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ABSTRACT

This thesis addresses the problem when individual users each have access to
only a subset of all frequency channels in an optical communication network. The
channel scheduling problem refers to the problem of optimally assigning calls to
channels when calls arrive or when channels become available. Both loss networks,
where no queueing is allowed, and hold networks, where calls are held in queues,
are considered in this thesis. The objective is to minimize blocking probability in
loss networks and average queueing delay in hold networks.

A Markovian model is adopted and a number of theoretical results are obtained.
For loss networks, we have proven that even under very general assumptions, the
optimal scheduling policy must be non-wasting, i.e., not rejecting any unblocked
calls. For hold networks, a similar conjecture that no unblocked call should be
held in queue is shown to be not generally true. Using sample path comparisons,
we have proven the optimality of non-invasive hunting, which means the use of
unshared channel first, in any loss or hold networks. For all hold networks, we have
proven that no call should be held in queue if it can be assigned to an unshared
channel. For what we call the W-hold network, we have also proven the optimality
of the select from longer queue rule. Some of these results should have implications
in the area of controlled queueing theory.

For loss networks, we have formulated the scheduling problem as a Markov deci-
sion problem and Howard’s policy iteration method is implemented to solve for the
optimal policy for any given access structure. In general, optimal policies are found
to be traffic dependent and few general statements can be made. We have derived,
analytically or numerically, and compared the performances of some representative
loss networks. Results indicate that larger fractional reduction in blocking proba-
bility can be obtained by good access structures when traffic is low. Interestingly,



results indicate that optimal performance is achieved by access structures that are
in some sense asymmetric. -

By a simulation program we have also compared the optimal and suboptimal
queueing delays in a W-hold network with that in an M/M/2 queue. The fractional
reduction in queueing delay is relativély constant at all offered traffic and therefore
more significant when traffic is high.
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Title: Professor of Electrical Engineering
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Chapter 1

Introduction

As a communication medium, singlemode fiber can offer a transmission bandwidth
of 1012H z or more. How this enormous bandwidth can be utilized in future data
networks is the subject of a large amount of research. As speed of electronics still lags
substantially behind that of fiber bandwidth, some issues are becoming apparent.
One of which is the fact that the operation region of individual users shall most
likely remain within electronic speed which is limited to a few hundred megabits
per second or at most a few gigabits per second. In a very wideband network,
therefore, it is highly likely that some form of concurrency, frequency concurrency
in particular, would be employed to extend network bandwidth above the electronic

speed limit.

10



CHAPTER 1. INTRODUCTION : 11

1.1 Frequency Concurrency in Optical Communication Net-

works

We believe that there are at least two basic reasons for employing frequency con-
currency in future wideband optical communication networks. First, as we have
already mentioned, it is the only way to extend the data rate on a piece of fiber be-
yond the electronic speed limit. Second, unlike time multipexing, users do not have
to operate at increased bit rate which is higher than what is needed for their own
data transmission. High spieed interface electronics, even if technologically feasible,

may not be cost effective.

In optical communication at least two forms of frequency concurrency are of

interest. They are:

1. Wavelength Division Multiplezing (WDM) - WDM systems, which can be im-
plemented with today’s technology, provides immediate motivations for re-
search on multiple channel networks. Employing light sources of fixed but dif-
ferent wavelengths, and relying on frequency selective filters or grating struc-
tures for channel discrimination, the frequency separation between channels
are relatively large[26,37,40]. But as the transmission window of optical fiber
is fairly wide, WDM systems with up to ten wavelength channels are already

commercially available.

2. Optical Frequency Division Multiplezing (OFDM) - the feasibility of OFDM

may eventually depend on the success of tunable, stable, low linewidth light
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sources and coherent detection. One can also envision the use of OFDM to-
gether with WDM to allow thousands of concurrent frequency channels on a

piece of optical fiber.

Another form of frequency concurrency, Subcarrier Frequency Division Multi-
plezing (SFDM), has also been considered. SFDM multiplexes data on different

subcarrier frequencies and is probably not useful in terms of extending network

bandwidth.

1.2 Limited User Access Capability

Let us consider how users are conventionally connected to a network. In a telephone
network, for instance, each user (a telephone) is connected to a switching center
through two dedicated wires (or two ‘pairs of wires), one for transmission and one
for reception. All switchings are done internally and not by the peripheral users.
There is also no need for signal filtering or selection at the peripherals. In a local
area netWork, however, all users are connected to a common transmission medium.
Switching is normally not an issue as data are not “localized” and each data unit
reaches all users in the network. On the other hand, filtering must be done by each
user to extract only the data units in the network that are intended for himself.
This filtering is mostly done dynamically, that is, each unit of data transmission
is to be examined individually. Therefore, users are required to have processing

capacity that can handle all the concurrent traffic in the network.
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" The focus of our research is on metropolitan area networks where the required
bandwidth is presumed to be much higher than that of local area nethrks. In a fu-
ture-wideband optical network, while network bandwidth can be increased by having
multiple frequency channels, the mismatch between the total network bandwidth
and the network interface bandwidth will present constraints on network designs.
The issue is that limited by the tunable range of lasers and fr»equer'lcy filters, or by
cost and practicality, a network interface may no longer be able to tune in to all
the channels in the network. Even if transmitters and receivers with wide tunable
range become available, the processing bandwidth of network interfaces may still be
limited to a small fraction of the total network bandwidth, so that data extraction
may become impossible unless some control mechanisms, such as call setups, are
employed to ensure that receivers, in particular, are always tuned to the appropriate

channels for data reception.

With these considerations in mind, efforts have been made to come up with
network designs that can make use of the large fiber bandwidth efficiently while
allowing individual nodes to have only limited access capability. Several design

approaches have been proposed:

1. Direct connectivity with no switch - We can guarantee logical connectivity
between any two nodes by schemes such as one proposed by Marhic; Birk and
Tobagi[23]. In their proposed network, as shown in Figure 1.1, each user can
transmit on v/M channels and receive on a different set of v/M channels, where
M is the total number of channels. Thus the bandwidth of user interfaces only

has to be v M while the total network bandwidth is M.
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Figure 1.1: Direct Connectivity Network
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2. Distributed Switching - If we view each frequency channel as a subnetwork
we can provide gateways to relay data from one channel to another, just as
gateways do for inter-connecting local area subnetworks. Multiple relays may
be necessary and the processing of data at each relay will add to the total delay.
Acampora has proposed a so-called perfect shuffle network(2], which is shown
in Figure 1.2 for the case where each node can transmit on two channels and
receive on two channels. For the general case where each node can transmit on
n channels and receive on n channels, the perfect shuffie network has kn* nodes
arranged in such a way that the maximum number of hops it will take from
one node to reach another is k. If only one transmitter is allowed to transmit

on each channel, the total number of channels is M = nkn*.

3. Centralized switching - In this scheme, all transmitters transmit to the central
node which switches data to channels on which respective receivers are listen-
ing. Thus for centralized switching it always takes two hops for data to reach
the destination. For a very wideband network the central switch must be able
to handle extremely high data rate. While efforts are being made to develop
all photonic systems, a photonic frequency switch may remain impossible, al-
though there should be no need of becoming overly obsessed with the idea of

preserving the photonic nature of the signals throughout the network.

When individual nodes have limited channel access capability the connectivity
between a transmitter and a receiver, which is defined as the number of common

channels that both the transmitter and the receiver can access, will invariably be
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smaller than M, which is the total number of channels. For example, in the direct
connectivity network shown in Figure 1.1, the connectivity between all transmitter

receiver pairs is one. Another simple illustration of the limited connectivity problem
is the subscriber loop scenario. In the subscriber loop scenario, we are focusing on a
part of the network instead of the entire network. Addressing each part of a future
metropolitan area network individually may very well be a justifiable approach.
Here we are thinking of a local distribution network where one single piece of optical
fiber with multiple frequency channels connects a central distribution headend with
a large number of local users which are receivers only. We can also imagine the
use of a similar network that is called the concentrator network[42] for local access
where transmitters talk to a headend that listens on all channels. In the distribution
network the receivers are limited in terms of the number of frequency channels that
they can access. As shown in Figure 1.3, each receiver has access on, say, only two
channels out of the large pool of frequency channels on the fiber. In a distribution
network or a concentrator network where either the transmitter end or the receiver
end has full channel access capability, the connectivity structure can be most easily
seen. In the example shown in Figure 1.3, a pafticular “access structure” is drawn.
That is, each receiver can access two adjacent frequency channels and each channel
is shared by two receivers. The sharing of channels by different users that have
different sets of accessible channels is the basis of this thesis research. One can
have drawn the distribution network in such a way that the receivers listen on non-
overlapping sets of channels. In which case the scheduling problem that we are to

investigate will not exist.
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1.3 The Channel Scheduling Problem

To address all the issues involved in a‘future optical communication network in one
thesis is impossible. Recognizing the association of the cost of transmitters and
receivers with channel access capability, Soung Liew has investiga.ted the capacity
assignment problem in non-switching multichannel networks|22]. His problem is
to find the lowest cost éolution which meets certain traffic requirements for each
node pair. The cost that he is concerned with is assumed to be a function of the
total number of channels, the total number of transmitters, and the total number
of receivers (each of his transmitter and receiver can access only one channel). The
basic relationship between the three parameters is that in a non-switching network,
when receiver access capability is small, transmitter access capability has to be
large and the number of channels should be kept small to the degree that it does
not require splitting up traffic requirements of many transmitter-receiver pairs into
smaller fractions and allocating them to multiple channels. His constraints are
static in the sense that as long as the capacity allocated to each node pair is above
t‘he traffic requirement between the pair, and the total traffic in each channel is
below unity, the solution is acceptable. The random nature of traffic is ignored
and performance measures such as blocking probability or queueing delay are not

considered.

In this thesis a different view is taken. We take into consideration the random
nature of traffic and regard blocking probability or queueing delay as important

measures of network performance. In addition to ensuring that users are logically
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connected, the connectivity between users, that is, the number of alternative chan-
nels that transmitter receiver pairs can communicate on, becomes an important
parameter as it will greatly affect our performance measures. One ﬁay suggest
that as bandwidth is plentiful, why should network congestion be taken as an im-
portant issue? We believe that low channel utilization to the extent that congestion
issues can be completely ignored still remains quite unlikely. Although bandwidth
on an optical fiber is plentiful, the switching and interface complexities involved
in making use of the bandwidth is costly. Therefore, unless revolutionary design

concepts are achieved, the bandwidth cannot be made use of for free.

The model we use, as explained in Chapter 2, is to treat all traffic as single
hop calls which can be transmitted over different sets of channels. Thus calls are
categorized into different classes according to the set of channels on which they can
be transmitted. A class of call may represent the traffic between all transmitter
and receiver pairs that have the same set of common channels. Or in the case of
the Vdistribution network, a class of call will represent all the traffic intended for
~ a particular receiver. The focus of this thesis is to investigate how channel usage
should be scheduled in such networks and how performance would vary with the

choice of the scheduling method and with the connectivity between nodes.

Given an “access structure”, the question that naturally arises is as follows: As-
sume that we always know the state of the network, which may have to be described
by the set of busy channels and the number of waiting calls to be transmitted in each
class, how should transmissions on channels be scheduled? That is, which channel

should we use to transmit a particular call and which call should we transmit first?
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We can see that the answer to the above question depends on the particular access
structure we have. Therefore, the next question we naturally ask is how should
the access structure be designed to start with? More importantly, we would like to
address the issue of how much performance imp;ovement can in fact be achieved
and how much additional complexity will be introduced, as compared to the simple

access structure where there is no sharing of channel among classes.

Both “loss networks” and “hold networks” are considered in this thesis. In
loss networks there is no queueing and a call that is not assigned to a channel
is rejected and will never return. In hold networks a call that is not assigned to a
channel immediately will wait in a queue until it is assigned. The channel scheduling
problem for loss networks is always simpler and is where more results are obtained.
The channel scheduling problem for loss network is later found out to be identical
to the limited availability problem addressed in telephony{32]. Most previous works
in this area are very old and the focus is mostly on so-called “grading” structures
with large number of channels. In this thesis, however, the focus is on simple access
structures with small number of channels. It is conceivable that in the near future,
the number of channels in a metropolitan area network will most likely be not very
large. Furthermore, even when the number of channels is in fact very large, they can
always be divided into smaller groups and the results obtained for networks with
small number of channels may still be applicable. Some of the theoretical results
obtained, though intuitively obvious in some cases, appear to be original and have

implications in the controlled queueing area.
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1.4 Organization of Thesis

The organization of this thesis is as follows: A more precise model and definition
of terms will be given in Chapter 2. The first theoretical result is presented in
Chapter 3. That is, the proof of the so-called non-wasting property of any optimal
scheduling policy for any loss networks. For loss networks, the non-wasting property
means that no unblocked call should ever be rejected. We shall also show that this
result can be extended to the very general case when service times and arrivals are
independent but not memoryless. For hold networks, where a non-wasting policy
means one in which no unblocked call is ever held in queue, we shall show that such

a policy is not necessarily optimal.

We then in Chapter 4 outline the formulation of the loss network channel schedul-
ing problem as a Markov decision problem. Results in Chapter 3 imply that we only
have to look for an optimal solution among the set of non-wasting policies. Some
numerical results are presented and the optimal channel scheduling policy is shown
to be not robust in the sense that it may change when the total traffic density °

changes, even when the access structure remains the same.

In Chapter 5 more theoretical results are presented. What we call non-invasive
hunting in this thesis refers to the intuitively sensable rule of always using an un-
shared channel before using a shared channel. Indeed we shall prove that non-
_invasive hunting fully describes and is the optimal scheduling policy for all simple
sharing loss networks. We shall also prove that non-invasive hunting must be obeyed

in all optimal policies for loss networks. Similar results are obtained for non-invasive
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hunting in hold networks. In addition, we shall also prove that the optimal policy
in a so-called W-hold network must obey the unshared channel non-wasting rule
and the select from longer queue rule. These two rules respectively means that
no call should ever be held in queue if it can be assigned to an unshared channel
immediately and that when the shared channel becomes available, the next call to
~ be transmitted on the shared channel should be from the longer queue, if one is to

be transmitted immediately.

In Chapter 6 and 7 we focus on what we call “uniform—accessibility” networks,
or networks in which the access capability, or accessibility, of all classes of calls is
the same. The idea is to view the accessibility as a constraint, and try to find out
what is the optimal access structure such that when optimal scheduling is used, the
minimum blocking probability will be achieved. First, in Chapter 6 the ideal grading
access structure is discussed. It is studied on the ground that it is analyzable. We
have derived an upper and lower bound on its blocking probability, which is also
compared with that of no-sharing networks. The intention is to give us some idea
of at least how much reduction in blocking probability is .possible. In Chapter 7,
through the study of the simplest case when the number of channels is 3 and the
accessibility is 2, we reach the interesting and somewhat counter-intuitive conclusion

that optimal performance is achieved by some asymmetric access structures.

in Chapter 8, with a simulation program, we shall compare the queueing delay
that can be achieved by the W-hold network with the use of optimal and sub-optimal

non-wasting scheduling rules, with that of a no-sharing network.



