
MIT Open Access Articles

FISAR: Forward Invariant Safe Reinforcement Learning
with a Deep Neural Network-Based Optimizer

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Sun, Chuangchuang, Kim, Dong-Ki and How, Jonathan P. 2021. "FISAR: Forward
Invariant Safe Reinforcement Learning with a Deep Neural Network-Based Optimizer." 2021
IEEE International Conference on Robotics and Automation (ICRA).

As Published: 10.1109/ICRA48506.2021.9561147

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/145372

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/145372
http://creativecommons.org/licenses/by-nc-sa/4.0/

FISAR: Forward Invariant Safe Reinforcement Learning
with a Deep Neural Network-Based Optimizer

Chuangchuang Sun1 Dong-Ki Kim1 and Jonathan P. How1

Abstract— This paper investigates reinforcement learning
with constraints, which are indispensable in safety-critical
environments. To drive the constraint violation to decrease
monotonically, we take the constraints as Lyapunov functions
and impose new linear constraints on the policy parameters’
updating dynamics. As a result, the original safety set can
be forward-invariant. However, because the new guaranteed-
feasible constraints are imposed on the updating dynamics
instead of the original policy parameters, classic optimization
algorithms are no longer applicable. To address this, we propose
to learn a generic deep neural network (DNN)-based optimizer
to optimize the objective while satisfying the linear constraints.
The constraint-satisfaction is achieved via projection onto a
polytope formulated by multiple linear inequality constraints,
which can be solved analytically with our newly designed
metric. To the best of our knowledge, this is the first DNN-
based optimizer for constrained optimization with the forward
invariance guarantee. We show that our optimizer trains
a policy to decrease the constraint violation and maximize
the cumulative reward monotonically. Results on numerical
constrained optimization and obstacle-avoidance navigation
validate the theoretical findings.

I. INTRODUCTION

Reinforcement learning (RL) has achieved remarkable
success in robotics [1–3]. In general, an RL agent is free
to explore the entire state-action space and improves its
performance via trial and error [4]. However, there are many
safety-critical scenarios where an agent cannot explore certain
regions. For example, a self-driving vehicle must stay on the
road and avoid collisions with other cars and pedestrians.
An industrial robot also should not damage the safety of the
workers. Another example is a medical robot, which should
not endanger a patient’s safety. Therefore, an effective agent
should satisfy certain safety constraints during its exploration,
and failure to do so can result in undesirable outcomes.

The safe exploration problem can be represented by the
constrained Markov decision process (CMDP) [5]. Existing
optimization techniques to solve CMDP include the vanilla
Lagrangian method [6], which solves a minimax problem by
alternating between primal policy and dual variables. Further,
a PID Lagrangian method in [7] addresses the oscillations
and overshoot in learning dynamics that lead to constraint
violation. However, these methods show difficulties when
solving a minimax problem with non-convexity (e.g., non-
linear function approximations). Another approach solves
CMDP as non-convex optimization directly via successive

1Laboratory for Information & Decision Systems (LIDS), Massachusetts
Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139.
{ccsun1,dkkim93,jhow}@mit.edu. This work was support in
part by ARL DCIST under Cooperative Agreement Number W911NF-17-2-
0181.

Policy update direction
output by our optimizer
for initially infeasible set

Policy update direction
output by our optimizer
for initially feasible set

Fig. 1. Illustration of the forward invariance in the policy space. The
contour is for the constraint function, where the darker color denotes a
larger violation. Simultaneously optimizing the objective (not shown), our
optimizer can guarantee the forward invariance: the constraint can converge
to satisfaction asymptotically if the policy initialization is infeasible, and the
trajectory will stay inside the feasible set if the policy initially starts there.

convexification of the objective and constraints [8, 9]. How-
ever, the convexification methods also have several drawbacks:
1) there is a lack of understanding of how the constraint is
driven to be feasible (e.g., at what rate does the constraint
violation converge to zero?), 2) the convexified subproblem
can often encounter infeasibility, requiring a heuristic to
recover from infeasibility, and 3) it needs to solve convex
programming with linear/quadratic objective and quadratic
constraints at every iteration, which is inefficient.

In this paper, we introduce a new learning-based framework
to address the aforementioned limitations in solving CDMP.
Specifically, we propose to take safety constraints as Lyapunov
functions to drive the constraint violation monotonically
decrease and impose new constraints on the updating policy
dynamics. We note that such new constraints, which are linear
inequalities and guaranteed to be feasible, can guarantee the
forward invariance: the constraint violation can converge
asymptotically if the policy initialization is infeasible, and
the trajectory will stay inside the feasible set if the policy
initially starts there (see Figure 1). However, with the new
constraints imposed on the policy update dynamics, it is
difficult to design such updating rules to optimize the objective
while simultaneously satisfying the constraints. Methods like
projected gradient descent [10] are not applicable here because
the constraints are on the updating dynamics instead of
on the primal variables. Therefore, we propose to learn an
optimizer parameterized by a deep neural network, where
the constraint-satisfaction is guaranteed by projecting the

ar
X

iv
:2

00
6.

