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Global Trajectory-tracking Control for a
Tailsitter Flying Wing in Agile Uncoordinated Flight

Ezra Tal∗ and Sertac Karaman†

Massachusetts Institute of Technology, Cambridge, MA, 02139

We propose a novel control law for accurate tracking of agile trajectories using a tailsitter
flying wing micro unmanned aerial vehicle (UAV) that transitions between vertical take-off and
landing (VTOL) and forward flight. Our global control formulation enables agile maneuvering
throughout the flight envelope, including uncoordinated flight conditions with sideslip. We
derive a differential flatness transform for the nonlinear tailsitter dynamics with a simplified
aerodynamics model. Using this transform, the proposed controller incorporates accurate
tracking of the position reference along with its temporal derivatives velocity, acceleration
and jerk, as well as the yaw reference and yaw rate. The inclusion of jerk and yaw rate
references through an angular velocity feedforward term increases tracking performance on
agile trajectories with fast-changing accelerations. The control design is based on a simplified
aerodynamics model that does not require extensive modeling of the aircraft dynamics. By
applying incremental nonlinear dynamic inversion (INDI), the controller only depends on a
local input-output relation to incrementally update control inputs, resulting in robustness
against modeling inaccuracies. We achieve INDI with nonlinear dynamics inversion based
on the derived differential flatness transform. The resulting control algorithm is extensively
evaluated in flight tests, where it demonstrates accurate trajectory tracking and challenging
agile maneuvers, such as uncoordinated sideways flight, aggressive transitions while turning,
and differential thrust turning.

Supplemental Material
A video of the experiments can be found at https://youtu.be/tGQO-6DPT1M.

I. Introduction
Transitioning powered-lift aircraft combine the vertical take-off and landing (VTOL) and hover capabilities of

rotorcraft with the speed and endurance of fixed-wing aircraft. Lift is generated by a powered rotor during take-off,
landing and hover flight, while a non-rotating wing generates lift during horizontal flight. There exist various design
configurations that achieve powered lift. An aircraft may be equipped with dedicated lift rotors that are stopped once
sufficient lift is generated by the wing. Alternatively, the orientation of the rotors may be changed from horizontally
spinning to propeller configuration after take-off, like on tiltrotor and tiltwing aircraft. Tailsitter aircraft, on the other
hand, rotate in their entirety during transition, so that their rotors transition between lift generation and propulsion based
on the attitude of the vehicle.

While the large attitude envelope of tailsitter aircraft may render them less suitable for manned flight, their relative
mechanical simplicity makes them an appealing option for unmanned aerial vehicle (UAV) applications. Tailsitter
aircraft can exceed the range and endurance limitations typical of multicopters, without sacrificing the capability to
take-off, hover, and land in confined spaces. This combination is relevant to many applications. For example, in search
and rescue, an unmanned tailsitter aircraft could quickly reach remote locations using horizontal flight, and inspect
structures or enter buildings in hovering flight.

A tailsitter flying wing is a tailsitter aircraft without fuselage, tail, and vertical stabilizers or control surfaces.
Forgoing these structures simplifies the aerodynamic and mechanical design of the aircraft and potentially improves
performance by lowering mass and aerodynamic drag. Due to the lack of vertical aerodynamic surfaces, flying wing
aircraft often require active directional stabilization. The fast and relatively powerful brushless motors found on many
UAVs are particularly suitable to fulfill this task through differential thrust. By placing flaps that act as elevator and
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aileron, i.e., elevons, in the rotor wash, the aircraft remains controllable throughout its flight envelope, including static
hover conditions. The reduced stability of flying wing aircraft also make them highly maneuverable. Specifically, the
lack of vertical surfaces enables maneuvers such as fast skidding turns, and knife edge flight where the wing is pointed
in the direction of travel. In general, it permits uncoordinated flight, where the vehicle incurs nonzero lateral velocity.

In this paper, we propose a novel flight control algorithm that is specifically designed for tracking of agile trajectories
using the tailsitter flying wing aircraft shown in Fig. 1. The proposed controller uses differential flatness to track the
reference position, velocity, acceleration, and jerk (the third derivative of position), as well as yaw angle and yaw rate. It
is based on a global formulation, without mode switching or blending, and able to exploit the entire flight envelope,
including uncoordinated flight conditions, for agile maneuvering. We derive the controller based on a simplified
aerodynamics model [1] and apply incremental nonlinear dynamic inversion (INDI) to achieve accurate trajectory
tracking despite model discrepancies.

Differential flatness is a property of nonlinear dynamics systems that guarantees the existence of an equivalent
controllable linear system [2–4]. The state variables and control inputs of a flat system can be expressed as the function
of a (ficticious) flat output and a finite number of its time-derivatives. Using this function, trajectories can be generated
in the flat output space and transformed to the state space for tracking control [5, 6]. This enables tracking higher-order
derivatives of the output, which has been demonstrated to improve trajectory-tracking performance in fast and agile
flight [7–10]. The differential flatness property has been shown to hold for idealized aircraft dynamics [11], and for
aggressive fighter maneuvers in coordinated flight. [12]

Incremental, or sensor-based, nonlinear dynamic inversion is a version of nonlinear dynamic inversion (NDI) control
that alleviates the lack of robustness associated with NDI [13] by incrementally updating control inputs based on inertial
measurements. [14, 15] Instead of directly computing control inputs from the inverted dynamics model, it only considers
the input-output relation around the current operating point and computes the required control increment relative to this
point. [16] As such, it only relies on local accuracy of the dynamics model and can correct for discrepancies by further
incrementing control inputs in subsequent updates.

