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Robustness Analysis of Neural Networks via Efficient Partitioning with
Applications in Control Systems

Michael Everett, Golnaz Habibi, Jonathan P. How

Abstract— Neural networks (NNs) are now routinely imple-
mented on systems that must operate in uncertain environ-
ments, but the tools for formally analyzing how this uncertainty
propagates to NN outputs are not yet commonplace. Computing
tight bounds on NN output sets (given an input set) provides
a measure of confidence associated with the NN decisions
and is essential to deploy NNs on safety-critical systems.
Recent works approximate the propagation of sets through
nonlinear activations or partition the uncertainty set to provide
a guaranteed outer bound on the set of possible NN outputs.
However, the bound looseness causes excessive conservatism
and/or the computation is too slow for online analysis. This
paper unifies propagation and partition approaches to provide
a family of robustness analysis algorithms that give tighter
bounds than existing works for the same amount of computation
time (or reduced computational effort for a desired accu-
racy level). Moreover, we provide new partitioning techniques
that are aware of their current bound estimates and desired
boundary shape (e.g., lower bounds, weighted `∞-ball, convex
hull), leading to further improvements in the computation-
tightness tradeoff. The paper demonstrates the tighter bounds
and reduced conservatism of the proposed robustness analysis
framework with examples from model-free RL and forward
kinematics learning.

I. INTRODUCTION

Neural networks (NNs) are ubiquitous across robotics for
perception, planning, and control tasks. While empirical per-
formance statistics can indicate that a NN has learned a use-
ful input-output mapping, there are still concerns about how
much confidence to associate with decisions resulting from a
learned system. One direction toward providing a confidence
measure is to consider how the various sources of uncertainty
in training/execution processes map to uncertainty in outputs
of trained NNs. Many of these uncertainties appear at the
NN input (e.g., from noisy/adversarially attacked sensing,
unknown initial conditions), thus this work focuses on the
problem of propagating input uncertainties through NNs to
bound the set of possible NN outputs online.

Analysis of how a set of possible inputs propagates
through a NN has an inherent tradeoff between computation
time and conservatism. Exact methods [1]–[6] are compu-
tationally intractable for online analysis, so we focus on
finding guaranteed outer bounds on the network outputs.
Most existing methods propagate the entire input set through
the NN – we refer to these as Propagators [7]–[12].

Although some of these propagators scale to high dimen-
sional NNs, large input sets (e.g., from high state uncertainty)
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Fig. 1: Robustness Analysis Architecture. This work effi-
ciently bounds the set of NN outputs for a given input set.

induce massive conservatism, even for small NNs. Partition-
ers [13]–[17] are a promising direction toward propagating
large input sets through NNs, particularly when the number
of uncertain NN inputs is relatively small, as in many control
systems. Nonetheless, current partitioners spend excessive
computational effort when refining cells and suffer from
simple propagation strategies.

The contributions of this work are: (i) a family of analysis
tools that provide tighter guaranteed bounds on possible NN
outputs for the same computational effort compared to the
state-of-the-art, (ii) two new partitioning algorithms that ef-
ficiently refine the input set partition based on desired output
set shapes, (iii) demonstrations of the proposed algorithms
on NNs used in practice, including various NN architectures
(e.g., fully connected, LSTM), deep NNs, and NNs with
various nonlinear activations (e.g., ReLU, tanh), and (iv)
applications on control systems to improve a robust RL
agent’s navigation efficiency by 22% and reduce reachable
set estimation error by 96% for a robot arm.

II. BACKGROUND AND RELATED WORK

Problem Statement: Given a trained NN and a set of
possible NN inputs, the objective is to find the tightest
guaranteed over-approximation of the set of possible NN
outputs. The exact set of possible outputs is called the
NN’s reachable set. In general, finding the exact reachable
set is computationally intractable for reasonably sized NNs;
instead, the goal is to compute the over-estimate Ue such that
U ⊆ Ue for a given input set.