11
41

9v
4

 [
cs

.L
G

]
 5

 M
ay

 2
02

1

optimizer output onto those linear inequality constraints.
While generic projection onto polytopes formulated by
multiple linear inequalities cannot be solved in closed form,
we design a proper metric for the projection such that it can
be solved analytically.

Contribution. In summary, our contributions are twofold.
First, We propose a model-free framework to learn a deep
neural network-based optimizer to solve a safe RL problem
formulated as a CMDP with guaranteed feasibility without
solving a constrained optimization problem iteratively, unlike
the algorithms based on successive convexification [8, 9].
To the best of our knowledge, this is the first generic
DNN-based optimizer for constrained optimization and can
be applied beyond the safe learning context. Second, the
resulting updating dynamic of the policy parameters implies
forward-invariance of the safety set. Hence, our method
theoretically guarantees that the constraint violation will
converge asymptotically, which has not been established yet
among existing safe reinforcement learning works.

II. RELATED WORKS

Safe reinforcement learning. Algorithms from a control-
theoretic perspective mainly fall into the category of Lyapunov
methods. For tabular settings, Lyapunov functions are con-
structed in [11] to guarantee global safety during training
via a set of local linear constraints. Another work obtains
high-performance control policies with provable stability
certificates using the Lyapunov stability verification [12].
Recently, [13] constructs a neural network Lyapunov function
and trains the network to the shape of the largest safe region
in the state space.

On the other hand, the control barrier function [14] provides
a venue to calibrate the potentially unsafe control input to
the safety set. For example, [15] introduces an end-to-end
trainable safe RL method, which compensates the control
input from the model-free RL via model-based control barrier
function. To avoid solving an optimization problem while
guaranteeing safety, the vertex network [16] formulates a
polytope safety set as a convex combination of its vertices.
In [17], an input-output linearization controller is generated
via a control barrier function and control Lyapunov function
based quadratic program with the model uncertainty learned
by reinforcement learning.

There are also approaches to solve a safe RL problem
with temporal logic specifications [18, 19] and curriculum
learning [20]. See [21] for in-depth surveys about safe RL.

Compared to these approaches, our method is based on
the model-free policy gradient reinforcement learning, so
neither the transition dynamics nor the cost function is
explicitly needed. Additionally, our approach guarantees
forward invariance, so the policy will be updated to be only
safer.

DNN-based optimizer. In contrast to hand-designed opti-
mization algorithms, [22] proposes to cast the design of a
gradient-based optimization algorithm as a learning algorithm.
This work is then further extended to learn a gradient-free
optimizer in [23]. Recently, [24] introduces the Meta-SGD,

which can initialize and adapt to any differentiable learner
in just one step. This approach shows a highly competitive
performance for few-shot learning settings. To improve the
scalability and generalization of DNN-based optimizers, [25]
develops a hierarchical recurrent neural network architecture
that uses a learned gradient descent optimizer. For more
information about deep neural network-based optimizers, we
refer to the survey [26]. However, these previous works are
designed for unconstrained optimization. In this paper, we
extend these approaches and develop a DNN-based optimizer
for constrained optimization.

III. PRELIMINARY

A. Markov decision process
The Markov decision process (MDP) is a tuple

〈S,A, T ,R, γ, P0〉, where S is the set of the agent state in the
environment, A is the set of agent actions, T : S ×A×S →
[0, 1] is the transition function, R denotes the reward function,
γ ∈ [0, 1] is the discount factor and P0 : S → [0, 1] is
the initial state distribution. A policy π : S → P (A) is a
mapping from the state space to probability over actions.
πθ(a|s) denotes the probability of taking action a under state
s following a policy parameterized by θ. The objective is to
maximize the cumulative reward:

J(θ) = Eτ∼pθ(τ)[
∑
t

γtR(st, at)], (1)

where J(θ) : Rn → R and τ are trajectories sampled
under πθ(a|s). To optimize the policy that maximizes (1),
the policy gradient with respect to θ can be computed
as [27]: ∇θJ(θ) = Eτ∼πθ(τ)[∇θ log πθ(τ)G(τ)], where
G(τ) =

∑
t γ

tR(st, at) [4].