Existing flight control designs for tailsitter aircraft are based on various approaches. Blending of separate
controllers [17], gain scheduling [18], or pre-planned transition maneuvers [19] can be used to handle the change of
dynamics between hover and forward flight. However, when performing agile maneuvering at large angle of attack, the
aircraft continuously enters and exits the transition regime and it is preferable to utilize a controller without blending or
switching. A global formulation for trajectory tracking in coordinated flight is proposed by [20]. The controller is based
on numerical inversion of a global first-principles model, but does not account for model discrepancies, leading to a
systematic pitch tracking error. Wind tunnel testing can be used to improve accuracy of the dynamics model [21, 22].
However, building an accurate model from measurements can be a time-consuming process that may need to be repeated
if the controller is transferred to a different vehicle. The controller proposed by [23] uses the φ-theory simplified
aerodynamics model proposed by [1] that is also used in our proposed control algorithm. Their design accounts for
model discrepancies by applying model-free control. INDI has also been applied for robust control of tiltrotor [24]
and tailsitter [25] transitioning aircraft. Our control design differs from existing INDI controllers in several ways. We
focus on tracking of agile trajectories, while existing works enforce coordinated flight at small flight path angles and do
not employ differential flatness to accomplish jerk tracking. Additionally, flatness enables nonlinear inversion of our
dynamics model, while existing INDI implementations rely on local linearization to obtain inversion. The algorithm
by [26] makes use of flatness to design transition maneuvers for a quadrotor biplane, but only considers simplified
longitudinal dynamics. The resulting trajectories consider acceleration, but no higher-order derivatives. The controller
by [22] employs a pre-designed constant angular velocity feedforward input to improve transition. Theoretically, this
feedforward signal corresponds to the acceleration rate of change, i.e., jerk. However, it is not applied beyond the
pre-designed transition maneuver.

The main contribution of this paper is a global control design for tracking agile trajectories using a flying wing
tailsitter. Our proposed control design is novel in several ways. Firstly, we derive a differential flatness transform for the
tailsitter flight dynamics with simplified φ-theory aerodynamics model. Secondly, we present a method to incorporate
jerk tracking as a angular velocity feedforward input in tailsitter control design. As far as we are aware, this is the first
tailsitter controller that achieves jerk tracking, making it suitable to fly agile trajectories with fast-changing acceleration
references. Thirdly, we apply INDI to control a tailsitter aircraft in agile maneuvers that include large flight path angles
and uncoordinated flight conditions. Our INDI control design is based on direct nonlinear inversion and contrary to
existing implementations does not rely on linearization of the dynamics for inversion. Finally, we demonstrate the
proposed controller in extensive flight experiments reaching up to 8 m/s in an indoor flight space measuring 18 m × 8 m.
The flight experiments include agile maneuvers, such as aggressive transitions while turning, differential thrust turning,
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Fig. 1 Tailsitter flying wing aircraft.

and uncoordinated flight.
This paper is structured as follows: In Section II, we provide a overview of the flight dynamics and aerodynamics

model. We derive the differential flatness transform that is used to compute the attitude command and angular velocity
feedforward input in Section III. The design of the trajectory-tracking controller is presented in Section IV, and
experimental results are shown in Section V. Finally, conclusions are provided in Section VI.

II. Flight Dynamics Model
This section provides a detailed overview of the flight dynamics model employed in our proposed control algorithm.

The algorithm, described in Section IV, is based on the notion of incremental control action and therefore utilizes the
dynamics model solely as a local approximation of the flight dynamics. Unlike conventional inversion-based controllers,
it does not require a globally accurate dynamics model.

The model is employed by the incremental controller to predict (i) the change in linear acceleration due to increments
in attitude and collective thrust, and (ii) the change in angular acceleration due to increments in differential thrust and
flap deflections. By inversion of these relationships, the control algorithm computes the increments required to attain
the commanded changes in linear and angular acceleration. In order to maintain analytical invertibility and avoid undue
complexity, the dynamics model omits any contributions that do not directly affect the aforementioned incremental
relationships. For example, the velocity of the aircraft relative to the atmosphere may result in a significant aerodynamic
moment. However, when compared to the fast dynamics of the motors and servos controlling the propellers and flaps,
this moment contribution is relatively slow-changing, as it relates to the orientation and velocity of the entire vehicle.
Consequently, it is assumed to be constant between control updates and does not need to be included in the incremental
dynamics model. It is nonetheless accounted for in the control algorithm together with other unmodeled contributions
to linear and angular acceleration through inertial measurement feedback, as described in Section IV.

A. Reference Frame Conventions
Figure 2 depicts the world and body-fixed reference frames used in the dynamics model and flight controller. The

basis of the world-fixed north-east-down (NED) reference frame consists of the columns of the identity matrix [ix iy iz].
We define the basis of the body-fixed reference frame as the vectors bx which coincides with the chord line and the wing
symmetry plane, by which is perpendicular to this symmetry plane, and bz which is defined to satisfy the right-hand rule.
These vectors form the rotation matrix Ri

b = [bx by bz] ∈ SO(3), which gives the transformation from the body-fixed
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(a) Body-fixed reference frame, control inputs, and angular
motion terminology.

(b) Zero-lift reference frame, zero-lift angle of attack, and
thrust angle.

Fig. 2 Reference frame and control input conventions.

reference frame (indicated by the subscript b) to the world-fixed reference frame (indicated by the superscript i). To
avoid confusion when referring to rotations in the body-fixed reference frame, we use the terms in Fig. 2a irrespective
of vehicle orientation. We note that the term yaw is also used to refer to rotation around the world-fixed iz-axis in the
context of the reference trajectory defined in Section III.

The zero-lift axis system, depicted in Fig. 2b, is obtained by rotating the body-fixed axis system around its negative
by-axis by the zero-lift angle of attack α0, which is defined as the angle of attack for which the aircraft produces zero
lift. For symmetric airfoils α0 = 0, while most cambered airfoils have α0 < 0. Finally, the thrust angle αT is defined as
the angle of the thrust line with regard to the bx-by plane. Typically, motors are slightly tilted down, leading to αT < 0.

