N

3 9080 00548175 7

Spectral Element Solution of the

Navier-Stokes Equations on High

Performance Distributed-Memory
Parallel Processors

by

Paul Frederick Fischer

B.S., Cornell University, Ithaca, NY (1981)
M.S., Stanford University, Palo Alto, CA (1982)

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

Doctor of Philosophy
at the
Massachusetts Institute of Technology

June 1989

(©Massachusetts Institute of Technology 1989

Signature of Author < - . . -
. Department of Mechanical Engineering
April 27, 1989

Certiﬁed by YAy R S

Professor Anthony T. Patera
Thesis Supervisor

Accepted by ___— S
Professor Ain A. Sonin
Chairman, Department Committee on Graduate Studies

JUL 1 8 1989

ARCHIVES

i
’

SPECTRAL ELEMENT SOLUTION OF THE

NAVIER-STOKES EQUATIONS
ON HIGH PERFORMANCE
DISTRIBUTED-MEMORY PARALLEL PROCESSORS
by

PAUL FREDERICK FISCHER

Submitted to the Department of Mechanical Engineering on April 27, 1989,
in partial fulfillment of the requirements for the Doctor of Philosophy in
Mechanical Engineering

Abstract

We present a high-efficiency medium-grained parallel spectral element meth-
od for solution of the incompressible Navier-Stokes equations in general two-
and three-dimensional domains. The method is based upon naturally concur-
rent Uzawa and Jacobi-preconditioned conjugate gradient iterative methods;
data-parallel geometry-based distribution of work amongst processors; nearest
neighbor sparsity and high-order substructuring for minimum communication;
general heterngeneous locally-structured (vector) / globally-unstructured (par-
allel) constructs; and efficient embedding of vector reduction operations for in-
ner product and norm calculations. An analysis is given for the computational
complexity of the algorithm on a "native” model medium-grained parallel pro-
cessor, and the intrinsic communication superiority of high-order discretizations
is demonstrated.

The method is implemented on the (fast) Intel vector hypercube, and the
performance of this algorithm-architecture coupling is evaluated in a technical
and economic framework that reflects the true advantages of paralle: solution
of partial differential equations. We examine the potential economic benefits
of distributed memory parallel processing by measuring the performance/price
ratio versus actual optimized performance on several different computers for

the solution of an 80,000 degree-of-freedom steady Stokes problem. Compari-
son of the performance of the 16-node Intel vector hypercube (44 MFLOPS)
with that of a (single headed) Cray X/MP-12 (66 MFLOPS) clearly shows
that parallel machines can achieve serial-supercomputer speeds at a fraction of
serial-supercornputer costs. Parallel machines offer not only better economy, but
also the potential of faster speeds; a 312,000 degree-of-freedom spectral element
Stokes problem achieves 160 MFLOPS on a 64-node Intel vector hypercube.

Lastly, we remark that the locally-structured/globally-unstructured spec-
tral element discretizations achieve good vector and parallel efficiency at little
cost in generality. In particular, parallel solution of the full Navier-Stokes equa-
tions can now be considered to be of fluid mechanical, not only numerical, inter-
est. We compare several Naiver-Stokes calculations with previous experimental
and numerical results, including external flow past a cylinder at Re=1000, flow
between co-rotating spheres, and horse-shoe vortex formation at the base of
an end-mounted cylinder. The method is currently being used to investigate
hydrodynamic stability phenomena in internal and external flows.

Thesis Supervisor: Professor Anthony T. Patera
Title: Associate Professor of Mechanical Engineering

Acknowledgements

I would like to acknowledge Prof. A. Patera who has brought together a
critical mass of researchers to make this an exciting place to work, and who
has shown never failing enthusiasm for the advancement of computational fluid
dynamics. I also would like to thank Drs. E. Rgnquist and E. Bullister for their
continual assistance and insightful comments, G. Anagnostou with whom I have
had many interesting conversations regarding general algorithm development,
and Drs. C. Amon, L. Ho, G. Karniadakis, H. Kozlu, and C. Mavriplis for their
collaborative efforts. Special acknowledgement goes to Dr. David Scott of Intel
Scientific Computers who has had a significant impact on this work and without

whose efforts many of the results presented herein would not be possible.

I would like to thank P. Bar-Yoseph, M. Cruz, and E. Renaud for their
assistance in producing geometry and resuls for some of the sample calculations,

and D. Zeritis for enthusiastic assistance with the nested dissection algorithm.

TABLE OF CONTENTS

ABSTRACT 2
ACKNOWLEDGEMENTS 4
TABLE OF CONTENTS 5
1. INTRODUCTION 7
2. ECONOMICS i1
3. SPECTRAL ELEMENT DISCRETIZATIONS 16

3.1 Elliptic Problemsiuiiiiiiiiitiiiieie i 18

3.2 Extension to the Navier-Stokes Equationscocvvuenn... 22

4. ITERATIVE SOLUTION PROCEDURES

FOR ELLIPTIC PROBLEMS 30
4.1 Evaluation of Spectral Element Operatorscoveveuvnnn... 32
4.2 Conjugate Gradient Iterationccoviiiiiiniiiinrnrenennnnns, 33
5. PARALLEL SPECTRAL ELEMENT METHODS 35
5.1 Conceptual Parallel Architectureocvvviiiviernenrennnnn.. 36
5.2 Computational Complexityc..ovviiiiiiiiiirriiieeneanannnn. 40
5.3 Comparison with A-Type Substructure Methods 51
5.4 Architecture Mappings: Message-Passing Hypercube 54
6. IMPLEMENTATION OF PARALLEL CONSTRUCTS 57
6.1 Distributed Memory Parallel Processingcoovvvviirnnnnnn.. 57
6.2 General Implementationccoiviiiiiiiiiiiiiii 59
6.3 Vector Reductioncccoiieiiiiiiiiiii it iiiiiiiianennn, 61
6.4 Direct Stiffness Summationiiiiiiiiii, 65
6.5 Element Face-Matchingc..ciiiiiiiiiiiiiiiiiiiiiiinan, 66
6.6 Direct Stiffness Exchange Sequenceccoiviviiiiininnn.. 72

6.7 Special Node Treatmentcccvviuiiniiiiiiiiiiiiiiiinena...

6.8 Element-to-Processor Mappingcccvvviiiiiiiiiiiiiiiiiinae..

7. MEASURED PERFORMANCE ANALYSIS

7.1 Intel Hypercube Timingscoviveiiiiiiiiiiiiiiiiiiiiiininnn,
7.2 Predicted Performance for Larger Systems
7.3 Economic Performance Analysisot

8. PARALLEL NAVIER-STOKES COMPUTATIONS
8.1 Steady Stokes Flowcoiiiiiiiiiiiiiiiiiiiiiiiiinnnnaan,
8.2 Rotating Flowsoiiiiiiiiiiiiiiiii ittt itieitieiiiiiiiaans
8.3 Natural Convectionccoeiiueiineerneeeeesnnanecnnnnnas
8.4 Grooved Channel Flows ...ttt
8.5 External Flow Past a Cylinder ...,
8.6 Three-Dimensional Horseshoe Vorticescoiiint

APPENDICES

A. Speed and Cost Data for Several Modern Computer Systems
B. Timing Results for 80,000 Degree-of-Freedom Stokes Problem
C. Isoparametric Discretizationsin R® ...,

BIBLIOGRAPHY

123

124

130

Chapter 1

Introduction

Over the last several decades, computational fluid dynamics (CFD) has proven
to be a feasible means of analysis for many problems of fundamental and applied
interest in fluid mechanics. Yet, because of the mathematical difficulty of the
problem and the complexity of the resulting solutions, little headway has been
made in solving the governing Navier-Stokes equations for many commonplace
engineering flows. In terms of the principal measure of difficulty of a given
flow problem, the Reynolds number, several orders of magnitude separate the
problems which are currently tractable and those which are representative of
most engineering applications. As a consequence, continued emphasis is placed
on the development of new algorithms. Although CFD comprises both algorithm
development and the study of physics, the maturity of the discipline is such
that advances in the study of fluid motion are typically the result of advances

in computational algorithms.

Algorithm development in CFD is spurred on both by advancing computer
architectures and by the changing, singular, nature of the governing equations
as the spatial complexity and Reynolds number is increased. While progress in
fluid mechanics analysis is influenced directly by increasing computer speeds,
it would be wrong to conclude that the increasing output of CFD is inversely

proportional to the precipitous clock cycle time of modern computers. The ad-

vances go far beyond that. Vector, and now parallel, architectures have spawned
the reorganization of many antiquated codes to result in orders of magnitude
reduction in problem solution times. The increasing mathematical difficulty of
problems which can be addressed as a result of new found computational power
necessitates new discretization techniques and solution algorithms. While low-
order methods coupled with direct solvers are adequate for low Reynolds number
problems in one- and two-dimensions, it is clear that high-order discretizations
and iterative solvers have advantages for three-dimensional problems at higher,
transitional Reynolds numbers [1]. As a result of such architecture and algorithm
advances, solutions of simple geometry, two-dimensional laminar flows are now
superseded by complex geometry, three-dimensional transitional and turbulent

flow calculations.

The most dramatic change in computer architectures in the last decade has
been the develcpment of large scale parallel processors which achieve increased
performance by assigning multiple computers to the execution of a single task.
Such an approach offers the potential of increased speed at reduced cost, as a few
(expensive) computers are replaced by many less powerfull (and less expensive)
processors. The cost benefits derive from the simplicity of the architecture, the
use of relatively low density VLSI technology produced in large volumes, and the
fact that th'e CPU cost is not the dominant component of the total system cost.
Unfortunately, the availability of parallel processors does not necessarily imply
their efficient usage, and care must be taken in developing numerical algorithms

that are appropriate for parallel implementation.

In this thesis we present a spectral element algorithm for the Navier-Stokes

equations which exploits with high parallel efficiency the highly economical par-

allel computers currently available. The work builds extensively on past work on
parallel partial differential equation solution in the choice of an iterative solver,
as well as in the underlying strategy of load balancing, communication, and
topological embeddings. In particular, the schemes are founded on the follow-
ing well-developed precepts: use of iterative solvers that exploit sparsity and
minimize non-concurrent operations, e.g. [2,3]; geometry-based distribution of
work amongst processors, e.g. [4,5,6,7]; exploitation of nearest-neighbor sparsity
and substructuring to minimize communication, e.g. [8,9]; efficient embedding
of vector reduction operations to allow for more general and implicit solution

algorithms, e.g. [10,11].

The methods used represent an extension of these well-estabished ideas
in the following ways. First, the spectral element discretizations [12] employed
are high-order, leading not only to improved accuracy but also to a more ef-
ficient, work-intensive "native” medium-grained parallelism. Second, the dis-
cretizations, solvers, and parallel constructs are built upon the general founda-
tion of heterogeneous, locally-structured/globally-unstructured, representations,
thus allowing for efficient implementation in arbitrary geometries. Third, the
equations solved are the full Navier-Stokes equations describing viscous fluid
flow (7], as opposed to (second-order elliptic) subsets of the Stokes problem; all
potentially non-concurrent hazards are therefore addressed. Lastly, the methods
are implemented on a fast vector parallel processor, thus providing a useful and

economical fluid mechanics analysis tool.

The outline of this thesis is as follows. We review in Chapter 2 some
of the economic concerns with numerical solution of the Navier-Stokes equa-

tions on advanced supercomputers. In Chapter 3 we introduce the spectral

element discretizations for elliptic problems, and describe the extension of these
discretizations to the Navier-Stokes equations. In Chapter 4 we present a rep-
resentative iterative solution procedure for the elliptic problems. In Chapter
5 we present the spectral element solution approach for parallel architectures,
and give theoretical performance estimates for performance of the method on
various architectures. In Chapter 6 the parallel and vector implementation of
the methods is described, both in terms of general software constructs and for
the particular case of the Intel vector hypercubes. In Chapter 7 computational
results and performance measures are presented which demonstrate that the
potential advantages of parallel processing are in fact, realizable. In Chapter 8,
numerous physical results are presented which illustrate the utility of parallel

processing as a fluid mechanics analysis tool.

10

Chapter 2

Economics

The solution of incompressible fluid dynamics problems by numerical simulation
has advanced rapidly in recent years due to simultaneous improvements in al-
gorithms and computers. However, despite these advances, the large number of
degrees-of-freedom required to resolve even relatively simple three-dimensional
laminar flows, let alone transitional or turbulent flows, has prevented compu-
tational fluid dynamics from addressing many problems of fundamental and
practical importance. In essence, large-scale fluid mechanics calculations are
still too costly in terms of human and computational resources to assume the

role of ”primary means of analysis.”

. A promising approach to reducing the costly nature of fluid dynamics cal-
culations is to solve problems not on a single (expensive) computer, but rather to
distribute the work amongst many less powerful (and less expensive) processors.
The potential increase in efficiency due to the economies of parallel brocessing
derive not only from decreases in direct costs, but also from improvements in
productivity and creativity brought about by a more local and interactive com-
puting environment. Unfortunately, the availability of parallel processors does
not necessarily imply their efficient usage, and care must be taken in developing

numerical algorithms that are appropriate for parallel implementation.

Given the complexity of parallel computation as compared to its serial

11

counterpart, it is imperative to verify that there is a sound economic basis for
the notion that parallelism will lead to improved computational "efficiency”.
To this end, we briefly review an economic caricature of the costs associated
with numerical simulation. The particular physical problem of interest is fixed,
and the maximum error that can be tolerated in the numerical solution, €, is
specified. We then choose an algorithm and architecture/machine with which
to solve the problem: the former is characterized by W, the number of floating
point operations (in millions, say) required to attain the specified accuracy;
the latter is characterized by the usual "fully-utilized /will-not-exceed” speed
rating, MFLOPS, and a purchase cost, §. The wall-clock time to perform the
calculation is then given by 7 = W/# MFLOPS, and the direct computer costs
are proportional to C = W/(7je). Here #} is an algorithm-architecture efficiency

parameter, and e = MFLOPS/$ is a measure of the resource efficiency of a

computer.

Although it is not appropriate in this context to introduce any particular
cost function, it is clear that an unambiguous condition for reduction in cost
(i.e., improvement in performance) is a simultaneous decrease in both the time
to compute, 7, and the cost of the solution, C. From the relationships between
(r,C) and (W, MFLOPS, e) we conclude that any algorithm-architecture cou-
pling that corresponds to a decrease in W, an increase in MFLOPS, and an
increase in efficiency e constitutes a real increase in performance. There are
two different avenues to improving performance. First, a better numerical algo-
rithm can be be devised, corresponding to a decrease in operation count, W, at
fixed accuracy; this decreased operation count may be achieved either through
improvements in discretization or through improvements in solution method.

Second, a "better” computer can be found, in which both the MFLOPS and

12

resource-efficiency, e, are increased.

To illustrate more clearly the cost reduction due to computer performance,
we plot in Figure 2.1 the (MFLOPS,¢) operating points of several modern com-
puters (the MFLOPS and $ data is given in Appendix A). It follows from
the arguments given above that for a fixed algorithm, and a fixed algorithm-
architecture coupling, 7}, a computer A is better than all computers B which are
in the third quadrant with respect to computer A. (If we were to make the fur-
ther requirement that an unambiguous cost improvement must be accompanied
by a lower purchase cost, computer A will only be better than computers B in
the lower half of the third quadrant.) It is seen from Figure 2.1 that supercom-
puters have made great strides in reducing 7, however they have had little impact
as regards C; this is consistent with the fact that supercomputers are typically
used only where the potential profit is large, and the analysis alternatives (e.g.,

experiment) are expensive.

In order to render the calculation of complex three-dimensional flows quo-
tidian we will require significantly more resource-efficient computers. In fact,
these machines now exist; within the past few years computers have emerged
which are characterized by an efficiency e = 1 MFLOPS/$10,000, corresponding
to a resource-efficiency rating which is a full factor of ten better than the previ-
ous norm of e = 1 MFLOPS/$100,000. This progress has been effected by basic
hardware advances at the low MFLOPS limit of the e = 1 MFLOPS/$10,000
curve, followed by parallel architecture advances which extend the performance
envelope to the high-MFLOPS limit. In terms of the "quadrant of improvement”
there now exist machines that represent clear improvements in performance over

current mainframe and supercomputers alike.

13

10’ C T T T TTIg T T rvrrmy T Ty T T ryvrvmg T 7T
IPSC/1-D4/VX A
IPSC/2-D4/VX %

10 - ._.

s]

€= - J

MFLOPS/s | CRAY X-MP/12vw j

10 E UVAX=-liq FPS 1640 .

: PSC/1-D4m]

lo-. Lo 1 sl A2 222l A4 1 1aaul L a1l J_d 3 41112

10? 10" 10° 10' 10? 10°
MFLOPS

Figure 2.1: Operating points (peak theoretical) of several modern computers
in MFLOPS-e space.

The fact that computer manufacturers are able to increase the number
of processors in a system, Mp,z, with only a slightly faster-than-linear in-
crease in cost is indicative of the fact that most of the high-MFLOPS, e = 1
MFLOPS/$10,000 machines consist of processors which are largely independent,
coupled by a rather sparse (albeit sophisticated) connection/routing network.
The burden is thus placed on the algorithm to be sufficiently concurrent and ”un-
communicative” to realize this ideal algorithm-independent performance; that is,
the numerical algorithms must attain a sufficiently high algorithm-architecture

efficiency 7 so as not to erode the savings in r and C due to increases in MFLOPS

14

and e. Note that if we ignore other architectural issues such as vectorization,
7 reduces to the usual definition of parallel efficiency, n = S,/M, where M is
the number of processors used in a calculation, and S; is the parallel speedup,

defined as 3, = 1 /7.

15

Chapter 3

Spectral Element Discretizations

To address many problems in fluid mechanics, it is necessary to solve the fully

viscous, incompressible, Navier-Stokes equations governing fluid motion at low

Mach numbers:

a&‘ — - 1 2 - .
at+u-Vu = —Vp+1—2-c-V - f inQ (3.1)

Vi = 0 in)

& = dsn on dN,

where Re = UL/v is the Reynolds number based on a characteristic velocity,
length, and viscosity. Examples include stability analysis, transitional and fully
sepa:ra.ted flows, heat transfer applications where boundary layer resolution is
important, and direct simulation of turbulence in which convective effects de-
termine the large scale motion while viscous effects dominate the smaller scales.
In such instances, high-order techniques have advantages because of their good
boundary layer resolution capabilities, their ability to accurately resolve a broad
solution spectrum, and their minimal numerical dispersion and dissipation prop-

erties [13,14,15].

Traditionally, the arguments against the use of high-order discretizations
are that they yield high-bandwidth, non-sparse, linear operators and hence re-

quire much more computational effort than their low-order counterparts, and

16

that they do not provide sufficient geometric flexibility for most problems of en-
gineering interest. However, as computational hardware performance continues
to increase, it is becoming feasible to address fully three-dimensional problems,
in which case it proves economical to employ iterative solvers for both low- and
high-order methods. While the high-order operators are still full, it has been
known for some time that the tensor-product operators associated with spectral
methods can be factored into a series of sparse operators - resulting in oper-
ation counts which are competitive with low order methods [16]. In addition,
at higher Reynolds numbers, high-order methods become more attractive be-
cause the correct, physical, dissipation can be obtained with fewer grid points
in each spatial direction; the implication for three-dimensional calculations is
a significantly reduced number of equations. As regards geometric flexibility,
high-order spectral element and p-type finite element methods are capable of
handling complex geometries by virtue of iso-parametric mappings and are an
appropriate approach to discretization for problems in which the length scales
of the solution are much smaller than those of the associated geometry, as is
typically the case with fluid mechanics problems. Finally, in a parallel process-
ing context, heterogeneous high-order, locally-structured/globally-unstructured,
discretizations attain signficantly improved computation to communication ra-

tios in comparison to low-order methods as will be shown in Chapter 5.