CHAPTER 1. INTRODUCTION 24

Finally, results in this work will be summarized in Chapter 9 and their implica-

tions to network design will be briefly discussed.



Chapter 2

Problem Model

2.1 Basic Network Model

The basic model of our network is as follows. The communication network that
we refer to in this thesis consists of M channels that are identical in all their
characteristics. Data transmissions in the network are calls whose durations are
independently and exponentially distributed with mean normalized to unity. As
different transmitter and receiver pairs have different sets of common channels on
which calls can be sent, we categorize calls into classes according to the set of
channels on which they can be transmitted. The total number of classes will be
denoted by K. The set of channels on which a class k call can be transmitted will
be called the accessible group of class k calls, or AGx. The number of channels in
AG), will be called the accessibility of class k and will be denoted by |AG,|. In most

of our work we shall assume that the accessibilities of all classes are the same and

25
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are equal to N, which can be viewed as the bandwidth of network interfaces or
the connectivity between transmitter and receiver pairs. As the accessible groups
of different classes of calls are distinct by definition, with the assumption that all
accessible groups are of size N;, the maximum possible number of classes would be

C(M, Ny), where C(M, N;) represents M choose NN, or W—_’]‘v{m We assume that

the arrival of each class of calls is independent of each others and is Poisson of rate
), for class k. Thus the total arrival rate, or the total traffic density of the network,

will be
A=D N
k

For a given A, the topology or access structure of the network will be fully described .
by specifying all the accessible groups (i.e., AGy for k = 1,2,..., K) and the traffic

splitting coefficients, p, among all classes, where
pr = Ac/A
The network parameters are summarized as follows:

e Number of channels in network = M.

Total number of classes of calls = K ,>ea.ch class k having a distinct accessible

group of channels, represented by the set AG;.

Total offered tfafﬁc = A.

Offered traffic to class k = Az = pxA.

Call arrivals are assumed to be Poisson and call durations are assumed to be
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independently and exponentially distributed with mean equal to unity for all

classes.

2.2 Loss Networks and Hold Networks

In a loss network we assume that incoming calls that are not assigned to some
idle channel for transmission upon arrival are rejected from the network and will
never return. In a hold network we assume that calls that are not assigned to
channels immediately upon arrival are held in queues until they are assigned. In
addition, we shall assume that service is nonpreemptive (i.e., established calls cannot
be interrupted or relocated to other channels). With the above assumptions our
system becomes a controlled Markov Process and the state of the network can be
fully described by ny : k = 1,2,3,... K and I, where n; is the number of calls waiting
in class k queue, or queue k, and where I is the set of idle channels. With infinite
waiting rooms in queues the total number of states is infinite. The queueing model
that we have described above is shown in Figure 2.1. An arrow connecting a class
k queue with the mth channel means that channel m is within the accessible group

of class k.

When a loss network is considered there will be no queue and the state can be
fully described by the set of idle channels I. With M channels, the total number of

states will be 2M.

For a loss network where there is no queueing our objective will be to minimize
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A=~ : ~) Channel 1

Channel 2

Channel m

Channel M

K Separate Queues of
K Classes of Calls M Frequency Channels

Figure 2.1: A Hold Network with Arbitrary Access Structure
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overall probability of loss or blocking probability, P;, which is

N
By = lim N.(T)

(2.1)

where N, (T) is the total number of rejected calls up to time T and N4(T) the total

number of arrivals up to time T'.

When the network is in state S such that I is the set of idle channels and there is
a class k call arrival, we must either select a channel from AG; N I to transmit the
call or have the call rejected. This is called the channel selection problem. AG, N1

is simply the set of channels that are in the accessible group of class k and are idle.

For a hold network the objective will be to minimize expected queueing delay.
Besides the channel selection problem, for the hold network there is also the call
selection problem, which is to choose among queues of different classes of waiting
calls the next to be transmitted when a channel accessible to these classes becomes

idle when a call previously in service departs.

2.3 Examples: . The W-loss Network and the W-hold Net-

work

We shall further illustrate the channel scheduling problem by the W-loss network

and the W-hold network examples shown in Figure 2.2 and Figure 2.3 respectively.
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Channel 1
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Figure 2.2: The W-loss Network
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Figure 2.3: The W-hold Network
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Figure 2.4: Corresponding Markov Chain for the W-hold Network
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In this simplest non-trivial network that one can think of, there are three channels
and two classes. Accessible group 1 consists of channels 1 5.nd 2, and accessible group |
2 consists of channels 2 and 3. Therefore channel 1 and 3 are unshared channels
and channel 2 is a shared channel. Arrival rates of both classes are assumed to be

equal. That is:

e M=3
e K=2
o AG, = (1,2)
o AG; = (2,3)

With the assumption that A\; = A; = ), the corresponding Markov chain of the
W-hold network is shown in Figure 2.4. With infinite waiting room, the state space
is infinite, and a state S = (bybbs; niny) represents the state where there are n,
waiting calls in queue 1 and n; waiting calls in queue 2, while b,, is 0 if the mth
channel is idle and is 1 if the mth channel is busy. For the W-loss network, there is
no queue and the Markov chain is truncated along the dashed line. The number of
states is given by N = 23 = 8 and a state S = (b;b;b3) will represent the state such

that channel m is busy if b, = 1.

For example, when both channel 1 and channel 2 are idle and there is an arrival
from class 1, decision has to made whether the assignment should be made to

channel 1 or to channel 2. This is the channel selection problem. When there is a
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call departure from channel 2 while there are waiting calls in both class 1 queue and
class 2 queue, decision has to be made whether the next call assigned to channel 2
should be from queue 1 or from queue 2, or if any should be assigned immediately
at all. This is the call selection problem. It is therefore apparent that with this
Markovian formulation, decisions have to be made only when events occur. We will

_introduce the notation that an event £ is represented by:

e A, if it is an arrival from class k,

e D, if it is a departure from channel m.

2.4 Representation of a Scheduling Policy as a Decision Ta-

ble

Any channel scheduling policy R can thus be viewed as a decision table such that

R =[r(s,6)]

where the entry (i, ) = j, associated with state ¢ and event &, specifies the policy
by specifying the next state j that the network should end up in when it is initially
at state 7 and an event £ occurs. Alternatively, we can specify a scheduling policy
by a channel selection table and a call selection table. The channel selection table

_ is represented by the matrix F such that

F=[f(i,k) k=1,2,....K
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with the (z,k)-th element f(¢,k) = m specifying the channel m to which assignment
should be made when the initial state is + and there is an arrival from class k. The
channel selection table alone is sufficient for loss networks. The call selection table

is represented by the matrix G, such that
G=[¢(t,m)] m=12,...,.M

with the (¢,m)-th element g(f,m) = k specifying the class of the waiting call to be
transmitted next when the initial state is ¢ and there is a departure from channel m.
In addition, f(7, k) = 0 and g(¢,m) = O will respectively mean that no assignment is
made when network is in state ¢ and there is a class k arrival or there is a departure

from channel m.

The decision table R, or F and G combined will uniquely specify the rate tran-
sition matrix of the Markov chain associatea with the network. Fbr example, in
figure 2.4, the decision variable V; is 1 if f((000;00),1) = 1 and is 0 if f((000; 00),1)
= 2, etc. For the loss network as the state space is finite, the number of decision
variables is also finite. Each decision variable has a finite number of choices and
therefore the set of deterministic channel selection policies is finite. In Chapter 4 we
shall show how the channel scheduling problem for the loss system can be formu-
lated as a Markov decision problem. But first in Chapter 3 we shall show that for
any optimal scheduling policy, no unblocked calls should be rejected. This implies
that r(z, Ax) is limited to at most | AG,| alternatives for each state 1 and each class
of call k, instead of at most |[AGi| + 1 if rejection of unblocked call is allowed. For
a M-channels network with constant accessible group size (i.e., |AGx| = Ny, k =

1,2,... K), the total number of alternative policies to be considered is thus at most
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Chapter 3

Non-Wasting Policy

In this section we shall give the proof of an important property of any optimal
channel scheduling policy for a loss network, that is, no call should be rejected if
some idle channel can accomodate the call. A class k call is said to be a blocked
call if and only if it arrives when no channel in its accessible group is idle. It is

otherwise said to be an unblocked call.

Definition 3.1 For loss networks, a channel scheduling policy is said to be non-
wasting if and only if no unblocked call is rejected. That is, if network is in state
¢ with I; being the set of idle channels and there is an arrival from class k such
that AGx N I; # 0, the arriving call should never be rejected. For hold networks, a
channel scheduling policy is non-wasting if and only if no unblocked call is held in

queue. That is, n, must be equal to zero if AG, N I; # 0.

37
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3.1 No Rejection of Unblocked Calls in Loss Networks

Theorem 3.1 In a loss network, optimal channel scheduling policy must be non-

wasting.

3.1.1 Deferred Rejection Rule

Proof of Theorem 3.1:

Assume that there is a policy R under which there exists a state such that an
arriving call ¢ is rejected while some channel m that is in the accessible group of cis
idle. We will show that improvement can always be made by constructing an alter-
native policy R', called the deferred rejection policy, such that instead of rejecting
call ¢, we assign it to channel m immediately. For all subsequent assignments made
under R that do not involve channel m, R' will follow policy R exactly. For the

first assignment that involves channel m in R, there are two possibilities:

e (1) Call ¢ may have already departed from channel m. In this case we shall
construct R' such that R' will follow policy R and make assignment to channel
m.

e (2) Call ¢ may still be occupying channel m. In this case R' will reject the new

arrival.

For case (1) it is obvious that one more call would have been served using policy

R'. For case (2), the new incoming call, finding channel m busy, will be rejected
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regardless of whether it can be assigned to some other channels which are idle.
Thus this is what we call deferred rejection. Since the service times of calls are
independent, exponentially and identically distributed for all classes of calls, the
state of the network is fully described by the set of busy channels regardless of the
ages (the age of a call is the amount of time the call has already been occupying a
channel) of the calls in the network. Therefore the network will always end up in
the same state no matter whether case (1) or case (2) is true. Case (1) will always
be true with some non-zero probability and thus with some non-zero probability,
one more call will have been served using policy R', while there is nothing to lose
in case (2) when deferred rejection has to be applied. Therefore improvement is
always possible on any policy that rejects unblocked calls. In other words, such a
policy cannot be optimal and any optimal policy must obey the non-wasting rule.

QED

3.2 Extension to General Service Time Distribution

In this section we shall demonstrate that for loss networks, the optimality of non-
wasting rule can be shown to be true under very general conditions. First let us
consider the case when call durations have general but independent and identical
distribution. When call durations are not exponentially distributed the network is

not memoryless. However, the state of the network can still be represented by

S = (blbz‘“bM;tltz"'tM)
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where t,, represents the age of the call on channel m if there is one and is 0 if
channel m is idle. Consider a policy R under which a call ¢; that can be assigned to
channel m is rejected at time 0. Assume that we attempt to make a similar proof
as in Section 3.1 by constructing ﬁ deferred rejection policy R' such that instead of
rejecting the unblocked call ¢;, assignment is made to channel m immediately. For
all subsequent assignments under policy R that do not involve channel m, assume
that R' will follow these assignments exactly.‘ Let ¢, be the first call assigned to
channel m under R, which occurs at time 7, and let S be the resulting state after

¢, is assigned, such that,
R:8 = (biby---baitaty--- tm = 0+,---tM)

If ¢, has already departed from channel m, R' will be able to follow R and assign
c; to channel m. If this is true both policies will end up in identical states with R'

having one extra call assigned and departed and thus better.

If channel m is still busy and if we apply deferred rejection, the resulting state

under R' will be:
R': 5" = (byby-++1-+-bagitaty - th >0, tr)

S and S’ will differ only in that the call ¢; occupying channel m in S’ has an

~older age than the call c; that is just assigned to channel m in S, i.e., t!, > tp.

At first glance, it is not clear that S’ is always better than S. It may be worse
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pdf

Figure 3.1: Example of an Call Duration Probability Density Function

off to have a call with an older age because the probability density function of call
durations may be such that a call having an older age may have a longer expected
residual life than a call having a younger age. The simplest example is that when the
probability distribution of call durations is such that it is, say, 0.1 with probability
0.9 and 9.1 with probability 0.1, as shown in Figure 3.1. The expected duration of
a new call will thus be 1 but the expected residual life of a call with age 7 such that

9.1 > 7 > 0.1 will be 9.1 - 7 and will be larger than 1 if 7 is less than 8.1.

The above problem disappears if we compare the two policies probabilistically,
as to be explained in Section 3.2.1. The idea is that for the duration of ¢; to be
t with some probability (or probability density), the duration of ¢; will be ¢t with

the same probability also. In a sense, the comparison of R and R' in the proof of
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Theorem 3.1is also a‘ probabilistic one. When deferred rejection is applied the calls
occupying channel m in R and R’ are different. The problem does not surface as
the residual lives of the two different calls have identical distributions. The idea of
comparing two sample paths probabilistically is used again in Chapter 5, when we

make use of the idea of call duration randomization.

3.2.1 Consistent Deferred Rejection and the V-objective

Theorem 3.2 In a loss network with general but identical call duration distribution
and general arrival process which may or may not be memoryless, optimal channel
scheduling rule must be non-wasting as long as call durations are independent of each
other and of the arrival process, in addition to the assumption that call durations

and arrivals are independent of the scheduling policy.

Proof:

We shall prove Theorem 3.2 by proving that if there is a policy R that rejects an
unblocked call ¢; at time 0 when it can be assigned to some channel m that is idle,
we can always construct another policy R' that can always increase the expected

number of assignments made up to time T for any T > 0.

When the arrival process is general, in addition to the age of each call, the
past history of the arrival process must also be included to specify the state of the
network. Let us assume that this past history up to time 7 can be summarized

by ®(7) so that the state of the network can still be specified. Furthermore, let
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V,T(R, S) be the probability that [ or more assignments are made ﬁp to time T

given that the initial state is S and policy R is used.

Definition 3.2 The V-objective is the probability that ! or more assignments are

made up to time T given some initial state S and some policy R.

In Chapter 5 we shall make use of a similar quantity that is called the U-objective.

Now assume that there is a policy R that rejects an unblocked call c; at time O
when it can be assigned to an idle channel m, we construct a policy R' such that R
assigns c; to channel m immediately and follows all subsequent assignments made
under R as long as they do not involve channel m. Assume that policy R first makes
n — 1 assignments to channels other than channel m and make first assignment to
channel m at time 7 and let ¢; be the call assigned. We shall construct R' such that
it simply rejects c; regardless of whether channel m has become idle. Thus this is

what we call consistent deferred rejection.

Definition 3.3 The consistent deferred rejection rule means that if a policy R
rejects a call ¢; that can be assigned to some idle channel m, instead we assign c;
to channel m immediately but in the future when c; is the first call that is assigned
to channel m under R, we consistently reject ¢z, regardless of whether channel m

has become idle.

