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ABSTRACT
Congestion pricing has long been hailed as a means to mitigate

traffic congestion; however, its practical adoption has been limited

due to social inequity issues, e.g., low-income users are priced out

off certain roads. This issue has spurred interest in the design of

equitable mechanisms that refund the collected toll revenues to

users. Although revenue refunding has been extensively studied,

there has been no characterization of how such schemes can be

designed to simultaneously achieve system efficiency and equity

objectives.

In this work, we bridge this gap through the study of conges-
tion pricing and revenue refunding (CPRR) schemes in non-atomic

congestion games. We first develop CPRR schemes, which in com-

parison to the untolled case, simultaneously (i) increase system

efficiency and (ii) decrease wealth inequality, while being (iii) user-
favorable: irrespective of their initial wealth or values-of-time (which

may differ across users) users would experience a lower travel

cost after the implementation of the proposed scheme. We then

characterize the set of optimal user-favorable CPRR schemes that

simultaneously maximize system efficiency and minimize wealth

inequality. These results assume a well-studied behavior model of

users minimizing a linear function of their travel times and tolls,

without considering refunds. Overall, our work demonstrates that

through appropriate refunding policies we can achieve system effi-

ciency while reducing wealth inequality.

CCS CONCEPTS
• Applied computing→ Transportation; • Theory of compu-
tation→ Solution concepts in game theory; Convex optimiza-
tion; Linear programming.
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1 INTRODUCTION
The study of road congestion pricing is central to transportation eco-

nomics and traces back to 1920 with the seminal work of Pigou [27].

Since then, the marginal cost pricing of roads, where users pay

for the externalities they impose on others, has been widely ac-

cepted as a mechanism to alleviate traffic congestion. In particular,

congestion pricing can be used to steer users away from the user

equilibrium (UE) traffic pattern, which forms when users selfishly

minimize their own travel times [29], towards the system optimum

(SO) [30]. Despite the system-wide benefits of congestion pricing,

its practical adoption has been limited [32]. A primary driving force

behind the public opposition to congestion pricing has been the

resultant inequity, e.g., high income users are likely to get the most

benefit with shorter travel times while low income users suffer

exceedingly large travel times since they avoid the high toll roads.

Several empirical works have noted the regressive nature of con-

gestion pricing [13, 24], which has often been viewed as “a tax on

the working class [26].” Further, a recent theoretical work [16] has

characterized the influence of road tolls on the Gini coefficient, a

measure of wealth inequality. Most notably, the latter paper [16]

developed an Inequity Theorem for users travelling between the

same origin-destination (O-D) pair, and proved that any form of

road tolls increases wealth inequality.

The lack of support for congestion pricing due to its social in-

equity issues [20, 34] has led to a growing interest in the design

of equitable congestion-pricing schemes [36] that refund the col-

lected toll revenues to users. Our work is centered on the design

of congestion pricing and revenue refunding (CPRR) schemes that

improve system performance, reduce wealth inequality, and benefit

every user irrespective of their wealth or value-of-time. We view

our work as paving the way for the design of practical, sustainable,

and publicly acceptable congestion pricing schemes.

https://orcid.org/0000-0002-7956-8525
https://doi.org/10.1145/3465416.3483296
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Figure 1: We develop congestion pricing with revenue refunding (CPRR) schemes that improve both system efficiency and
wealth inequality, while being favorable to all users. On the left we illustrate the concept of a user-favorable CPRR scheme
through a scatter plot. The horizontal X axis shows six distinct user groups, where all users in a given group have the same
value-of-time, income, and O-D pair, and the vertical Y axis shows the travel cost of each user group. Two sets of points are
depicted on this diagram to illustrate the travel cost of each user group (i) after the implementation of a user-favourable CPRR
scheme, and (ii) under the untolled setting. In particular, for any user-favorable CPRR scheme, every user group, irrespective
of their initial income, has a lower travel cost after the implementation of the scheme compared with the untolled setting.
On the right we illustrate the concept of Pareto-improving CPRR schemes through a diagram. The horizontal X axis shows
the wealth inequality of the income distribution of users after the implementation of a CPRR scheme, while the vertical Y
axis shows the system efficiency. We depict a point corresponding to the level of system efficiency and the wealth inequality
of the untolled setting as well as a point representing the optimal CPRR scheme. Then, any Pareto-improving CPRR scheme
is depicted by a point in the rectangular region, whose opposite corners are the optimal solution and no tolls or refunds
(untolled) solution. This rectangular region denotes the set of all points with a higher system efficiency and lower wealth
inequality compared to the untolled case. We also illustrate an optimal user-favorable CPRR scheme, which we characterize
in this work, and show that it simultaneously achieves the highest system efficiency and the lowest wealth inequality.

Contributions. In this work, we present the first study of the

wealth-inequality effects of CPRR schemes in non-atomic conges-

tion games and devise CPRR schemes that simultaneously reduce

the total system cost, i.e., the value-of-time weighted travel times

of all users, without increasing the level of wealth inequality. We

consider the setting of heterogeneous users, with differing values-

of-time and income, who seek to minimize their individual travel

cost in the system. As in previous work [16], we incorporate the

income elasticity of travel time, i.e., the lost income due to a loss of

time, to reason about the income distribution of users before and

after the imposition of a CPRR scheme.

To capture the behavior of selfish users, we study the effect of

the Nash equilibria induced by CPRR schemes on wealth inequality

for non-atomic congestion games. We consider an exogenous equi-
librium setting, wherein users minimize a linear function of their

travel time and tolls, without considering refunds, as in [18], for

which we obtain the following results:

(1) We develop CPRR schemes that improve both system efficiency
and wealth inequality, while being favorable to all users.We

establish the existence of a CPRR scheme that, compared

with the untolled outcome, (i) is user-favorable, i.e., every

user group, irrespective of their initial wealth, has a lower

travel cost after the implementation of the scheme, (ii) lowers

total system cost, and (iii) decreases wealth inequality (see

Figure 1). We call such CPPR schemes Pareto improving.
(2) We characterize the set of optimal CPRR schemes that are fa-

vorable to all users. In particular, we establish that the optimal

CPRR schemes are those that simultaneously minimize total

system cost and level of wealth inequality among all CPRR

schemes that are favorable to any user (see Figure 1).

