
MIT Open Access Articles

Control and Optimization of Air Traffic Networks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Gopalakrishnan, Karthik and Balakrishnan, Hamsa. 2021. "Control and Optimization of 
Air Traffic Networks." Annual Review of Control, Robotics, and Autonomous Systems, 4 (1).

As Published: 10.1146/ANNUREV-CONTROL-070720-080844

Publisher: Annual Reviews

Persistent URL: https://hdl.handle.net/1721.1/145268

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/145268
http://creativecommons.org/licenses/by-nc-sa/4.0/


Control and Optimization
of Air Tra�c Networks

Karthik Gopalakrishnan & Hamsa Balakrishnan
Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
email: karthikg@mit.edu, hamsa@mit.edu

Annu. Rev. Control Robot. Auton. Syst.
2021. 4:1–28

https://doi.org/10.1146/annurev-control-
070720-080844

Copyright c� 2021 by Annual Reviews.
All rights reserved

Keywords

air transportation, flight delays, network models, Markov jump linear

systems, optimal control

Abstract

The air transportation system connects the world through the trans-

port of goods and people. However, operational ine�ciencies such as

flight delays and cancellations are prevalent, resulting in economic and

environmental impacts.

In the first part of this article, we review recent advances in using net-

work analysis techniques to model the interdependencies observed in

the air transportation system, and to understand the role of airports

in connecting populations, serving air tra�c demand, and spreading

delays. In the second part of the article, we present some of our recent

work on using operational data to build dynamical system models of

air tra�c delay networks. We show that Markov Jump Linear System

(MJLS) models capture many of the salient characteristics of these net-

worked systems. We illustrate how these models can be validated, and

then used to analyze system properties such as stability, and to design

optimal control strategies that limit the propagation of disruptions in

air tra�c networks.
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1. INTRODUCTION

Air transport connects the world: More than 4.5 billion passengers, and trade estimated to

be valued at $6.7 trillion, were transported on 39 million scheduled flights in 2019 (1). Air

tra�c demand has grown for the greater part of the past two decades, as has its connectivity,

which has nearly doubled in that time to more than 22,000 unique city-pairs worldwide

(1). The growth in air tra�c has been accompanied by an increase in congestion, and

consequently, delays. In 2019, 19% of the flights in the United States (US) had an arrival

delay of greater than 15 minutes, and another 2.5% of flights were cancelled. Flight delays

are estimated to have an economic impact $30-40 billion each year in the US, and $60 billion

worldwide (2, 3, 4, 5).

FAA: The Federal
Aviation
Administration is
the government
agency that provides
air tra�c control
services in the US

NAS: The National
Airspace System,
refers to the airports
and airspace regions
in the US that are
controlled by the
FAA

Primary delay: The
delay caused by the
initial disturbance to
an aircraft’s schedule

Reactionary delay:

The delay caused by
the knock-on e↵ects
of a primary delay,
caused when the
delay propagates to
subsequent legs of an
aircraft’s itinerary

Flight delays and cancellations can be initiated by a number of factors, including over-

scheduling during peak hours of operation, reductions in airport and airspace capacity

due to inclement weather (e.g., fog or thunderstorms), mechanical and maintenance issues

on aircraft, unavailability of crew members due to illness, extreme weather events (e.g.,

hurricanes), airport or airspace closures (6, 7), and even power or computer outages at an

airline (8, 9). While the above disruptions initiate primary delays at an airport, these delays

propagate to other airports, with potentially far-reaching impacts (10).

The networked nature of the air transportation system enables a high-degree of connec-

tivity between cities around the world, but can also cause brief disruptions at an airport

to cascade throughout the system. For example, two of the most disruptive events in 2016

were an hour-long computer outage at Southwest Airlines in Dallas, and a 5-hour-long power

outage (due to a fire) at Delta Airlines in Atlanta (8, 9). The impacts of these outages were

system-wide, lasted several days, and have been estimated to cost Southwest and Delta

Airlines, $177 and $150 million, respectively (9). It is worth noting that approximately

40% of flights in both the US and Europe are delayed not because of a direct impact, but

because the aircraft is late arriving from a previous leg of its itinerary (11, 12).

Any investigation of air tra�c delays should explicitly consider the network structure

and its role in the dynamics of delay propagation. By aiding tra�c managers, airlines, and

transportation system engineers in their strategic and tactical decision-making, such a study

would enable e�cient, robust, safe, and environmentally-friendly air tra�c operations.

1.1. Challenges in Air Tra�c Networks

Networks are a powerful abstraction that have been successfully used to model the dynamics

of a wide range of systems (14), from disease epidemics (15) and rumor propagation (16),

to engineered systems such as power grids (17, 18), the Internet (19), roads (20), public

transport (21), railroads (22) and air transportation (23). While each of these applications

has unique characteristics, we highlight some of the major challenges that arise in the

context of air tra�c delay networks:

Coupling of nodal states and network topology: Air tra�c networks exhibit a strong

coupling between the dynamics of the nodal states and the network topology. The network

topology changes with time (e.g., due to flight schedules) and is also a function of the state

of the nodes of the network (e.g., airport delays). Such complex intertwining of the nodal

states and the underlying topology poses technical challenges to the modeling and analysis

of these systems.

Multilayer networks: Connectivity in the air transportation system has been tradition-

ally modeled only in terms of operations, that is, flight service between an origin and a
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What causes flight delays?

Data from the US Bureau of Transportation Statistics on the di↵erent causes of flight delays is presented

below (11).

Late-arriving aircraft. A single aircraft flies multiple flight legs each day in order to increase its utilization.

Aircraft in the US typically operate 4-6 flight legs a day; some aircraft fly as many as 10 flights in a single day

(13). Although airline schedules are planned with bu↵ers between flight legs to mitigate delay propagation,

the delay of the incoming aircraft may exceed the bu↵er, resulting in reactionary delays.

Air carrier delays. This category includes all causes of delay that are considered to be within the control

of an airline, such as maintenance or flight crew issues, passenger boarding, fueling, baggage loading, aircraft

cleaning, etc.

NAS delays. These are delays due to air tra�c control and tra�c management initiatives, for example, to

address reduced capacity due to inclement weather or heavy tra�c volume, at an airport or in the airspace.