A. Propagators

Propagators estimate how the full input set moves through
the network, and they primarily differ in approximation
strategies of the nonlinear activation functions. At one ex-
treme, Interval Bound Propagation (IBP) [7] approximates
the output of each layer with a tight `∞ ball, leading
to conservative but fast-to-compute bounds of the final
layer. Convex relaxation-based techniques [18] often achieve
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Fig. 2: Partitioner Intuition. (Top) Large input sets cause loose
bounds on NN output sets, even for this simple 2-layer NN with
linear activations. (Bottom) Tighter bounds can be achieved by
partitioning the input set, propagating each cell through the NN,
and merging the output sets [14], [17].

tighter bounds with more computation by approximating
nonlinear activations with linear bounds – some of these
can be solved in closed-form [10], [19]. Other propagators
provide tighter analysis at the cost of higher computation
time, including approaches based on QP/SDP [8], [9], and
convex relaxation refinements [20]. While this paper focuses
on analysis of trained NNs, several recent works consider
the orthogonal problem of how to use these propagation
techniques during training [21].

B. Partitioners

Partitioners break the input set into smaller regions, com-
pute the reachable set of each small region, and return the
total reachable set as the union of each smaller region’s
reachable set. The idea is depicted in Fig. 2 for a simple NN
with linear activations. In the top row (without partitioning)
IBP operates on the full input set, leading to excessive
conservatism in the final output bound (top right: large
red dashes vs. red shaded region). The bottom row shows
how IBP on two halves of the input set leads to a tighter
approximation of the output set.

The key difference between partitioning approaches is the
strategy for how to split the input set. Some works make one
bisection of the input set [13]; [14] splits the input set into
a uniform grid; [15] uses gradients to decide which cells to
split for ReLU NNs. [16] improves on [15] using “shadow
prices” to optimize how to split a particular cell (i.e., along
which dimension), but does not provide a way of choosing
which cells to split when computing tight reachable sets.
As illustrated in [17], substantial performance improvements
can be achieved by stopping the refinement of cells that
are already sufficiently refined. Thus, the current state-of-art
partitioner, a Simulation-Guided approach (SG) [17], uses a
partitioning strategy where Monte Carlo samples of the exact
NN output are used as guidance for efficient partitioning of
the input set, reducing the amount of computation required
for the same level of bound tightness. SG used IBP to
compute output sets, and the two ideas of Partitioners and
Propagators have been developed separately toward a similar
objective. This work addresses key gaps in the partitioning
literature: we unify Partitioners with state-of-art Propagators

for better performance, propose new partitioners that are
flexible in the desired output set shape. We then show how
improvements in robustness analysis map directly to reduced
conservatism in control tasks.

III. APPROACH

This section introduces the overall architecture, describes
our new partitioning algorithms, then analyzes the reduc-
tion in conservatism from partitioning. Figure 1 shows a
schematic of the proposed framework with its three nested
modules: Analyzer, Partitioner and Propagator. The Analyzer
is aware of the desired output shape (e.g., lower bounds, `∞-
ball, convex hull) and termination condition (e.g., computa-
tion time, number of Propagator calls, improvement per step).
The Analyzer specifies a Propagator (e.g., CROWN [10],
IBP [7], SDP [9], Fast-Lin [19]) and a Partitioner (e.g.,
Uniform [14], Sim-Guided [17] or the algorithms proposed
in this section). The Partitioner decides how to split the input
set into cells, and the Propagator is used by the Partitioner
to estimate the output set corresponding to an input set cell.

A. Greedy Simulation-Guided Partitioning

The state-of-art partitioning algorithm, SG [17], tightens
IBP’s approximated boundary with the following key steps:
(1) acquire N Monte Carlo samples of the NN outputs to
under-approximate the reachable set as the interval [usim],
(2) using IBP, compute the reachable set of the full input
set and add this set to a stack M , and (3) (iteratively) pop
an element from M , and either stop refining that cell if
its computed reachable set is within [usim], or bisect the
cell, compute each bisection’s reachable set, and add both
to the queue. The SG algorithm terminates when one of the
cell’s dimensions reaches some threshold, and the returned
reachable set estimate is the weighted `∞-ball that surrounds
the union of all of the cells remaining on the queue and [usim].

We propose a partitioning algorithm with better bound
tightness for the same amount of computation, called
Greedy-Sim-Guided (GSG), described in Alg. 1, by modi-
fying the choice of which cell in M to refine at each step.
Rather than popping the first element from the stack (LIFO)
as in SG, GSG refines the input cell with corresponding
output range that is furthest outside the output boundary
of the N samples (Line 17). This is illustrated in Fig. 3a,
where the input cell corresponding to d2 would be refined
before d1, because d2’s output set (magenta) further exceeds
the simulation-guided boundary estimate (black rectangle
surrounding the black NN samples).

