.’s work [100] for more in depth details about
particle belief propagation.

5.5.3 Progressive Bayes: a homotopy type ODE product

Another method to take the product between KDEs, presented by Schrempf and
Hanebeck equation [204], is Optimal Mixture Approximation of the product of
Mixtures whereby the product is converted to a vectorized first order ordinary
differential. A homotopy method is used to parameterize the product, using scalar
variable v, and modifying all local potentials except one:

Cj uUCy
Mjiy (©cj,Z,7) x ¥1(Oc 1, Zja) H%‘ (©c,jis Zjirv) H My (Os5, Yu,7)
=2 §

(5.71)
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such that, where € is a small number, ¢ (y =0) = land ¢ (v = 1) = ¢:

10— p)’
(o)

The progressive Bayes technique then calls for a distance measure between the
exact product and the approximation:

Y = exp (5.72)

. 2
G :/ (Mj\Y (©c,, Yj,7) — My (®C,quj777>> dv, (5.73)
R

and an optimal solution against , which is analytically obtained by solving % = 0.

Surprisingly, the resulting equations resemble that of the Kalman filter covariance
updates and the product operation is transformed into

P (1,7) g—z =b(n,7). (5.74)
Through algebra we can arrive at a mechanism to numerically solve this differen-
tial equation, with built in hooks by which error bounds can be maintained. If the
resulting product density exceeds a user-defined error tolerance, more kernels are
introduced to the product and the integration process is continued. If low proba-
bility kernels are found they are discarded from the solution maintaining a lower
kernel count in the resulting product density.

The derivation by [204] maintains the nonlinear nature of the product, where
the initial Progressive Bayes model called for a Taylor expansion. The derivation is
presented for the scalar case, but naturally lend itself to higher dimensional anal-
ysis. We refer the reader there for more details.

5.5.4 Kernel Belief Propagation

In Section we introduced the reproducing kernel Hilbert space approach for
approximating marginal beliefs, and in Section we described the conditional
embedding approach that allows matrix operation based approximation of convo-
lution operations. The final part for the sum-product inference technique is how to
take products of infinite functions with, which can be done with kernel embed-
dings in multiple ways. In this section we specifically look at work from Song et
al. [214] on kernel belief propagation (KBP).
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As explained in the convolution section, the conditional kernel embedding re-
quires training data to “support” operations in a region of the state space. The
method cannot be blindly used for estimating the posterior in unknown region of
the state space. However, research into multi-linear algebra, as used by RKHS, is
likely a good avenue for future research. The methods we present surrounding
RKHS can potentially be used to speed up computation in known regions of the
state space, once our base line method has converged to a stable region of the state
space.

The KBP method does not sample new points in the represented product den-
sity. Further work, such as [164] and [17] have looked at constructing posterior
sampling methods which operate directly in the feature space. A combination
of feature space sampling and KBP would result a new and powerful sampling
scheme.

The key idea behind Song et al.’s algorithm [214,216] is that reproducing kernel
Hilbert space (RKHS) functions are used to express the messages between pairs
of nodes. Outgoing belief messages are computed from incoming messages and
local potentials, as shown in eq. (5.14), but use linear matrix operations instead of
a nested Gibbs type sampling approach we presented in Sections [5.4.3|and [5.5.1}
Furthermore, the KBP method operates directly in the embedded feature space,
exploiting the reproducing kernel property, ( f (9), k (x,0)) = f (x).

We can compute the Chapman-Kolmogorov transit integral, eqs. (5.14) and (5.15),
for local clique variables ©; and parent clique variables ©;:

myry (©s;) = Eeyg, [ [ muv (©) [] v (6)) (5.75)
u k

with child clique variables ©,, and local singleton potentials v;. To reduce notation,
we fold local potentials in as though a message and the product of children and
local potentials [ [, ,. The product of singletons and messages are computed as

i={u,k} i={u,k}

= ®i:{u,k}miw’ ®i:{u7k}¢ (©:))F (5.76)

with tensor product ) for multiple dimensions. The message update then be-
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comes, from [214,215],

e ©39) = (@, ymie- B | @ 0@ 1 67)

Notation is again reduced for multi-message expectation,

fole; = Eeoys, {@i{m}cb (90} (5.78)
= Cogjp,® (0;) - (5.79)

The final computation is performed through multilinear matrix operations. Please
see references in this section for more details.

5.5.5 Hybrid Mixture Models (Dirichlet allocation)

Previous sections consider approximate convolutions and products of infinite
functions for highly flexible intraclique computations and truly sum-product style
inference. Section shows how various potentials and belief messages con-
strain a solution into a concentrated region of the state space. Here then follows
an alternative computational principle, 4b in Table 5.1} for approximating and mul-
tiplying belief estimates by using mixture models of parametric functions. By mix-
ture model we mean the sum combination m of various parametric models p:

[é\-]%iaipi(@). (5.80)

Fig. illustrates two clusters of sample points which are assumed to be a
combination of two normal density distributions. Assuming for the moment clus-
tering of sample points to parametric models is handled correctly, we can build the
inference process using the parametric models.

Clustering and assignment of individual samples is a large area of study. Meth-
ods such expectation maximization [156] require the number of clusters to be
known, and latent Dirichlet allocation [23] for unknown cluster concentrations are
corner stone examples. Discussing clustering, assignment and approximation tol-
erance are beyond the scope of this thesis, but is part of our proposed future work.
For example the consensus example in Fig. shows possible dimensionality
reduction when separated multi-modal normal components can be reduced by
pruning or culling low likelihood modes, given some maximum tolerance approx-
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[®| ] ~ alN(@; H1, El) + aQN(@; W2, 22)

Figure 5-22: Illustration of clustering and fitting low dimension parametric models
to nonparametric estimate sample points, in this case two normal densities are
assumed.

imation error e.

We limit our discussion to conjugate normal density distributions, although the
principle extends to all conjugate products and does not preclude resorting to the
nonparametric inference method already discussed. Note that the hybrid methods
can offer various optimizations at some permanent approximation error. The dis-
cussion in the previous sections all retain asymptotic exactness when computing
the Chapman-Kolmogorov integral. The mechanics of conjugate normal densities
are discussed in Section5.5.6 hereafter.

To take the product between nonparametric functions and Gaussian mixture
models, we can almost directly use the nonparametric belief propagation method
with only slight modifications, see Section[5.5.1} Consider iterating through labels
according to eq. (5.64), where a lower dimension Gaussian mixture model can be
directly substituted for a kernel density estimate, although the output will again
be a nonparametric kernel density estimate of higher dimension.

More complicated mixture densities could likely be incorporated through im-
portance weighting, however, we prefer using the discussed function approxima-
tion methods with robust convolution and the product of infinite function approx-
imation instead.

5.5.6 Special Case of Conjugates

At the start of this chapter, in Section we mentioned state-of-the-art Gaus-
sian methods. We can now come back full circle, considering each marginal belief
as potentially being either approximated by a higher dimension nonparametric
function or a lower dimension mixture model. The product of multiple normal
distributions can be replaced with a single normal parametric model, according
Gaussian product in eq. (5.61). In the upcoming sections, we will briefly indi-
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cate two major methods to perform the intraclique operations with normal density
parametric models, namely the triples method and gradient method.

The conjugate nature is also significant for the required convolution operations
between normal density functions representing conditional likelihoods. Convo-
lutions for parametric models can be computed using the sigma-point transform
(unscented) [109].

In the extreme case we reduce the approximation down to a single normal
density distribution, resulting in the well known nonlinear least squares. The
Gaussian product and convolutions operations associated with the Chapman-
Kolmogorov transit integral become equivalent to the Gram-Schmidt orthonor-
malization process.

Furthermore, we again emphasize the issue of consistency, which is no different
from the requirements for nonparametric inference: A valid posterior distribution
must encapsulate all measurement and computation errors. We assume that the
user has assigned sufficient uncertainty (covariance) in each of the measurement
likelihood potentials, encapsulating errors which may have been introduced into
the joint probability distribution.

The triples method

By rewriting purely Gaussian potentials with linearized measurement residuals
d(0;z) = p(z) — O, Cowell [37] presents the triples method G' = (g, h, K),

1
N (©;u,X) = exp <—§H6 (0;2) H%) =exp(g+0©"h+0"K6), (5.81)

for multiplying or dividing beliefs

Ni () x No (1) =G x Go = (914 g2,y + 1y, Ky + Ko)
N () [Nz () = G1/Ga = (g1 — g2,y — hy, K — K3). (5.82)

We could likely define the triples method on manifolds, such as the Lie algebra,
but this is currently beyond the scope of this thesis.

The Schur complement again defines the marginalization operation. Consider
an organized block structure

_ o]" [m o,]" K1 K| |6
N (©1,0;) = exp (g—l— [@2] {hz} + [@2} [Kzl KQJ [@J> (5.83)
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and integrating out variables fR N (01, 0,) db;,
h=hy— Ky 1 Ki1hi, K = Kyp — Ky 1 K{ 1 Ky (5.84)

Therefore egs. (5.14) and (5.15) can be computed with the triples method for
algebraic products and the sigma-point transform for convolutions of conjugate
Gaussian functions.

Gradient methods (Gram-Schmidt/Elimination methods)

Gaussian parametric functions are defined by their first and second statistical mo-
ments, mean and covariance, which may be directly computed. The mean can
be computed under a localized max-product assumption, see Section The
Laplace approximation can be used to recover a covariance estimate [112].

The iSAM2 algorithm [115], which inspired our approach, is a highly optimized
version of the single component Gaussian marginal belief mixture (unimodal). The
iSAM2 algorithm assumes all measurement likelihood residual functions ¢, are
continuous and convex, whereby quasi-Newton methods are used to perform the
intraclique inference process. Newton methods are popular given rapid conver-
gence rates near the final solution.

High performance of Newton methods originates from being able to modify
the parametric state estimate independently along each degree of freedom, [198].
If we consider the clique association matrix again, for example Table we see
columns as degrees of freedom and rows as interactions between them. The abil-
ity to isolate each of the dimensions us usually implicitly achieved through an
ortho-normalization process. Cholesky [116] or QR-decomposition are the cur-
rent mainstream techniques, enabled by Givens rotations [73] or the Householder
transformation.

5.6 Algorithm Summary: Intraclique Operations

We present a summary of the operations discussed in this chapter. Given a partic-
ular factor graph constructed at time ¢, we perform incremental updates to the
Bayes tree structure (as shown in Fig. using an elimination procedure de-
scribed in Algorithms[2land 3l Unclaimed likelihood functions are then associated
with cliques in the tree, according to frontal variables and by starting consumption
at the leaves of the tree. Each clique will have some subset of factors related to the
frontal variables and loosely related to the separator variables of that clique.
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Interclique message passing occurs in accordance with illustrations in Fig.
tirst from leaves to root for the most recent variable marginal posteriors and then
back down to leaves to recover all complete marginals. Recall that the factor graph
and associated measurement likelihood functions are only assembled at run-time.
The computer software algorithms are written before the user defines a likelihood
model, therefore preventing any knowledge about what the posterior distribution
might be.

Interclique message passing hinges on a general procedure for calculating the
marginal beliefs over clique variables, referred to as the intraclique process. The
steps in Algorithm 4{summarize our solution for the intraclique operations, which
computes the Chapman-Kolmogorov transit integral. Please see Appendix|C|for a
tutorial type example of the intraclique operations.
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Algorithm 4: Intraclique operations for solving Chapman-Kolmogorov dur-
ing upward message passing for clique j with marginal partial posterior My,
as shown in eq. (5.14)). Several steps can be precomputed at construction.

1 Non-leaf cliques receive incoming messages of approximated belief
functions from child cliques J,, 7.y (Os,.) according to separator variables
in cliques {u};

2 Determine all local potentials not claimed by frontal variables lower down

in the tree;

Form the clique association matrix, as illustrated in Table

foreach (concurrently) ©;;, columns of only singletons do

5 Compute independent product marginals, as illustrated with eq. (5.47):

if all singleton beliefs are conjugate parametric then

= W

6 Compute product with analytic conjugate computations, as
L discussed in Section 5.5.6]

7 else

8 Compute nonparametric product of infinite functionals using any
| approximation technique from Section

9 List {O; 4} qies C {@]k}‘k@;ﬂl of columns with pairwise potentials for block
Gibbs scheme, eq. (5.46);

10 while not stationary d (M 1) pf (i)> < ¢, or user iteration limit do

11 # these steps describe Markov chain, i.e. M j|Y(i+1) =Ty M j|Y(i)

12 | foreach (sequentially) ©, , in randomized or linear sweep do

13 foreach (concurrently) associated pairwise likelihood model ¢ (©; 4, -) do
14 Approximate convolution with user likelihood model to
[@j,g(z : |- }, as discussed in Section [5.4.4;

~

15 Take product of individual proposals [@M(i/) | -}, eqs. (5.48) & (5.49),
according methods in Section 5.5 (nonparametric), or analytically for
parametric conjugate beliefs, as illustrated in Fig. |5-20;

i+, A (i)
|®j\g

16 Assemble new marginal function estimate [ éj,g( Y } as

required, eq. (5.49), using in Section [5.4.1}

17 New upward message 1,y (Og,;) available from latest variable belief
estimates, (marginalize out frontals O ;, eq. (5.15));
18 Algorithm performance determined by Bellman optimality, Section m

216



5.7 Critical Analysis

In this chapter we have explored several details of the sum-product inference algo-
rithm. We have argued, without hard proofs, that reversibility in the nested Gibbs
type operations results in stationary, or functional fixed point, marginal density
estimates of all variables in the system.

We have taken the approach of converting a cyclic factor into an acyclic Bayes
tree representation and showed several optimizations specific to our robot naviga-
tion use case, namely incremental updates and specialized variable orderings. Our
emphasis on the Bayes tree follows from successes had in [115|125218]], while pro-
viding, to the best of our knowledge, the first nonparametric sum-product inference
algorith to operate on thousands of varialbes simultaneously. Previous nonpara-
metric methods have operated at much lower dimension, or resorted to random-
ized ordering in loopy belief propagation. Previous tree based techniques [127]]
suffered excessively from large clique dimensions, but we are able mitigate this
problem due to the CCOLAMD [39] variable ordering technique.

Refactoring of the full joint density is absolutely fundamental in finding a com-
putationally tractable and robust SLAM solution. The heuristics used to construct
the Bayes tree are special in that they minimize the modifications to the tree when
small modifications are made to the underlying factor graph. Modifications to the
factor graph are common in SLAM but have not been yet been considered in other
main stream Bayesian inference literature. We maintain that the Bayes tree repre-
sentation is a key computational aspect going forward.

In Section we introduced the range space of possible multi-modal solutions,
and discussed at length how the sum-product approach allows us to search to the
tull solution space. We are not disputing the range space of possible multi-modal so-
lutions as very large or intricate, but rather that we have a practical solution be-
yond unimodal parametric inference which asymptotically approximates the sum-
product solution. In Chapter [f| we will show how the algorithm presented here
does in fact find valid multi-modal solutions.

One of the major concerning factors is computational cost and how the curse of
dimensionality factors into our approach. We note that an exact nonparametric solu-
tion to the naive full state factor graph definition is indeed exponentially complex.
Instead our premise rests upon nine central computational principles to make the
inference process tractable. The computational principles used are all either ex-
act or asymptotically correct, and are listed in Table Furthermore, asymptotic
principles in the algorithm are defined relative to some quality parameter Q which
allows us to improve granularity of the solution for increased computational cost.
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The Bayes tree is a symbolic factoring of the conditional independence struc-
ture of the full joint probability distribution. The Bayes tree algorithm minimizes
the dimensionality of cliques through a provably good variable orderings [39]. We
only ever need consider one clique at a time, and therefore only need to deal with
the exponential complexity of the dimension of that clique. For increased speed,
we exploit further nested simplifications within a clique, similar to [125], while
simultaneously leveraging improved parallel computation.

Consensus (information loss I) plays a important part in drastically reduc-
ing the computational complexity. As discussed in Section we expect fewer
real world events likely, as more information is gathered from one reality. Alge-
braically this concentration of belief in the state space reduces the potential expo-
nential number of modes, since most product operation culls most of the very low
probability modes. By ignoring low likelihood modes and focusing on most likely
modes, we argue it possible to arrive at feasible solutions which are able to track
the few remaining consensus modes accurately.

Belief approximation tolerance (information loss II); We have chosen to ap-
proximate the marginal posterior densities of each variable in the system by ap-
proximation. By reducing an infinite belief function to a limiting accuracy approx-
imating function, we can concentrate computation around the dominant features
and modes in the system. As a give and take argument, the approximation intro-
duces a loss of information, but maintains some flexibility in recovering modes if
more information becomes available. Our intention is to use the approximation
process to implicitly achieve consensus discussed above.

Iterative approximation (imputation); We have also chosen to focus on belief
space computations using an iterative approximation scheme (nested, block, batch
Gibbs sampling), rather than naively searching the entire state space. While our
approach must start from initial condition, which introduces the risk of a local only
search, we do propose all modes and uncertainties of each likelihood factor in the
factor graph model.

Approximate convolution (information loss III). In Section we discuss
one mechanism by which conditional distributions are enforced in the factor graph
model. This can be seen as approximating the convolution operation in a Bayesian
approach. We selectively solve only sample test points in the belief, after which
kernel density approximations are repeated. This limited testing and sampling
across each of the conditionals is a further loss of information during inference,
and can be thought of as the digital equivalent of a continuous analog belief.

Approximation of the product of infinite function; By approximating continu-
ous functions with finite dimensions (nonparametrics), such as kernel density esti-
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mates, we are able to compte approximate products of the underlying infinite belief
functions. For example, the nonparametric belief propagation technique (Section
again leverages ¢ tolerance in function approximation and an internal multi-
scale successive Gibbs approximation scheme. Approximating the product, as il-
lustrated in Fig. drastically reduces the associated computational cost further,
see [218].

In Section 5.4.4 we discussed how the convolution with likelihoods creates
new modes, and the product operation, in Section culls the low likelihood
modes. This creation and culling of modes approach reintroduces the prospect of
full global solutions. In theory, by turning the quality parameter Q to maximum
should allow near global solutions.

5.8 Conclusion

In conclusion, our approach allows recovery of nonparametric, multi-modal pos-
teriors from cyclic large factor graph joint probability descriptions. This chapter
and the examples that follow in Chapters [6| and [§| shows the existence of a multi-
modal inference solution. Further research into convolution approximation could
be better leveraging conditional kernel Hilbert embeddings, see [214]. Reproduc-
ing kernel Hilbert spaces may well play an important role in computing product
of infinite function approximations too.

The key theoretical challenge is understanding that, for belief space methods,
that the inference process can be considered an operator T with proof that it will
contract to a stochastic fixed point. The further theoretical requirement is to know
that the contracted fixed point of T is in fact near (or nearest) to the true functional
embedding point of the true joint posterior belief. We are not directly able to prove
that statement in this chapter, because the topological structure of the problem and
likelihood models used is entirely unknown at this stage.

We do restrict the class of user-defined likelihood models to: (i.) marginalized
all discrete varialbes into a continuous belief at function product time; and (ii.)
convolutions with user-defined functions should only depend on the current state,
and not depend on other outside values (Markov property).

In places, the Markov property is not kept since some user-defined likelihood
functions have lower dimension that the variables they are constraining. We are
able to break the correlation between consecutive values by simply adding more
clique level Gibbs iterations and thinning out the samples. A further approach is
to compose several factors together into a single higher dimensional factor. We do
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claim that there a stationary distribution from MCMC standpoint which has an
equivalent feature space embedding; and that by satisfying the Markov propery
we can use composite detailed balance to ensure the solution will converge towards
some fixed point.

A further avenue still could be to improve the intraclique operations by lever-
aging parametric mixture models. By accepting a permanent ¢ true belief approx-
imation error, in exchange for higher speed parametric computations. We stress
again, the existing iSAM?2 algorithm [115] is a single Gaussian mixture, where a
max-product is computed. The author feels there is a lot of room for development
between our presented approach and the existing iSAM2 algorithm. Lastly, we
note that the iSAM2 algorithm (max-product) is a special case of the broader sum-
product belief propagation approach which is presented here.

Further still, in Section we introduced Bellman optimality in context of
multi-modal inference. We proposed a cost function and discussed how the opti-
mality is used to influence our algorithm design decisions. We also showed how
momentum can be used in future algorithm developments, to arrive at posterior
estimates more directly.
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Chapter 6

Canonical Examples

Chapter[5|discusses the Multi-modal iSAM algorithm[[|for computing the associated
sum-product inference solution. This chapter is dedicated to canonical examples
to help understand the nature of multi-modal solutions. Chapter (8| discusses the
JuliaP|implementation used, along with results from real robot experiments.

6.1 Introduction

The Multi-modal iSAM (Smoothing and Mapping) algorithm implements a non-
parametric sum-product solution to factor graph described problems. These factor
graph descriptions do not necessarily have to be associated with robotic naviga-
tion, although that is our problem focus area. In this chapter, we look at a few
generic examples to better understand the nature of multi-modal beliefs, and what
the inputs and outputs of the algorithm are.

The first section explores a multi-modal square root solution, as the most ba-
sic one dimensional example to illustrate how the iterative procedure Ty operates.
Next we look at a one dimensional robot three door and four door navigation ex-
ample originally inspired by [224] but reworked here for general continuous do-
main simultaneous localization and mapping (SLAM). . Later in the chapter we
thoroughly investigate the SLAM-e-donut two dimensional range only navigation
example.