In the extended version of our paper [22] we also study CPRR

schemes in the context of endogenous equilibria, wherein users

also consider refunds in their travel cost minimization. Our work

demonstrates that if we utilize the collected toll revenues to de-

vise appropriate refunding policies then we can achieve system

efficiency whilst also progressing towards reduced inequality. Fur-

ther, in doing so, we ensure that our designed schemes are publicly

acceptable since we guarantee that each user is at least as well off

as before the introduction of the CPRR scheme. As a result, we view

our work as a significant step in shifting the discussion around con-

gestion pricing from one focused on the societal inequity impacts

of road tolls to one that centers around how to best preserve equity

through the distribution of toll revenues.

Organization. This paper is organized as follows. Section 2 re-

views related literature. We then present a model of traffic flow as

well as metrics to evaluate the inequality of the wealth distribution

and the efficiency of a traffic assignment in Section 3. We then prove
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the existence of Pareto improving and optimal CPRR schemes for

the exogenous setting in Sections 4, and 5, respectively. Finally, we

present a discussion of how our work fits into the broader conver-

sation around equitable transportation in Section 6 and provide

directions for future work in Section 7.

2 RELATEDWORK
The design of mechanisms that satisfy both system efficiency and

user fairness desiderata has been a centerpiece of algorithm design

for a range of applications including resource allocation, classifica-

tion tasks for machine learning algorithms and fair traffic routing.

For instance, Bertsimas et al. [6] quantified the loss in efficiency

in resource allocation settings when the allocation outcomes are

required to satisfy certain fairness criteria. For machine learning

classification tasks, Dwork et al. [12] studied group-based fairness

notions to prevent discrimination against individuals belonging

to disadvantaged groups. In the context of traffic routing, Jahn et

al. [21] introduced a fairness-constrained traffic-assignment prob-

lem to achieve a balance between the total travel time of a traffic

assignment and the level of fairness, i.e., the maximum discrepancy

between the travel times of users travelling between the same O-D

pair [28], that it provides. Subsequent work on fair traffic routing

has focused on developing algorithms to solve the fairness con-

strained traffic assignment problem [2–4], whilst obtainingmethods

to price roads to enforce the fairness constrained flows [23].

Resolving the efficiency and equity trade-off is particularly im-

portant for allocation mechanisms involving monetary transfers

given the welfare impacts of such mechanisms on low-income

groups. Although achieving system efficiency involves allocating

goods to users with the highest willingness to pay, in many set-

tings, e.g., cancer treatment, the needs of users are not well ex-

pressed by their willingness to pay [35]. Since Weitzman’s seminal

work [35] on accounting for agent’s needs in allocation decisions,

there has been a rich line of work on taking into account redistribu-

tive considerations in the allocation of scarce resources to users.

For instance, Besley and Coate [7] analyzed the free provision of a

low-quality public good to low-income users by taxing individuals

that consume the same good of a higher quality in the private mar-

ket. More recently, Condorelli [9] studied the allocation of identical

objects to agents with the objective of maximizing agent’s values

that may be different from their willingness to pay.

In the context of congestion pricing, revenue redistribution has

long been considered as a means to alleviate the inequity issues

of congestion pricing [31]. Several revenue redistribution strate-

gies have been proposed in the literature, such as the lump-sum

transfer of toll revenues to users [17]. In Vickrey’s bottleneck con-

gestion model [33]—a benchmark representation of peak-period

traffic congestion on a single lane—Arnott et al. [5] investigated

how a uniform lump-sum payment of toll revenues can be used to

make heterogeneous users better off than prior to the implementa-

tion of the tolls and refunds. To extend the application of revenue

redistribution schemes to a two parallel-routes setting, Adler and

Cetin [1] designed amechanismwherein the revenue collected from

users on the more desirable route was directly transferred to users

travelling on the less desirable route. In more general networks

with a single O-D pair, Eliasson [13] established the existence of

a tolling mechanism with uniform revenue refunds that reduced

the travel cost for each user while also decreasing the total system

travel time as compared to before the tolling reform. The exten-

sion of this result to general road networks with a multiple O-D

pair travel demand and heterogeneous users was investigated by

Guo and Yang [18]. Our work builds on [18] by characterizing the

influence of CPRR schemes on wealth inequality.

3 PRELIMINARIES
In this section, we introduce basic definitions and concepts on traffic

flow, congestion pricing and revenue refunding (CPRR) schemes,

and efficiency and wealth-inequality metrics through which we

evaluate the quality of CPRR schemes.

3.1 Elements of Traffic Flow
We model the road network as a directed graph G = (V ,E), with
the vertex and edge sets V and E, respectively. Each edge e ∈ E
has a flow-dependent travel-time function te : R≥0 → R≥0, which

maps xe , the traffic flow rate on edge e , to the travel time te (xe ).
As is standard in the literature, we assume that the function te , for
each e ∈ E, is differentiable, convex and monotonically increasing.

Users make trips in the transportation network and belong to

a discrete set of user groups based on their (i) value-of-time, (ii)

income, and (iii) O-D pair. Let G denote the set of all user groups,

and let vд > 0, qд > 0 andwд = (sд , tд) denote the value-of-time,

income and O-D pair represented by an origin sд and destination

tд , respectively, for each user in group д ∈ G. The total travel

demand dд of user group д represents the amount of flow to be

routed on a set of directed paths Pд , which is the set of all simple

paths connecting O-D pairwд .

A path flow pattern f = { fP,д : д ∈ G, P ∈ Pд} specifies

for each user group д, the amount of flow fP,д routed on a path

P ∈ Pд , where fP,д ≥ 0. In particular, a flow f must satisfy the

user demand, i.e.,

∑
P ∈Pд fP,д = dд , for all д ∈ G.We denote the

set of all non-negative flows that satisfy this constraint as Ω.
The corresponding edge flows associated with a path flow f =

{ fP,д : д ∈ G, P ∈ Pд} is represented as (i)

∑
P ∈Pд :e ∈P fP,д = x

д
e ,

for all e ∈ E, and (ii)

∑
д∈G x

д
e = xe , for all e ∈ E, where e ∈ P

denotes whether edge e is in path P , while x
д
e represents the flow of

users in group д on edge e . For conciseness, we denote x = {xe }e ∈E
as the vector of edge flows and xд = {x

д
e }e ∈E denote the vector of

edge flows for user group д.