B. Constrained Markov decision process
The constrained Markov decision process (CMDP) is

defined as a tuple 〈S,A, T ,R, c, γ, P0〉, where c : S ×A×
S → R is the cost function and the other variables are
identical to those in the MDP definition (see Section III-
A) [5]. The goal in CMDP is to maximize the cumulative
reward while satisfying the constraints on the cumulative cost:

max
θ
J(θ) = Eτ∼πθ(τ)

[∑
t

γtr(st, at)
]
, (2)

s.t. Ci(θ) = Eτ∼πθ(τ)
[∑

t

γtci(st, at)
]
− C̄i ≤ 0, i ∈ I

where θ ∈ Rn is the policy parameters, Ci(θ) : Rn → R, I is
the constraint set, and C̄i is the maximum acceptable violation
of Ci(θ). In a later context, we use J and Ci as short-hand
versions of J(θ) and Ci(θ), respectively, for clarity. While
the discount factor for the cost can be different from that for
the reward, we use the same for notational simplicity.

Instead of imposing safety constraints on the cumulative
cost (see (2)), there is another option of imposing them on
individual state-action pairs [15, 16]:

max
θ
J(θ) = Eτ∼πθ(τ)

[∑
t

γtr(st, at)
]
, (3)

s.t. ci(st, at) ∈ Ci,∀i ∈ I,∀t ≤ Tmax,

where t ∈ N and Tmax ∈ N denotes the horizon of the
MDP. We note that (2), the problem formulation considered
in this work, is more general than (3) in two aspects. First,
the constraint on each individual state-action pair can be
transformed into the form of cumulative cost via setting
binary cost function followed by summation with γ = 1 in a
finite horizon MDP. That is to say, the constraints in (3) can be
re-written equivalently in the form of the constraints in (2) as∑
t 1Ci(ci(st, at)) ≤ 0, where 1C(x) is an indicator function

such that 1C(x) = 0 if x ∈ C and 1C(x) = 1 otherwise.
Second, in scenarios where the agent can afford a certain
amount of violations (i.e., C̄i in (2)) throughout an episode,
it is infeasible to allocate it to individual time instances. An
example scenario is a video game, where a player can stand
some given amount of attacks in the lifespan before losing
the game.

C. Control barrier functions

Consider the following non-linear control-affine system:

ẋ = f(x) + g(x)u, (4)

where f and g are locally Lipschitz, x ∈ D ⊂ Rn is the
state and u ∈ U ⊂ Rm is the set of admissible inputs. The
safety set is defined as C = {x ∈ D ⊂ Rn|h(x) ≤ 0} with
C ⊂ D. Then h is a control barrier function (CBF) [14] if
there exists an extended class-κ∞ function α such that for
the control system (4):

sup
u∈U

(Lfh(x) + Lgh(x)u) ≤ −α(h(x)),∀x ∈ D, (5)

where Lfh(x) =
(∂h(x)

∂x

)T
f(x) is the Lie derivative.

IV. APPROACH

A. Forward-invariant constraints on updating dynamics

The key to solving (2) is how to deal with the constraints.
Existing methods [6, 8] often encounter oscillations and
overshoot [7] in learning dynamics that can result in noisy
constraint violations. In this paper, we aim to address this
issue and build a new mechanism that drives the constraint
violation to converge asymptotically if the initialization is
infeasible. Otherwise, the trajectory will stay inside the
feasible set (i.e., forward invariance). To accomplish our
goal, we start by building a Lyapunov-like condition:

∂Ci
∂θ

θ̇ ≤ −α(Ci(θ)), i ∈ I, (6)

where θ̇ is the updating dynamics of θ and α(•) is an extended
class-κ function. Note that such Lyapunov functions are
directly taken from the constraint functions so that this process
needs no extra effort. A special case of the class-κ function is
a scalar linear function with positive slope and zero intercept.
With discretization, the updating rule becomes:

θk+1 = θk + βθ̇k, (7)

where β > 0 denotes the learning rate. Note that, with suffi-
ciently small β, the continuous dynamics can be approximated
with a given accuracy. Lemma 1 characterize how (6) will

make the safety set C = {θ|Ci ≤ 0,∀i ∈ I} forward invariant.
For notational simplicity, the statement is on one constraint
Ci with C = ∩i∈ICi and Ci = {θ|Ci ≤ 0, i ∈ I}. This
simplification does not lose any generality because the joint
forward-invariance of multiple sets will naturally lead to the
forward-invariance of their intersection set.