Implementation of Multi-modal iSAM and canonical examples is available at
www.github.com/dehann/Incrementallnference.jl

Julia programming language, “A fresh approach to numerical computing” [19]:
www julialang.org and www juliacomputing.com
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6.2 Multi-modal Square Root

Inspired by the Babylonian method to iteratively compute the square root y = 27,

we construct an example system such that

0=0(y=(2"+n),2)=y—Tx1i
2~ [Z1Y, X =N (u=14,0), (6.1)

where 7 is a noise slack variable producing noisy square root Z from zeroing a
residual 4, see eq. (5.54). However, our generalized iteration scheme is already
built into the inference algorithm, given a continuous measurement likelihood.
Consider the measurement z from the conditional measurement likelihood distri-
bution [ Z | Y, X | between variable X? and its square root X, as modeled in a factor
graph shown in Fig. A prior belief is added to the square terms to gauge the
solution [ X? |

Figure 6-1: Example factor graph for square fixed point example, with two vari-
ables X and X?2. Two factors are present, namely a prior on [ X*] and a pairwise
squaring conditional likelihood [ Z | X%, X |.

The factor graph in Fig. [6-1]is resolved into a Bayes tree on just one root clique
Myz = [X%X|Z] x [2] X%, X] [ X?], 6.2)

where M|, represents the marginal belief of the root clique. The root clique asso-
ciation matrix is:

| X2 X
[ Z]X%X]| x X
[X2] ] x

As defined by the normally distributed A/ prior and measurement likelihood func-
tions

[ X?] =N (n=4,0=0.05)
[Z|X2—>a,X—>b]:N(u:a—bxb,azO.Ol). (6.3)
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Figure 6-2: Example of square root marginal beliefs converging to the stationary
distribution for factor graph shown Fig.

We understand the intraclique successive iteration belief approximation pro-
cess — Chapter 5 Section 5.4 — will iteratively estimate

[X?|X,Z] < [X?]1X,Z] [ X?]
[X[X% 7], (6.4)

using convolution approximation eq. (5.54). Fig.[6-2|shows the marginal posterior
belief estimates for both [ X?|-],[ X | -] during the iteration cycles in the top and
bottom plots respectively.

The top plot in Fig.[6-2|shows [ X? | - | approximated over several iterations. We
see the solution is initialized at user prior 4, but at the first iteration is pulled away
to around 1.3. During the next 10 iterations we see the belief return to the prior be-
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Figure 6-3: Square root fixed point KL-Divergences for factor graph shown in
Fig. Left, shows reference KL-Divergences against final state after 50 iterations.
Right shows KL-Divergence between successive Gibbs substitution sampling iter-
ations. Multiple curves indicate repeated runs to see the trend pattern.

lief position around 4. We point out that the belief moves around with little overlap
between previous and next beliefs, a fact that would make importance weight type
belief product approaches difficult. Instead, the nested Gibbs approach is able to
maintain healthy belief updates in “new” regions of the state space. We note that
repeated runs have varying convergence time. The example chosen here shows
uncharacteristically slow convergence.

The bottom plot in Fig. shows [ X | -] approximated over the square root
estimate. In particular, we note the initial condition on X, uniform [ X®|.] =
U (5, 1), shown as iteration 0. After the first iteration we find the bimodal belief
heading towards +2, which is indeed the square root of 4. This discrepancy be-
tween the initial guess and the true marginal belief shows [ X | -] resulted in the
initial “error” at marginal [ X?| -] during the first couple of iterations. Once the
system approached the stationary point, we find an accurate estimate of the true
solution.

Fig. [6-3|shows the KL-divergence, eq. (5.20), for the variable marginals against
successive approximation iterations and three Monte Carlo runs. The left plot
shows the divergence of each marginal estimate against the last belief, while the
plot on the right shows the intermediate change in divergence between iterations.
We see that after 12 or 13 iterations the belief function approximation has settled
to nearby the stationary value.

As discussed in Section we can look at the mean map projections of the
beliefs for better understanding of the inference algorithm. Using the explicit
quadrature frequency basis, we find the marginal belief progression shown in
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Figure 6-4: Trajectory of higher (top) and mid (bottom) frequency Fourier series
coefficients from successive approximation inference algorithm over a factor graph
shown in Fig. Left illustrates the point projection of the X? marginal belief.
Right illustrates the approximated belief trajectory for the X variable belief.

Fig. The sinusoid projection is shown on the vertical and cosine projection
on the horizontal axes for a mid (0.16) and higher (0.319) frequencies. Traces for
three Monto Carlo runs are shown. We note these points corresponds to each of
50 successive approximation iterations, showing how the solution moves and con-
verges to a region of the mean map projection space.

The right side plots in Fig. shows how the inference algorithm moves the
belief from one point in steps towards the left by a fair distance for higher (top) and
mid (bottom) frequencies. In contrast, for lower frequency, the right plot in Fig.
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also shows how the marginal belief [ X |- | is moved, but not by the same distance
— that is less information is updated in lower frequencies. The right upper plot in
Fig.|6-4{starts to show periodicity (aliasing) as the three trace solutions move from
right to left and then curve back around. Higher frequencies are more exaggerated.

In all higher, mid, and lower frequency cases (for the right side plots) of Fig.
and Fig. we notice that the Monte Carlo solutions start out close together but
converge to different points in the projected feature space. This separation is not
visible in Fig. |6-3|and shows the value of studying the mean map projections.

The most separation is over the sinusoid basis (vertical) component, which in-
dicates symmetry about the origin and translates into imbalance in the amount of
mass between the x = +2 and x = —2 modes. We ascribe these vertical variations
to the difference between the true and estimated beliefs A, as shown in Fig.
which lie inside the inference operator error term «.

X2 X
b=0, freq.=0.054 b=0, freq.=0.054
1.0 0.10
0.9 'Y
\ MC MC
n 08 «n  0.05
- ml < ml
° 0.7 5 . 2
Q 06 \ 3 Q  0.00 3
0.5 N
0.4 -0.05
0.0 0.5 1.0 0.75 0.80 0.85 0.90 0.95 1.00
p-dc p - ¢C

Figure 6-5: Trajectory of low frequency Fourier series coefficient for Gibbs succes-
sive substitution inference over factor graph shown in Fig.

Still with the plots on the right side in Fig. [p-4 and Fig. we notice that the
traces quickly move from similar initialization on the right to concentrated regions
on the left. The convergence regions to the left are the mean map fixed points,
as discussed in Section Variations around the fixed points are ascribed to
approximation accuracy ¢, with the inference operation 7, as shown in Fig.
In this case we immediately note that € related variations are much smaller than

related errors.
Plots on the left of Fig.[6-4show the higher (top) and mid (bottom) frequencies
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for [ X?|-], which start and end at the same point. This corresponds to the belief
moving away and back from the desired value of 4, shown in the top plot of Fig.

Next, we investigate a one dimensional three mode example more closely as-
sociate with robotic navigation.

6.3 Multi-modality: 3 Doors Example

The three doors robot localization has become a classic Bayesian example in the
SLAM community [224]. A robot knows the location of three doors and occasion-
ally makes a door sighting while driving around in one dimension.

The robot starts with seeing one door and then drives through an intermediate
pose location, making a second door sighting at the third pose. The robot doesn’t
know which of the three known doors it has seen, but does have a noisy mea-
surement of the distance traveled between the doors. Our task is to correlate the
distance traveled between sightings to the known map of door locations.

6.3.1 Factor Graph with Multi-Modal Potentials

We reformulate the three doors example to explain the tree based propagation al-
gorithm. Rather than apply a histogram filter [224] to estimate the posterior belief,
we construct the nonparametric factor graph shown in Fig. Green nodes indi-
cate three pose variable nodes and blue nodes are odometry measurement likeli-
hood factors.

Figure 6-6: Factor graph of the “three doors” example, with three robot poses
(green nodes 1, 2 & 3). Doors are seen by the robot as it drives past some of them.
Blue nodes indicate unimodal constraint functions. Poses are connected through
odometry constraints. Red nodes are multimodal constraint functions. The robot
has seen a door at the first and last pose, but unsure which of three doors were
seen.

Fig.|6-7|shows the three possible (multi-modal) door sighting locations, which
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are represented as:

[Zl |X1] X ¢X1 (:L‘l,abc) (65)
[ Zy| Xa] o< ¥y (23,0c) - (6.6)

We observe that each door sighting hypothesis can be represented as a Gaussian
term. The accumulated sum of Gaussians represents the measurement likelihood:

(h( Zi,a)2) + exp <_(h(33i) —2Zi,b)2) i

¢X¢ (xz,abc> =€e€xp <_ 20_]_2 2%
20']‘2

h
o (01~ 5) ] .

where i represents the variable node number and j the measurement number.
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Figure 6-7: Multi-modal prior measurement probability based on a door sighting.

The unimodal odometry densities are (hoqo (i1, 2;) — x;) ~ N (0, 0;), and

(h (21, 22) — 56’2)2>

20’22

o) =) o

[ Z5 | X1, X2] = 12 X exp (—

[Z5] X2, X3] = pa3 < exp (— 2042

With the measurement likelihood functions in hand, we develop the Bayes tree
and analytically compute the posterior solution.
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6.3.2 Bayes Tree and Analytical Beliefs

We choose to eliminate variables in the factor graph, Fig. with variable order-
ing Xy, X5, X3. The elimination scheme arrives at a Bayes tree presented in Fig.
In this example there is only root (j = 1) and child (j = 2) cliques, where j indicates
the clique number. The child is also a leaf clique in this tree.

Figure 6-8: Bayes tree of “three doors” example using variable ordering X, X5, X3.

The tree shows a factorization of the root clique and one child clique. We inter-
pret the full joint posterior of the system by product of Bayes tree cliques:

[ X1, X0, X3 | Z] o< [ X5, X2 | Z] [ X1 | X, 7] (6.9)

Inference is performed through upward message passing, from leaf to root
cliques. The upward message from the leaf clique is computed from the clique
marginal belief M.

Leaf Clique Marginal

To compute the marginal posterior of the leaf clique as potentials containing the
frontal variable x;, we use the associated odometry measurement and door sight-
ing measurement likelihoods

Mz (z1,22) o [Z] Xy, Xo| [ X7 ]
M2|Z (11?1, Iz) X 1,2 ($1, IQ) (0 ($1,abc) . (6.10)

The message density over the separator Og, = { X5} is myz (22) is calculated from
marginalizing out x,

mzz(iBQ):/Mzzdxl, (6.11)
R
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and is sent from leaf to parent. Using Mathematica, we perform the symbolic com-
putations to find the actual message belief

Moz (%) = e~ a mi(- 1042z (e300 4 elom 4 2(0He2)) (6.12)

which is shown in Fig.

-10 10 20 30 40 50

Figure 6-9: Message from leaf to root node, m,

Root Clique Marginal

After the upward message pass from the leaf, we can calculate the marginal full
posterior My at the root, where Y represents all measurements from that clique
down to the leaf. We take the product of the incoming message and the local po-
tentials associated with O = {X3, X»}:

M1|Y (96275173) X [Z’X2,X3] [Xz] mo|z (Xz)
X %02,3 ($2, 5E3) ©3 ($3,abc) me|z (6.13)

which gives the marginal density over the root clique. The root clique marginal
is special as it represents the a marginal from the full joint posterior distribution
M1|Y (3527373) = fR [X1,X27X3 \ Z] dxy .

The second odometry measurement likelihood 5 3 (22, z3) is also unimodal,

230



with 03 = ]_, 3 = 9:

(3 (29, 73) — 23)2>

20'32

~ exp (——“’3 —n s 5>2> (6.14)

©2.3 ($2, $3) = exXp (—

2

At pose location z3 another door is observed and is again introduced as a three
mode unary potential, eq. (6.7). Again, using Mathematica, the product of incoming
messages (marginals) and local measurement potential is:

Mz = a3 (12, 23) V3 (13) ma (72)
_%_¥+x2(—g+x3)+5x3—x§ (6390 4 1522 4 e5(50+12)) «

(€150 4 30ms 610(40+w3)) VT (6.15)

=€

This is again a joint potential over z, and z3. Marginalizing out z, will produce
the unscaled density over the last pose location z3, also shown in Fig.

27 2(1075 + (=5 + x3)x3)
[ X3]Z] ocﬁexp<— 3 )X

100(6+z3)
(6700 4ot0ms 4 g L 20(20+a8) | 10(45+as)

40(45+x3) 10z3
3

+ 10(65+es) | o650+ 4 250+30s) (6.16)

The new posterior arrives as a single dominant mode with eight other much
smaller modes, as shown in Fig.

As information propagates up the tree, some potentials introduce more modes
but these eventually coagulate with other modes from potentials higher up in the
tree. If sufficient information exists, invalid hypotheses drop to low weight modes.
These modes can essentially be ignored once we have strong confidence in a subset
of other nodes.

6.3.3 Approximate Belief Propagation on Bayes Tree

In this section, after studying the analytic solution to the three doors example
above, we consider a rudimentary Gibbs sampling approach to illustrate how the
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Figure 6-10: Posterior over X3 after marginalization of potentials product at the
root of the tree.

same posteriors are estimated. In the next section we will upgrade our discussion
to using the Multi-modal iSAM solver to compute truly multi-modal posteriors of
an extended four door example.

In the three door case, the door sighting measurement likelihood function is
given in and odometry likelihoods in eq. (6.8). The product of Gaussians
sum results in an exponential increase of terms as all multi-modal potentials in a
factor graph are multiplied together, as is shown in the previous section.

We choose to approximate the posterior densities of each clique in the Bayes
tree with a set of samples. Furthermore, the number of samples will be restricted
to introduce an € loss of information, but simultaneously introduce a natural mech-
anism to cull computation of low likelihood modes.

The algorithm maintains samples representing the most dominant modes in
the system at any point in time. When inference on the clique is repeated, a new
set of samples is generated which may approximate different modes than before.

Repeating the three doors example computations, we first approximate the pos-
terior of the leaf clique M5z, see eq. (6.10).

Markov Chain Sampling, Leaf Clique

We can approximate the marginal density message [ X» | Z1, Z, | with MCMC sam-
ples, by identifying the dependency structure in the leaf clique with the clique
association matrix (see Section 5.4.3):
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In this case we can sample X; from ¢y,, eq. (6.7), and use the sample to define
the conditional odometry distribution ¢, 2, eq. (6.8). We take the samples over
X, as the marginal belief that represents the upward message over the leaf clique
separator variable 1|, (7). A histogram plot of samples in 729z is shown in Fig.

11l

Figure 6-11: Histogram of 1000 (left) and 5000 (right) samples in message ms,
which is an approximation of the analytic version shown in Fig.

250

200

Incorporating Message 771, ; at the Root Clique

Recall the root clique marginal belief My from eq. (6.13), where 171, is the sample
approximated marginal density message from the leaf clique.

We use Monte Carlo integral approximation to marginalize out X, in the prod-
uct between message 1,z and the root clique’s local odometry ¢, 5 and door sight-
ing 1x, measurement likelihood potentials. Working towards the marginal den-
sity of the last pose over three of four measurements [ X3 | Z1, Zs, Z3 |, we take the
second odometry constraint.

[X3|Zl,zz,zg]o</ (X | Zs, Xa] [ Xa | 21, Zo] das

—0o0

~
~

N
3™ [01 78— 2050~ ]

k=1

=l
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N

~
~

NE

@273 <X3, X2 = mgk), Zg) (617)

£
Il
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where mg’f; represents the k™" sample from the approximated child clique samples.

The approximated marginal posterior density over all measurement potentials is
| X5 | 21, Zs, Z3 ] and is shown in Fig.

0.20
0.15
0.10
0.05

0.00 0.00

Figure 6-12: Approximated marginal of X3 including the first three of four mea-
surements, that is Px,|z, z,z,, using of 1000 (left) or 5000 (right) samples in message
mo

Incorporating all observations

Note that the density in Fig. still includes all three modes at pose X3. Only
after the second observation of a door, Z,, can we discover the true mode. We can
repeat the computation in eq. (6.17)), but include the second observation also:

[X3|2122ZBZ4] / [X3|Z4} [X3|Z3,X2] [X2\21,Z2]d£172

N
sl2]= NZ [Xsl24] | Xal 20 X0 =
N
NZ 5 (X3) @23<X3,X2 mék)§23> (6.18)
k=1

Fig. shows the approximated density, [ X3 | Z |, using Monte Carlo integration
of samples all measurements as modeled in the factor graph in Fig.

This concludes our discussion of the robot three door example. In the next
section, we present an extended four door example, using our Multi-modal iSAM
algorithm to estimate multi-modal marginals and posterior on the Bayes tree.
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Figure 6-13: Approximated and unnormalized marginal density (using 1000 or
5000 samples, left and right respectively) of robot pose X5 conditioned on all mea-
surements, 75X3| 71 727,74+ 1 his approximation can be compared to the full analytic
version shown in Fig.

6.4 Multi-modal Posteriors on a Four Door Example

Fig. illustrates the localization problem where a robot is driving and sensing
familiar landmarks. The robot instantiates poses at points of interest along its tra-
jectory that will form the backbone of the inference task. Please see Fig. for
the associated factor graph, as well as its re-factorization into a Bayes tree.

Figure 6-14: Simple pictorial of a robot moving in a one dimensional world, mod-
ified from original example in [224].

Given a prior map containing four landmarks at z; € {—100,0, 100,300}, the
robot believes it must be at one of these four locations when a sighting is made. We
can represent these four different landmark positions hypotheses as four modes in
the associated measurement factor:

{wd)
W) =[Xla] =13 N (@ m 0?) (6.19)
k
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6.4.1 First Three Poses

After the first landmark sighting at pose z, the robot moves forward 50 units to
new pose x,. After a further 50 units, a second landmark sighting is made at pose
x3. The odometry measurement is modeled with a Gaussian likelihood function

2o ~ [ Zodo | Xiy Xiy1 | = N (,U = fodo (*) 7Uj2)
Jodo (Tiy Tit1) = Tig1 © (6.20)

where © is used to denote the difference on the manifold, which is important for
generalization to higher dimensions. The constraint functions ¢; (2,41, z;), indi-
cated by solid filled factor vertexes in Fig. are denoted as

©; (i, Tix1505) X [ Zodo | Xiy Xig1] -

Finally, we construct a proposal sampling function, a likelihood residual, for use

with eq. (5.54)
0=0; (%('i)la xz(k)§ Zk:) = 2k — fodo (Ti; Tiy1) - (6.21)

The associated factor graph and Bayes tree at this point is shown in Fig.
Note that multi-modal landmark sightings, 1, (z), are shown as red unary factors.

Figure 6-15: A multi-hypothesis factor graph and Bayes tree representing 100
units driving distance and two independent sightings of four indistinguishable
but known landmarks.

We know that the first three landmarks are each separated by 100 odometry
units. The exact belief over the three poses, x4, x> and x3, therefore have two major
hypotheses. Fig. shows the exact and estimated full marginal beliefs over z,
2 and z;3 in red and black, respectively. While the exact solution contains 4° = 64
modes, only the two shown in Fig. are significant.
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Figure 6-16: Estimated marginal beliefs, in black, of all variables of the factor graph
in Fig. following one complete up and down belief propagation pass of the
Bayes tree. The ground truth belief is shown in red. Notice how the posterior has
two significant modes as the final output of the inference process — a multi-modal
posterior in SLAM.
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We compute the estimated belief using the MCMC chain methodology de-
scribed in section For belief propagation, we start with the upward pass
from leaves of the Bayes tree, shown in Fig. The joint probability of the leaf
clique, which contains one odometry and a landmark sighting factor, is computed
with Gibbs sampling:

{z11,. ., 2 n 0D ~ [X1 |X2(i)aZodo] [ X1 2]

{(Ta1s. .., 2o N} 0D ~ [Xz | X, 0+, Zodo] . (6.22)
Transit conditionals, such as [X 1| X Q(i), Zodo ] , are obtainable through:

X1, Zto | o [ Zoao | X, Xa (6.23)

since we only have a uniform prior on each of the sensor measurement terms. We
approximate [X'l | X, Zodo} using eqgs. (6.21) and (5.54) to construct the kernel

237



density estimate with LOOCV bandwidth
1 - (
|- (LN) E : X,
|:X1|l’2 ,22i| X N - N( 1, 17, Aloocv) . (624)

The second potential function on X; is the multi-modal prior defined by
eq. (6.19). The belief product is estimated with the multi-scale product algorithm
from section5.5.1]

Frontal variables of the clique are permanently stored as the MCMC chain pro-
gresses, while separator values are only cached. Once the MCMC chain of the leaf
clique has converged, we can construct the outgoing belief message from the latest
cached belief over the separator variable, m (23) = [ X2 | Zodo, 21 ]. This message is
sent to the root as per usual belief propagation.

At the root clique the algorithm is repeated to compute the posterior over all
variables. Once the algorithm completes at the root, the process is repeated and
new belief messages are passed back down the tree to recover all marginal beliefs.
All estimated marginal beliefs are shown as black traces in Fig.

Note that the correct mode in each case may have a lower probability, and is an
artifact of the approximations used. The sum-product operations (as we use here)
are operating correctly the with lower probability mode and istherefore not a con-
cern as would be in a max-product. Max-product style algorithms would have se-
lected the dominant mode at this point and failed.

6.4.2 A Third Landmark Sighting

In Fig. we also see the updated Bayes tree for the larger factor graph. The
previous leaf clique z; : 5 can be directly recycled, as per [115]. Two new leaf
cliques and root clique are formed, each with their own MCMC chains.

Now the robot drives 200 more units through four more pose positions, to pose
w7, where a third and final familiar landmark sighting is made. While passing
through poses z3 and x4, sightings of a new feature of interest, /;, is made. The
new feature [, is included in the factor graph. The complete system factor graph
is shown in Fig.