Extreme weather. This category includes severe meteorological conditions such as hurricanes, tornadoes,

or blizzards, that prevent the safe operation of flights.

destination (24, 25, 26, 27). However, in reality, the air transportation system is multi-

layered : the nodes (airports) may interact along multiple dimensions, each of which can

be treated as a layer of the network (28). For example, one can represent tra�c flows on

one layer of the network, airport capacities on another layer, and flight delays on a third

layer of the network. These layers would in turn be connected; for instance, bad weather

can lead to a reduction in airport capacities, which can in turn increase the delays on the

network. High delays can lead to network-wide cancellations, thereby modifying the tra�c

on the network. In other words, the air transportation system is a multilayer network over

which delays and other disruptions emerge and spread. Limited methodological tools exist

for developing analytical, or even data-driven, models for such real-world networks.

Complex and variable dynamics: Air tra�c networks exhibit significant variability

(e.g., in weather patterns and airline schedules) which have seasonal, weekly, and daily

trends; furthermore, weather phenomena are uncertain. As a consequence, it is di�cult to
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analyze and model the dynamics of air tra�c delays even when operational data is available,

since one needs to be able to control for the changes in capacity and demand.

Airline competition: Constrained air tra�c network resources are shared by aircraft

operated by multiple competing airlines, each with its own utility function. These utility

functions govern their scheduling and operating practices, and therefore, the dynamics of

the overall system.

Data quality and privacy: Information and data sharing are a key part of any modeling,

analysis, or optimization algorithms. In data-driven analysis, it is important to note that

some data (e.g., the ascribing of delay causes) can be subjective, resulting in potential

biases in the conclusions. Some data elements pertaining to airline operating practices and

cost functions are proprietary, and the flight plans of certain aircraft may be held private,

resulting in only partial information on some system states.

1.2. Outline of the Paper

In Section 2, we present an overview of the advances in the analysis of both static and

dynamic aviation networks. In Section 3, we present a Markov Jump Linear System (MJLS)

model of airport delays, and describe its general applicability to networked systems with

switching topologies. Section 4 presents results on the stability of MJLS models of air tra�c

delay networks, and Section 5 presents new results on optimal control for MJLS models.

Finally, Section 6 concludes with promising directions for future research.

While this paper adopts a network-centric perspective on air transportation, it is im-

portant to note that optimization and control techniques have long been an integral part of

air tra�c management. Successful applications of such techniques include airport surface

congestion management (29, 30, 31), tra�c flow management through large-scale optimiza-

tion (32, 33), tactical conflict resolution (34, 35), equitable resource allocation (36, 37),

and airline operations scheduling (38, 39). Developing practical, data-driven optimization

and control algorithms to manage large-scale network operations will be essential to ensure

safety and to enable growth in manned and unmanned air tra�c operations over the coming

years.

2. STRUCTURE AND EVOLUTION OF AVIATION NETWORKS

Research on network models of air transportation can be broadly classified based on the

quantity of interest (e.g., flight connectivity or operational performance), the scope of the

network (e.g., limited to a specific geography or airline), and temporal behavior (static

or dynamic network) (23). Most prior studies have focused on static flight connectivity

networks, with airports are nodes, and edges represent the number of flights or the number

of passengers between pairs of airports (25, 26, 27). Prior work has also considered air tra�c

in di↵erent parts of the world, as well as passenger and cargo airlines (40, 41, 42). There

has been limited consideration of the dynamics of delays, cancellations, airport congestion,

and airspace capacity in air tra�c networks (Figure 1).

Static network: A
network whose nodes
and edges, including
the weights and
directions, do not
change over time

Dynamic network: A
network whose nodes
or edges (weights or
directions) vary with
time

We first discuss centrality in the context of static networks, and then extend these

concepts to the case of dynamic networks, focusing on applications to air tra�c delays.

4 Gopalakrishnan and Balakrishnan



(i) Radar summary (ii) Airport capacity reduction

(iii) Flight traffic network (iv) Flight delay network (v) Flight cancellation network

Figure 1

Di↵erent representations of the state of the air transportation system on July 1, 2016. Although
networks in (iii)-(v) are directed, an average undirected network is shown for ease of visualization.

2.1. Node Centrality

Static network analysis of the air transportation system has yielded insights into its scale-

free nature (23, 43), airline-specific patterns (40, 43), and its robustness to disruptions

(44, 45, 46).

A key aspect of analyzing network structure is the quantification of the centrality of

a node in a graph. We define a network (or graph) by the set of V nodes, and the edges

between these nodes. The directionality and weight of edges can be represented using an

adjacency matrix A 2 RV ⇥V , where the element aij represents the weight on the edge from

node i to node j. In the air tra�c context, the edge (i, j) is sometimes referred to as an OD

pair (Origin-Destination pair). The entry aij = 0 if there is no edge from node i to node

j. The centrality, or importance of a node in a network, is context-dependant, and can be

evaluated in several ways (14, 47). We describe three measures of node centrality:

Undirected network:

A network whose
adjacency matrix is
symmetric, i.e.,
A = AT

Unweighted network:

A network whose
adjacency matrix
elements are binary,
i.e., 0 or 1

1. Degree centrality: For a node i, the in-degree (dini ) and the out-degree (douti ) are

defined as dini =
P

j aji and douti =
P

j aij , respectively.

2. Eigenvector centrality (or eigencentrality): While the degree centrality measures the

strength of association of a node with its immediate neighbors, the eigencentrality

reflects the importance of a node in the context of the entire network. The eigen-

centrality for all nodes of an undirected network with (symmetric) adjacency matrix

Asym are given by the elements of the principal eigenvector (i.e., the eigenvector

corresponding to the eigenvalue with the largest magnitude) of Asym.

3. Hub and authority scores (48, 49, 50): The generalization of eigencentrality to di-

rected graphs considers the importance of the inbound and outbound connections of

network nodes using metrics called the hub score and authority score. These scores

are computed as the principal eigenvector of AAT and ATA, respectively (Figure 2).

While flight connectivity networks are often represented as unweighted undirected net-

works, delays or cancellation networks exhibit asymmetric relationships between airports.

As a result, they are better modeled as weighted, directed networks, with the edge weights

representing the average flight delays (or cancellations) on a particular route. Such networks
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A

B

C

D

E

G

F

I

J

K

L

H

Node(s) In-
degree

Out-
degree

Hub 
score

Authority 
score

A 4 2 0 0.71

B-E 0 1 0.32 0

F 1 1 0 0

G 1 1 0.32 0.32

H 2 4 0.71 0

I-L 1 0 0 0.32

Figure 2

(Left) An example of a network, and (right) centrality metrics for its nodes.

have only recently received attention (51).

