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Problem definition: Lack of patient adherence to treatment protocols is a main barrier to reducing

the global disease burden of tuberculosis (TB). We study the operational design of a treatment adherence

support (TAS) platform that requires patients to verify their treatment adherence on a daily basis.

Academic / Practical Relevance: Experimental results on the effectiveness of TAS programs have been

mixed and rigorous research is needed on how to structure these motivational programs, particularly in

resource-limited settings. Our analysis establishes that patient engagement can be increased by personal

sponsor outreach and that patient behavior data can be used to identify at-risk patients for targeted outreach.

Methodology: We partner with a TB TAS provider and use data from a completed randomized controlled

trial. We use administrative variation in the timing of peer sponsor outreach to evaluate the impact of

personal messages on subsequent patient verification behavior. We then develop a rolling-horizon machine

learning (ML) framework to generate dynamic risk predictions for patients enrolled on the platform.

Results: We find that, on average, sponsor outreach to patients increases the odds ratio of next-day

treatment adherence verification by 35%. Furthermore, patients’ prior verification behavior can be used to

accurately predict short-term (treatment adherence verification) and long-term (successful treatment com-

pletion) outcomes. These results allow the provider to target and implement behavioral interventions to

at-risk patients.

Managerial Implications: Our results indicate that, compared to a benchmark policy, the TAS platform

could reach the same number of at-risk patients with 6%-40% less capacity or reach 2%-20% more at-risk

patients with the same capacity, by using various ML-based prioritization policies that leverage patient

engagement data. Personal sponsor outreach to all patients is likely to be very costly, so targeted TAS may

substantially improve the cost-effectiveness of TAS programs.

1. Introduction

Lack of patient adherence to prescribed medication is a significant barrier to improving public

health, particularly for longer-term treatments and in developing countries (Esk̊as et al. 2016,

Kalichman et al. 2016). Various behavioral interventions aimed at improving adherence (often in

the form of reminder systems) have been tested through randomized controlled trials (RCTs),

yielding very mixed results (DiMatteo et al. 2012).

For Tuberculosis (TB)—the deadliest communicable disease in the world with 10 million new

cases and 1.8 million deaths in 2018 (WHO 2019)—poor medication adherence not only endangers

the infected individual, but also poses a public health risk by not curbing the infection rate and by
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increasing the likelihood of emergent drug resistant strains of the virus (Volmink and Garner 2007).

As a result, poor TB medication adherence has been identified as a major barrier to achieving the

sustainable development goal of eliminating the TB epidemic by 2030 (WHO 2019).

In this paper, we partner with Keheala, a mobile health start-up that currently operates a

treatment adherence support (TAS) platform1 for patients on TB treatment in Kenya. A key aspect

of the platform design is that patients are required to verify their treatment adherence on a daily

basis through a mobile phone interface. To motivate treatment adherence verification, the platform

provides a combination of automated reminders, motivational messages, and personal outreach

to patients from peer sponsors who have experience of overcoming TB. For patients enrolled on

the platform, the ultimate long-term objective of Keheala is to reduce unsuccessful treatment

outcomes. The efficacy of the platform to achieve this long-term objective was confirmed through

a randomized controlled trial (RCT) (Yoeli et al. 2019). In light of this success, the main, practical

short-term objective of Keheala is to ensure that enrolled patients remain engaged with the platform

through adherence verification.2 However, multiple questions remain, about the efficacy and cost-

effectiveness of the platform’s interventions. We use data collected during the RCT to address four

main research questions:

1. Does sponsor outreach improve engagement? We use operational variation in the

timing of sponsor outreach to non-verifying patients to quantify the average impact of sponsor

outreach on future patient verification behavior (§4).

2. Is behavioral engagement data useful for predicting patient outcomes? We develop

a rolling-horizon machine learning (ML) framework that uses past verification behavior of

patients to generate dynamic and personalized predictions of their risk of verification cessation

or an unsuccessful treatment completion (§5).

3. Does sponsor outreach improve engagement of at-risk patients? We compare the

impact estimates for at-risk patients with the rest of the patient population by repeating

the first step analysis but allowing for heterogeneous treatment effects of sponsor outreach

across patient risk groups. Understanding whether sponsor outreach affects the behavior of

at-risk patients is important because it is a prerequisite for targeting outreach strategies to

that population (§6).