B. Vehicle Equations of Motion
The vehicle translational dynamics are given by

Ûx = v, (1)

Ûv = giz + m−1
(
Ri
αfα + fext

)
, (2)

where x and v are respectively the vehicle position and velocity in the world-fixed reference frame, g is the gravitational
acceleration, and m is the vehicle mass. The vector fα represents the modeled aerodynamic and thrust force in the
zero-lift reference frame. Any unmodeled forces are represented by the external force vector fext, which is defined in the
world-fixed reference frame.

The rotational dynamics are given by

Ûξ =
1
2
ξ ◦Ω, (3)

ÛΩ = J−1(m +mext −Ω × JΩ), (4)

where Ω is the angular velocity in the body-fixed reference frame, and ξ is the normed quaternion attitude vector. The
Hamilton quaternion product is denoted by ◦, such that vb = Rb

i v = ξ−1 ◦ v ◦ ξ . The matrix J is the vehicle moment of
inertia tensor, and m represents the aerodynamic and thrust moment in the body-fixed reference frame. The external
moment vector mext represents unmodeled moment contributions, similar to the force vector fext. The final term of (4)
accounts for the conservation of angular momentum. We note that the term external with regard to fext and mext refers
to unmodeled force and moment contributions, i.e., external to the model, but not necessarily due to physically external
influences, such as gusts.
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C. Aerodynamic and Thrust Force and Moment
We employ φ-theory parametrization to model the aerodynamic force and moment [1]. This parametrization has

several advantages over standard expressions for aerodynamic coefficients. Firstly, it provides a simple global model
that includes dominant contributions over the entire flight envelope, including post-stall conditions. Our simplified
model relies on only nine scalar aerodynamic coefficients: two for the wing, two for the flaps, two for the propellers, and
three for propeller-wing interaction. Secondly, φ-theory parametrization avoids the singularities that methods based
angle of attack and sideslip angle incur near hover conditions, where these angles are undefined.

We obtain the force in the zero-lift axis system by summing contributions due to thrust, flaps, and wings. The thrust
force is given by

fαT =
2∑
i=1


cos ᾱ (1 − cDT )

0
sin ᾱ (cLT − 1)

 Ti

︸                       ︷︷                       ︸
fαTi

, (5)

where ᾱ = α0 + αT , Ti is the thrust due to motor i, and the coefficients cDT and cLT represent drag and lift due to thrust
vector components in the zero-lift axis system, respectively. The motor thrust is computed as follows:

Ti = cTω2
i with i = 1, 2, (6)

where ωi ≥ 0 is the speed of motor i. The thrust coefficient cT is a function of propeller geometry and can be obtained
from bench tests using a force balance. Intuitively, cDT mostly represents the loss of propeller efficiency due to the
presence of the wing in the propwash, while cLT represents the propwash-induced lift. Note that the lift component
vanishes if the thrust line coincides with the zero-lift axis, i.e., α0+αT = 0. For convenience, all aerodynamic coefficients
incorporate the effects of air density. If the coefficients are applied for flight in significantly varying conditions, their
values may be recomputed using a simple scaling with air density. The force contribution by the flaps is given by

fαδ =
2∑
i=1
−


0
0

cδLT
cos ᾱ Ti + cδLV

‖v‖i>x vα

 δi︸                                          ︷︷                                          ︸
fαδi

, (7)

where δi is the deflection angle of flap i. The first term of (7), scaled with the coefficient cδLT
, is the flap lift due to the

prop-wash induced airspeed. The second term, scaled with cδLV
, is the flap lift due to the airspeed along the zero-lift

line. Finally, the wing force contribution is obtained as

fαw = −


cDV i>x vα

0
cLV i>z vα

 ‖v‖, (8)

where cDV and cLV are the wing drag and lift coefficients, respectively. The total force in the zero-lift axis system is
now obtained as

fα = fαT + fαδ + fαw . (9)
We note that (9) does not contain any lateral force component. Due to the lack of a fuselage and vertical tail surface
lateral force is relatively much smaller than the lift and drag components. Any incurred lateral force is captured in the
unmodeled force fext, and accounted for by the controller through accelerometer feedback, as described in Section IV.B.

The moment is obtained by summation of contributions due to motor thrust and torque, and flap deflections. We
ignore the wing moment due to velocity, attitude and rotation rates, as these state variables are relatively slow-changing
compared to the motor speeds and flap deflections. The corresponding contributions are incorporated in the unmodeled
moment mext and accounted for through angular acceleration feedback. The moment due to motor thrust is given by

mT =


lTy i>z Rb

α(fαT2
− fαT1
)

cµT (T1 + T2)

lTy i>x Rb
α(fαT1

− fαT2
)

 , (10)
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where lTy is the absolute distance along by between the vehicle center of gravity and each motor, and cµT is the pitch
moment coefficient due to thrust. The moment due to motor torque is obtained as follows:

mµ =


cosαT

0
− sinαT


2∑
i=1

µi, (11)

where µi is the motor torque around the thrust-fixed x-axis given by

µi = −(−1)icµω2
i (12)

with cµ the propeller torque coefficient. The signs in (12) correspond to the rotation directions as defined in Fig. 2b.
The flap contribution to the aerodynamic moment is given by

mδ =


lδy cosα0 i>z (fαδ2

− fαδ1
)

lδx i>z (fαδ1
+ fαδ2
)

lδy sinα0 i>z (fαδ2
− fαδ1
)

 , (13)

where lδy is the absolute distance between the vehicle center of gravity and each flap center along the by axis, and lδx is
the distance from this axis to the aerodynamic center of both flaps. The total aerodynamic moment can now be obtained
by summing the contributions, as follows:

m = mT +mµ +mδ . (14)

III. Differential Flatness
The purpose of our control design is to accurately track the trajectory reference

σref(t) = [xref(t)T ψref(t)]T , (15)

which consists of four elements: The vehicle position in the world-fixed reference frame xref(t) ∈ R3, and the yaw angle
ψref(t) ∈ T, where T denotes the circle group. The reference σref(t) may be provided by a pre-planned trajectory, or by
an online motion planning algorithm. Henceforward, we do not explicitly write the time argument t everywhere. The
position reference xref is at least third-order continuous, and the yaw reference ψref is at least first-order continuous. By
taking the derivative of xref , we obtain continuous references for velocity vref , acceleration aref , and jerk jref . Similarly,
we obtain a continuous yaw rate reference Ûψref from the yaw reference ψref .