3.2 Congestion Pricing and Revenue
Refunding Schemes

A congestion pricing and revenue refunding (CPRR) scheme is

defined by a tuple (τ ,r ), where (i) τ = {τe : e ∈ E} is a vector

of edge prices (or tolls), and (ii) r = {rд : д ∈ G} is a vector of

group-specific revenue refunds, where each user in groupд receives
a lump-sum transfer of rд . In other words, everybody pays the same

toll for using an edge independent of their group, and all users with

the same income, value-of-time and O-D pair get the same refund,

irrespective of the actual route. Under the CPRR scheme (τ ,r ) and
a vector of edge flows x , the total value of tolls collected is given

by Π =
∑
e ∈E τexe . In this work, we consider CPPR schemes such
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that the total sum of the revenue refunds equals the total sum of

the revenue collected from the edge tolls, i.e.,

∑
д∈G rдdд = Π. In

addition, we consider revenue refunding schemes that depend only

on the groups G and the total revenue Π induced by a flow f , but
not on the specific paths that the users take under f . We leave the

study of more complex refund schemes for future work.

The total travel cost incurred by the user includes a linear func-

tion of their travel time and tolls, which is a commonly-used mod-

elling approach [8, 14], and a component which reflects the refund

received, which aligns with [18].

Definition 1 (User Travel Cost). Consider a CPRR scheme (τ ,r )
and a flow pattern f with edge flow x , and suppose that a user

belongs to a group д ∈ G. Then, the total cost incurred by a user

when traversing a path P ∈ Pд is

µ
д
P (f ,τ ,r ) =

∑
e ∈P

(
vдte (xe ) + τe

)
− rд . (1)

With slight abuse of notation, we will denote µ
д
P (f ,τ , 0) as a path

cost that does not include refund, and µ
д
P (f , 0, 0) as a path cost that

does not account for tolls or refunds, where 0 is a vector of zeros.
Throughout this paper we will consider in many cases equilibrium
flow patterns which emerge from the collective behavior of self-

interested users. Relevant to the discussion here is that equilibrium

flows equalize the user travel cost of all the users of a given group.

That is, if f is an equilibrium for a CPRR scheme then µ
д
P (f ,τ ,r ) =

µ
д
Q (f ,τ ,r ) for any group д ∈ G and any two paths P ,Q ∈ Pд such

that fP,д , fQ,д > 0. In such a case we drop the path dependence

in the notation and use µд(f ,τ ,r ) to denote the travel cost of any

user within the group д.

3.3 System Efficiency and Wealth Inequality
Metrics

We evaluate the quality of a CPRR scheme using two metrics: (i)

system efficiency, which is measured through the total system cost,

and (ii) wealth inequality.

Total System Cost: We measure the efficiency of the system

through the total system cost, which, for any feasible path flow

f with corresponding edge flows x and group specific edge flows

xд , is the sum of travel times weighted by the users’ values-of-

time [8, 14, 18], i.e.,C(f ) :=
∑
e ∈E

∑
д∈G vдx

д
e te (xe ).We denote by

C∗
:= minf ∈Ω C(f ) the widely studied cost-based system optimum.

Wealth Inequality: We measure the impact of a CPPR scheme on

wealth inequality in the following manner. For a profile of incomes

q = {qд : д ∈ G}, we let a functionW : R
|G |

≥0
→ R≥0 measure

the level of wealth inequality of society. We say that an income

distribution q̃ has a lower level of wealth inequality than q if and

only ifW (q̃) ≤W (q).
In this work, we assume that the wealth-inequality measureW (·)

satisfies the following properties:

(1) Scale Independence: The wealth-inequality measure remains

unchanged after rescaling incomes by the same positive

constant, i.e.,W (λq) =W (q) for any λ > 0.

(2) Regressive (Progressive) Taxes Increase (Decrease) Inequal-

ity: The wealth-inequality measure increases (decreases) if

the incomes of users are scaled by constants that increase

(decrease) as the income increases (decreases).

We refer the readers to the extended version of this paper [22]

for a more detailed description of the above properties. The above

properties are well defined for any wealth inequality distribution

when the incomes of all users are strictly positive, which we assume

in this work. We note that the above properties are fairly natural

[10, 16] and hold for commonly used wealth-inequality measures,

such as the discrete Gini coefficient, which we elucidate in detail in

the online version of our paper [22]. Furthermore, we note that the

above properties jointly imply an important property of the wealth-

inequality measureW , which we elucidate in detail in Appendix A.1.

For the wealth inequality measureW we investigate the influ-

ence of a flow f for a given CPRR scheme (τ ,r ) on the income

distribution of users. To this end, we define the income profile

of users before making their trip as the ex-ante income distribu-
tion q0 > 0 and that after making their trip as the ex-post income
distribution, which is defined as follows.

Definition 2 (Ex-Post Income Distribution). For a given CPRR

scheme (τ ,r ) and an equilibrium flow f , the induced ex-post in-

come distribution of users is denoted by q(f ,τ ,r ) and defined as

follows. For a given group д, we have that qд(f ,τ ,r ) := q0

д −

βµд(f ,τ ,r ), where q0
is the ex-ante income distribution and β is a

small constant representing the relative importance of the conges-

tion game to an individual’s well-being [16].

Since the trip made by users is one among a suite of factors

influencing the income of users, we assume that the constant β
is small enough so that the ex-post income of all users is strictly

positive. The positive income assumption ensures that the above

defined wealth inequality properties (including scale independence)

hold.

To conclude this section, we note that in this paper we consider

time-invariant travel demand that is fixed for all user groups and

assume fractional flows, both of which are standard assumptions in

the traffic routing literature [25], as well as in game theory in the

context of non-atomic congestion games [28]. Furthermore, similar

to much of the prior literature in traffic routing with heterogeneous

groups of users [8, 14, 16], we assume that the different attributes

(i.e., the income, value-of-time and O-D pair) of the user groups are

known, and can be used in the design of CPRR schemes.

4 PARETO IMPROVING CPRR SCHEMES
The social inequity issue surrounding the regressive nature of con-

gestion pricing has been documented in several empirical and the-

oretical works, while also having spurred political opposition to

its implementation in practice. In this section, we show that if the

tolls collected from congestion pricing are refunded to users in an

appropriate way then the wealth inequality effects of congestion

pricing can be reversed. Throughout this section and the next we

assume that user behavior is characterized through the exogenous
equilibriummodel wherein users minimize a linear function of their

travel time and tolls, without considering refunds.