1 We adopt the platform term, which Keheala uses to describe its TAS service, while acknowledging that it is not a
two-sided platform, in the sense often used in the operations management literature.

2 We note that the original RCT, our source of data, only collected data on self-verification of treatment adherence,
not actual treatment adherence. Establishing a link between the two remains future work (see discussion in §8).
However, increasing patient engagement is a stated objective of Keheala, partly based on summary statistics (included
in §A2) that suggest a reduced rate of unsuccessful outcomes among patients who remain engaged with the platform.
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4. What are the managerial implications for targeting outreach to at-risk patients?

We compare the predictive accuracy and capacity requirements of the patient prioritization

heuristic currently used by Keheala to a range of ML based policies that prioritize patients

based on the ML risk stratification (§7).

For the first question, our results indicate that sponsor outreach to patients does increase future

engagement with the platform. Using a conditional logistic regression specification (which condi-

tions on patient fixed effects as well as other control variables), we find that receiving a personalized

outreach message from a sponsor increases the patients’ odds-ratio of next-day treatment adherence

verification by 35% (p < 0.01), on average.

For the second question, we find that patients’ prior verification behaviors are useful predic-

tors for short-term and long-term outcomes. Specifically, for day d of a given patient’s course of

treatment we combine 35 socio-demographic features with 44 features describing their interactions

with the platform prior to day d and train machine learning algorithms (we explore three families

of models) to predict outcomes subsequent to day d. The two target outcomes are next-day non-

verification of treatment adherence and unsuccessful treatment completion (see detailed definitions

in §3.3). We find that predicting these outcomes using only socio-demographic features (i.e., the

information available at day d= 0) is difficult, obtaining a maximum area under the receiver oper-

ating characteristic curve (AUC) of 0.56 and 0.59, for next-day non-verification and unsuccessful

treatment outcome, respectively. However, as d increases and we include more behavioral features,

the prediction accuracy increases. For example, on day d= 120 the AUC scores for the two out-

comes increased to 0.9 and 0.79, respectively. Based on these results, we can dynamically identify

patients who are either at-verification-risk and/or at-outcome-risk on a given day.

For the third question, we explore whether the patients who are classified as at-verification-risk or

at-outcome-risk on day d are more or less responsive to sponsor outreach. By exploiting the dynamic

risk classification and the administrative variation in which patients receive sponsor messages on a

given day, we obtain separate estimates of the effect of sponsor outreach for the at-verification-risk,

at-outcome-risk, at-both-risks (defined as the set of patients who are simultaneously in both the

aforementioned risk groups), and not-at-risk patient groups. We find that patients who are either

at-verification-risk or at-both-risks are responsive to sponsor outreach—with an approximately 70%

(p < 0.01) increase in the next-day verification odds ratio following peer sponsor outreach. However,

the verification behavior of patients who are classified as being at-outcome-risk is not significantly

affected by sponsor outreach. This result highlights that patients who are at-outcome-risk but not

at-verification-risk might benefit more from messaging strategies that are not focused on treatment

adherence verification.
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For the fourth question, we explore various ways to implement targeted sponsor outreach,

depending on whether Keheala wishes to focus their outreach efforts on patients at-verification-

risk, at-outcome-risk or a combination (union or intersection) of the two groups. We compare our

ML-based policies with a benchmark policy based on Keheala’s heuristic for identifying at-risk

patients. We find that regardless of the prioritization, our ML-based policies are either able to

achieve much better predictive accuracy with the same capacity as a benchmark policy, or achieve

the same predictive accuracy as the benchmark policy with much less capacity. Specifically, Keheala

can reach the same number of at-risk patients with 6%-40% (depending on the risk definition) less

capacity than the benchmark. Alternatively, the platform can reduce the number of false negative

(false positive) predictions by 6%-37% (2%-11%) using the same capacity required by the bench-

mark heuristic. These results highlight the potential cost implications of using ML-based policies

for targeting behavioral interventions.