We will not repeat the same discussion, but note that cliques at the same depth
in the Bayes tree can be computed in parallel threads. The estimated and base-
line marginals for all variables in the factor graph, following a single upward and
downward belief propagation pass of the Bayes tree, are shown in Fig. Notice
how consensus has been reached, showing a single mode in the posterior belief.
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Figure 6-17: Top, four door example factor graph with seven poses X, and one
feature of interest L;. Solid disks represent independent measurements from
different sensor types. Bottom, the associated Bayes tree for elimination order
T3, Ty, T1, Tg, l1, T7, To, Ts.

A LA
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x1 X2 x3
180 190 200 210 220 220 230 240 250 260
x4 x5 X6
280 290 300 310 320 155 160 165 170 175
x7 11

Figure 6-18: Estimated marginal belief of all variables, black traces, following one
up and down pass of the Bayes tree in Fig. Baseline marginals, shown in red,
are computed via standard forward-backward solution over equivalent Hidden
Markov Model solution. Note the exact marginal of X; can have up to 1024 modes,
but only one significant mode at 0 corresponds to ground truth.
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6.5 SLAM-e-donut example

In this section we discuss a more elaborate two dimensional SLAM example where
distance only type measurement likelihoods are available; that is range only odom-
etry, and range only landmark sightings.

J T
- - i
=2 i
W ﬂigﬂi A
* i . ﬁ ' T
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' - 5 Z‘ﬁ'_«. . #

Figure 6-19: Left: Simulated distance only odometry SLAM example of a vehi-
cle driving on planar surface in the shape of the letter 'e’, with two known (red)
and two unknown (cyan) ranging beacons. Magenta lines show a range measure-
ment made to a unique ranging beacon. Right: Post inference histogram of all pose
marginals, showing concentrated densities at each of the true pose locations as well
as a few secondary modes. The origins of the additional modes become apparent

with step-by-step analysis.
The left plot in Fig. shows a simulated ground truth problem with four

unique landmark beacons, two of which have prior known locations (red) and the
other two must be mapped by the SLAM process (cyan). We assume that the vehi-
cle is moving in straight lines between poses (cyan trace). The figures show these
range measurements with magenta lines between the current vehicle position and
the beacon.

Note, the straight line assumption is not needed, but simplifies explanation of
this canonical example. We can readily modify this example to use more adept
likelihood distributions, such as dispersed odometry likelihood density, allowing
travel anywhere from the current point to maximum straight line distance away.

6.5.1 Multi-modal pose estimates

The SLAM nature of the problem is established by introducing prior location in-
formation from only two of the ranging beacons, shown as the red dots in Fig.
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Figure 6-20: Distinct modes in each of the poses, as found by the Multi-modal iSAM
algorithm for the SLAM-e-donut canonical example problem. The figure is simpli-
tied by grouping poses with shared modes, and showing the four groups. Notice
how multiple modes collapse as more information is presented via later poses.

Note that the initial position of the vehicle is not known and neither is the position
of the two cyan ranging beacons, which must be computed from the collection of
distance and range only measurements accumulated during the vehicle trajectory.

To simplify the explanation, we immediately show the final inference result
(histogram of all pose marginal samples) obtained for all thirteen poses with mul-
tiple beacon measurements on the right plot of Fig. We will separately look
at the landmark position marginals but note they were simultaneously computed.
Note the full factor graph and Bayes tree is shown later in Fig.

In Fig. we interpret the Multi-modal iSAM posterior inference result by
hand fitting separate normal densities to each of the multiple modes. The left fig-
ure shows possible trajectories for the first nine possible pose locations left, and
possible trajectories for the thirteen pose locations on the right. Each of the traces
are alternative trajectory modes which fit the data in some way. We study devel-
opment of each trajectory mode in the paragraphs that follow.

All Pose Marginals [ X, | -]

Top left plot in Fig. illustrates the estimate of the first pose location, since
no prior position information is available. The two red circles indicate measured
ranges from two known beacon locations, which produces two possible intersec-
tion locations. The second row, left plot shows the posterior inference result with
pose X;, three measurements to landmarks L, k£ = 1, 2, 3. The contour map shows
the posterior density belief on where pose X is likely to have occurred, and clearly
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Figure 6-21: Analysis of multi-modal pose marginals [ X;|-], £ = 1,2,...,5in
SLAM-e-donut example (part 1). Illustration of initialization in the top row and
evolving latest pose marginal from first to fifth pose position in rows from top left
to bottom right. Later poses are shown next in Fig.
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shows the two possible pose locations similar to the illustration in the plot above.

The platform is moved 50 units in some direction, which is illustrated by the
blue circles in the top right plot of Fig. The second plot on the right shows
the marginal posterior belief for the second pose [ X, |Z] over all available data
Z. The two rings in the contour maps show precisely the likely region where X,
could have occurred.

Still at position X5, we now introduce four beacon likelihood measurements,
as shown by the magenta lines in Fig. Note, this is the first observation of
landmark L,, but the second observation of the first three landmarks. The contour
plot on the left, second from bottom, shows the posterior belief [ X, | - | over all in-
formation including the new observations, where two distinct probability regions
are visible. The two modes represent two possible trajectories: Fig. depicts
the true trajectory (true) with the cyan trace, and a second possible trajectory is
shown in pink (M2).

The plot second to bottom on the right of Fig. shows the third pose lo-
cation and marginal posterior belief over all measurements [ X3 | -|. Further mea-
surements to each of the four beacons constrains the posterior to favor the correct
of two modes, shown by the contour density lines. The second smaller mode is a
turther extension of mode M2 shown in Fig. We note that the two unknown
beacons Ls, L, are still being surveyed at this point; we will later see how their
marginals are simultaneously converging to a stationary distribution.

The lower left plot in Fig. show the fourth pose position inference result
with posterior marginal | X4 | - | having collapsed to a single mode. Only two bea-
con measurements are made to prior known L, and unknown Ls. At this point we
recognize sufficient information has been collected to constrain the latest pose to
a single location. We also note when the singular pose consensus marginal infor-
mation from new measurements is propagated back to previous pose marginals
[ Xk |-], k = 1,2,3 they too are collapsed to the correct single modes. We do not
directly show the posterior marginals of older poses, but do trace the evolution in
the number of distinct modes for each pose marginal in Fig. Trajectory mode
M2 is implicitly ended with the consensus found at the fourth pose.

The final bottom right plot of Fig. shows the fifth pose. The marginal pos-
terior [ X; | - | again shows two likely regions of the state space. The two modes
originate from the single beacon L; observation. The vehicle could effectively have
continued in the upward direction, or turned sharp to the right and almost back
tracked to the second possible location. Recall that we only have odometry dis-
tance and not direction of travel available in this example. The new trajectory mode
is shown as M3 in Fig.
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Figure 6-22: Analysis of multi-modal pose marginals [ X} |-], £ = 6,7,..,13 for
the SLAM-e-donut example (part 2), following from the first five poses that where

shown in Fig.
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Figure 6-23: Distinct sustained modes in all pose and landmark marginals. Colors
group similar variables throughout the entire robot trajectory. For example, land-
mark L, is only observed at the second pose with near infinite possible distinct
locations. Notice how the mode counts collapse as more measurement likelihood
information is gathered. Due to weaker constraint, L, maintains around three dis-
tinct modes throughout the latter part of the robot trajectory.

The first two plots, top left and top right, of Fig. show the pose posterior
marginals over all the measurement data [ Xs|-],[X7]|-]. Two sustained modes
are shown in the likelihood density contour, corresponding to trajectory mode M3
(green) in Fig. The second left and right plots of Fig. show a collapse in
belief to a single mode in [ X5 | - ] and the creation of a new second mode in [ Xj | - |.
The new mode corresponds to a new trajectory mode M4, as shown in Fig.

The left, second from bottom plot in Fig. [-22|shows a large increase in the latest
pose uncertainty [ X | -], with two broad arcs originating from the two modes
previously observed in [ Xy | - |. The large increase in uncertainty is due to a single
beacon observation and lack of heading odometry information.

The right, second from bottom plot in Fig. reduces uncertainty back to two
concentrated regions of the state space. However, it is important to note that the
two posterior likelihood regions of [ X, | - | support multiple trajectory modes, as
shown in Fig.

Furthermore, the left bottom plot of Fig. shows four high likelihood re-
gions, which sustain multiple trajectories. We note the low likelihood mode in the
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upper left of [ X5 | - | has little connection to previous modes in [ X1, | - |, and shows
how later information can bring previously dormant modes back to the fore. The
final plot (bottom right) shows two major likelihood regions for the final pose po-
sition marginal [ X3 |- ].

'77 - ——-—@_—f—.,

Figure 6-24: Analysis of multi-modal landmark marginals [ L3 | - | throughout the
robot trajectory. The uncertainty shown as contour lines here are computed simul-
taneously to individual pose marginals estimated in figs.
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Following the latest pose marginal beliefs in figs[6-2Tjand[6-22] we see a constant
decrease and increase in the number of mode regions. Monitoring the number of
likelihood mode regions on each of the posterior modes as the trajectory develops
clearly shows consensus of a multi-modal solution, where the number of modes
per marginal decreases as more information becomes available. Fig.[6-23|shows the
number of distinct poses in each of the pose marginals [ X} |-], £ = 1,2,..,13. In
the next analysis we will follow the evolution of the landmark position marginals,
but note here the number of mode regions in their marginals also drop to between

one and three, as shown in Fig.

Landmark Marginals [ Ly, | -]

This section examines how the marginal beliefs ofthe unknown landmarks, [ L | - |
& [L4|-], develop as more information is gathered. The landmark and pose
marginals are estimated simulatenously. We first look at marginal belief [ L; | - |
in Fig. followed by [ L4 | -] in Fig.

The top left plot of Fig. shows the marginal posterior belief over landmark
Ls simultaneous to the first pose (top left plot of Fig.[6-2T). The two rings in be-
lief (contour lines) show the range measurement from the two possible first pose
locations. The second range measurement to the beacon L3 updates the marginal
posterior [ L3 | -] to the plot on the top right of Fig. where a few major arc
likely regions remain.

The second, left plot in Fig. shows four major likelihood regions in the
marginal posterior [ L; | - |, and is obtained with new measurements from the third
robot pose position. The second, right plot in Fig. corresponding to the fourth
pose position, shows the landmark marginal belief collapse to a single mode, as
the robot turns left. At this point we can say landmark L; has been mapped up
to unimodal certainty. Throughout the rest of the robot trajectory, through pose
X33, the marginal belief [ L | - | remains constrained to a single mode which clearly
coincides with the ground truth cyan dot beacon location.

Similarly, Fig. shows the marginal posterior [ L, | - | over all measurements
as the robot trajectory evolves through all poses. We note the first measurement
to beacon L, occurs at the second robot pose X, as shown in the top left plot.
The marginal belief shows two rings of likelihood (contour lines) owing to a single
range measurement from two possible locations in pose marginal [ X5 | - ]. The true
position of beacon L, is the lower right cyan dot.

Top right plot in Fig. shows the marginal posterior [ L, | - | for all measure-
ments available when the robot reaches pose X3. Several modes are still possible
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Figure 6-25: Analysis similar to Fig. of multi-modal landmark marginals
[ Ly | -] throughout the robot trajectory in SLAM-e-donut example.
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at this point. After the robot has made its first left turn in the second plot on the
left, we see there are still three to four likely regions. Only by pose X5 has the
uncertainty in marginal [ L, | -] be reduced to two or three major likely regions.
The uncertainty of two or three distinct modes remain throughout the remainder
of the robot trajectory to pose X3, as shown in the bottom plots of Fig. We
summarize the sustained multi-modality as distinct mode counts in Fig.
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Figure 6-26: Total number of distinct modes considered in the system. See Fig.
for tracking individual distinct modes per marginal belief in the factor graph.

Fig. shows the number of sustained modes in each marginal. By counting
all the trajectory modes, we can plot the total number of modes considered by the
Multi-modal iSAM algorithm for the SLAM-e-donut example, as shown in Fig.
A total of 19 distinct modes were considered in this problem with 30 dimensions.
We count the dimensions as two directions for each of the 13 poses and 4 landmark
beacons.

Fig. shows the factor graph on the top and Bayes tree at the bottom for
all variables and measurement likelihood functions. We emphasize two major
points: First, each measurement likelihood in the factor graph contributes a one
degree of freedom relative relation (constraint) between two variables, including
hidden pose and landmark states. Second, the graph is modeled as nonparamet-
ric belief, where inference is conducted across the entire graph using the Bayes
tree re-factorization. The Multi-modal iSAM algorithm supports incremental up-
dates, which allows previous computations to be recycled while arriving and the
full batch inference solution.
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Figure 6-27: Top: Complete factor graph of the SLAM-e-donut example, where [1
to [4 are the four landmarks. Bottom: The associated Bayes tree, with each of the
four landmarks as frontal variables in four leaves and all poses marginalized in the
root.
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6.5.2 Comparing Robustness and Computational Complexity

The SLAM-e-donut example shows how an underconstrained, Gaussian only infer-
ence problem ambiguity can be resolved with multi-modality. The correlation be-
tween robustness and computational complexity is specific to each problem. Tak-
ing the SLAM-e-donut example as a benchmark to evaluate the quality of solution
based on computational effort spent, and stress that different non-Gaussian beliefs
or factors may require a different type of analysis.

\j i /'/

Figure 6-28: Repeat analysis of multi-modal pose marginals [X;|-], k& =
9,10, 11, 12, using 25 particles per marginal. Comparable to Fig. using a higher
particle count.

Fig. shows pose locations Xy, X19, X11, and X, where each marginal pos-
terior is estimated with only 25 particles. These plots can be compared to Fig.
where 200 particles per marginal were used. The marginal posteriors Fig.
which are a poorer approximation of the true marginal, do not match the true vari-
able locations well. Evaluating the marginal at the true position produces a low
likelihood of occurance, and a maximum likelihood point is poorly matched to the
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Figure 6-29: Two traces for computation time vs. number of particles per marginal
for SLAM-e-donut example. The upper blue trace is the actual measured compu-
tation time given the current implementation. The lower yellow trace is a five fold
improved estimate (made by the author and based on experience of the software
implementation) of achievable performance using the current algorithm, but bet-
ter with a software implementation.

true location. The following discussion quantifies these marginal posteriors using
the true variable location ¢;: By evaluating the posterior likelihood [C:)Z =0, | Z]

and distance to maximum point on the marginal ||#; — argmax [@i | Z} I|.

Computational complexity is evaluated relative to the number of particles per
marginal used for inference and representation, while Monte Carlo chain iteration
counts are kept constant throughout. Our analysis will focus on five parameters
dependent on changing the number of particles per marginal: (i.) computation
time on current implementation version; (ii.) posterior probability likelihoods for
each variable at the true location across different particles per marginal; (iii.) L
error of each variable from the true location across different particles per marginal;
(iv.) posterior probability likelihood of all variable marginals relative to their true
location at the end of the trajectory; (v.) L, error between the maximum posterior
marginal point and true location of all variables at the end of the trajectory.

Fig. shows the computation time in seconds for a complete batch solve of
the entire SLAM-e-donut system (13 poses and 4 landmarks). The actual measured
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Figure 6-30: Top, aggregate statistics of posterior likelihood evaluations for each
variable at the true value across various particle per marginal counts. Bottom, L,
error between maximum point on marginal posterior and true value of each vari-
able. Smaller errors are better.
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time for a complete batch solution of the system is shown in blue. Computation
was performed on an Intel i7-3920XM at 2.9 GHz with 8 Mb cache on a laptop
computer with 16 Gb of RAM, and RoME jl implementation version v0.0.7+, [63].
The yellow line in Fig.[6-29]indicates the authors predicted achievable computation
speed with a better engineered implementation of the Mutli-modal iSAM algorithm
— the current implementation does not yet fully exploit multi-threaded and in-
place memory operations. Future versions of the software implementation will
include these and other improvements.

The top plot of Fig. shows the posterior likelihood evaluation of the
marginal density for each variable at the true location of the pose or beacon,

[@i =0,|Z ] The likelihood evaluation for few particles per marginal are low,

given a poorer marginal approximation as shown in Fig. An increase in the
number of particles increases the fidelity of the marginal approximations and in
turn increases the likelihood at the true variable location. Particular to this exam-
ple, the approximated marginal densities remain similar as the number of particles
per marginal exceed 400. This shows as a fairly constant likelihood evaluation in

the top plot of Fig.
The lower plot in Fig. shows the distance between the maximum point
on each marginal density from the true location of the pose or beacon, |6, —

argmax [(:)z ] Z] |. Low particle per marginal counts have poor estimation accu-

racy, but improves as the particles per marginal increase. Beyond 200 particles per
marginal, particular to this example, the maximum point on the marginal beliefs
of each variable start to match the true value pretty well.

The dots in Fig. relate to the values associated with pose locations
Xo, X190, X11, X12, where multiple modes are sustained in the solution. The dots
in the bottom plot represent the distance error to a higher secondary mode (the
true mode has smaller likelihood). Note the row of dots at around 65 m error re-
gardless of particle count, which indicates a strong secondary mode. However,
the likelihood evaluation over the same varialbes show that the true position is
still supported by a likely mode in each of the marginal posteriors.

Fig.[6-31|shows a subset of the same information as used in Fig. butinstead
swaps the x-axis for each variable. Different colors represent different a number
particles per marginal. The top plot shows posterior likelihood evaluation on the
y-axis, and as before higher fidelity marginal density approximations increase the
likelihood at the true variable location. In this example, pose variables Xy and
X1o remain multi-modal which reduces the likelihood evaluation, as shown in the
top plot. The key indicator is that low numbers of particles reduce the marginal
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Figure 6-31: Likelihood evaluation and maximum point error of SLAM-e-donut ex-
ample at true variable locations, across a few different particle per marginal counts.
Higher values represent better aligned and higher fidelity marginal posterior be-
lief approximation at the true variable location. L; and L, are ommited due to
direct prior factors placing them at known locations.
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approximation accuracy such that the true location becomes less likely (dots at the
bottom of the top plot).

The bottom plot of Fig. again shows the distance between the maximum
point on each marginal estimate from the true variable location. When the number
of particles per marginal are high, the distance is short — shown by the dots at the
bottom. As the particle count is reduces, the marginal posterior approximation
tidelity reduces and the maximum point on the density moves further away from
the true variable location. As before, pose variables Xy and X, are multi-modal
with the maximum belief point on a higher secondary mode.

It is worth noting a special situation visible in the bottom plot of Fig. Pose
variables Xy and Xy, where the number of particles per marginal are low (25),
actually have small distance errors. At first this incorrect with regard to the general
trend, however, the top two plots in Fig. show these situations. The marginal
posterior fidelity is poor with only 25 particles, resulting in larger blobs of density
belief, where the maximum point ends up being near the mean of all the modes.
This in turn results in a lower maximum point distance error.

Lastly, we write the true positions of landmarks and poses, and
note that range measurements to beacons are only made when within
150 wunits. The known beacons L, L, are at (z,y) = (10,30),(30,—30),
while the unknown beacons Lj, L, are at (80,40),(120,—50). The 13
true pose locations are, (0,0),(50,0),(100,0),(100,50),(100,100), and
(50, 100), (0,100), (0, 50), (0, —=50), (0, —100), and (50, —100), (100, —100), (100, —50).

6.6 Acoustic Structure from Motion (3D)

Recent work [99] in imaging sonar demonstrates a measurement ambiguity which
can benefit from nonparametric sum-product style solutions. The previous exam-
ples were one and two dimensional canonical test cases. In this section we look at
a three dimensional canonical example that includes Gaussian and uniform error
error distribution. We base our example on acoustic structure from motion (ASfM)
from see Huang et al. [99]] and construct synthetic data for each of the three exper-
iments in this section.

A linear sonar is mounted to the body of an underwater vehicle, and we as-
sume that feature points of interest have been detected in a linear array sonar.
Measurements to the features have tight normally distributed variance in bearing
and range, however, the sensor has a wide elevation acceptance angle. We model
elevation uncertainty with a uniform distribution of +0.3 rad.
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For our examples, we are looking to estimate the corner point of a hypothetical
box, shown in red in all the related figures that follow. We conduct three experi-
ments where the underwater vehicle is moved between two poses, taking a sonar
sensor measurement at each pose. The green ROV model is looking along the
x —axis, or red axis of the pose triads. We also note that visualizations for this sec-
tion were done with the Director viewer [146], using various Julia packages, such
as DrakeVisualizer.jl and others, to make the visualizations possible.

tviq intersecting o & R
likelihood regions

Figure 6-32: Canonical acoustic structure from motion example where a hypotheti-
cal ROV translates and rolls 45°, observing and successfully resolving the posterior
belief of where a corner feature is located, using uniformly distributed belief in the
elevation measurement from the sonar.

In the first experiment, shown in Fig. a hypothetical ROV vehicle starts out
looking edge on to the red box object. The corner feature of interest is indicated by
a green sphere at the top of the box. In the first pose, shown on the left, one mea-
surement sighting is made to the corner feature. Given the uniform uncertainty
in the sonar elevation angle of the sighting, we can see the vertical uncertainty
contours as purple iso-contours.

Pitch + Z translation

Figure 6-33: Canonical acoustic structure from motion example where a hypothet-
ical ROV translates vertically and pitches 45°, observing and successfully resolving
the posterior belief position of a corner feature on the corner of the red box.