Let d;, d; be the durations of ¢; and c; respectively and let p4(t) be the probability

density function of all call durations.
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Let S,(d; = o) denote the state at time 7 given we know specifically that the

duration of ¢; is o.

Furthermore, let pZ(n) be the probability that therc are n events up to time o.

pZ(n) is identical under both R and R'.

Under R, using iterated expectation, we have for T > 7,1 > n,

VT (R, 50) = S () [ VT (R, So(ds = 0))palo)de (3.1)

Under R', the resulting state at time 7, S!, is almost the same as S ex ‘ept for

channel m. We have,

"(R,S0) = Do) [ VIET (B, S (e = o)palo)do (3.2)

where S!(d; = o) is the state at time 7 under R' given we know specifically that

the duration of ¢; is o.

For any o, the state S.(d; = o) is always better or at least as good as the state
S;(d; = o). The reason is that any subsequent assignments made for S,(d; = o)
can always be made for S,(d; = o), as the two states are the same except that we

know channel m will always become idle first for the latter.

Let N,(T) be the number of assignments made up to time T'. Given a policy R,

the expected number of assignments up to time T is

E{N,(T)} = 3. V"(R, S0) (3.3)

i=1
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We have,
VI(R',S0) =1 (3.4)

considering ¢, that is already assigned to channel m.

For | = 1, there is always some positive probability that no assignment is made
in R up to time T, say, when there is no arrival up to time T. Therefore, V,*(R', So)
is obviously maximized for ! = 1. For [ > 1, R' is at least as good. Therefore, for
any policy R that rejects unblocked calls, we can always construct an alternative
policy that can increase the expected number of assignments made up to any time

T. In other words, such a policy cannot be optimal. QED

The essence of the proof for Theorem 3.2 is as follows. For the constructed alter-
native policy R', up to any time T there is always some probability that consistent
deferred rejection is not applied and one more assignment is made. While consistent
deferred rejection is applied, for each state reached in R, with the same probability

a stzte that is at least as good will be reached in R'.

3.3 Holding of Unblocked Calls in Hold Networks

One may be tempted to believe in similar statement as Theorem 3.1 when hold
networks are considered and when performance criterion is the expected queueing
time. That is, no call should be held in queue when it can be assigned to some
idle channels immediately. It turns out that this conjecture is not true in general,

although it may be frequently true in many practical cases. A convincing counter
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example is given in Figure 3.1.

Let us define the busy period of a class be the period of time during which the
queue of the class is non-empty. For class 1 shown in Figure 3.1, which has only

one channel in its accessible channel group, such that,

assume that arrival rate A; is large (almost 1). Therefore for group 1 the busy
periods are long and the idle periods are short. For class 2 which has many channels

in its accessible channel group, such that,
AG; =(1,2,...,n) wheren>1

assume that arrival rate A, is small, i.e., A; — 0*. Therefore, for group 2 the busy

periods are short and the idle periods are long.

Now assume we are in the state where all channels are busy except channel 1,
which is shared by both group 1 and group 2, and a call ¢ of class 2 arrives. If
we obey the rule that no unblocked call should be kept on hold, the arriving call
should be served by the shared channel immediately. We can see that this is not
optimal since busy period for groﬁp 2 is short, the arriving class 2 call will have to
wait only a short while, approximately -1 units of time on the average, to find a
freed unshared channel in group 2, and most likely it will not be blocking any other |
class 2 calls as idle periods for class 2 are long. Therefore the added delay penalty
- is only about ﬁ If ¢ is assigned to the channel 1 immediately, the delay penalty
on class 1 calls will be large since busy period of group 1 is long and the number of

calls which will have to wait additional amount of time because of the assigned call
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Channel

Class 1, Al — I[

Class 2, A; — -1

Assuming A; 3> Az, and all channels busy except channel 1

Figure 3.2: Counter Example for No Holding of Unblocked Calls
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2 [ 7 -
duration of ¢

AN\

a departure from channel 2,3,...,0orn

Shaded regions are added delay penalty for each case

Figure 3.3: Number of Waiting Calls in Queues

i
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on the shared channel will be large.

To make the above argument more quantitative, let us consider the following.
Let

A1 =1—¢€ for e some very small positive number

The probability that the first call from class 1 will arrive before ¢ departs will
approximately be % The expected delay incurred on this class 1 call alone will be
1, which is the expected residual life of ¢ if it is still occupying channel 1. Therefore
the tofa.l expected delay incurred on class 1 calls is at least almost 0.5. When n is

large, the delay incurred by holding the call ¢ can be made arbitrarily small, and

~ the probability that it will be delaying other class 2 calls will be very small. A

typical plot of the number of holding calls in class 1 and class 2 is shown in figure
3.2. The dashed lines represent the resulting number of holding calls of each class
if call ¢ is held until another channel in group 2 becomes free. The solid lines are
when call ¢ is assigned to channel 1 immediately. The shaded region in each case
represents the additional penalty of each choice and it is clear that it is better to

hold the class 2 call in queue than using up the shared channel.

The contrast between the result in Section 3.1 and the result obtained here
illustrates the fact that for the same network with the loss model and the hold
model, the optimal channel selection policies are in general not the same, even

when only the states with all queues empty are considered in the hold system.

Since we have proven the fact that for any loss network the optimal channel

scheduling policy must be non-wasting, in the following chapter when the channel
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scheduling problem is formulated as a Markov decision problem, there is no need
to consider alternatives that reject unblocked calls. Unnecessary complications are ‘

thus avoided.




Chapter 4

Markov Decision Formulation of Channel

Selection Problem

In this chapter we shall outline the formulation of the channel selection problem for

the loss network as a Markov decision problem.

4.1 Imbedded Markov Chain

While the Markov chain describing the state of the network is continuous time in
nature, we shall first seek to set up our problem as a discrete time problem. We shall
do so by considering the imbedded chain at the occurrence of an event, where again
an event is either a call arrival or a call departure. A call arrival may either result
in assignment to an idle channel, or result in rejection (which we have proven in

the previous chapter that should only occur when all channels in the corresponding
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accessible group are busy).

4.1.1 Transition Probability Matrix for thevlmbedded Chain

If we look at the imbedded Markov chain, the transition probabilities between states

~ are policy dependent and are given as follows:

. . 1
Forj = D(i,m), pi;= mbusy(i) + 4 (4.1)

2 M

. . kir(i,Ag)=7
Forj =r(i,A), pij= m (4.2)

>
- = k:f(i,k)=0

where,

e D(i,m) represents the state 7 which results when initial state is ¢ and there is

a departure from channel m.

e nbusy(t) represents the occupancy, or the number of busy channels in state 1.
- and again,

e A, represents the event that there is a class k call arrival.
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o r(i,€) represents the state that the network will end up in given that it is

initially in state ¢ and there is an event §.

e f(i,k) represents the channel that a class k call will be assigned to when the

network is initially in state i. f(1,k) is 0 if class k calls are rejected in state 1.

e A is the total arrival rate and A; the arrival rate of class k calls.

pi; is the probability that given the network is initially in state 7, it will next end
~ up in state j. It is also equal to the probability that the occurrence of the event, say
event [, that leads to the corresponding transition in the imbedded chain préceeds
occurrences of all other events possible in state 1, i.e.,

L <tttz ti-n bt tL

where t, is the occurrence time of the nth possible event in state . As the occurrence

time of all events are exponentially distributed and independent,

the probability that event ! occurs first equals to:

o0
/0 MNe MPr(t < ty,... tim1ytipn,. .., tL)dE

oo
— /. A‘e—xﬂc-klf - C—A‘_lfe—xl.'.!f cee e—ALtdt
0

L
=XM/D_ A
n=1

We can see that only the transition probabilities corresponding to call arrivals
are policy dependent. Given a policy, r(i, &) and f(i, k) are given and thus p,;,-, the

transition probability matrix

P = [p;;]
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is uniquely spéciﬁed for the imbedded chain. It is possible, however, that two or
more different policies will have the same transition probability matrix. In which
case these policies are identical in terms of blocking probability performance. It
is also possible that two transition probability matrices look different, but in fact
correspond to policies that are identical but for a different labelling of states or

channels.

4.1.2 The g-Objective

Let w;; denote the reward associated with the 1 — j state transition. For each state
1, we shall assign a unit reward to each transition that corresponds to a departure,
such that

1 if y = D(¢,m) for some m

0 otherwise

For each state 7, the expected return is:

nbusy(?)

L P )+ A

and is independent of the particular policy used.

For the imbedded chain, the expected return per transition will be:

g=> am (4-6)
where 7; is the steady state probability of state ¢ of the imbedded chain, i.e., the

probability of finding the system in state ¢ immediately after an event.
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Corollary 4.1 Maximizing ¢ is equivalent to minimizing P;, the blocking proba-

bility.

It is simple to show that maximizing g is equivalent to minimizing F;. Let
N,(T) be the number of arrivals in the time interval (0,T), Nu(T) be the number
of departures in (0,T), and N,(T) the number of rejected calls. N.(T'), number of
events in (0,T) is

N.(T) = N.(T)+ Ny(T) (4.7)
and
_ Na(T)
9 = Mo SA (48)
~ No(T)
= AN = VA (49)
By definition, the blocking probability is,
_ . (T
P = 11_.& N.(T (4.10)
_ No(T) — Nu(T)
= Jim ) (4.11)
(Retrram)
= hm T (4.12)
(1)
= (Frvemam)
_ 1= 2g
= T (4.13)
- 19
= 1o (4.14)

which is monotonically decreasing in g since its derivative is equal to _u_-lg? and
is always negative as ¢ must be less than 0.5 (at most half of the events can be

departures).
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Therefore, maximizing ¢ is equivalent to minimizing P, and P, can be easily
calculated after g is found. The advantage of optimizing g instead lies in the fact that
the expected immediate return for all states with the same number of busy channels
is identical, independent of the scheduling policy, and kcan be easily calculated as z;

by equation 4.5.

4.2 Linear Programming Formulation of Channel Schedul-

ing Problem

In this section we shall first formulate the channel scheduling problem for loss
networks as a primal linear programming problem. Then we shall give the dual

linear programming problem view of Howard’s policy iteration algorithm.

4.2;1 Primal Problem Formulation

The idea of formulating the channel scheduling problem as a linear programming
problem is to randomize the choice of policies’. Let z} be the joint probability of
being in state j and choosing policy r for state j, and let R; = (rj1,7j2,**,7jn,)
be the set of alternative policies for state j. For the channel selection problem R;
can be considered as a decision vector which specifies channel assignments for all
classes of arrivals at state 7. We can formulate the channel scheduling problem as

a linear programming problem as follows:

lgee [20]
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Linear Programming Formulation

Primal Problem:

min > Y -2z} (or max Y Y zjzf)

JES rER; JESrER;
subject to

Zx;—zzpsz{ =0 foryj=12,...N-1
rER; i€S reR; :

IPIEAE

JESreR;
and

:c;f > 0 forjeS,reR;

The constraints equations are simply the conservation of probability flows and
the summation of steady state probabilities to unity. The objective is to maximize
g = Ljes Lrer; %;%;. For the channel scheduling problem, we have mentioned earlier
that the rewards z[’s are independent of the policy. Nevertheless, here we have first |

written down the general objective where the rewards are policy dependent.

Alternatively in matrix form, we can express the primal problem as:
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to minimize

( 2
Z12
ry
z, ™
2;71
1 r13 _ ,Tim ray _ Ting N1 "Nny
[-2] =237 -z, =z =M 2
Ting
z
2
I'NNI
TNnpy
2y ]
| IN
subject to:
ri1
z,
ri13
Z,
Ting
1—p'h 1—pi2 ... g_glim —pfal —p'ina —p'N1 TNnN o1
P1y P11 P P21 P2y PNy 0 7PN ’
-T21
£
—ptil _poT12 —pim PR T — p'3m2 N1 Ny
P12 P12 Piz 1-p23 1-p3 —Pn2 Pn2
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and

z;ZOfoerS,reR,-

This problem is a standard linear programming problem and can be solved using
the Simplex method but obviously the number of columns will be very large and

keeping track of these columns will be difficult.

4.2.2 The Policy Iteration Algorithm

For the primal problem outlined in section 4.2.1, there is a corresponding dual

problem:

max f

subject to
N-1
u; — Zp:juj-{-g < —z for t€SreR
j=1

Given a deterministic policy R, a transition probability matrix PE is uniquely

specified for the network and a corresponding basic feasible solution can be obtained
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for the primal problem.

) i ] ]

z! 0
Inoy = (PRYRy || 22 0
111 || a .-1-.

where the Iy_; matrix is the identity matrix with the last row omitted and the
(P®)%_, matrix is the transpose of the P® matrix, and with the last row omitted.
Now for ease of notation the r’s are single subscripted and r; represents a particular

decision vector for state 7.

If the solution is non-optimal, the corresponding basic solution to the dual vari-
ables will not be feasible. If the basic solution is also feasible, we know an optimal

solution has been reached. That is, if u;’s and f are the solution to

r -

In_; — PE
f N-1 PA—I = r1 ra N
u; Uz ... uN_I'f =| =z =z - =2y

1 1...1

and if u,;’s satisfy

N-1

u'._Zp.'.ju,-+f < -z forieS,reR;
=1

then R is optimal.

Equivalently, if we solve for v; = —u; and g = —f, that is,
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| -1 — r r 3%
[vl V2 ... UN-1.14 —[zl‘ AR zN]
]

- = an @ e

while obviously now g = }:ﬁl Tz,

And if the v;’s satisfy

N-1
v‘-—Zp:.'jvJ-—,Lg > Z: fOTiGS,TE-Ri
j=1

then R is optimal and g is maximized.

The dual problem formulation of the Markov decision problem thus explains the
existence of the so-called policy iteration algorithm according to Howard 2, which

operates as follows:

1. Value Determination - For a given policy R, solve
N-1
v — prjv,--'.-g:zf for1 =1,2,3,...,N vy =0
et

2. Policy Improvement - For each state 1, find the policy r' that maximizes

’ N—l '
r r
4+ Pi;jVj

j=1

3. Iteration - Go back to (1) until no further improvement is possible.

2gee [12]
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The policy iteration algorithm is equivalent to performing N pivotings at the
same time. Howard showed that step (2) will always result in improvement as

follows:

Proof:

N-—

. ' .. ' 1 ! .
Since r' maximizes z] + Y;2 pj;v; for all i,

N-1
vitg <z + Z p,vi Vi
i=1

Now let v},7=1,2,3, N — 1 be the new values and ¢' be the new expected reward,

such that:
! N-1 !
e =z + 3 B
=1
Therefore, we have:
N-1

(i —v)+ (¢ —9)

v
=,
SDw
—
<

(¥
I
<
(™
~—

: N-1
= (vj-uw)+ (g —9) = Ci+ ) pi(vi—v))
j=1
where
Ci>0 Vi

therefore,

N
(¢'—9g)=> mC:i>0

i=1
where 7}’s are the steady state probabilities associated with the Markov chain with
transition probabilities p;-';- and must therefore be non-negative. As (¢' — g) > 0,

improvement is made. QED

From linear programming we know that it is impossible for an optimal policy
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to remain undiscovered. Since z[’s are independent of the policy, finding policy
improvements corresponds to assigning channels to each class of calls to reach states
with largest present values of v;. This can be done by considering alternative channel
assignments and reconstructing the probability transition matrix at each iteration
without storing all alternative transition probabilities for all alternative policies.
The policy iteration algorithm is implemented to solve the channel selection problem
with the purpose of trying to reach some conclusions about the characteristics of

the optimal channel selection policy. Some results are presented in the next section.