Lemma 1: Consider a continuously differentiable set Ci =
{θ|Ci ≤ 0, i ∈ I} with Ci defined on D. Then Ci is forward
invariant, if D is a superset of Ci (i.e., C ⊆ D ⊂ Rn), and
(6) is satisfied.
Proof: Define ∂Ci = {θ|Ci(θ) = 0, i ∈ I} as the boundary
of Ci. As a result, for θ ∈ ∂Ci, ∂Ci∂θ θ̇ ≤ −α(C(θ)) = 0. Then,
according to the Nagumo’s theorem [28, 29], the set Ci is
forward invariant.�

Here we provide intuition behind (6). Using the chain rule:
∂Ci(θ(t))

∂t = ∂Ci
∂θ θ̇ = −Ci(θ(t)). Then, the solution to this

partial differential equation is Ci(t) = ce−t. With c > 0, it
means that the initialization is infeasible (i.e., Ci(0) > 0),
and thus C(t) will converge to 0 (i.e., the boundary of Ci)
asymptotically. It is similar with a feasible initialization (i.e.,
c ≤ 0). It is worth noting that with |I| ≤ n, i.e., the number
of constraints is smaller than that of the policy parameters,
(6) is guaranteed to be feasible. This saves the trouble of
recovering from infeasibility in a heuristic manner, which is
usually the case for the previous approaches [8, 9].

While (6) in our proposed method looks similar to (5)
in CBF, our method is substantially different from those
exploiting CBF [15, 16]. First, CBF-based methods require
the system dynamics in (4) while our method is model-free,
not requiring transition dynamics and cost function ci(st, at)
in (2) (in parallel to h(x) in (5)). Second, it is more significant
that (5) and (6) represent different meanings. On one hand,
the former represents the constraint on the control input ut,
given a state xt at a certain time instance t, while in the
latter, Ci is evaluated on multiple time instances (e.g., one
episode). Due to this, considering multiple time instances
can help make a globally optimal decision while one-step
compensation can be short-sighted. On the other hand, if we
further replace ut by uθ(xt), a policy parameterized by θ,
(5) becomes a non-linear constraint on policy parameter θ
at time instance t, while (6) is a constraint imposed on θ̇
instead of θ. Such constraint on the updating dynamics θ̇ can
result in forward invariance directly in the policy space (θ
therein). By contrast, the forward-invariance of CBF is in the
state space (x therein), and thus it still requires to solve an
optimization problem to generate a control input [15] at each
time instance, which can be computationally inefficient.

B. Learning a deep neural network-based optimizer

So far, we have converted the constraint on θ in (2) to that
on θ̇ in (6), which formulates the new set

Ci,θ̇ =
{
θ̇|∂Ci
∂θ

θ̇ ≤ −α(Ci(θ)), i ∈ I
}
, (8)

and Cθ̇ = ∩i∈ICi,θ̇. However, it is unclear how to design
an optimization algorithm that minimizes the objective in
(2) while satisfying (6). Note that the typical constrained

𝛻𝜃(𝐽(𝜃𝑘))

𝑃𝑟𝑜𝑗𝐶 ሶ𝜃
(𝛻𝜃𝐽(𝜃𝑘))

𝐶 ሶ𝜃

ሶ𝜃𝑘ሶ𝜃𝑘+2 ሶ𝜃𝑘+1

ሶ𝜃𝑘+3

Contour of 𝐽(𝜃)

𝐶 ሶ𝜃 constraint

Project direction

Tangent hyperplane

ሶ𝜃 by LSTM optimizer

Fig. 2. Comparison between the projected gradient descent in (9) and
LSTM-based optimizer in (10). Considering the maximization problem of
J(θ), so ∇θJ(θ) is the ascent direction (towards the darker contour line).
The one-step projected can lead to an undesired descent direction and the
performance throughout the iterations cannot be guaranteed. On the contrary,
LSTM optimizer consider the whole optimization iteration span and can
achieve an optimal objective value at the last iteration even with some
intermediate objective descents.

optimization algorithms, such as projected gradient descent
(PGD), are no longer applicable because the constraints are
not on the primal variables anymore. Specifically, similar to
the PGD mechanism, θ can be updated in the following way:

θk+1 = θk + βprojCθ̇ (∇θJ(θk)), (9)

where projCθ̇ (•) is the projection operator onto the set Cθ̇.
However, this can be problematic as it is ambiguous whether
projCθ̇ (∇θJ(θk)) is still an ascent direction. Consequently,
standard optimization algorithms (e.g., stochastic gradient
descent (SGD), ADAM [30]) with (9), will fail to optimize
the objective while satisfying the constraints as we will show
in the result section. Thus, we propose to learn a DNN-based
optimizer.