In this chapter we present a high-order spectral element discretization for
solution of the incompressible Navier-Stokes equations. The spectral element
method [12,17] is a generalized variational scheme which exploits the rapid con-
vergence rates of spectral methods while retaining the geometric flexibility of
the finite element techniques. It is based upon a macro- (spectral) element dis-

cretization in which the degrees-of-freedom internal to elements are coefficients

17

of global (elemental) expansion functions with C° continuity imposed across el-
ement boundaries. With an appropriate choice of interpolants and quadrature
formulae, it is can be proven that the error for problems having smooth solutions

will decrease exponentially fast as the order of the expansion, N, is increased

[17].

3.1 Elliptic problems

Our numerical methods for the Navier-Stokes equations are premised upon
a ’layered’ approach, in which the discretizations and solvers are constructed on
the basis of a hierarchy of nested operators proceeding from the highest to the
lowest derivatives. For incompressible viscous flow equations the linear self-
adjoint elliptic Laplace operator represents the ’kernel’ of our Navier-Stokes
algorithm insofar that it involves the highest spatial derivatives. This operator
governs the continuity requirements, conditioning and stability of the system.
The fully discretized Navier-Stokes equations are typically solved at each time

step by performing a series of elliptic solves and preconditioning steps.

We outline the basis of the discretization by considering the solution to a

two-dimensional Poisson equation on the domain shown in Figure 3.1.

-Vy = f inQ, (3.2)
u = 0 on 0.

Equation (3.2) can be equivalently expressed as: Find u € ¥} (f) such that

/ VéVudQ = / sfdn Vée ¥ Q) (3.3)
0 n

18

where the space X is the space of all functions which are zero on the boundary
and have a square integrable first derivative. The variational form has the sig-
nificant advantage that it reduces the required level of continuity on the solution

from C* to C°, which in turn has implications as regards parallel communication.

Discretization of the variational statement proceeds by restricting the ad-
missible solutions and trial functions in (3.3) to a finite-dimensional subspace,
Xh, of the infinite-dimensional space,). For the spectral element method we

choose the space X, to be:
X = {4l € Pu(9)} N X}(Q) (3.4)

where Py (02*) is the space of all polynomials of degree < N in each spatial
direction on element k. The spectral element method is thus characterized
by the discretization pair A = (K, N), where K is the nurber of subdomains
(elements) and N is the order of the polynomial approximations. For reasons of
efficiency (tensor products, [16]) the subdomains are taken to be quadrilaterals
in R? and hexahedra in R3. The spectral element discretization of (3.2) thus

corresponds to numerical quadrature of the variational form (3.3) restricted to

(22) ea— (2.2)
{
nl nz
(-2,0) (2,0)

Figure 3.1: Computational domain {2 consisting of A = 2 subdomains.

19

the subspace X): Find u, € X, such that:

/ﬂ VérVuprdQ = /n id Véh € Xa(Q), (3.5)

where f, is the interpolant of f in the space Xj.

While (3.5) is a statement of the type of solution which we seek, it does
not indicate the forin in which our solution will be represented, i.e., the choice
of basis functions to be used for the polynomials in X),. Traditionally, the avail-
ability of fast transforms have led to the use of Chebyshev polynomials as basis
functions for spectral methods. However, the order of the polynomial used in
spectral element decompositions is rarely large enough to benefit from fast trans-
form techniques. In addition, it is desirable to have symmetric operators when
using iterative solvers. This motivates the choice of Legendre based polynomials
which result in symmetric operators due to their orthogonality with respect to

a unity weighting function.

The present spectral element method employs a tensor product form of
Lagrangian interpolants based on a local, elemental, mapping of x € ¥ —
r = (r,8) € [—1,1]2. We consider for illustration the case where the elemental
decomposition consists of the union of squares with sides of length 2. Within
each element, u, has the form:

N N
un(Z,¥)lgs = D02 tpehp(r)he(s) (3.6)
p=0¢=0
k

where u;, = u*(rp, s;) are the unknown grid values of the approximate solution

in element k. The interpolants, k;(£), satisfy:

hi(¢§) € Pn[-1,1] (3.7)
hi(&) = &

20

where the grid points, £;, are chosen to be the Gauss-Lobatto-Legendre quadra-
ture points [14,18]. The use of Lagrangian interpolants greatly increases the
sparsity of the resultant system matrices. In particular, the mass matrix is

diagonal.

With the explicit representation of functions given by (3.6), it is straight
forward to evaluate the discrete variational form (3.5). Integration is performed
using Gauss-Lobatto quadrature:

[fesdn - 3 {iz .-';-p.-,-} ,

k=1 =0 j=0

pij = f_ll hi(r)dr /11 hj(s)ds

where p;; is the quadrature weight associated with the nodal point r;;. The

derivatives at the quadrature points are computed as:

du ouk
or xt, or | PP
_ dhj(r)
D = dr | _,. ’

where, for notational convenience in this and the following two equations, we
use (.) to imply summation over the repeated index within the parentheses.

The variational statement (3.5) therefore takes the form:

N N
2 {ZZ Pij [(Dt'r ¢:,-)(D.-., “:j) + (D:'p #p)(DJ'q “fq - fj .’;] } =0,
n+ (i=0j5=0
(3.9)

where it remains to specify what are the admissible values of ¢fj.

Since Eq. (3.9) holds for arbitrary ¢, € Xj, the requisite discrete system
of equations can be generated by setting qu‘,- = 8i16;16kpr, for all (¢', 5", k') cor-

responding to unique points in the domain interior. Note that the outermost

21

summation in equation (3.9) implies that in the case where ¢f; has a physi-
cal counterpart in another element, k', (i.e. ¢“ lies on the interface between
elements k and k'), the contributions to the integral (sum) from the adjacent
elements must be added together. We refer to this operation as direct stiffness
summation and denote it by Z' The final system to be solved for u is therefore:
nk
Z'{E Dpi (qu“)Pm + E D,; (qu”'.q Ptp} E upu (3.10)
k p=0 p=0
Although the discrete Laplacian in (3.10) is never evaluated in standard matrix

form, it is convenient to express equation (3.10) as
Au = Bf , (3.11)

where A is the global stiffness matrix and B is the mass matrix. The global

vectors u and f represent the unknowns and data at all unique points £*

Although the discrete Laplacian for curvi-linear, three-dimensional geome-
tries is more complex than that presented in (3.10), the basic derivation is the
same. An efficient procedure for evaluating the general three-dimensional Lapla-

cian is presented in Appendix C.

3.2 Extension to the Navier-Stokes Equations

Two alternative time advancement schemes are currently implemented for
solution of the unsteady Navier-Stokes equations. The first of these is based
upon a consistent choice of approximation spaces for the pressure and the ve-
locity in order to ensure a well-posed formulation for the saddle Stokes problem
[19-22]. The extension to Navier-Stokes follows by treating the nonlinear convec-

tive terms explicitly and solving the resultant Stokes problem at each time step

22

with an Uzawa iterative procedure [1]. The second scheme uses the well known
fractional step method [12,14] in which the same X! approximation space is used
for both the pressure and velocity. The splitting procedure is attractive as it
is both accurate and efficient for sufficiently high Reynolds number flows: it is
accurate because the discretization error due to inconsistent pressure boundary
conditions decreases as the Reynclds number increases; it is efficient because
it involves only the standard discrete X! Laplace operator A (16), rather than
the mixed £? — ¥' pressure operator that results from the use of consistent

approximation spaces [18].

We begin by presenting the Uzawa algorithm for the steady Stokes problem
and its extension to the Navier-Stokes equations. Consider the incompressible

steady Stokes equations:
Vi +Vp = f inQ
Vi = 0 inQ
subject to boundary conditions
£ = 0 ondQ, (3.12)

Following the variational procedures of the previous section, the discrete form

of (3.12) in R? is:

A —D'f uj f1
A -DT uz (=% f2 , (3.13)
-D; -Da3 O p 0

where A is the discrete Laplacian of equation (3.11) and Dj is the derivative
operator associated with the tth direction. To honor the the Brezzi-Babuska-

Ladyzenskaya (inf-sup) condition, the function space for p and the associated

23

trial functions are in PN_g(ﬂ") rather than Py, and are based upon Gauss
rather than Gauss-Lobatto quadrature points which are used for the velocity
[1,17]. This consistent formulation has the significant feature that the approxi-
mation for the pressure does not extend to the element boundaries. Hence, as is

physically the case, no apriori pressure boundary conditions are required when

solving (3.13).

The Uzawa solution scheme for the Stokes problem is as follows. Block
Gaussian elimination is performed on (3.13) to decouple the pressure and veloc-
ity into d + 1 systems of equations. The pressure can be solved directly from:

d
Sp=) DiAT'f , (3.14)

=1

where

d
S=Y DAIDT . (3.15)
=1

The matrix S is full, positive-definite, symmetric, and, when preconditioned
by the mass matrix B, of near unity condition, so iterative procedures such
as conjugate gradient methods are an appropriate means of solving the system
(3.14). It does imply that the A system be solved d times at each iteration;
these also are solved iteratively using techniques described in the next section.

Once the pressure is known, the d velocity components can be computed from

(3.13) with d additional A solves.

We next consider the Uzawa algorithm applied to the full unsteady Navier-

Stokes equations in non-dimensional form:

o 1 _,.
E—EV u.+Vp

P

~&-Vi + f inQ (3.16)

-V = 0 in0}

u = 0 ond),

24

where Re = UL/v is the Reynolds number based on a characteristic velocity,
length, and viscosity. The similarity between (3.16) and the Stokes problem
(3.14) is apparent. We discretize (3.16) in time by treating the viscous term
}%V’ﬁ' implicitly, and the nonlinear convective term explicitly. The divergence
free constraint is imposed at each time step, so the pressure must alsc be com-
puted implicitly, using the Uzawa algorithm as before. The discrete system for

the velocity and pressure at time step n + 1 is:

=A+ 1B -DT up"t! a:B(u1” + ABY)
mA+ 4B -DT [§ ua™! ¢ ={ LB(us” + AB})
-D, -D, 0 pnt! 0
(3.17)
where,
AB? = iaq(ﬁ"“ LV — s §=1,2,...,d (3.18)
q=0

o= 23/12 o =-16/12 a; =5/12

Although the above scheme is only first order accurate in time, the third order
Adams-Bashforth treatment of the convective operator is used because of the
relatively large portion of the imaginary axis which lies within its stability region

[23].

Solution of (3.17) proceeds in the same manner as for the Stokes problem.

At each time step we solve:

-1
Ep = — (j;—cA + %B) DTABF (3.19)
where
d 1 1 -1 T
E=) D (EEA + A_tB) Dy . (3.20)

=1

25

The velocity is computed with d additional solves of the elliptic Helmholtz op-
erator, (,;—eA + ﬁB).

Unfortunately, whereas S is very well conditioned, E is very ill-conditioned,
implying slow convergence in the outer conjugate gradient iteration. As a result,
the splitting method presented below has been the preferred solution scheme
for high Reynolds number calculations. However, a preconditioner based upon
additional A solves has been recently developed by Rgnquist [24] which makes

the Uzawa algorithm more attractive due to its superior accuracy.

The splitting formulation, or fractional-step method [25-27] is comprised
of three computational steps. Starting with explicit treatment of the nonlinear

step using the third-order Adams-Bashforth method, compute :

= AB" . (3.21)

This is followed by the pressure step:

Vip = —I—V-ﬁ. tn

At
t—d .
Ap = Ve infl | (3.22)
A 1 A A
Vp-ii = Aucfh on anl.

Finally, we compute the implicit viscous correction:

'&“+l - & 1 2
el v £ ¥ 3.23
At Re' ¥ (3.23)
™t = 4i(t) onanN

Here the AB, is the third-order Adams-Bashforth discretization of (3.18).

Of the three steps, the elliptic solve for the pressure (3.22) is the most time

consuming. Care must be exercised when formulating (3.22) to ensure proper

26

treatment of the boundary conditions. If the velocity is specified everywhere on
the domain boundary, 81, the pressure equation is a pure Neumann problem
having an unspecified degree-of-freedom corresponding to the average pressure
in the domain. When using iterative solvers, this extra degree-of-freedom can be
eliminated by first orthogonalizing the right-hand-side with respect to a constant
(discrete) vector. The resultant solution vector, comprised of linear combination
of eigenvectors of the discrete operator and the right-hand-side, will also be
orthogonal to the constant vector and hence have zero average. If a Neumann, or
outflow, condition is specified for the normal component of the velocity on some
fraction of the domain boundary, d11,, then Dirichlet conditions are specified for

the pressure on 911,.

We close this section by illustrating the exponential convergence rate at-
tainable with spectral methods. Kovasznay gives an analytical solution to the
Navier-Stokes equations which is similar to the two-dimensional flow field behind

a periodic array of cylinders [28]:

u = 1-e*cos(2my) (3.24)

v = %e""’sin(%ry) (3.25)

1 1
gRet ZRe2 +4m2 (3.26)

where Re is the Reynolds number based on the mean flow velocity and separation

A

between the vortices. We solve this steady state boundary value problem for the
case A = %Rc+\/§m, Re=40, by marching in time from an initial state:
uy =0in N, €y = @ on 9N, where ©), and « are taken to be the spectral element
and analytical solutions, respectively. The streamlines are shown in Figure 3.2.

We compare the spectral element solution, %}, with the analytical solution,

i, by plotting ||& — @j||y1,c2 for K=8 and varying N in Figure 3.3. Exponential

27

I 7?/[N

Figure 3.2:. Streamlines for Kovasznay’s case. Th= moan flow is from lefi to
right. Reynolds number based on vortex separation, mean flow speed, and
kinematic viscosity is Re = 40. The domain is subdivided into K = 8 elements.

28

l°° T T T T T T T T T

T 1 1. v 1 17 17
107!

102

107 fo)

10

108

H1 (OPEN) L2 (FILLED)
.
o

10 |

1077

10°°

10-‘. i 1 1 1 ' i I 1 1 1 1 1 1 1 1 1 1 1
4 S 6 7 8 9 10 11 12 13
POLYNOMIRL DEGREE

Figure 3.3: Spectral element convergence ||& — @y|| for the problem of Figure

3.2. The graph depicts the X! and £? norms for the Uzawa solution algorithm.
(Courtesy E.M. Rgnquist)

convergence in the velocity is evident for both norms. Rgnquist has also shown

that the pressure converges exponentially for the Uzawa algorithm but not for

the splitting scheme [24].

29

Chapter 4

Iterative Solution Procedures for

Elliptic Problems

It is clear from the previous chapter that both the Uzawa and the fractional-
step formulations of the Navier-Stokes problem rely heavily upon the ability
to perform fast A-solves. For this reason, our efforts have to a large degree
been concentrated on the solution of elliptic problems such as the Poisson as
Helmbholtz equations. The choice of a solution scheme is dependent upon many
factors - the sparsity and bandwidth of the linear system of equations, whether
the system is positive definite or not, whether the coefficients are constant or
varying in time, the architecture of the computer upon which the system of
equations is to be solved - all these have a strong influence on the type of solu-
tion scheme used. Our targeted class of problems are large, threc-dimensional
elliptic equations which yield large bandwidth, sparse, systems of equations.
Care is taken in the discretization through the choice of a variational formu-
lation to ensure that the system is positive definite. Because the systems are
large, fast (concurrent) computers are required. Under such conditions, iterative
methods are an appropriate means of solving the discretized elliptic problems.
The choice of iterative solution schemes is motivated by three issues: memory,
operation count, and concurrency. The first of these alone is sufficient reason to

choose iterative solvers over direct methods, particularly tor three-dimensional

30

problems.

Consider a problem of general deformed geometry in R%. The discrete
Laplacian in (3.10) couples all points local to a given spectral element which
implies that, if A is explicitly computed and stored, there will be at least N4
entries on each row. Given that there are KN?% unknowns, the total storage
would be O(K N?9), just to generate the matrix. If we take an example where
d = 3, N = 10, and five elements are used in each spatial direction, K = 125,
the minimum required storage would be 125 Mwords for the A matrix alone.
Such a problem would either have to be solved out of core, or would have to be

solved on one cof the few, large-memory, supercomputers such as the Cray-2.

Following similar arguments, it has been demonstrated that iterative schemes

have the potential of being faster than direct methods [29] as the amount of work
in factoring the A matrix is certainly greater than K N4, Finally, the advent of
parallel processing has brought renewed interest in iterative procedures because
such methods are naturally concurrent. Direct methods have the characteristic
of b.eing inherently sequential; one methodically eliminates in the forward di-
rection, row after row, then perfcrms the backsolve, line by line. By contrast,
iterative methods have no characteristic of forward and back, and no notion of
bandwidth. There are simply K N¢ vector inner-procducts to be computed at

each iteration, each more or less independent of the other.

In this section we outline the basis of one particular iterative spectral
element solver, conjugate gradient iteration, and analyse the associated compu-
tational complexity for a serial processor implementation. Extensions to parallel

processor implementations are discussed in Chapter 5.

31

4.1 [Evaluation of Spectral Element Operators

At the heart of any iterative solver is the evaluation of matrix-vector prod-
ucts of the form Au. It is clear from equation (3.10) that for discretizations
in R? these products can be efficiently calculated in (K N%t!) operations us-
ing sum-factorization methods [16]. Additional computational efficiency can be
gained by exploiting the regular structure of the spectral (intra-element) oper-
ators and recognizing that the inner most kernel of the matrix-vector product,
(Dip upj), is exactly equivalent to a matriz-matriz product which can be rapidly
evaluated on many vector architectures. In addition to the O(K N4*!) computa-
tional effort, the direct stiffness summation will require O(K N¢~!) operations,
corresponding to the number of degrees-of-freedom lying on the element inter-
faces. It thus follows that the number of clock cycles required to evaluate the

left side of (3.10) on a single processor is
Z{' =, KN*! + c,KN® 4+ KN4, (4.1)

where the constants ¢,, ¢, and cs depend only (weakly) on spatial dimension.
The O(K N?) contribution to Z{' is only present in the case of complex geometry
or non-separable coefficients. It should also be noted that only O(K N4) storage

is required to evaluate Au.

The proper choice of spectral element basis is directly reflected in the
"good” computational complexity estimate Z{'. First, the sum-factorization
(3.10) and the operation count (41) applies to general-geometry isoparametric
spectral element discretizations of non-separable equations 17|, due to the ten-
sor product spaces (3.4), tensor product quadratures (3.8), and tensor product

bases (3.6) described in Section 3.1. Second, the direct stiffness summation con-

32

tribution to Z{' is only O(K N4-!), rather than O(K N¢*!), due to our choice of

basis in which the number of test functions which are nonzero on the elemental

boundary is minimal. Although the fact that the direct stiffness summation

work is small does not appear particularly important in the single-processor

estimate (4.1), in the parallel case the direct stiffress contribution will be the

leading-order communication term.

4.2 Conjugate Gradient Iteration

We next consider simple Jacobi (diagonal)- preconditioned conjugate-gradient

iterative solution [30] of the multi-dimensional elliptic equation (21). The con-

jugate gradient algorithm is given by,

To
while [r"Br| > ¢,
P
Pk
B
o
Wi
Qg
Uy

Tx

Bf — A.UQ

A7lr,
Tk-1 - Dr
Pk/Pk—l
BePx + s
Apy

e/ (Px - Wi)
Up—1 + arPx

Tg-1 — Pk

(4.2)

where ug i8 an initial guess for the solution u. Note that the diagonal pre-

conditioner, A = diag(A), can be formed without constructing the entire A

33

operator.

From (4.2) we see that, per iteration, the conjugate gradient scheme re-
quires: one matrix-vector evaluation - Z{' cycles; several local collocation opera-
tions - O(K N¢) cycles; and two inner products - O(K N?) cycles. If we denote by
NA the number of iterations required to bring the error in the solution down to
O(¢) in some appropriate norm (31,32], the number of clock cycles for conjugate

gradient solution of (3.10) is:
Zi = N2 { o KN*"' + KN® + es KN b, (4.3)
where ¢; accounts for the additional conjugate gradient operations.