4.3 Results from the Policy Iteration Algorithm

OPTM.F77 is the FORTRAN program written to find the optimal solution to the
channel selection problem for loss networks using Howard’s policy iteration algo-
rithm. The pfogram can handle up to seven channels and twenty classes of calls.
Input to the program is contained in the file “INDATA” and output is generated
in the file “OUTDATA”. In this section we shall present results from some sample *

cases.

4.3.1 The W-Loss Network

For the W-loss network shown in Figure 2.2, the optimal channel selection table
f(i, k) is found for different a’s, the offered load per channel. A sample output file

is shown in Figure A.1 in the appendix. The output file contains both the channel
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selection table F and the policy table R. The value of each state 1, v;, is also listed.
The last entry in the v;’s column, the 8th one in this case, is in fact the value of
~ g. Note that all the v;’s are negative. This is not surprising as 23 is the largest for

state 8 and vg is assumed to be zero.

It is found that the channel selection table for the W-loss network is independent

of a and is shown in Table 4.1.

S = (bybabs) | (i,1) £(i,2)
(000) 1
(100) 2 3
(010) 1 3
(001) 12
(110) o 3
(101) 2 2
(011) 10
(111) o o0

Table 4.1: Optimal Channel Selection Table for W-Loss Network

From the channel selection table for the W-loss network, we can summarize the
optimal channel selection policy by what we call the non-invasive hunting rule. That

is, when a call arrives, assignment is always made to an unshared channel first if
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possible. As we know implicitly that only non-wasting policies are of interest, and
that there is only one shared and one unshared channel for each class, the specifica-
tion that the unshared channel should always be chosen first completely describes
the optimal policy. For more general access structures in which shared channels
are shared among different classes, non-invasive hunting will not be sufficient to
describe the optimal policy. The optimality of non-invasive hunting for the W-loss

network is intuitively quite obvious. In Chapter 5, a rigorous proof is given.

4.3.2 Variability of Optimal Policy with Respect to Total Traffic Den-
sity

Given the result in section 4.3.1, one may wonder if the optimal policy is determined
by the access structure alone. Our numerical results have shown that it is not true.
When we maintain the same access structure (i.e., with all the accessible groups and
traffic splitting coefficients remaining the same ) but vary the total traffic density
A, the decision table is found to be changing in general. We illustrate this result by

the following example:

Let

o AG]_ = (1, 2)
L] AGz = (2, 3)
L] AG3 = (3, 4)
L AG4 = (4, 5)
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e AGs = (5, 6)
L4 AGs = (6, 1)
L AG7 = (1, 3)

For this network of six channels and seven classes with equal tréfﬁc splitting, we
obtain the optimal channel selection tables for different values of A, the total traffic
density. Shown in Figure A.2 and Figure A.3 are the results for the cases when A
= 0.1 and A = 0.9. To save space the output files are only shown in part. The two
channel selection tables are different in quite a few places and we can also see that

the difference is not an aberration due to the existence of symmetical policies.

For instance, for states 5 and 6 such that

Ss = (000100) and Se = (000010)

we have for A = 0.1,

vs = —2.34685
and
vg = —2.34697
While for A = 0.9, we have
vy = —1.47463

and

vh = —1.47302
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While for A = 0.1, vs > vg, for A = 0.9, vg > vs. Therefore if initially we are in
state 1 such that S; = (000000) and there is a class 4 arrival, the better state to go
to will be state 5 when A = 0.1 and will be state 6 when A = 0.9.

The result here indicates that in general, the optimal channel scheduling policy
cannot be deduced from the access structure alone. Therefore there are very few
general characterizations that we can really make for the optimal channel scheduling

policy.

In the next chapter, however, the optimality of a policy called non-invasive hunt-
ing that is independent of traffic density is proven first for the W-loss network.

Extensions are then made for other types of networks.



Chapter 5

Non-invasive Hunting

In this chapter we will first prove the optimality of non-invasive hunting for the
W-loss network and then for all loss networks. For all simple sharing networks,
non-invasive hunting is sufficient to completely specify the op'tim_al policy. Second,

we will prove the optimality of certain scheduling rules for the W-hold Network.

We hereby state the following definition:

Definition 5.1 Non-invasive hunting means that if possible, assignment will al-
ways be made to an unshared channel first. In other words, assignment to shared
channel will only be made when an arriving call finds all the unshared channels in

its accessible group busy.

68
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5.1 The W-loss Network

We have already proven in Chapter 3 that for any loss network the optimal channel
scheduling policy must be non-wasting. Here we will show that the optimal policy
can indeed be completely specified for simple network structure such as that of the

W-loss network.

Theorem 5.1 Non-tnvasive hunting ts optimal for the W-loss network.

5.1.1 The U-objective and Blocking Probability

We shall prove Theorem 5.1 by inductively showing that for all {, T, and Sy, non-

invasive hunting maximizes what we call the U-objective, which is:

Definition 5.2

UT(R,S) = Prife(T) 2

given that the initial state is Sy and policy R is employed}

where N,(T) is the total number of events up to time T while an event £ is defined

as either a call arrival or a call departure at service completion.

For the W-loss network the channel selection policy is completely specified by the
non-invasive hunting rule as all choices involves only two channels, one shared and
one unshared. What we are going to show is that non-invasive hunting maximizes

the U-objective over the set of stationary and non-stationary policies.
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Assume that there is a T, | dependent policy
R™ = [r7(5,¢)]

and let T be the complete specification of RT! for all T and . We have,

vI(r,s) = /n Puys (€,71S)UTTT (T, rT=70-1)(5, £))du (5.1)

In general, maximizing UT(R, S;) is a continuous time finite-horizon Markov

decision problem and the optimal decision table

RIE = [riE(S, k)]

opt

will depend on 7 as well as L, and let us assume that it can be completely specified
foral0 <7< Tand 1< L<!asT*. The (5,k)-th entry of R7%, r15(S,k), will
specify the state S; that the network will end up in if the network is initially in state
S and there is a class k arrival, while the objective is to maximize the probability

that the total number of events up to time 7 is greater than or equal to L.

Lemma 5.1 RZ;‘, must satisfy the following optimality condition:

For
=L (So, k)

opt

and any state resulting from any other policy
S = T(SQ, k)

for the same snitial state Sy,
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UL, (0,57) = [ puise(671ST)UTT (0, r 500 (5, )
> U, (T, 5)

where Q = {w: (£,7)} is the joint event space of the first event and its occurrence

time.

Lemma 5.1 follows immediately from dynamic programming.

Definition 5.3 A state S; is said to be Tl- superior to state S, or
TI
5125,
if and only if for some particular time T and integer [,

Ul(T, S) 2 Ul(T, Sy)

Therefore, Lemma 5.1 simply states that a Tl-optimal policy RZ!

opt TAUSE always

make assignments so that the state reached is T'(l — 1)-superior to all states that

are reached by other policies.

Definition 5.4 A state S; is said to be T-stationary l-superior to state S, or
[
5128,

if and only if for a particular integer [, S; is Tl-superior to S, for all T, and is said

to be T'l-stationary superior, or
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if and only if Si is Tl-superior to S, for all T and [.

"Definition 5.5 R} is said to be T-stationary l-optimal if it is independent of T

and is equal to RY) for some particular I. If RT), is independent of both T and !

and is equal to R*, it is said to be Tl-stationary optimal

Lemma 5.2 If there is a Tl-stationary policy R* that mazimizes U,T(R,So) for all

I, T, and So, R* is optimal in terms of minimizing overall blocking probability P;.

Lemma 5.2 is obvious as given any initial state, R* also maximizes the expected

total number of events up to any time T, which is

E{N.(T)} = givf(R, 50) (5.2)

And the expected number of arrivals up to time T is,
E{N,(T)} = AT (5.3)

independent of initial state or scheduling policy.

Therefore, the expected number of departures, which is the expected number of

events minus the expected number of arrivals, is

E{Ni(T)} = UF (R, So) — AT (5.4)

=1

will also be maximized.

According to Corollary 4.1, P, is minimized.
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5.1.2 Optimality of Non-invasive Hunting

Proof of Theorem 5.1:

We shall now proceed to prove Theorem 5.1. Assume that the inital state at time
07 is So- = (00b3) and there is a class 1 call arrival at time 0. With non-invasive

hunting the arriving call will be assigned to channel 1 and thus
So+ = (10b3)

The probability that there are one or more events up to time T will be,

UL (T, So+)

=1 — Pr{No arrival from either sources and no deparfure up to time T'}

=1 — ¢~ (1+bat+22)T |
which is obviously maximized as long as the policy is non-wasting. Therefore,
the state Sy+ reached by non-invasive hunting is T-stationary 1-superior to any
other states reached by other policies. Therefore, non-invasive hunting must be
T-stationary l-optimal for [ = 2. It does not really matter whether we begin our
induction from [ = 1 or from | = 2. For i = 1, all policies must be the same as

which policy we are under will not affect the occurrence of the first event, i.e.,

Ul (Ry,S) = UT(R,,S) for all Ry, R,

Next we shall show that if non-invasive hunting is T-stationary /-optimal for | =
L -1, it must be T-stationary l-optimal for [ = L. The assumption that non-invasive

hunting is T-stationary l-optimal for { = L - 1 ensures the following:

S' = (1065) 5" 5 = (01bs) (5.5)
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for b3 = 0 and b3 = 1.

Now assume there is a policy R that assigns to channel 2 when channel 1 is idle,
i.e,

R : So- = (00bs) =+ So+ = (01b)

Consider the alternative policy R' that assigns to channel 1 instead, i.e,

R': So- = (00bs) 25 So+ = (10bs)

Now let 7 be the occurrence time of the first event that occurs next and let S;

and S! be the state reached by R and R' respectively after the first next event.

If next event in R is D,, or departure from channel 2, next event in R' will be D;,
and same state will be reached by R and R'. If next event is departure from channel
3, which would occur only when b; is 1, then the resulting states are S, = (010) and
S; = (100). We know that S is (T —7)(L —2)-superior to Si, according to equation

5.5, since if the initial state is (000) and there is an arrival from source 1, assignment
will be made to channel 1 due to the assumed T-stationary (L — 1)-optimality of

non-invasive hunting.

If next event is A;, or arrival from source 1, R will make assignment to channel
1 and R' will make assignment to channel 2 and same state will be reached by both
policies. If next event is A; and channel 3 is idle, S; = (011) and S} = (101), which
is (T — r)(L — 2)-superior to S, again if initial state is (001) and if there is an
arrival from source 1, assignment would be made to channel 1 due to the assumed

T-stationary (L — 1)-optimality of non-invasive hunting. Finally, if next event is A,
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and channel 3 is busy, the arriving call will be blocked in R but not in R'. But we
can construct R' such that the call is rejected as well. The resulting state in R',
S; = (101), is again superior to S1 = (011), the resulting state in R, according to

equation 5.5. If deferred rejection is applied, R' can be even better.

Thus assuming that non-invasive hunting is T-stationary (L — 1)-optimal, non-
invasive hunting must also be T-stationary L-optimal as for any policy R that does

not obey non-invasive hunting, an improved policy R' can always be found.

Thus we have completed the inductive proof for the Tl-stationary optimality of

non-invasive hunting and therefore Theorem 5.1. QED

The above proof has been tedious and wordy but as it serves as the example to

several subsequent proofs, we shall summarize the sample path proof as follows:

&R St | é3R'| Sy | Relation

D, | (00b3) | D, | (00b3) same
o | 010) | Dy | (100) | 5175 s,
Ay (11b3)‘ Ay | (11b3) | same
A, | (011) | 4 | o) |85 s,

Note: t For b3 = 1 only

The interpretation of the sample path table is that the corresponding first next
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event, &, for R and R' in the same row of the table will occur with equal probability

for all occurrence time.

5.2 Generalizations

5.2.1 To Simple-Sharing Loss Networks

It became immediately obvious that the proof of Theorem 5.1 in the previous section
is independent of the arrival rates to the two different classes and ca.n'be easily
generalized to any loss networks that have multiple classes, each having different
arrival rate and multiple number of unshared channels and multiple number of

shared channels that are shared by all classes.

Definition 5.6 A loss network or a hold network is called a simple-sharing network

if and only if all shared channels in the network are shared by all the classes.

Theorem 5.2 Non-invasive hunting is optimal for any simple-sharing loss network.

Proof:

As in the previous section, it is obvious that any non-wasting policy will have the
largest UT (T, S) for all T and S. Therefore non-invasive hunting is T-stationary l-

optimal for ! = 1 and [ = 2. Now assuming that non-invasive hunting is T-stationary
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l-optimal for | = L—1, we will show that non-invasive hunting must be [-optimal for
| | = L by showing that improvement can always be made on a policy R that does not
obey non-invasive hunting. Assume that there is a policy R that makes assignment
to a shared channel m, when it can be assigned to some unshared channel m,. We
can construct the alternative policy R' such that assignmént is made to channel
m, instead. If next event is an arrival, R' will follow assignment that would have
been made by R if possible or R' will reject the next arrival if it would have been
blocked in R. For both cases and the case when the next event is a departure of
other than the last assigned call, the resulting state under R', Sj, will otherwise be
the same as S;, the resulting state under R, except that m, is busy in 5] instead of
channel m,. Therefore in these cases Sj is (L — 2)-superior to S; due to the assumed

T-stationary (L — 1)-optimality of non-invasive hunting.

If the next event is the departure of the last a.ésigned call, R' and R will end up
in the same state. If the next event is an arrival and R makes assignment to channel
m,, R' will not be able to follow R but R' can always make assignment to channel m,
instead and both policies will again end up in the same state. This is what we call
deferred shared channel assignment. Therefore improvement is always possible on
'R and non-invasive hunting must be L-optimal assuming that it is (L — 1)-optimal.
Thus our inductive proof is completed and non-invasive hunting also minimizes P,

according to Lemma 5.2.

Therefore the idea is that at a later time R' can always make assignment to the
shared channel m, previously left idle. Using up the shared channel m, may cause

some future arrivals to be blocked in R but not in R'. We have completed our
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proof assuming that R' will also reject these calls. Further improvement can be
achieved if deferred rejection is applied. Therefore non-invasive hunting is strictly

-better than any other policies. QED

5.2.2 To General Access Structures

For a simple-sharing loss network, optimality of non-invasive hunting rule com-
pletely specifies the optimal policy (clearly it does not matter which channel within
" a set of unshared channels or shared channels should be used first). For a general
access structure non-invasive hunting is not sufficient to specify the optimal policy

as there are different types of shared channels. However, the following still holds:

Theorem 5.3 For a loss network with some unshared channels, in the optimal

policy assignments should never be made to any shared channel if they can be made

to some unshared channels.