After formally defining exogenous equilibrium below, we de-

velop a CPRR scheme that simultaneously decreases the total system
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cost of all users while not increasing the level of wealth inequal-

ity relative to the untolled outcome, a property which we refer to

as Pareto improving. Moreover, when designing the scheme, we

ensure that it is politically acceptable for implementation by guar-

anteeing that each individual user is at least as well off in terms of

the travel cost µд under the CPRR scheme than that without the

implementation of congestion pricing or refunds.

In the extended version of this paper [22], we also consider the

important special case of travel demand when users travel between

the same O-D pair, and have values-of-time that are in proportion

to their income. In this setting, we establish the existence of a

Pareto improving CPRR scheme that results in an ex-post income

distribution that has a lower wealth inequality as compared to that

of the ex-ante income distribution, which is a stronger result than

the more general case with multiple O-D pairs considered above.

4.1 Exogenous Equilibrium
To capture the strategic behavior of users, we present below the

standard model of Nash equilibrium with heterogeneous users,

which we call exogenous equilibrium. The exogenous setting is

commonly studied in the context of non-atomic congestion games

without [8, 14] or with refunds [18]. As the name suggests, in ex-

ogenous equilibrium revenue refunds are assumed to be exogenous
and do not influence the behavior and route choice of users in the

transportation network. That is, users minimize a linear function

of their travel time and tolls, without considering refunds.

We note that such a model of user behavior can be quite realistic

in certain settings, especially since accounting for refunds when

making route choices may often be too complex and involve quite

sophisticated decision making on the part of users. Furthermore,

for users to reason about how their path choice will influence their

refund, they must know the refunding policy, which may typically

not be known in practice, thereby making the notion of an exoge-

nous equilibrium more appropriate in such settings. The following

definition formalizes the notion of an exogenous equilibrium, which

only depends on the congestion pricing component τ of a CPRR

scheme (τ ,r ).

Definition 3 (Exogenous Equilibrium). For a given congestion-

pricing scheme τ , a path flow pattern f is an exogenous equilibrium

if for each group д ∈ G it holds that fP,д > 0 for some path P ∈ Pд
if and only if

µ
д
P (f ,τ , 0) ≤ µ

д
Q (f ,τ , 0), ∀Q ∈ Pд .

In such a case, we say in short that f is an exogenous τ -equilibrium.

We reiterate that the above notion of an exogenous equilibrium

is the standard Nash equilibrium concept used in non-atomic con-

gestion games. In this work, we refer to this equilibrium concept as

exogenous to explicitly distinguish it from the endogenous setting
when coalitions of users also account for refunds when making

travel decisions (see the extended version of this paper [22] for

more details on the endogenous setting). A key property of any

exogenous τ -equilibrium f is that all users within a given group

д ∈ G incur the same travel cost without refunds, irrespective of

the path on which they travel. Hence, we drop the path dependence

in the notation and denote the user travel cost without refunds for

any user in group д at flow f as µд(f ,τ , 0). Additionally, since the

refund rд is the same for all users, the travel cost with refunds is

denoted as µд(f ,τ ,r ).
Another useful property of exogenous equilibrium is that for

a given congestion-pricing scheme τ , the resulting total system

cost, user travel cost, and ex-post income distribution are invari-

ant under the different τ -equilibria (see Problem (2) and Appen-

dix A.5 for a discussion). That is for any two τ -equilibria f , f ′ it
holds thatC(f ) = C(f ′), µд(f ,τ , 0) = µд(f ′,τ , 0), and q(f ,τ ,r ) =
q(f ′,τ ,r ). Thus, we will use the simplified notation Cτ := C(f ),
µд(τ ,r ) := µд(f ,τ ,r ), and q(τ ,r ) := q(f ,τ ,r ) for some exoge-

nous τ -equilibrium f , when considering the exogenous equilibrium
model. In this context, note that C0 corresponds to the untolled

total system cost.

4.2 User-Favorable Pareto Improving CPRR
Schemes

To ensure that the CPRR schemes we develop are politically ac-

ceptable, we consider schemes that result in equilibrium outcomes

wherein each user is at least as well off as compared to that under

the untolled user equilibrium outcome, a property we refer to as

user-favorable (see Figure 1).

Definition 4 (User-Favorable CPRR Schemes). A CPRR scheme

(τ ,r ) is user-favorable if for any (exogenous) τ -equilibrium the

travel cost of any user group д does not increase with respect to

any untolled 0-equilibrium f 0
, i.e., µд(τ ,r ) ≤ µд(0, 0).

We note that the the above definition and the following result

(Proposition 1) can readily be extended to incorporate the notion

of a user-favorable CPRR scheme relative to any status-quo traffic

equilibrium pattern, which is not necessarily equal to the untolled

case, e.g., the traffic pattern in a city that has already implemented

some form of congestion pricing. Thus, considering the untolled

user equilibrium f 0
in the above definition is without loss of gen-

erality.

We now present the main result of this section. In particular,

we establish that any pricing scheme τ that improves the system

efficiency compared to the untolled case, can be paired with a

revenue refunding scheme r such that the wealth inequality relative

to the ex-post income distribution under the untolled setting is not

increased, i.e., the CPRR scheme (τ ,r ) is Pareto improving (see

Figure 1) and user-favorable. Note that designing CPRR schemes

with a lower wealth inequality and total system cost as compared

to the untolled user equilibrium outcome is desirable since the

CPRR scheme improves upon both the system efficiency and equity

metrics of the status-quo traffic equilibrium pattern.

Proposition 1 (Existence of Pareto ImprovingCPRR Scheme).

Let τ be a congestion-pricing scheme such that Cτ ≤ C0, where C0 is
the untolled total system cost. Then there exists a refund scheme r such
that (τ ,r ) is user-favorable and does not increase wealth inequality,
i.e.,W (q(τ ,r )) ≤W (q(0, 0)). That is, (τ ,r ) is Pareto improving.

For a proof of Proposition 1, see Appendix A.2. Note that Propo-

sition 1 relies on the key observation that an exogenous equilibrium

is completely defined through the road tolls τ , and is thus oblivious
of the refund r .
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Proposition 1 establishes the existence of a user-favorable CPRR

scheme that simultaneously decreases the total system cost and re-

duces the wealth inequality relative to that of the untolled outcome.