2.2. Clustering of Air Tra�c Networks

Clustering has been used in the aviation context to categorize operational data in terms

of flight connectivity, delays, tra�c, trajectories, weather impacts, etc. Most of these

e↵orts have involved clustering high-dimensional data (e.g., weather (52), airport capacities

(53, 54, 55), or flight trajectories (56)). Their scope has been restricted to either one airport

or a small group of airports, and has not considered network interactions. By contrast,

we focus on network representations of operational performance, specifically delays and

cancellations, and consider the problem of graph clustering (57, 51).It is worth noting the

distinction between the node-clustering problem (i.e the community detection problem), and

the problem of graph-clustering problem. The former (58, 59, 60, 61, 62, 51) categorizes

groups of nodes in a given graph that are similar to each other, while the latter aims to

identify entire graphs that are similar to each other.

The clustering of graphs can be carried out defining a feature vector, denoted fG , for

each graph G, and subsequently performing a vector clustering technique (e.g., k-means

clustering (63)) on these feature vectors. The degree centrality or eigencentrality can be

used as the feature vector fG (59, 64). However, degree centrality does not consider global

measures of centrality, while eigencentrality is only suitable for undirected graphs. One

could also populate fG with the edge weights aij ; however the feature vector then loses the

network-centric context, and its length grows super-linearly (O(V 2)) with the size of the

network. These challenges in clustering weighted, directed networks were addressed in (51)

by using a scaled hub/authority score feature vector given by :

fG =
X

i,j

aij

 
h

a

!
1.

This feature vector accounts for network-centric features and the magnitude of the edge

weights while clustering weighted, directed graphs. It can therefore help distinguish between

two delay networks based on the magnitude and direction of the delays, as well as the

importance of the corresponding airports in the context of the entire network.

Delay networks evolve with time. It is therefore valuable to identify characteristic net-

work topologies. These typical or characteristic topologies can help identify anomalous

network structures, comparing network topologies, and understand the evolution of the
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Figure 3

(Top) An example of a time-series of weighted-directed networks. (Bottom) Clustering can
provide an equivalent, high-level representation of the evolution of the network.

system. Figure 3 shows a time-series of weighted directed graphs (representing delay net-

works), and how clustering could model the evolution of the system. This approach of

using clustering to analyzing the evolution of air transportation networks will be further

elaborated in Section 3.

2.3. Temporal Evolution of Air Tra�c Networks

The temporal evolution of a networked system is associated with two distinct phenomena.

The first, widely-studied, phenomenon is the spreading process on the nodes of a network

(e.g., epidemic propagation in a population network). The second phenomenon is the

evolution of the structure of the network itself, namely, changes in the number of nodes, or

strength and direction of edges. Figure 3 illustrates one such example, in which the edge

weights, which could represent flight delays between a pair of airports, changes with time.

Models of flight delays help characterize the temporal evolution of the air tra�c delay

network. Two modelling approaches are popular in this context: queuing theory and ma-

chine learning. Queuing models track aircraft as they pass through constrained resources,

modeled as queues (65, 66, 67). However, they often require proprietary information on crew

itineraries, and are sensitive to airport and airspace capacity estimates (68, 69, 70). Recent

work on machine learning methods has significantly improved delay prediction accuracy

(71, 72, 73), but lack the analytical tractability and interpretability needed for resilience

and robustness analysis (74, 75).

We seek to develop a data-driven model of air tra�c delay network dynamics that is

analytically tractable and accounts for time-varying network topologies as well as weighted,

directed graphs. While certain aspects of this problem, such as asymmetric interactions

(76) and switching topologies (77), have been previously considered, we present our recent

work on developing and validating a data-driven model of airport delays (78).

3. NETWORK MODEL OF AIRPORT DELAYS

We present a Markov Jump Linear System (MJLS) model for the hourly progression of

airport delays (78). MJLS are a subset of hybrid systems (79), which have been successfully

used to model electromechanical systems (80), epidemic propagation (81), communication

www.annualreviews.org • Control and Optimization of Air Tra�c Networks 7



networks (82), and multi-agent interactions (83). The proposed model is constructed using

operational flight delay data from the US, incorporates the time-varying network e↵ects

that drive delay propagation, and is lends itself to further analysis (Section 4 and 5).

3.1. Airport Delay Dynamics Model

3.1.1. Data and setup. An air tra�c delay network comprises of nodes corresponding to

airports, and weighted, directed edges corresponding to the magnitude of flight delays

between the two airports. We define a delay network for each hour of the day, with the edge

weight being the median departure delay for all flights that were scheduled to take o↵ on

that route during the hour. We use data for domestic air tra�c in the US during the years

2011-12 to construct these time-series of weighted-directed networks (11). We consider only

the 30 major airports in the US (FAA Core 30); thus the number of nodes V = 30. A

network for each hour in the two-year period results in 731 ⇥ 24 = 17, 544 networks, each

with a distinct V ⇥ V adjacency matrix, A(t). We denote the total inbound and outbound

delays at an an airport i at hour t as dini (t) and douti (t) respectively. These airport delays

are related to the elements of the adjacency matrix A(t) = [aij(t)] as dini (t) =
P

j aij(t)

and douti (t) =
P

j aij(t). Our objective is to develop a model for the evolution of dini (t) and

douti (t). With regards to notation, we use boldface to denote vectors (e.g., x(t) for the state

vector, 0 for a vector of zeros, etc.), R for the set of reals, N for the set of natural numbers,

1condition as an indicator variable, and IM⇥M to denote a M ⇥M identity matrix.

Node state: The
vector x(t), also
referred to as the
continuous state

Discrete mode: The
current mode m(t)
belonging to one of
the M possible
options, also referred
to as the mode or
topology.

State of the MJLS:

Combination of the
node state x(t) and
the discrete mode
m(t).

3.1.2. Topology-dependent model. The total outbound delay at airport i at time-step t+1

depends on two components: the outbound delay at that airport at time t (reflecting delay-

persistence) and the delay bound to i from the other airports at time t (modeling the

network e↵ect). Similarly, the outbound delay at airport i at t+1 depends on its outbound

delay at time t as well as the network e↵ect of other connected airports. Combining these

two factors linearly using proportionality constants ↵out
i , ↵in

i , �out
i , and �in

i , we get:

douti (t+ 1) = ↵out
i douti (t) + �out

i

VX

j=1

āij(t)d
in
j (t) 2.

dini (t+ 1) = ↵in
i dini (t) + �in

i

VX

j=1

āji(t)d
out
j (t) 3.

where āij(t) represent the elements of the row normalized adjacency matrix Ā(t) (i.e.,

āij(t) is the fraction of the total outbound delay at node i that is destined for node j).