Proof:
We can simply follow the proof of Theorem 5.2 exactly. QED

Therefore, what we have shown is the simple fact that in any loss network,
assignments should always be made to unshared channel before they are made to

shared channels.
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5.3 W-hold Network

In this section we shall demonstrate that the following can be shown for the W-hold

network:

e I - An optimal policy must obey non-invasive hunting

o II - There should be no holding of calls if the corresponding unshared channel

is idle.

e III - Given that non-wasting policy is used, for channel 2, call selection from

longer queue is better than from shorter queue.

In our model for the W-hold network, the arrival rates form the two classes are
assumed to be equal. As we shall see from the proofs later on, I and II is valid even

when the arrival rates are not equal.
Before we offer the proofs, we first present the following lemma:
5.3.1 The U-objective and Queueing Delay

Lemma 5.3 If a éhanncl scheduling policy R* mazimizes UT (R, S) for all T, | and

initial state S, R* will also minimize the average queueing delay in the network.

As in Lemma 5.2, R* maximizes the expected number of events and thus the ex-

pected number of departures up to time T for any T. Therefore R* minimizes the
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expected number calls in system for all time T, which is the expected number of
arrivals plus the number of calls in the initial state minus the expected number of
departures. By Little’s Theorem R’ minimizes the average system sojourn time and

thus the average queueing delay.

5.3.2 Optimality of Non-invasive Hunting

Theorem 5.4 An optimal channel scheduling policy for the W-hold network must

obey non-tnvastve hunting.

Proof:

Here we shall prove with greater generality that it is always better to first made
assignment to an unshared channel than to a shared channel. The reason is that
we have not established the optimality of non-wasting rule for hold networks and

cannot eliminate states such as S = (00bs;n1n;), n > 0, from consideration.

As in the proof of Theorem 5.1, non-invasive hunting must be T-stationary [-

optimal for | = 2.

Let (00bs;niny) be the initial state and assume that n; > 1. Let us compare R

and R' such that
So- i’ (01b3;n1-1 ‘nz)
and

So— L'F (1063;111-1 ng)
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For the more general initial condition Sy- defined as above, we have to consider
the possibility that there may be some immediate assignments made by R before the
first event occurs. If the immediate assignment is to channel 3, R’ can always follow
R and there is no loss of generality for the subsequent sample path comparison.
If the immediate assignment is from queue 1 to channel 1, then R' can assign to
éhannel 2 and ends up in the same state. If there is no immediate assignments,

sample path comparisons can be summarized in the following table:

(i R S &G R S} Relation

D, | (00bs;nyng) | Dy | (00bs;nins) same

=2
D; | (010;n,n,) Ds (100;nyny) | S) > S,

A; | (0lbs;nyng) | Ap | (10bs;nyns) same
)

=2
Az | (011;n9n}) Az | (10L;nynat) | S > S,

Therefore, for any R that does not obey non-invasive hunting, an alternative
policy R' that always ends up in a better or equivalent state can be constructed.

Therefore, R cannot be optimal. QED

5.3.3 Optimality of Unshared Channel Non-wasting Rule

Definition 5.7 The unshared channel non-wasting rule means that no call should

be held in queue if it can be assigned to an unshared channel immediately.
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Theorem 5.5 Optimal channel scheduling policy for the W-hold network must be

unshared channel non-wasting.

Proof:

In other words, we are to prove that the optimality of the unshared channel

non-wasting rule for the W-hold network.

First, for | = 2, l-optimal policy must be unshared channel non-wasting, since

Pr{1 or more events up to time T'}

=1 — Pr{no arrival or departure up to time T}

=1- e—(A+nbu.:y(S°+))T

and the number of busy channel immediately after assignment, nbusy(So+), is max-

imized only for a non-wasting policy.

Now assumed that an unshared channel non-wasting policy is T-stationary [-

optimal for | = L — 1. Let the initial state be:
So- = (0bzb3; n1ns)

n>0
Assume that there is a policy R that does not obey the unshared channel non-
wasting rule, i.e.,

So- —Ii* So+ = (Obzb3;n1nz)



i

- CHAPTER 5. NON-INVASIVE HUNTING ' ‘ ' 83

We will show that improvement is always possible by using some alternative
vpolicy R', which makes assignment from queue 1 to channel 1 immediately, such
that,

So- 25 So+ = (1b2bs;ny — 1 ny)

When we make the sample path comparison here there is one subtle difficulty.
That is, the call which is assigned to channel 1 in R' is the same call that is left
behind in queue in policy R. If we treat the two calls as having the same duration,
sample path comparison will become tricky. The reason is that conditioned on
What the first next event is, the duration of the call left behind in queue will have a
different probability distribution. This complication can be easily fesolved throﬁgh

a conceptual operation that we refer to as call duration randomszation.

Definition 5.8 Call duration randomization refers to the conceptual operation that
before we compare the sample paths of two initial states that result from two al-
ternative policies, we randomize the durations of all the calls and give each call an

independent and exponentially distributed duration with unit mean.

It is obvious that randor.nizing the call durations will not change the two initial

states. The idea is simply to make our sample path comparison easier.

If channel 1 becomes idle in R' before the first event occurs in R, we shall devise a.
fictitious call to occupy channel 1 again. At the occurrence of the next event R' can
always follow any assignments made by R if it does not involve a call from queue

1. In these cases, S}, the resulting state in R', will have one more call assigned
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to channel 1 (Which is occupied either by the original call or a fictitious call) as
compared to S;, the resulting state in R. S| must be T-stationary (L — 2)-superior
“to S; due to the assumed T-stationary (L — 1)-optimality of the unshared channel
non-wasting rule. If the next assignment in R is from queue 1, it must be to channel
1 as we have proven the T-stationary (L — 1)-optimality of non-invasive hunting in
Section 5.3.2. As under R' channel 1 is either busy or occupied by a fictitious call,
no assignment is made. Even so R' will end up in the same state as R and will
have nothing to lose. Since we have the freedom of not occupying channel 1 with

fictitious calls, there must exists another policy that is better or at least as good as

R'.

Therefore, with the assumed T-stationary (L — 1)-optimality of the unshared
channel non-wasting rule, improvement can always be made on a policy that does
not obey the unshared channel non-wasting rule for /| = L. This completes our

inductive proof. QED

5.3.4 Optimality of Select from Longer Queue Rule

Theorem 5.6 For the W-hold network, given that a non-wasting policy must be

used, call selection from the longer queue 1s better than from the shorter queue.

Proof:

Again, for | = 2, all non-wasting policies are T-stationary l-optimality and the

optimality of select from longer queue rule is obvious.
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Now assume T-stationary l-optimality of select from longer queue rule for I =

L —1 and let the initial state be

So- = (101; nlng)

Therefore decision has to be made whether the next call to be assigned to channel

2 should be from queue 1 or from queue 2.

With no loss of generality, assume that
ny > n; > 0

Because for n, = 0, there can be no choice. And for n, = n,, selection from either
queue is equivalent from symmetry. We can also focus on initial states with all
three channels busy due to the non-wasting assumption and the presence of calls in

the two queues.

Assume that there is a policy R that selects from shorter queue. We compare it

to a policy R' that selects from longer queue, i.e,

Sp- -2+ Spt = (111573 na-1)

So- £, So+ = (111;n,-1n,)

For the case that n; — 1 # 0, R' can always follow R if there is any assignment
at the occurrence of the next event. Again, applying call duration randomization,
sample path comparison can be summarized in the table below:
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£ R S I3%9:3 Si Relation
-3
Al (111;n|+1n=—1) A, (lll;mng) S{ > S
-3
Az (111;n1n,) Az (1151 = 1na+1) | S 2 Si,sameifn; =ny+1

-3
D, D, | (111;n, - 1n3—2) | Dy,D, (111;ny — 2n3) Sy > Si,sameifn,=n;+1

L-2
D, (111;ny ny — 2) D, (11157, - 1n2 — 1) S > S

Thus R' is always better or at least as good.

For the case if n; —1 = 0 and if the first event is departure from channel 3, then

S; = (111;n;-1 0)

81 = (110;1’11 0)

Therefore it is left to show that

L-2
Sy =(111;n,-10) > Sy = (110;n,4 0) -

Indeed we can show that S| is T'/-stationary superior to S; for any n; — 1. We
i
can use the inductive proof again. For [ = 1, obviously S} > S is true, as there is

one more assigned call for S] and thus it has a higher total departure rate.

Now assume S é S) for l = L — 1, it must be true also for | = L as at the next
event, whatever assignment made for S;, we can always make the same assignment
for S}, except when n; — 1 = 0 and next event is departure from channel 1. But if
that happens the resulting state S; for S; will be (110;00) and the resulting state
S; for S will be (011;00), which is identical to S; due to symmetry. QED
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5.4 Conjecture on the Optimality of the Shared Channel

Non-wasting Rule for the W-hold Network

One conjecture that we have not been able to prove, however, is that the optimal
scheduling policy for the W-hold network must also use the shared channel non-
~wastingly. In Chapter 3 we have shown that the optimality of non-wasting rule is
not generally true for hold networks. However, due to the'symmetry for the W-hold
network, there is a strong suspicion that it should be true. Using the same type of
inductive proof that we have developed in this chapter, we can see that a shared
channel non-wasting policy must be T-stationary [-optimal for [ =1 and 2 for all
initial states as assignment is always made if possible and thus overall departure
rate is maximized. Here we shall illustrate why similar inductive proof cannot be

carried through.

Let us consider one particular initial state:
Se- = (101;11)

For Sp- the decision to be made is which of the two waiting calls should be assigned
to channel 2, or if the network should hold both calls in queue and make no as-
signment at all. Let R be a policy that hold the calls in this case and let R' be a
non-wasting policy that select a call to be assigned to channel 2 immediately. For
this case it should not matter which call to select due to the symmetry. Therefore

let us assumed that call from queue 1 is selected, i.e,

So- = (101;11) 2 Se+ = (101;11)
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So- = (101;11) & S5+ = (111;01)

In this case we will apply call duration randomization on all calls and ignore first
event in R' if it is departure from channel 1. But if departure from channel 1 in R’
preceeds the first event in R, we shall mark the corresponding sample path with an

asterisk sign *.

Assume that unshared channel non-wasting rule is T-stationary (L — 1)-optimal.

We can summarize sample path comparision in the following table:

&R S & R S] Relation Pr{-}

Di (111;00) | Dj '(011;00) S{Léz S1 MW
D, |(011;00) | same o

Ds | (111;00) | D; | (011;00) | 5} S s, Er )
D; | (111;00) same 3—+12—A

Ay | (111;11) | A3 | (111501) S{L;Sl BTG
A | (111;11) | same o

Az | (111;11) | A3 | (011;02) | unknown W)A(H-_ZA)
A4 |(Lo2) |81< 8| g2

Therefore, for the last sample path at least, R will end up in a better state
than R' and thus we cannot guarantee the optimality of R'. The problem is in the
delayed commitment made by R that allows it to be better under some situations.

The sample path comparision fails even if we look further forwards into subsequent
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events.

One conclusion we can obtain here is that since the difference between UT (T, S)
and UT(T,S;) is bounded by 1 and thus finite, a non-wasting policy must at least

be almost as good as any policy that holds unblocked calls when A approaches 0.

Another point worth to be mentioned is that attempts to show the optimality of
 non-wasting policy for hold network by showing the T'l-stationary optimality of such
policy for all initial states is bounded to fail for many other types of hold networks.
Consider the simple shared network as shown in Figure 5.1, where there are two
classes of equal arrival rates with one shared channel and n unshared channels for

each class.

For this example only let us change the objective to be maximizing the expected
-total number of assignments made up to time T. In other words we are using
the V-objective instead for this example.' From Lemma 5.3 it is also equivalent
to minimizing the expected number of calls left in queue. Assume that the initial
state is that all channels are busy except the shared channel, and that there is one
call in each of the two queues. Consider the limit as A, the arrival rate to each
class, approaches zero. A non-wasting policy R' maximizes the probability that
there is at least one assignment for any T, as the probability will uniformly be one.
After the first assignment is made, as probability of having new arrival is small, the

probability of having two or more assignments up to time T will roughly be

for as soon as one of the n + 1 channels that the remaining call can access to
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1

n+1

n+2

2n

2n+1

Figure 5.1: A Simple-sharing Hold Network
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becomes idle, the second assignment can be made.

But now consider a policy R that holds both calls until one of the 2n busy
channels becomes idle, and then assigns one of the calls to the channel that has
become free, and the other call to the shared channel. For R the probability of
making at least one assignment up to time 7 will be the same as the probability of

making at least two assignments and is

1 - e—ZnT

Therefore, while R' maximizes the probability of having at least one assignment
up to time T', R maximizes the probability of having at least two assignments up

to time T'. The difference is due to the delayed commitment made by R.

5.5 Extension to General Hold Networks

We can see that Theorem 5.4 and 5.5 can be extended to any hold network. That
is, the optimal scheduling policy for any hold network must obey the non-invasive
hunting rule and the unshared channel non-wasting rule. We proof the optimality of
these two scheduling rules first for the W-hold network due to the fact that attempts

to give rigorous proofs for the general case immediately will be too confusing.

5.5.1 Optimality of Non-invasive hunting
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Theorem 5.7 An optimal channel scheduling policy for any hold network must obey

non-tnvasive hunting.

Proof:

As in the Proof of Theorem 5.4, non-invasive hunting must be T-stationary I-

optimal for | = 2.

Assume that non-invasive hunting is obeyed in any T-stationary (L —1)-optimal
policy. Assume that there is a policy R that makes assignment to a shared channel
m, while assignment can be made to an unshared channel m,. We can then con-
struct an alternative policy R' such that assignment is made to channel m, instead.
As in the proof of Theorem 5.4, if there is any immediate assignment made by R
before the first event occurs, R' can always follow R if the immediate assignment
is not made to m,, and there will be no loss of generality for the initial condition.
If the immediate assignment is made to m,, R' can always made assignment to m,
instead and with call duration randomization, R' and R will end up in the same
state. This is what we called deferred shared channel assignment in the Proof of
Theorem 5.2. So we have taken care of the possibility that there may be immediate

assignments made by R.

Now for the first event in R, if it is departure from channel m,, it will be departure
from channel m, in R', and the two policies result in the same state. If a call is
blocked in R but not in R', we will hold the call in R’ also. Or if the next assignment
made by R is one that can be followed by R', for either case R' must result in a

(L —2)-superior state due to the assumed (L —1)-optimality of non-invasive hunting
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and as the only difference between the resulting state in R’ and the resulting state
in R is that in the former, the unshared channel m, is busy and the shared channel
m, is idle, while the converse is true in the latter. If the next assignment in R is one
that cannot be followed by R', the assignment made by R must be to channel m,,
in which case R' can always make a deferred shared channe] assignment and make

assignment to channe) m,. In this case both policies end up in the same state.