Whereas SG might choose a cell that is not pushing the
overall boundary outward at a given iteration, GSG will
always choose to refine an input cell that is pushing the
boundary. This heuristic gives the opportunity to reduce
the boundary estimate at each iteration. While the core SG
algorithm remains the same, the greedy strategy can greatly
improve the algorithm’s performance.



Algorithm 1: Greedy Simulation-Guided Partitioning

1 Input: propagator operator ([.]), termination
condition (Tc()), input interval ([η] ⊆ H), Adaptive
flag (a = 1, if AGSG is active), Neural Network Φ

2 Output: output boundary Ue
// Initialization and MC sampling

3 usim,n = Φ(xsim,n ∈ H), n = 1, · · · , N
4 [usim]← extrema of usim,n // sim boundary
5 M ← ∅,Ue ← ∅
6 if a then

// AGSG: Adaptive Initialization
7 (η∗, u∗)← arg min

(η,u)
‖u− µ([usim])]‖2

8 ηe = Expand(η∗)
9 {[η′]i} = Decompose({[η] \ [ηe]}) // Fig. 3b

10 for [η′]i ∈ {[η′]i} do
11 [ui] = [Φ]([η]i)
12 M ←M ∪ {([η]i, [ui])}}

13 else
// GSG: M is full interval

14 [u] = [Φ]([η])
15 M ←M ∪ {([η], [u])}
// Partition Refinement

16 while M 6= ∅ do
// Fig. 3a (Pop from M)

17 ([ηw], [uw])← argmax([η],[u])∈M d([u], [usim])

18 if [uw] ∈ [usim] then
19 Ue ← Ue ∪ [uw]

20 else
21 if Tc() then
22 break // Terminate

23 else
24 [η1], [η2] = Bisect([ηw])
25 [u1], [u2] = [Φ]([ηi=1,2])
26 M ←M ∪ {([η1], [u1])} ∪ {([η2], [u2])}

27 return Ue ← Ue ∪ (∪{[η],[u]}∈M [u])

Algorithm 2: Expand([η](0))

1 Input: Initial input interval([η](0)), step size(es), NN
propagator [Φ], simulated output set[usim]

2 Output: expanded interval [ηe]
3 [ηe]← [η](0)

4 [u]← [Φ]([ηe])
5 while True do
6 if [u] ⊂ [usim] then
7 [ηe]← [ηe] + es
8 [u] = [Φ]([ηe])

9 else
10 [ηe]← [ηe]− es
11 return [ηe]

𝑑"

𝑑#

(a) GSG Set Selection

[𝜂#] η′ '

η′ (

η′ )

η′ *

η′ *

(b) AGSG Decomposition

Fig. 3: (a) GSG selects from candidates in M : the input
set corresponding to the magenta output set is chosen for
refinement, because d2 > d1 (where [usim] is the black box).
(b) AGSG decomposition [η] \ [ηe] into four new intervals
[η′]1,2,3,4.

B. Adaptive-Greedy-Simulation-Guided Partitioning

The Adaptive-Greedy-Sim-Guided (AGSG) algorithm ex-
tends GSG’s initialization procedure to reduce wasted com-
putation time refining unimportant input regions. When a
is activated, the AGSG initialization process is used (Lines
6-12). After computing [usim], AGSG initializes [ηe] as the
input point whose output is at the middle of simulated
outputs. This cell is repeatedly expanded with step size es
as long as its output set (computed by a Propagator) remains
inside [usim]. The Expand procedure is explained in Alg. 2.
The expanding cell is guaranteed to produce an output inside
the simulated boundary.

Lemma III.1. The overestimated output of the expanded
interval [ηe] ∈ H to the neural network Φ when the output
set is approximated by a propagator [Φ], is [ue] such that

[ue] = [Φ]([ηe]) ⊆ [usim] (1)

Proof. Assume the expanded interval and its output estimate
at step t are denoted by [ηe]

t and [ue]
t respectively. If

[ue]
t = [Φ]([ηe]

t) 6⊂ [usim], there are two possible cases:
(1) [ue]

t−1 ⊂ [usim] (the expansion of [ηe]
t−1 to [ηe]

t

causes this outcome). In this case, [ηe]
t is reduced back to

[ηe]
t−1 according to Alg. 2’s expanding condition in line (9).

Thus, [Φ]([ηe]
t−1) ⊆ [usim] – this condition is not stable.