We present an important consequence of this result for the setting

when all users travel between the same O-D pair and have values-of-

time that are proportional to their incomes in the extended version

of this paper [22]. In this setting, we establish the existence of a

revenue refunding scheme that decreases the wealth inequality rel-

ative to the ex-ante income distribution, which is a stronger result

than Proposition 1. However, this result does not hold in general for

users travelling between different O-D pairs. In particular, for the

multiple O-D pair setting, we show in Proposition 2 that there are

travel demand instances when no CPRR scheme can reduce income

inequality relative to that of the ex-ante income distribution.

Proposition 2 (Increase in Income Ineqality for Multiple

O-D Pairs). There exists a two O-D pair setting such that for any
user-favorable CPRR scheme (τ ,r ) it holds thatW (q(τ ,r )) ≥W (q0).

For a proof of Proposition 2, see Appendix A.3. Given that there

may be multiple O-D pair instances when it may not be possible

to achieve a lower wealth inequality relative to the ex-ante in-

come distribution, we devise CPRR schemes that reduce the wealth

inequality relative to the ex-post income distribution under the un-

tolled user equilibrium outcome. Note that doing so is reasonable

since we look to design CPRR schemes that improve on the status

quo traffic pattern, which is typically described by the untolled user

equilibrium setting.

5 OPTIMAL CPRR SCHEMES
In this section, we prove the existence of optimal CPRR schemes

that achieve a total system cost and wealth inequality that cannot be

improved by any other user-favorable CPRR scheme. In particular,

we establish that the optimal CPRR schemes are those that induce

exogenous equilibrium flows with the minimum total system cost

while also resulting in ex-post income distributions with the lowest

wealth inequality among all user-favorable CPRR schemes (see

Figure 1).

We first present the main result of this section, which character-

izes the set of optimal CPRR schemes.

Theorem 1 (OptimalCPRR Scheme). There exists a user-favorable
CPRR scheme (τ∗,r∗) such that for any user-favorable CPRR scheme
(τ ,r ) it holds that Cτ ∗ ≤ Cτ andW (q(τ∗,r∗)) ≤W (q(τ ,r )).

The proof of this theorem relies on two intermediate results that

are of independent interest. First, the under any user-favorable

CPRR scheme, each user’s ex-post income is at least that of the user

under the untolled case.

Lemma 1 (Ex-post Income Distribution). Let τ be tolls such
that Cτ ≤ C0. Then, under any set of refunds r such that the CPRR
scheme (τ ,r ) is user-favorable, the ex-post income of any user belong-
ing to group д is qд(τ ,r ) = qд(0, 0) + βcд , where the transfer value
cд is non-negative and satisfies the relation

∑
д∈G cдdд = C0 −Cτ .

For a proof of Lemma 1, see Appendix A.4. The second result

required to prove Theorem 1 relies on the observation that there is

a monotonic relationship between the minimum achievable wealth-

inequality and the total system cost.

Lemma 2 (Monotonicity of Refunds). Suppose that there are
two congestion-pricing schemes τA and τB with total system costs
satisfying CτA ≤ CτB ≤ C0. Then there exists a revenue refund-
ing scheme rA such that (τA,rA) is user-favorable and achieves
a lower wealth inequality measure than any user-favorable CPRR
scheme (τB ,rB ) for any revenue refunds rB , i.e.,W (q(τA,rA)) ≤

W (q(τB ,rB )).

For a proof of Lemma 2, see Appendix A.6. The above result

establishes that a smaller total system cost yields a larger amount

of remaining refund C0 − Cτ after satisfying the user-favorable

condition, which, in turn, results in a greater degree of freedom

in distributing these refunds to achieve an overall lower level of

wealth inequality.

Finally, Theorem 1 follows directly by the monotonicity relation

established in Lemma 2, and prescribes a two-step procedure to find

a optimal CPRR scheme that is also user-favorable. In particular,

choose a congestion pricing scheme τ∗ such that the total travel

cost is minimized, i.e.,Cτ ∗ = C∗
. Next, select the revenue refunding

scheme r∗ to be such that the expressionW (q(τ∗,r∗)) is minimized

and (τ∗,r∗) is user-favorable through an appropriate selection of

transfers cд . Now, let (τ ,r ) be some user-favorable CPRR scheme.

By definition of τ∗, it holds that Cτ ∗ ≤ Cτ . Moreover, Lemma 2

ensures thatW (q(τ∗,r∗)) ≤W (q(τ ,r )) is satisfied.

Significance of Theorem 1. The result of Theorem 1 establishes

that the optimal CPRR scheme simultaneously achieves the high-

est efficiency whilst also reducing wealth inequality to the maxi-

mum degree possible among the class of all user-favourable CPRR

schemes. This finding is counter-intuitive since equity and effi-

ciency are typically at odds but Theorem 1 establishes that no such

tradeoff between system efficiency and wealth inequality exists.

The reason for this is that the remaining refund after satisfying

the user-favourable condition increases as the total system cost

decreases (Lemma 2), thereby giving greater leverage in the design

of the refunding scheme to achieve a lower wealth inequality.

6 DISCUSSION
A core tenet of sustainable transportation entails achieving a bal-

ance between economic, equity and environmental goals [19]. The
results demonstrated in this paper challenge the traditional notion

that these goals are in tension with each other by making progress

towards achieving each of these goals simultaneously. In particular,

our work directly addresses the economic and equity goals through

the development of CPRR schemes that both minimize the total

system cost and reverse the wealth inequality effects of congestion

pricing. Furthermore, the schemes we develop achieve another eco-

nomic goal—all users are left at least as well off under the CPRR

schemes as compared to that prior to any implementation of con-

gestion pricing or refunds. This property suggests that users would

favor this pricing and refunding scheme. Finally, as the environ-

mental impact of a scheme is often proportional to the total travel

time of all users, the total system cost objective, which we seek to

minimize within optimal CPRR schemes (Theorem 1), can be treated

as an imperfect proxy for the total environmental pollution in the

system. Environmental goals can be more directly incorporated

within a CPRR scheme through appropriate congestion pricing



When Efficiency meets Equity in Congestion Pricing and Revenue Refunding Schemes EAAMO ’21, October 5–9, 2021, –, NY, USA

schemes, e.g., aiming to minimize air pollution, while potentially

improving total system cost and wealth inequality (Proposition 1).

Our work demonstrated that if we look at congestion pricing

from the lens of refunding the collected tolls then we can not only

achieve system efficiency but also reduce wealth inequality. As

a result, we view our work as a significant step in shifting the

discussion around congestion pricing from one that has focused

on the inequity impacts of road tolls to one that centers around

how to best distribute the revenues collected to different sections

of society. While refunding toll revenues is not novel, our work

provided a characterization of how such schemes can be designed

to simultaneously achieve system efficiency and equity objectives.