Therefore, our inductive proof is completed. QED

5.5.2 Optimality of Unshared Channel Non-wasting Rule

Theorem 5.8 An optimal scheduling rule Jor any hold network must obey the un-

shared channel non-wasting rule.

Proof:

As in the proof of Theorem 5.5,for! =2, an l-optimal policy must be non-wasting

and thus unshared channe] non-wasting.

Assume that a (L—-1)-optimal policy is unshared channe] non-wasting and assume
that there is a policy R that does not obey the unshared channe] non-wasting rule
such that a call ¢ that can be assigned to an unshared channel m,, immediately is held
in a queue, say queue k. We will construct the alternative policy R’ which assigns
¢ immediately to channel m,. If channel m, becomes idle before the occurrence of
the first next event in R, we shall devise a fictitious call to occupy channel 1 again.

If the next event is a departure, R’ will result in a superior state due to the assumed
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(L — 1)-optimality of the unshared channel non-wasting rule, as the resulting state
in R' differs from the resulting state in R only in that one more call is assigned
to an unshared channel. If the next event is an arrival and if either no assignment
is made in R or the assignment made in R does not involve a call from queue k,
it can always be followed by R' and R' will result in a superior state. If there is
an assignment made in R that cannot be followed by R', it must be an assignment
made from queue k. If the assignment is made to channel m, or another unshared
channel, the two policies will result in the same state. If the assignment is made to

a shared channel, R' will result in a superior state.

Therefore, R' is always better or at least as good and our inductive proof is

completed. QED

In summary, in this chapter we have proven that non-invasive hunting must be
obeyed in all optimal scheduling policies for all loss and hold networks. We have
also proven that the unshared channel non-wasting rule must also be obeyed in all
optimal scheduling policies for all hold networks. For the W-hold network, we have
proven that selection from the longer queue is better than selection from the shorter
queue. However, the optimality of using the shared channel non-wastingly for the

W-hold network remains as a conjecture.



Chapter 6

Ideal Grading and Random Scheduling

In this chapter and the next we shall focus on what we call uniform-accessibility

networks.

Definition 6.1 A uniform-accessibility network is one in which all classes have the
same accessibility. In other words, the number of channels in all accessible channel

groups is the same.

The accessibility parameter N, can be viewed as the bandwidth of individual
users and thus a measure of the cost of network interfaces. The fundamental ques-
tion discussed in this chapter and Chapter 7 is as follows: Given that the total
offered traffic to an M-channel uniform-accessibility network is A and that the ac-
cessibility of all classes is restricted to Ny, what is the minimum blocking probability
that can be obtained? Furthermore, how should the access structure of the network

be designed to achieve this minimum blocking probability?

95
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6.1 Ideal Grading

In section 2.1 we have explained what we mean by “access structure”. It is stated

here again as a definition.

Definition 6.2 For a network with M channels and total offered traffic A, access
structure refers to the network topology which can be fully described by the following

parameters:

1. The total number of classes, K,
2. The accessible channel group AG) for each class k, and

3. The fraction of total traffic assigned to each class, px.

For a uniform-accessibility network, the maximum number of classes is C (M, Ny ),
as it is the maximum number of distinct subsets of N, channels out of M channels.
Therefore the optimal access structure problem can simply be viewed as a traffic
splitting problem, for which we want to decide what fraction of the total traffic
should be assigned to each class so that miﬁimum overall blocking probability can
be achieved. That means we want to find the optimal p; for k = 1,2,---,C{(M, N,).

px will be zero if the particular class do not exist in the access structure.

The simplest access structure is the case where K, the number of classes, is equal

to ,%, so that each channel belongs to one accessible group only. As there is no
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shared channel at all the network will decompose into K disjoint networks such that
each can be modeled as an M/M/N;/Ny chain, where M/M /N[Ny is the standard
notation of a Markovian queue with N, servers and no waiting room (blocked call
lost). With general access structures the number of classes will be greater than
K and there will be shared channels and each shared channel may be shared by a
different number of classes. This is what we refer to as grading', a word from very
early works in congestion theory in telephony. For a network with general access
structure and shared channels, we say that grading is use. Networks with no shared

channel will be referred to as no-grading networks.

Definition 6.3 For a uniform-accessibility network, the ideal grading 2, as named
by Erlang, is when the total traffic is evenly distributed among the maximum pos-
sible number of classes, which is C(M,N,). In other words, K = C(M, ;) and
Pk = % for k = 1,2,--+,K. A loss network with ideal grading is called an tdeal-

loss-network.

For N, = 2, the ideal gradings for M = 3 and for M = 4 are shown in Figure 6.1
and Figure 6.2 respectively.

6.1.1 Random Scheduling

Definition 6.4 Random scheduling refers to the non-deterministic scheduling rule

such that when the network is in state ¢ with I; being the set of idle channels, upon

lgee [32] Chapter 7
2 Again, see {32] Chapter 7
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Class 1, % - Channel 1
Class 3, 13‘- - Channel 2
Class 2, % - Channel 3

Figure 6.1: Ideal-Loss-Network for M = 3 and N, = 2
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Class 1, % -

Class 2, 4 » Channel 1
Class 3, & » Channel 2
Class 4, % - Channel 3
Class 5, 4 » Channel 4

Class 6, % >

Figure 6.2: Ideal-Loss-Network for M = 4 and N, = 2
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a class k arrival, assignment will be made to any one of the channels in AG, N I;

with equal probability.

In this section we shall first demonstrate the complete symmetry in an ideal-
loss-network and then show the optimality of random scheduling in such a network.
Although we shall show later that ideal-grading is not in ggneral the optimal ac-
cess structure, the fact that glosed form solution of its blocking probability can be
obtained allows us to have some ideas about how much blocking probability can be

reduced by grading.

Lemma 6.1 Both the continuous time Markov chain and the imbedded chain (as
developed in Chapter 4) describing the ideal-loss-network with random scheduling

are reversibled.

Proof

Let the matrix Q = [g;;] be the transition rate matrix describing the ideal-loss-
network with random scheduling. Let M be the total number of channels. The
total number of states in the network will be N =2M_ The total number of classes

is C(M, N,) and let A be the arrival rate of each class, such that

AC(M,N,) = A

The total number of states with n busy channels will be equal to C(M,n). Now

let us examine the transition rate between any two states ¢ and ;. Let us define the

3For definition of reversible Markov chain, see [15]
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occupancy of a state as follows:

‘Definition 6.5 For a loss network, the occupancy of a state ¢ is the number of
busy channels in state ¢. Alternatively, we say that state 1 is an n-occupancy state

if and only if nbusy(:) = n.

As state transition is due to either one single departure or one single arrival, g;

is non-zero only if
| nbusy(z) — nbusy(s) |=1
In other words, for the continuous time chain transitions occur only between states

with occupancies that differ by 1. For the imbedded chain, transitions can be from

a state back to itself when blockings occur.
We have:
1. For j = D(i,m) for some busy channel m,

gi; = 1. (6.1)

2. For j such that 1 = D(j,m),

Ny
g = ’\{Z 1 —C(M — nbusy(?) — 1,n — 1)C(nbusy(i), Ny — n)}
= — nbusy(?) — 1)! s .
- {rgl n(n— 1)' — nbusy(t) — n)! )C( busy(i), Ny — n)}
A

M — nbusy(z) z C(M — nbusy(:),n)C (nbusy(s), Ny — n)
A

= M rbaey @ C M) — Clrbusy(d), N)] (6-2)
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A C(nbusy(), Ny) ‘
M—nbusy(i)[ T CM,N) ] (6.3)

3. and gi; = 0 otherwise.

We can also see that whenever g;; = 1, ¢;; = M_nfwy('.)[l - C('gz‘;;'(;,)b')”‘)]. The
interpretation of equation 6.3 is that A[l1 — Q-(%ﬂ] is the amount of traffic that

is not blocked in state 1, and that all M — nbusy(s) idle channels are equally likely
to become busy next. Also, for each transition that corresponds to an assignment,
there is a transition in the opposite direction with rate equal to 1 that corresponds

to a departure.

The Markov chain for the ideal-loss-network with M = 3 and N, = 2 is shown in
Figure 6.3. What we can see is tha.t for each n-occupancy state 7, there are M — n
non-zero and equal transition rates between state 1 and M — n states with n + 1
occupancy, and there are n unity transition rates between state ¢ and n states with

n — 1 occupancy.

For the imbedded chain described in Chapter 4, the transition probabilities are
given by:

qi5

= T I (6.4)

Dij

and

pi =1- Z:Pij (6.5)

What we have arrived at is that for the ideal grading with random scheduling,.

in the continuous time chain the transition rates are the same as long as they corre-
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Tn(n+1) = Bis St nbusy(i) = n and nbusy(y) =n+1

All transition rates corresponding to departures equal 1

Figure 6.3: Continuous Time Markov Chain for an Ideal-Loss-Network with M =3 and N, =2
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spond to assignments made in states with the same occupancy or to departures from

states with the same occupancy. The same is true for the transition probabilities

of the imbedded chain.

It can be easily seen that Kolmogorov condition* is satisfied for any cycles in
the continuous time Markov chain or the imbedded chain. For any cycle in either
Markov chains, if there is a transition from an n-occupancy state 1 to an (n + 1)-
occupancy state 7, there must be an associated transition from an (n+1)-occupancy
state j' to an n-occupancy state ¢'. This is due to the fact that as a cycle must
begins and ends in the same state, it must go through as many transitions that
correspond to assignments from some n-occupancy states as there are that corre-
spond to departufes from (n + 1)-occupancy states. For the revefse cycle, there are

corresponding transitions from state J to state ¢ and from state 1’ to state 7. And

we have:
gji = gj'¢t
Dji = pjrir
and
Qitgr = Q5
Py = pij

Therefore the product of transition rates in any cycle must be equal to the product
of transition rates in the reverse cycle. Kolmogorov condition is satisfied and both

the‘continuous time chain and the imbedded chain must hence be reversible. QED

4see [15]
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The reversibility property is useful later on when we derive the upper and lower

bounds of the blocking probability for ideal-loss-networks with random scheduling.

Lemma 6.2 For the ideal-loss-network with random scheduling, in both the contin-
uous time chain and the imbedded chain, steady state probabilities for states with

the same occupancy are the same.

Proof:

This is obvious from the reversibility of the Markov chains. Let 6; be the steady
state probability of state i for the continuous time chain (while 7; is the steady
state probability of state ¢ for the imbedded chain). There is only one state with
O-occupancy, and let this state be state ¢ = 1, with steady state probability 6;. Due

to detailed balance for a reversible chain, for any l-occupancy state ¢,
b; = 61qx

qii’s are the same for all #’s that have occupancy equal to 1. Therefore §;’s must

be the same for all 1-occupancy states.

If 8,’s are the same for all n-occupancy states, they must be the same for all
(n + 1)-occupancy states. The reason is that for any (n + 1)-occupancy state 1, it

must be related to some n-occupancy state j by

6; = 0,q;
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and all §;’s are equal and g;;’s are equal. By induction we know that Lemma 6.2
must be true for the continuous time chain. Making the same argument for the
imbedded chain, we know that Lemma 6.2 must also be true for the imbedded

chain. QED

Furthermore, 6; for an n-occupancy state is given by:

6; = B_IE MA_ (1- &&A;frz)) - (6.6)

where B is a normalization constant and is given by

M n-1 T .
B=)_ C(M,n) g MA_ T(1- C?;Sf{’;\"rz)) (6.7)

n=0

Lemma 6.3 Random scheduling 1s an optimal policy for the ideal-loss-network.

Proof:

Originally, for the value determination step, there are N = 2M value determina-

tion equations:

N-1
vy — E pv;tg= zl fori=1,2,3,...,N vy=0
Jj=1
'If we can show that the values v,’s as determined by the value determination

step of the policy iteration algorithm are the same for all states with the same
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occupancy, i.e.,

'for all 1, 5 such that
nbusy(i) = nbusy(j) =n
for random scheduling, than random scheduling must be optimal as no further

improvement can be made.

Now let us assume that the above is true. Then each value determination equa-

" tion for an n-occupancy state will be reduced to the following:

Un = Pp(ns1)Untl = Pun-n)Un-1 1+ 9 = 2, Vist. nbusy(i) =n,  (6.8)

n=0,1,...,.M up =0

where now,

_ C(n.Ny)
pn(n+1) - n+ A .
n
Pnn-1) = nt A (6.10)
ASE)
] — [ )
Pon = n+A (611)
z:‘l = p:l(n—l) (6'12)

What has happened here is that the 2¥ equations we originally have for the
value determination step are reduced to M + 1 equations. Now there must be a

unique solution (assuming up = vy = 0) for ug, uy, ug, -++, up—; and g as

P' = [pp,n,]
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is obviously a (M + 1) x (M +1) stochastic matrix. The solutions obtained will also
satisfy the 2™ equations we originally have. Therefore we can indeed find solutions
for v;’s such that v; = v; for all ¢ and j such that nbusy(f) = nbusy(j), and the
solution found must be the unique solution. No further improvement can be made

and random scheduling must be an optimal policy for an ideal-loss-network. QED

6.1.2 Blocking Probability in an Ideal-Loss-Network

Let ¢, be the probability that an ideal-loss-network is in an n-occupancy state. We

have,
¢n = > 6 (6.13)
i:nbusy(i)=n
oA C(l,Ns)
= C(M,n)E’M_l(l— C(M,N,,)) (6.14)
Thereforé,'
_ A C(n—1,Ny) .
¢n = ¢n—1n(1 C(M, Nb) ) (6.10)
Since 3, ¢, = 1, we also have,
4 = 120 ) (616
o Ty 2(1 — St

The blocking probability for an ideal-loss-network with random schedﬁling is first
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given by Erlang® as:

_ $h 4 Clm) i
Pb n§.¢nC(M,Nb) (6'1 )

This result is clear intuitively. Due to the complete symmetry in an ideal-loss-
network, the process describing the number of busy channels in the network is also
a Markov process and can be represented by an occupancy chain. The steady state

probability of finding n busy channels is given by ¢.. With n busy channels, a

C!"I,Nb!

CIMNY) of traffic arrivals will be blocked.

fraction of

6.1.3 Channel-Reduced-Ideal-Network

Definition 6.6 For an ideal-loss-network with AGy’s, k = 1,2,...,C(M,N,), be-
ing the accessible groups, a channel-reduced-ideal-network is a network such that
one or more channels are removed from all accessible groups that contain them,

while the arrival rates to all classes remain the same.

A channel-reduced-ideal-network will no longer be a uniform-accessibility net-
work as the accessible groups containing some of these removed channels will be

reduced in size while those that do not contain these channels will not be affected.

We have the following theorem for channel-reduced-ideal-network:

Sgee [32] Chapter 7
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"Theorem 6.1 Random scheduling is an optimal channel selection policy for any

channel-reduced-ideal-network.