Differential flatness of a nonlinear dynamics system entails the existence of an equivalent controllable linear system
via a specific type of feedback linearization. For further details on differential flatness and its applications in general, we
refer the reader to [2–4]. An important property of flat systems is that their state and input variables can be directly
expressed as a function of the flat output and a finite number of its derivatives. This property is of major importance when
developing trajectory generation and tracking algorithms, as it allows one to readily obtain state and input trajectories
corresponding to an output trajectory, effectively transforming the output tracking problem into a state tracking problem.
In practice, the state trajectory can serve as a feedforward control input that enables tracking of higher-order derivatives
of the flat output. Inclusion of these feedforward inputs improves trajectory tracking performance by reducing the phase
lag in the response to rapid changes in the flat output.

In this section, we show differential flatness of the dynamics system described in Section II—with some
simplifications—by deriving expressions of the state and control inputs as a function of the flat output defined
by (15). The expression for angular velocity is used in our trajectory-tracking controller to obtain a feedforward input
based on the reference jerk and yaw rate. Expressions for attitude and the control inputs are used for linear and angular
acceleration control, respectively.

A. Attitude and Collective Thrust
The position and velocity states are trivially obtained from (15). We arrive at expressions for the attitude and

collective thrust by rewriting (2) as
fi = m (a − giz) − fext, (16)
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where we assume that fext is constant. In practice fext may not be constant, but it is implicitly estimated and corrected for
by incremental control, as described in Section IV.B. Given (16), the vehicle attitude and collective thrust are uniquely
defined by three major constraints:

(i) the yaw angle reference ψ,
(ii) the fact that i>y fα = 0 according to (5), and
(iii) the forces in the vehicle symmetry plane, i.e., i>x fα and i>z fα.

Additionally, we exploit the continuity of yaw and the fact that the collective thrust must be non-negative.
In this section, we express the attitude using Euler angles ψ, φ, and θ in ZXY rotation sequence. The angle symbols

are also used to refer to rotation matrices between intermediate frames, e.g., the rotation matrix Rφ
i represents the

rotations by ψ and φ. The ZXY Euler angles form a valid and universal attitude representation that is suitable for the flat
transform, because each of the angles is uniquely defined by one of the constraints, as shown in Fig. 3. In order to avoid
the well-known issues with Euler angles, we convert the obtained attitude to quaternion format before it is used by the
flight controller.

We define the yaw angle ψ as the angle between the world-fixed iy-axis and the projection of the body-fixed by-axis
onto the horizontal plane, i.e., the plane perpendicular to iz . While this angle is undefined if the wingtips are pointing
straight up/down (i.e., i>z by = ±1), we avoid ambiguity by performing the yaw rotation ψiz from the identity rotation
(i.e., from Rb

i = I).
Next, we satisfy constraint (ii) by rotation around the yawed x-axis Ri

ψix by

φ = − atan2
(
i>y Rψ

i fi, i>z fi
)
+ kπ, (17)

where atan2 is the four-quadrant inverse tangent function. In the second term, k ∈ {0, 1} is set such that by • Ri
φiy > 0,

i.e., such that the obtained y-axis corresponds as closely as possible to the current by-axis. This results in the equivalence
ψ ≡ ψ + π, which enables continuous yaw tracking through discontinuities, such as a roll maneuver where the yaw
angle instantly switches to ψ + π. Unwanted switching does not occur due to continuity of the yaw reference. If the
commanded force is entirely in the horizontal plane and perpendicular to the yaw direction, both arguments of the
tangent function are zero and any φ satisfies the constraint. This condition is highly unlikely to occur in actual flight, but
can be resolved in practice by setting φ to match the current direction of by as closely as possible.

To satisfy constraint (iii), we solve (9) for the collective thrust T = T1 + T2 and for the rotation angle θ̄ around the
vehicle y-axis. In order to find these expressions, we assume that the flap angles are constant and known. We can make
this assumption without consequence, because of a limitation of the INDI acceleration controller. As described in
Section IV, we only consider the low-frequency component of the flap deflection when controlling the linear acceleration.
This slow-changing component is virtually constant between control updates.

Since the individual thrust values are still undetermined, we assume that the difference between the steady-state flap
deflections is negligible so that

δ1T1 + δ2T2 ≈
T
2
δ, (18)

where δ = δ1 + δ2. This assumption may be violated during sustained maneuvers or flight with sideslip, but we have
found that it typically does not lead to large discrepancies. We substitute into (9) fα = Rθ̄

φfφ and vα = Rθ̄
φvφ with

fφ = Rφ
i fi , vφ = Rφ

i vi . Note that θ̄ refers to the rotation from φ to the zero-lift reference frame, while θ is the rotation
to the body-fixed reference frame. We obtain the following two equalities:

cᾱ
(
1 − cDT

)
T − cDV ‖v‖

(
cθ̄ i>x vφ − sθ̄ i>z vφ

)
= cθ̄ i>x fφ − sθ̄ i>z fφ, (19)(

sᾱ (cLT − 1) − cᾱ cδLT
δ/2

)
T − cδLV

δ‖v‖
(
cθ̄ i>x vφ − sθ̄ i>z vφ

)
− cLV ‖v‖

(
sθ̄ i>x vφ + cθ̄ i>z vφ

)
=

sθ̄ i>x fφ + cθ̄ i>z fφ,
(20)

where c and s represent respectively cosine and sine, and ᾱ = α0 + αT . Solving (19) and (20) for θ̄ and T gives

θ̄ = atan2
(
η

(
i>x fφ + cDV ‖v‖i

>
x vφ

)
− cδLV

δ‖v‖i>x vφ − cLV ‖v‖i
>
z vφ − i>z fφ,

η
(
i>z fφ + cDV ‖v‖i

>
z vφ

)
− cδLV

δ‖v‖i>z vφ + cLV ‖v‖i
>
x vφ + i>x fφ

)
+ kπ,

(21)

T =
1

cᾱ
(
1 − cDT

) (
cθ̄ i>x fφ − sθ̄ i>z fφ + cDV ‖v‖

(
cθ̄ i>x vφ − sθ̄ i>z vφ

) )
, (22)
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(a) Yaw rotation to satisfy the yaw ref-
erence.