The constants ↵ and �, are assumed to be non-negative, and their magnitudes reflect the

relative importance of the persistence and the network e↵ect in the delay dynamics. These

constants do not necessarily sum up to 1, since delay may not be conserved due to factors

such as bu↵ers in flight schedules (which help attenuate delays) or high airport connectivity

(which could exacerbate delays). We denote the node-state of the system at any time t as

the vector x(t) which comprises of all the inbound and outbound delays at all airports:

x(t) =

"
dout(t)

din(t)

#
. 4.

Using x(t) 2 RN⇥1
�0 , where N = 2V = 60, Equations 2 and 3 are expressed succinctly as
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Figure 4

Plot of the within-cluster sum of squares (WCSS) distance as a function of the number of clusters
(left), and the percent reduction in WCSS with each additional cluster (right). We use k = 6.

x(t+ 1) =
⇣
diag([↵out;↵in]) + diag([�out;�in])A(t)

⌘
x(t) = �(t)x(t), 5.

where A(t) =

 
0 Ā(t)

ĀT(t) 0

!
. Thus, Equation 5 describes the dynamics of the continuous-

state x(t) as a function of the topology A(t).

3.1.3. Clustering of network topologies. Since the evolution of the delays depends on the

network topology A(t) which can take many possible values, we aim to find a set of char-

acteristic network topologies. In other words, we want to identify a limited set of matrices

that are representative of A(t). Incidentally, the principal eigenvector of A(t) is the vec-

tor comprising of the hub-and authority scores of a network with adjacency matrix Ā(t)

(48). We emphasize a subtle observation: Equation 5 is such that a centrality measure on

static networks ends up being relevant in identifying characteristic patterns that govern the

temporal dynamics of the system. A weighted hub-authority clustering (based on Equation

1) is subsequently performed to identify six representative network topologies (Figure 4),

which are further split based on whether the overall system delay is increasing or decreasing

at that time. The M = 12 network topologies, {A1, A2, . . . , AM}, are shown in Figure 5.

3.1.4. Parameter estimation. The parameters ↵ and � are estimated for each discrete

mode (network topology) using a linear regression. These parameters are combined with

the topologies {A1, . . . , AM} via Equation 5 to identify the system dynamics matrices

{�1,�2, . . . ,�M}. The transitions in the network structure are assumed to be a result

of Markovian jumps between M = 12 possible topologies. In other words, the probability

of transitioning from mode m(t) at time t to m(t+1) at time t+1, P[m(t+1) = j|m(t) = i]

is denoted ⇡ij(t). The transition probability ⇡ij(t) (and the corresponding M ⇥M transi-

tion matrix ⇧t) is obtained using the maximum likelihood estimator, which in this case is

equal to the empirically observed frequency of transitions from mode i to j at time t. The

discrete mode transitions may also be associated with resets or jumps in the state of the

node. In other words, any transitions from topology i to topology j modify the node state

as x(t+ 1) = Ji,j�ix(t). The state reset matrix Ji,j is also estimated by linear regression.

www.annualreviews.org • Control and Optimization of Air Tra�c Networks 9



Figure 5

Characteristic network topologies (discrete modes) from 2011-12, including delay trends
(increasing or decreasing). The modes are named on a qualitative basis, and the frequency of
occurrence is shown in parentheses. The spectral radius (magnitude of the largest eigenvalue) of
the corresponding system dynamics matrix, ⇢(�) is also presented.

3.2. Validation and Model Performance

We consider the MJLS model whose parameters ↵, �, and J are estimated using data from

2011. Figure 6 highlights the potential for the model to reflect high-level temporal trends

in delay dynamics. For this experiment, the MJLS model is initialized with the airport

delays at 8 am EST, and the delays are propagated using Equations 6 and 7. We see

that the MJLS model is able to capture the varying scale and magnitude of delays across

di↵erent airports, as well as the temporal trend of increasing and decreasing delays (with a

6.4% error over the first 12 hours). There is a 1- to 2-hour lag in the ability of the model

to capture decaying delays, possibly because the model, for simplicity, has just M = 12

discrete modes. Although not shown in this figure, the model is also found to track the

variance in delay reasonably well.

The predictive capability of the MJLS model is worth noting (86). Table 1 compares a

linear regression and the MJLS models for predicting delays at a 2-, 4-, and 6-hour horizons.

The models use di↵erent inputs: the MJLS model uses x(t) and m(t) as the initial condition,

while the linear regression models use t, x(t), and a characteristic network topology label for

the previous day (for potential residual delay e↵ects). The results indicate that the MJLS

model performs better than linear regression (as well as simple neural network architectures)

10 Gopalakrishnan and Balakrishnan



Markov Jump Linear System (MJLS) models

The dynamics of the inbound and outbound airport delays is described using a discrete-

time switched linear system, where the evolution of the airport delays in each discrete mode

is linear, and the discrete mode transitions are governed by a Markov process (84, 85).

An example of a MJLS system with three discrete network topologies is shown below.

In general, the dynamics of the airport delays x(t) from mode m(t) at time t is given by:

x(t+ 1) = Jm(t),m(t+1)�m(t)x(t) 6.

⇡ij(t) = P[m(t+ 1) = j|m(t) = i] 7.

Initial conditions : x(0) � 0 and m(0) 8.

where the state reset matrix Jm(t),m(t+1) = IN⇥N if m(t) = m(t+ 1).

Positive MJLS (PMJLS). A PMJLS is a MJLS for which the state always remains non-negative for any

non-negative initial condition, i.e., x(0) � 0 =) x(t) � 0 8t. For airport delay dynamics, all the elements

of �i and Ji,j are non-negative and thus the system is a PMJLS, consistent with the fact that airport delays

are always non-negative.

Method
Mean Prediction error (min)

2 hour 4 hour 6 hour

Linear Regression 7.59 9.51 10.47

MJLS model 6.75 8.83 10.09
Table 1 Mean prediction errors for the total system delay for the MJLS and a linear

regression model across di↵erent prediction horizons (86). The model was developed

using data from 2011, and tested on data from 2012.

while modelling airport delay propagation (86).