Although in the evaluation of parallel performance in Chapter 5 the number
of iterations, NA, will scale out, it is nevertheless appropriate to comment on
the number of iterations required to achieve convergence. It can be shown that
the condition number of the preconditioned A system is O(K?N?) [33], which
implies that NA ~ O(K,N) (30|, where K; is the number of spectral elements in
a single spatial direction. This convergence rate, though respectable for a high-
order method, is clearly not order-independent, and will deteriorate significantly
for large problems. The convergence rate can be improved by the use of recently

developed spectral element multigrid algorithms [33,34].

34

Chapter 5
Parallel Spectral Element Methods

The development of any numerical algorithm entails a thought process in which
one considers the scope of the problem, the claLsS of problems to be addressed,
and the machine architecture for which the algorithm is ultimately targeted.
Given the capability of today’s desk top computer workstations, architectural
issues are not of great concern for an increasing number of problems of relatively
small size or limited scope, as such problems can be solved in a time frame
which is acceptable to the end user. However, even at the workstation level,
high-end performance is only obtained through exploitation of basic vectoriza-
tion techniques - so the fundametals of vector architectures must be understood.
For larger problems, such as three-dimensional Navier-Stokes calculations, per-
formance demands are well beyond readily available processing capabilities, so
algorithms must be developed which exploit advanced architectures in order to
render many difficult problems tractable. It is clear that future generations
of supercomputers will rely more and more on large scale parallelism and that
future high-performance software will necessarily incorporate parallel algorithm

constructs, so it is of value to develop an understanding of concurrent computing

and the associated algorithmic concerns.

Our code development has followed a top down process in which archi-

tecture independent issues such as discretizations and solvers are addressed

35

first [1,35,36]; followed by identification of architecture dependert constructs
regarding vectorization, concurrency, and interprocessor communication; and
ultimately, by machine specific implementation. There is of couse feedback in
the development process via iterations at several levels. For instance, the de-
velopment of the solvers is not wholly independent of the architecture in that
care is taken from the beginning to ensure that concurrency is maintained at all
levels. The actual parallel implementation is comprised of two steps. We first
postulate a model architecture to permit analysis of the computational com-
plexity associated with our particular algorithm/architecture coupling and to
develop general parallel constructs in a machine-independent context. We then
address the actual implementation details for a particular machine. Viewing the
parallel implementation as a two step process promotes greater generality and
portability of the resultant computer program. In this chapter we outline the
implementation of the spectral element discretizations and solvers on a concep-
tual parallel processor and examine the associated computational complexity
for both high and low order discretizations. Detailed implementation issues are

presented in the following chapter.

5.1 Conceptual Parallel Architecture

Our discretizations, algorithms, and data structures are constructed so as
to admit a natural, element-based, parallel work decomposition, in which each
spectral element (or group of spectral elements) is mapped to a separate pro-
cessor/memory, with the individual processor/memory units being linked by a
relatively sparse communications network. This conceptual architecture is nat-

urally suited to the spectral element discretization in that it provides for tight,

36

structured coupling within the dense elemental constructs, while simultaneously
maintaining generality and concurrency at the level of the unstructured macro-
element skeleton. The locally structured/globally unstructured spectral element
parallel paradigm is closely related to the concept of domain-decomposition by
substructured finite elements [37,5,6] and many of our results are generic to both
computational models. This latter point will be discussed in greater detail in

Section 5.3.

To illustrate the issues associated with parallel spectral element solution
techniques, we consider the performance of the conceptual medium-grained par-
allel processor shown in Figure 5.1, in which K spectral elements are partitioned
amongst M < K independent processor/memory units. (Our terminology will
be two dimensional, however the methods readily extend to three space dimen-
sions, as will be demonstrated by examples in Chapter 8.) In essence, each
processor contains a subset of the entire domain, comprised of several elements.
We assume load balance in the sense that all processors have an equal number
of elements. The communications network of the model parallel processor is
assumed to satisfy two constraints:

A distinct, direct link must ezist between two processors for
each distinct pasr of adjacent elements which is divided between (5.1)

the processors.

A summation of M values distributed over M processors can (5.:2)
5.2
be performed in O(log M) communication steps.

These two requirements relate directly to the two communication constructs
central to our algorithm, direct stiffness summation and vector reduction, re-

spectively. (Note, all logarithms are taken to be base 2.)

37

®

(a)

Processor 3 Processor 4

® ®

Processor 7 Processor 8

- ©® O T®-

Processor 1 Processor 2

Ok smmdO,

Processor 5 Processor 6

(b)

Figure 5.1: (a) Spectral element decomposition for a multiply connected domain
with element numbers denoted by ©; (b) “native” model parallel processor.

38

We characterize the “hardware” associated with the processors and com-
munication networks in Figure 5.1 by a basic clock cycle for calculation, §, and
the timne-per-word required to send n werds across a direct link, A(n). It is
assumed that data transfer can occur simultaneously over all distinct liriks. The
rﬁtio A/6 is denoted o(n); o(n) is assumed to be a decreasing function of n,
with o(1) appreciably greater than o(oo0) due to message startup overhead. Mes-
sages travelling more than one link (or “hop”) can be penalized in terms of both
longer transmission time and potential contention. (Contention represents net-
work imbalance/saturation, and arises when more than one potentially parallel

communication requires the same link.)

We emphasize that our model architecture is inherently (though not re-
stricted to) a distributed memory system in recognition of the fact that the
majority of the computational effort and hence, memory access, is associatied
with sntre-element calculations. Since memory access time is frequently a rate
limiting step on vector architectures it is critical that, as the number of elements
and processors grows, the primary memory bandwidth increases proportionally.
One easy way to ensure this is by having a tight, one-to-one, correspondence
between each processor and a uniquely assigned local memory. Such an archi-

tecture allows for concurrent memory access as well as concurrent processing.

If no real machines were similar to the hypothetical architecture described
above, the resulting analysis would, of course, be of fairly limited value. How-
ever, there are many architectures which are identical to, or at least very
similar to, the conceptual architecture of Figure 5.1. In particular, reconfig-
urable lattices readily satisfy constraints (37), and lattice or hypercube message-

passing architectures satisfy all constraints save the assurance of nearest neigh-

39

bor, contention-free communication. We will discuss these mapping issues and
other real-world corrections in the following chapter once the performance of

our algorithm on the basic model of Figure 5.1 is understood.

6.2 Computational Complexity

We consider here M-parallel solution of the elliptic problem (3.2) by con-
jugate gradient iteration (4.2). As described in Chapter 4, the performance of
the conjugate gradient iteration is determined by the following representative

computational kernels:

r = Au (5.3)
r = Au (5.4)
a =r-r , (5.5)

corresponding to operator evalation, diagonal-matrix collocation, and norm (or
inner product) calculation, respectively. We now discuss how each of these oper-
ations is performed in parallel, and present computational complexity estimates

[9] for the resulting algorithms .

We begin with the evaluation of a representative term of r = Au, (3.11),
which, by construction, admits the following simple concurrency. First, we cal-
culate an “incomplete” residual #* = A*u* in each element separately and con-
currently. For our model problem of Figure 3.1, this would be:

N N
i‘f = Z Dp" (D"u:,-)pp,- + Z Dp,‘ (quu?q)l’ip V‘a] € {1’2,-"’N}2(5'6)

=0 p=0

40

(This residual is incomplete in the sense that the element-boundary-node dis-
placements are not admissible; direct stiffness is the process by which appropri-
ate contributions are added from neighboring-element test functions.) This op-
eration is communication-free, and will require ¢, K N4+! /M clock cycles, where
¢, is defined by (4.1). Next, we perform direct stiffness summation of the edge

residuals to account for contributions from neighboring elements:
r:',- = E ! ;'k, , (57)
nk

where the direct stiffness procedure is described in Figure 5.2. The flow of in-
formation at vertices in Figure 5.1 is clearly not coincident with the possible
single-hop flow of information along links in our parallel processor described
by Figure 5.1b, as the variational formulation requires that contributions from
each element be summed together at a shared vertex. However, an efficient
direct stiffness procedure based on nearest-neighbor use of the edge-based com-

munication network can be constructed, as we now describe.

We first consider the simple spectral element mesh shown in Figure 5.2a
in which data is given on each element. In Figures 5.2c through 5.2f we show
diagrammatically how direct stiffness summation can be perfbrmed by local di-
rectional splitting of the operation into a sequence v of d=2 element exchanges.
It can be seen that the nodal values at the vertices are, indeed, correct; that is
the sequence i ensures that the contributions from each element at the shared
corner are summed together. The advantages of this splitting method over,
say, a bi-directional parallel edge pass followed by vertex-specific operations
are: the splitting method is algorithmically clean; the splitting method avoids
costly short messages; the splitting method avoids non-nearest-neighbor com-

munication and contention. These advantages are even clearer in three space

41

dimensions.

For many spectral (or substructured finite) element decompositions it is
difficult, if not impossible, to find an edge pass sequence ¥ which results in cor-
rect nodal values at all vertices. However, it is often relatively simple to find
a sequence ¥ for which the number of vertices with incorrect values, denoted

“special” nodes, is small. This suggests the following strategy: first, a vector

© e 0600 Oe oo

e © 0 00 O e e o0 0

Alyl A%yl 0000 Ooceeoe

e ® v 90 Oe®e o0 o0

00000 000O0O

00000 o©00O0O0O

e ® 0 00 0Oe e 06

ASu® Atut 60000 Oesso

e e 0 00 O e o0

e & 0 00 O e 0 00

(a) (b) (c)
....@ G.... o e 9 o 0 o e o0 0 ® o o 80 e o 0o 0o
® ® ® 0|0 O|le 2 0o & e oo 00 ® 0o 00 0 e & 9 00 e 0 & ¢ 0
....oﬁo.... o & 0600 ® h 0 00 ® o o 00 o o0 00
® & @ 0)0 O|le e & o L I o o 000 e e 9 00 o 6 o0 0
oooolg) |gJoooo (00000 (000009 LR N W eo0cesoe
o000 fdloocoo (©ooo00 (@ooo0 seese ossee
e e o 0|0 Oje o o @ ® e 0600 ® 6 &0 0 e ® & 0 0 ® o 900
...Qo@o.... o 0 00 @ e 6 0 00 o ® 000 ® e 000
® e & ¢|O Ojle & o o ® o o 00 o 00 0 A ® 0 000 ® & 00 0
....e a.... ® ® 6 00 ® e o0 0 e o 0 0 0 o e 000
(d) (e) ()

Figure 5.2: Computation of residual vector for regular geometry in R?: (a) four
element mesh; (b) simultaneous (parallel) computation of incomplete residual,
7 = A*i*; (c) nodal content of * is denoted by circles - solid circles indi-
cate correct residuals, open circles indicate values requiring contributions from
neighboring elements; (d) and (e) bi-directional exchange and sum sequence, ¥,
which effects the completed residual at all nodes including the corner nodes; (f)
completed residual, * = ¥’ A*a*,

42

reduction (sum) operation is performed to accumulate the contributions of all
elments to the residuals associated wtih the special nodes; second, a standard
d-pass sequence is performed, ; third the results of the vector reduction are
redistributed to the special nodes. The summaton strategy is illustrated dia-

grammatically in Figure 5.3.

If we (suggestively) denote the number of special nodes by ¢, the number

EEEEK eece e

XREXX) cecee

XEEK) esoeoe

ecoeoe ee o0 0

coooo0
J

00 0 ofo Olv e 0 o [- 3
e e 0 0l0 Ojle » 0o o o e 00 0 LN]
o e ®|O4/]0j10 0 & ¢ ® 0 0 0 0 LN
elO Ojo o e o LN
o0, Oje ¢ & © o0

(¢) (e) (f)

Figure 5.3: Direct stiffness summation for irregular geometry in R?: (a) three
element mesh; (b) nodal content of incomplete residual, ¥*; (c) O(log M) map-
and-sum vector reduction to gather special nodes onto a global data structure;
(d) and (e) standard bi-directional exchange and sum sequence, ¥; (f) final map
(O(log M) fan out) which overwrites local data at special nodes with correct,
complete residual.

43

of clock cycles required to perform direct stiffness summation is then

KN4

Cs M

+ e o(N©Y)N! 4 es0(e)elog M (5.8)

where the ¢3 term represents the summation of all edge values, the ¢, term
répraents the communication of edge values between processors, and the c;
term accounts for the special-node treatment. The cglog M term can be further
reduced for architectures which admit contention-free log M' vector reductions

for “local” subsets of M' < M processors.

This summation algorithm is both general and relatively efficient, and is
guaranteed tc effect the direct stiffness operation by virtue of the special node
treatment. Furthermore, the regularity and special nodes associated with a
candidate sequence 1 can readily be determined by computing the result of a
multiplicative ¢ for a field comprising (locally) distinct primes, and comparing
with the correct result of such a direct stiffness operation. (Direct stiffness
multiplication is defined as in Figure 5.2 with arrows implying multiplication,
not addition.) The analysis of our parallel direct stiffness method is however,
not complete, in that no studies have been perfromed to determine minimally

irregular sequences.

The residual calculation (5.3) is the most complicated operation in conju-
gate gradient iteration. The diagonal-collocation operation (5.4) is completely
concurrent and communication-free, with compuational complexity cc KN4 /M .
Similarly, the inner product (5.5) is a standard vector reduction, which is eval-
uated by first performing intra-element/intra-processor sums, and then evoking
a log M inter-processor vector reduction (5.2). The resulting computational
complexity is

ct KN/M + cgo(1) logM (5.9)

44

where the first and second terms reflect intra- and inter-processor summation,
respectively. Note that for inner products of functions uy € X, the elemental

partial sums must take into account the “multiplicity” of boundary nodes.

On the basis of the preceding analysis we arrive at an approximate expres-
sion for the number of clock cycles required to solve (3.11) by conjugate gradient

iteration on M processors,

Zi

KNd+1 K d d-1
N‘A{Cl +Cz N +63KN (510)

M M M
+ (N)N + e50(€)elog M + ¢go(1) log M}

We identify the ¢,-, ¢2-, and cs-terms of our serial estimate (4.3), however there
are now three new terms associated with communication and (only) log M-
parallelizable operations. From (5.10) and (4.3) we can derive the (inverse)
parallel speedup, S;! = Z{/Z#, in which we keep only the leading order terms

in computation and communication,

_ 1 a - B
S’. 1 = A—{- “+ WU(N" l) + -I—{I—vmd(l) IOS(M) (5.11)

The estimate (5.11) is general not only as regards geometry, but also in the
fact that it extends to the full Navier-Stokes equations by virtue of the Uzawa
and splitting methods. Note that (5.11) is the inverse speedup for the same
algorithm on the same basic processor/memory unit; vectorization is assumed
to occur within the spectral elements, and thus scales out of the speedup analysis.
Vectorization can be efficiently applied to (5.6) given the local structure internal

to elements.

We make several comments concerning the computational complexity (5.10)

and speedup (5.11). First, in the limit of vanishing communication, o = 0, we

45

negligible ¢ommunication time, o # 0, the method can maintain good per-
formance due to the 1/N? and 1/N4H1 algorithmic ratio of communication to

computation; this favorable ratio derives from the geometric decomposition of

Myt < K, that maximizes speedup by trading off concurrency and communi-

cation through “super-substructuring” of spectral elements, We find that M, =

max{1, min[K, M.}, where M, is the local minimum M, = KNt |y 2/Bo(1).

We illustrate the speedup analysis by plotting in Figure 5.4 57! versus M
for some Tepresentative parameter set, (K,N,d, o). The parallel overhead costs
are depicted by the dashed curves which represent the direct stiffness summation
and inner-product communication times, denoted €4, and ¢, respectively. (The
direct stiffness curve is shown to grow slightly with increasing M in anticipation
of contention ang slight M dependence of direct stiffness communication on rea]
machines.) It is clear from Figure 5.4 that the inner-product time can become
dominant as the number of processors js increased, and that there results a

minimum obtainable solution time at a finite number of processors, M.

By virtue of the fact that M, , scales with K and that M is bounded by X
(the spectral element, being an “indestructible” data unit), we conclude that the
high-order spectral element paralle] paradigm is intrinsically medium-grained

in character; the number of processors and speedup grows with problem size

46

"

Inverse s-1
T
Speedup
1/M
Cds
Cip —1
Y
/’:.: —— —— =7
o=
1 2 4 8 16 32

Number of Processors, M

Figure 5.4: Illustration of computing costs associated with the parallel con-
jugate gradient algorithm, measured in wall clock time. The growth of the
inner-product time illustrates the limiting nature of global operations, resulting
in a minimum solution time for a number of processors My < co.

of degrees-of-freedom per processor remains “large” (in contrast to fine-grained
processing). In the case where M, = M, < K it can be argued that the
implicit granularity of the spectral element discretization is not the limiting

factor in speedup; in the case where M;,, > K — M,y = K, it is clear that the

spectral granularity is potentially limiting performance.

We remark briefly on the implications of the above analysis as regards
memory requirements. Given that the spectral element iterative solvers require

co K N% memory, it follows that under optimal conditions, for which M = M,,,

47

= 't

the requisite memory-per-processor is ¢gffo(1)/N; more memory is “unnecce-
sary”, and less memory will degrade performance by forcing the calculation to
M > M,, and higher 7. It will thus often be the case that a problem will
only fit on M a2 M, processors, preventing direct measurement of speedup for
M < M,;:. This is not a serious problem, as the goal of parallel processing
is not the generation of complete speedup curves; furthermore, one can readily
fit models to available performance data in order to predict performance for
memory-excluded M (see Chapter 7). Note that in any real computer the num-
ber of processors in a system is fixed at Mp,;, and thus memory-per-processor
should be larger than that required at M;, in order to accomodate solution of

large problems on Mp.z < Mop.

We next analyse the parallel efficiency, # = S,/M. From equation (5.11)

we have, to leading order:

M M
KNza(N) - ﬂKNd+l

We note that the constants governing the degradation in efficiency in (5.12) are

o(1) log(M) (5.12)

n=x1-a

directly proportional to o = A/§, thus implying that a straightforward approach
to improving system performance is to decrease A. While this certainly yields
better processor utilization, it does so at a cost, since a reduced A implies
a faster, more expensive, network. The difficulty is that the efficiency, n, only
measures processor utilizaton and does not account for the cost of the associated
network. In addition, parallel efficiency is strongly dependent upon the choice
of algorithm and the scalar-vector mix of the particular application (changing
the effective §). It cannot be taken as a measure of “goodness” of any particular
algorithm-architecture coupling, as it relatively easy to obtain high efficiency
on a system with slow processors, implying that the reduction in o is brought

about by an increase in 6 rather than a decrease in A. Moreover, used as

48

a performance measure it can in fact be misleading, since any algorithm or
architecture improvements which directly reduce the time to compute on a single
processor, 71, will also reduce the time on M processors, ra, but will result in a

decreased efficiency.

It is nonetheless of interest to analyse the efficiency versus number of pro-
cessors for a fixed algorithm-architecture coupling and for a fixed ratio, K/M
[38]. Such an analysis addresses the question, “What performance will be ob-
tained if the problem size is doubled and the number of processors is doubled?”

This is readily computed from (5.12), yielding:

Q

Mo — —rro(1) log(M) (5.13)

BM
M ie/na KN+
where 1o is the efficiency obtained on a smaller system for some M > 1. From

(5.13), it is clear that there is only a small logarithmic degradation in the effi-

ciency as the problem size and machine size grow simultaneously.