Case 2 would occur when [ue]
t−1 6⊂ [usim], but this is

not possible, since the interval would never be expanded if
[ue]

t−1 6⊂ [usim], unless the initial interval’s output is outside
the simulated boundary: [ue]

(0) = [Φ]([ηe]
(0)). The initial

interval’s output cannot be outside the simulated boundary
(contradiction), since [ηe]

(0) is initialized via sampled inputs,
thus u(0) ⊂ [usim]. Therefore the approximated output of the
expanding input is always inside the simulated set.

The remaining input is decomposed into a set of disjoint
intervals [η′]i. Fig. 3 shows this decomposition in 2D, which
creates four new intervals [η′]1,2,3,4 (some of which could
be empty) of rectangle shape1. The new intervals [η′]i are
passed to GSG as the initial M . The output set boundary

1Extension of the decomposition to higher dims. is left as future work.



(a) Lower Bounds (b) `∞-ball (c) Convex Hull

Fig. 4: Input & Output Sets for Different Output Set Shapes.
The estimated bounds (black) are “tight” when they are close
to the bounds from exhaustive sampling (dashed red). The
GSG partitioner with CROWN [10] propagator ran for 2 sec.

estimate returned by AGSG merges that GSG output and the
initial expanded cell’s output boundary.

C. Boundary Specification:

While SG only computes a `∞-ball over-approximation,
GSG/AGSG optimize for the desired output set shape.
For example, if the goal is to find a convex hull over-
approximation, GSG/AGSG modify the idea from Fig. 3
to select the input set that is furthest from the convex hull
boundary (instead of the `∞-ball, as in SG [17]).

IV. EXPERIMENTAL RESULTS

This section shows example partitions, applies the ideas to
a robotic arm task, demonstrates better closed-loop behavior
in collision avoidance, shows an ability to scale to vari-
ous network sizes/architectures, and measures improvement
along the time vs. tightness tradeoff.

A. Partitions for Different Output Shapes

The ability to partition efficiently for different output
shapes is shown in Fig. 4 for a randomly initialized NN
with 2 inputs, 2 outputs, and 50 nodes in hidden layer, i.e.,
(2, 50, 2), with ReLU activations, and input set [0, 1]×[0, 1].
Each of (a-c) uses GSG with CROWN for 2 seconds. Recall
that SG [14] would only return one output set for (a-c).

B. Comparisons to Baselines & Ablation Study

Four partitioning algorithms are compared in Fig. 5 for
the same (2, 50, 2) NN and input set. Each analyzer runs
for 2 seconds to compute an estimated output set. The true
output set is obtained by exhaustively sampling from the
input space, and error is reported as percent extra area,
Aestimate−Atrue

Atrue
. The proposed partitioning algorithms GSG (c)

and AGSG (d) use only 280 and 275 partitions respectively,
and their approximation error is 0.018, which indicates more
than 79% improvement over SG -CROWN (b) and 95% over
the state of the art SG-IBP [17]. In addition to quantitative
improvement, Fig. 5 illustrates the input set partitions of each
algorithm, which highlights how GSG refines different/fewer
cells as SG, and that AGSG does not strictly make bisections.

(a) SG+IBP [17]
Partitions: 1021; Error: 0.35

(b) SG+CROWN
Partitions: 387; Error: 0.09

(c) GSG+CROWN
Partitions: 280; Error: 0.02

(d) AGSG+CROWN
Partitions: 275; Error: 0.02

Fig. 5: Input partitions for a random (2, 50, 2) ReLU NN
analyzed for 2 seconds. New methods (b, c, d) reduce the
number of input partitions and output set (convex hull) error.

(a) Robotic arm [14]

Algorithm Stats
(Prop. + Part.) Error Prop. Calls Partitions
IBP + SG [17] 0.216 1969 985

IBP + GSG 0.042 869 435
IBP + AGSG 0.040 847 425
Fast-Lin + SG 0.134 593 297

Fast-Lin + GSG 0.009 473 237
Fast-Lin + AGSG 0.008 461 232

CROWN + SG 0.134 587 294
CROWN + GSG 0.009 467 234

CROWN + AGSG 0.008 453 228

(b) Comparison of Algorithms

(c) SG-IBP [17] (d) AGSG-CROWN

Fig. 6: Reachable set estimate of a robotic arm. GSG/AGSG-
CROWN achieves 96% lower error than [17] (2 sec.).