3.3. Other Applications of Modeling Framework

The proposed framework (Figure 7) yields a switched-system model for the temporal evo-

lution of a continuous nodal state vector. In our application, the continuous state cor-

responded to airport delays, but it could be extended to packet latency at routers in a

communication network, or the extent of gossip spread in a social network. In each of these

settings, one could express a parametric, topology-dependant model for the nodal state, re-

www.annualreviews.org • Control and Optimization of Air Tra�c Networks 11
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Figure 6

Comparison of actual and MJLS-predicted mean delays (sum of inbound and outbound delays)
evaluated for 2011. All times are in US Eastern Standard Time (EST).

Figure 7

Overview of the steps involved in developing a switched-system network model from data. The
text in parenthesis describes the adaptations of the steps for the airport delay model.

duce the model complexity by restricting the topology to a finite set by clustering (87), learn

the model parameters by regression, and iteratively refine the parameters if needed. More

generally, the model need not be linear or the topology transitions Markovian, presenting

great flexibility.

4. STABILITY OF AIRPORT DELAY DYNAMICS

Stability analysis provides insights into the temporal and topology-specific patterns that

lead to increasing or decreasing delays, and also helps further validate the model. For

example, one would expect airport delays to decay overnight, as tra�c demand decreases.

The stability, or instability, of a system may also motivate approaches to e↵ectively control

the system, as we will explore further in Section 5.

For a discrete-time, linear, time-invariant (LTI) system, stability is defined as the con-

vergence of the sequence of the continuous state norms to 0, and a necessary and su�cient

12 Gopalakrishnan and Balakrishnan



for stability is that the spectral radius of the system matrix is less than 1. The evolution of

x(t) in a MJLS is a stochastic process, and consequently, relevant notions of stability have

been proposed for switched systems in general (88, 89), and MJLS in particular (90, 91, 92).

Stability conditions for MJLS are starkly di↵erent from those for LTI systems– stability or

instability of the individual modes is neither necessary nor su�cient for the stability of

the MJLS (91). In this section, we present conditions for the stability of PMJLS with

continuous state resets, and interpret them in the context of air tra�c delay networks.

Stability of discrete-time positive Markov Jump Linear Systems (PMJLS)

Definitions

Mean Stability (MS): A system is said to be mean stable if the expected value of the state tends to zero

as time tends to infinity, i.e, limk!1 E[x(k)] = 0, for any non-negative initial conditions, x(0), and for any

m(0).

Exponentially Mean Stability: A system is said to be exponentially mean stable if there exist positive

scalars c and r < 1, such that E[x(k)]  c rkkx(0)k1, for all times k, for any non-negative initial conditions,

x(0), and for any m(0).

Exponential �-Moment Stability: A system is said to be exponentially �-moment stable if there exist

positive scalars c and r < 1 such that E[kx(k)k�]  c rkkx(0)k�, for all times k, for any non-negative initial

conditions, x(0), and for any m(0). When � = 2, it is known as exponential mean-square stability.

Almost Sure Stability (ASS): A system is said to be almost surely stable if the state tends to zero

as time tends to infinity, with probability 1, i.e., P[limk!1 kx(k)k = 0] = 1, for any non-negative initial

conditions, x(0), and for any m(0).

Remarks:

1. The notion of MS was specifically introduced to exploit the non-negativity property

of PMJLS, in order to obtain stability criteria (93, 94).

2. The concept of ASS requires that every realization of the system state tends to zero,

rather than just tending to zero in expectation. This definition is typically more

useful in practice (95).

Relationships between the di↵erent notions of stability

For a PMJLS, these notions of stability are related as follows (93, 78):

Mean Stable () Exponentially Mean Stable () Exponentially 1-Moment Stable ) Almost Surely Stable

While su�cient conditions, with varying degrees of conservatism, have been proposed for ASS, a necessary

and su�cient condition remains elusive (96). As a result, a proof of MS is typically used as a su�cient

condition for ASS.
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4.1. Mean Stability of a PMJLS

We begin with the mathematical preliminaries needed for our main result on necessary and

su�cient conditions for the mean stability (MS) of a PMJLS. We ignore the state reset

matrices Ji,j in our analysis for simplicity; however, the results can be trivially extended

to incorporate them (78). The key idea involved is to define and track an augmented state

vector q(t) 2 RNM⇥1 given by

q(t) =
h
q1(t), · · · , qM (t)

i|
, where qi(t) = E[x(t)1m(t)=i]. 9.

Next, matrices Bt 2 RNM⇥NM and S = [sij ] 2 RN⇥NM are defined as

Bt =

2

664

⇡11(t)�1 . . . ⇡M1(t)�M

...
. . .

...

⇡1M (t)�1 . . . ⇡MM (t)�M

3

775 and sij =

(
1, if j = i+ kN, for k 2 N
0, otherwise

10.

Lastly, we define Ct1,t2 2 RN⇥NM as

Ct1,t2 = S(IMN⇥MN +Bt1 +Bt1+1Bt1 + . . .+Bt2�1 · · ·Bt1), 11.

where Ct1,t2 = [cTij ], with cij 2 RN⇥1, i = 1, . . . , N , and j = 1 . . . ,M .

The following propositions describe the evolution of q(t) and E[x(t)]:

Proposition 1. Given x(t) and m(t), qi(t+ 1) = ⇡m(t),i(t)�m(t)x(t).

Proposition 2. The augmented state vector evolves as q(t+ 1) = Btq(t).

Proposition 3. The expected state E[x(t)] is equal to
PM

i=1 qi(t).

Proposition 4. The expected sum of future states
Pt2

t=t1
E[x(t)] is equal to Ct1,t2q(t1).

These propositions indicate that knowledge of the current state, either in the form of

(x(t),m(t)) or q(t) is su�cient to propagate the augmented state and the expected state

E[x(t)] for future time. We now present the main result:

Theorem 1 (from (78)). If the transition probabilities are time-varying and periodic with

length K, i.e., ⇡ij(t+K) = ⇡ij(t), then the PMJLS is Mean Stable if and only if the spectral

radius of the matrix Dk = Bk+K�1Bk+K�2 · · · Bk is less than 1, for some k 2 [0,K].

MS: Mean stable

ASS: Almost surely
stable

Theorem 1 prescribes the conditions required to test for MS when transition matrices

are time-varying and periodic. Since tra�c patterns and flight delays are cyclic over the

course of a day, the transition probability matrix ⇧t is periodic with K = 24. The following

corollary considers the case when transition matrices are not time-varying.