(b) Roll rotation to satisfy i>y fα = 0. (c) Pitch rotation to attain i>x fα and
i>z fα.

Fig. 3 Rotation sequence for attitude flatness transform.

where

η =
sᾱ

(
cLT − 1

)
− cᾱ cδLT

δ/2

cᾱ
(
1 − cDT

) . (23)

is the ratio of lift and forward force due to thrust. We set k ∈ {0, 1} such that T ≥ 0. In the unlikely event that constraint
(iii) is satisfied for any θ̄, both arguments of the atan2 function equal zero and in practice we can set θ̄ to match the
current attitude as closely as possible. Since the angle θ̄ is the rotation to the zero-lift axis system, we use θ = θ̄ + α0 to
obtain the corresponding rotation to the body-fixed reference frame.

Note that we purposely selected the ZXY rotation sequence and the definition of yaw, such that φ and θ do not affect
the satisfaction of constraint (i), and θ does not affect the satisfaction of constraint (ii). Given that the Euler angles are
uniquely defined (up to addition of π) by the yaw reference, (17), and (21), this implies that these expressions give the
attitude as a function of σref .

B. Angular Velocity
By taking the derivative of (17), we obtain

Ûφ =

(
cψ Ûψi>x fi + sψ i>x Ûf

i
+ sψ Ûψi>y fi − cψ i>y Ûf

i
)

i>z fi −
(
sψ i>x fi − cψ i>y fi

)
i>z Ûf

i(
i>y Rψ

i fi
)2
+

(
i>z fi

)2
, (24)

where the force derivative is obtained as the derivative of (16), as follows:

Ûfi = mj. (25)

We take the derivative of (21) to obtain

Ûθ =

(
η

(
i>x Ûf

φ
+ cDV τx

)
− cδLV

δτx − cLV τz − i>z Ûf
φ
)
σ2 − σ1

(
η

(
i>z Ûf

φ
+ cDV τz

)
− cδLV

δτz + cLV τx + i>x Ûf
φ
)

σ2
1 + σ

2
2

, (26)

where σ1 and σ2 are respectively the first and second arguments of the atan2 function in (21), and

τx = Û‖v‖i>x vφ + ‖v‖i>x Ûvφ, (27)

τz = Û‖v‖i>z vφ + ‖v‖i>z Ûvφ (28)

with

Û‖v‖ =
v>a
‖v‖

, (29)

Ûvφ =
d
dt

(
Rφ
i

)
v + Rφ

i a. (30)
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The expression for the force derivative Ûfφ is similar to (30). Finally, we obtain the angular velocity in the body-fixed
reference frame, as follows:

Ω =


0
Ûθ

0

 + Rθ
φ


Ûφ

0
0

 + Rθ
ψ


0
0
Ûψ

 . (31)

C. Control Inputs
At this point, we have expressed the state variables as a function of the flat output (15). To obtain an expression for

the control inputs, first an expression for angular acceleration is obtained as the derivative of (31) and substituted into
(4) to obtain an expression for m. The angular acceleration can be utilized as a feedforward input corresponding to
snap, the fourth derivative of position [10]. However, calculation of this feedforward input significantly complicates
the controller expressions, and its benefit may be marginal given how challenging it is to accurately control angular
acceleration on an aircraft. Hence, we do not include the angular acceleration feedforward input in our control design,
and omit its lengthy expression.

As described in Section IV.D, our control design obtains a moment command using INDI. To find the corresponding
control inputs, i.e., flap deflections and differential thrust ∆T = T1 − T2, we solve (14) for these inputs. We find an
expression for the differential thrust ∆T by equating

i>z
(
mT +mµ

)
= i>z m, (32)

which assumes that the contribution by i>z mδ is negligible. Due to the multiplication with sinα0, this assumption
typically does not result in significant discrepancies. Using µ1 + µ2 = cµ/cT∆T , we obtain

∆T =
i>z m

lTy
(
cα0 cᾱ (1 − cDT ) − sα0 sᾱ (cLT − 1)

)
− sαT

cµ
cT

. (33)

The individual thrust values are then given by

T1 =
T + ∆T

2
, T2 =

T − ∆T
2

. (34)

After obtaining the motor speeds from (6), we can deduct mT and mµ from m to obtain mδ . Finally, the flap deflections
are computed by inversion of (13), as follows:[

δ1

δ2

]
=

[
−lδy cα0 i>z ν1 lδy cα0 i>z ν2

lδx i>z ν1 lδx i>z ν2

]−1 [
i>x mδ

i>y mδ

]
(35)

with
νi = −cδLT

cos ᾱ Ti − cδLV
‖v‖i>x vα . (36)

IV. Trajectory-tracking Control
Our proposed controller is designed to accurately track the dynamic position reference σref . It consists of several

components based on various control methodologies, as shown in Table 1. Each component employs a global formulation
that enables seamless maneuvering throughout the flight envelope. By separating kinematics and dynamics, we are
able to employ proportional-derivative (PD) control on the translational and rotational kinematics. Application of the
resulting linear and angular acceleration commands is performed using INDI control. INDI enables accurate control
by incremental adjustment of control inputs, based on the inverted dynamics model derived in Section III. Due to
its incremental formulation, the controller only depends on local accuracy of the input-output relation, resulting in
favorable robustness against modeling errors and external disturbances. As we will detail in this section, these errors and
disturbances (i.e., fext and mext) are implicitly estimated and corrected for based on the difference between sensor-based
and model-based force and moment estimates. By directly incorporating linear and angular acceleration measurements
to obtain the sensor-based estimates, the controller is able to quickly and wholly counteract errors and disturbances,
without relying on integral action.