Remark 1: Although we have focussed primarily on the variational structure
of our methods, there is, of course, an equivalent linear-algebra interpretation
of the work decomposition. To illustrate this algebraic viewpoint we consider
the one-dimensional spectral element discretization of Figure 5.5a, for which the
matrix structure (3.10) of the discrete Laplacian is shown explicitly in Figure
5.5b. It is seen that A compriges four (K = 4) full submatrices, [4*] = AF

with each pair of adjoining submatrices coupled by a single overlapping row and

column associated with the C° continuity condition.

kk
P‘IG

[A*](u*). At internal nodes (p = {1,2,...,N —1}) fs is complete (= rf), as

We then consider the elemental “incomplete” residual (7*) =% = A

there is no overlap between the [A*] for these nodes. However, at the element

49

interface between two elements k and k + 1, the complete residual must be the
sum of two inner products: (u*) with the last row of [4*] ; and (u**!) with
the first row of [A**!]. The sum of these two inner products is precisely the
sum of the incomplete residuals (F") at the interface nodes, thus showing how

the incomplete residual/direct stiffness procedure is related to the underlying

matrix structure.

-[Al] 0 - (ul \
[Az] u:
Sl

o] L,

(b)

Figure 5.5: Structure of the discrete Laplacian operator, A, for the four element
discretization in R! shown in (a). The full submat.ices in (b) have a single

overlapping row and column corresponding to the degree-of-freedom which is
shared at element interfaces.

50

5.3 Comparison with h-Type Substructure
Methods

The description of spectral element discretizations in Chapter 3, of iterative
solvers in Chapter 4, and of parallel constructs in the previous sections can
be readily extended to h-type finite element substructure techniques {37,5,6].
Following the spectral element derivation, we take our discretization pair k =
(I.{ N) to imply that the discretization is comprised of K regular subdomains,
each consisting of N4 linear elements. The global X! condition and Dirichlet
conditions are the same as for the spectral element basis; this fact will be critical
in evaluating computational complexity. The resulting finite element equations
are very similar to (3.10), however there is now a great deal of intra-substructure
sparsity in the matrix due to the locally compact support of the low-order finite
element space. That is, the submatrix blocks in Figure 5.5 which are full for the

spectral element discretization are now sparse (in fact, tri-diagonal).

The extension to the multi-dimensional case closely parallels that of the
spectral element development. We use tensor product spaces and bases, and
direct stiffness procedure shown in Figure 5.2. Note that the tensor product
forms are not important in h-type methods as regards sum factorization (5.6)
(Au products are evaluated in terms of local stencils), however they are impor-
tant in maintaining local structure. The finite element substructure equations
and spectral element equations are readily defined in terms of the same quan-
tities due to their common variational foundation; in fact, substructure k- and
spectral element methods can be used simultaneously in the same calculation

using nonconforming “mortar” methods [35,39].

51

We can now consider the computational complexity, Z-;f,, associated with
conjugate gradient solution of substructured finite elements on the model medium-
grained processor of Figure 5.1. For the discretization parameter h = (f{ N)
and M processors we find to leading order (assuming for simplicity no “special™

nodes),

é KN4

Z4 = NA { + & (NN 4 cso(1) log M} . (5.14)
where the significant difference between (5.14) and (5.10) is the reduced work
needed to evaluate the h-type residual. Of interest is comparing the time to
compute, 7pr, for the spectral element and finite element approximations, pps =
TM/fM = ZI‘&/ZAA’

N2 {85557 + cio(N*1) N4 + cyo(1) log M)
NA {9’,&—"" + &40 (Nd-1) Nd-1 4 cso(1) logM}

pm = (5.15)

where we assume that the same number of spectral element /substructures, K =

K, and processors, M, are used in each calculation.

To begin we assume 1\7;‘ = NA, and take N = pN; p > 1 as the spec-
tral element approximation will always be at least as good as the linear h-type
approximation (recall that the error, ¢, is fixed). We start by considering only
the first terms in the numerator and denominator; this ratio is the usual serial
work comparison of high-order and low-order methods, p, = ZA/ Z," = N/ud.
It can be shown that p, is significantly less than unity for an interesting class
of problems, in particular for smaller € and higher space dimension d [1]. Of
interest in the context of the current parallel anzalysis is the fact that the two
remaining (communication) terms in the work estimate (5.15) are at least as
large for the low-order method (¢4~, €~ in the denominator) as for the high-

order method (¢q—, cg— terms in the numerator); in particular, if the direct

52

stiffness summation offset is important, the low-order-method communication
terms can be larger than their spectral element counterparts by the factor p4-1.
We thus see that the relative advantage of high-order methods improves in a
medivm-grained parallel environment, due to the fundamental fact that com-
munication is order-independent if proper boundary-minimal bases are chosen;
this is a general argument for high-order methods, and need not be restricted

to p-type (N — oo) convergence strategies.

We return briefly to the assumption that NA = NA. In fact, for the di-
agonal preconditioner on “uniform” meshes N4 = uNA. Although this might
be used as a further argument in favor of high-order methods, optimal (K, N)-
independent multigrid schemes can, in fact, be found for both finite element (40}
and spectral element [33,34] approximations, and thus this point is not relevant.
In particular, new intra-element spectral element multigrid methods achieve
nearly (K, N)-independent convergence while maintaining approximately the
same computational complexity as conjugate gradient iteration; with this mod-
ification, the algorithms described here are optimal as regards both work per

iteration and number of iterations required.

Lastly, it should be noted that the h = (ﬂ’ N) description of the finite
element discretization is artificial in that it imposes a coarser granularity on the
problem than is actually present. The preceding analysis is thus only directly
relevant when M,;; < K. When this condition is not satisfied, the finite element
substructure approach can be readily refined due to the homogeneity of the ap-
proximation, whereas extension of the spectral element method to intra-element
parallelism is less straight-forward. Our conclusions for the medium-grained

paradigm should, therefore, not be applied to the fine-grained case without ad-

53

ditional analysis.

5.4 Architecture Mappings: Message-Passing
Hypercube

In this section we consider how the model parallel processor defined in
Figure 5.1 and analyzed in Sections 5.1-5.3 maps to message-passing hypercube
architectures. We recall that a medium-grained hypercube network is defined
by M = 2D "large” processors, P,,p = 1,...,M, with a direct link between
any two processors P, and P, for which p — 1 and ¢ — 1 differ only in only bit
in their binary representation). The topological properties of hypercubes are
summarized in [10], and numerous applications of hypercubes are described in

[41,42).

We assume that the spectral elements have been distributed amongst the
processors according to some partition E,. If we compare an arbitrary partition
on the hypercube to the ideal partition on our model parallel processor of Figure
5.1, our communication estimates (41) will be modified by the introduction of
non-nearest-neighbor communication (non-unity-dilation mappings) and possi-
ble contention (network load imbalance/saturation). In general it will not be
possible to find a mapping for which there exists a direct link in the hypercube
for every direct link in our model processor. That is, the hypercube architecture

violates assumption (5.1).

The first, and most obvious, effect of not satisfying (5.1) is that the direct

stiffness summation will require, at best, \; = (2d) K/(M D/2) more communica-

54

tion steps, and at worst, \; = O(K) more communication steps, due to the lack
of direct links between element pairs assumed in the ideal model of F igure 5.1.
The second effect, with which we associate a multiplier Az, derives from the fact
that a particular hypercube partition Ep may give physically adjacent spectral
elements non-nearest-neighbor positions in the hypercube network. This will
potentially increase the transmission time between these spectral elements in
the direct stiffness summation procedure; the magnitude of the deterioration
will depend on the message-passing protocol. For the case of store-and-forward
we expect 2 maximum increase in transmission time of O(log M); for the case
of wormhole or pipeline routing we expect substantially less deterioration. The
third effect, with which we associate a multiplier)s, is the fact that, in the ab-
sence of direct links between communication elements network, contention can
occur during routing through the hypercube. This effect can be quite difficult

to quantify, in particular for general partitions on large cubes.

We note that all of these effects are associated with the direct stiffness
term of (41); the log M communication terms are unaffected by the hypercube
mapping as the hypercube architecture Lonors (5.2) by virtue of simple binary-
tree-like embeddings [10]. We thus arrive at our new estimate for speedup for
the hypercube system,

i + AIAzAaa
M KN?

st o(N% 1) + o(1) log(M) (5.16)

B
KNd-i-l
in which only the direct stiffness term is modified. This speedup model will serve

to interpret the hypercube computational results to be presented in Chapter 7.

The above considerations suggest that the spectral element-to-hypercube
partition can lead to computational inefficiencies. Although on computers with

fast communication and direct routing these effects may not by leading order, it

55

is likely that computation speeds will always outpace off-board communication
rates, and these mapping issues should therefore not be ignored. We briefly
discuss here several fairly standard mapping strategies. The first strategy, an
intra-processor strategy, Siintra, attempts to partition elements such that mem-
bers of E, share edges; this reduces A;. Furthermore, this intra-processor strat-
egy promotes inter-element nearest-neighbor mappings, Siinter, which reduce A,
and As. The second intra-processor strategy, Szintra, randomly partitions the
elements to form the E,; the motivation behind this strategy is to render the
calculation load-balance-insensitive with respect to local mesh refinement [43].
Although we do not consider refinement-induced load imbalance in this thesis,
it is certainly an important issue. The strategy Sainira does not preclude subse-
quent attempts at Syn¢.r, however it certainly makes the task difficult, and one
must conclude that Sy, will tend to increase not only A;, but also A; and As.

Heuristics for achieving these strategies are described in [43-46].

56

Chapter 6

Implementation of Parallel Constructs

This chapter describes in detail several of the kernels required for efficient imple-
mentation of the parallel algorithms introduced in the previous chapter. Some
background regarding distributed memory paraliel processing is provided first.
The key communication dependent routines are presented, including an in depth
discussion of the direct stiffness implementation. Finally, the heuristics of the

element-to-processor mapping algorithm are outlined.

6.1 Distributed Memory Parallel Processing

Distributed memory parallel computers offer tremendous potential as a
scalable parallel architecture because both the memory and the primary memory-
processor bandwidth grow in direct proportion to the number of processors in
the system. Distributed memory systems are comprised of independent comput-
ers, or nodes, each containing a processor which is directly connected to local
memory containing both data and source code. Processors typically access non-
local data via a slow, indirect, network and data transfer protocol, where the
network is characterized by its topology, e.g., ring, mesh, or hypercube. This.
direct/indirect memory hierarchy favors algorithms in which the majority of the

computational effort is localized within a processor.

57

Typically the nodes are attached to a front-end machine, or host, which
serves to download the executable image and data to the nodes, and to initialize
the problem to be solved. Each node has a unique identification number so that
the host can selectively download information. The host acts as the interface to

the local area network and, in some cases, to the secondary and tertiary storage.

During execution, nodes run asynchronously, following locally resident
source code and processing locally resident data. In practice, distributed mem-
ory machines are typically programmed in what has been termed “single pro-
gram, multiple data” (SPMD) fashion where the nodes have identical copies
of the source code but different sets of data [47]. Data is transferred between
processors via a message passing protocol whereby data packets are explicitly
sent from one processor to another. The data is identified by a label so that
the receiving processor can discriminate incoming messages. Issuing a receive-
wait command will cause a processor to halt execution until the desired data is
received. Processor synchromnization is inherent in this type of protocol since re-

ceipt of data implies that the data is in fact ready for processing by the receiving

node.

The independence of each processor/memory unit implies that there is an
additional hierarchy to data structures which is not present in serial or shared
memory architectures. In a program constructed according to the SPMD model,
there will be M distinct copies of every data element - one on each processor;
the contents can of course vary from processor to processor. The data on each
node derives its unique identity either as a result of different initial conditions
as supplied by the host, or through program branch points which are dependent

upon the particular node identification number. If a variable which is changingin

58

value during program execution is to have the same value on all processors, inter-

processor communication will be required to make a comparison or condensation

of the distinct copies of that particular variable. This concept is fundamental

to understanding vector reduction on distributed memory systems.

6.2 General Implementation

Our methods are implemented in an essentially machine-independent fash-
ion. First, we construct a spectral element code in a standard high-level language
in which each spectral element is treated as a “virtual parallel processor”. In
particular, each spectral element is treated as a separate entity, and all data
structures and operations are defined and evaluated at the elemental level. The
only procedures which require communication are, by construction, direct stiff-
ness summation and vector reduction, which are relegated to special subrou-
tines which effect data transfer based on the local (element-based) algorithms

described in previous sections.

It is clear that the virtual-parallel-processor spectral element code will
achieve the full parallel potential of the underlying algorithm on our model sys-
tem of Figure 5.1 if we simply unroll the elemental index, and descend identical
(save data) copies of the code to M processors. Each processor p is then respon-
sible for a single (or group) of spectral elements corresponding to the partition
E,;. It follows that the virtual-parallel-processor code can be readily ported
to any computer whose architecture is sufficiently “similar” to the hypothet-
ical model of Figure 5.1; the only machine-dependent code comprises “device

drivers” which enact the low-level communication required by the direct stiff-

59

ness summation and vector reduction subroutines. The class of architectures
“similar” to our model processor is at least as large as the class of message-
passing multiple-instruction multiple-data architectures. (Note that the class
of architectures “similar” to our native system of Figure 5.1 is larger than the
class of architectures which map well to our native system; for instance, the
virtual-parallel-processor code is readily ported to a ring architecture, however

the ring will be susceptible to significant contention.)

Following the SPMD paradigm, each processor is programmed as though
it were responsible for the entire computational domain 1. Since the total do-
main is comprised of a group of independent elements, a subdomain is readily
defined as a subset of the elements. As there are no constraints on the element
numbering scheme (e.g., no bandwidth minimization is required when using it-
erative solvers), the elements within each subset can be renumbered from 1
to K,, where K, is the rumber of elements on a particular processor, p. El-
ement identity consists of geometry, material properties, boundary conditions
and element-to-element connectivities. Of these, all can be renumbered arbi-
trarily, with the exception of the element-to-element connectivity which must
be preserved in order to retain the original domain topology. A look up table
on each processor provides a means for reconstructing that topology; its use is

required only when performing direct stiffness summation.

In developing the algorithms, three guiding criteria are used to optimize the
communication operations. The first is of critical importance: due to message
startup costs, it is preferable to send a single message of length n, rather than
to send n messages of length 1 (a message is a packet of data transferred from

a sending node to a receiving node). The second optimization is to “cover”

60

communication whenever possible, i.e. keep the processors busy while messages
are in transit. The final concern is to avoid communication schemes that result
in a dead-locked state wherein processors are waiting for messages which are
never sent. An example of a dead-locking scheme is presented in the direct

stiffness summation section below.

We close this section by noting that for general purpose programs that
have been constructed algorithmically to exploit parallelism, the additional work
required to code the method in a parallel-compatible fashion is relatively minor
using the strategy described above. The importance of automatic parallelizing
compilers for large-scale general-purpose partial differential equation solvers is

not clear.

6.3 Vector Reduction

We begin with a discussion of vector reduction operations as their parallel
implementation is relatively straightforward and serves as a good introduction to
distributed memory processing. Vector reductions can be classified as any oper-
ation (generally commutative and associative) in which ¢ > 2 values are reduced
to a single result. In the spectral element algorithms, we are primarily concerned
with cases in which ¢ is a multiple of K, i.e., values which are distributed across
elements. Examples of vector reductions are computation of inner products,
a = u - u; computation of the Courant number, C = max(% - €/ - AZ), or
determination of any global parameter which is dependent upon local data, for
instance, a logical flag whose value is set according to the presence of some

boundary condition. The general approach is to compute the result of M vector

61

reductions from the constituents on each processor independently, then evaluate

the final result by considering the M remaining values.

To illustrate the vector reduction we cons;ider computation of an inner-
product. When evaluating inner-products on the element based data structures,
it is necessary to account for the multiple representation of nodes lying on shared
interfaces between two or more elements. This can be done by multiplying each
term in the inner product by the inverse of the number of elements which share

a particular node. The inner product kernel therefore has the form:

On each processor p:

Ks N NN
o =333 2 aiaimi (6.1)

x=1 =1 y3=1k=1

then, o
a=) "o |, (6.2)
p=1

where mf;, is the inverse multiplicity defined at each point. The ©" (6.2) indi-
cates a global summation across the M processors utilizing log M communica-
tion cycles according to (5.2). The optimal global summation algorithm will be
dependent upon the network topology; an efficient algorithm for the particular

case of hypercube networks is presented below.

Consider the case in which eight processor/memory units, p = {1,2,...,8}
are arranged on a hypercube network as depicted in Figure 6.1a. The eight
values of aof are condensed to a single value according to the data exchange
sequence depicted in Figure 6.1b-6.1d. The equivalent coding sequence has the

form:

62

On processor p:

6 =M/2
startloop: if p < 6 then:

receive af*’
add o’ to af
§«<6/2
goto startloop

else -
send af to processor p — §
exit routine

endloop:

A similar (inverse) procedure is used to redistribute the final result a! to all the
processors. The above procedure is specific to hypercube network topologies in
that it assumes that if § is a power of 2, then there will always exist a direct link
between a processor p and a processor p+ §. It can be seen that this procedure
does reduce the set of values a” to a single result in D = log M communication
cycles [10]. However, such log M reductions are not restricted to hypercube
topologies; in fact, a log M scheme has been found for more general message

passing lattices [48].

Remark 2: We make the additional comment that the log M vector reduction
software to compute « = J." o® is provided with the system on the Intel iPSC
hypercubes, so that efficient programming of this fundamental communication
operation is not required. Identification and provision of such basic software

tools is important in this new and rapidly changing technology in that it allows

63

o | O o O

&—0
() (d)

Figure 6.1: Inter-processor vector reduction for hypercube of dimension D = 3.
Processors (1-8) and associated communication network are shown in (a). D-
cycle data exchange with active communication lines denoted by arrows and
active processors denoted by ”+” is shown in (b-d). At each stage, values are -

sent along the communication lines to active processors where they are added
to the locally resident value.

64

application developers to concentrate on algorithmic issues rather than machine

specific constructs while still obtaining optimum performance.

6.4 Direct Stiffness Summation

One of the critical ingredients to general three-dimensional spectral ele-
ment algorithms is an efficient implementation of the direct stiffness summation
operation. As data within elements is well structured, the flexibility to han-
dle unstructured domains derives from the ability to couple the subdomains
together in an arbitrary manner. In this thesis we restrict our attention to the
cases where the subdomain coupling is conforming, i.e. each interface point on
the surface of a given element has a one-to-one correspondence with an interface
point on the adjacent element. Recently developed non-conforming couplings

which allow for greater geometric flexibility are discussed in [35,38].

Development of the direct stiffness summation algorithm for conforming
discretizations in higher space dimensions is primarily a problem of enumeration;
a subset of an array of elemental data is to be added to a cofresponding subset
in another element and a compact description of the correspondence is required.
In addition, the presence of shared vertices in R? (edges in R?®) implies that data
must be exchanged and summed amongst several elements which share a given
vertex. The connectivity at such points can be very complex and an efficient
means of handling the vertices is required which retains the full generality of

the spectral element discretization.

Our approach to the conforming direct stiffness summation is two-fold:

65

first, an edge (face) exchange sequence, 1, is employed to update the majority
of the interface residuals for each element; second, a local-to-global mapping op-
eration is employed for all remaining vertices, so called “special nodes”, which
are not correctly treated by the first step. This two-step direct stiffness proce-
dure is depicted in Figures 5.2 and 5.3. In the limit that no vertices are treated
correctly in the first pass, the local-to-global map will correctly treat all nodes,
just as in a standard finite element fully-indirect-addressing scheme. However,
in many fluid mechanics problems a large portion of the computational domain
is filled by a regular array of elements for which the number of special nodes can

be reduced to zero, so that an efficient algorithm results.

Parallel implementation of direct stiffness summation is more complex than
the inner product evaluation and is in fact the key communication algorithm
developed for the distributed memory/spectral element implementation. We
discuss three issues: developing the face data packing (or face-matching) algo-
rithm; establishing the element face exchange sequence, 1; and implementing
the special node treatment for arbitrary (conforming) element configurations.
Of these issues, only the exchange sequence is specific to distributed memory
processors; the other issues are generic to efficient, general-topology, direct stiff-

ness summation on both serial and parallel processors.