The center image shows the second pose, where the vehicle has moved 0.7 m
to the left and rolled over 45°. We insert a usual three dimensional normally dis-
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tributed rigid transform likelihood between the two poses, as an odometry con-
straint. A second sighting is made to the corner feature, indicated by new iso-
contours. A factor graph is assembled with three variable nodes for robot posi-
tions and the corner landmark feature. Three conditional likelihoods and a prior
uncertainty model included in the factor graph.

The right image of Fig. shows the Multi-modal iSAM inference result. We
can see that the constant probability surfaces (iso-contours) for the posterior belief
over the corner feature are accurate. A second set of iso-contours is also shown on
the second robot pose, by which we emphasize that both the landmark position
and the robot pose position and orientation is being estimated as a true SLAM
problem.

We conduct a second canonical experiment, shown in Fig. where the ROV
is again moved between two sonar measurement poses, but the vehicle is trans-
lated vertically and pitched over. We insert a three dimensional rigid transform,
which is taken as normally distributed, as the odometry measurement between the
poses. The left and center images show the individual proposal beliefs of where
the top corner of the red box is. The right image shows the posterior estimate of
the landmark position. Again, the posterior belief is the intersection between the

Figure 6-34: Canonical acoustic structure from motion example where a hypotheti-
cal ROV translates yaws 90°, observing twice, and successfully resolving the multi-
modal posterior belief position of a corner feature on the corner of the red box, and
note in this case the posterior belief is uncertain about top or bottom of the box, is
indicated by the multi-modal posterior belief estimate in iso-contours.
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two measurement functions.

The last ASfM example shows only the final inference result in Fig. The
ROV vehicle was yawed 90° around the edge of the red box, again making two
sonar measurements to the corner feature. What is interesting about this example
is that with the elevation uncertainty being bigger that the box, we are not sure
whether the top or bottom corner was detected. The figure shows the marginal
posterior belief iso-contours are multi-modal, with belief mass around the top and
bottom corners of the box as we expected.

6.7 Critical Analysis

The first example, finding multi-modal square root solutions through iteration,
showed how an initial belief estimate could be migrated to the final and correct
posterior marginal beliefs using iterative computations. The robot three door ex-
ample explored how multi-modality manifests in a sum of Gaussians approach.
We were able to find the true posterior distributions analytically. Subsequently, we
showed a rudimentary sampling scheme to solve the three doors example specifi-
cally, and showed the answers match the analytic ground truth solution. The three
door example also clearly illustrates the idea of consensus, where low likelihood
modes are practically ignored, favoring computation on the dominant modes.

Next, we upgraded our analysis to a the more general Multi-modal iSAM solver
on an extended robot four door example. The four door example was designed to
produce intermediate multi-modal posterior distributions. We were indeed able
to show that the multi-modal beliefs are successfully recovered. By then adding
more data with subsequent poses and door sightings, we show that consensus is
also found and that all marginal posteriors become unimodal, as we expect. The
extended four door example also introduced an element of mapping, by estimat-
ing the location of a previously unknown landmark. The results from the four
door example exceed previous examples in the literature and contribute to our un-
derstanding of of multi-modality at the clique level, rather than multi-hypothesis
across the entire trajectory as has been done in the past.

We then examined the two dimensional robot navigation SLAM-e-donut exam-
ple to illustrate a true SLAM type problem, where the initial condition of the robot
was not known ahead of time. Two unknown landmarks were also successfully
mapped during the execution. We note that this example produced an inference
problem on 30 dimensions, which was easily solved with our algorithm. This ex-
ample clearly shows high levels of sustained multi-modality across all marginals,
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while consensus reduces some of the modes. We believe that the SLAM-e-donut
is unique in showing how dominant modes are tracked, and low likelihood modes
ignored, without the user having to explicitly consider which decisions or modes
should be modeled. This example shows a “black box” approach to nonparametric
and efficient multi-modal solutions.

Furthermore, the modeling and construction of the factor graph to describe the
problem is easily accomplished. In all the examples, especially the SLAM-e-donut
example, we show that multi-modality can in some cases be synonymous with
ambiguity from Gaussian-only measurement likelihoods. The SLAM-e-donut ex-
ample illustrates that by using only Gaussian measurement models we are able
to produce highly non-Gaussian posteriors. We do note that the non-Gaussian
posteriors occur in weakly constrained situations where a degree of uncertainty
remains. Regardless, our algorithm is able to approximate the correct posterior
result correctly. Since the algorithm maintains the asymptotic correctness prop-
erty, we know our posterior approximation can be improved asymptotically to the
correct posterior at an increase of computation.

6.8 Conclusion

This chapter complements the development of the Multi-modal iSAM algorithm in
Chapter 5| Here, we reviewed a few key canonical examples to better explain the
origins and computation of multi-modality. We have shown that we are able to
construct basic purely parametric or nonparametric factor graphs and solve them
with our Multi-modal iSAM back end solver, arriving at highly non-Gaussian (non-
parametric) posteriors. The examples are simple enough to verify by hand, but
show how the complexity in understanding the results quickly grows. We have
shown how correct nonparametric posterior approximations are found by care-
tully interpreting the algorithm output. In the ASfM example, we showed that a
multi-modal solution in three dimensions is also possible, and that other paramet-
ric models such as uniformly distributed elevation angle can be natively supported
by the approximated sum-product inference algorithm.

260



Chapter 7

Centralized Factor Graph

Chapter 3| discusses how to model a joint probability belief in a factor graph us-
ing a variety of sensing modality likelihood models. Chapter |5 discusses how to
perform robust multi-modal inference over the factor graph model. This chapter
argues that navigation processes should be centralized around the factor graph
in a server-client model, rather than the front-end process, to achieve separation-
of-concerns between all stakeholders. We also promote the use of starved graph
database technology for reasons including concurrency, large data throughput,
and multi-language support. In Chapter [§, we present and discuss an example
use case with a Turtlebot wheeled robot. Work in this chapter was published in
collaboration with S. Claassens, S. Pillai, R. Mata and J. Leonard [64].

7.1 Introduction

Realizing tangible value from robotic data requires a versatile and highly-
accessible data representation. Novel database technologies provide advantages
in representation, manipulation, and extraction. We argue the benefits of graph
databases in robotics by exploring spatio-temporal representation and centralized
persistence. This enables situationally-aware querying and inference of the robot’s
task-specific state at any point in its history. We view this as a critical component
in the robot’s ability to learn newer representations from previous experiences.

We propose a two-tier persistence architecture as depicted in Fig. [7-1|that main-
tains independent databases for: (i) A graph that provides both the master data
index as well a store for relational, queryable data (e.g. the robot’s Maximum-A-
Posteriori state estimate); (ii) A key-value store retaining arbitrarily large sensor
data (e.g. RGB and Depth (RGB-D) imagery and laser scans).
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Figure 7-1: Conceptual description of a navigation graph centralized robot data
persistence and recall system. The graph database provides an efficient spatio-
temporal search index while the larger sensor data is retained in the key store.
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Through potential use-cases and experiments, we emphasize the flexibility of
graph databases for a multitude of concurrent tasks: (i) Post-hoc loop closure de-
tection and incorporation; (ii) Continuous factor-graph solving for simultaneous
localization and mapping; (iii) Incorporation of post-processed information such
as per-pixel semantic segmentation of individual keyframes; (iv) Querying rele-
vant scene entities as shown in Fig.

Next we present three major themes relating to a central navigation and data
store system. We showcase three data queries which illustrate the benefits of a
central database system in robotics, followed by related work and limitations. We
present an implementation discussion and experimental results using a Turtlebot
robot [182], discussed with other results in Chapter

7.2 Principal Themes

Our approach emphasizes three core requirements in a robotics system: Random
access via query relating to interaction with collected data in unpredictable ways;
A Centralized architecture relating to in-situ interaction with the data from multi-
ple, weakly independent processes; and Horizontal scalability relating to offloading
large computation in real-time.

7.2.1 Random Access Queries

Insertion, modification, and extraction from any persistence framework should be
as efficient as possible. The underlying complexity of this requirement is that an
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architect has to address the variety of different roles. We are proposing that a
pose-keyed graph fulfills a good balance of ease-of-access with insertion speed.
The natural structure of the graph also allows custom keying to both index and re-
trieve specialized datasets from the collective data (such as keying data by tracked
features).

Three example queries are provided in Section to demonstrate how the
graph database enables random-access queries.

7.2.2 Centralized Architecture

Local processing of sensory data reduces the need for large-bandwidth commu-
nication systems, however it also isolates the data and places large demands on
the processing power encapsulated in the robot. This is relevant in exploratory
robotics, where data volumes, bandwidth and latency are fundamental concerns
during design. Domestic and urban environments, however, offer greater commu-
nications bandwidth but large scale robotic processing power remains expensive.

The question becomes one of balancing local robot processing with large scale
centralized processing. In these settings, centralizing the data would allow: (i)
long-term data accessibility by any number of agents; (ii) minimization of local,
client-side processing; (iii) sharing of data and analysis between different sessions
and robots; (iv) aggregation and refinement of the collective data (e.g. summary
maps).

7.2.3 Horizontal Scalability and Concurrency

Requiring horizontal scalability enforces that the underlying data structure may
be processed by multiple independent applications. We argue that a horizontally
scalable system is advantageous as we are not constraining the system to a single
application. Rather, new agents may be introduced at will, and the underlying
structure should support operation by any number of concurrent applications.

7.3 Graph Databases for Robotics

We argue that relational databases are a critical step forward as they provide: (i)
a rich scalable data structure where robots and task-specific processing are not re-
quired to store the complete graph in-memory; (ii) centralization of the data per-
sistence layer so interacting-processors may operate concurrently on the shared
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data; (iii) a relational query language for powerful data extraction where only the
relevant data is returned to the client.

However, using a relational database for data storage has drawbacks, as: (i) it
requires the graph be represented as tables and tabular relationships, which causes
unnecessary, constant translation from graph to tabular structure; (ii) it limits flex-
ibility as the relational structure must be defined beforehand and is difficult to
modify in situ; (iii) large sensory data will bloat the database with binary blob
elements, negatively affecting the overall database performance.

Classic relational databases represent data and relationships using a tabular
structure. Similarly, graph databases represent data and relationships using a na-
tive graph datastructure. Unlike statically typed tables in relational databases,
graph databases allow for richer data types and complex relationships [1]. Accom-
panying the richer elements is a query language that can interrogate and traverse
the data structure.

We propose a native graph database and two-tier storage structure to offload
large sensory data to a NoSQL key-value store. NoSQL key-value stores are de-
signed for efficient insertion and extraction, which is highly applicable for persist-
ing the larger sensory data. This is done to realize a ‘starved graph’, i.e. a graph
that can be efficiently leveraged for querying often-used data and relationships,
with the ability to extract the larger binary on demand (image and sensor data).
The keys are stored in the graph, providing a link between the two systems. Users
of the persistence system choose which data should be included in the graph and
which should be offloaded, and this can change dynamically. This architecture al-
lows additional systems and data to be bound to the graph without bloating the
structure.

Prior to discussing implementation or experimental results, we wish to high-
light the advantages of the centralized robot graph database with a few work-
ing examples. Consider that in all cases the query execution is performed on the
server-side, resulting in a small but relevant fraction of the complete dataset being
transferred to the client.

7.4 Working Examples

Three example queries are chosen to illustrate how the structure can simplify oth-
erwise complicated random access queries. We use Cypher syntax, a declarative
graph database language that is native to Neo4j [4].
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MAICH n:POSE

WHERE n.timestamp = max(n.timestamp)
AND exists (n.SLAM _Estimate)

RETURN n.label , n.SLAM _Estimate

Figure 7-2: Retrieving the latest refined pose estimate.

MATCH n:POSE

WHERE n.timestamp = min(n.timestamp)
AND exists (n.SLAM _Estimate)

RETURN n.label , n.SLAM _Estimate

Figure 7-3: Retrieving the initial refined pose estimate.

7.4.1 Temporal Queries

Computing the start and end positions from a ROS bag [192] or datafile in-
volves scanning the complete dataset. The SLAMinDB graph representation al-
lows a succinct query to perform server-side searches from indexed properties
(such as timestamp). Given that n.timestamp is the timestamp parameter and
n.SLAM Estimate we wish to extract:

The solver is computing the SLAM solution concurrently—captured by the
exists(n.SLAM_Estimate)—if this exists then we have a valid SLAM estimate.
Omitting it would retrieve the latest raw pose in the SLAMInDB implementa-
tion. As the solution is calculated in-situ, the simple conditional create an index-
searched operation that is arguably difficult with flat file datasets.

Similarly we can retrieve the start location of the refined graph by simply chang-
ing our search criterion:

In multi-agent scenarios, the graph retains the complete history of all agents.
Queries can be constructed that relate information of interest (such as identified
objects, proximity, or time) to the cumulative history of the robots. Additional
indexing allows the results to be efficiently extracted. An example of such an ex-
traction would be retrieval of the latest pose (n.SLAM Estimate) and sensor data
(n.bigData) for ROBOT1 during its fifth session, SESSION5:
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MATCH (n:POSE:ROBOT1: SESSIONS5)

AND n.timestamp = max(n.timestamp)

AND exists (n.SLAM _Estimate)

RETURN n.label , n.SLAM_Estimate, n.bigData

Figure 7-4: Retrieving the latest refined pose estimate for ROBOT1 during SES-
SIONS run.

7.4.2 “Foveation” and Spatial Queries

In addition to temporal queries, the graph can leverage position as a filter. A useful
example of such a query would be to extract all nodes within a vicinity and within
view. This is referred to as a foveate query and can be implemented by modify-
ing the WHERE clause. Additionally we are making use of two server-side user-
defined functions which augment the query language with SLAMinDB-specific
functionality. The following query will return all factor graph nodes with a [2,5]
meter range and within a 45° field-of-view:

WITH [0, 0] as position, pi/4 as fov
MATCH (n)
WHERE
// Region filtering

cg.withinDist2D (n, position, 2, 5)
AND
// Frustum cutoff filtering

cg . withinFOV2D (n, position, fov)
RETURN n

Figure 7-5: Foveation calculation as Cypher query.

User-defined functions and procedures can address scenarios where often-
used queries should be encapsulated, or in cases where procedural steps are re-
quired. For reference, we have included a simplified form of the cg.withinFOV2D
function:

User-defined procedures allow more comprehensive code to be embedded
server-side and if (as in the case above) we can optimize the search on the server,
the foveate query can be succinctly expressed as:
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@UserFunction
public boolean withinFOV2D (
@Name(”node”) Node node,
@Name(” position”) List<Double> pos,
@Name(” fov”) double fovRad
) A
double[] pose = (double[])node. getProperty ("MAP\ _est”);
double poseAng = pose [2];
//Calc pose—forward and pose—to—position vectors
SimpleMatrix
pose2POI = toVec(pos.get(0)—pose[0],pos.get(l)—pose[l]),
poseFor = toVec(Math. cos(poseAng) ,Math. sin (poseAng));
pose2POI = pose2POI. divide (pose2POI.normF () );
//Use dot product to determine if within FOV
return Math.acos (pose2POI.dot(poseFor)) <= fovRad;

Figure 7-6: Simplified form of the cg.withinFOV2D user-defined function in Java.

WITH [0, 0] as position, pi/4 as fov
CALL cg.foveate(position, 2, 5, fov)
RETURN n

Figure 7-7: Foveation calculation as user-defined procedure.

7.4.3 Interactive SLAM

Graph relationships provide rich functionality for generating and traversing el-
ements. Consider two concurrent processes in SLAMInDB: one processing the
sensor data and suggesting potential loop closures, and the second processing a
parallel solver consuming the changes when suitable. The two agents can be on
different systems, operating with minimal interaction as fully decoupled applica-
tions.

The production of the loop closures could, for example, be a supervised appli-
cation. In the event that a loop closure is confirmed, an edge can be introduced to
indicate to the solver that it has new relationships to process. This can be done in
the graph with the following update query:

When the SLAM solver is in a suitable state to integrate the new relationships,
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£} Sensor Frustums
X Point of Interest

Figure 7-8: Illustration of foveation query and node selection for multiple robots
in the centralized SLAM-aware database.

MAICH (n:LANDMARK) , (m:LANDMARK)
WHERE n.label="110" and m.label="184"
SET (n)—[r :SAMELANDMARK] — (m)

Figure 7-9: Introducing edges in the case of a loop closure.

it can consume the unique edges and produce the correct function nodes:

MATCH (n)—[r :SAMELANDMARK] — (m)
RETURN n.label , m.label, r

Figure 7-10: Solver retrieval of edges during client-side graph update.

The refined graph is updated in place, resulting in incremental improvement
of the dataset without processing off-line or requiring complex handshaking.

7.5 Implementation

The experimental implementation makes use of a Neo4j graph database [4] for the
graph persistence and a MongoDB NoSQL database [3] for the key-value storeﬂ
The codebase was developed principally in Julia [18] with the robot front-end

!The code for the experiment is available at https://github.com/dehann/Caesar.jl and
https://github.com/GearsAD/CloudGraphs. j1
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and image recognition in Pythonf] The integration of both the Multi-Modal iSAM
solver (Caesar.jl) [62] and the underlying data persistence layer (CloudGraphs.jl)
is referred to as SLAMinDB.

On insertion, data partitioned into four categories: (i) Labels for indexed
searching; (ii) Properties for searching and filtering; (iii) Packed data for local ver-
tex storage; and (iv) Large object storage for MongoDB storage.

Labels and properties can be used to build relational queries and traverse the
graph in task-specific ways. Vertices, for example, can be labelled when AprilT-
ags [179] are detected, and the properties can contain more detail about the spe-
cific tag. The packed data permits critical binary data to be stored in the vertices - a
compromise between the large data store and simple properties. Custom labelled
edges can also be inserted by developers to insert task-specific traversals which
augment the existing factor graph.

Large sensor data is trimmed from the vertices and persisted in MongoDB. The
vertices are appended with the MongoDB keys to maintain the relationship be-
tween the two stores. The separation is opaque to graph consumers, which operate
via the CloudGraphs AP], splitting and re-splicing as the data as required.

7.5.1 Illustrating Concurrency and Random Access

We are also particularly interested in the ability to offload computation from the
robot, whereby more post-hoc / in-situ agents, or human operators, can interact
with the data in a rich manner.

In our experiments, we used a Turtlebot outfitted with a RGB-D structured light
camera and demonstrate tangible experimental results relating to the three main
themes discussed in Section Random query access, centralized and atomic
transactional structure, and horizontal scalability. The robot is tele-operated in
an AprilTag-laden office environment for benchmarking purposes. Through an
interactive procedure, we incorporate cross-session navigational loop closures—
via AprilTags—as constraints to the SLAM factor-graphs from each session.

Figure shows a visualization of the merged map reconstructed from the
Turtlebot data. The local processes, designed to be light-weight, communicates
relevant measurements back to the central database for SLAM solver consump-
tion. Typically, the central database is hosted on a more powerful server computer,
while the the robot connects to it through a low-bandwidth network. The local
robot processes incrementally push new measurement factors and variables to the
centralized database, all while the database consumes and solves with these added

2 Pybot is available at https://github.com/spillai/pybot
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constraints independent of each other. Larger key-value entries such as raw color
and depth imagery from the RGB-D sensor are stored in a local MongoDB instance.
These entries are synchronized with the server MongoDB data store at lower prior-
ity as permitted by network availability. Additionally, we generate globally unique
identifiers at the initial commit to the local store, which will become globally avail-
able as the network availability allows.

At any point in time, the robot may choose to run its own queries against the
central database. For example, the latest available Maximum-A-Posteriori (MAP)
location estimate (independently computed by the SLAM agent) can be required
using the query presented in Section Depending on network traffic and
length of network between the robot and server, this query nominally takes on
the order of tens to hundreds of milliseconds to run. We’d like to emphasize that
the query sent and returning result are only small single line text strings, with
most computation happening on the central server.

The server computes and then returns the latest available SLAM pose estimate.
The ability to make such queries has made an otherwise complicated processes
remarkably simple. The robot may now incorporate these return results, regis-
tered against a previously known pose ID to improve its own location estimate.
A process not entirely dissimilar from how the Apollo spacecraft navigated to the
moon and back, resetting the spacecraft’s local estimates using Earth-based radio
navigation and computation.

7.6 Conclusion

This work demonstrates the applicability of a centralized factor-graph for data per-
sistence. By leveraging the natural structure of the factor graph as the principal
data representation in a robotic mobile system we realize a model that supports:
(i) Random access for data; (ii) Centralization of data; (iii) Horizontal scalability.
There are several advantages of relating most robotic data to a single versatile in-
dex, which are demonstrated in the examples. While centralizing the factor graph
in such a manner may at first not seem an optimal choice, we show that the ad-
vantages of using dedicated data layer technologies far outweigh the marginal in-
crease in complexity to existing robotic navigation and recall systems, and that this
is superior to local, independently operating solutions, especially with regard to
cooperative agents.
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Chapter 8

Experimental Results

In Chapters[3land 4] we developed a method to combine parametric and nonpara-
metric measurement likelihoods into a joint probability factor graph description,
and we described four factor groups. In Chapter 5, we developed the Multi-modal
iSAM inference algorithm to resolve the marginals of the joint posterior belief, and
in Chapter [6|looked at a few canonical examples. This chapter reports the results
from practical examples, individually showing the three of the four factor groups.
Chapter [9 will interpret and conclude the discussion of this thesis.

8.1 Introduction

In this chapter we present findings from five different experiments. Each experi-
ment illustrates different combinations of the factor groups II, II, and III - see Sec-
tion for details. The first two of five experiments use the new inertial odome-
try factor with a parametric optimization, while the last three of five experiments
use the Multi-modal iSAM solver.

