

MIT Open Access Articles

This is a supplemental file for an item in DSpace@MIT

Item title: Impacts of a near-future supersonic aircraft fleet on atmospheric composition and climate Link back to the item: https://hdl.handle.net/1721.1/145279

Massachusetts Institute of Technology

Environmental Science: Atmospheres

View Article Online

CORRECTION

Check for updates

Cite this: Environ. Sci.: Atmos., 2022, 2, 547

Correction: Impacts of a near-future supersonic aircraft fleet on atmospheric composition and climate

Sebastian D. Eastham,^{*ab} Thibaud Fritz,^a Inés Sanz-Morère,^a Prakash Prashanth,^a Florian Allroggen,^{ab} Ronald G. Prinn,^{bc} Raymond L. Speth^{ab} and Steven R. H. Barrett^{ab}

DOI: 10.1039/d2ea90009b

rsc.li/esatmospheres

Correction for 'Impacts of a near-future supersonic aircraft fleet on atmospheric composition and climate' by Sebastian D. Eastham *et al.*, *Environ. Sci.: Atmos.*, 2022, https://doi.org/10.1039/D1EA00081K.

The authors regret that the units for NO_x in Table 1 were shown incorrectly in the original article. The corrected version of Table 1 is as shown below

Table 1Average emissions indices and key information for each fleet. All units are g per kg of fuel burn. Emissions of NO_x are given on an NO₂mass basis. Emissions of VOCs are given on a CH₄ mass basis. Sulfur emissions are split between SO₂ and H₂SO₄ as described in the main text.Subsonic aircraft BC emissions are calculated for each flight using the FOX method.³⁴ * indicates that a single fleet-wide emissions index is used during all flight phases

	Subsonic	SST 1.6	SST 2.2
NO _x	15	8.8	19
CO	8.3	6.3	15
VOCs	1.0	1.6	10
BC	0.082	0.030*	0.030*
OC	0.020	0.030*	0.030*
Sulfur	0.6*	0.6*	0.6*
H_2SO_4	0.036*	0.036*	0.036*
H ₂ O	1231*	1231*	1231*
Fuel (kg) per seat km	0.023	0.12	0.20
Total annual fuel burn (Tg)	426	19.3	14.9
Total annual NO _x emitted (Tg)	6.5	0.17	0.28
Cruise altitude (km)	9-12	15–17	18-20
Cruise Mach no.	<1	1.6	2.2

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^bJoint Program for the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

^cDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, USA

[&]quot;Laboratory for Aviation and the Environment, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. E-mail: seastham@mit.edu