Our proposed control design uses a state estimate consisting of position x, velocity v, and attitude ξ . Additionally,
linear acceleration a and angular velocity Ω measurements in the body-fixed reference frame are obtained from an
inertial measurement unit (IMU). Motor speeds ω and flap deflections δ are measured and utilized as well.
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Table 1 Overview of trajectory-tracking controller components.

Component Methodology Reference Control Output Description
Position and Velocity Control PD xref , vref , aref ac Section IV.A
Linear Acceleration Control INDI ac , ψref ξc , Tc Section IV.B
Attitude and Angular Rate Control PD ξc , jref , Ûψref ÛΩc Section IV.C
Angular Acceleration Control INDI ÛΩc ωc , δc Section IV.D
Motor Speed Control Integrative ωc ζ Section IV.E

A. PD Position and Velocity Control
We use cascaded proportional-derivative (PD) controllers for position and velocity control, resulting in the following

expression for the acceleration command:

ac = Ri
b

(
KxRb

i (xref − x) +KvRb
i (vref − v) +KaRb

i

(
aref − ãlpf

) )
+ aref (37)

with K• indicating diagonal gain matrices. The first term of (37) aims to null the position and velocity errors, while the
second term is a feedforward input that ensures the acceleration reference is accurately tracked. Since the vehicle has
different acceleration capabilities along its body-fixed axes, we define the control gains in the body-fixed reference
frame and transform them to the world-fixed frame for each control update.

The gravity-corrected linear acceleration in the inertial reference frame is obtained as

alpf = (Ri
bab + giz)lpf, (38)

where lpf indicates low-pass filtering that is applied to IMU measurements to alleviate measurement noise, e.g., due to
vibrations. We follow the method by [25] and deduct acceleration contributions due to the transient flap movements.
This correction helps eliminate pitch oscillations that may result from the non-minimum phase response of acceleration
to flap deflections. To isolate transient movement, we first filter the measured flap deflections using the low-pass filter
and then using a high-pass filter, resulting in a band-pass filtered signal. The low-pass filter helps to match the phase
delay between accelerometer and flap deflection measurements, and ensures that we do not (re-)introduce high-frequency
noise in the resulting acceleration signal

ãlpf = alpf − m−1Ri
afaδhpf

. (39)

B. INDI Linear Acceleration Control
INDI control incrementally updates the attitude and collective thrust to track the acceleration command ac . The

controller estimates the unmodeled force fext by comparing the measured acceleration to the expected acceleration
according to the vehicle aerodynamics model and motor speed measurements. By rewriting (2), we obtain

fext = m
(
ãlpf − giz

)
− Ri

αfαlpf, (40)

where, for consistency with ãlpf , low-pass filtered motor speeds and the filtered flap deflections without transient
component are used in the computation of fαlpf according to (9). Substitution of (40) into (2) gives

a = giz + m−1
(
Ri
αfα + fext

)
= giz + m−1

(
Ri
αfα +

(
m

(
ãlpf − giz

)
− Ri

αfαlpf

))
= ãlpf + m−1

(
fi − filpf

)
.

(41)

Solving (41) for fi gives an incremental expression for the force command that corresponds to the commanded
acceleration, as follows:

fic = m(ac − ãlpf) + filpf . (42)

This incremental control law enables the controller to achieve the commanded acceleration despite potential modeling
discrepancies and external forces, without depending on integral action. If the commanded acceleration is not yet
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attained, the force command will be adjusted further in subsequent control updates until the first term in (42) vanishes.
Based on the force command fic , the commanded attitude ξc is obtained from ψref , (17) and (21), and the collective
thrust command Tc is obtained from (22). Note that it is through the flatness transform described in Section III that our
INDI algorithm can perform fully nonlinear inversion, without linearization of the dynamics in (41). The nonlinear
inversion provides more accurate control commands when large acceleration deviations occur, such as may happen
during aggressive maneuvers with quickly changing acceleration references.

C. PD Attitude and Angular Rate Control
Given the extensive attitude envelope of the tailsitter vehicle, our attitude controller employs quaternion representation

to avoid kinematic singularities. The attitude error quaternion is obtained as

ξe = ξ
−1 ◦ ξc, (43)

the corresponding three-element error angle vector is given by

ζ e =
2 arccos ξwe√

1 − ξwe ξwe

[
ξxe ξ

y
e ξze

]>
. (44)

The angular acceleration command is obtained using the PD controller

ÛΩc = Kξζ e +KΩ
(
Ωref −Ωlpf

)
, (45)

where Ωlpf is the low-pass filtered angular velocity measurement from the IMU, and Ωref is the feedforward angular
velocity reference obtained by (31) based on Ûψref and jref . By including this feedforward jerk term, the controller
improves trajectory-tracking accuracy, especially on agile trajectories with fast-changing acceleration references.