Corollary 1. If ⇡ij(t) = ⇡ij 8t, and Bt = B 8t, then a necessary and su�cient condition

for the Mean Stability of the PMJLS system is that the spectral radius of B is less than 1.

Theorem 1 provides a relatively straightforward test for MS based on the spectral radius

of D, ⇢(D). Additionally, since MS implies ASS for a PMJLS, mean stability implies that

airport delays x(t) will converge to 0 with probability 1 as t ! 1. It is also worth

remembering that these are su�cient and not necessary conditions, i.e., if the conditions

for MS are not satisfied, it does not tell us anything about ASS. However, for the case of

airport delays, we expect the system to be both MS and ASS.

14 Gopalakrishnan and Balakrishnan



Figure 8

(Left) Worst-case delay magnification (over the next hour) of 1 unit of total delay initiated at a
particular hour of the day. (Right) Worst-case amplification of 1-unit of time delay injected at
four di↵erent times (4 am, 8 am, 12 pm and 4 pm), when allowed to propagate. All times are in
US EST.

4.2. Implications for Airport Delay Dynamics

The airport delay MJLS model involves periodic transitions (with time period K = 24)

between 12 discrete modes, some of which are stable, while others are unstable (Figure

5). To evaluate stability of the resulting PMJLS, we compute the spectral radius of D as

⇢(D) = 0.67 < 1, to conclude that the system is MS, and therefore ASS. This finding is

consistent with our expectation that delays will tend to decay over the course of a 24-hour

period in expectation, and further validates the MJLS model. Interestingly, if we had not

incorporated the time-varying transition matrix and instead considered the average matrix

⇧t = ⇧ 8t, then ⇢(B) = 1.06, and by Corollary 1 the system is would not be MS. This result

highlights the critical role that the discrete mode transitions to ‘Low NAS decreasing’ (and

other decaying delay modes) during the later part of the day play in stabilizing the system.

The spectral radius of Bt gives an upper bound on the amplification (i.e., the worst

case magnification) of the total system delay at time t, over the next time-step (an hour,

in our case). Figure 8, which plots ⇢(Bt) as a function of time indicates that the topology

transitions are such that the delays tend to decay after 8 pm, thus resulting in low airport

delays overnight. Additionally, from Proposition 2, we can also show that the worst case

amplification of delays from t1 to t2,
kE[x(t2)]k1
kx(t1)k1

, is equal to ⇢(Bt2�1 . . . Bt1+1Bt1). Using

this result, we plot the worst case amplification of a 1-unit total delay initialized at di↵erent

points in time (4 am, 8 am, 12 pm and 4 pm) in Figure 8. Delays initiated earlier in the

day have a greater potential to cascade throughout the system and get magnified (up to

80 times by 8 pm) as compared to those introduced during the later part of the day. Our

analysis emphasizes the need to ensure disruption-free operations during the early part of

the day for improved system performance – an operational practice regularly-employed by

airline operations managers and air tra�c controllers.

Our results illustrate the role that stability analysis plays in model validation and in

identifying key aspects of the delay dynamics. Finally, we point readers towards recent work

on structural (97) and finite-time (98) stability, which have yielded interesting insights.
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Figure 9

Mean system delay vs. number of flight cancellations, for hourly data from 2011-12 grouped by
the number of flight cancellations. The color of each dot denotes the number of hours for each of
the groups. While delays and cancellations both increase initially, cancellations are used to
strategically reduce tra�c demand when disruptions are severe, resulting in lower delays for flights
that continue to operate.

5. OPTIMAL CONTROL OF AIR TRAFFIC DELAY NETWORKS

Long-term strategies for reducing air tra�c delays require expensive infrastructure and

technological investments. Tactical control approaches, at the time-frame of a few hours,

such tra�c flow management (e.g., ground delay programs or airspace flow programs re-

sulting in flight swaps and cancellations) can be e↵ective in mitigating congestion due to

unforeseen disruptions (39). In the context of our MJLS model for air tra�c delays, these

actions correspond to either interventions on the nodal (continuous) state to decrease delays

at airports, or interventions on the network topology to decrease the propagation of delays.

Figure 9 shows an example of how flight cancellations are used to reduce demand, and

consequently, reduce delays for the remaining flights. The development of control strategies

for such networked systems will enable e�cient, resilient and robust operations in a number

of other critical infrastructures (99, 34, 100).

The control of processes on networks has been well-studied in the context of epidemiol-

ogy (81, 101) and resilient infrastructures (102, 103, 104). However, controllers for systems

with switching topologies have received less attention (91, 105). The most popular approach

to control the nodal state of a MJLS is to use a mode-dependent state feedback controller

(91, 106). Dynamic programming (107), convex programming (108), particle based approx-

imate methods (109), and receding horizon controllers (110, 111) have also been developed.

These controllers all modify the nodal state x(t) to achieve a desired control objective. The

control of mode transitions, by which one alters the transition probability ⇧t or induces

specific mode transitions, has been impractical in many traditional settings, and therefore

not been explored (112). However, increasing autonomy has enabled the ability to modify

the structure of network interactions in many infrastructure systems. In this section, we

develop controllers for a PMJLS that acts on both the continuous (node) state and the

discrete mode, in order to minimize a desired objective function.
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Control of Markov Jump Linear Systems

Let the continuous state of the system be x(t), and the discrete mode be m(t) at time t. The objective

of a controller is to optimally trade o↵ the control e↵ort with the benefits of a smaller continuous state x(t).

Since x(t) � 0 for a PMJLS, the continuous state magnitude can be represented by the 1-norm. The control

action at time t minimizes the cost-to-go, and the objective function for the controller is expressed as

Minimize E[
TX

⌧=t

kx(⌧)k1] + control penalty (t) 12.

Node or continuous state control. The control action u(t) 2 RN⇥1 modifies the continuous state as

x(t+ 1) = �m(t)x(t)� u(t), while ensuring that x(t) � 0 and 0  u(t)  Umax1. The action u(t) incurs a

control penalty of �T (t)u(t), where �(t) 2 RN⇥1
�0 is the cost per unit action on each node.

Topology or mode control. A mode control action forces a transition to a particular discrete mode at

time t + 1, instead of allowing it to be drawn from the distribution ⇧t. The control penalty for forcing a

transition from mode i at time t to mode j at t + 1 is given by ↵i,j(t) 2 R�0. There is no penalty in the

absence of a forced transition.

Integrated control. An integrated control action involves a combination of continuous state and mode

control.