C. Applications in Robotics and Control

1) Reachable Set Analysis of Robotic Arm: Borrowing
the robotic arm model from [14], [17], we compare our
algorithm to [17] for reachable set estimation of a forward
kinematics model. Fig. 6a shows the 2 DOF robot arm,
with input (θ1, θ2) as joint angles and output (x, y) as end
effector position. The nonlinear dynamics are modeled by
a small (2, 5, 2) NN with tanh activations. One motivation
for computing tight reachable sets here is to ensure that
the robot arm will not collide with any obstacles, without
being overly conservative. We assume a time limit of 2 sec
to approximate the convex hull of end effector positions
from the set of joint angles (θ1, θ2) ∈ [π3 ,

2π
3 ] × [π3 ,

2π
3 ].



(a) CROWN (highly conservative)

(b) GSG-CROWN (less conservative)
(c) Worst-Case Q-Values

(Model-Free RL)

Fig. 7: Multiagent collision avoidance under uncertainty. In
(a), a robust but conservative trajectory from a robust RL
formulation [24] that used CROWN/Fast-Lin [10] to estimate
worst-case Q-values under uncertainty on obstacle positions.
In (b), the proposed GSG-CROWN algorithm enables the
orange agent to reach its goal faster (7 vs. 9 sec) while still
avoiding the blue agent. This improved behavior is a result
of tighter estimates of worst-case Q-values, shown at a single
timestep in (c) (purple → green).
As shown in Fig. 6a, AGSG-CROWN reduces the error
from [17] by 96%. Only switching the partitioner (SG-IBP
vs. (A)GSG-IBP) still achieves 80% error reduction. The
estimated boundary is shown in (c, d).

2) Multiagent Collision Avoidance: Deep RL methods
are popular in multiagent collision avoidance literature [22],
[23], but they rarely account for measurement uncertainty.
[24] proposed a certifiably robust deep RL algorithm, which
involves estimating a tight lower bound on the NN (e.g.,
DQN) output given that the agent could be within some state
set. In that work, large input uncertainties can degrade per-
formance, partially due to overly conservative lower bounds
from Fast-Lin [19]. This example motivates the need for tight
reachable set estimation algorithms, as proposed in this work.

The robust-but-conservative behavior caused by
CROWN/Fast-Lin is shown in Fig. 7a (±0.5m uncertainty
on the blue agent’s position at each timestep). By instead
using GSG-CROWN to estimate worst-case Q-values
(Fig. 7b), the orange agent reaches the goal much
faster while still avoiding the blue agent. This improved
behavior is a result of tighter estimates of worst-case
Q-values, shown at a single timestep in Fig. 7c. For this
experiment, a (11, 64, 64, 11) DQN (11 states & 11
discrete actions) was trained with perfect measurements
in the gym-collision-avoidance environment [25].
Furthermore, this application is a case where only lower
bounds on the NN outputs are needed, which motivates the
use of our proposed algorithms that can focus computation
toward this objective.

D. Scalability to Larger NNs

The proposed algorithms scale to bigger NNs as shown
in Table I and improve on existing methods by orders of
magnitude. For a given number of propagator calls (100),

NN Algorithm Boundary Type
(Prop. + Part.) Lower Bounds `∞ -ball Convex Hull

(2
,1

00
,2

)

IBP [7] 1.50 7.77 × 101 9.06

IBP + SG [17] 2.47 × 10−1 4.06 1.49

IBP + GSG 1.70 × 10−1 3.44 1.44

Fast-Lin [11] 2.78 × 10−1 4.62 1.90

Fast-Lin + SG 1.70 × 10−3 1.70 × 10−2 1.12 × 10−1

Fast-Lin + GSG 3.94 × 10−3 5.48 × 10−2 7.23 × 10−2

CROWN [10] 2.15 × 10−1 3.29 1.55

CROWN + SG 1.34 × 10−3 1.23 × 10−2 1.09 × 10−1

CROWN + GSG 3.49 × 10−3 5.32 × 10−2 6.65 × 10−2

SDP [9] 1.20 × 10−1 1.90 1.06

(2
,1

00
,1

00
,1

00
,1

00
,

10
0,

10
0,

2)

IBP [7] 1.69 × 102 8.17 × 109 1.07 × 105

IBP + SG [17] 3.32 × 101 3.16 × 108 2.10 × 104

IBP + GSG 3.07 × 101 2.67 × 108 1.93 × 104

Fast-Lin [11] 2.32 1.57 × 106 1.48 × 103

Fast-Lin + SG 2.65 × 10−4 3.83 × 10−1 2.91 × 10−1

Fast-Lin + GSG 9.32 × 10−5 2.12 × 10−1 2.30 × 10−1

CROWN [10] 8.96 × 10−1 2.42 × 105 5.74 × 102

CROWN + SG 1.61 × 10−4 2.03 × 10−1 1.91 × 10−1

CROWN + GSG 5.40 × 10−5 1.18 × 10−1 1.65 × 10−1

(4
,1

00
,1

0)