6.5 Element Face-Matching

We next address the enumeration or “face-matching” problem for con-
forming topologies. To establish a framework for discussion, we begin with

some notations used for three-dimensional spectral element data structures. We

66

Figure 6.2: Two elements in R3 illustrating relative rotation, r = v = 3, for
direct stiffness summation of faces F = 1 and F' = 5. Fiducial nodes are denoted
by local coordinate axes.

consider the elemenis shown in Figure 6.2 Recall that in three-dimensions, the
spectral elements are mapped from physical space, x = (z,y, z) to their local
cartesian coordinate space r = (r,s,t) = (r;, f = 1,2,3). In an element based
scheme, it only makes sense to refer to local coordinates since elements can be
deformed and oriented such that there is no well defined “z-, y-, or z-direction”.
We number the element faces with the symmetry preserving scheme depicted in
Figure 6.2, in which a face with an outward pointing normal in the direction r;
is denoted as F = 2¢ and in the direction —r; as F' = 2¢ — 1. The vertices are
numbered from 1 to 8; advancing along an element edge in the direction +r;

takes one from vertex v to vertex v + 2i-1.

The nodal points within an element are numbered in a Cartesian ordering

67

scheme, uix : 4,5,k € {1,2,...,N}*, or with an equivalent sequential single
index notation, w; : | € {1,2,...,N3}. The relationship between the two

numbering schemes is given by:
=1+ N(G-1) + N*(k—-1) . (6.3)

This scheme correlates directly to the FORTRAN array addressing scheme, so
(6.3) essentially establishes how the array offsets are computed. The single index
notation allows for reduced loop nesting when marching on a d — 1 dimensional
surface in a d dimensional space.- Note that using this numbering scheme, the
order of the polynomials in the space X}, is in fact N — 1. We use N for both
notations, the true order of the polynomial being described is generally clear in

the context of the reference.

The element to element matching is established according to our element
based paradigm. Associated with each element is a list describing the orientation
of the adjacent elements. The list for an element « is referenced by face number
F, and contains the adjacent element number «', the adjacent face number F’,
and the rotation of the face r'. Relative rotation of two faces is established via a
fiducial node orientation of the faces. We denote as the fiducial node the lowest
numbered vertex on each face. The rotation is the number of edges on face F'
which are traversed in the counter-clockwise direction to move from the fiducial
node on F to the fiducial node on F' when face F' is oriented with its outward
facing normal toward the viewer. In general, the rotation is symmetric, i.e.,

r = r', and ranges from 0 to 3 for configurations in R3.

We illustrate the complexity of the face matching problem by considering
the two element configuration shown in Figure 6.2 for the case of N = 5. We seek

to establish the correlation between element node numbers required to carry out

68

direct stiffness summation of an array u between elements x and x'. The faces
which are to be summed are F = 1 and F' = 5; the relative rotation is r = 3.
According to the single index scheme, the node numbers on the two faces would

appear (with r; pointing towards the viewer) as:

1 6 11 16 21 21 22 23 24 25
26 31 36 41 46 16 17 18 19 20
51 56 61 66 71 11 12 13 14 15
76 81 8 91 96 6 7 8 9 10
101 106 111 116 121 1 2 3 4 5

F F'

Denoting the ordered sequences to be correlated as S, and S./, we have:
S & Sq (6.4)
S. = {1,6,11,16,21,26,31,36,41,46, 51,56,61,66,71, (6.5)
76,81,86,91,96,101,106,111,116,121} ,
S. = {21,22,23,24,25,16,17,18,19,20, 11,12,13,14,15, (6.6)
6,7,8,9,10,1,2,3,4,5} .
The correlation S,+S,: implies that direct stiffness summation of u will result
in u} being added to uf;, u} to uf;, and so on. Note that the the sequences (6.4)
correspond to non-adjacent memory locations, implying that a packing operation
is required to minimize the buffer length of communicated data. We therefore
invoke the transitive property of the correspondance, “—”, and introduce an

intermediate sequence S; to indicate the correlation between the temporary

packing array v and the two data arrays u* and u~':

S[— S,, (6.7)

69

SR.' o SI ’ (68)
where
Sr = {1,2,3,...,24,25} . (6.9}

The complete direct stiffness exchange sequence is: move u*

to v|
s, s’ send

v| g, to the processor associated with element ', and add the contents of v|s

’
1 i

’
to u®

S’

We next introduce the additional notation required to derive the sequences
(6.4) for arbitrary order N, arbitrary face matchings (F, F'), and arbitrary ro-
tation r. We first define the operator < a,b >p to imply a sequence of numbers

comprised of the sum of the elements of sequences a and b, generated by first

incrementing the elements of a, then b:
< a,b >p= {al + bl, as + bl, ey N + bl,al + bz, ey anN + bN} (6.10)

where the F-dependent contents of a and b are to be defined shortly. We further
take —< a,b >p=< b,a >p, and —a = {ay,an-1,aN-2,-..,a1}. Using these

tools, we can express (6.4) as:
< 81,82 >1+f1 & <8, —-32>5+s (6.11)

The fiducial node offset fr has been added to each of the array sequence: in
(6.12). The face-dependent contents of the sequences s; and s; is now clear.
For face F' = 1 on the right hand side of (6.12) we have s, = {0,5,10,15,20},
s; = {0,25,50,75,100}, and f; = 1; for the left hand side, s, = {0,1,2,3,4},
s; = {0,5,10,15,20}, and f; = 1. Following the example (6.12), the general

expression for a matched pair of element faces (F, F') is given by:

< 81,8 >p +fr & (—1)G+G'+"” < (-1)Prsy, (=08 > +fer , (6.12)

70

haceF s | elements of s,, s, ﬂ
[3456 e folz [2 [..[tv=1)
1,2 | ||0O|N |2N |..|(N-1)N
56 |[s2|O|N |2N |..[(N-1)N
1,2,34 | s, | O| N* | 2N?* | ... | (N —1)N?
Face F " fr G
1 1 0
2 1+ (N -1) 1
3 1 1
4 1+(N-1)N |0
5 1 0
6 1+(N-1)N2 |1
¢lrlm|m]|
o|lojflo}o
0101
02111
o3 1]o0
1{oflo]o
1{11]0
1{2(1]1
1{3(0]1

Table 6.1: Look up tables for computing strides - (sy, 8;)r, fiducial nodes - fr,
and index ordering exponents - G, Ry, Rz, for arbitrary face-to-face pairings -
(F, F',r) in R3.

71

where (sy, 33, fr,G, Ry, R;) depend upon (F, F',r) as presented in Table 6.1.
From these look up tables, it is easy to construct the sequence (6.12) for any
(F, F',r). Note that the sequences s, and s; are readily interpreted as loop
indices in any high-level language, and that (6.12) therefore provides a means of
determining the correct start address, stride, and loop ordering for conforming

direct stiffness summation of any element pairing in R3.

6.6 Direct Stiffness Exchange Sequence

Description of the direct stiffness exchange sequence, 1, is straightforward
for a regular array of elements having principal axes (r1,72,13) aligned with the
physical axes (z,y,2). The z-, y-, (2-) exchange sequence described in Figure
5.2 corresponds to each processor pair first exchanging data on faces 1 and 2,
then on faces 3 and 4, (followed by faces 5 and 6 in R?). Such an ordering
will yield the correct residuals at the vertices for any element structure which
is topologically equivalent to the regular array in Figure 5.2; the ring topology
for ¢he natural convection problem of Chapter 8 is one example. We denote this

exchange sequence as the nominal exchange sequence for each element:

120000
v« = |00 3400 . (6.13)
0000356

The non-zero entries in ¢, are the face numbers, F' associated with each pass in
the exchange sequence for element x. The exchange is executed in a semi-lock
step fashion. For ¢ = 1,..,d passes, each element sends the contents of the faces

which are on row 1 of the array 1 to the appropriate element/processor. Upon

72

completion of the sending phase, each processor awaits reciept of the reciprocal
element face data to be summed with the respective face data denoted in row i.
Faces are updated as soon as the data is received, regardless of the order in
which they appear on a row in (6.13). Up to 2d faces can be sent in the sth pass,
a zero indicates that no data is sent or received. Note that synchronization is

imposed only in moving from row to row, the exchanges denoted by the entries

cn a given row are executed asynchronously.

In many instances it will be necessary to modify the nominal exchange
sequence (6.13) for a given element. Consider the two-dimensional array of
elements depicted in Figure 6.3. The majority of the elements are well ordered,
with the exception of a single element (7) which is rotated 90°. Clearly the
nominal exchange sequence would lead to a locked communication state; on the
first pass, elements 6 and 8 would be waiting for faces 3 and 4 of element 7,
while element 7 was in turn awaiting data from elements 3 and 11. Since global
synchronization is imposed in moving from row to row of ¢, elements 3 and 11
would never move to the second pass of (6.13), until all elements had satisfied the
entries on row one of their specific exchange sequence, .. One obvious solution
to this dilemma is to rotate the element (7) back to its “natural” orientation.
However, this has ramifications regarding redefinition of the original problem,
recreating the data set provided by the preprocessor, and determining what is
“natural” in all cases. An easier approach is to simply redefine the exchange
sequence for element pairs having face matchings which deviate from the nominal

pairing. For each element pair («, ') only one sequence needs to be restructured.

73

In the exaraple of Figure 6.3, the reordered sequence would be:

Our heuristic for determining which element to reorder is to count the number
of “odd” face-face pairings for each element and change the sequence ¢ for the
element which has the most “odd” matches. We define “odd” to be any face

pair (F, F') which cannot be expressed as (2i — 1,21) or (2¢,2¢ — 1), for 1=1,2,

Yr =

003400

120000

0 00OSGSG®G6

(6.14)

4 4 4 4
1 (9) 1 (10) ze=1 (11) 2f=1 (12) 2
3 3 3
12
4 4 2 4
1 (5) 1 (6) 2p |4 (7) 3«1 (8) =2
3 3 1 3
Iy
4 4 4 4
1 (1) 1 (2) 21 (3) 21 (4) 2
3 3 3 3

Figure 6.3: Example of an exchange sequence,), for twelve elements (proces-
sors) which results in communication deadlock because of the odd orientation

of element (7).

74

or 3.

We discuss the advantages of the above sequencing scheme over possible
alternatives. One far less complex scheme would be to have each element send
the data on all 2d faces to the respective element/processors, then collect the
reciprocal data and sum it to the respective local face values. However, such a
scheme would fail to update the vertex values correctly for any vertex shared
by more than 2 elements, implying that a large number of single word messages
would need to be exchanged to complete the direct stiffness summation. An
alternative, synchronous, scheme is to have each element send a face, and imme-
diately wait for the reciprocal data for that particular face. Such a scheme also
has drawbacks. First, if the reciprocal element is not on the same schedule as
the initiating element, dead-lock will result (consider an ordered periodic chain
of elements in which every element sends out face 2 and waits for its neighbor to
reply with face 1...). Second, even if dead-lock is avoided, one can envision that
a forced synchronization of exchanges will result in waves of activity/inactivity
propagating through the system of processors if they are not allowed to move
onto the next calculation/face-exchange in ar asynchronous manner. Finally,
the synchronized send-and-wait approach violates our second optimization cri-.
teria of covering communication with other operations; the current algorithm
allows the processor to commence packing and sending the next face in a given

row 1 of ¢ while the previous message is in transit.

75

6.7 Special Node Treatment

The special node algorithm has been adopted to address the complex issue
of developing an efficient and robust direct stiffness algorithm. The implemen-
tation is trivial once the list of special nodes is constructed. A copy of a global
array is established on each processor to hold the contents of the summed special
node residuals; a global vector reduction is used to condense the copies into a
single, summed, vector; and an O(log M) fan out broadcast the summed resic-
ual vector to each processor. Each processor maps elemental data to and from
the global vector according to a local-to-global mapping which is constructed
in a preprocessing phase of the calculation. The basic sequencing strategy has
been described in Section 5.2, so we turn now to the problem of special node

detection.

The most straightforward way to finding which nodes are “special” in a
given configuration is to resort to the original definition of their characteristics:
“special nodes are those which fail to be updated correctly by the direct stiffness
exchange sequence 1)”. We merely pose a direct stiffness problem for which the
answer is known, and which is arrived at via a unique sequence, 1, then check all
nodes to verify the result. Nodes which have the incorrect value are appended,
along with their counterparts adjacent elements, to the local-to-global map. We
choose as our test problem direct stiffness multiplication of distinct primes, as
this ensures that the correct result cannot be obtained by multiple contributions

of a single vertex.

76

6.8 Element-to-Processor Mapping

The element-to-processor map is constructed to minimize processor load
imbalance and communication overhead [44]. Since the spectral element method
is inherently a macro-element decomposition, load balance is achieved by ensur-
ing that the number of elements on any given pair of processors differs by no
more than one. The communication time associated with vector reduction op-
erations is fixed for any problemn topology and hence does not influence the
mapping strategy. In contrast, the overhead associated with element interface
communication is directly influenced by the element-to-processor mapping; it is
governed by the number of “exposed” faces on each processor, i.e., those inter-
faces for which adjacent elements are assigned to different processors, and by the
distance on the network which separates two, physically adjacent, elements. Our
current decomposition algorithm employs a nested-dissection scheme [42,45,46]
to minimize the number of exposed element interfaces and thereby reduce the

data communication traffic.

Element-to-processor mapping optimizations which seek to ensure that
only “nearest neighbor” processors are communicating are not of interest for
several reasons. First, such optimizations are strongly architecture dependent,
and hence not necessarily portable. Second, it is not generally possible to find
such a nearest-neighbor mapping for arbitrary domains. Third, spectral element
test problems have shown such optimizations to affect solution times by at most
twenty percent on the iPSC/1-VX [49], a machine which has a particularly high

o and which would benefit most from nearest-neighbor mapping strategies.

7

——

Chapter 7

Measured Performance Analysis

We have implemented our methods on the Intel vector hypercubes, the iPSC/1-
VX/dD and its successor, the iPSC/2-VX/dD. The iPSC/1-VX is a 286-based
system with store-and-forward message-passing; the iPSC/2-VX is a 386-based
system with pipelined communication routing. In both cases the same vector
hardware is used, capable of a peak speed of 10 MFLOPS/board. The two ma-
chines differ primarily in scalar speed and coirnmunication speed and robustness,
with the iPSC/2 representing a significant improvement in both capabilities due
to advances in technology and architecture. The iPSC/1 (iPSC/2) 286-based
(386-based) mother board achieves .02 (.06) MFLOPS, and comrnunication rates
of A(1),A(oo) = 5960us, 33u3(300u3,1.4u8). These Intel message-passing hy-
percubes are clearly similar to our model system of Figure 5.1, and therefore
represent a relatively “simple” port of the virtual-parallel-processor code de-

scribed in the previous section.

7.1 Intel Hypercube Timings

We now analyze the spectral element-Intel iPSC/1-VX algorithm-architecture
coupling based on the framework of Section 5.1 and the complexity estiraates

of Section 5.2. We begin by analyzing the simple three-dimensional “chain”

78

s

—

Figure 7.1: Periodic chain of K elements (N = 10,d = 3) used for multi-
processor timing analysis.

shown in Figure 7.1 with periodic boundary conditions imposed on all sides.
We consider six problems of increasing size, K= 1,2,4,8,16, and 32, respectively,
with N = 10 in all cases; the partitions E, for each problem are given in Table
7.1. Note that for a particular K the number of processors that can be used
is limited by three factors: memory constraints preclude M < K/2; machine
size precludes M > M,,,.; and algorithm granularity precludes M > K. By
virtue of the gray-code mapping [10] used for the partitions E, the hypercube
implementation maps exactly to our model prbcessor system, A\ = A2 = A3 = 1.
(Note that communication between faces of elements on the same processor do

not pass through the network.)

79

Processor K/M= K/M=2
Number || K=1 | K=2 | K=4 =8 | K=16 | K=2 | K=4 | K=8 | K=16 | K=32
1 1| 1| 1| 1 1 |12 |12 |12 1.2 1,2
2 ﬁ 2 | 2| 2 2 34 | 34 | 34 | 34
3 | 4| 4| 4 18 | 18 | 18
+ | 3| 3 3 56 | 56 5,6
S 8 8 15,16 15,16
6 7 7 13,14 13,14
7 5 5 9,00 | 9,10
8 6 6 11,12 | 11,12
9 16 31,32
10 15 29,30
11 13 25,26
12 14 27,28
13 9 17,18
14 10 19,20
15 12 23,24
16 11 21,22

Table 7.1: Gray code processor-element partition for a periodic chain.

80

K /MWLI‘ime (sec) | Time,, (sec) | Timey, (sec) | Time;, (sec)
1/1 9.7 8.9 0.40 0.40
2/2 14.0 9.0 2.8 2.3
4/4 24.8 8.5 9.1 7.5
8/8 31.7 8.6 9.0 14.0

16/16 " 37.1 8.6 8.5 19.8
2/1 “ 18.5 17.7 0.40 0.37
42 | 229 17.6 2.6 2.3
8/4 33.4 17.2 7.3 7.7
16/8 40.1 17.4 8.5 14.2

32/16 I 46.6 17.4 8.1 20.2

Table 7.2: iPSC/1-VX timing results for 250 A iterations.

We tabulate the results nf our numerical experiments in Table 7.2 as a table
of (K, M), 1..(K, M), 13,(K, M), 7;,(K,M). Here r is the time to calculate 250
conjugate gradient iterations for the A system, 3.11, and r.,(K, M), 74.(K, M),
7ip(K, M), represent the breakdown of 7(K, M) in terms of calculation time,
direct stiffness communication time, and inner product communication time. In
order to calculate speedup on the basis of this limited dataset we use the analysis

of the previous sections to motivate a functional form for 7,

where a, b, and ¢ are constants assumed independent of K and M. We then fit

81

(K,M) =aK/M +'(b+clogM) - (1 —b1p) ,

(7.1)

these constants (via least squares) to the total time data r of Table 7.2, finding
a = 9.2 sec, b = 3.1 sec, and ¢ = 6.2 sec; these values are not inconsistent
with the direct breakdown of 7(K, M) into 7., (a-term), 74, (b-term), and
(c-term), which serves to verify the form of (7.1). Note also the constancy of 74,

for M > 4.

From (7.1) we calculate the inverse speedup, S;! = f.(K,M)/f,(K,1),
which is plotted in Figure 7.2; also plotted are the measured speedups for the
data of Table 7.2, 7(K,M)/f,(K,1). The reasonably good fit of (7.1) to the
data is further verification of the model. We make several comments concerning
the speedup curve of Figure 7.2. First, the optimal number of processors, M,_;,
is less than K; furthermore, the ratio M,, /K is roughly constant, as predicted
by the models of the last section. The fact that M,,; < K implies that for this
machine, which is a fast calculator and a slow communicator (o relatively large),
the spectral element granularity is more than sufficient. Second, the speedup
grows with problem size, as must be the case. Third, the maximum speedup on

the largest problem is roughly 5.0, corresponding to a parallel efficiency of n=.3.