Each of the five experiments require a separate front-end pipeline to construct
the associated joint probability factor graph. To illustrate the commonality be-
tween the five experiments, we refer back to a general joint probability factor graph
illustration from Fig.[3-1]in Chapter 8] In each case, we highlight the variables and
factors of interest, and note that slight variations are required to the common joint
probability figure, but point them out as we go along.

The five experiments include (i.) hand-held monocular camera and MEMS in-
ertial in a VICON motion capture room; (ii.) Data from the BDi Atlas humanoid
robot, including tactical grade inertial measurements, leg kinematics, and monoc-
ular feature tracking from a head mounted camera; (iii.) the Victoria Park car driv-
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ing data set [168]], including wheel and steering angle encoders along with range
and bearing object measurements; (iv.) various data from a wheeled Turtlebot
robot autonomously exploring an indoor setting; and (v.) beam formed acoustic
data from an autonomous underwater vehicle.

8.2 A Free-Motion Device (Group I & II)

We conduct two experiments to showcase how bearing only camera features can
be used alongside inertial odometry. A follow-on experiment then includes a few
sparse AprilTag sightings as loop closures, which are introduced through three
dimensional range and bearing measurements. All visual sightings are made with
a monochrome monocular camera from manufacturer Point Grey:.

The monocular experiment presented here is divided into two cases: First, a
sparse corner feature tracking only case. Second, we reuse the same trajectory but
then include a few AprilTag detections to act as visual loop closures constraints in
the factor graph. Before discussing the ‘with” and "without” loop closure cases, we
briefly look at the visual feature tracking scheme used.

8.2.1 Brief on Monocular Feature Tracking

The left side of Fig.[8-T|shows a single frame with some feature points being tracked
from one of the test trajectories of a factor graph based visual-inertial system.
Longer feature tracks of rigid corner points through the image sequence improves
the solution quality. Longer feature tracks also minimize duplicate features, which
are lost and regained, as the trajectory progresses.

Maintaining tracking lock of a visual feature under significant scale, rotation
and background variation is a major challenge. We had initially tried feature de-
tection and descriptor matching BRISK [136], ORB [200], SURF [15] and SIFT [139],
but found feature tracks to be relatively short at best.

We also tried the Kanade-Lucas-Tomasi feature tracker [21} (142, 207] — using
Birchfield’s implementation [22] — but again found the feature tracks to be rela-
tively short and with multiple outliers, even with the affine consistency improve-
ment enabled [22,230]. Dynamic objects in the scene are a further concern with
both the aforementioned tracking schemes.

In an attempt to increase feature tracking length and robustness, we developed
our own predictive template matching style feature tracker similar to [157]. Track-
ing is achieved by selecting Harris corners [87] as good features to track around
which a template region is extracted.
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Figure 8-1: Left: Example image from monocular camera, tracking Harris corner
features in the scene. An AprilTag is also visible, and is used for visual loop closure
constraints — five tag markers were randomly placed in the environment, with no
prior knowledge as to their location. Right: Example segment of feature point
tracking across several key-frames. The square indicates chosen match location,
while the numbers top-left indicate various parameters of the matching process.
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Figure 8-2: Joint probability factor graph, for a visual-inertial experiment with fac-
tors from Group I and II, where blue circles are pure inertial odometry factors for
IMU measurements and yellow factors represent feature tracking measurements
from a monocular camera rigidly attached to the IMU.
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Using the real-time inertial odometry solution we predict how feature patches
will move in sequential images and extract regions of interest for each image. Still
using the inertial prediction, an approximate inverse homography transform is
then applied to the current predicted region of the interest patch, to transform
back to the reference pose from which the template patch was extracted.

A new feature point is selected or discarded based on a testthat includes a high
convolutional match score, the clear existence of a Harris corner feature, and low
ambiguity with other Harris corner features in the region of interest. A short ex-
cerpt of feature tracking is shown in Fig. where each of the steps above have al-
ready been performed. Each of the images is down sampled at each keyframe (pose
location) in the trajectory, and represents the bearing only measurement made to
that feature.

8.2.2 Retroactive Visual-Inertial Trajectory

Using a Microstrain GX3-25 IMU and monocular camera feature tracks as dis-
cussed above, we can assemble a joint probability factor graph as illustrated in
Fig. Inertial odometry measurements are taken between discrete pose loca-
tions. Each pose has a corresponding keyframe image, as illustrated with Fig.
and discussed above.

In this case, most of the system was implemented in C++, such as visual fea-
ture tracking. The inertial odometry factor implementation was done with a C++
modification to the iSAM1.7 library, whilecthe actual preintegration process was
performed with a Julia implementation. The inertial odometry factors and preinte-
gration of measurements, compensation gradients and predicted error covariance
is as described in Chapter

Two datasets were captured with camera and IMU rigidly attached and walked
by hand inside a VICON motion capture room. The MIT LCM data logging and
playbag toolchain [95] was used to store and process all data. We use the VICON
motion capture system to extract the initial condition of the trajectory, which would
then allow us to evaluate the trajectory estimate accuracy. The VICON room di-
mensions are approximately 12 x 7 m.

We stress that our trajectory evaluations are not a post inference fit to the VI-
CON data, but rather a free trajectory with only the first pose in common with the
VICON setup. The errors we report include all drift factors accumulated starting
from the first pose. In particular, we also note that scale in the solution is obtained
through double integration of accelerometer measurements.

Each of the two datasets were reprocessed twice, one using only visual feature
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Figure 8-3: Three dimensional visualization of the second hand-held inertial and
monocular trajectory segment from a SLAM solution, starting top left and walk-
ing three anticlockwise loops. Red-green-blue triads represent IMU orientation
(camera is different). Red dots are opportunistic corner features in the room and
orange squares are opportunistic AprilTags (used for loop closures). The visual-
ization was generated using the MIT Collections Viewer package.

tracks, and once using feature tracks and the few AprilTags as common loop clo-
sure measurements. Each of the figures that follow may show "Monocular’ for fea-
tures only, and "Monocular + loops’ for features and AprilTag measurements. We

discuss the monocular and monocular with loop closure cases in the two separate
sub-sections below.

Fig. [8-3 and Fig. [8-4 show three dimensional visualizations of the monocular
with loop closure SLAM solution. The trajectory shown in Fig. [8-3|is shorter and
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snakes back and forth, while the second in Fig. [8-4 walks around in multiple loops
through the room. The red-green-blue triads show IMU poses position and ori-
entation in the VICON room reference frame, and red points are opportunistically
monocular corner features positions as estimated by the SLAM process.
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Figure 8-4: Three dimensional visualization of the first hand-held inertial and
monocular trajectory segment from a SLAM solution, starting top left and walking
three anticlockwise loops. The elements descriptions are the same as 8-3

Sparse corner features only

In this experiment sparse corner feature sightings — from a monocular camera —are
used to aid the inertial odometry bias estimates. Fig.|8-2|shows the factor graph as
the combination of a Structure from Motion problem (monocular feature sightings)
and inertial dead reckoning. The least squares solution to this combined system of
equations is computed incrementally with iSAM [116] and trust region extension
[197].
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Accuracy of orientation estimates is a key indicator to inertial navigation perfor-
mance. Errors in pitch and roll generally produce the dominant inertially driven
velocity and position errors, due to gravity cross coupling. In this test, monocu-
lar feature sightings constrain the change in position between consecutive image
frames, making pitch and roll of the platform observable through gravity, as mea-
sured by accelerometers in the inertial odometry factors.
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Figure 8-5: Left, residual yaw, pitch and roll orientation errors from VICON es-
timated orientation reference, for SLAM trajectory using inertial odometry and
sparse monocular tracked corner features. Loop closures are not used for results
in this figure. Right, gyroscope sensor triad bias estimates across entire trajectory,
showing estimate at each pose.

Pitch and roll variations between VICON and SLAM solution are around 3 deg,
which is pretty poor — although, evidence suggests this variation originates in the
VICON orientation estimate. Empirically we observed fluctuations in the VICON
orientation estimate that may be due to poor optical marker placement. The posi-
tion error resulting from gravity cross coupling with 3 deg orientation error over
a 10 second interpose constraint would be around 9.81 x [ folo (sin 3°) dr? ~ 25 m.
Our trajectory runs longer and has far less positional error. We expect our pitch
and roll estimate errors are well below 3 deg.

The red trace in Fig. [8-6/shows the absolute heading error of the inertial with
monocular test case. We see the heading error continually drifts without bound.
This heading drift is expected, since we have no measurements other than the ini-
tialization prior to align the poses to the global orientation. We also note that when
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SLAM solutions are aligned to floor plans by hand, the absolute heading error is
hidden; Fig. shows the true heading error.

Sparse corner features and loop closures

We reuse the data from the previous experiment, but now process camera images
to include five distinct AprilTag [179] marker cubes in the room. These markers act
as unique visual landmarks to emulate loop closure constraints. AprilTags avoid
difficulties in data association commonly encountered with opportunistic loop clo-
sures [133]].

Fig.[8-5|shows that the orientation errors for the monocular sparse feature track-
ing and inertial odometry test case are similar to those presented in Fig. for
pitch and roll, but yaw error remains unconstrained without loop closures.

Loop closures constrain relative positions and orientations between two sepa-
rated poses in the graph. Fig. shows how global heading error angle is con-
strained and not left to grow unbounded. We do note that absolute heading is
still not observable without incorporating external heading aiding information. In
other words, the average yaw offset from an absolute reference is still only weakly
constrained through the initial condition [68]. Furthermore, we note that the head-
ing error has a significant impact on global position accuracy of poses. Fig.
shows the error in absolute position for the monocular only, and monocular with
loop closure test cases.

Fig. shows inertial sensor bias estimation consistency when aided by
monocular camera. Although we do not know what the sensor biases were during
the test, we can use strong VICON constraints to produce bias estimates to com-
pare to the camera only aiding case. We note further that while it is difficult to
explicitly determine errors in these plots, we can evaluate the integrated sensor
measurements after compensation with Figs. [8-6|and We can see from Fig.
that camera only aiding produces bias estimates that are comparable to a well
constrained reference trajectory.

8.2.3 Computational load

Inertial odometry increases state dimension at each pose and constraint, but can
reduce the number of poses required if good odometry constraint can be achieved
— understanding the computational penalties relating to this increase in per pose
state dimension is important.
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Figure 8-6: Absolute global heading errors for SLAM trajectory referenced against
VICON (reference); respectively using inertial odometry with sparse monocular
tracked corner features, and camera sighted AprilTag features as loop closures also.
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Figure 8-7: Absolute position error, ||p; — pi||2, for each of the poses at the end
of the trajectory. Red trace shows monocular and inertial odometry SLAM solu-
tion errors, while the blue trace includes AprilTag sightings as loop closures also.
Global heading errors are inclusive to these errors.

Fig. shows the per iteration computational time of inertial odometry con-
straints. Here we used the iSAM1.7 implementation to perform incremental
smoothing inference.

This concludes our investigation of the hand-held visual-inertial experiments
on a factor graph, and we progress to include kinematic constraints using the BDi
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Figure 8-8: Gyro and accelerometer retroactive bias estimates during three re-
peat runs of hand-held monocular camera test. VICON traces represent a solution
highly constrained to ground truth position measurements (3DOF), and is taken as
a reference for sensor biases. Red traces are x — axis and blue for z — axis, y — axis
is omitted for clarity.

Atlas humanoid robot.

8.3 BDi Atlas Humanoid Robot (Group I & II)

Work on the BDi Atlas humanoid robot was done in collaboration with the MIT
DARPA Robotics Challenge team, using data and tools available from the com-
petition. Our test here only uses inertial odometry, joint kinematics, and head
mounted monocular camera feature sensing modalities. To the best of our knowl-
edge, is the first factor graph based state estimation and mapping framework that
includes kinematics, for a humanoid robot.

Humanoids require both a high bandwidth vehicle state estimate, as well as a
long term stable and accurate solution [54,223]. Existing state estimate solutions,
including [5,24,/55/(199]], use Kalman filtering to infer the state as a single snapshot
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Figure 8-9: Incremental smoothing (per iteration) computation time with inertial
odometry factors is on the order of milliseconds. Results are based on an iSAM1.7
implementation [116], which requires regular batch relinearization steps.

Figure 8-10: BDi Atlas stepping onto cinder blocks. Views are from real robot
test data. Left: Monocular head camera image example where features are being
tracked in the image sequence and and integrated into the factor graph as visual
features. Feature sightings factors, alongside inertial odometry factors, and leg
kinematics are integrated into the joint joit probability factor graph shown in Fig.
Right: Third person view of a synthetic environment from Team MIT’s DARPA
Robotics Challenge toolchain [54].

estimate.
We propose an approach whereby inertial, leg kinematics and camera data are
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Figure 8-11: Joint probability factor graph representation for BDi Atlas humanoid
kinematic robot walking over cinder blocks while observing visual features in the
world, using factors from Group I and II

fused with a factor graph approach. We exclude lidar, and rather construct a pas-
sive sensing localization and mapping solution which does not make any prior
map assumptions. Further, this formulation simultaneously estimates the map
and location of the robot and does not use a known map assumption. The pur-
pose of our experiment and processing is to show that we are able to map and
localize simultaneously, rather than in separate or pseudo-parallel steps.

A specially developed front-end process interprets IMU, joint angle, foot pres-
sure, and head mounted monocular camera data, which is used to construct a joint
probability factor graph, as shown in Fig. The main advantage with a factor
graph approach, rather than filtering, is that we are able to spread footstep localiza-
tion in the world frame across an entire foot contact period, rather than a one-shot
footstep placement as generally done in a filtering framework.

Fig. shows the pelvis IMU trajectory solution from SLAM using inertial
odometry for interpose relations every 0.5 Hz with data originating from the IMU
at 1 kHz. Joint encoder measurements, through leg kinematics, are attached to
each pose and the associated footstep pose. The robot is walking over stacked
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cinder-blocks, as shown in Fig. Around 250 monocular features were in-
cluded in the SLAM solution spanning around 20 robot footsteps.
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Figure 8-12: Visualization of pelvis IMU pose and footstep position/orientation
(triangles) estimates of the BDi Atlas robot traversing cinder-blocks from SLAM
solution. The top row of triads depict the head mounted camera pose used for
monocular opportunistic corner feature sightings (as shown in Fig.[8-10). The fac-
tor graph for this solution is illustrated in Fig. The incremental solution was
computed with iSAM1.7 using the trust region method.

We compare the SLAM solution accuracy to the native BDi localization solution
supplied with the robot in Fig. We note that the SLAM solution here is using
500 times less kinematic measurements than is available, but inertial information is
summarized without loss of information. We also note that the solution produced
by [55] was used as the position reference solution for our experiments below, since
we know its has good long term position accuracy (prior lidar map).

Fig. shows the SLAM solution is capable of out performing the native IMU
and kinematics state estimation solution supplied with the robot; we do note, how-
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ever, that there are specific difficulties relating to the factor graph style SLAM so-
lution. During testing we found the solution to be sensitive to local minima in the
resulting objective cost function. We spent a fair amount of time in our implemen-
tation to improve the initialization of the trajectory variables before optimization
was performed.

Poor initialization would result in trajectories near the BDi solution, sometimes
a little worse, sometimes a little better. Initialization of opportunistic monocular
features are also important, since poor initialization would tend to reduce the final
SLAM solution accuracy. Even with the initialization peculiarities, we can show
the SLAM style solution is readily able to produce accuracy results comparable to
the industrialized BDi solution.
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Figure 8-13: L, translation accuracy of trajectory poses estimated by inertial odom-
etry, kinematics and monocular features in a SLAM solution, and comparative BDi
state estimate solution.

Regarding the computational load of our humanoid factor graph based state
estimate solution — the inertial odometry computations, along with incremental
smoothing from iSAM are able to compute the SLAM solution in real-time on an
Intel i7, 16Gb computer. Twenty robot steps with an interpose rate of 0.5 H z results
in around 4000 new variables in the SLAM solution.

We now transition away from purely parametric solutions, having shown that
inertial odometry factors can successfully be used in a factor graph context. The
sections above noted the difficulties in getting the front-end process to correctly ex-
tract measurements with truly Gaussian error distribution, which could be added
to a optimization based inference framework.
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8.4 Wheeled Robots (Group I, 11, & III)

In this section we present two different wheeled robot datasets. First is the well
known Victoria Park outdoor wheel odometry and laser scanner, where tree like
objects are detected and used as bearing range type features. The second dataset is
from a Turtlebot [182] autonomously exploring the second floor of the Stata Cen-
ter building, over three separate sessions, using wheel odometry and monocular
sightings of several AprilTags [179] sparsely placed in the environment.

We indicate measurement likelihood factor groups I, II, & Il are used, since we
add familiar parametric and new nonparametric factors into our joint probability.
Factor group Il is also included due to wheel odometry, which we also use for real-
time prediction of our Turtlebot robot in the latter example. We do not include
inertial odometry factors in this example, but our approach does not exclude or
prevent use of inertial factors.

All inference examples in the remainder of this chapter were performed by the
Multi-modal iSAM algorithm, using the Caesar.jl implementation [65]. Both exper-
iments are conducted in a two dimensional mechanization, and note the Caesar.jl
implementation also offers three dimensional mechanizations. We note, that our
solution allows nonparametric factors which the previous versions of iSAM are
cannot accommodate. The experiments selected in this section are chosen to ex-
pand the discussion from the canonical multi-modal examples in Chapter |6

8.4.1 Multi-modal Victoria Park

The Victoria Park dataset [168] consists of a car with a planar laser scanner and an
automated tree trunk detection algorithm. The data association amongst tree-like
object sightings in the laser scans are not known; and this makes the Victoria Park
dataset a good ambiguous data association example to explore how multi-modal
solutions can be used. Fig.[8-14|shows a single snapshot of the front-end navigation
process tracking tree-like objects with a Bayes filter, using inverse odometry and
laser scanner detections.

Raw datais received as wheel and steering angle encoder measurements, which
we convert into odometry using a basic car model and integration process. The
odometry is used as distance, turn angle, or time trigger for generating interpose
rigid transform relations — conditional likelihoods such as [Z | X;, X, ]. We had
to recalibrate the raw data with offset, scale, and extrinsic parameters, and used a
Gibbs like stochastic decent method: Our method minimized the enclosed area of
narrow portions in the top down view that would result from an odometry only
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trajectory.

Our objective is to recover the vehicle trajectory and local map of the detected
tree-like objects, while demonstrating how multi-modal factors can be used to
overcome data association difficulties. Our approach is to develop a front-end pro-
cess to interpret the sensor data shown in Fig. and assemble a joint probability
factor graph, as illustrated in Fig. To do this, we must first illustrate how the
multi-modal factors are extracted from sensor measurements. The process is illus-

trated in Fig.

After studying the raw data, we also realize that the environment is dynamic,
with several objects moving around in the scene. As the car returns to a previously
visited area, we get repeated measurements from the same objects in the scene,
but also notice significant variations between existing landmarks and new feature
measurements.
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Figure 8-14: Single snapshot view of front-end processing for the Victoria Park
outdoor dataset, showing laser scanner detections and tracked features. Track-
ing of objects is performed with inverse odometry and a Bayesian filter — using
Sudderth & Ihler et al.’s multi-scale Gibbs sampling strategy on kernel density es-
timates [218] — to assign non-overlapping feature IDs while detections are in the
tield of view. The vehicle is traveling from left to right.
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Figure 8-15: Joint probability factor graph representation for Victoria Park car driv-
ing dataset, with unceration loop closures and using factors from Group I, II, and
I

An earlier approach used by Kaess [111], used the Joint Compatibility, Branch
and Bound (JCBB), Neira et al. [169]], technique to find a reasonable data association
solution. Results reported for the iSAM1 algorithm in [111] uses pre-process JCBB
data association while the SLAM solution is under human supervision, and the
reported timing results excludes this data association pre-processing step.

Repeated visits to an area usually observe various subsets of the tree-like ob-
jects in that area: sometimes new features are seen and other times less features
are seen. These factors imply that direct pattern matching between the estimated
map and a new snapshot measurement is not always obvious (even to a human
observer). Automated matching methods such as JCBB sometimes incorrectly as-
sociates nearby objects to just one previous object or drops the correct measure-
ment association in favor of a new object in the scene. These characteristics re-
quire parameter tuning for the JCBB algorithm as part of the front-end, back-end
interactions.

We purposefully pursue the opposite, a “thin” front-end type process which
inserts a fair number of multi-modal constraints — each time a measurement asso-
ciations is ambiguous — to illustrate the effectiveness and computational feasibil-
ity of our method. In the latter full dataset test, we also randomly corrupt varying
fractions of the proposed loop closures, inserting randomized associations into the
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graph to show the innate robustness of a sum-product style solution.

We stress that the Multi-modal iSAM approach does not preclude good front-
end design — our intention here is to show the usefulness of relaxing the classic
Gaussian-only loop closures as limited by current parametric methods. Our ap-
proach allows us to deal with data association uncertainty (such as loop closure
proposals) in a novel way. To the best of our knowledge, the approach illustrated
in Fig. differs significantly from previous robust SLAM approaches.

For example, recent work in nonparametric SLAM by Mu et al. [160] employs
an iterative clustering and solve technique. A Dirichlet based clustering technique
searches for measurements that are common to the same object in the map space.
Each new factor is solved after which the process returns to the clustering step.
In our approach, we only build the factor graph once, implicitly defining the non-
parametric variables within the likelihood beliefs.