Following the work by [22], which learns an optimizer
for unconstrained optimization problems, we extend it to
the domain of constraint optimization. Our optimizer is
parameterized by a long short-term memory (LSTM, [31])
mφ with φ as the parameters for the LSTM network m. We
note that the recurrence nature of LSTM allows to learn
dynamic update rules by fully exploiting historical gradient
information, similar to the momentum-based optimization
techniques [30, 32]. Similar to [22], the updating rule
becomes:

θk+1 = θk + βθ̇k

θ̇k = projCθ̇ (θ̇
−
k) (10)[

θ̇−k
hk+1

]
= mφ(∇θ(J(θk)), hk),

where hk is the hidden state for mφ. The loss to train the
optimizer parameter φ is defined as:

L(φ) = −Ef

[Tφ∑
k=1

wkJ(θk)

]
, (11)

where Tφ is the span of the LSTM sequence and wk > 0
is the weight coefficient. Given this loss function, mφ aims
to generate the updating direction of θ in the whole horizon

Algorithm 1 FISAR: Forward Invariant Safe Reinforcement
Learning

1: Require: class κ function α in (8), learning rate β in (10),
weight coefficients wk in (11) and LSTM sequence span length
Tφ in (11).

2: Randomly initialize LSTM optimizer parameter mφ

3: while LSTM optimizer parameters not convergent do
4: for k = 1...Tφ do
5: Randomly initialize policy parameter θ
6: Sample trajectories τ under policy πθ(a|s)
7: Compute J(θk) via (1)
8: Compute ∇θ(J(θk)) via

∇θ(J(θk)) = Eτ∼πθ(τ)[∇θ log πθ(τ)r(τ)]

9: Update θ via (10)
10: end for
11: Compute the loss function L(φ) via (11)
12: Update φ: φ← φ−∇φL(φ)
13: end while

k = 1 . . . Tφ such that the final J(θTφ) is optimal. The main
difference between ours and [22] is the projection step (i.e.,
the second line in (10)). As a result, it can be understood
that the end-to-end training minimizes the loss in (11) while
the constraint-satisfaction is guaranteed by the projection.

Here we take a further qualitative analysis on the difference
between the updating rules in (9) and (10) and validate the
advantage of the latter. During the iterations of maximizing
J(θ), one-step projected gradient projCθ̇ (∇θJ(θk)) can result
in a descent direction (i.e., the other side of the tangent
hyperplane in Figure 2) and is difficult to guarantee perfor-
mance through the iterations. By contrast, θ̇, output from the
LSTM optimizer, will take the whole optimization trajectory
into consideration (see the loss function (11)) to eventually
maximize J(θTφ), the objective function value at the last
step, even some intermediate steps can have a few objective
descents as well (e.g., θ̇k in Figure 2).

C. Solving projection onto general polytope analytically

Even Cθ̇ is a polytope formulated by linear inequalities,
projection onto Cθ̇ is still non-trivial and requires an iterative
solver such as in [8], except that there is only one inequality
constraint (i.e., |I| = 1). Two alternative methods are
proposed in [33]: one is to find the single active constraint
to transform into a single-constraint case and the other is
to take the constraints as a penalty. However, the former
is troublesome and possibly inefficient and the latter will
sacrifice the strict satisfaction of the constraint.

Hence, we propose to solve the projection onto the polytope
formulated by multiple linear inequalities in a closed form. We
first explain the generic projection problem onto a polytope:

min
x

1

2
(x− x0)TQ(x− x0),

s.t. Ax ≤ b, (12)

where x0 ∈ Rn, A ∈ Rm×n is of full row rank and Q ∈ Sn
is positive definite. Then the dual problem of (12) is

min
λ≥0

1
2λ

TAQ−1ATλ+ λT (b−Ax0) (13)

Safety
Projection

𝜽𝒌−𝟏

LSTM
𝒉𝒌−𝟏

𝛁𝜽(𝑱 𝜽𝒌−𝟏)

ሶ𝜽𝒌

ሶ𝜽𝒌
−

Optimizer

Policy

𝑱(𝜽𝒌−𝟏)

Safety
Projection

LSTM

𝜽𝒌

𝒉𝒌

𝛁𝜽(𝑱 𝜽𝒌)

ሶ𝜽𝒌−𝟏 ሶ𝜽𝒌

ሶ𝜽𝒌−𝟏
− ሶ𝜽𝒌

−

𝑱(𝜽𝒌)

Safety
Projection

LSTM

𝜽𝒌+𝟏

𝒉𝒌+𝟏

𝛁𝜽(𝑱 𝜽𝒌+𝟏)

ሶ𝜽𝒌+𝟏

ሶ𝜽𝒌+𝟏
−

𝑱(𝜽𝒌+𝟏)

𝜽𝒌+𝟐

𝒉𝒌+𝟐

Fig. 3. Computational graph used for computing the gradient of the neural network-based optimizer. The policy (top) is trained based on θ̇k , the update
direction output by the optimizer (bottom) followed by safety projection (center), which takes as input the gradient information ∇θJ(θk). The figure is
modified from [22] by adding the safety projection module. Note that gradients are allowed to flow along the solid edges in the graph, not the dashed ones,
under the assumption that the gradients of the policy parameters do not depend on the LSTM optimizer parameters. This helps avoid calculating second
derivatives, which can be computationally expensive.