5.1. Optimal Control of a PMJLS

We present the optimal node, topology and integrated control actions that should be taken

when the system has a continuous state x(t), and discrete mode m(t), at time t, in order

to minimize the objective function in Equation 12.
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Theorem 2 (Node control). The node control action u⇤(t) given by

u⇤
i (t) =

(
max {Umax,

P
j [�m(t)]ijxj(t)} if �i(t)  ⌘i

0 otherwise
13.

where ⌘T =
P

i,j ⇡m(t),jc
T
ij 2 R1⇥N

and C(⇡)
t+1,T = [cTij ]i=1:N, j=1:M minimizes the func-

tion in Equation 12. The minimum value is equal to

(1T + ⌘T�m(t))x(t) + (�T (t)� ⌘T )u⇤(t) 14.

Proof. First, use Equation 9 and Proposition 1 to obtain q(t+1). Then, use Proposition 4

to simplify the expected state norm from time t+ 1 to T in Equation 12. This reduces the

problem to a variable-separable linear program.

The optimal node control policy is a threshold rule that identifies nodes at which in-

tervention is justified, and uses the largest control action subject to the limit of Umax, and

such that x(t+1) � 0. Note that u⇤(t) = 0 if no action can decrease the objective function.

Proposition 5. When the topology is forced to transition to mode k at time t+1, the value

of the objective function (Equation 12) is

kx(t)k1 + kCt+1,T q(k)(t+ 1)k1 + ↵m(t),k(t) 15.

where q(k)
i (t+ 1) =

(
�m(t)x(t), if i = k

0, otherwise
for i 2 {1, . . . ,M}

Proof. Separate the terms in Equation 12, and simplify using Propositions 1 and 2.

Theorem 3 (Topology control). The optimal topology control action chooses the mode that

yields the lowest objective function value (Equation 12) from among the following options:

(i) No topology control, with objective function value given by Proposition 4.

(ii) Topology transition to any mode k 2 {1, . . . ,M}, with objective function value given

by Proposition 5.

Proof. The cases (i) and (ii) decompose the domain of the optimization. Hence, the global

minimum is the best solution among these locally optimal solutions.

The optimal topology control action is the result of evaluating (M + 1) sub-problems,

and then choosing the best action (Theorem 3). The enumeration of the (M + 1) cases is

tractable in practice since the matrices Ct+1,T can be computed o✏ine.

Proposition 6. The optimal node control action u⇤(t) conditioned on a forced topology

transition to mode k at t + 1 (i.e., m(t + 1) = k) is obtained by setting ⌘T =
P

i c
T
ik in

Theorem 2.

Proof. Use Equation 9 and Proposition 1 to obtain an appropriate q(t+1). The rest of the

proof follows that for Theorem 2.

Theorem 4 (Integrated control). The optimal integrated (i.e., node and topology) control

action at time t is the one that results in the lowest objective function value from among

the following options:
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Control strategy Delay cost
Number of control actions

Node Topology Both

Node controller 0.79 2.02 - -

Topology controller 0.85 - 3.22 -

Integrated controller 0.70 1.91 2.26 0.07

Table 2 Controller performance averaged over ↵ 2 [0, 0.25] and � 2 [0, 200].

(i) No forced topology transition, and optimal node control as in Theorem 2.

(ii) Forced topology transition to some mode k 2 {1, . . . ,M}, and a conditionally optimal

node control action, as in Proposition 6.

Proof. Similar to the proof for Theorem 3.

The integrated controller prescribes a potential topology transition and a control u⇤(t)

on the node state as described in Theorem 4. It is important to note that the integrated

controller controller does not simply choose between the node and topology controllers, but

rather chooses the optimal solution (i.e., the minimizer of Equation 12) over the space of

all possible combinations of node and topology control actions.

5.2. Evaluation of Controller Performance

We aim to minimize airport delays over the course of a 24-hour operational day (4 am EST

to 3 am EST). The initial conditions for the PMJLS model, x(0) and m(0), are drawn from

historical data (2011-12). We study the performance of the controllers in simulation, for

varying values of node and topology control action penalties. In our numerical experiments,

x(0) is normalized, Umax = 100, and the control penalties are parametrized as �(t) = �1

and ↵ij(t) = ↵(25�t)
⇡ij(t)

, where ↵ and � are non-negative scalars. The node control penalty,

�, is the unit cost for reducing the delay at an airport. The topology transition penalty is

proportional to the time remaining during that day, since actions are more challenging to

implement early in the day, and a↵ect a higher volume of downstream tra�c. Furthermore,

the topology control costs are assumed to be inversely proportional to the transition prob-

abilities, to reflect the property that rare transitions are more di�cult to induce than the

ones that occur naturally with a high probability.

For a set of parameters (↵,�) and a control policy, we measure the e↵ectiveness of a

strategy in terms of its delay cost:

Delay cost (↵,�, control policy) =

P24
⌧=1 E [kx(⌧)k1 + control penalty(⌧)]
P24

⌧=1 E [kx(⌧)k1 | no control action]
16.

The delay cost (or simply the cost) should be less than or equal to 1 for any reasonable

controller; lower the delay cost, the better the controller performance. Finally, we note that

the evolution of x(t) is stochastic and thus the expectation in Equation 16 is estimated

empirically using 1, 000 simulations for each value of ↵ and �.

5.3. Comparison of Node, Topology and Integrated Control

From Figure 10 (left and center) we observe that smaller values of ↵ and � result in lower

delay costs for the topology and node controller, respectively. This finding is consistent

with our expectation that the e↵ectiveness of a controller would decrease if the penalty for
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Figure 10

Delay cost contours for varying ↵ and �, for (left) topology control, (center) node control, and
(right) integrated control. The yellow regions denote the highest delay costs. Smaller penalties
(values of ↵ and �) result in lower costs, and that integrated control obtains lower costs over a
larger range of penalties.

an intervention is high. The integrated controller jointly optimizes over the entire space of

node and topology actions to obtain greater benefits over a wider range of ↵ and � values

(Figure 10, right).

Table 2 quantifies the average performance of the controllers over the entire parameter

space. The integrated controller has the lowest average cost, and hence the best overall

performance. Two major factors contribute to the lower costs: Firstly, the integrated

controller can switch between node-only and topology-only control. This observation is

qualitatively confirmed from Figure 10, where we see that the integrated controller captures

the low cost regions of both the node and topology controllers. Secondly, the integrated

controller can uniquely combine node and topology control actions to obtain lower costs

than either of them can. For instance, ↵ = 0.13 and � = 120 results in node, topology, and

integrated control costs of 0.98, 0.99, and 0.94, respectively. An analysis of the number of

control actions (Table 2) yields similar insights: Although the integrated controller mostly

chooses either a node-only or topology-only action, it also chooses to do both of them on

occasion, in order to obtain lower costs.