To investigate “non-idealities”, we have considered two additional tests for
the N=10, K=32, M=16 problem. In the first test, we replace the partition of
Table 7.1 with the partition E,={2q — 1,2q}, in which we now have a non-gray
ordering, but the amount of data passed across the network is unchanged (that
is, A1 is still unity, but Az, As are potentially greater than unity). In this case 7,
(and hence 7) are increased by 9 seconds to 26 seconds (55 seconds), resulting in
a 17% decrease in speedup. In the second test, we replace the partition of Table
7.1 with the S;-intra partition E,: E,, E,,...,E¢ ={1,3}, {2,4}, {5,7}, {6,8},
{9,10}, {11,13}, {12,14}, {15,16}, {17,18}, {19,21}, {20,22}, {23,24}, {25,26},

82

'l'f‘lrl'l'l"'ll'lllTlIl"‘l'lllrl'll'lTlIll.lIl‘
[/ 7]

1.4 F 7 -
i d 1
L

L, <

llz

INVERSE SPEEDUP

-
0 IS NN TN SN SR SN RN NNV U TN

1 2 4 8 16 32
Number of Processors, M

Figure 7.2: Inverse speed-up on the iPSC/1-VX for 250 A matrix iterations
of the spectral element configuration in Figure 7.1 for problems defined by
K=1,2,4,8,16,32. The solid line indicates the fit fr(K,M)/fr(K, 1) to the data
of Table 4; the symbols represent the actual ?ata. Open symbois indicate the
data points for the M = 2 cases which are anomalous due to the message passing
protocol; these points are not used in computing the fit. The upper dashed lines
indicate the (unobtainable) operating regime where M > K. The lower dashed
line is the peak theoretical speedup, 1/M.

83

{217,28}, {29,30}, {31,32}, in which we now not only have a non-gray ordering,
but also required twice the amount of data to flow across the network (that is,
A1, A2, and), are all potentially greater than unity). In this case 74, (and hence
7) are increased by 11 seconds to 28 seconds (57 seconds), resulting in a 20%
decrease in speedup. We conclude that non-idealities as regards mappings are

significant but not dominant.

We perform a similar analysis for the spectral element-Intel iPSC/2-VX
coupling. We return to the the chain problem of Figure 7.1 for N = 10, K =
1,2,4,...,32,64 with gray-ccde ordering on M=1,2,4,...16,32 processors. The
timings for 250 A iterations are shown in Table 7.3 from which we find for our
functional form of 7 (7.1) that a = 11.2 sec, b = 0.45 sec, and ¢ = 0.33 sec.
We firat notice that, in spite of the increased scalar speed of the iPSC/2, a is
larger for this case than for the iPSC/1; the particular code used for this chai1
problem is not as fully vectorized as the original iPSC/1 code znd has a slightly
higher operation count to accomodate additional flexibility in the operators.
The iPSC/2's significantly reduced message transit time, A, is evident in the
ten-fold reduction in the value of b, and the twenty fold reduction in ¢. Using
these values of ¢, b and ¢, we can again compute the inverse speedup, S-!,
which we plot in Figure 7.3. We see that the speedup curves are much closer to
the asymptotic limit 1/M than in Figure 7.3, and that the maximum speedup
obtained is 28.8, corresponding to a parallel efficiency of n=0.9. In addition,
the projected values for M, are now much greater than K, implying that the
spectral element granularity is potentially limiting, since more processors M >
K could be exploited. Note that, while memory constraints on the iPSC/1-VX
precluded analysis of problems having more than two (N = 10) elements per

processor, the additional 4 Mbytes of memory on the iPSC/2 provides sufficient

84

K/M ll Time (sec)

Time,, (sec)

Timey, (sec)

Time;, (sec)

e

0.06

1/1 11.4 11.3 0.06
2/2 12.5 11.3 0.74 0.45
4/4 12.8 11.3 0.74 0.75
8/8 13.1 11.2 0.76 1.1
16/16 | 13.4 11.3 0.75 1.4
2/1 22.3 22.2 0.06 0.06
4/2 23.6 22.4 0.80 0.45
8/4 24.2 22.3 0.80 0.75
16/8 24.5 22.3 0.80 1.1
32/16 | 24.5 22.4 0.75 1.4

Table 7.3: iPSC/2-VX timing results for 250 A iterations.

85

1.6 LA BLER B0 B AR B B B N NOL U BN B B B AN B B L B B B R N A B B U S N B B B S N B I B A NN B BN (N A AN B

-

1.4 | -

I
s
|
!

1o 2 s 2 0 o s 0 2 3 2 s 220 030 a by sl gy

1 2 4 8 16 32
Number of Processors, M

s s o b o a2 la s sl g

Figure 7.3: Inverse speed-up on the iPSC/2-VX for 250 A matrix iterations
of the spectral element configuration in Figure 7.1 for problems defined by
K=1,2,4,8,16,32. See previous figure for caption.

86

space to support six elements per processor.

We next investigate the effects of non-ideal mappings for the iPSC/2-VX
system. For the first test, we use the partition E,={2¢— 1,24}, which places ad-
jacent elements together, but requires that the nodes use non-nearest-neighbor
communication. In this case 74, (and hence r) are increased by 0.1 seconds to 0.55
seconds (24.6 seconds), resulting in roughly a 0.5% decrease in speedup. In the
second test, we use arbitrary partition E;: Ey,E;, ..., Ei¢ ={1,3}, {2,4}, {5,7},
{6,8}, {9,10}, {11,13}, {12,14}, {15,16}, {17,18}, {19,21}, {20,22}, {23,24},
{25,26}, {27,28}, {29,30}, {381,32}, which increases the amount of data flow
through the network. The timings again show an increase of 0.1 seconds. As
expected, the improved communication algorithms of the iPSC/2 significantly
reduce the impact of non-optimal element to processor mappings. It is clear
that the test problem is not a rigorous communication test for the iPSC/2 as
the network is apparently never near saturation. However, these communication
patterns are typical of those seen in general spectral element calculations. Fur-
thermore, given the high performance of the vector processors, the communica-
tion rate is sufficiently high to maintain a balanced communication /computation

work distribution.

We finish our analysis of the chain problem by plotting in Figure 7.4 the re-
sults in MFLOPS'—¢' space: MFLOPS' is calculated as (.1)-7(K) v ax/7(K, M),
where 7(K),v ax is the timing on the DEC uV AX, and .1 is the application-
independent MFLOPS rating of the uV AX; €' is calculated from MFLOPS'
and the cost data summarized in Appendix A. It is seen that the hypercube
MFLOPS’' — €' point is indeed, interesting, in that it achieves near supercom-

puter performance at a fraction of the cost. To illustrate the importance of the

87

10"

A B S o A A | N S B B M 0 1) SN NN B B R0 1) RN SR I AN AN LI SN BN BN IR R R

ot £ iPSC/2-VX/d4 * £

g iPSC/1-VX/d4 *]
. 3
c = -
MFLOPS'/$ |

10* | -

" iPSC/1-d4 .
-
lo-‘ ga casaasl A4 s asansl Aot 2 s araal L2 s 21l Ao A 1 L1isd
10 10" 10° 10* 10 10*
MFLOPS’

Figure 7.4: Computational resource efficiency for the K = 32 chain problem of
Figure 7.1 for the iPSC/1, iPSC/1-VX, and iPSC/2-VX hypercubes.

MFLOPS'’ — ¢ framework, we have also included the data point for the K=32,
M=16 problem on the nonvector iPSC/1; although the parallel efficiency on the
nonvector machine is close to unity, the nonvector machine is obviously unin-
teresting compared to its vector counterpart. This is due to the fact that the
nonvector machine achieves high efficiency due to a decrease in o brought about
by an increase in §, not a decrease in A. It is apparent from the nonvector
iPSC/1 exercise that vectorization internal to the nodes is important to perfor-
mance; the nested parallel/vector hierarchy of the spectral element discretization

is ideally suited for the task.

88

7.2 Predicted Performance for Larger Systems

As an important point of analysis is to be able to predict as well as eval-
uate performance, we use our functional description of r (7.1) to estimate the
extent to which spectral element-distributed memory architecture coupling can
be further leveraged through the addition of more processors. As the general
fluid mechanics problem is currently far from being solved, we consider the in-
teresting cases where K /M is fixed, i.e., problems of increasing size with an
increasing number of processors. We note that in the following analysis the pri-
mary cost term is the log M term associated with the vector reduction operations
in the conjugate gradient/direct stiffness algorithms and that the potential for
contention is not addressed. Thus, we are Presuming that the communication
network is sufficiently rich to to cope with the direct stiffness communication
for these larger problems; this shou!? not be a problem on hypercube multi-
Processors having a dimeasion which is much greater than the spatial dimension

of the physical problem of interest.

We use as our model constants in (7.1) the conservative figures a=10.0
sec, b=0.5 sec, and ¢=0.4 sec. This corresponds to a faster processing rate than
currently obtained on the iPSC /2-VX, though not as fast as the fully vectorized
code, and to a slightly slower communication rate than actually measured. Using
the constant @ = 10.0sec, the baseline processing rate for a single processor will
be 2.78 MFLOPS.

The first issue we address is to find the maximum obtainable speedup as

89

M — oo, K/M = const. From (7.1) the speedup is:

M
S, = 7.2
1+ % (2 + 2log, M) (72)
M
T 1+a+flnM (7:3)

where we recognize that b/a, ¢/a « o. Differentiating (7.3) with respect to M,

we find that a minimum or maximum occurs at:
Mg =7 <1 . (7.4)

Since S, is growing for M > 1 there is no upper-bound on the maximum ob-
tainable speedup for sufficiently small communication penalties (a, 8), assuming

that the logarithmic cost function is valid.

The second question we address is, “How many processors are required to
obtain 1 GFLOPS sustained performance?” In general, the execution rate on

M processors will be:
MFLOPS(M) = MFLOPS(1)- S,(M) e (7.5)
K/M

from which we can determine Mg simply by setting MFLOPS(M,gr) = 1000.
We consider the cases where K /M = 1,2,46, under a series of four different

conditions:
i) using the assumed model! constants a=10.0 sec, b=0.5 sec, c=0.4 sec;
i1) assuming a doubled clock rate => a=5.0 sec, b=0.5 sec, c=0.4 sec;

#11) assuming a doubled communication rate => a=10.0 sec, b=0.25 sec,

¢=0.2 sec; and finally,

tv) assuming that the direct stiffness effort (b/a) grows in direct propor-

tion to K/M => a=10.0 sec, b = 0.5K /M sec, ¢=0.2 sec.

90

K/M " i | | e | i
1 507 | 318 | 430 | 507
2 430 | 246 | 396 | 441
4 306 | 212 | 378 | 409
6 384 | 201 | 372 | 308

Table 7.4: Predicted number of processors, M, required to achieve 1 GFLOPS
performance based on variations of the current spectral element --iPSC/2-VX
coupling.

The results of this analysis are presented in Table 7.4.

It is ciear from Table 7.4 that 1 GFLOPS performance should be obtainable
with on the order of 512 processors (D = 9) for the current values of (6,A) for
the spectral element - iPSC/2-VX coupling. We note that as the work per
processor increases, K/M — oo, the number of processors required to achieve 1
GFLOPS is bounded from below by 1000 MFLOPS/MFLOPS(M = 1) = 360.
In addition, we see from column (i7) that substantial gains can be made by
increasing the processing rate, implying that the current implementation is not
communication bound. Our final analysis (iv) addresses the issue of contention
as we now allow for increased communication (though not logarithmic with M)
with increasingly large K/M. It is seen that performance is not greatly impacted

by this additional communication overhead.

The third question we address is the potential performance on 1024 pro-

91

cessors. From (7.2) we find:

MFLOPS(M =1024,K/M =1) = 2324 (7.6)
MFLOPS(M = 1024, K/M =6) = 2648

Assuming that system cost scales with the number of processors, the 1024
node system will achieve a respectable resource efficiency of ' = 11.9 x 1078
MFLOPS/$, based upon the cost of the iPSC/2-VX/d5. Note that we have

substantial progress to make before reaching TeraFLOPS performance.

The above analyses are quite general in that they are readily extended
to more flexible non-conforming spectral element discretizations [35,39]. The
added complexity of such methods primarily results in increased data traffic
for low dimension data structures, edges and vertices, implying that properly
implemented non-conforming discretizations will incur additional log M _type
communication during the direct stiffness summation. If we assume that the
log M term, ¢, is increased by a factor of 2, we find that 1 GFLOPS performance

will be cbtained on M = 650 processors.

Clear progress in terms of achievable CPU cycles is apparent. However,
the truly important performance measures of a particular algorithm-architecture
coupling are the solutions and solutions-per-dollar which can ultimately be ob-
tained. We therefore need to reassess our current spectral element Navier-Stokes
algorithms in order to understand what are potentially limiting factors in scal-
ing to these very large simulations. One area which needs to be addressed
is the implementation of order-independent iterative solvers (e.g. multi-grid
[3,34]) which maintain a fixed rate of convergence independent of the problem
size. Efficient parallel multi-grid implementation is significantly more complex

than either its serial counterpart or parallel conjugate gradient iteration due to

92

non-vanishing communication on the coarse grids (lim.—o A(€e) # 0). Another
area requiring attention is ti.e explicit treatment of the convective term in the
temporal discretization of the Navier-Stokes equations. Currently, increasing
spatial resolution imposes stringent restrictions on the time step size due to the
Courant stability criteria. To circumvent this problem, implicit spectral element
characteristic methods have been recently investigated and a topology preserv-
ing (deforming element) scheme shows promise as more efficient means of time

advancement [24].

7.3 Economic Performance Analysis

As a major point of this work is the development o. general methods for
“real” fluid flow problems, we conclude the aﬂalysis with the solution of a full
three-dimensional Stokes problem. We consider the geometry of Figure 7.5a,
with periodic boundary conditions in the flow direction, and no-slip boundary
conditions on all solid walls. The discretization parameter is taken to be A =
(K = 32,N = 10), and the problem is solved on M = 16 processors. The S2intra
and Sjiner strategies are pursued so as to achieve a nearest-neighbor mapping,
thereby minimizing Ay, Az, and A;s. The element to processor mapping is an
extension of that depicted in Figure 5.1; pairs of vertically adjacent elements are
placed on each processor, and a copy of the mapping is repeated on processors
Py, ..., Pig to effect nearest neighbor communication between the upper and lower
levels of elements. The results of the calculation are shown in Figure 7.5b in

terms of the velocity field.

On the basis of timings similar to those described for the “chain” problem

93

i
|
1/

Y

7]
/

/

]

B N
. - ”": :“~ - 4+ - - — — . -
~ - P -~ .- - — — —)
“ . - - -~
“‘~-.- .‘.-“ /" e e ey, : >
7~ ~ ™~
~ ‘., Va
\\\ 1 v - ~N
Ak v ., PRGOS P N
N ’ /7 ~
\\" y 27 7, oY IO
- .
NSO\ iy 4 > .. s !
N N —~— /// //," .\‘\\\\I-
~ — ’
\\ Prad - -~ e
= ~ — ~—p P o < - e oY
. - D £ -
- T — - _~- = \\\‘ S = ‘—" R - -
o -~ e oy e o - SIS, - T
AT . - -
o = - - - - - - e o - - - - -

Figure 7.5: (a) Computational domain consisting of 32 spectral elements (8 are
shown for clarity) for the steady Stokes problem of flow past two cylinders in a
duct. (b) Velocity vectors at the mid-plane of the domain.

94

-8
lo T rvvrreeeg LR R B RAll] T v rrreeng LRI EALL | T T rIr

ol iPSC/2-VX/d4 #

, iPSC/1-VX/d4 a
e =

MFLOPS'/$ |

v

CRAY-X/MP
- CRAY-2 ® o
10 F uVAX-IIo CRAY-2 (4)
s iPSC/2-d40

iPSC/1-d4 o

10" _L_I_LMLMI_L_H.HJJJ__A_LIJHML—I—I—IJ-H&LI—l—J—LM

10 107 10° 10! 10? 10%

MFLOPS’

Figure 7.6: Measured computational resource efficiency, €', for the Stokes prob-
lem of Figure 7.5.

we plot in Figure 7.6 the MFLOPS'— ¢’ points for this calculation on the uV AX,
CRAY X-MP, CRAY 2, IPSC/1-VX/d4, and iPSC/2-VX/d4 computers; the
actual timing data is given in Appendix B. The iPSC/2 constitutes a significant
improvement over the iPSC/1, primarily due to communication speedup through
hardware and architecture, but also partially due to increased scalar speed. The
iPSC/2 calculation runs at a parallel efficiency of = .7 compared to the iPSC /1
calculation which operates at n = .3; note how the iPSC/1 and iPSC/2 points

are distanced in Figure 7.6 as opposed to Figure 2.

95

It is instructive to compare the nonvector iPSC/1 and the iPSC/2-VX.
The nonvector iPSC/1 is clearly not operating at Mo, as the parallel efficiency
is effectively unity. However, even at My, the €' of the nonvector iPSC/1 will
not be competitive with that of the iPSC/2-VX (or iPSC/1-VX); vectorization
represents a significant improvement in performance with only a marginal in-
crease in cost. Note also that from the arguments of Section 5.2, (5.11), even
at M, the nonvector iPSC/1 will be inferior to the iPSC/2-VX due to the fact
that A(1) for the iPSC/2 is significantly smaller than for the iPSC/1, and o(1)
for the iPSC/2-VX is significantly larger than for the iPSC/1.

The results of Figure 7.6 indicate that properly designed numerical algo-
rithms can solve real problems on parallel processors at serial-supercomputer
speeds, using only a fraction of serial-supercomputer resources. Full unsteady
Navier-Stokes calculations are presented in the next chapter which illustrate

that parallel processing is an effective tool for fluid mechanics analysis.

96

Chapter 8

Parallel Navier-Stokes Computations

We conclude with the presentation of several example calculations which illus-
trate the generality of the parallel spectral element implementation, its capabilty
in handling laminar and transitional flows, and its utility as a fluid mechanics
analysis tool. Many of the examples are preliminary investigations into various
classes of problems and in such cases represent only a single data point for a
more exhaustive parameter study. However, the examples are instructive in pro- —
viding insight to the fundamental structure of each flow. The presentation below
roughly follows from low Reynolds number, two-dimensional flows to moderate

Reynolds number (Re = 3000), three-dimensional simulations.

The typical run time for the problems presented ranged from 4 to 40 hours
on anywhere from 2 to 32 nodes, depending on the problem size. For the higher
Reynolds number three-dimensional flows, the limitation most often encountered
was insufficient resolution to capture all the scales which were present. In some
cases resolution was limited due to the lack of non-conforming discretizations
which allow for local refinement without unnecessary far field refinement. In
other cases the Reynold number was sufficiently high that flow in fully sepa-
rated regimes became chaotic and polluted the solution elsewhere in the do-
main. Of course, the resolution problem can be remedied simply by increasing

the discretization parameters (K, N); memory on the iPSC/2-VX (4 Mbytes

97

+ 1 Mbyte vector) was sufficient as the largest problem used only half of the
available memory on the 32 node system. The current limitation is in fact post-
processing of data; high-speed vector graphics computers and software together
with efficient means of transferring and storing data are required for analysis of

large calculations.

8.1 Steady Stokes Flow

The first calculation is a steady three-dimensional Stokes flow consisting
312,000 degrees-of-freedom (K = 128, N = 10). The physical problem is that
of a spiral groove thrust bearing with ambient pressure at the inner and outer .
radii. The elemental geometry in Figure £.1 is comprised of two levels of el-
ements stacked upon one another. The lower layer corrsponds to the bearing
grooves which have a depth of .04, normalized with respect to the outer radius.
The upper layer corresponds to the gap between the thrust plates having a depth
of 0.01. The flow is driven by imposing counter-clockwise plane rotation on the
upper bearing surface. Lift is generated by viscous pumping in the channels,
and the computed lift is in good agreement with Reynolds equation solutions for
similar configurations [50]. The main point of this calculation is to illustrate the
scalability of the parallel algorithms described previously. The Stokes problem
was run on a 64 node Intel iPSC/2-VX at a sustained execution rate of 160
MFLOPS for the duration of the 16 minute solution time. Previous calculations
on a 16 node machine had achieved 44 MFLOPS [49), indicating roughly a ten
percent degradation in performance per processor as the number of processors
was increased from 16 to 64. As access to the 64 node machine was limited, ex-

tensive parameter studies were not feasible; consequently, it is not clear whether

98

i ///))--',:',;--,' ==
/) I ”’/’""//II.
& oy il =
Byt N
\ '\‘é\\‘:\'\“\ il =~
\‘ ‘\\ T \ ¢
AR W
WNQQ;* ‘:.§\‘“\\
AR NN
IR ORI
& W AR

o,

gt ,’-7/ .
S pH

Figure 8.1: Mesh geometry for spiral groove thrust bearing. Line intersections
indicate location of Gauss-Lobatto quadrature points for N = 5: (a) 32 ele-
ment lower level comprising inlet grooves, (b) thin gap region consisting of 96

elements.

the observed performance degradation is due solely to the log M term in equa-
tion (5.12) or to variance resulting from non-optimal mapping. In either case,
the performance on 64 nodes is quite good and indicates that this particular

algorithm/architecture coupling can be leveraged further with the addition of

more processors.