Proof:

We can view the Markov chain corresponding to a channel-reduced-ideal-network
as a subspace or a truncated version of the Markov chain corresponding to the
original ideal-loss-network. This truncated chain will contain all the states with the
removed channels always being busy and transitions into and out of the truncated
chain are ignored. Let r be the number of channels removed. An n-occupancy state
in the channel-reduced-ideal-network will correspond to an (n + r)-occupancy state
in the untruncated Markov chain. If we examine any n-occupancy state ¢ there will
be M — r — n non-zero and equal transition rates between t and M —r —n (n + 1)-
occupancy states, and n unit transition rates between ¢ and n (n — 1)-occupancy
states. Following the proof of Lemma 6.3, we can show that with random scheduling
the values as determined by the value determination step must be the same for all
‘states that have the same occupancy. Therefore no improvement can be made and

random scheduling must be optimal for a channel-reduced-ideal-network. QED

6.1.4 Bounds on Blocking Probability in Ideal-Loss-Network

Theorem 6.2 If P, is the blocking probability in an M-channel ideal-loss-network
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with total traffic A and accessibility group size Ny, P, must satisfies:

P, > (%(1-13,))“ (6.18)

(A(L = R))™

<
and By S o) (M -N D)

(6.19)

Proof:

From previous developments in this chapter, it is apparent that for the ideal-
loss-network with random scheduling, the overall blocking probability is the same
as the probability that a random arrival from any particular class is blocked. Let

my, Mg, +++, my, be the channels in the accessible channel group AGj, i.e,
AGk = (ml’ Mz, -, mNb)

Then the probability that a class k call is blocked will be equal to the probability

that all channels in AG; are busy, i.e.,

Py = Pr{m;busy}Pr{mbusy | m;busy}

-+« Pr{mp,busy | mym; -- - my,_1busy} (6.20)

Firstly, we know
Pr{mibusy} = ﬁ-(l _Pp) (6.21)

as it is the throughput per channel as the probability that any channel is busy must
be the same due to symmetry. Secondly, given m, is busy, the probability that any

other channel is busy is also the same due to symmetry, i.e.,

Pr{m,busy | mibusy} = Pr{mbusy | mibusy} Vi # 1 (6.22)
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Since the Markov chain is reversible, we can solve for the probability that m, is

" busy given m; is busy from the truncated chain, by which we means the Markov
chain with all the states such that m, is idle truncated. The truncated chain is iden-

tical to the Markov chain representing a channel-reduced-ideal-network, resulting

from the removal of channel 1. Since random scheduling is optimal for a channel-

reduced-ideal-network, the probability that any other channel is busy given m,; busy

is maximized as blocking probability is minimized and throughput is maximized.

Now let us imagine that there is a sub-optimal scheduling rule for the channel-

reduced-ideal-network wlﬁch acts as if channel m; exists, assigns calls to m; while

in fact these calls are rejected, and keeps track of whether m; should be supposely

busy or idle by assuming that the non-existing channel m; will be held up for an

exponentially distributed duration for each call assigned. For the sub-optimal pol-

icy thus the probability that any other channel is busy will be ﬁ(l — PB,). For the

original chain which is optimal, the pfobability‘ that any other channel is Busy given
m; is busy must therefore be larger. Now imagine that we are given m;, m; busy,

by considering the sub-optimal scheduling policy that acts as if they are available

for assignment we can easily see that the probability any other channel is busy given

two channels are busy must also be larger than (1 — P,). Thus we have proven

the lower bound.

For the upper bound, imagine that with one channel removed, the total through-
put cannot be larger than the original Markov chain. Thus the throughput per
~channel for the truncated chain, which is the same as the probability that any other.
channel is busy given m; is busy, must be smaller than ﬁ(l — P). With sim-

~ ilar consideration when two or more channels are given busy, the upper bound is
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established. ' QED

The nice feature for these two bounds is that when M, the total number of
channels becomes very large, the bound will become very tight and we can treat

the solution to

P, = (%(1 — P,))M (6.23)

as the blocking probability of the corresponding ideal-loss-network. The lower
bound that we have established will be referred to as the ideal lower bound. The
‘idea behind the ideal lower bound is that channel usages are positively correlated.
That is, given that a channel is busy in the network, the probability that any other
channel is busy is generally increased. Our numerical results have shown that this
ideal lower bound is not in general observed for more complicated access structures.
This implies that in some access structures with optimal scheduling, the usages of

some channels must be negatively correlated.

6.2 Comparison To M/M/N,;/N, No-Grading Network

In this section the subject is to compare the performance of the ideal-loss-network
with a network with no grading but has the same accessible group size and the
same offered traffic per channel, a. It is well known that for a loss network with N,

channels, the blocking probability is given by the Erlang B-Formula:

aN. Ny s n
py = W™ gt (o

) (6.24)
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We shall denote as P; the ideal lower bound blocking probability that satisfies
~ equation 6.19 with equality. The blocking probability for the M/M/N,/N, sysiem,
Pp, is plotted along with Py for various N,’s against different value of a, the offered
traffic per channel. The results are shown in Figure 6.4. For the same N, the lower
curve always corresponds to P;. Indeed we can see that the reduction in blocking

probability can be quite substantial, particularly when N, is large.

We can also consider the asymptotic behaviour when N, is large. For the

M/M/Nb/NA case, with a < 1,

= pim o)™ e (Nya)”
o= lm &

n=0

Ml ea ) (6.26)

(ael—a)Nb | ( )

~——75== Uusing Stirling’s approximation 6.27
AV 27TN5

Q

Q

Therefore, when N, is large, blocking probability Pg will approximately be mul-
tiplied by a factor of ael~* with each unit increase in N, for the M/M/N,/N,
network. For the ideal-loss-network, the multiplication factor would approximately
be a when P, is small. Since el-2 > 1 for @ < 1, blocking probability is reduced
faster in the case of the ideal-loss-network. For a > 1, the approximation for Py

will not be valid.
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Chapter 7

Optimal Access Structure and Traffic Splitting

In Chapter 6 we have given a detailed analysis of the ideal grading access structure.
We have derived what we call the ideal lower bound on the blocking probability
of ideal-loss-networks. In this chapter we shall continue to consider the optimal
access structure or traffic splitting problem for uniform-accéssibility networks. We
shall first derive the analytical solution to the blocking probability for the W-loss
network. Then two other major results will be presented. The first result is that we
have demonstrated from the simple example with M = 3 and N, = 2 that optimal
traffic splitting is to split traffic somewhat “unevenly”. The second result is that
we have found out numerically that the ideal lower bound is not generally observed

by other access structures.

116
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7.1 Blocking Probability of W-Loss Network

7.1.1 _ Analytical Approach

In Chapter 5 we have proven that non-invasive hunting is the optimal scheduling
rule for the W-loss network. From the policy iteration algorithm that we have’
implemented, blocking probabilivty for any loss network can be obtained numerically.
In this section we shall demonstrate that for the W-loss network, the blocking

probability can actually be found through analytical approach.

Let us refer to Figure 2.2 once again and let us consider the class 1 arrivals that
find channel 1 busy the overflow traffic from channel 1 and notate the overflow
process as OT;. Similarly, we consider the class 2 arrivals that find channel 3 busy
‘the overflow traffic from channel 3 and notate the overflow process as OT, . Overflow
traffic cannot affect subsequent state of channel 1 or channel 3 or subsequent arrivals
to either classes. Therefore channel 1 and channel 3 are independent and the two
traffic overflow procesSes are also independent. Thus the total arrival process to
channel 2 can be treated as the superposition of the two independent traffic overflow

processes.

. Corollary 7.1 Each individual overflow traffic in a W-loss network is a renewal

process.

Given we have an overflow call from class 1, channel 1 must be busy and therefore

subsequent overflows are independent of previous statistics. Therefore each individ-
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ual overflow traffic is obviously a renewal process. Let P,(t) be the probability that
the interval time between two arrivals from the same overflow stfeam is larger than
-or equal to t. In other words, P,(t) is one minus the interarrival time cumulative
distribution function of each overflow process. The reason for using P,(t) is simply

out of convenience for later calculations.

We can obtain the P,(t) characterization of each overflow process as follows:

P,(t) = e ™M+ j:(l —€")Ae " P,(t — 7)dr (7.1)

The first term on the right-hand-side is the probability that there is no arrival from
class 1 while the second term is the probability that there has been one class 1

arrival but channel 1 has already become idle so that it is not seen as an overflow.

Recognizing that the second term on the right-hand-side of equation 6.27 is a

convolution integral and taking Laplace Transforms of both sides, we have,

1 1 1
. = *(s)A - 7.
P = s+ BNy~ ) 12)
where P;(s) = L{P,(t)}, the Laplace transform of Po(t).
After some manipulations, we have,
A+1 '
Bi(s) = it (7.3)

s2 4+ (sA +1) + A?
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Since OT, is independent of OT;, an OT; arrival can be regarded as a random

incident of OT,. The residual time before the next OT; arrival can be characterized

by!:

P = to-E (7.4

where P’

* (s) is the Laplace transform of one minus the cumumlative distribution

function of the residual time, and 7 is the expected interarrival time of each overflow

process.

As is the probability that any call arrival will find the unshared channel

2

T+

busy, the overflow arrival rate of each overflow process is
22

1+

Therefore, the expected interarrival time of each overflow process is,

' 1+A
n = % (7.5)

Now given the characterizations P (s) and P},,(s), how can the blocking proba-

bility be found? Let us first consider what we call the knockout assumption:

Definition 7.1 The knockout assumption means that services can be pre-emptive
and a subsequent arriving call can displace an established call on a channel and

thus eject the call from the network.

gee [31] p172
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Let us consider the following:

Corollary 7.2 For a loss network with knockout, the knockout probability is the

same as the blocking probability without knockout.

This corollary is obvious since call durations are exponentially distributed the
resulting state is the same no matter whether the new arrival is rejected or if the
call in progress is knockout and rejected. The total number of calls rejected with
or without knockouts will always be identical. Therefore, blocking probability as
defined by the fraction of calls rejected( or ejected) is the same. However, knockout

does favor the completion of shorter calls.

Therefore, for the W-loss network, the probability that an overflow call is not
blocked by channel 2 is the same as the probability that the arrival will not be sub-
sequently knocked out when knockout is allowed. This probability is the probability
that the new arrival will depart before there is another overflow arrival from either

class. This probability is given by:
P; = Pr{a call on channel 2 is not knocked out} - (7.6)
(=)
= /0 et P,y (t) Po(t) dt (7.7)
where e™* is the probability density that service is completed at time ¢.
Therefore, blocking probability P, is the probability that an arrival finds the

unshared channel busy and also subsequently knocked out from channel 2. It is

given by:
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A

B=1

(1-P,) (7.8)

The right-hand-side of equation 7.7 can readily be recognized as the Laplace
Transform of the product of the two time functions evaluated at s = 1. Multiplica-
tion in time domain corresponds to convolution in the frequency domain along an

appropriate vertical contour. We have,

po= L[ pe (1 gPi(s)e 7.9
= A AR AOL (7.9)

with the vertical contour in the domain of convergence of Po(t).

From equations 7.3 and 7.4, after some manipulations, we obtain:

n[s? +(2A+1)s+ A% —(s+A+1)

P"‘-’( ) - ns[s _ -(2A+1)2+\/TA+1][S _ —(2A+1)2—\/4A+1] (7'10)
and
. 24+A—s
Pi(1-s)= (2A+3)+VAAt1r . _ (2A+3)—VAr+1 (7.11)
[s — ; ls 3 ]

A program has been written to compute the pole locations and the integral given
by equation 7.9 using the residue method. Results are tabulated for different offered

load per channel and are shown in table 7.1.
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A | a 1 2 3 4 5 P, P,
1.35 | 0.90 Poles .0000 -.5851 -3.1149 4.1149 1.5851 |.3711 | .3613
residues? | .0000 .3568 .0143 -.0626 -.3084

90 | .60 Poles .0000 -.3276 -2.4724 3.4724 1.3276 | .5005 | .2366
residues | .0000 .4895 .0109 -.0691 -.4314

75 | .50 Poles .0000 -.2500 -2.2500 3.2500 1.2500 | .5603 | .1884
residues | .0000 .5510 .0093 -.0705 -.4898

.60 | .40 Poles .0000 -.1780 -2.0220 3.0220 1.1780 | .6312 | .1383
residues | .0000 .6239 .0073 -.0708 -.5603

.45 | .30 Poles .0000 -.1133 -1.7867 2.7867 1.1133 |.7143 | .8868
residues | .0000 .7092 .0050 -.0690 -.6453 x107!

15 | .10 Poles .0000 -.0175 -1.2825 2.2825 1.0175|.9097 | .1178
residues | .0000 .9090 .0007 -.04535 -.8642 x 107!

015 | .01 Poles .0000 -.0002 -1.0298 2.0298 1.0002 |.9923 | .1140
residues | .0000 .9923 .0000 -.0071 -.9852 x1073

Table 7.1: P, for the W-Loss Network: Analytical Solution

2The values of the residues in Table 7.1 should actually be all multiplied by 2x. We have omitted doing so as the
factor of 2x will be cancelled in the computation of the integral
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7.1.2 Comparison with the Ideal-Loss-Network

The blocking probabilities for the W-loss network and the ideal-loss-network with
M= 3 and N, = 2 are shown in table 7.2 as a function of «, the offered load per
channel. For the W-Ioss network non-invasive hunting scheduling policy is employed

while for the ideal-loss-network, random selection is used.

a | W-Loss Network | Ideal Grading
0.9 0.36130 © 0.356901
0.6 0.23662 0.234412
0.5 - 0.18844 0.187500
0.4 0.13831 0.138817
0.3 0.088677 ~ 0.0905281
0.1 0.11781 x 107! | 0.13353 x 107!
0.01 | 0.11404 x 1073 | 0.14848 x 1073

Table 7.2: Blocking Probabilities for the W-Loss Network and the Ideal-Loss-Network

What we can see from the above table is that at high offered traffic, ideal grading
gives better performance while when offered traffic is small, W-loss network is better.
The intuitive explanation for this behaviour is as follows: When offered traffic is
small, the probability that all three channels are busy will be small, so most of
the blocking occurs when the network has just two busy channels. With a W-

loss network an optimal scheduling policy can minimize the probability that two
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channels in the same accessible group are busy given that two channels are busy
so that no call will be blocked. For the ideal grading case, given> that two channels
.are busy, one third of the calls will be blocked regardless of which two channels are

busy. Thus the W-loss network can perform better at low traffic.