IBP [7] 3.11 × 101 1.41 × 1017 -
IBP + SG [17] 1.40 × 101 6.89 × 1013 -

IBP + GSG 1.33 × 101 4.37 × 1013 -
Fast-Lin [11] 6.18 5.95 × 1010 -

Fast-Lin + SG 8.24 × 10−1 7.81 × 103 -
Fast-Lin + GSG 7.44 × 10−1 4.59 × 103 -
CROWN [10] 4.51 4.01 × 109 -

CROWN + SG 5.60 × 10−1 8.17 × 102 -
CROWN + GSG 5.00 × 10−1 5.52 × 102 -

L
ST

M
((

8,
8)

,
64

,2
) IBP [7] 1.56 × 10−2 1.16 × 102 1.13 × 101

IBP + SG [17] 2.44 × 10−3 5.55 1.83

IBP + GSG 1.80 × 10−3 4.90 1.80

TABLE I: Approximation Error (closer to 0 is better) for four
different types of NNs: small, deep, higher dimension, and
LSTM. Reported values are average error across 10 randomly
initialized NNs after up to 100 propagator calls.

the average error (close to 0 is best) of 10 random NNs
is reported for 4 different architectures (small, deep, higher
dimension, LSTM), and for different boundary types. The (4,
100, 10) NN has uncertainty on the full 4D input set and the
LSTM uses 2D uncertainty on the last timestep. While this
work’s approaches scale well to deep NNs and various ar-
chitectures, future work should consider the challenges from
settings with even higher dimensional input uncertainties.

E. Computation-Performance Tradeoff

Throughout this paper, we have leveraged the idea of
partitioning the input set to tighten the approximated bound-
ary. To empirically show that bounds tighten with additional
computational effort, we plot several combinations of par-
titioners and propagators in Fig. 8 over time. Each color
corresponds to a propagator (IBP, CROWN, SDP) and each
marker corresponds to a partitioner (SG, GSG, AGSG). This
result uses the robotic arm model and convex hull boundaries
from before, but with ReLU activations.

A first key takeaway is that additional computation time
leads to reduced error (increased tightness) Another key
takeaway is that our framework provides many algorithms
that exceed the performance of previous state-of-art algo-
rithms [9], [10], [17]. Except the blue dashed line [17] and
leftmost green/orange points [9], [10], all of the options are
new algorithms proposed by this work. The analysis provided
in the plots informs the choice of propagator and partitioner
for a particular application with, say, a desired level of accu-
racy or budgeted resources (memory/computation). Overall,
for this task GSG-CROWN almost always provides the best
accuracy vs. computation time tradeoff, requiring ∼ 5× less
computation for the same accuracy as SG-IBP [17].



(a) Propagator: IBP (b) Propagator: CROWN

(c) Propagator: SDP

CROWN [10]
SDP [9]

SG-IBP [17]
(Dashed Blue)

(d) All Propagators (overlayed)

Fig. 8: Improvement in Computation Time vs. Accuracy
Tradeoff. (a-c) each compare different partitioners for a
single propagator, (d) overlays (a-c) in one figure. Col-
ors indicate Propagator; markers indicate Partitioner. The
GSG/AGSG approaches outperform the SG approaches as
the bounds are refined. This work unified partition and
propagation ideas to give many new methods (everything
without a red annotation) that exceed the state-of-the-art.

V. CONCLUSION

This work proposed a suite of algorithms for online
robustness analysis of NNs that can provide confidence
in NN decisions under uncertainty. We build on recent
work for handling large uncertainties by proposing new,
flexible partitioning algorithms and give theoretical rationale
for partitioning as a strategy for reducing conservatism.
Furthermore, we show how recent methods that efficiently
relax NN nonlinearities can be unified with partitioning in
a single framework, which provides many new state-of-art
algorithmic choices for robotics applications. Along with
showing improved aggregate performance on random NNs
with various sizes/architectures, we show how these ideas
can be applied to other learning tasks for control systems,
showing a 22% improvement in robust RL for multiagent
collision avoidance and a 96% reduction in conservatism for
a learned robotic arm kinematic model.
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