8.2 Rotating Flows

Our second example is a preliminary calculat.on which is part of an ongoing
investigation into Couette flow between concentric spheres [51]. Although such
flows are nominally two-dimensional (axisymmetric), it is well known that three-

dimensional modes persist in the Taylor vortices near the equator [52] as well

99

(b)

Figure 8.2: (a) Meridional projection of steady state streamlines for flow in a
spherical gap at Re = 25, based on inner sphere rotation rate and diameter. (b)
Three-dimensional streamline reveals a complex flow structure even at this low
Reynolds number.

100

as in the vortex breakdown at the poles, and it is therefore of interest to pursue
fully three-dimensional calculations. Our particular interest in this problem is
to analyse the vortex breakdown at the poles which occurs at sufficiently high

Reynolds in the large gap case. The present work was initiated by P. Bar-Yoseph.

We consider an inner sphere of radius R; = 0.5 and an outer sphere of
unit radius, the inner sphere rotating with an angular velocity {2. The Reynolds
number is taken to be Re = QR?/v = 25. Invoking symmetry boundary condi-
tions at the equator, ‘3—:, g—:, %E =0, w = 0, the computational domain becomes
a hemispherical shell consisting of five elements (N = 10) as shown in Figure
8.2a. As the inner sphere is set into motion, centrifugal forces drive fluid towards
the outer sphere at the equator, and the resultant pressure gradient forces the
flow along the inside of the outer shell up towards the poles; a large single vortex

system results in each hemisphere. The full three-dimensional complexity of the

steady state motion is illustrated in the streamline trace shown in Figure 8.2b.

We comment that this flow can in fact be computed much more efficiently
using an axisymmetric formulation. However, such a simulation would fail to
reveal three-dimensional modes. These initial results were computed on a four
node Intel iPSC/2-VX hypercube and were severely constrained in spatial reso-
lution due to lack of memory. Consequently, the flow is at a Reynolds number far
below that required to generate vortex breakdown at the poles. Nonetheless, the
calculation serves to illustrate the geometric flexibility of the three-dimensional

isoparametric spectral element formulation.

In conjunction with tlie vortex breakdown project, we have examined the
problem of flow in a rotating duct for varying aspect ratios and flow parameters,

Ek = v/L*Q), and Ro= U/L1, the Ekman and Rossby numbers, respectively.

101

:P

(0)}
N4
\JJ
il
7N
1 VAN
s b

{
331

Y

1

‘l

sl
{ie
1
~—o;l\:$
-——III\::I

Figure 8.3: Fully developed flow in a rotating channel: (a) problem geometry,
(b) steady state streamlines, and (c) in-plane velocity vectors at a time of 1.0
for Ek = v/L*Q = .01 and Ro= U/Lfl = 3.0. (Courtesy P. Bar-Yoseph)

102

A typical geometry is shown in Figure 8.3a, in which a duct of unity aspect
ratio is rotating about the vertical axis at a constant rotation rate (1. The flow
is assumed to be fully developed in the z-direction, that is, a% = 0 for all flow
variables, save a constant pressure gradient. The steady state solution is reached
by time integration from an initial condition corresponding to fully developed
flow for a non-rotating duct. We present in Figures 8.3b and 8.3c the steady
state streamlines and velocity vectors for the case of Ek=.01 and Ro=3. The

velocity vectors and time history are in good agreement with numerical results

presented in [53].

8.3 Natural Convection

We next consider natural convection between horizontal concentric cylin-
ders for a Grashof number, Gr= 139;"';—"7: = 120,000. Here g is the acceleration
of gravity; 8, the coefficient of thermal expansion of the medium, which in this
case is taken to be air; AT = 14.5°C, the temperature difference between the
inner and outer cylinders; D the outer cylinder diameter; and v the kinematic
viscosity. The inner cylinder diameter is D/3. The resultant Reynolds number
based on cylinder diameter, maximum flow velocity, and kinematic viscosity is
Re ~ 1060 — 200. The results of the spectral element solution (K = 16, N = 10)
are shown in the form of steady state streamlines and temperature contours in
Figures 8.4a and b, respectively. The qualitative agreement with the experimen-

tal results presented in Figures 8.4c and d (from [54]) is excellent.

103

(a) :

Figure 8.4: Natural convection for air at a Grashof number of Gr = 120,000.
The temperature of the inner cylinder is 14.5°C above the outer cylinder. Nu-
merical steady state streamlines (a) and temperature contours (b) compare
well with experimental results (c),(d) from [54]. Discretization parameter is
h = (K = 16,N = 10).

104

8.4 Grooved Channel Flows

The study of flow in grooved channels is of interest because such geometries
promote transition from steady to unsteady states in a controlled, supercritical
manner at low Reynolds numbers, in marked contrast to the uncontrolled sub-
critical transition which occurs in standard plane Poiseiulle flow. Consequently,
they serve as good test problems for comparison with classical linear stabil-
ity theory and have many modal solutions which are of interest in their own
right [55,56]. Because the solutions just above the critical transition Reynolds
number are steady periodic in time and are fixed in space by the presence of
inhomogeneities in the geometry, the grooved channel flows are more amenable

to analysis and control than their chaotic plane Poiseiulle flow counterparts [57].

We present two representative calculations which have geometry identi-
cal to that recently studied by Amon and Patera [56]. The first is the two-
dimensional problem depicted in Figure 8.5a. All lengths are non-dimensionalized
with respect to the channel half-height, h. The domain length is L = 5.0, the
groove width and height are w = 3.0 and a = 1.68, respectively. Periodicity is
imposed at the channel entrance and exit and the flow is driven by a constant
mean pressure gradient. Although Amon and Patera’s calculations were for the
case of constant mass flux, similar behavior is exhibited in the two problems.
Results for Reynolds number Re = %U h/v = 350 are presented. The steady pe-
riodic nature of the flow is evidenced by the time history of the z-component of
velocity at the point (z = 1.42,y = 1.58) in Figure 8.5b. Instantaneous stream-
lines in Figure 8.5¢ reveal Tollmein-Schlicting waves amplified by interaction of

the mean flow with the driven cavity flow in the groove.

105

(a)

.75

.70

.60

M le{ |

.50 1 [l X 1 1 1 1 1 L i | 1 A 4 1
(s} 100 200 300 400 S00 600 700

(c) TIME

.SS

Figure 8.5: Groove channel geometry with spectral element discretization {a).
Instantaneous streamlines clearly show wavy structure of the flow associated
with excited Tollmein-Schlicting waves (b). Time history of streamwise velocity
component near the channel center shows the existence of a steady periodic state

(c)- 106

[/

="

~ >

Figure 8.6: Streamline plot for grooved channel simulation reveals presence of
three-dimensional (transverse) mode under steady periodic conditions.

(ﬁ\
\

v

Three-dimensional simulations are being carried out to investigate the na-
ture of the transition from two- to three-dimensional motion. Amon has inves-
tigated three-dimensional transition using linearized Fourier expansions in the
cross-channel direction, and has found Re.i,sp = 340 for the channel geometry
of the previous calculation with constant volume flux. Using a cross-channel
width W = ¥ with symmetry boundary conditions (32 =0,d -7 =0)at 2=0
and z = §, we have found sustained three-dimensional modes for full Navier-

Stokes calculations at Re = 320 in the presence of a constant mean pressure

107

gradient. The streamline pattern in Figure 8.6 clearly shows the presence of
transverse velocity components. History traces similar to those of Figure 8.5¢

indicate the existence of a steady periodic solution.

8.5 External Flow Past a Cylinder

We turn now to a series of calculations for the classical problem of external
flow past a cylinder. This problem serves as an excellent test problem because
of the extensive literature available (see for example [58]) and the relatively well

defined transition states which persist across a wide range of Reynolds numbers.

We first examine startup flow past a cylinder of diameter D at a Reynolds
number of R = Uy,D/v = 100. The cylinder is initially in quiescent fluid
at t = 0, with an external uniform flow U, imposed abruptly at ¢ = 0t. The
problem is treated with the spectral element Navier-Stokes discretizations based
on consistent approximation spaces for the velocity and the pressure, and the
Uzawa conjugate gradient-based iterative solvers [1]. Figure 8.7a shows the good
comparison between the numerical prediction of the recirculation zone lerigth at
early times with the experimental observations of [59]. At later times the familiar
unsteady von Karman vortex street forms as shown in Figure 8.7b. The startup

calculation was performed on an eight node iPSC/1-VX hypercube.

The next problem is again the cylinder startup problem, but now at a
Reynolds number B = 1000. This calculation is based on a fractional step
method with conjugate gradient solution of the elliptic subproblems [60]. Fig-

ure 8.8a shows the spectral element discretization of the computational domain

108

S.0 E LEN SR S U S SRR B SN SN EENL s EENN SN N S e E]
4.5 3
- O o 3
o]
O -
4.0 @ o o o -
o .
3.5 s — °]
. 0o -

0 o
: o]
'g 3.0 o° ‘1
o]
®]
§ 2.5 o -
g 2.0 o.o @ PRESENT 3
o ©]
¢ o]
. O HONNI h
1.S 0 TANEDA -
o .
1.0 o 3
fo} p
o* 3
.5 -
(V] n
o & 1 L 1 " 1 1 1 1 L s 1 2 1 3 1 21]
0 2 4 6 8 10 12 14 16 18 20

TIME (Tal/D)

(b)

Figure 8.7: Startup flow past a cylinder at a Reynolds number R = U, D/v =
100. (a) Comparison of early time nondimensional recirculation zone length
with experimental measurements of [59]. (b) Instantaneous streamlines showing

the vor Karman vortex street at a nondimensional time of 110.

109

consisting of K = 52 elements, together with instantaneous streamlines at an
early non-dimensional time of Uxt/D = 3. Figure 8.8b shows a more detailed
close-up of the vortex structure which forms behind the cylinder; this result is

in excellent agreement with the experimental results shown in Figure 8.8¢ [54].

One very interesting phenomena observed in cylinder and general bluff
body flows is the rapid reduction in drag which occurs when the Reynolds num-
ber exceeds a critical value Re.. The so called “drag crisis” results from a
dramatic change in the character of the flow in which increased momentum
transfer between the boundary layer and free stream allows the flow near the
body to overcome the adverse pressure gradient, resulting in delayed separation
and greater pressure recovery on the downstream surfa-e. Traditionally, the
drag crisis has been associated with the onset of turbulence in the boundary
layer at Re. ~ 10°. However, numerical evidence has shown that it may be
possible to induce the drag crisis through excitation of low Reynolds number
two-dimensional Tollmien-Schlicting waves. Kawamura and Kuwahara have ob-
served a drag crisis for a cylinder with a rough surface at Re = 40,000 [61},
and -Spalart has computed a drag reduction at Re ~ 10° using vortex methods
[62]. Both of these results were based upon two-dimensional calculations, indi-
cating that turbulence need not be the only means of producing the momentum

transfer required to overcome the adverse pressure gradients.

Armed with such evidence, we have embarked upon an investigation of the
drag crisis for two-dimensional flows past a cylinder. In particular, we intend
to combine the results of the grooved channel flow simulations of the previous
section with the cylinder calculations and trigger Tolmein-Schlichting waves in

the cylinder boundary layer by placing grooves around the perimeter. We have

110

(a)

R=500, Ut/d=3.0

(b) (c)

Figure 8.8: Startup flow past a cylinder at a Reynolds number R = U, D/v =
1000. (a) Spectral element mesh (K = 68, N = 10) and instantaneous stream-
lines at a nondimensional time of U,t/D = 3. (b) Enlarged view reveals small
secondary vortices which are also observed experimentally (c), [54].

111

carried out one preliminary calculation at Re = 200 and show the results in the
form of instantaneous streamlines in Figure 8.9. The full computational domain
and unsteady von Karman vortex street is seen in Figure 8.9a. The size and
spacing of the grooves is shown in Figure 8.9b. The range of resolved scales
in this calculation is evident in 8.9¢c, which reveals the presence of numerous
small eddies in the grooves. Note that the character of the groove flows changes
from viscous, Stokes flow, to inertial, separated flow in moving from the forward

stagnation point to the cylinder apex.

The grooved cylinder problem requires extensive exploration of the four-
dimenssional parameter :pace, (Re,a/D,w/D, L/ D), which are the the Reynolds
nu..ber and the non-dimensional geometric parameters from the grooved chan-
nel flows. Because the flow is characterized by a broad range of spatial scales,
and hence disparate time scales, each simulation requires many thousands of
time steps to reach a steady periodic state. Several measures can be taken to
reduce the computational effort, the most notable of these being the implemen-
tation of non-propagating grid refinement techniques which would allow for fine
scale resolution near the cylinder/groove boundary layers without having unnec-
essary refinement in the far field. Recently developed non-conforming spectral
element discretizations [35] allow for such flexibility and will be instrumental in

continuance of this investigation.

It is clear that intelligent selection of the geometric parameters is required
in order to optimize the search for the minimum achievable Re., and that such
selection must be based upon extensive understanding of boundary layer inter-
actions with grooves, and boundary layer development about cylinders. Such

uniderstanding results from studies similar to those described in the previous

112

Figure 8.9: Flow past a grooved cylinder at Rep = 200: (a) vortex street and
spectral element discretization; (b) and (c) enlarged views reveal broad range
of scales present in this flow. Viscous and inertial eddies are evident in the
grooves.

113

F &

section and at the beginning of this section. However, the validity of a con-
jectured drag reduction will ultimately be established only through numerous
fully resolved simulations. Such extensive computations are made possible by
having a local, interactive supercomputer environment, and made affordable by
having the low cost computing power delivered by distributed memory parallel

processing.

8.6 Three-Dimensional Horseshoe Vortices

We turn now to a series of three-dimensional calculations, in fact, to a
series of simulations of secondary horseshoe vortices which form at the base of
end-mounted cylinder on a flat plate. This problem has a great deal of aesthetic
appeal (see in particular [63,64]), as well as numerous applications in subma-
rine and aircraft design. The presence of horseshoe vortices is quite evident in
wind-sculpted snow drifts which form at the base of trees and telephone poles.
The horseshoe vortex results from the pressure differential developed when a
boundary layer flow impinges upon an end-mounted cylinder. The flow in the
free stream imposes a greater dynamic pressure upon the cylinder than the low
speed fluid at the cylinder base. The low speed flow is unable to overcome the
adverse pressure gradient and flow reversal results, thereby producing a steady
persisting vortex in front of the cylinder. Conservation of angular momentum
(Kelvin’s theorem) causes the vortex to wrap around the cylinder, giving it the
shape from which it derives its name. An extensive exposition on the laminar

horseshoe vertex is given in [65].

The first example is three-dimensional flow past a cylinder between two

114

I

(a)

(b)

Figure 8.10: Three-dimensional flow past a cylinder mounted on a flat plate
at a Reynolds number R = 1000 based on maximum inflow velocity, U, and
cylinder diameter, D. (a) Mesh, inflow velocity profile, and three-dimensional
horseshoe vortex structures shown at an early time Ut/D = 4. (b) Detailed
flow structure close to the cylinder reveals the presence of two horseshoe vortices

at time Ut/D = 9. 115

plates. In the flow direction the velocity profile u = U[1 — 16(1/2 — z/H)*|, is
imposed at the inflow plane, while outflow boundary conditions are imposed at
the exit plane. Periodic boundary conditions are imposed in the y-direction, no-
slip wall boundary conditions are imposed on the plate (z = 0), and symmetry
boundary conditions are assumed at the half plane (z = H/2). The Reynolds
number based on the symmetry plane inflow velocity (U) and cylinder diameter,
D, is R = 1000; the geometric ratio D/H is unity for this calculation. Figure
8.10a shows the three-dimensional horseshoe vortex structure that forms around
the cylinder at a non-dimensional time Ut/D = 9, while Figure 8.10b shows the
more detailed flow structure close to the cylinder. The discretization parameter

is h = (N = 8, K = 40) and the execution time is roughly 40 hours on a four
node iPSC/2-VX hypercube.

The second simulation is flow around a low aspect-ratio cylinder having a
height H = 1/2 and diameter D = 1. In this case, the computational domain is
extended to z = 1.75 and fluid is allowed to pass over the top of the cylinder.
Baker [65] presents extensive flow visualization results for this configuration
with Re = UD/v = 4370 and D/6* = 21.3, where 6* is the boundary layer
displacement thickness at the position of the cylinder when the cylinder is not
present. For the present calculations, Re = 3000 and D/6* = 21 at the inlet
plane. The boundary conditions are the same as in the previous example with
the exception that the inlet profile is now v = U[1 — (1 — 2z/D)*']. Numerical
visualization results are presented in Figures 8.11 The chaotic flow seen above
the cylinder indicates that additional refinement is required to fully resolve the
flow in that region. Qualitative agreement with Sutton’s experiment [65] is seen
in the lower part of Figure 8.11. The vortex pattern corresponds to the six

vortex system described by Baker, as his experimental results predict for these

116

Figure 8.11: Similar to Figure 8.10 except that now the flow at Re = 3000 is
allowed to pass over the cylinder (center). The displacement boundary layer
thickness of the impinging flow is §* = D/21. Tight vortex core is seen at the
cylinder base in the top figure. Multiple vortex formation is evident in the lower
figures. Six vortex pattern at this Reynolds number is similar to the results of
Sutton [65). 17

run conditions, although the weakest S, vortex is not observed in the present

case.

We turn now to the investigation of a more applied problem. We consider
internal flow in a circular pipe in which a square prism is placed transverse to
the axis of the pipe, as shown in Figures 8.12a and b (a portion of the pipe
wall has been removed to permit observation of the relative orientation of the
prism). The pipe diameter is taken to be D = 1 and the prism “diameter”
d = 1/4. The inlet velocity profile is parabolic with maximum velocity on the
axis of U = 1. The application calls for measurement of volume flux through
the pipe by establishing a relationship between the frequency of vortex shedding
from the prism and the total flow rate. The problem is strongly influenced by
three-dimensional effects because the boundary layer thickness of the impinging
flow is of the same order as the length of the prism. Consequently, the vortex

shedding is not similar 0 that computed for two-dimensional problems.

The discretization consists of 96 elements for which N = 8. The complexity
of the resultant flow pattern in the steady laminar regime is seen in Figures
8.13a through c, which show the three-dimensional streamline pattern. Such
results are typical for low speed shear flow behind cylinders. The axial pressure
gradient along the prism in the recirculation zone just aft of the prism causes
transport of low speed fluid which “feeds” the vortex at the symmetry plane.
The net result is that fluid particles which initally form a sheet transverse to the
pipe and parallel to the prism end up forming a central core at the pipe exit.
The resulting vorticity pattern is evident in the velocity vector plot shown in
Figure 8.13d, which is taken at a cross section two pipe diameters downstream

. of the prism. Based upon initial trial runs, no vortex shedding is evidenced for

118

7\

[\
i

%/
TN

J

—

7\ 7\

>~

7\

\
L

A —or.a

N _
(a) (b)

Figure 8.12: Geometry for transverse obstruction in a pipe. Side walls near the
prism are not shown. (Courtesy M. Cruz)

119

i

—_—

(b)

4
’

[/ .