We are instead interested in an approach where the user may associate mea-
surements with multiple feature objects, as discussed with multi-modal measure-
ment likelihood factors in Section Feature matching strategies, such as JCBB,
are generally max-product style techniques — taking only the best assumed match
associations. An alternative sum-product approach would rather pass the ambigu-
ity in the selection along as a likelihood distribution of possible associations. The
sum-product approach then allows each measurement to be associated with more
than one object, and specifically point to eq. for the bi-modal association
model we used for the Victoria Park dataset.

Fig. illustrates uncertain data association for loop closures in two concep-
tual situations, where the robot pose belief (shown in blue) produces likelihood
regions for landmarks via a single bearing range measurement (pink regions). The
predicted landmark locations may or may not overlap with existing landmark posi-
tion beliefs, as shown. These two situations both produce ambiguous associations
and are described by eq. (3.23). The hyper parameter p can be selected uniquely
for each situation. The multi-modal approach does not discard any measurement
information as null-hypothesis.

A bespoke front-end converts the odometry and laser scanned detected objects
into a factors in the factor graph. The front-end produces the dead-reckoning pre-
dicted trajectory and map initialization as shown in Fig. Note this figure
represents an intermediate point in the robot trajectory. The front-end will asso-
ciate uncertain measurements (loop closure proposals) to objects with one of two
most likely objects in the scene, thereby deferring loop closure data association to
consensus in the sum-product inference solution. More than two options could be
included.
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Figure 8-16: Two illustrations of how loop closure ambiguity can result from a
single bearing range measurement to some feature in the world. THe belief over
the pose position [ X | - | gets convolved with the bearing-range measurement (con-
ditional) likelihood to an actual feature observation [Z | X, L] (several shown in
Fig.[8-14), resulting in the red likelihood region [L|Z, X ]. Top illustration shows
multi-modal pose belief [ X | - |, bottom shows likelihood intersection with two ex-
isting landmarks [L; | - .
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Figure 8-17: Intermediate factor graph pre-inference setup of Victoria Park outdoor
car based factor graph model, where cyan lines represent the estimated trajectory
and red dots represent laser scanner detections of tree-like objects. Magenta lines
represent laser scanner measurements from the latest pose.

In order to get ground truth data association, we work through all the laser
sighting data by hand — using the front-end process to speed the work flow —
to obtain the most likely associations. During this process we could see the sub-
tle variations and errors made by the JCBB algorithm. After carefully working
through all the data and using the multi-modal inference, we empirically believe
our hand picked ground truth data association to be about 99% correct. Again,
there are dynamic objects in the scene and feature detection is not perfectly con-
sistent.

When consuming the Victoria Park data with our front-end, we preload the
ground truth associations and ensure that uncertain loop closures have a 50%/50%
bi-modal factor where one of the landmarks is in fact the correct association. The
other feature is a likely candidate or new feature. We also note that new features
are only created for the duration of a feature track. Furthermore, we avoid the
situation where each measurement is allowed a new feature, which would have
resulted in too much freedom — measurement information could be pushed into
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Figure 8-18: Intermediate result of Victoria Park outdoor car dataset, where red
and green lines indicate pose orientation as left and right sides of the vehicle, re-
spectively. The magenta line shows the equivalent parametric, max-product result
using our 99% confidence ground truth loop closure data associations.

each of the free variables.

After constructing the factor graph, with information as illustrated in Fig.
we let the Multi-modal iSAM solution consume and infer all the marginal poste-
rior beliefs of the joint distribution. Fig. shows inference result by choosing
the maximum point from the marginal posterior belief of each variable (primary
mode) — secondary modes are not visualized. Fig. clearly shows that the bi-
modal associations are considered and loop closures are being included, given the
improved state estimate accuracy, and a reduction in scattering of tree-like objects
in the map, in comparison to Fig.

We proceed to process all 23 mins of driving data, resulting in a factor graph
with approximately 3800 variable dimensions and more than 8500 constraint di-
mensions. There are approximately 1700 are bi-modal likelihood factors (uncer-
tain loop closures), and contains 482 additional landmarks variables. The theo-
retic number of modes in the system is very large (more than 2°°). Our focus is to
estimate the much smaller number of prominent modes. In fact, there are theoret-
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Figure 8-19: The blue trace shows Victoria park argmax p (0©|Z) point estimate,
with 10% erroneous loop closure proposals. The magenta trace shows the same
result for naive maximum likelihood estimate. Alternative modes, which were
calculated, are difficult to visualize and not shown here. This figure was used

in [62].

ically near 2! different permutations (modes) which are modeled in this Victoria
park solution.

While on the subject of problem size: recovering all marginal beliefs for this size
problem takes around 3.5 hours on a dual Xeon, 64 Gb RAM computer, utilizing
around 5—6 processing cores on average. Our implementation has room for several
significant implementation speed-ups. We expect a factor of up to ten speedup is
possible. This would involve better multi-threaded exploitation of convolution
operations, and better in-place memory operations.

The blue trace in Fig. represents the maximum a posteriori point estimate
extracted from variable beliefs after multi-modal posterior estimation has com-
pleted (MM-MAP). The magenta trace represents an equivalent maximum like-
lihood estimate (MLE, iSAM1) with all loop closures as classical unimodal con-
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Figure 8-20: Distance between similar poses, using MM-MAP 0% estimate as the
baseline, with varying levels of loop closure proposal corruption: 1%, 10% and 20%
corruption. The large values correspond to an erroneous unimodal MLE equiva-
lent. Notice the black trace and dots representing equivalent MM-MAP estimates
(for 1%, 10% and 20% corruption cases) which have much smaller errors. In this
example, corrupted data implies less loop closures are in effect, reducing overall
accuracy.

straints. Fig. shows how MAP estimates remain consistent in the presence
of significant false proposals. A few poses have an alternate mode that is more
prominent. Further inference passes over the tree, or addition of new data will
most likely emphasize the correct mode as most likely.

8.4.2 Multi-session Turtlebot

In Chapter [1, Section we discussed how a navigation solution should be able
to span various timescales. In this section we wish to illustrate the power of com-
bining technology developments, such as graph databases, with our centralized
factor graph approach and Multi-modal iSAM inference solution. The work and
results in this section were conducted in collaboration with S. Claassens, S. Pillai,
and R. Mata; and in part previously published in [64].

In the previous sections, we showed how to develop a high bandwidth naviga-
tion system using inertial odometry factors for an IMU and visual feature sightings
from a Camera, or kinematic relations of a robot through ground contact footsteps.
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The Victoria Park experiment showed how wheel odometry could be combined
with many bi-modal factors, while deferring data association ambiguities to the
multi-modal inference process.

In this experiment, we will be using two types of nonparametric measurement
factors (Group III, see Section[3.4.3): The first is multi-modal association factors, as
used in the Victoria Park experiment above. These factors are used when monoc-
ular camera sightings of AprilTags [179] are ambiguous or seemed to have moved.
This allows us to deal with dynamics in the scene. The second nonparametric fac-
tor is for multi-session priors, where we combine the location estimates of land-
marks common to other sessions into a multi-modal belief for each local session.
Taking care not including your belief of the same session into the prior.

The experiment is intended to show that any of these navigation systems can
be centralized around a server system, using a transactional navigation system,
to enable in-situ interaction between the human operator and many different au-
tonomous software elements. Our contention is that only by centralizing around
the factor graph with a SLAM-aware client-server architecture will be able to build
system that achieve the required throughput and systems integration required for
building a artificial location and dynamic awareness.

As we consider longer timescales of in-situ and real-time operations, we are
faced with the problem of combining high bandwidth odometry type measure-
ments with large volumes of existing data. We also show that an autonomous
navigation capability needs to be repeatable across robot operating sessions, while
aggregating data collected and allowing third party interactions to leverage the
quantity of data into a value-adding product.

In the next wheeled robot example, we look at the familiar Turtlebot robot [182],
using wheel odometry and monocular AprilTag sightings to resolve the robot posi-
tion in an indoor environment over various timescales. Three robot sessions were
conducted over two days, while some of the AprilTags were moved during and
between sessions. We will use the robustness of Multi-modal iSAM to overcome
the issue of moving tags.

The three robot datasets were combined (in-situ) using the centralized frame-
work discussed in Chapter[7] We use the centralized system to resolve a robot state
estimate and map solution, and aggregate the relevant information from three
sessions using nonparametric multi-session alignment, using the framework il-
lustrated and discussion at Fig. Lastly, we extract value from having larger
volumes of data available in a common reference frame, showing how the central-
ized SLAM-aware system can benefit robot systems even while the robot is not in
use.
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Figure 8-21: Snippet illustration of a centralized factor graph data structure (using
Neo4j [4]), where red nodes indicate poses selected from a foveation query in short
trajectory segment. Landmarks and other poses are indicated in blue, and con-
nected by constraint gray factors. Notice how poses with common camera views,
in red, are not necessarily direct neighbors in the graph.

In the previous Victoria Park example, only wheel encoder measurements and
laser scanner detections of tree-like objects were available — resulting in fairly small
data volumes. In this experiment we use a Turtlebot robot with integrated wheel
odometry and a RGB-D camera, and AprilTags which are sparsely placed in the
environment. the AprilTags are purposefully moved around between and during
robot sessions.

In this experiment we also show how common landmarks from different ses-
sions are combined together in the common centralized framework. During these
experiments, we used a separate server computer to which the Turtlebot robot
would connect during each of the operating sessions. The significance of our ap-
proach is that the robot itself never computes a SLAM solution, but is instead in-
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terfaced with the more powerful server computer.

Furthermore, our approach allows us to share information between three in-
ference solutions on the server, rather than construct just one large optimization,
greatly improving the optimization time. We will show how a near limitless num-
ber of smaller processes can access and operate on data, dramatically simplifying
the development and prototyping process. This approach allows the user to de-
velop individual purpose applications rather than one or two large processes, as
is classically the case in most SLAM systems.

Our approach uses wheel odometry for state prediction and dead-reckoning
to a real-time estimate, using the AprilTags for loop closures. Throughout this
experiment, the Multi-modal iSAM solution is able to resolve a new complete batch
solution in the range of tens to hundreds of seconds, well within the operational
period of the robot. The inference procedure could be used on all three sessions in
parallel, since our centralized approach is not limited to the operation of just one
robot at a time.

Assembling the Factor Graph (Robot Front-end)

Instead of trying to process all the information on the robot computer, we use the
robot as a “thin” client to perform a few basic periphery tasks, including odome-
try tracking & pose triggering, monocular AprilTag detection, RGB-D image blob
store, and factor graph modification operations. Turtlebot sensor measurements
are converted into measurement likelihood factors which are added to the joint
probability factor graph as described in Fig. [3-6| while the robot is traversing the
local environment. Modifications to the factor graph are on the order or three or
four factors every few seconds.

We extract a real-time solution by periodically recovering the inference result
of the most recent pose state — as discussed with Fig.[7-2] — and projecting the re-
maining time difference from fast wheel odometry up to a real-time state estimate.
We describe the combination of Group II type factors where slower multi-sensor
inference meets real-time state estimation in Section [3.4.2} but note in this particu-
lar experiment we use wheel odometry, as an equivalent replacement for inertial
odometry used in the earlier experiments.

Low bandwidth factor graph updates are uploaded through a wireless network
to the server computer, using the starved graph database framework outlined in
Chapter [/} The server is then able to incorporate the new information into the
current SLAM solution, while new data is continuously being uploaded from the
operational robot.

296



Fig. shows a short snippet of the factor graph maintained and visualized
by the graph database system (Neo4j [4]), where variables in blue are connected
by various factors in gray and; while red nodes are the result of a foveation query
which we shall discuss below. We also discuss the SLAM solution as part of the
third party interactions section below.

Replicas of larger data blobs are then uploaded from the robot to the server at
lower priority, and are indexed according the unique identifier (UUID) which was
created at the instant the data blob was first uploaded into the system. This ap-
proach allows a starving strategy where the graph database only stores the UUID
for later retrieval from a separate blob store. Large data blobs on the robot which
have already been uploaded to the server and are no longer required for imme-
diate operations, can be deleted from the robot blob store to preserve hard-drive
space. In this case, we upload RGB-D keyframe images and depth clouds as inde-
pendent data chunks, which are identified by their UUID. For completeness, we
also store data from an onboard laser scanner, but is not used in this experiment.

Ilustrating Third Party Interactions (Everything else)

The database acts as a central focus point for all the data, simplifying third party
interactions. By attaching a separate process to the server, such as image segmenta-
tion, user visualization, or SLAM inference, we can process, add, or modify values
independently. We can also add more large data blobs to any node in the starved
graph database system. We emphasize that one or multiple robots can constantly
be streaming data back and forth from the server. The database also decouples the
concurrent processes, by ensuring all transactions are atomic.

Dedicated, larger computational tasks may very well be placed near or on the
same server computers, and the SLAM solution is one key example. We use multi-
modal iSAM to query, infer, and insert current best Maximum-a-Posteriori esti-
mates back into respective vertices of the database. The estimates provided by the
SLAM service therefore become available for global consumption via the database.
Next to the SLAM inference process working away at the database system, we can
add another process to do image segmentation.

A centralized graph database system can help us develop dreaming capabili-
ties by handling the low-level data indexing and searching. In this experiment,
we focus on the idea of foveation, as shown in Fig. where the SLAM inferred
positions of the robot and landmarks are used as a value-add type of meta informa-
tion. Having geometric information about poses and landmarks enables efficient
server-side spatial searches over potentially large volumes of sensory data.
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Figure 8-22: Foveation, see Section Fig. and Pixel-wise segmentation, us-
ing SegNet [9]: Three keyframe SLAM-aware images recovered through a foveate
query. Bottom right shows a repeat image but with segmentation color palette
mask overlay. The images show a common scene separated by hours from actual
events, and shows how an independent process may now manipulate the persis-
tent database centralized factor graph to introduce new loop closure constraints
based on object detections of the painting. The figures also shows a missed paint-
ing detection in the top images, which can be used to improve training of the de-
tection and classification algorithms. This figure was modified from [64].

We use the camera image information to illustrate how third party interactions
can be facilitated with the centralized SLAM-aware database system (SLAMinDB).
There is usually more information available from raw camera image data, but this
requires large computational resources and more advanced algorithms.

We use SegNet per pixel image segmentation algorithm from Badrinarayanan
et al. [9] on all keyframe images, one per pose of the robot. We also insert the
segmentation output image into the data blob store, with its own UUID unique
identifier, and co-register the new UUID with the pose in the central starved graph
database.
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From there, yet another process can visit the updated nodes and factors and
see the robot state estimate as well as the image segmentation information. Fig.
shows four example images from pose keyframes across several multi-session
robot trajectories. The images are masked with pixel level segmentation output,
showing the “artwork” label, and was retrieved from the associated data blobs we
had discussed above, using the standard SegNet image segmentation.

Extracting Value from Aggregated Data

Visualization is another process, as depicted earlier in Fig. which attaches
to the database and all relevant multi-session information and gives the user the
benefit of aggregated data. Pose state, SLAM solver values of interest, depth point
cloud, RGB & segmentation color palette for each pose can then be visualized as
required. Again, this process is greatly simplified by the ability to query over all
the information and only retrieve (transport) the bits relevant to that specific user
query.

In Fig. we see pose-slaved point clouds from three Turtlebot trajectories.
These multi-session maps contain internal loop closures, and thanks to the com-
mon factor graph persistence, can also share information among sessions. By using
sightings of AprilTags and current best estimates of robot keyframe pose locations,
we can manually introduce new relationships in the graph to effect cross-session
loop closures.

The visualizations in Fig. shows three robot trajectory sessions. The right-
hand side segment shows one session’s point cloud with a segmentation color
palette for floors, walls, and objects. We can now use the common data persistence
to enhance training on the segmentation system, leveraging the SLAM-aware in-
formation available in the database.

Now, consider searching for more loop closures to improve the quality of the
map or localization, or consider seeking to improve an object detection and classi-
fication system. We can use the SLAM-aware system to extract value from larger
amounts of data.

Using yet another independent process, we can search for the painting shown
both in the keyframe images, Fig. The painting is also visible in the point-
cloud reprojection shown on the right hand side of Fig. Using the foveate
query—illustrated with Fig.[7-8land described in Section [7.4.2}—we can search for
robot poses on the database which might see a specific point in space. After recov-
ering a list of poses from the starved graph database, we can retrieve the keyframe
images and segmentation data for each from the large blob store.
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Figure 8-23: Composite 3D reconstruction from a “decoupled” visualization pro-
cess (as depicted in Fig. from three Turtlebot trajectory sessions. Individual
keyframe structured-light point clouds are projected from multi-modal iSAM in-
ferred trajectories directly in the centralized graph database. The session to the
right has color labels given by SegNet segmentation [9], showing floors, walls, ob-
jects and more. Red dots on the bottom figure are samples from the marginal pose
position beliefs. Top figure re-used from [64].
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Figure 8-24: Histogram distribution of range measurements from AprilTag sight-
ings, using data from multiple sessions, tied together by the multi-session interface
discussed in Section[3.4.3

- i

The centralized architecture for multiple robots and sessions allows leveraging
large amounts of data through dedicated learning operations. In the last part of
this experiment, we briefly show the value in understanding and improving cal-
ibration errors in a robot directly from data. For this example, we compare the
range values from i) monocular AprilTag detections, ii) post inference SLAM pose
tolandmark distance, and iii) structured light data (which is not yet used as a mea-
surement in the current SLAM solution).

The three Turtlebot trajectories shown in Fig. contain camera and structure
light depth sightings to AprilTags across the three sessions. Fig. shows data
from all AprilTag sightings, drawing histograms of the residual between AprilTag
detection range and SLAM or structured light distances. The assumed measure-
ment noise model is also shown in red. Fitting a normal distribution to each of
these residuals shows the SLAM solution to be consistent with zero mean and con-
servative covariance. The structure light data has roughly the same covariance, but
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a mean offset of 0.18 m indicates a clear calibration error that can now be rectified.

8.5 Fully Nonparametric Likelihoods (Group I & III)

We progress to the last experiment in this chapter, using nonparametric measure-
ment likelihood factors from acoustic beam forming data from an autonomous
underwater vehicle. We show how the Multi-modal iSAM solver can directly oper-
ate with nonparametric Group III factors, see Section This experiment was
not conducted on the vehicle, but was post-processed using the centralized archi-
tecture described in Chapter|[7]

8.5.1 Underwater Acoustic Navigation (Beam Forming)

Work in this section was done in collaboration with Nick Rypkema et al., using data
from the inverse Ultra-short Baseline (iUSBL) acoustic system discussed here [163].
Note that our results here are not representative of their system performance. We
use purposefully degraded data — by reducing the resolution of data used — to
demonstrate how highly non-Gaussian measurement likelihoods can be used di-
rectly in a nonparametric factor graph framework. We refer the reader to Schmidt,
Rypkema, & Fischell’s work [163] for a real-time filtering based solution, and post
filtering parametric SLAM solution.

With this experiment, we introduce the ability of replacing the separate particle
filtering and parametric optimization steps, used for navigation in [163], into a sin-
gle nonparametric factor graph based inference framework. THe example shows
is that a sum-product style inference solution is possible for larger problems, and
demonstrate this by constructing measurement likelihood factors with data from
as near the analog-to-digital acquisition as possible. Although we were not able to
recover the raw analog-to-digital sampling data from the iUSBL system, we were
able to retrieve slightly preprocessed version.

Beam Forming for Nonparametric Likelihoods

The iUSBL system is a vehicle mounted system that samples four acoustic trans-
ducers placed in a tightly packed tetrahedron. Data from the four sampling tracks
are processed with a beam forming mechanization, see Van Trees [233]], to recover
an intensity map along range, bearing, and elevation dimensions. The beam form-
ing mechanization searches for a correlation between received signals and a tem-
plate waveform stored on-board the vehicle.
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Figure 8-25: A sub-sampled and smoothed range and bearing estimate from a
beam forming acoustic system, excluding convolution with an acoustic channel
model.

By correlating (convolving) a template waveform—given sender and receiver
clock synchronization—, we can estimate the time-of-flight range to the pinger
source. Additionally, even without sender receiver timing synchronization (hy-
perbolic navigation), the time difference between when acoustic wavefronts are
detected by each transducer can be used to extract the bearing and elevation of
where an acoustic transmission originated. Strictly speaking, in USBL systems the
time delay between different transducers is within one wavelength, and therefore
we prefer to use phase angle of arrival — also considering convolutions are com-
puted as products in the frequency domain. By convolving the range, bearing,
elevation intensity map with an assumed acoustic channel model, we arrive at a
probability likelihood of where a time synchronized acoustic ping originated.

The top plot in Fig.[8-25|shows the combined correlator outputs of all four trans-
ducers against the time-of-flight as range. Again, this plot is not representative of
the iUSBL performance, as the data has been sub-sampled and partially processed
for plotting. The range measurement scale is recovered by multiplying the in wa-
ter sound speed with the time-of-flight delay. The lower plot shows the bearing
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Figure 8-26: Joint probability factor graph representation for underwater nonpara-
metric USBL measurements, using factors from Group I and III.

angle, relative to the vehicle body, where the ping originated. The bearing angle
shown includes body roll and elevation which has been marginalized into the one
dimensional bearing estimate.

One important point on the bearing correlator output shown in Fig. is that
range information has also been collapsed into the bearing estimate. Unlike the
marginalization of roll, pitch, and elevation data into the bearing estimate, only the
maximum range likelihood information is used to assemble the bearing likelihood.
This maximum range point selection is the only part of the measurement pipeline
which does not constitute an end-to-end sum-product approach. We do have access
to the combined raw range data for deep likelihood representation there.