7.1.3 Optimal Traffic Splitting for M =3, N, = 2

For a uniform-accessibility M-channel network with M = 3 and N, = 2, as the total
‘number of classes is small, we can write a brute force search program to estimate

the optimal traffic splitting among the three classes. Let:

AGl = (1,2)
AG, = (2,3)
AGs = (1,3)

What we have found, interestingly, is that the optimal splitting is to split traffic
almost equally to class 1 and class 2, and then split some smaller fraction of traffic
to class 3, as shown in Figure 7.1. The optimal splitting coefficients are dependent
of the total traffic density and become almost equal when total offered traffic is very
large. When offered traffic is small p; becomes almost zero. The optimal splitting
coefficients as a function of total traffic density is shown in Figure 7.1. We shall
notate as P,y the blocking probability that can be obtained with optimal traffic
_splitting and optimal scheduling policy. Pop is shown shown against Pp the Erlang
B blocking probability for an M /M /2/2 network with same offered load per channel
in Figure 7.2.
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In addition, we have found that the optimal scheduling policy is independent of
the oFered traffic. With p; > p2 > ps, the decision table F = [f(i,k)] is given in
table 7.3.

£(i,k)
S=(bybsbs) | k=1 k=2 k=3
(000) 1 3 3
(100) 2 3 3
(010) 1 3 3
(001) 1 2 1
(110) 0 3 3
(101) 2 2 0
(011) 1 0 1
(111) 0 0 0

Table 7.3: Channel Selection Table, M=3, N,=2, Optimal Splitting

The above decision table indicates one interesting feature, which is the fact that
for each class, a channel is still hunted for in a fixed order. Channel assignment is
always made in the specific order of channel 3, 1, and 2. The intuitive reasoning is
that channel 3 is shared by the two classes with the smallest traffic and thus should
be used first, while channel 2 is shared by the two classes with the largest traffic
and thus should be used last.

The result we obtained here is somewhat counter-intuitive in the sense that one
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one normally expects optimality to be found at some symmetrical points. One
reasonable explanation of the optimality of splitting traffic unevenly is as follows:
when traffic to each class is uneveri, given a choice, channel assignments can be made
optimallj, While if traffic is splitted evenly, certain states will become identical by
symmetry and nothing can be gained through optimal scheduling. To illustrate this,
say if p; and p, are equal and there is an arrival frorﬁ class 3 while both channel 1
and channel 3 are idle, then assigning to either channel is no better than assigning
to the other. On the other hand, if p; and pz are not equal, than making an optimal
assignment may lead to some improvement. Therefore, the result we have obtained

is not too surprising.

7.2 The Ideal Lower Bound

Let us first look at the loss network with M = 3 and N, = 2. Again, let Pyt be
the optimal blocking probability that is achieved by optimal traffic splitting, Pg the
blocking probability of an M /M/2/2 queue, and P; the ideal lower bound blocking

probability. They are compared under the same offered load per channel, «, in

Table 7.4.
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a Popt Pg Py
0.9 0.35560 0.3665 0.34791
0.6 0.23201 0.2466 0.21938
0.5 0.18462 0.2000 0.17157
0.4 0.13549 0.1509 0.12305
0.3 .086981 0.1011 .078720
0.1 {.11690 x 10~} | .1639 x 10™! | .98049 x 10~2
0.01 | .11402 x 10™3 | .1960 x 1073 | .99980 x 10~

The results in Table 7.4 show that for M = 3 and N, = 2, while Popt Tepresents

reduction of blocking probability by almost a half as compared to Pp at low traffic,

Table 7.4: Pype, Pg and Pr for M=3, Ny=2
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it is always larger than Pr, the ideal lower bound blocking probability. Therefore the

ideal lower bound is observed by any loss network with three channels and uniform

accessibility of two.

However, when M increases and the access structure becomes more complicated,

the ideal lower bound is not generally observed. For the case of M = 6, let us

consider the following access structure with seven classes and even traffic splitting,

AG; = (1,2), AG; = (2,3), AGs = (3,4), AG, = (4,5),

AGs = (5,6), AGs = (6,1), AGy = (1, 4)
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and

1
e =z fork=1,2,...,7

Let P, be the blocking probability obtained for this network with optimal channel

selection policy. At different a’s, P, and Py are shown as follow:

a P, Pr
0.9 .35328 .34791
0.5 .17841 17151
0.3 |.80157x107! | .76720x107!
0.2 |.38098x10°! | .37088x107!
0.1 |.94367x107% | .98049x10"2
0.01 | .81210x107* | .99980x 10~*

Again, we can see that for small value of a’s, the ideal lower bound is not satisfied.
If the ideal lower bound is not observed for some access structures with a small value
of M = M,, we know that it will also not be satisfied for some access structures
with larger value of M = M,, or at least for the case when M, is a multiple of M
as we can always divide a larger network with many channels into many smaller

networks with fewer channels.

The results in this chapter shows that even for the simplest case, little can be

said about the optimal access structure in terms of meaningful lower bound on the
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blocking probability.

The conclusion that can be drawn from this Chapter is that at low traffic, the
performance of the W-loss network with non-invasive hunting is very close to the‘op-
timal. As can be seen observed from Table 7.2 and Table 7.4, at a’s of 0.1 and 0.01,
the W-loss network represents about 30% to 45% reduction in blocking probability
as compared to the M /M /2/2 queue under the same load. This reduction should be
of interest, particularly when we can see that the structure of the W-loss network
is quite simple, and that the implementation of non-invasive hunting should not be
too complicated. Individual users only have to attempt to transmit on unshared
channels first. Complete knowledge of network state is not necessary. When traffic
is high, both the W-loss network and the ideal-loss-network with random scheduling
are fairly close to the optimal, although the latter is slightly better. The fractional
reduction in blocking probability achieved by the optimal structure as compared to

the M/M/2/2 queue, however, is rather small at high traffic.



Chapter 8

Simulation Study of the W-Hold Network

For hold networks, as the state space is infinite, the Markov decision formulation as
developed in Chapter 4 cannot be applied. One approach is to use approximations
by assuming some maximum queue sizes so that a finite-state-space systefn is ob-
tained. Let us consider the W-hold network alone. If we assume that the maximum
queue sizes allowed for the two queues are z; and z,, the total number of possible

states is:

N =2%z;+1)(z2 + 1) (8.1)

Knowing that the optimal scheduling policy must be unshared channel non-
wasting, as proven in Chapter 5, we can eliminate from consideration all states that
have a non-empty queue with the corresponding unshared channel idle. Then the

remaining permissible states are:

132
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* (lbzl; nln?)’ n; =0,1,---,21, and ng =0,1,---,2
o (1b6;0;n,0), n =0,1,--+, 7
e (0b;1;0n3), ny;=0,1,---,22
« (000;00)
The number of states one then have to consider will be:.
N =2[(z1+1)(z2+ 1)+ (z1 + 1) + (22 + 1) + 1] (8.2)

We have not been able to prove that the optimal scheduling policy for the W-hold
network is completely non-wasting in that it also does not hold calls in queue when

the shared channel is idle. But assume that we restrict ourselves to non-wasting

policies, the permissible states are:

e (111;nyny), ny=0,1,---,z;,and ny =0,1,-++,2;
[ ] (110; nlo), ny = 0, 1’- . ,zl
e (011;0n;), n;=0,1,+-,2,

o (000;00), (100;00), (001;00), (010;00), and (101;00)

Therefore, the number of states to be considered is:

N=(z;+1){z2+1) +(z1+1)+ (z2+1)+5 (8.3)
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We can see that for the general case with no state reduction, even with small

values of z; and z;, the dimension of the problem will easily become too large to

be handled.

Therefore, instead of the approximation approach, a simulation program is writ-
ten to simulate the performance of the W-hold network under different scheduling
rules. Instead of simulating the continuous time chain, we again make use of the
idea of the imbedded chain. In each state S = (b;byb3;nin2), the probabilities of

various events to be the first one to occur are:

A
Prif=4} = o (84)
bi i
Pr{& =D} = (8.3)

by + bz + b3 + A1 + Az

where A; and )\, are equal for the W-hold network.

SIMUL.f77 is the FORTRAN simulation program written In the simulation pro-
gram, a random variable is generated in each stafe to decide which event is to occur
next according to the probabilities given in equation 8.4 and 8.5. To compile statis-
tics of the average queueing delay, we keep track of {:he number of waiting calls in
queues each time a new call arrives. Starting from the initial state S, = (000;00),
the program simulates the occurrences of 800,000 events. Approximately half of
these events will be arrivals as only a finite number of calls will be found in the final
state, and thus the number of departures must be almost equal to the number of
arrivals. Let 7@ be the ensemble average of the total number of calls in both queues
seen by an arriving customer, over the 800,000 events. Neglecting the effect of the

particular choice of the initial state, we obtain from Little’s theorem the average
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queueing delay experienced by a call as:

= n
T AL+ A,

(8.6)

First, by setting A, to zero, we effectively have an M/M/2 queue. The validity of
the simulation result is tested by comparing it against the calculated queueing delay
of an M/M/2 queué. Excellent agreement is found. Then we apply the simulation
program under two different non-wasting scheduling policies. Policy one, R;, is
to use both non-invasive hunting and select from longer queue rules. Policy two,
R,, is to use non-invasive hunting only and make random call selections whenever
channel 2 becomes available while both queue 1 and queue 2 are non-empty. The
reason of considering the two policies is as follows: The actual implementation of ‘
the non-invasive hunting rule appears to be relatively simple - transmitters only
‘have to always attempt to transmit on the unshared channel first. The select from
the longer queue rule, on the other hand, requires knowledge of thé number of
calls in both queues and may not be as easy to be implemented. Therefore we
are interested in seeing how much degradation will be introduced if the select from
longer queue rule is not implemented. The average queueing delay under the two
Vdifferent policies, is plotted along with the average queueing delay of an M/M/2

queue under the same offered load per channel. The result is shown in Figure 8.1.

What we have seen from the result is as follows. First, the average queueing delay
of an M /M /2 queue ranges from approximately 20 percent higher in low load to
approximately 30 percent higher in high load of 0.9 than that of a W-hold network

under the optimal non-wasting policy R;. Second, the average queueing delay under
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R, is almost identical to that under R, in low load while is about 15 percent higher
in a high load of 0.9. The intujtive explanation js that when offered load is small,
the probability of finding both queues non-empty js small, and the probability of
finding two non-empty queues with different number of waiting calls is even smaller.
Therefore the select from longer queue rule js rarely actually applieq even under R,

and consequently there is no significant difference under the two policies.

In conclusion, by using the W-hold network with non-invasjve hunting alone,

queueing delay is reduced by roughly speaking 10 to 15 percent as compared to the



Chapter 9

Discussions and Summary

9.1 Comments on our Problem Model

9.1.1 The Loss Network Model and The Hold Network Model

One may question whether the loss network model or the hold network model is
of more interest in a future metropolitan area network. If the emphasis in future
networks is on datagram or packet switching, one then have to admit that the hold
model should be more appropriate. The delay analysis in a real network, however,
will almost certainly involve many more factors other than the queueing delay that
we have considered in this thesis. The form of access control, for instance, will
affect the queueing model that we should use, besides the control delay that should
be included. In a network with switches, the delay encountered within a switch will

most likely be very significant also. As a matter of fact, the switch is regarded by
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many as where the bottleneck is in a future broadband metropolitan area network.

One cannot, however, eliminate the possibility of finding application of circuit
switching in future networks. For instance, if the data traffic in the network are,
say, high bandwidth video sessions of relatively long durations with little room for
statistical multiplexing, then the loss network model with blocking probability as

performance measure may very well be the appropriate choice.

9.1.2 Access Control and Channel Scheduling

In this thesis, we have concentrated only on finding the optimal channel scheduling
policy. In general, applying a channel scheduling policy requires the knowledge of
the state of the network. In a network with a centralized access controller, it is
easier for us to assume that the scheduling function is also performed by the cen-
tralized controller that has complete knowledge of the state of the network. In the
subscriber loop scenario discussed in Chapter 1, access control is not an issue as
the distribution center is the only node that transmits data. However, in networks
with decentralized access control, say when users acquire use of channels through
contention or r;ossession of tokens, it becomes doubtful whether it will be realistic
to have any sophisticated scheduling policy implemented. Such a consideration is
another reason why we have concentrated on simple access structures such as the
W-loss and W-hold networks. We have pointed out in Chapter 8 that the imple-
mentation of the non-invasive hunting rule should be quite simple, even without

centralized control. It is not necessary for an individual node to have complete
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knowledge of the state of the network. All that an individual node has to do to
effect non-invasive hunting is to attempt to transmit on the unshared channel in its

accessible channel group first.

We have mentioned in the last section that the particular access control scheme
employed is crucial in determining the delay analysis model that should be used.
For instance, for various collision access schemes, the analysis of contention reso-
lution delay may deviate substantially from that of the Markovian queueing delay
model that we have adopted. Propagation delay, detection delay for carrier sens-
ing or collision detection, retransmiséion strategy, etc., will all become important
parameters to be considered. For other access control schemes, different sets of
parameters will be of relevance. It is also worth pointing out that there exists a
class of implicit-token demand assignment multiple access schemes which make use
of the unidirectional nature of optical signal propagation. The idea is for nodes
to sense and attach their own transmissions to the end of transmissions from up-
stream nodes. The physical ordering of nodes oh the fiber will determine the order

of transmission as well. A thorough discussion can be found in [9].

It is impossible for us to pin point a particular access control scheme for our
works. Roughly speaking, the Markovian model we adopt should be accurate to the

degree that access control delay is small when compared to call durations.
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9.2 Summary of Results

In this thesis a number of ideas are developed. In Chapter 3 the ideas of deferred
rejection and consistent deferred rejection are used to proof the optimality of the
non-wasting rule for loss networks. In Chapter 4, we have used the ideas of the
imbedded chain and the maximization of the g-objective, which is the ratio between
the total number of departures and the total number of events. In Chapter 5, we
have used the ideas of Tl-optimality and the maximization of the expected number
of events up to any time T to prove the optimality of the non-invasive hunting
rule for all loss and hold networks, the unshared channel non-wasting rule for all
hold netwofks, and the selection from longer queue rule for the W-hold network.

The conceptual operation of call duration randomization was also introduced to

facilitate some sample path comparisons. In Chapter 6 we have used the concept

of reversibility in Markov chains to prove the optimality of random scheduling for
the ideal-loss-network and channel-reduced-ideal-network. From these two results
the upper and lower bounds on thé optimal blocking probability of an ideal-loss-
network was obtained. In Chapter 7, the concept of knockout is used to deduce the

bloclking probability for the W-loss network through overflow traffic analysis.

From the numerical results, we have found out that relatively few general char-
acterizations can be made about the optimal channel scheduling policy for arbitrary

access structures. It does not appear that much can be deduced from the math-

ematical structure of the problem. However, focusing on the case when N,, the

accessibility of users, is small and is equal to 2, we have found out numerically and
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by simulation that indeed some performance improvement is possible through the
use of some simple access structures such as the W-loss or W-hbld networks. Here
- an important observation is thgt apparently little complexities have to be added
for the use of these simple access structures. Finally, in our attempt to find the
optimal access structure for networks with a particular number of channels and N,
we have reached an interesting conclusion that minimium blocking probability is
often achieved by some “uneven” or asymmetic access structures. This is somewhat
counter-intuitive in that one may first expect optimality to occur at some symmet-
" rical point. But then .. is not so surprising, as the presence of asymmetries provides

freedom for the optimal scheduling policy to operate on.
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