D. INDI Angular Acceleration Control
The angular acceleration controller has a similar construction as its linear acceleration counterpart described in

Section IV.B. By rewriting (4), we obtain the following expression for the unmodeled moment:

mext = J ÛΩlpf −mlpf +Ωlpf × JΩlpf, (46)

where ÛΩlpf is obtained by numerical differentiation of Ωlpf , and mlpf is calculated using (14) and based on the low-pass
filtered flap deflection and motor speed measurements. Substitution of (46) into (4) gives

ÛΩ = J−1 (m +mext −Ω × JΩ)

= J−1
(
m +

(
J ÛΩlpf −mlpf +Ωlpf × JΩlpf

)
−Ω × JΩ

)
= ÛΩlpf + J−1 (

m −mlpf
)
,

(47)

where it is assumed that the angular momentum term is relatively slow changing, so that the difference with its filtered
version may be neglected. Solving (47) for m gives the incremental control law

mc = J( ÛΩc − ÛΩlpf) +mlpf . (48)

Based on the commanded moment mc , the thrust and flap deflection commands can now be calculated by (33) and (34),
and (35), respectively. Finally, the commanded motor speeds ωc are calculated by inversion of (6).

E. Integrative Motor Speed Control
While the flaps are driven by servos equipped with closed-loop position control, the propellers are driven by

brushless motors that cannot directly track motor speed commands. Instead, we use the second-order polynomial p to
find the corresponding throttle input. This function was obtained from regression analysis of static test data relating
motor speed to throttle input. We add integral action to account for changes due to the fluctuating battery voltage, so
that the throttle command that is sent to the motor electronic speed controller (ESC) is obtained as

qi = p(ωi,c) + kIω

∫
ωi,c − ωi dt. (49)
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V. Experimental Results
In this section, we evaluate controller performance on various trajectories that include challenging flight conditions,

such as large accelerations, transition on curved trajectories, and uncoordinated flight. A video of the experiments can
be found at https://youtu.be/tGQO-6DPT1M.

A. Experimental Setup
Experiments were performed in an 18 m × 8 m indoor flight space using the tailsitter vehicle shown in Fig. 1 and

described in [27]. The vehicle is 3D-printed using Onyx filament with carbon fiber reinforcement. It weighs 0.7 kg and
has a wingspan of 55 cm from tip to tip. It is equipped with two T-Motor F40 2400 KV motors with Gemfan Hulkie
5055 propellers. The motor speeds are measured using optical encoders at one measurement per rotation, i.e., at about
200 Hz in hover. MKS HV93i micro servos are used to control the flaps. We obtain the flap deflection measurement as
an analog signal by connecting a wire to the potentiometer in the servo.

The flight control algorithm runs onboard on an STM32 microcontroller using custom firmware. The microcontroller
has a clock speed of 400 MHz and takes 25 µs to compute a control update at 32-bit floating point precision.
Accelerometer and gyroscope measurements are obtained from an Analog Devices ADIS16475-3 IMU at 2000 Hz, and
control updates are performed at the same frequency. Position and attitude measurements are provided by a motion
capture tracking system at 360 Hz and sent to the vehicle over Wi-Fi with an average latency of 18 ms.

The IMU, motor speed, and flap deflection measurements are filtered using a second-order Butterworth low-pass
filter with cutoff frequency of 15 Hz. The transient flap deflections are obtained by subsequent filtering using a
second-order Butterworth high-pass filter with cutoff frequency of 1 Hz. The latency of motion caption data is corrected
for by forward propagation of IMU measurements.

B. Lemniscate Trajectory
Figure 4 shows experimental results for tracking of a Lemniscate of Bernouilli with a constant speed of 6 m/s.

Throughout the trajectory, ψref is set perpendicular to the velocity, leading to coordinated flight. The reference and
flown trajectories over eight consecutive laps (of 7 s each) starting at the y extreme are shown in Fig. 4a. It can be seen
that the tracking performance is very consistent between laps. Figure 4b shows that the largest position deviation occurs
at the end of the circular parts where the vehicle does not fully maintain the reference acceleration of almost 2 g, as can
be seen in Fig. 4d. Over the middle part of the trajectory, the vehicle increases speed to catch up (see Fig. 4c), and the
position error is reduced again. Overall, the controller achieves a position tracking error of 17 cm root mean square
(RMS) with a maximum error of 33 cm.

Figure 4e shows the commanded and flown attitude. The attitude controller uses quaternion representation, but to
ease interpretation the figure uses the ZXY Euler angles described in Section III. For this trajectory, φ corresponds to
the bank angle and reaches almost 1 rad, which matches the acceleration nearing 2 g in Fig. 4d. The maximum attitude
error occurs during a small period in the turn, where the vehicle incurs a pitch error of 6 deg. Controlling the pitch
angle of a flying wing during aggressive maneuvers is generally challenging due to the lack of an elevator, and the pitch
deviation is likely the cause of the relatively large position deviation at the exit of the turn. Overall, the controller is able
to track the dynamic attitude command well and it maintains an attitude error of less than 2 deg on each axis during the
rest of the trajectory.

C. Knife Edge Transitioning Flight
Our proposed algorithm is able to control the vehicle in uncoordinated flight conditions where it has significant

lateral velocity. In knife edge flight, the wingtip is pointing in the velocity direction, leading to roll instability due to the
location of the center of gravity behind the quarter span point [25]. Figure 5 shows experimental results for a trajectory
where ψref is set to enforce knife edge flight on one side and coordinated flight on the other side. The results show that
our controller is able to stabilize the knife edge flight condition, and that it is able to transition between knife edge and
coordinated flight while at the same time performing a 1.6 g turn.

One lap of the oval trajectory takes 6.25 s to complete at a constant speed of 6 m/s. Referring to the view from
above in Fig. 5a, the trajectory is flown in clockwise direction with the straight at the top in knife edge configuration and
the straight at the bottom in coordinated flight. During each turn, the yaw reference is rotated by π/2 rad to enforce the
switch between configurations. Consequently, the coordinated flight segment is flown in inverted orientation every other
lap. Figure 5a shows the reference and flown position over eight successive laps, and Fig. 5b and Fig. 5c show data

12

https://youtu.be/tGQO-6DPT1M


-1

-2

-3

4

-4

10
2 5

0 0
-2

-5
-4

-10

(a) Position.