Furthermore, in doing so, we ensured that all users are at least as

well off as compared to before the introduction of the CPRR scheme,

thereby making it publicly acceptable to all users.

We believe that the results of our work pave the way for the de-

sign of sustainable, publicly-acceptable congestion-pricing schemes,

but significant practical challenges remain. For instance, we assume

centralized knowledge of the values-of-time of each user group. In

practice these may not be known, and could confound successful

implementation of an optimal CPRR scheme. Furthermore, we con-

sider CPRR schemes involving direct refunds to users while not

accounting for system designs with cross subsidies across multiple

forms of transport, e.g., subsidies to improve the transit infrastruc-

ture. It is also important to note the degree to which the CPRR

scheme is successful relies on the full implementation of the tolls

and refunds. If policymakers implement the congestion pricing

scheme but fail to deliver refunds, low-income users of the system

will be made worse off, facing higher costs, worse travel times,

or both. Underprivileged residents would have legitimate claims

that the system was not working, undermining public trust in the

system. Thus the onus is on policy makers to manage the entire life

cycle of the CPRR scheme and ensure its successful and sustainable

implementation. The difference between an equitable, optimal con-

gestion pricing scheme and one that disproportionately burdens

the poor depends significantly on how the toll revenue is spent.

7 CONCLUSION AND FUTUREWORK
In this paper, we studied and designed user-favorable congestion

pricing and revenue refunding (CPRR) schemes that mitigate the

regressive wealth inequality effects of congestion pricing. In par-

ticular, we developed CPRR schemes that improved both system

efficiency and wealth inequality, while being favorable for all users,

as compared to the untolled outcome. We further characterized the

set of optimal CPRR schemes.

There are several interesting directions for further research. The

first would be to relax some of the commonly-used assumptions in

transportation research and game theory, to improve the applicabil-

ity to practice. One example is to consider nonlinear user travel cost

functions. In addition, we currently assume time-invariant travel de-

mand and traffic flows, which motivates the possible generalization

to dynamic settings, e.g., through the incorporation of the cell trans-

mission model [11]. We have also assumed that the only decisions

made by users are route choices, whereas in reality there are other

options, such as changing departure time or travel mode. A possible

way to overcome this limitation is by incorporating elastic-demand

models into our traffic-assignment formulations [15, 25].

It would also be interesting to extend these results to the setting

of anonymous revenue refunding schemes that do not rely on any

knowledge of user’s value-of-time. It would also be worthwhile to

investigate a broader class of group specific differential congestion

pricing mechanisms, e.g., path specific prices which may differ

by user group, beyond those involving lump-sum transfers of the

collected revenues to users. Finally, an even more general class of

refunding mechanisms can be explored wherein some portion of

the collected revenues is used to cover operational costs or improve

transportation infrastructure, e.g., cross subsidies to improve public

transit.
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A PROOFS
A.1 Constant Income Transfer Property
In this section, we present the constant income transfer property

and show that it follows directly from the regressive and progressive

tax properties of the wealth inequality measureW .

Constant Income Transfer Property: If the initial income distribu-

tion is q and each user is transferred a non-negative (non-positive)

amount ofmoney λ (−λ) where 0 ≤ λ < minд∈G qд , then thewealth
inequality cannot increase (decrease). That is,W (q + λ1) ≤W (q)
andW (q − λ1) ≥W (q), where 1 is a vector of ones.

We now prove how the above property follows from the regres-

sive and progressive tax properties of the wealth inequality measure

W . In particular, we show that if the initial income distribution is

q and each person is transferred a non-positive amount of money

−λ, where 0 ≤ λ < minд∈G qд , then the wealth inequality cannot

decrease, i.e.,W (q − λ1) ≥W (q).
We note that at the new income distribution q̄ = q − λ1, each

user in group д has the following income:

q̄д = qд − λ = qд

(
1 −

λ

qд

)
.

Note that if qд ≤ qд′ for any two groups д,д
′
, then 1− λ

qд ≤ 1− λ
qд′

.

Thus, by the regressive tax property, we observe thatW (q − λ1) ≥
W (q). We finally note that the claim thatW (q + λ1) ≤ W (q) for
any 0 ≤ λ < minд∈G qд follows by a similar analysis wherein we

use the progressive tax property. This proves our claim that the

wealth inequality measureW satisfies the constant income transfer

property.

A.2 Proof of Proposition 1
We now prove Proposition 1 by leveraging a class of user-favorable

CPRR schemes that were developed recently [18, Theorem 1].

Lemma 3 (Existence of user-favorable CPRR Scheme [18]).

Let τ be a congestion pricing scheme such that Cτ ≤ C0. Then, for
any αд ≥ 0 with

∑
д∈G αд = 1, the CPRR scheme (τ ,r ) with refunds

is given by

rд = µд(τ , 0) − µд(0, 0) +
αд

dд
(C0 −Cτ ),

for each group д, is user-favorable.

The above lemma states that as long as the edge tolls τ reduce

the total system cost there exists a method to refund revenues that

makes every user at least as well off as compared to that under the

untolled case. We now leverage Lemma 3 to prove Proposition 1.

Proof of Proposition 1. For the collected toll revenues, we

construct a special case of the revenue refunding scheme from

Lemma 3. In particular, consider the refunding scheme where αд =
dд∑
д∈G dд

, which gives the refund

rд = µд(τ , 0) − µд(0, 0) +
1∑

д∈G dд
(C0 −Cτ )

to each user in group д. We now show that under this refunding

scheme, the ex-post income distribution q̂ = q(τ ,r ) has a lower
wealth inequality than that of the untolled user equilibrium ex-post

income distribution q̃ = q(0, 0), i.e., we show thatW (q̂) ≤W (q̃).
To see this, we begin by considering the ex-ante income distribu-

tion q0
. Under the untolled user equilibrium, users in group д incur

a travel cost µд(0, 0), and thus the ex-post income distribution of

users in group д is given by q̃д = q0

д − βµд(0, 0), where β is the

scaling factor as in Definition 2. On the other hand, under the CPRR

scheme (τ ,r ), the ex-post income distribution of users in group д is

q̂д = q
0

д − β
(
µд(τ , 0) − rд

)
= q0

д − β

(
µд(0, 0) −

1∑
д∈G dд

(C0 −Cτ )

)
= q̃д + β

1∑
д∈G dд

(C0 −Cτ ),

http://dspace.mit.edu/handle/1721.1/102801
https://arxiv.org/abs/2106.10407
https://arxiv.org/abs/2104.00098


When Efficiency meets Equity in Congestion Pricing and Revenue Refunding Schemes EAAMO ’21, October 5–9, 2021, –, NY, USA

where we used that q̃д = q
0

д − βµд(0, 0) to derive the last equality.