Fig. 4. The trajectory of the objective (left) and constraint (right) of the
deterministic optimization problem (16) under the learned LSTM-optimizer
and three baselines for unconstrained optimization. The results show that
the constraint violation converges to zero asymptotically while our objective
is comparable to those achieved by the unconstrained solvers.

The dual problem in (13) generally cannot be solved ana-
lytically as AQ−1AT is positive definite but not diagonal.
Though Q is usually set as the identity matrix, it is not
necessary other than that Q should be positive definite. As
a result, we design Q such that AQ−1AT is diagonal by
solving:

Q−1 = arg min
H

1

2
‖H − δI‖,

s.t. AHAT = I, (14)

where δ > 0. As a result, we obtain Q−1 = δI +
AT (AAT)−1(I − δAAT)(AAT)−1A. Then (13) can be
solved in closed form as:

λ = max(0, Ax0 − b),
x = x0 −Q−1ATλ. (15)

The schematics of the LSTM-based optimizer is presented in
Figure 3 and the algorithm FISAR (Forward Invariant SAfe
Reinforcement learning) is summarized in Algorithm 1.

V. EXPERIMENTS

As our LSTM-parameterized optimizer applies to general
constrained optimization problems, it is first tested on a non-
linear numerical optimization problem. Then, we evaluate

our safe RL framework in an obstacle-avoidance navigation
environment.

A. Quadratically constrained quadratic programming

We first apply the learned LSTM-optimizer on the fol-
lowing quadratically constrained quadratic programming
(QCQP), which has various applications including signal
processing [34], graph theory [35], and optimal control [36].
Specifically, the objective and constraints in this domain are
defined as:

min
x
‖Wx− y‖22,

s.t. (x− x0)TM(x− x0) ≤ r, (16)

where W,M ∈ Sn, x0, x, y ∈ Rn and r ∈ R. M here is
not necessarily positive semi-definite and thus can bring non-
convexity.

We solve QCQP using our LSTM-optimizer as well as three
unconstrained baselines (Adam, RMS, and SGD) to show
the scale of the objective. Given the results in Figure 4, in
this deterministic setting, the constraint violation is driven to
satisfaction asymptotically, while our objective is comparable
to that from the unconstrained solvers.

B. Obstacle-avoidance navigation

We build a domain where a particle agent tries to nav-
igate in 2D space with N obstacles to reach the goal
position (see illustration in Figure 5). The system uses
double-integrator dynamics. The reward function is set as
r(s) = −dist(agent, goal), where s is the coordination of
the particle and dist(s1, s2) = ‖s1 − s2‖2. For obstacle
i, Xi, the associated cost function is defined as ci(s) =
2e−dist(agent, Xi,c) + 0.5 if s ∈ Xi and ci(s) = 0 otherwise,
where Xi,c is the center of Xi.

We use the policy gradient reinforcement learning algorithm
to solve this problem, where the policy is parameterized by
deep neural networks and trained by our LSTM-optimizer.
We compare our algorithm against two state-of-the-art safe

RL baselines, the Lagrangian [6] and constrained policy
optimization (CPO) [8] method. We use an open-source
implementation for these baselines1. For a reference, we also
compare against an unconstrained RL algorithm, proximal
policy optimization (PPO), using an open-source implemen-
tation2. For reproducibility, the hyperparameters of all the
implemented algorithms can be found in the appendix.

Results of the policy trained by our optimizer and the
baselines are demonstrated in Figure 6. There are two notable
observations. First, as expected, the unconstrained baseline
of PPO achieves the highest return while showing the large
constraint violation. Second, FISAR drives the constraint
function to decrease to satisfaction almost monotonically, but
CPO’s constraint function is much nosier and PPO-Lagrangian
eventually cannot satisfy the constraints. FISAR achieves
the smoother constraint satisfaction with a similar return
compared to CPO and PPO Lagrangian baseline.

The failure of the PPO-Lagrangian method may come
from the difficulty of solving a minimax problem such that
the algorithm gets stuck into a local minimax point, where
the primal constraints are not satisfied yet. For the CPO, the
successive convexification can be the reason for the oscillation
of the constraints within the trust region. However, if the trust
region is tuned smaller, the learning process will be slower,
resulting in higher sample complexity.