Remark 1. Node control can achieve significant delay cost reductions, even with a small

number of control actions.

Small penalties for control actions (i.e., small values of ↵ and �) result in lower costs

(Figure 10). However, lower delay costs are not necessarily associated with more control

interventions, as shown in Figure 11. Here, we see that smaller control penalties can be

associated with either a small or a large number of control actions, depending on the nature

of the actions. In particular, the number of node control actions performed for small values

of � is just 1, as the first action u(1) can be used to reduce the delays very e↵ectively.

Remark 2. The node, topology and integrated control policies are optimal one-shot con-

trollers.

These three controllers prescribe the optimal action to be taken at time t assuming that

no other action will be taken at any future time, i.e., the objective function in Equation 12

optimizes for the best one-shot control action that could be performed at time t.

Remark 3. The node, topology, and integrated controllers minimize the cost-to-go (Equa-

tion 12), and not the delay cost (Equation 16).
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Figure 11

Number of control actions for (left) optimal node control, and (right) optimal topology control, for
varying values of control action penalty, in our air tra�c delay network example.

It is therefore possible that other controllers with potentially lower delay costs may exist.

Furthermore, the delay cost of an integrated controller may not always be lower than that

of a topology or node controller, even though the integrated controller is the optimal one-

shot controller that minimizes the cost-to-go. For instance, when ↵ = 0 and � = 20, the

node, topology and integrated control costs are 0.35, 0.11, and 0.33 respectively. In this

case, the integrated controller, which is determined using one-shot optimization, is unable

to incorporate the fact that mode transitions are free at all future times, and any actions

on nodes, even though attractive currently, might increase the delay cost in the long run.

Remark 4. Integrated controllers are a good choice for practical implementation.

Real-world implementation occur in settings with uncertain dynamics, temporal and spatial

constraints on the control actions, and with a rolling time horizon. One-shot controllers

that minimize the cost-to-go are therefore a good choice in practice, since they are quite

robust to model and control action uncertainty. Our numerical simulations suggest that the

integrated controller not only performs the best on average over a wide range of parameters

(Table 2), but is also never the worst-performing controller of the three alternatives.

5.4. Partial Controllability

The ability to control the continuous nodal state or topology transitions may be limited

in practice. We consider two examples of partial controllability: The first one restricts

the ability to reduce delays (i.e., node control) to only a subset of airports, for example,

due to regulatory constraints. The second scenario a↵ords limited temporal flexibility in

implementing control actions, for example, due to coordination e↵orts between multiple

ATC facilities. For each of these cases, we estimate the delay costs to evaluate the system-

wide impact of these restrictions. These scenarios also help evaluate the resilience of system

(by identifying critical airports, and control action timings), and help quantify the ability

of the system to regulate its performance under degraded operational conditions.

Figure 12 plots the e↵ect of limiting node action to only one airport. The top four

airports in the US which have the largest individual ability to reduce total system delays

(for ↵ = 0.1 and � = 10) are Atlanta (ATL), Chicago O’Hare (ORD), San Francisco (SFO),

and Los Angeles (LAX). In other words, if we were forced to focus our delay reduction

e↵orts at only one airport, choosing from within this set would be most e↵ective.

The delay cost when restricting control actions to particular times of the day is shown
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Figure 12

The size of the circle at an airport is proportional to the reduction in delay costs when the node
control component of an integrated controller (with ↵ = 0.1 and � = 10) is limited to only that
airport.

Figure 13

Delay costs (with the 99% confidence intervals) when integrated control actions are limited to
(left) once in a day, at time t, and (right) twice in a day, at t1 and t2, where t1 < t2. Parameter
values: ↵ = 0.1 and � = 10. All times are in EST.

in Figure 13. The ability to reduce delays varies significantly based on the chosen time(s).

In particular, Figure 13 (left) shows that if we are allowed to perform an integrated control

action only once during a day, doing it early in the morning or late at night is not e↵ective.

In the former case, delays have not significantly built up for the control to be e↵ective (and

the topology control cost is higher), whereas in the latter case, most of the day’s tra�c and

delays have already been realized, and very little is left to be controlled. Figure 13 (left)

suggests that around noon Eastern Time is the ideal time to implement the solution of an

integrated controller, in order to decrease delays by almost 10%. This notion of restricting

the timing of control actions can be extended to two time-periods, t1 and t2, as shown in

Figure 13 (right): the results suggest that 11 am and 12 pm Eastern Time are the most

e↵ective times to apply control actions to reduce delay costs.
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6. CONCLUSIONS

This paper illustrated the application of data-driven modeling, optimization, and control

algorithms in ensuring the e�ciency and robustness of a large-scale infrastructure. We

showed that the dynamics of air tra�c delays are well-represented by positive Markov Jump

Linear System models, and that these models can then be used for the analysis and optimal

control of the air transportation system. The research presented in this paper also reveals

several promising directions for further investigation, including a comprehensive analysis

of system resilience, the extension of these results to multilayer networks, the development

of optimal recovery algorithms for networked systems, and the practical implementation of

these approaches to enable safe and e�cient air tra�c operations.

SUMMARY POINTS

1. The analysis of airport delays using network models o↵ers unique insights into the

dynamics of delay propagation, thereby improving predictability and resilience to

disruptions.

2. Markov Jump Linear Systems (MJLS) are a powerful abstraction to model the

dynamics of networked systems with time-varying topologies.

3. Spreading processes on complex networks (e.g., delay propagation in the air tra�c

network) can be controlled by modifying the nodal state as well as the underlying

network structure. This observation motivates the development of a novel class of

MJLS controllers, and its application to air tra�c delay networks.

FUTURE ISSUES

1. The problem of evaluating the robustness and resilience of systems with time-

varying network topologies remains largely unexplored.

2. Multilayer networks promise to deliver more accurate and comprehensive represen-

tations of air transportation system dynamics (e.g., with separate and interacting

network layers for delays, cancellations, tra�c flows, and capacity); however, data-

driven modeling, analysis and control of such systems remains an open challenge.

3. The true potential of the proposed techniques can only be achieved through real-

world implementation, which requires bridging the gap between theory and practice

in the control of complex, dynamic networks.
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