Our rolling-horizon ML framework is being implemented at Keheala to prioritize patients for

sponsor outreach. In addition, we make three main contributions, beyond the setting at hand. First,

we contribute to the operational design of TAS programs. Our analysis establishes that patient

engagement can be increased by personal sponsor outreach. This is important because experimental

results on the effectiveness of TAS services has been mixed and there have been calls for rigorous

research on how to structure these programs, particularly in resource-limited settings. Second, we

illustrate that patient behavior data is useful for predicting short-term engagement as well as long-

term treatment outcomes on a rolling basis. In the context of TB, health care providers have long

struggled with being unable to predict which patients are likely to become non-adherent and as a a

result, have been incapable of timing behavioral interventions for maximum effectiveness. From an

operational perspective, these insights are particularly useful because providing personal sponsor

outreach to all TB patients is likely to be very costly, so targeted TAS may substantially improve

the cost-effectiveness of TAS programs. Third, we contribute to the growing literature on global

health operations. To our knowledge, our work is the first to develop empirical evidence to support

the operational design of targeted behavioral support systems in resource-limited settings.

2. Literature Review

Our work is broadly related to four streams of existing research. First, the expansive literature on

patient treatment adherence and how it can be incorporated in treatment planning and support,

specifically for TB (§2.1). Second, the growing literature on using predictive models to support

behavioral interventions (§2.2). Third, the operations management (OM) literature on connected

healthcare (§2.3). Fourth, the expanding literature on OM in the context of global health (§2.4).
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2.1. Patient Treatment Adherence

Substantial evidence exists describing the extent of non-adherence to various medical treatments

and its impact on clinical outcomes (DiMatteo et al. 2002). Moreover, a number of TAS interven-

tions have been studied for various clinical conditions, with mixed or modest success. Nieuwlaat

et al. (2014), Kardas et al. (2013), and DiMatteo et al. (2012) provide more comprehensive reviews

of interventions to enhance medication adherence.

A stream of literature has explored the reasons for lackluster adherence to TB treatment. Munro

et al. (2007) conduct a systematic review of qualitative research on patient adherence to TB

treatment. They summarize various factors which affect an individual’s propensity to adhere to

treatment. Among the personal factors identified are personal motivation and personal agency, both

of which the Keheala intervention addresses. They also identify environmental factors such as the

influence of family, community, and other household members, which speaks to the societal stigma

associated with being TB infected. Kardas et al. (2013) review the evidence on the determinants

of patient adherence and its link to treatment outcomes, concluding that predicting individual

non-adherence is challenging. They highlight that multifaceted TAS is likely needed to successfully

improve treatment adherence. More prescriptively, multiple interventions have been introduced to

improve TB adherence. Research suggests that cash-based incentives and adherence coaching to

promote treatment adherence are likely to be effective in resource-limited settings (Richterman

et al. 2018, Hovell et al. 2003), while food-based incentives and directly observed (by health care

workers) treatment may not be (Martins et al. 2009, Walley et al. 2001).

We contribute to this literature in two ways. First, by unpacking which aspects of the Keheala

platform are effective for increasing patient engagement. Second, by demonstrating how behavioral

data can be leveraged to predict engagement and treatment outcomes, which has been highlighted

as a key difficulty in designing effective TAS services (Kardas et al. 2013).

2.2. Analytics for Behavioral Health

In recent years, the use of behavioral interventions, often referred to as behavioral nudges or boosts,

to improve health has grown significantly (Ruggeri et al. 2020). Such interventions have been used to

successfully reduce no-shows for scheduled appointments (e.g., through reminder systems, Hasvold

and Wootton (2011)), to unsuccessfully attempt to reduce overprescription of drugs (Sacarny et al.

2016), and to improve various other aspects of healthcare delivery (see Mills (2020) for a recent

review). To date, however, much of the focus has been on homogeneous interventions as opposed to

personalized interventions (Mills 2020). Furthermore, limited evidence exists about the performance

of personalized behavioral interventions in resource-limited settings (Ruggeri et al. 2020).

The only other work, in this vein, that focuses on TB treatment adherence is that of Killian et al.