VI. CONCLUSION

In this paper, we propose to learn a DNN-based opti-
mizer to solve a safe RL problem formulated as CMDP
with guaranteed feasibility without solving a constrained
optimization problem iteratively. Moreover, the resulting
updating dynamics of the variables imply forward-invariance
of the safety set. Future work will focus on applying the
proposed algorithm in more challenging RL domains as
well as more general RL algorithms such as actor-critic and
extending it to multiagent RL domains with non-stationarity.
The challenge for the latter can partly come from that the
safety constraints can be coupled among multiple agents
(e.g., collision avoidance), which makes it difficult to get a
decentralized policy for each agent.

ACKNOWLEDGEMENTS

Dong-Ki Kim was supported by IBM, Samsung (as part
of the MIT-IBM Watson AI Lab initiative), and Kwanjeong
Educational Foundation Fellowship. We thank Amazon Web
services for computational support.

APPENDIX

The hyperparameters for our method and the baselines can
be found in the following table, where “NN” and “lr” stand
for “neural network” and “learning rate”, respectively. For
other parameters, we use the default ones in the repositories.

1https://github.com/openai/safety-starter-agents
2https://spinningup.openai.com/

Boundary
Agent

Goal

Obstacle 1

Obstacle 2

Fig. 5. Illustration of obstacle avoidance navigation environment. The
objective is to reach the goal while avoiding the two obstacles and staying
inside the boundaries.

Fig. 6. Average performance and 95% confidence interval of the policy
over 5 seeds in the obstacle avoidance domain. FISAR drives the constraint
function to decrease satisfaction almost monotonically, but CPO shows much
nosier constraint violation and PPO Lagrangian eventually cannot satisfy the
constraints. The unconstrained baseline of PPO also violates the constraints
as expected.

General
Parameter Value Parameter Value

Policy NN type MLP Policy lr 0.001
Policy NN hidden size 16 γ 0.99

Episode length 100
FISAR (Ours)

Parameter Value Parameter Value
LSTM hidden number 128 Tφ in (11) 120

LSTM hidden layer 2 batch size 24
LSTM training lr 0.05 α in (6) 20

β in (10) 0.001
CPO, PPO-Lagrangian, PPO

Parameter Value
λ (GAE) 0.95

REFERENCES

[1] J. Schulman, P. Moritz, S. Levine, M. Jordan, and
P. Abbeel, “High-dimensional continuous control using
generalized advantage estimation,” in Proceedings of the
International Conference on Learning Representations
(ICLR), 2016.

[2] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-
to-end training of deep visuomotor policies,” J. Mach.
Learn. Res., vol. 17, no. 1, p. 1334–1373, Jan. 2016.

[3] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep
reinforcement learning for robotic manipulation with

https://github.com/openai/safety-starter-agents
https://spinningup.openai.com/

asynchronous off-policy updates,” in 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
2017, pp. 3389–3396.

[4] R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction. MIT press, 2018.

[5] E. Altman, Constrained Markov decision processes.
CRC Press, 1999, vol. 7.

[6] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone,
“Risk-constrained reinforcement learning with percentile
risk criteria,” The Journal of Machine Learning Re-
search, vol. 18, no. 1, pp. 6070–6120, 2017.

[7] A. Stooke, J. Achiam, and P. Abbeel, “Responsive safety
in reinforcement learning by pid lagrangian methods,”
arXiv preprint arXiv:2007.03964, 2020.

[8] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Con-
strained policy optimization,” in Proceedings of the 34th
International Conference on Machine Learning-Volume
70. JMLR. org, 2017, pp. 22–31.

[9] M. Yu, Z. Yang, M. Kolar, and Z. Wang, “Convergent
policy optimization for safe reinforcement learning,” in
Advances in Neural Information Processing Systems,
2019, pp. 3121–3133.

[10] Y. Nesterov, Introductory lectures on convex optimiza-
tion: A basic course. Springer Science & Business
Media, 2013, vol. 87.

[11] Y. Chow, O. Nachum, E. Duenez-Guzman, and
M. Ghavamzadeh, “A lyapunov-based approach to
safe reinforcement learning,” in Advances in neural
information processing systems, 2018, pp. 8092–8101.

[12] F. Berkenkamp, M. Turchetta, A. Schoellig, and
A. Krause, “Safe model-based reinforcement learning
with stability guarantees,” in Advances in neural infor-
mation processing systems, 2017, pp. 908–918.