SERRAERNEY
SRRRAINNETY

A
) \J
v

A}

Laaaay

(c) (d)

Figure 8.13: Streamline patterns and velocity vectors reveal three-dimensional
nature of this fully developed pipe flow passing a transverse prism. The velocity
vectors (d) two diameters downstream of the prism indicate the presence of
weak counter rotating vortices similar to the horseshoe vortices of the previous

examples.
120

Reynolds numbers of Re = Ud/v < 200. Higher resolution simulations will be

requried to establish vortex shedding.

Our final simulation is in fact a two-dimensional subproblem for a three-
dimensional horseshoe vortex calculation currently being investigated by Renaud
[66]. It is presented here to illustrate the geometric flexibility of the isopara-
metric spectral element formulation. The problem is that of flow past a unity
aspect ratio turbine blade at a Reynolds number based on chord length, L.,
of Re = 1000. Of interest is to study the behavior of the horseshoe vortices
under loaded conditions. Two dimensional solutions to the turbine blade flow
are used as initial conditions for the full three-dimensional simulation. The
two-dimensional discretization consists of K = 125 elements, N = 8. The
three-dimensional discretization will have four levels of elements and require the
maximum capacity of the thirty-two node iPSC/2-VX hypercube memory. The
geometry is seen in Figure 8.14a. Periodic boundary conditions are used above
and below the blade, the inlet velocity is specified to be U = 1, and Neumann
conditions are imposed at the domain exit. Flow separation is evident in Figure

8.14b at a convective time of tU/L. = 6.

121

SN

AN

Figure 8.14: Mesh (K = 125, N = 8) for turbine blade analysis at Re = 1000
based on chord length L, (2). Flow separation is evident at a time tu/L. = 6
(b). (Mesh courtesy of E. Renaud).

122

Appendix A
Speed and Cost Data for

Several Modern Computer Systems

Rated peak

Price (K$) MFLOPS e (MFLOPS/$)
iPSC/1-d4 91 0.3 0.33x1078
iPSC/1-VX/d4 286* 160 55.9 x10~°
iPSC/2(4M)/d4 203* 1.8 0.87x10~5
iPSC/2-VX/d4 363* 160 44.1 x1075
CRAY X/MP-12 5000 190 3.80x10°8
CRAY-2/4-256 15500 1000 6.45x107°
pVAX-II 10 0.1 1.0 x10~%
FPS-164 500 5.0 1.0 x1078

*Indicates quoted manufacturer’s price.

123

Appendix B
Timing Results for 80,000

Degree-of-Freedom Stokes Problem

Parallel
Tsotve Efficiency
(seconds) (%) MFLOPS' €' (MFLOPS'/$)

iPSC/1-d4 19100 99 0.3 0.33 x1078
iPSC/1-VX/d4 360 25 16 5.6 x107®
iPSC/2(4M)-d4 5760 99 1.0 0.47 x107%
iPSC/2-VX/d4 130 75 44 12.1 x1075
CRAY X/MP-48 (1) 87 - 66 1.32 x1078
CRAY-2/4-256 (1) 104° - 55 1.42 x10~%
CRAY-2/4-256 (4) 32° 80 176 1.14 x107®
uVAX-II 57200 - 0.1 1.0 x1078

* Reported timing adjusted for iteration count.

124

Appendix C

Iscparametric Discretizations in R3

In this section we describe a scheme for efficient evaluation of the discrete
Laplacian for general deformed elements in R3. A lucid exposition of general
isoparametric mappings can be found in [67]. As the discretization is based
upon an integrated weighted residual or variational form, we only need to con-
sider the derivation for a single element; the integral over the entire domain
is the sum of the integrals on each element. We assume at the outset that
Z = (z,y,2) = Z(r,s,t) is a known function of the local coordinates (r,s,t).
For a single element, the variational form requires evaluation of the following
integral:

I = /m Vé.Vudl |, (C.1)

where ¢ is an arbitrary test function. When using iterative solvers, u will be
a known function, e.g. the sth iterate, so we evaluate (C.1) accordingly. The
extension to the case where u is unknown is straightforward. The 2xpression

(C.1) in local coordinates is:
1 1 g1
I = / // Vé - Vulddrdsdt | (C.2)
-1J-1J1

where,

125

orou Osdu otou
| Oz Or o0z ds oz ot |
21:?_11 ds du ot dul .

+

9y ar + b—y'-é-; + -6—3;5 J + (C.3)
o 0w aau]
|0z0r = 829s Az dt) ’
and
9z 0z oz
ar s ot
J=| % 9y 9y (C.4)

J is the local Jacobian.

We first note that the metrics, g—;, etc., are of the form r(z,y, 2), rather

than z(r, s,t). Using the following identity:

oz o o || o o o | | 1 0 0 1
dr s at Jz dy dz
9 8y 9y 9 s 9s |= C.5
ar ds ot oz dy 0z 0 1 0 ((c8
oz 0z oz ot ot ot

| o &% allae ® & | [0 01

we can readily express the required metrics as explicit functions of (r, s,t). Recall
that derivatives with respect to r, s, and ¢ can be efficiently evaluated using
matrix-matrix product subroutines. Note that inversion of the above system

will result in an inverse Jacobian in front of each metric in (C.3).

Taking the inner product V¢ - Vu with the expansion given by (C.3), we

126

arrive at a compact expression for the integrand in (C.2):

-aT - -
211 6u G2 Gu||l2
I= %f Ga1 G2 G2 ol B
) s s 3
Ta%, a1 Gn Gu || 5

where

< 3 8r.- af,'

i = J kgl (51:—&-5;) . (C.7)
Here r; and z, are taken to be (ry,r;,r3) = (r,s,t) and (z;,23,25) = (z,v, 2),
respectively. The geometric factors 9-.-,- are symmetric, i.e. 5.-,- = 9.','.-, and, for

the case of affine transformations, form a diagonal matrix, i.e., é.-,- = ¢;0;5, where

¢; is a constant determined by the z—, y—, or z— stretching of the element.

We now proceed to express the integral (C.1) in terms of our discrete
functional representations. The integrand I is just a scalar function of (r, s, t),
and as such can be integrated according to the Gauss-Lobatto quadrature rule
from Chapter 3:

1 r1 ,1 N N N
/ / / Idrdsdt = Y>> Lipije » (C.8)
“1/-17-1 §=0 §=0 k=0
where p;;x is the quadrature weight associated with the nodal point r;;;. Since
collocation is employed to evaluate the integrals of products of functions, the
following generic forms are equivalent:

1 p1 rl N N N
/-1/:-1./_1 fgdrdsdt = 3373 fikgisepise (C.9)

i=0 j=0 k=0
= f-(gop)
= g-(fop)
= p-(fog) ,

127

ri1

where f = fi;x is taken to be discrete representation of f on a given element,
and f og implies pointwise collocation of the vectors f and g. In other words, we
can attach the quadrature weight p;;x as a multiplier of any of the functions in
our original integrand in (C.2). In particular, we can take it to be a multiplier

of the Jacobian, J, and factor it directly into the geometric factors:

Gii=pobiy - (C.10)

In so doing, we imply that condensation will now occur somewhere else in the
evaluation of [I. This in fact is exactly the what is required and we are now in

a position to express (C.1) in its discrete equivalent as ¢TAu.

Expanding the transposed vector in (C.6) and inserting the derivative oper-
ators D,, for g—"_‘._, yields the final expression for discrete evaluation of the desired

integral:

61 G2 G || Dr
¢TA“=¢T'[DZ‘ Dy Df] Go1 Gaz Gas || Ds |v (C1Y)
| Gs1 Gz Gz || Dt |

The Gi;'s are computed and stored once at the beginning of the calculation (this

is not the case for moving boundary problems [36]).

When evaluating matrix-vector products of the form A.u, there is of course
no condensation on ¢. Au products are therefore evaluated as expressed in
(C.11), working from right to left. We begin with three matrix-matrix products,
(Diptipse)s (Diptiipk), (Diptisip), (0p- cat. - 3 x 2N*); followed by nine collocation

and six summation operations for the geometric factors (op. cnt. - 15N 3); three

128

additional matrix-matrix products for the DT’s (op. cnt. - 3 x 2N*); and finally,

two summation operations (op. cnt. - 2N?) to yield the residual vector, Au.

129

Bibliography

(1) E.M. Renquist, Optimal Spectral Element Methods for the Unsteady Three-
dimensional Incompressible Navier-Stokes Equations, Ph.D. Thesis, Mas-
sachusetts Institute of Technology, 1988.

(2] T.F. Chan, Y. Saad, and M.H. Schultz, in Hypercube Multiprocessors 1986
(M.T. Heath, ed), SIAM, Philadelphia, 1986.

[3] O.A. McBryan, and E.F. van de Velde, in Selected Papers from the Second
Conference on Parallel Processing for Scientific Computing (C.W. Gear and
R.G. Voigt, eds.), SIAM, Philadelphia, 1987.

[4] T.F. Chan, and D.C.Resasco, in Selected Papers from the Second Conference
on Parallel Processing for Scientific Computing (C.W. Gear and R.G. Voigt,
eds.), SIAM, Philadelphia, 1987.

[5] R. Glowinski and M.F. Wheeler in Proceedings of the First International
Conference on Domain Decomposition Methods for Partial Differential
Equations, Paris (R. Glowinski, G. Golub, G. Meurant, and J. Periaux,
eds.), pp. 144-172, SIAM, Philadelphia, 1987.

[6] ‘0.B. Widlund, in Proceedings of the First International Conference on Do-
main Decomposition Methods for Partial Differential Equations, Paris (R.
Glowinski, G. Golub, G. Meurant, and J. Periaux, eds.),pp. 113-127, SIAM,
Philadelphia, 1987.

(7] D.E. Keyes and W.D. Gropp, in Proceedings of the Second International
Conference on Domain Decomposition Methods for Partial Differential
Equations, Los Angeles SIAM, Philadelphia, 1988

[8] L.Adams and R.G. Voigt, in Large Scale Scientific Computation (S. Parter,
ed.), pp 301-321, Academic Press, Orlando, Florida, 1984.

[9] W.D. Gropp and D.E. Keyes, SIAM J. of Sci. and Stat. Comput. 9 (1988)
312-326.

[10] Y. Saad and M.H. Schultz, Topological Properties of Hypercubes, Research
Report YALEU/DCS/RR-389, Yale University, New Haven, 1985.

130

(11} HX.Lin, and H.J. Sips, in Proc. 1986 Int. Conf. on Parallel Processing,
503-510, 19886.

[12] A.T. Patera, A spectral element method for fluid dynamics; Laminar flow
in a channel expansion, J. Comput. Phys., 54, 1984, p.468.

[13] D. Gottlieb and S. Orszag, Numerical Analysis of Spectral Methods SIAM-
CBMS, Philadelphia, 1977.

[14] P. Moin and J. Kim, On the Numerical Solution of Time-Dependent Viscous
Inompressible Fluid Flows Involving Solid Boundaries, J. Comput. Phys.,
35,1980, p.381.

[15] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang, Spectral Mcthods in
Flusd Dynamsics, Springer-Verlag, 1987.

[16] S.A. Orszag, Spectral Methods for Problems in Complex Geometries, J.
Comput. Phys., 37, 1980, p. 70.

[17] Y. Maday and A.T. Patera, Spectral element methods for the Navier-Stokes
equations, in State of the Art Surveys sn Computational Mechanics (Edited
by A.K. Noor), ASME, New York, to appear.

[18] A.H. Stroud, and D. Secrest, Gaussian Quadrature Formulas, Prentize Hall,
1966.

[19] Brezzi, F., On the existence, uniqueness and approximation of saddle-point
problems arising from Lagrange multipliers, Rairo Anal. Numer., 8, R2,
1974, p. 129.

[20] Girault, V. and Raviart, P.A., Finite Element Approzimation of the Navier-
Stokes Equations, Springer, 1986.

[21] Maday, Y., Patera. A.T., and Rgnquist, £.M., A well-posed optimal spectral
element approximation for the Stokes problem, SIAM J. Numer. Anal., to
appear.

[22] Maday, Y., Patera. A.T., and Rgnquist, E.M., Optimal Legendre spectral
element methods for the multi-dimensional Stokes problem, in preparation.

[23] C.W. Gear, Numerscal Initial Value Problems in Ordinary Differential
Equatsons, Prentice-Hall, 1971.

[24) E.M. Rgnquist, private communication.

131

[25] Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis,
North-Holland, Amsterdam, 1984.

(26] Orszag, S.A., Israeli, M. and Deville, M.O., Boundary conditions for in-
compressible flows, J. Ses. Comput., 1, 1986, p. 75.

[27] Korczak, K.Z. and Patera, A.T., An isoparametric spectral element method
for solution of the Navier-Stokes equations in complex geometry, J. Comput.
Phys., 62, 1986, p. 361.

[28] L.I.G. Kovasznay, Laminar Flow behind a Two-Dimensional Grid, Proceed-
ings of the Cambridge Philosophical Society, p.44, 1948.

[29] Y. Saad and M.H. Schultz, GMRES: A Generalized Minimum Residual
Algorithm for Solving Nonsymmetric Linear Systems, SIAM J. Sci. Stat.
Comp., 7(1986), p. 858.

[30] Golub, G.H. and Van Loan, C.F., Matriz Computations, John Hopkins
University Press, Baltimore, Maryland, 1983.

[31] E.M. Rgnquist and A.T. Patera, in Proc. of the Seventh GAMM Conf. on
Num. Methods in Fluid Mechanics, Vieweg, to appear, 1988.

[32] Y. Maday, D.I. Meiron, E.M. Regnquist, and A.T. Patera, Iterative Sad-
dle Problem Decomposition Methods for the Steady and Unsteady Stokes
Equations, 1987.

[33] Y. Maday and R. Munoz, J. of Sci. Comp., (1988), to appear.
[34] E.M. Rgnquist and A.T. Patera, J. of Sci. Comp., 4 (1987).

[35] C.A. Mavriplis, Nonconforming Discretizations and @ Posteriors Error Es-
timators for Adaptive Spectral Element Techniques, Ph.D. Thesis, Mas-
sachusetts Institute of Technology, 1989.

[36] L.W. Ho, A Legendre Spectral Eiement Method for Simulation of In-
compressible Unsteady Viscous Free-Surface Flows, Ph.D. Thesis, Mas-
sachusetts Institute of Technology, 1989.

[37] J.S. Przemieniecki, AIAA J. 1 (1963) 138.

[38] J.L. Gustafson, G.R. Montry, and R.E. Benner, Development of Parallel
Methods for a 1024-Processor Hypercube, SIAM J. on Sci. and Stat. Com-
put., 9, 4, July 1988, pp. 609-638.

132

[39] G. Anagnostou, Ph.D. Thesis, Massachusetts Institute of Technology, in
progress.

[40] R.E. Bank and C.C. Douglas, Sharp Estimates for Multigrid Rates of Con-
vergence with General Smoothing and Acceleration, SINUM 22,4 (1985),
617-633.

[41] A.K. Noor, Ed., Parallel Computations and Their Impact on Mechanics,
ASME, N.Y., 1987.

[42] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. Walker (1988).
Solving Problems on Concurrent Processors. Volume 1 : General Techniques
and Regular Problems. Prentice-Hall, Englewood Cliffs, New Jersey.

[43] Fox, G.C., and Otto, S.W., Concurrent Computation and the Theory of
Complez Systems in Hypercube Multiprocessors, (M.T. Heath, ed.), SIAM,
Philadelphia, 19886.

[44] B. Nour-Omid, A. Raefsky, and G. Lyzenga, Solving Finite Element Equa-
tions on Concurrent Computers in Parallel Computations and Thesr Impact
on Mechanics,(A.K. Noor, Ed.), ASME, N.Y., 1987.

[45] D. Zeritis, Optimal Mapping Techniques and the Nested Dissection Algo-
rithm B.S. Thesis, Massachusetts Institute of Technology, 1985.

[46] Lucas, R.F., Solving Planar Systems of Equations on Distributed-Memory
Multiprocessors, Stanford University Ph.D. Thesis, Dept. of Electrical En-
gineering, 1987.

[47] M.T. Heath, The Hypercube: A Tutorial Overview, in Hypercube Multipro-
cessors 1986, (M.T. Heath, ed.), SIAM, Philadelphia, 1986.

[48] G. Anagnostou, P.F. Fischer, D. Dewey, and A.T. Patera (1988). Fi-
nite/Spectral Element Navier-Stokes Methods on Vector Hypercubes and
Geometry-Defining Processor Reconfigurable Lattices. In Proc. Taiwan -
USA Conf. on Computational Fluid Dynamics, to appear.

(49] P.F. Fischer, and A.T. Patera (1988). Parallel Spectral Element Solution
of the Stokes Problem. J. Comput. Phys., to appear.

[50] W.A. Gross, Fluid Fiim Lubrication, John Wiley & Sons, Inc., New York
(1980).

[51] P. Bar-Yoseph, S. Seelig, A. Sloan, and K.G. Roesner, Vortex breakdown
in spherical gap, Phys. Fluids, 30(6), 1987, p. 1581.

133

[52] P.S. Marcus and L.S. Tuckerman, Simulation of Flow Between Concentric
Rotating Spheres, Part 2, J. Flusd Mech., 185, 1987, p. 1.

[53] H.S. Kheshgi and L.E. Scriven, Viscous flow through a rotating square
channel, Phys. Fluids, 28(10), 1985, p. 2968.

[54] M. Van Dyke, An Album of Fluid Motion, The Parabolic Press, Stanford,
California, 1982.

[55] N.K. Ghaddar, M. Magen, B.B. Mikic, and A.T. Patera, Numerical inves-
tigation of inompressible flow in grooved channels. Part 2. Resonance and
oscillatory heat-transfer enhancement, J. Fluid Mech., 188, 1986, p. 541.

[56] C.H. Amon and A.T. Patera, Numerical calculation of stable three-

dimensional tertiary states in grooved-channel flow, Phys. Fluids, submitted
1989.

[57] P.R. Bandyopadhyay, Resonant flow in small cavities submerged in 2 bound-
ary layer, Proc. R. Soc. Lond. A 420, 1988, p. 219.

[58] A. Zukauskas and J. Ziugzda, Heat Transfer of a Cylinder in Crossflow,
Hemisphere, Washington D.C., (1986).

[59] H. Honji and A. Taneda, Unsteady Flow Past a Circular Cylinder, J. Phys.
Soc. Japan, 27, 6, 1969, p. 1668.

[60] G.E. Karniadakis, E.T. Bullister, and A.T. Patera, A Spectral Element
Method for Solution of the Two- and Three-Dimensional Time-Dependent
Incompressible Navier-Stokes Equations, in: Finite Element Mehtods for
Nonlinear Problems, Europe-US Sympostum, Trondheim, Norway 1985,
Bergan, Bathe, Wunderlich, eds., Springer, Berlin Heidelberg, 1986.

[61] T. Kawamura and K. Kuwahara, Computation of High Reynolds Number
Flow around a Circular Cylinder with Surface Roughness, ATIA A-84-0430,
1984.

[62] P.R. Spalart, Vortex Methods for Separated Flows, NASA Tech. Memo.
100068., June 1988.

[63] E.S. Taylor and A.H. Shapiro, Secondary Flow, produced by the Nat.
Comm. for Fluid Mech. Films and Educational Services Inc.

[64] Nat. Comm. for Fluid Mech. Films, Illustrated Ezperiments in Fluid Me-
chanics, MIT Press, Cambridge Mass. and London, England, 1972.

134

[65] C.J. Baker, The laminar horseshoe vortex, J. Fluid Mech., 95, 1979, p. 347.

(66] E. Renaud, Ph.D. Thesis, Massachusetts Institute of Technology, in
progress.

[67) R. Courant, Differential and Integral Calculus, Vol. II, Wiley-Interscience,
1968.

135