Assembling the Nonparametric Factor Graph

We assemble the nonparametric factor graph, as illustrated by Fig. using an
odometry and iUSBL measurements. Odometry is assembled from a combination
of heading and propeller turn count based distance. Heading is extracted form
an off the shelf MEMS based, low-cost magnetometer and gravity (accelerometer)
aided attitude heading reference (AHRS), using gyroscopes to predict platform
orientation. We conduct this experiment in a horizontal, two dimensional mecha-
nization.
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A front-end process was developed to upload odometry and acoustic range and
bearing information to centralized server architecture discussed earlier. Odometry
is used to extract unimodal parametric rigid transforms between poses. Poses are
time triggered each second to coincide with iUSBL measurements which are also
expected each second. Acoustic measurements are all considered nonparametric,
using kernel density estimation to represent the likelihood belief over range and
bearing, when available, and then let the Multi-modal iSAM solver find marginal
posterior beliefs over all the variables. We add one landmark position for the
pinger, with a (0, 0) normally distributed prior. All (accepted) acoustic measure-
ments from each pose are connected via their nonparametric measurement likeli-
hood to the one pinger landmark node in the graph.

Figure 8-27: Trajectory estimate from beam formed acoustic data from a test in the
Charles river, Boston, MA. This trajectory segment spans about 70 m from East to
West. Top right corner is towards North, as shown by green arrow in the triad.

Not all acoustic measurements are valid, and multiple USBL measurements
are discarded using mean and covariance based consistency checks. Several par-
tial USBL measurements are used, where range information is relatively visible,
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but bearing measurements are nearly uniform and discarded as a result. We note
that the previously discussed maximum range point selection for constructing the
bearing measurement complicates its use during poor signal to noise measure-
ments. In future, we would like to avoid this maximum selection step and let the
combined inference search for the best posterior likelihood in combination with
all other navigational data.

Fig. shows the top down trajectory estimate from the joint probability fac-
tor graph described above. This trajectory segment starts at the bottom right, with
true north along the green reference arrow diagonally torwards the top right of
the image. The vehicle travels back and forth, west and then east, finally turning
south at the bottom left of the image. Each pose is represented as consecutive color
of dots, denoting samples from each pose position’s marginal distribution.

In Fig. we see some dispersion in the pose position estimates at the most
westerly turn, but not sufficient to completely loose lock on vehicle position. Later
in the trajectory, there is a loss of lock on the navigation solution for a couple of
poses during the last westward travel section, and see the missing pose samples
are widely dispersed to the lower left of the image. The navigation lock is then
reacquired as a jump to the center of the image, as shown by the two arrows. Nav-
igation lock is then lost again, before the solution returns to the correct point just
before the last southward turn.

The loss of navigation lock is inherent to the data, where the odometry mea-
surements are no longer able to constrain the solution into a continuous stream
of poses, being over powered by the USBL bearing and range measurements. We
note that this problem can be overcome by relying more heavily on the relative
odometry chain and increasing the general uncertainty of the bearing and range
measurements to each of the affected poses.

The key take-away we would like to emphasize with this experiment is, to the
best of our knowledge, this is the first batch nonparametric navigation solution di-
rectly from sensor likelihood models using the nonparametric kernel density rep-
resentation. The batch solution shown in Fig.[8-27)is computed by the SLAM-aware
database system, where a full solution iteration takes on the order of 15 minutes to
compute. The computation time varies, based on the fidelity used to represent the
nonparametric measurement likelihoods, and number of poses used to represent
the trajectory.

We also note that the computation time of the algorithm is adversely affected by
all acoustic measurements being connected to just one pinger landmark node in the
factor graph. We can improve the sparsity by duplicating several landmarks with
a duplicate (0, 0) position prior, thereby reducing the clique dimension containing
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the pinger landmark in the Bayes tree. We have not yet investigated that avenue
turther. The computation time of the algorithm is also influenced by the amount
of history we consider. By operating in increment mode, we can reduce the cliques
being updated, assuming multiple landmark nodes are used.

The next major option, and likely avenue — if we were to deploy the current
solution — is to use a fixed lag version of the algorithm. By marginalizing out
older variables and only keeping a fixed window of variables in the active portion
of the factor graph, we can limit the size of the inference while still being able to
extract the value of nonparametric smoothing over multiple variables.

In this experiment, we are able to show that parametric odometry can be com-
bined with nonparametric factors in the common factor graph and that represen-
tative marginal posterior beliefs can be recovered from each of the variables in the
system. This experiment shows an entry point to a whole new class of multi-sensor
data fusion methods, where highly uncertain measurements, in very raw form, can
be combined in a nonparametric framework and common consensus be found by
the inference algorithms. This concludes the experiments reported in this chapter.

8.6 Critical Analysis

This chapter looked at several experiments that show how different combinations
of parametric and nonparametric measurement likelihoods could be combined
through a factor graph. We showed how the multi-modal iSAM algorithm is able
to recover both consensus and alternative solutions given the available measure-
ment data.

The hand-held visual-inertial experiment shows reliable sensor bias recovery
and free trajectory estimation. These tests give us confidence that the inertial
odometry factors are usable and add value to the overall joint probability factor
graph based method for state estimation. Furthermore, we were able to show an
improvement by including loop closures — a process that is significantly more in-
volved in a hidden Markov type system, such as a Kalman filter.

We note that during development of the visual-inertial system, many failure
modes were encountered and a large amount of ‘parameter tuning’ was required to
make the system function. Difficulties with engineering a front-end solution—that
were required to generate Gaussian only constraints for parametric inference with
parametric iSAM1.7—provided the motivation for finding more robust inference,
which resulted in the multi-modal iSAM work.

In our multi-modal inference approach, where data association happens at
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inference time, the structure of previous factors in the factor graph remain un-
changed. By contrast, null hypothesis methods modify the graph structure in pre-
processing, or introduce penalty slack variables to disable the factors. Maintaining
the topological structure of the factor graph allows us to exploit the full structure
within the joint probability using the Bayes tree, which in turn maintains the in-
cremental inference capability discussed in Chapter

The results from multi-modal experiments in more challenging data associ-
ation situations, as demonstrated by the Victoria Park dataset, or nonparamet-
ric measurements as demonstrated by the acoustic beam forming example, show
that nonparametric factor graph inference is possible and computationally feasible.
The theory and development at this stage point to major advances on the horizon
for multi-sensor navigation and general automated location awareness.

8.7 Conclusion

Once we have a robust solution in place, as offered by multi-modal inference, we
can work to build more automated methods that parse large volumes of data and
improve the overall system performance. We can use a SLAM-aware database sys-
tem to help find common features in the world, and feed back more loop closures
or remove obviously bad ones — this post-hoc refinement is only possible if we can
trust that a stable and robust inference solution is independently working away
at the current best joint probability description offered by the centralized factor
graph. We note this abstraction stretches beyond just a single platform navigation
session, into multi-robot, multi-session situations.

In turn, information learned from an independent process, suchasin Fig.
can be used to refine calibration or reconstruction from the data. Separation
of concerns through the centralized graph architecture simplifies the tractability,
concurrency and implementation of such learning processes.
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Chapter 9

Discussion & Conclusion

Chapter [1{ shows four cutting edge robotic platforms, and notes that they are not
using a factor graph based state estimation (localization) and mapping process.
Instead, these platforms use Kalman filtering approaches in a more rigid opera-
tional regime. Trajectories and behaviors are either preemptively known or skilled
support teams are required to operate the vehicle.

We argue that a factor graph [129] based navigation solution should replace
Kalman filter style solutions as the primary navigation source; Multi-modal factor
graphs and nonparametric (multi-modal) inference techniques can provide the re-
quired robustness and flexibility which hamper Gaussian only SLAM systems that
exist today. Existing parametric simultaneous localization and mapping solutions
place an onerous restriction on the front-end process designer, who is limited by
having to fit all measurements into a Gaussian uncertainty model.

To allow robotic systems more operational freedom for ad-hoc style interaction,
one key requirement is the ability to deploy a more thorough location and dynamic
awareness capability that is robust to unpredictable measurements and situations.
We are motivated by the philosophy of perfect five autonomy, coined by Mindell
[151], which is defined as the sweet spot in human/machine interaction: between
low-level actuator control as a ‘'one” and some hypothetical high level unsupervised
task level autonomy as a ten”.

9.1 Core Contributions

This thesis identified an open problem in robotic navigation relating to how an
autonomous navigation system, that spans wide timescales, is need for a robotic
future. We broke the down into high-bandwidth aspects and introduced inertial
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odometry factors. Next, we developed the multi-modal iSAM algorithm for robust,
non-Gaussian inference. This algorithm is the first sum-product style inference so-
lution using the Bayes tree. The algorithm allows the front-end navigation system
designer much greater freedom for representing non-Gaussian measurement un-
certainties with more powerful probability models.

Our theoretical development relied on Markov Chain Monte Carlo theory to
ensure that the inference would converge towards and stabilize around some sta-
tionary posterior. We require the user to supply measurement likelihood models
which are reversible and only depend on variable states contained within the fac-
tor graph. We also require that samples can be generated from the noise models
used for each likelihood. This approach allows for non-Gaussian inference over
any combination of likelihoods that meet the requirements.

Through a series of canonical examples and real-world experiments, we were
able to demonstrate a variety of navigation solutions that simply are not possible
in other existing SLAM inference systems. Each of the examples could potentially
be cast (in some special way) in existing SLAM solutions to compute a result, but
our approach allows a generic, modular, and unified approach to all the examples.
Our approach leveraged known factor graph and Bayes tree idea, but harnessed
newer nonparametric inference components in a novel combination. This combi-
nation allows inference over problems having around 10000 variables in a sparsely
connected factor graph.

In each of the example problems, we were able to show non-Gaussian, multi-
modal posterior density distributions as the output result from the inference pro-
cess. The key idea is that uncertainty is propagated into a static factor graph model
and consensus is found by the multi-modal iSAM inference procedure, where
dominant modes are tracked with minimal approximation error. The algorithm
allows more or less particles per marginal to improve or speed up estimation of
marginal posterior beliefs.

As alast piece, this thesis briefly looked at combining different aspects of a nav-
igation system through a centralized factor graph approach. We used a starved
graph data base and large blob store approach to separate concerns between each
of the process. In hindsight, we promote the idea of a having an ecosystem of nav-
igation related processes which are all working around a transactional navigation
system model.

The remainder of this chapter discusses problem validation (rather than verfi-
cation) aspects, and tries to identify the bigger picture of where navigation research
is going. We also try and understand whether the projected future development
aligns with the needs and expectations of society.
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9.2 Hindsight Requirements for Robotic Navigation

In hindsight, we revist the key characteristics required by robotic navigation sys-

tem:

1.

2.

10.

Predict a real-time state estimate with relatively low error;

Separation of concerns, by defining a framework in which different aspects of
the navigation solution can be developed, tested, and integrated into a larger
system as a collection of individual processes who each perform a dedicated
and conceptually manageable task;

. Flexibility in the manner which measurements are fused together, by allow-

ing the system to maximally exploit a variety of opportunistic information
gathered by the robot;

Modularity in the theoretical underpinning and available implementations
to assemble different navigation systems for different robots using the same
tools;

. Dynamic calibration of critical sensor measurement errors, such our retroac-

tive calibration strategy for gyroscopes and accelerometer biases;

Using a blend of sensing modalities with a broad synergistic reach in terms
of long term stability and high bandwidth sensing;

. Werequire a strong theoretical foundation to predict how a particular system

will perform using a general toolkit software and sensor components;

. Combine measurements over a wide timescales, starting from highly dy-

namic motion in the millisecond range through loop closures across multiple
robot sessions over the span of hours, days or more;

. Avoid algorithms that will later require a large amount of workarounds to

deal with a unexpected real-world events — rather maximize flexibility first
and then reduce the algorithm down to a particular application;

A degree of automation and fault tolerance in interpreting sensor data will
always be required, and not all uncertainty can just be passed to the back end
inference system;
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11.

12.

13.

14.

15.

16.

We must forgo the conclusion that robots can only operate when predictable
measurements are available (such as GPS) and instead be able to rely more
heavily on opportunistic information where the robot is operating;

An inference mechanism to fuse sensor data together into a consensus esti-
mate that is more robust and accurate than the sum of individual parts;

Existing hidden Markov methods (such as Kalman Filtering) have been ex-
tensively explored, but are not expected to provide the modular, flexible, ef-
ficient, or robust data fusion approaches. New methods are required and
deeper research into factor graph approaches is most likely to yield the best
results;

Concurrency (transactions) between different navigation processes are in-
evitable, as the complexity of the navigation systems increase, and we should
rather think about building ecosystems of processes that deliver a navigation
and state estimate solution;

Navigation is a means to an end, allowing third parties to utilize an auto-
mated system to achieve their goals; and

We also identify that navigation systems operate from within a community
of people, of which the population is always in flux, and it is worth think-
ing about how designers and developers interact with the system during the
research and development process — it should be easy for a new person to
start interacting with an operational robotic navigation system and be able
to quickly start developing and testing new features or fixing problems. We
identify this as one of the separation-of-concerns, where training an produc-
tivity of new developers are considered a vital part of a navigation system’s
survival.

These characteristics pose both a scientific and technological challenge on the nav-
igation system designer. We can work to solve these challenges through improved
theoretical abstraction and better use of available technology.

9.3 Vital Aspects of Existing Solutions

We follow existing literature from the community in using factor graphs as a com-
mon framework for modern navigation systems — to describe how information
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from multiple sensors are combine into a joint probability density estimate. State-
of-the-art understanding of the navigation problem among the SLAM community,
suggests that factor graphs are used as a language with which a bespoke front-end
process can describe and transfer the inherent inference problem to a third party
back-end solver. This separation between different robots and algorithms is well
established and accepted by the community, we feel that is the best abstraction
going forward.

The iSAM?2 algorithm from Kaess and Dellaert et al. [115] is the current state-of-
the-art SLAM back-end solver and a special case of the more general belief prop-
agation algorithm discussed in Chapter 5| iSAM2 is an implementation of a max-
product style inference technique, also discussed in Chapter 5| The combination of
max-product style and Gaussian factors leads to sparse, non-linear least squares ap-
proaches, Chapter 2l We discuss the limitations of the Gaussian and max-product
assumptions in the next section.

Critically, the iSAM2 algorithm introduces the Bayes tree symbolic re-
factorization of the factor graph. Although the iSAM2 algorithm assumes all fac-
tors to be Gaussian, both the factor graph and the Bayes tree are more general
representations, which go well beyond Gaussian distributions. In addition to the
flexibility and parallelism gained from the Bayes tree representation, it also en-
ables recycling of previous computations through an incremental update scheme.
Going forward, we expect to see incremental inference on the Bayes tree to become
a common fixture in future SLAM techniques.

An objective assessment of SLAM suggest that many applications do not neces-
sarily require a high-speed SLAM solution, but does require a robust map building
capability to guide the long term state estimation process required for real-time
operation. Concurrent smoothing and filtering work by Kaess et al. [117] makes a
deeper assessment on distributing large SLAM solutions, and finds an elegant an-
alytical method to separate larger (and older) measurements from a smaller (and
younger) problem by means of the Bayes tree and sharing of a common root clique.
Their work show a viable method to separate low latency state estimation from
the large multi-sensor data fusion. This line of reasoning allows us to investigate
slower, but much more versatile data management strategies, such as a database-
centric approach.

Some work in the SLAM community has been breaking away from the Gaus-
sian only measurement assumption. The histogram style Bayesian inference ap-
proaches, such as in Thrun et al. [224], approximate solutions in a finite and dis-
cretized fixed world grid. The penalty for a simplified discretized world is that
the navigation system must keep all individual elemental beliefs about the state
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current, requiring large amounts of processing, memory, and systems challenges
in finding where computation should be focused.

Literature outside robotics have also studied different inference techniques in
great detail. We discussed many of these methods, and contribute by bringing
sum-product style thinking into state estimation and robotic navigation community.

The statistics community have long developed several tree algorithms—
analogues to the Bayes tree—for re-factoring any factor graph into a more com-
putationally tractable form. Clique trees, cluster trees, rake-and-compress trees
and most notably the junction tree, all re-factorize a “loopy” factor graph into an
acyclic representation [127]. Most of the existing work consider trees much smaller
than typically found in SLAM problems.

9.4 What Needs to Change

At the highest level, development of modern navigation systems for ad-hoc oper-
ations in GPS-denied environments—where a user can easily guide the system in
unpredictable ways—requires a robust navigation solution that is able to cope with
all measurement and processing uncertainties; while simultaneously delivering a
real-time and position, velocity, and orientation estimate.

Current workhorse Kalman filter based inertial navigation and GPS (INS/GPS)
systems have the luxury of a confined operating regime and predictable measure-
ment behavior. The operating regime assumption effectively dictates measure-
ment certainty, such as valid GPS reception, is required before any vehicle opera-
tions can start — this is a common requirement with current INS/GPS systems.

In order to relax the operational regime to a more ad-hoc approach, we need
to rethink manner in which navigation state estimation is performed. To some
extent, we must forgo the predictable measurement requirement and be able to
rely more heavily on opportunistic features and references in the world. Increasing
the variety of sensing modalities a navigation system can robustly incorporate,
significantly increases the robotic usefulness of such a system.

Similarly, deep sea remotely operated vehicles (ROVs) have various inertial and
acoustic Doppler navigation aides (Kalman filter style INS/DVL) but still rely on
highly skilled pilots, vast amounts of energy, and a high-bandwidth connection to
the mother ship. As impressive as ROV'’s are, for example work done during the
Deepwater Horizon oil rig disaster, ROVs still require full ships and crews from
which to operate. Even for trivial inspection tasks still have steep operating costs
and safety risks. Again, these requirements on the operating regime limit the scope
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and feasibility of more general robotics.

Using the Deepwater Horizon disaster as a further example, it took almost three
months to get the deep sea 0il spill under control. Not because of a limit in the hu-
man operator’s skill or the ROVs strength and capacity, but rather in the complexity
of getting the ROV machine to perform tasks the users and pilots intended.

As a sort of symptomatic argument, we can see the changes required to ROV
operations as a proxy into what has to change in the navigation system solution:
ROV pilots are highly skilled and trained, but getting the machine to do the re-
quired task is a challenge. We argue that the current ROV piloting operations are
cutting edge, but do not yet operate through a system that achieves perfect five au-
tonomy.

Towards achieving this goal, there is a progressive logic trap in the develop-
ment of navigation type multi-sensor data fusion systems. Chapter [2| discusses at
length how INS/GPS and visual-inertial filtering systems progressed from initially
being loosely coupled comparators of position; but over time various challenges
and subsequent development resulted in tighter centralization of the prediction
and measurement models.

While the progression of tighter coupling and better centralization of measure-
ment models seem obvious enough, the way in which the system comes together
is extremely important. The tighter coupling has a negative impact on separation-
of-concerns. The further trap is to avoid the lure of a Gaussian-only assumption
for computational convenience. In this these, we introduce both a centralized nav-
igation framework that separates concerns, tied together with high-bandwidth in-
ertial odometry state prediction and multi-modal iSAM robust inference.

We argue that the logic should be centralized around factor graph data struc-
ture, and all other processes are separated from there. Chapter [7] discusses the
value of using a client-server model, built around graph database technologies,
where a new “thin” robot front-end procesg| does not pull in the back-end infer-
ence code, but rather interfaces with an already operational SLAM-aware server.

One of the critical, and often understated, questions on combining data is
whether to pursue a distributed or shared scheme. Shared processes (such as a
centralized factor graph server) present the single point of failure issue, while dis-
tributed approaches limit the amount of information sharing. As argued through-
out this thesis, the trend—as with the biological world—is to go for a centralized
approach and leverage consensus amount various pieces of partial information.

1”Thin” implies a process that interprets sensor information into factor graph updates, but does
not perform the SLAM inference.
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Figure 9-1: Overview illustration of a joint probability nonparametric, multi-
modal factor graph representing for the humanoid robot navigating towards some
manipulation task.

9.4.1 Humanoid Robot Illustration

In Chapter (1, surrounding the process illustrated in Fig. we made the argu-
ment that a humanoid robot navigation problem perfectly illustrates the needs for
an autonomous location and dynamics aware navigation system. We reiterate the hu-
manoid navigation example here, and try represent all the major elements that a
autonomous navigation and state estimate system.

Consider a robot approaching an object to be manipulated, and needs to guide
its trajectory towards a specified goal. A state estimate in the relative relationship
should smoothly converge towards truth as the robot approaches the intended
goal, and not diverge as is common with separated odometry (which drift) and
mapping techniques.

In Chapter 3| we developed the intuition for assembling a navigation-type fac-
tor graph well suited to this goal, since state estimation, map estimation, and dy-
namic guidance in the environment can be combined into a centralized estimation
process. We reproduce the joint probability factor graph here in Fig.

Fig.9-1shows the future robot trajectory planning directly coupled to the cur-
rent state estimate, towards a specific user-defined objective. Consider that the
legged robot should walk up to a desirable position in front of an identified ob-
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ject in the world. The desired standing foot position can be introduced through a
desired foot position prior, shown as a prior.

Second, we desire the hand position at or near some affordance object. Us-
ing the affordance abstraction allows a known model of an object—with known
interaction rules—to be fit to an estimated part of the generated map. The fu-
ture trajectory plan can then be connected to this affordance estimate and closed
loop state estimate and trajectory planning can be achieved. Detection, classifica-
tion and pose estimation of objects in the world may well be part of the mapping
system. Direct interaction between affordance pose estimates and robot motion
planning is desirable, since vehicle trajectory is directly affected by observations
made.