Since the above relation is true for all groups д, we observe that

q̂ = q̃+λ1, where λ = β∑
д∈G dд

(C0−Cτ ) ≥ 0. Finally, the result that

W (q̂) ≤ W (q̃) follows by the constant income transfer property

(Appendix A.1), establishing our claim. □

A.3 Proof of Proposition 2
We show that there exists a two O-D pair setting such that for

any user-favorable CPRR scheme (τ ,r ) it holds thatW (q(τ ,r )) ≥
W (q0).

We begin by formally defining the instance depicted in Figure 2.

Consider a graph with four nodes, v1,v2,v3,v4 and three edges

e1 = (v1,v2), e2 = (v3,v4) and e3 = (v3,v4), where there are two

possible ways to get from v3 to v4. We define the travel time on

edge e1 as t1(x1) =
x1

2
, that on edge e2 as t2(x2) = x2 and that on

edge e3 as t3(x3) = 1. Further consider two user types, one with a

high income qH and value-of-time ωqH that make trips between

O-D pair wH = (v1,v2), and the other with a low income qL and

value-of-time ωqL that make trips between O-D pairwL = (v3,v4).

Let the demand of the high income users be dH = 1 and that of the

low income users be dL = 1. Then at the untolled user equilibrium

outcome it follows that all high income users traverse their only

edge e1, while all the low income users traverse the edge e2. At this

equilibrium flow, the cost to the high income users is ωqH
1

2
, since

the travel time of the edge e1 is
1

2
, and that to the low income users

is ωqL , since the travel time on edge e2 is one.

Next, we note that under any CPRR scheme (τ , r) users in the

high income group will continue to use edge e1 since this is the

only available edge on which they can travel. Thus, for this scheme

to be user-favorable it must be that any tolls collected from the

high income users is directly refunded back within the groups.

To see this, if there were tolls collected from high-income users

that were given to low income users then some high income users

would incur strictly higher costs than at the untolled 0-equilibrium
outcome. We similarly observe that all collected refunds from the

low income groups must be completely refunded to users within the

low income group to ensure that the CPRR scheme is user-favorable.

Note that the above argument stems from the fact that the travel

paths of the two user groups are completely disjoint, and so any

CPRR scheme (τ , r) must refund all the collected revenues from

each user group directly back to that user group to ensure that the

scheme is user-favorable.

Thus, we have for any user-favorable CPRR scheme (τ , r) that
all the users incur the same costs as that under the 0-equilibrium
outcome. Now, under the untolled user equilibrium, we observe that

the ex-post income of the high income group is qH = qH −β
ωqH

2
=

qH (1 − β ω
2
) and the ex-post income of the low income group is

qL = qL − βωqL = qL(1 − βω). The above analysis implies that

the untolled user equilibrium outcome results in a regressive tax,

i.e., lower income users are charged a greater fraction of their

incomes than higher income users. Since the functionW satisfies

the property that regressive taxes increase inequality, we have that

the wealth inequality of the ex-post income distribution is greater

than that of the ex-ante income distribution. □

Figure 2: A two O-D pair and two user group instance for
which the wealth inequality of the ex-post income distribu-
tion under any congestion pricing and revenue refunding
(CPRR) scheme is at least the wealth inequality of the ex-
ante income distribution. In particular, the first user group,
i.e., user group H , has an income level of qH , value-of-time
of ωqH for some ω > 0, demand dH = 1 and O-D pair (v1,v2).
Here the origin and destination vertices v1 and v2, respec-
tively, are connected by a single edge e1 with a travel time of
t1(x1) =

x1

2
. The second user group, i.e., user group L, has an

income level ofqL , value-of-time ofωqL for the sameω > 0 as
for user group H , demand dL = 1 and O-D pair (v3,v4). Here
the origin and destination vertices v3 and v4, respectively,
are connected by a two edges e2 and e3 with a travel time
of t2(x2) = x2 and t3(x3) = 1. Under these defined attributes
for the different user groups, the user groupH with a higher
income and value-of-time incurs a strictly lower cost as a
proportion of their income as compared to user group L, in-
dicating the regressive nature of any valid CPRR scheme.

A.4 Proof of Lemma 1
Denote the ex-post income of group д as q̂д = qд(τ ,r ). We now

prove the ex-post income relation using the definition of a user-

favorable CPRR scheme. In particular, for any user-favorable CPRR

scheme (τ ,r ) the user travel cost does not increase from the untolled

case, i.e., µд(τ ,r ) ≤ µд(0, 0). As it holds that µд(τ ,r ) = µд(τ , 0)−rд ,
we observe that for some cд ≥ 0 the following relation must hold

for each user in group д: µд(τ , 0) − rд + cд = µд(0, 0). Then, for an
ex-ante income distribution q0

, the ex-post income of each user

belonging to group д is given by

q̂д = q
0

д − β
(
µд(τ , 0) − rд

)
= q0

д − βµд(0, 0) + βcд = qд(0, 0) + βcд ,

where the second equality follows since µд(τ , 0)−rд = µд(0, 0)−cд
and the last equality follows from the observation that the ex-post

income of users in group д for the untolled setting is given by

qд(0, 0) = q0

д − βµд(0, 0).
Next, to show that

∑
д∈G cдdд = C0 − Cτ we characterize the

quantities C0 and Cτ . In particular, observe that by definition C0 =
C(f 0) and Cτ = C(f ), where f 0

is the untolled 0-equilibrium and

f is an exogenous τ -equilibrium. Now, note that both flows f 0
and

f can be expressed in closed form. In particular, for a given pricing

scheme τ ′ the exogenous τ ′-equilibrium h(τ ′) can be written as

h(τ ′) = arg min

h′∈Ω

∑
e ∈E

∫ x (h′)e

0

te (ω)dω +
∑
e ∈E

∑
д∈G

1

vд
x(h′)

д
eτe , (2)
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where x(f ′) denotes the edge representation of a path flow f ′.
We note that this program corresponds to the multi-class user-
equilibrium optimization problem [37].