0 1 2 3 4 5 6 7

-0.2

-0.1

0

0.1

0.2

0.3

(b) Position tracking error.

0 1 2 3 4 5 6 7

5.6

5.8

6

6.2

6.4

(c) Speed.

0 1 2 3 4 5 6 7

8

10

12

14

16

18

(d) Acceleration.

0 1 2 3 4 5 6 7

-2

-1

0

1

2

(e) Attitude.

Fig. 4 Experimental results for lemniscate trajectory at 6 m/s.
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Fig. 5 Experimental results for knife edge transitioning trajectory at 6 m/s.

corresponding to two laps starting and ending at the transition from knife edge flight to coordinated flight in inverted
orientation. It can be seen that the reference is followed accurately during both regular and inverted coordinated flight.
Even while performing the transition from knife edge to coordinated flight, the controller is able to track the turning
trajectory. At the transition from coordinated flight to knife edge, we see that the trajectory is shifted during transitions
from inverted orientation. This leads to a position tracking error of at most 60 cm at the start of the knife edge segment.
During transition from regular coordinated flight to knife edge a position error of at most 25 cm is incurred.

Flight during the knife edge segment is consistent and stable, and the yaw reference is tracked within 3 deg. In knife
edge flight, the vehicle-fixed bz-axis coincides with the x-axis of Fig. 5a. The position deviation along this axis is due
to the fact that the acceleration due to transient movement of the flaps is not considered in the position controller, as
described in Section IV.A. The changing acceleration and jerk references result in opposite movement by the flaps at
the start and end of the knife edge segment, which is why the turn preceding the knife edge segment is too tight while
the turn following it is started not tight enough. Despite this, the controller achieves tracking of the position reference
within 26 cm RMS and of the yaw reference within 1.7 deg RMS.

D. Circular Trajectory
Figure 6 shows experimental results for tracking of a circular trajectory reference with a 3.5 m radius at a speed of

8.1 m/s. The left column of figures corresponds to coordinated flight where the by-axis is perpendicular to the circle
tangent, and the right column corresponds to knife edge flight where the wing tip points along the tangent of the circle.
Position tracking performance is very similar between both flights. In both cases, the flown trajectory has a slightly
smaller radius than the reference, reducing the flight speed to 7.8 m/s. The RMS position tracking error is 15 cm for
both coordinated and knife edge flight. The aircraft reaches a continuous acceleration of 2.1 g. In coordinated flight,
this requires a bank angle of 63 deg. In knife edge flight, the aircraft is rolled 14 deg towards the direction of travel to
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compensate for drag, and pitched over by 152 deg to provide thrust towards the circle center. Maintaining this state
requires flap deflections of 20 deg, and rotor speeds of over 2000 rad/s in knife edge flight. In coordinated flight, the
aircraft exploits the lift force to achieve circular flight more efficiently, and requires rotor speeds of 1800 rad/s with flap
deflections of 38 deg. In contrast to the trajectory described in Section V.C, the flap deflections are almost constant
during the circular trajectory. Hence, there are no transient accelerations caused by the flaps that are not considered
in the position controller, and very accurate trajectory tracking is achieved in knife edge flight. This shows that our
controller is not only able to stabilize the knife edge flight condition, but also provides accurate trajectory tracking in
knife edge flight at speeds close to 8 m/s.

E. Transitions
Figure 7 shows experimental results for transitions between static hover and coordinated flight at 8 m/s on a circular

trajectory with 3.5 m radius. Each transition takes 3 s at a constant tangential acceleration of 2.7 m/s2 and is completed
in 12 m. The pitch angle varies over a range of 64 deg. While transitioning from and to hover, the controller tracks
the circle trajectory with respectively 10 cm and 15 cm RMS, and 15 cm and 24 cm maximum position error. These
maneuvers demonstrate that the controller is capable of performing aggressive transitions while simultaneously tracking
turns with significant acceleration.

To evaluate the benefits of the feedforward input based on jerk and yaw rate, we also attempted to fly the same
transitions without the angular velocity reference, i.e., with Ωref = 0 in (45). We found that the controller is still able to
perform 3 s transitions to speeds up to 3 m/s. However, if the target speed is higher and the corresponding tangential
acceleration exceeds 1 m/s2, the absence of the feedforward term causes large deviations from the reference trajectory to
the point where the vehicle cannot be stabilized anymore. This confirms the benefit of jerk and yaw rate tracking when
flying aggressive maneuvers. Intuitively, the feedforward input enables the control to anticipate future accelerations by
regulating not only the forces acting on the vehicle but also their temporal derivative.

F. Differential Thrust Turning
Since the controller is not restricted to coordinated flight, it can perform turns without banking. The tailsitter aircraft

is particularly suitable for quick turns using yaw, because of the absence of any vertical surfaces and the availability of
relatively powerful motors. Figure 8 shows a fast turn that is executed using differential thrust. The reference trajectory,
which is entered in coordinated flight at 7 m/s, changes direction without deviating from a straight line. The controller
responds with large differential thrust and flap deflections. At the onset of the turn both flaps are almost fully deflected in
opposite directions, and the motors produce a differential thrust of 6.1 N. This causes the aircraft to turn at a maximum
rate of 650 deg/s and point in the opposite direction within half a second while remaining within 1 m of the position
reference.

VI. Conclusion
In this paper, we presented a control design aimed at tracking agile trajectories using a tailsitter flying wing.

We derived a flatness transform for the nonlinear tailsitter flight dynamics with φ-theory aerodynamics model, and
formulated an angular velocity feedforward input that enables the controller to track the reference position along with its
derivatives up to jerk. By applying INDI control, we obtain accurate trajectory tracking without relying on a globally
accurate dynamics model. The controller was evaluated in extensive flight experiments were it achieved accurate
tracking of challenging trajectories.
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Fig. 6 Experimental results for circle trajectory at 7.8 m/s for coordinated flight in (a), (c), (e), (g), and (i); and
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