[13] S. M. Richards, F. Berkenkamp, and A. Krause, “The
lyapunov neural network: Adaptive stability certification
for safe learning of dynamical systems,” arXiv preprint
arXiv:1808.00924, 2018.

[14] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada,
“Control barrier function based quadratic programs for
safety critical systems,” IEEE Transactions on Automatic
Control, vol. 62, no. 8, pp. 3861–3876, 2016.

[15] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick,
“End-to-end safe reinforcement learning through barrier
functions for safety-critical continuous control tasks,”
in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 3387–3395.

[16] L. Zheng, Y. Shi, L. J. Ratliff, and B. Zhang, “Safe
reinforcement learning of control-affine systems with
vertex networks,” arXiv preprint arXiv:2003.09488,
2020.

[17] J. Choi, F. Castañeda, C. J. Tomlin, and K. Sreenath,
“Reinforcement learning for safety-critical control un-
der model uncertainty, using control lyapunov func-
tions and control barrier functions,” arXiv preprint
arXiv:2004.07584, 2020.

[18] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer,
S. Niekum, and U. Topcu, “Safe reinforcement learning

via shielding,” arXiv preprint arXiv:1708.08611, 2017.
[19] N. Fulton and A. Platzer, “Safe reinforcement learning

via formal methods,” in AAAI Conference on Artificial
Intelligence, 2018.

[20] M. Turchetta, A. Kolobov, S. Shah, A. Krause, and
A. Agarwal, “Safe reinforcement learning via curriculum
induction,” arXiv preprint arXiv:2006.12136, 2020.

[21] J. Garcıa and F. Fernández, “A comprehensive survey
on safe reinforcement learning,” Journal of Machine
Learning Research, vol. 16, no. 1, pp. 1437–1480, 2015.

[22] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman,
D. Pfau, T. Schaul, B. Shillingford, and N. De Freitas,
“Learning to learn by gradient descent by gradient
descent,” in Advances in neural information processing
systems, 2016, pp. 3981–3989.

[23] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil,
T. P. Lillicrap, M. Botvinick, and N. De Freitas, “Learn-
ing to learn without gradient descent by gradient descent,”
in Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017, pp.
748–756.

[24] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-sgd: Learning
to learn quickly for few-shot learning,” arXiv preprint
arXiv:1707.09835, 2017.

[25] O. Wichrowska, N. Maheswaranathan, M. W. Hoffman,
S. G. Colmenarejo, M. Denil, N. de Freitas, and J. Sohl-
Dickstein, “Learned optimizers that scale and generalize,”
arXiv preprint arXiv:1703.04813, 2017.

[26] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey,
“Meta-learning in neural networks: A survey,” arXiv
preprint arXiv:2004.05439, 2020.

[27] R. S. Sutton, D. A. McAllester, S. P. Singh, and
Y. Mansour, “Policy gradient methods for reinforcement
learning with function approximation,” in Advances in
neural information processing systems, 2000, pp. 1057–
1063.

[28] F. Blanchini and S. Miani, Set-theoretic methods in
control. Springer, 2008.

[29] F. Blanchini, “Set invariance in control,” Automatica,
vol. 35, no. 11, pp. 1747–1767, 1999.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[31] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[32] Y. Nesterov, “A method of solving a convex program-
ming problem with convergence rate O(1/k2),” in Sov.
Math. Dokl, vol. 27, no. 2.

[33] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Padu-
raru, and Y. Tassa, “Safe exploration in continuous action
spaces,” arXiv preprint arXiv:1801.08757, 2018.

[34] Y. Huang and D. P. Palomar, “Randomized algorithms
for optimal solutions of double-sided qcqp with applica-
tions in signal processing,” IEEE Transactions on Signal
Processing, vol. 62, no. 5, pp. 1093–1108, 2014.

[35] M. X. Goemans and D. P. Williamson, “Improved
approximation algorithms for maximum cut and sat-

isfiability problems using semidefinite programming,”
Journal of the ACM (JACM), vol. 42, no. 6, pp. 1115–
1145, 1995.

[36] C. Sun and R. Dai, “An iterative rank penalty method

for nonconvex quadratically constrained quadratic pro-
grams,” SIAM Journal on Control and Optimization,
vol. 57, no. 6, pp. 3749–3766, 2019.

	I Introduction
	II Related Works
	III Preliminary
	III-A Markov decision process
	III-B Constrained Markov decision process
	III-C Control barrier functions

	IV Approach
	IV-A Forward-invariant constraints on updating dynamics
	IV-B Learning a deep neural network-based optimizer
	IV-C Solving projection onto general polytope analytically

	V Experiments
	V-A Quadratically constrained quadratic programming
	V-B Obstacle-avoidance navigation

	VI Conclusion
	Appendix