We argue that common inference generalization does exists, in part based on
the arguments above and on a biological system comparison argument: We as hu-
mans are able to pick up the controls of a wide variety of platforms—such as cars,
planes, helicopters, space ships, or submarines—and are able to learn the control
strategies, but rarely question our ability to resolve a navigation state estimate from
available data, or our ability to build an intuitive feeling where the dynamics might
take the vehicle in the near future based on our actions.

9.4.2 Current Limitations

Thus far, the community have generally assumed that measurement likelihoods
used as factor in the graph should be Gaussian, given the computational conve-
nience of existing optimization routines. The Gaussian assumption is entrenched,
and satisfies most, but not all measurements. The cost of a highly inconsistent
measurement being introduced as a Gaussian term is disastrous for system per-
formance.

Any limitations enacted by the back-end process—such as Gaussian only
factors—is transmitted up the navigation process stack, which usually requires
a more complicated front-end process to deal with various difficult real-world
measurement situations. From a research perspective, there is a risk in assum-
ing that Gaussian only measurement errors are a sufficient assumption, since real-
world problems then get pushed over onto the front-end developer and system
integrator. A sort of avoidance posture that implies unsatisfactory navigation per-
formance is a limitation on the front-end side of the solution.

Several authors have worked to expand the capability of back-end SLAM opti-
mizers, and improve robustness. In Chapter 2, we discussed several predominant
null-hypothesis style approaches, which adapted existing max-product style, para-

317



metric optimization techniques—such as iSAM2—to deal with so-called ”outlier”
factors. Our opinion is the probabilistic interpretation of “outliers” is misunder-
stood in this context.

The max-product style approach of iSAM2 produces a fundamentally different
inference result that would be retrieved by a belief space approach using a sum-
product style approach. We believe that the restrictions due to Gaussian likelihood
functions or heuristic based null-hypothesis approaches in many real-world situ-
ations outweight the benefits using existing parametric optimization techniques.

As discussed in Chapter 2, null-hypothesis methods exist but usually require
careful parameter setup. This requires the front-end processes to dictate how likely
a measurement should be ignored. Switch variables [219], as example, require
a penalty definition, which dictates a hard decision on whether a measurement
factor should be discarded. As discussed in Chapters3|and 8, many situations are
ambiguous associations rather than erroneous measurements and we would like
to be able to defer the uncertainty to back-end resolved consensus.

A strong synergy exists between belief interpretations and consensus among
multiple hypotheses, but literature suggests little work has been done on sum-
product style approaches for finding probabilistic consensus with navigation-type
factor graphs.

A back-end inference solution that allows the navigation system designer more
options, even if the computational cost is higher, could in many situations be a
far more attractive option. We stress that the increases computational cost is only
palatable under the separations-of-concerns umbrella, where real-time state esti-
mation is separated out as a conjoined operations (as discussed around Fig. 3-6|in
Chapter 3).

We believe that a large part of separate-of-concerns can be solved with im-
proved data management technology and interprocess communication. Our work
on using a database-centered approach to SLAM follows from, among others, three
major requirements on a centralized SLAM system.

Firstly, we do not know ahead of time which data or situations may be of inter-
est. As a result, robot systems capabilities are limited in our ability to utilize and
infer traits, patterns, trends or things from gathered sensor data. Secondly, our
abilities are constrained by available computational power, ultimately resulting in
less robust “artificial intelligence’. Thirdly, large volumes of data and robust in-
ference techniques require larger computation resources, such as multi-processor
architectures, which in turn places large concurrency demands on the design of a
robotic computational system.
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9.5 Our Contributions

We decompose the problem—through separation-of-concerns—into three major
areas: (i.) Robust multi-sensor inference (discussed in Chapter [5)); (ii.) Access to
high rate odometry (with dynamic calibration, such as inertial in Chapter 4); and,
(iii.) A systems approach to combining the fast and robust elements over varying
timescales using the duplication method, as discussed in Chapters[3| &7}

Our premise is that existing (Gaussian only) measurement likelihood models
are too restrictive, and in this thesis we introduce a more robust sum-product style
inference solution. We also introduce new nonparametric likelihood functions to
better lever the sum-product style inference.

In the first section below, we look at how a user might assemble a nonparamet-
ric factor graph in a transactional-navigation approach to interact with the SLAM
service. Next we discuss contributions in sum-product inference that makes the
more robust SLAM service solution possible. Lastly, we discuss the novel continu-
ous time inertial odometry factors that would bring this client-server type system
in line with existing INS/GPS type state estimation.

9.5.1 A New Kind of Front-end Process

By separating the real-time, high-bandwidth state estimation operations from the
robust multi-sensor fusion operations in a duplication framework—as outlined in
Fig. page We increase the available computation time per inference cycle.

Using our approach, the robot navigation designer now has the freedom to
build a ”thin” front-end process in a client-server model, using a wider class of
multi-modal and nonparametric measurement likelihood models. These models
are used in a factor graph to produce non-Gaussian marginal posterior estimates.
The Multi-modal iSAM robust inference solution allows this new variety likelihood
models and associated of sensing modalities to extract a consensus posterior belief
state estimate.

For example, ambiguity in measurement data association can be modeled as
multi-modal belief between multiple variables in the system, which, to the best of
our knowledge, is novel method of performing data association. This would allow
back-end solution to internally find Bayesian consensus amongst ambiguous data
without modifying the structure of the factor graph. This is a vital difference to
previous approaches.

Our break from the common Gaussian assumption also allows more general
nonparametric measurement likelihood models into the joint probability factor
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graph, which is a significant departure from the current Gaussian status quo. Re-
laxing the Gaussian constraint requirement allows the user significantly more free-
dom in representing ambiguous uncertainties from real world measurements and
deferring consensus to the inference algorithm. We showed through practical ex-
periment how beam-forming type measurements with truly nonparametric mea-
surement likelihoods can be included into the navigation and state estimation pro-
cess.

9.5.2 Generalized Sum-Product Multi-modal Inference

Rather than trying to retrofit previous unimodal optimization style SLAM solu-
tions for multi-hypothesis solutions, we implemented a new algorithm to prop-
agate multi-modal beliefs on the Bayes tree factorization of the navigation style
factor graphs. Unlike Thrun et al.’s [224] histogram (fixed grid approaches), our
approach instead works freely on the infinite continuous set, maintaining only a
select set of variables to define where probabilistic belief is concentrated.

The algorithm is based on the Bayes tree symbolic refactorization which was
first developed by iSAM2P} allowing for incremental nonparametric updates to the
belief states of all variables; and we believe this might also be a first in sum-product
style algorithms that can deterministically recycle computations for stable regions
of a nonparametric joint probability distribution.

Our algorithm is called Multi-modal iSAM and scratch developed and exists in
an software implementation using the Julia programming language. We believe
this may be the first larger scale sum-product style inference algorithm in robotics
(thousands of variable processed in a non-Gaussian, multi-modal manner). The
algorithm is able to do general posterior recovery for arbitrary user-defined func-
tions satisfying mild conditions. The generalized inference algorithm can com-
pute non-Gaussian marginals from the full posterior belief of any variables the
joint probability factor graph model. Our approach is based on nested, multi-scale
Gibbs sampling which uses the user-defined measurement likelihood models as
proposal distributions, thereby ensuring that all modes have reasonable possibil-
ity of being selected.

In our multi-modal inference approach, the structure of the factor graph re-
mains unchanged throughout the inference process. By contrast, some null hy-
pothesis methods modify the graph structure during a preprocessing step. Main-
taining the topological structure of the factor graph allows us to exploit the full

2incremental Smoothing and Mapping
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structure within joint probability by using the Bayes tree, which in turn maintains
the incremental inference capability discussed in Chapter

We have chosen to approximate the marginal posterior densities of each clique
in the Bayes tree with a set of samples. These samples can be used to construct
belief propagation messages for inference across the entire tree. We choose to use
kernel density estimation to smooth the belief estimates and naturally encapsulate
multi-hypothesis characteristics in a selective multi-modal framework.

Furthermore, the Bayes tree symbolically encodes the multi-hypothesis belief
of an otherwise obscure variable interaction shown by the factor graph alone. We
limit the number of samples according to available computational resources and
thereby concentrate computation around the prominent modes in the system. The
approximation and inference scheme is designed to have minimal approximation
error around the dominant modes that are being tracked.

In Chapter 5| Table we identified nine computational principles which re-
duce the computational complexity of the sum-product style algorithm. The prin-
ciples were either exact symbolic re-factorizations, or asymptotic approximations
of the true belief. The loss of information is a vital aspect in obtaining a computa-
tionally tractable algorithm and corresponds to discarding low likelihood modes
while focusing computation on dominant modes, with very minor approximation
errors.

The key advantage of our approach is that when more information becomes
available, the inference on the clique is repeated and a new set of samples are
generated which may now focus computation on an altered subset of dominant
modes, retrieving modes that may have been lost before. Thereby data associa-
tion is deferred into the back-end inference process and assignment is available
through individual variable beliefs rather than factor graph structure.

In Chapter[6 we evaluated several canonical examples nonparametric and non-
singular examples. We showed that consensus on continuous domains are possible
with the three door example. We showed that multi-modal posteriors are possible
with the four door example. We shows how the ambiguous (non-singular) SLAM-
e-donut example is able to recover multiple correct modes form Gaussian only
likelihood models. We also illustrated three dimensional inference is possible with
basic acoustic structure from motion examples.

In Chapter[§|we showed how ambiguous data association (loop closures) could
be modeled and realistically computed for the Victoria Park dataset, representing
a model of many thousands of dimensions. We also noted that our factor graph
construction theoretically had around 2'™ captured in the uncertain associations.
We note that during sum-product style inference, all theoretical modes in the system
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have some probability of occurring in the posterior belief, however, nearly all the
modes are highly unlikely and are therefore ignored. We believe this is a first.

We also investigated a purely nonparametric measurement likelihood factor
graph, using raw beam formed acoustic measurement data. We were able to re-
cover a trajectory estimate without having to perform max-product data preprocess-
ing, and belief this approach is also a first.

9.5.3 Real-time Odometry and Inertial Odometry

In Chapters|1|&[2, we identified the need for a measurement factor suited for factor
graph based navigation. In Chapter@ we derived a novel continuous time, second
order inertial odometry residual function. Validation test in that chapter was able
to confirm that the measurement model is working.

Real data experiments with a hand-held visual-inertial system, as well as a hu-
manoid robot, show that the inertial odometry factor does infact work and is able
to use navigation information from loop closures, or an other measurement likeli-
hood models we can integrate into the factor graph.

9.6 Future Direction

We believe that the major theoretical development that is required—as we dis-
cussed in Section |5.4.3|—is to connect contractive mapping theory from functional
embeddings to detailed balance and stationary distributions in Markov Chain
Monte Carlo theory. Once we know the criteria for our inference operator 7 to
be a contractive mapping, we can instead focus on how to satisfy that criteria for
developing newer and better inference algorithms.

In addition, in Chapter[5|we showed through frequency embeddings how most
computation should be focused on ‘'mid-frequency’ computations. We would like
to investigate this mid-frequency phenomenon more.

Staying with Hilbert embeddings, recent work on the connection between re-
producing Hilbert space embeddings and conditional distributions [17,214] of-
fers a different and potentially more efficient mechanism for approximate Bayesian
computations. Further methods, such as progressive Bayes [204] might prove very
powerful indeed.

We would also like to investigate the non-singular system, encountered with
the SLAM-e-donut example in Chapter[f| in more detail. It might be that the non-
singular systems, which originate from ambiguous Gaussian systems in fact have
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non-Real posterior distributions. We are interested to see if complex values distri-
butions have anything to do with the observed multi-modality.

From a more practical standpoint, we intend to further exploit the Bayes tree
structure by combining hybrid Gaussian mixture models for portions of the tree
which involve distinct multi-modality, and switching to more costly smooth non-
parametric methods (such as kernel density estimates) when is other non-Gaussian
beliefs are encountered — as we discussed in Section We anticipate the use
of Gaussian mixture models, with epsilon exact belief approximation accuracy is
a reasonable step towards reducing computation while tracking dominant modes.

We continue to work towards a central inference task which simultaneously
localizes & maps the environment (sparsely), and can also plan future motions
through predictive models.

We can also consider newer deep learning based state estimation with our non-
Gaussian approach. We could train neural networks to produce beliefs over mea-
surement variables (represented in mixture models for example), and then incor-
porate these as likelihood factors in a factor graph model. The acoustic beam form-
ing example is closest example presented in the thesis. Combining likelihoods
from “learned” sensor perception systems is certainly an interesting avenue for
future research.

9.7 Conclusion

Increased computational throughput coupled with lower cost sensing and promise
of improved robotics have spurred rapid development navigation technology.
More people today are working on state estimation development than ever before,
building systems that service a variety of new and improved automated tasks.
The algorithm and framework presented in this thesis provides a route to im-
plement a real-time state estimate that interacts through a friendly centralized
database architecture, providing robust multi-modal inference. The intention is
to build a notion of location and dynamic awareness for use by robots. Many chal-
lenges remain to ensuring that a SLAM style state estimate solution is robust and
computationally feasible, but we expect this work to contribute towards our gen-
eral understanding and help future endeavors find bigger and greater discoveries.
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Appendix A

Identities

A.1 Notation

We follow the convention

[%
bio\ _ b weo COS§
R‘(’wq) _wR biq_ |:(;)Slng:| |0| <m
biy = VRYv (A.1)

with regular conversion between quaternions and rotation matrices.

A.2 Mathematical constructs

This work makes extensive use of the matrix exponential, which is defined by Tay-
lor series:

= MF
M __ E
k=0

such that M € R¥*¥, The matrix exponent provides an elegant formulation, but
care must be taken with practical floating point computation of eM. A (numer-
ically) accurate matrix exponential, such as the Pade approximation, should be
used [154]. Implementations of matrix exponentiation by Pade’ approximation
are common.

Our derivation exploits the manifold geometry of SO (3) around the current
best estimate of a vehicle’s trajectory in 3 dimensions. We parameterize perturba-
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tions on this manifold with Lie algebra [¢«] € so (3). The members of so (3) consist
of minimal parameters, ¢ € R3, in skew-symmetric matrices:

0 —Pz Py R R .
[SOX] = Pz 0 —Pz| = prEac + SOyEy + SDzEz
_Soy P 0

with usual Lie algebra basis elements {E,, E,, E. }:

0 0 —1
0 0 (A.3)
0

o O O

1
Of,
0

-
o O O

The Vee operator, [¢.]"
thogonal basis.
General rotations are operated by rotation matrices as part of the Lie Group

"R € SO (3), where the matrix exponent is used to map members of the algebra

= , vectorizes the coefficients on the associated or-

onto the group, eliex] 50 (3) = SO (3). Rodrigues’ formula gives a closed form
expression:

1 — cos |||l
el

R— el — T4 sin ||| (o]

2 A.

Practical implementations should take care as ||¢|| — 0, and we suggest using
eq. directly when ||| drops below some reasonable threshold.

The logarithm map is used to convert elements from the Lie Group to Lie alge-
bra, and is taken from Proposition 2.2 in [184], subject to ||¢|| < 7 and Tr (}R) #
—1:

log s IR = 2 (;R-!R") (A5)

where 1+ 2cos ¢ =Tr (AR).

We use singularity free positive scalar quaternions, .‘q, to store the each pose’s
orientation in the world frame. Body orientation at time ¢; is denoted as *. Rota-
tions may be directly composed with quaternions by using the Hamiltonian prod-
uct.
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Appendix B
Code Snippets

B.1 Three Doors Canonical Example

B.1.1 Mathematica Code for Three Doors example

z2 = b;
phil2 = Simplify[E~(-1/2*%((x2 - x1 - z2)°2))];

Na = E~(-1/2 ((x1)"2));
Nb = E"(-1/2 ((x1 - 10)"2));
Nc = E"(-1/2 ((x1 - 30)°2));

phil = Na + Nb + Nc;

M12 = phil * phil2;

m2 = Simplify[Integrate[M12, {x1, -Infinity, Infinityl}]];
Plot[m2, {x2, -10, 50}]

z3 = 5;
phi23 = Simplify[E~(-1/2%((x3 - x2 - z3)72))];

N3a = E~(-1/2 ((x3)°2));
N3b = E"(-1/2 ((x3 - 10)7°2));
N3c = E~(-1/2 ((x3 - 30)°2));

phi3 = N3a + N3b + N3c;
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M23 = Simplify[phi23 * phi3 * m2];
pX3 = Expand[Integrate[M23, {x2, -Infinity, Infinity}]]
Plot[pX3, {x3, 0, 50}, PlotRange -> All]

B.1.2 MCMC code snippet
Complete code for the leaf clique:

# measurement functions at the leaf node
hi1(z1l) = z1; # landmark measurement
h2(x1,z2) = x1 + z2; # odometry measurement

# The Measurements for this experiment
Z = zeros(4,1) # odo measurements
Z[2] = 5.0; # odo

Z[3] = 5.0; # odo

# Define the potentials
# three modes for the first measurement
function phil(z1)

w = zeros(3,1);

w[1] = 1.0/3.0;

w[2] = 1.0/3.0;

w[3] = 1.0 - w[1] - w[2];
mu = zeros(3,1);

mul[l] = 0.0;

mul[2] = 10.0;

mul[3] = 30.0;

SEL = rand();

W = cumsum(w) ;
for i in 1:3
if (W[i]>=SEL)
z1l = muli];
break;
end
end
return Normal(hi(z1), 1.0)
end
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phi3(z3) = phil(z3);

# single mode for this odometry measurement between X1, X2
phil2(x1,z2) = Normal(h2(x1,z2), 1.0);

#Compute the first message m2

# MCMC -- Following substitution and Gibbs sampling examples in Casselal992 and Gelfand!
k = 1; # convergence time (burn-in) for Gibbs sampler (Markov chain length)

M = 1000; # number of independent trials (as per Gelfand and Cassela)

x1 = zeros(k,M);

x2 = zeros(k,M);
m2 = zeros(M);
for m = 1:M
for i = 1:k
# generate sample from phil potential (Multimodal)
# Gibbs sampling -- sequentially sample a single variable at a time
x1[i,m] = rand(phi1(Z[1]1));
x2[i,m] = rand(phi12(x1[i,m], Z[2]));
end
m2[m] = x2[k,m];
end

pl = plot(x=m2, Geom.histogram(bincount=100))

B.1.3 Belief Propagation

Julia code for incorporating the measurements potentials, and marginalizing X,
at the root clique, is presented below.

# single mode for this odometry measurement between X2, X3, Z3
phi32exp(x3, x2, z) = exp(-0.5*%((h3(x2,2)-x3)72));

x3 = linspace(0,50,100);
function approxG(x3, m2, Z)
M = size(m2,1)

acc = 0.0
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for 1 = 1:M
acc += 1.0/M * phi32exp(x3, m2[1], Z[3])
end
return acc
end

# include the measurement Z4
pz4(x3) = exp(-0.5%((x3-0.0)"2)) + exp(-0.5%x((x3-10.0)"2)) + exp(-0.5%((x3-30.0) "2

X3 = zeros(M,1);

i=0;
for val = x3

i+=1;

X3[i] = pz4(val) * approxG(val, m2, Z);
end

p4 = plot(x=x3,y=X3,Geom.line)
draw(PNG("pX3_Z1234.png", 6inch, 3inch), p4)
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Appendix C

Example Intraclique operation

An example intraclique operation, as illustrated in Fig. 5-7|and Fig.

o1 (x2,l2; 21)
2 (x8,11,12,7; 22)

Min, (11, l2, T2)

Figure C-1: Canonical example of clique belief propagation operation

Consider a canonical example shown in Fig. two likelihood models asso-
ciated with this clique are used to capture data association uncertainty between
robot poses X; with potential sightings to landmarks L;:

01 (22,105 21) = [ Z1 | Xo, Lo =N (n = ©X5 @ Ly, X)) (C.1)
and

Y2 (x87l17l2) = [Z2,F | X87L17L2] (S8 [Z2 ‘ ’Y;X87L1,L2] [F] (C.2)

1—
[ Zy |y, Xs, L1, Lo ] = %N (p1, %) + Tny (p2, %) (C.3)
v~ Cat ([0.5 0.5]). (C.5)
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Note that ¢, represents a bimodal likelihood based on a hyperparameter 0.5 which
the user specified.

Step 1: Determine all local potential functions from each unclaimed factor asso-
ciated with frontal variables, using the tree leaves to root ordering as a guide. For
example in clique L4, Ly : X5, X, variable [; is associated with the local potential
9 and the incoming message m;, (/1, l2, z2), as shown in the table below:

ll lg Ty X8
©®1 X X
©2 X X X
mq | X X
meo X

Step 2a: Likelihood functions are used to relate desired variables to current
beliefs using n sample points

(IR = solve root [gpl (a;g’k), 1, z(")> , 20~ N (2, E)] (C.6)
from where we construct the approximated belief over L, using kernel density
estimation

(k)

w1

[iz | y} '~ KDE ({zgli")}(k)’) . (C.7)

Step 2b: Prior beliefs may be marginalized to the desired variable such as [ L |
from an incoming message

[Ll}m:/ [ Ly, Lo, Xo ], dradls, (C.8)
R2

Step 3: Compute approximate belief over each variable using available condi-
tional distributions — for example, we compute next iteration [ L, J D)

(L)%Y o [L1],, x [ L1 | 9. 1% (C.9)

P2

Step 4: Iterate this procedure across all variables in the clique until conver-
gence. At which point the belief over frontal variables [L; | y..| and [ Ly | y..] re-
place previously stored beliefs. Belief over all separator variables are passed along
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as the outgoing message:

Mo (02, 75) = | X, K| V= | (C.10)
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