Given this representation of the flow h(τ ′), we derive the fol-
lowing relation that relates the total system costCτ ′ to the amount

of collected revenues, by analyzing the KKT conditions of this

minimization problem. In particular, it holds that

Cτ ′ =
∑
д∈G

µд(τ ′, 0)dд −
∑
e ∈E

τ ′ex(h(τ
′))e . (3)

Note that the edge flow x(h(τ ′)) is unique by the strict convexity

of the travel-time function. We defer the proof of Equation (3) to

Appendix A.5.

We now leverage Equation (3) to obtainCτ =
∑
д∈G µд(τ , 0)dд −∑

e ∈E τex(f )e , where x(f ) = x(h(τ )). Furthermore, from Equa-

tion (3) for the untolled setting, we obtain thatC0 =
∑
д∈G µд(0, 0)dд .

Finally, using these two relations and leveraging the fact that

cд = µд(0, 0) − µд(τ , 0) + rд we get∑
д∈G

cдdд =
∑
д∈G

(µд(0, 0) − µд(τ , 0) + rд)dд ,

=
∑
д∈G

µд(0, 0)dд −
∑
д∈G

µд(τ , 0)dд +
∑
д∈G

rдdд ,

= C0 −
∑
д∈G

µд(τ , 0)dд +
∑
e ∈E

τex(f )e ,

= C0 −Cτ .

Here we used the properties C0 =
∑
д∈G µд(0, 0),

∑
д∈G rдdд =∑

e ∈E τex(f )e , and Cτ =
∑
д∈G µд(τ , 0)dд −

∑
e ∈E τex(f )e . This

proves our claim. □

A.5 Proof of Equation 3
In this section, we use the first order necessary and sufficient KKT

conditions of the well studied multi-class user equilibrium opti-

mization problem [37]

f = arg min

f ′∈Ω

∑
e ∈E

∫ x ′
e

0

te (ω)dω +
∑
e ∈E

∑
д∈G

1

vд
x ′

д
eτe ,

to prove that the following holds:

Cτ =
∑
д∈G

µд(τ , 0)dд −
∑
e ∈E

τexe . (4)

Here τ is congestion-pricing scheme and f is an exogenous τ -
equilibrium with edge flow representation x . Note that the edge
flows x are unique by the strict convexity of the travel time function.

The following exogenous-equilibrium conditions follow directly

from the KKT conditions of the above optimization problem:∑
e ∈P

(
vдte (xe ) + τe

)
= µд(τ , 0), if fP,д > 0, P ∈ Pд ,д ∈ G,∑

e ∈P

(
vдte (xe ) + τe

)
≥ µд(τ , 0), if fP,д = 0, P ∈ Pд ,д ∈ G.

From the above equilibrium conditions and the fact that the sum of

the path flows for any group adds up to dд , i.e.,
∑
P ∈Pд fP,д = dд ,

we obtain that:∑
д∈G

µд(τ , 0)dд =
∑
д∈G

∑
P ∈Pд

fP,дµ
д(τ , 0)

=
∑
д∈G

∑
P ∈Pд

fP,д
∑
e ∈E

(
vдte (xe ) + τe

)
δe,P

=
∑
e ∈E

∑
д∈G

∑
P ∈Pд

fP,д
(
vдte (xe ) + τe

)
δe,P ,

=
∑
e ∈E

∑
д∈G

∑
P ∈Pд :e ∈P

fP,д
(
vдte (xe ) + τe

)
=

∑
e ∈E

∑
д∈G

(
vдte (xe ) + τe

) ∑
P ∈Pд :e ∈P

fP,д ,

=
∑
e ∈E

∑
д∈G

x
д
e

(
vдte (xe ) + τe

)
=

∑
e ∈E

∑
д∈G

x
д
evдte (xe ) +

∑
e ∈E

xeτe

where δe,P = 1 if edge e ∈ P and otherwise it is 0. Note that the

above analysis implies Equation (3) since

Cτ =
∑
e ∈E

∑
д∈G

x
д
evдte (xe ) =

∑
д∈G

µд(τ , 0)dд −
∑
e ∈E

xeτe .

This proves our claim.

Remark 1. We note that since the total tolls collected and user

travel costs µд(τ , 0) are unique at any equilibrium flow [18], the

total travel cost Cτ is also unique for any equilibrium induced by

the edge tolls τ . Furthermore, the ex-post income of each user group

д is also the same under any equilibrium induced by the edge tolls

τ since the user travel cost µд(τ , 0) is unique at any equilibrium

flow [18].

A.6 Proof of Lemma 2
We prove this claim by constructing for each revenue refunding

schemerB under the tolling schemeτB , a revenue refunding scheme

rA under the tolling scheme τA that achieves a lower wealth in-

equality measure. To this end, we first introduce some notation. Let

cAд and cBд be non-negative transfers for each groupд as in Lemma 1,

where

∑
д∈G cAд dд = C0 −CτA and

∑
д∈G cBд dд = C0 −CτB must

hold for the feasibility of the scheme.

Then, by Lemma 1 we have that the ex-post income of users

in group д can be expressed as: qд(τA,rA) = qд(0, 0) + βcAд and

qд(τB ,rB ) = qд(0, 0)+ βcBд . Let cAд = cBд +
1∑

д∈G dд
(CτB −CτA ). We

now show that the refunding rA is feasible.

∑
д∈G

cAд dд =
∑
д∈G

(
cBд dд +

dд∑
д∈G dд

(
CτB −CτA

))
=

∑
д∈G

cBд dд +CτB −CτA

= C0 −CτB +CτB −CτA = C0 −CτA ,

Here we leveraged the fact that

∑
д∈G cBд dд = C0 −CτB .

Under the above defined non-negative transfer cAд , the ex-post

income distribution under the CPRR scheme (τA,rA) is the same
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as the ex-post income distribution under the CPRR scheme (τB ,rB )
plus a constant non-negative transfer, which is equal for all users.

That is, we have q(τA,rA) = q(τB ,rB ) + λ1 for λ =
β∑

д∈G dд
(CτB −

CτA ) ≥ 0. Finally, by the constant income transfer property (Ap-

pendix A.1) it follows thatW (q(τA,rA)) ≤W (q(τB ,rB )). □
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