(2019). Using TAS data from 99DOTS in Mumbai—which requires patients to make daily calls to
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toll-free numbers as means of verifying adherence—they develop ML models to leverage data on

prior behavior to predict risk of non-adherence and unfavorable outcomes (defined in the same way

as in our work). The objective of these models is to support the prioritization of in-person visits

from health workers to patients in need. A key methodological challenge in their analysis is that

they do not observe their TAS intervention of interest and thus have to develop a framework to

overcome this. In contrast, we are able to evaluate the impact of sponsor outreach, as we observe

it in our data. Then, like Killian et al. (2019), we develop an ML framework for identifying at-risk

patients, which significantly outperforms current practice. However, due to our unique dataset, we

are subsequently able to evaluate the effectiveness of sponsor outreach in increasing the engagement

of the identified at-risk group.

Another part of this literature focuses on developing multi-armed bandit models to determine

how to best deliver various mHealth interventions with application to weight-loss (Aswani et al.

2019), physical and dietary behavior (Rabbi et al. 2018), HIV awareness (Yadav et al. 2018), as well

as drug addiction and mental health (Bidargaddi et al. 2020). Our work differs from this literature

in two important aspects. First, since two of our research questions are causal, our approach to

estimate the effects of sponsor outreach is conducted post-hoc (rather than online), using plausibly

exogenous variation in sponsor outreach within an observational dataset for identification. Second,

the above cited bandit models are usually set up to learn the responsiveness of patients to an

intervention. This is fundamentally different from identifying which patients are at-risk. A key

benefit of separating our causal analysis from our prediction analysis is that we can separately

establish the effect of sponsor outreach on engagement for patients who are at-risk and those who

are not at-risk. This distinction is practically important, since Keheala is not simply interested in

identifying patients who might be responsive to intervention, but those who are also at-risk.

2.3. Operations of Connected Healthcare

The advent of information technology solutions to support healthcare delivery—see Kvedar et al.

(2014) for an overview—has sparked a stream of research in operations management. Recent

theoretical work has examined optimal control policies to manage referrals to second-level deci-

sion agents in telemedical triage systems (Saghafian et al. 2018), how telemedical appointment

systems affect physician’s scheduling decisions (Bavafa et al. 2019), as well as the impact of

telemedicine technologies specialists’ productivity and social welfare (Rajan et al. 2019). Empirical

work has examined the integration of multiple information technologies at hospitals (Angst et al.

2011), whether offering e-visits increases or reduces physical visits (Bavafa et al. 2018), and how

telemedicine can complement traditional delivery channels by increasing demand for healthcare

services in resource-limited settings (Delana et al. 2020).
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Most related to our work is a recent paper by Lekwijit et al. (2019). They also use data from

a large-scale RCT, that tested the effectiveness of a multi-pronged TAS service, to evaluate the

impact of specific TAS interventions on short-term adherence and long-term outcomes. Our work

complements theirs in developing an evidence base for the operational design of TAS services,

since there are significant differences in the TAS service, setting, and disease condition under

study. Despite significant differences in the context, our first result, that personalized messages are

effective to increase subsequent engagement, is similar to the key result of their paper that personal

outreach is effective at increasing adherence. Beyond this first result, our approach differs from

theirs as we focus on developing an analytics-driven approach to improve the cost-effectiveness of

the TAS service through targeting at-risk patients and demonstrating its effectiveness.

2.4. Global Health Operations

Finally, our work contributes to the literature on global health OM in resource-limited settings.

This stream of work includes theoretical research on how to structure incentives (Taylor and Xiao

2014, Levi et al. 2017, Zhang et al. 2020) as well as more applied work on how to improve supply

chains (De Boeck et al. 2019, 2020, Parvin et al. 2018), HIV diagnostic systems (Jónasson et al.

2017, Deo and Sohoni 2015), emergency medical services (Boutilier and Chan 2020), and inventory

management (Gallien et al. 2017, Leung et al. 2016, Natarajan and Swaminathan 2014).

Most related to our work are recent papers developing strategies to support the global battle

against TB. Suen et al. (2018) use a partially observable Markov Decision Process framework for

optimizing the timing of drug sensitivity testing among TB patients on first line treatment and

Suen et al. (2020) develop a contract theory model for optimizing the timing and quantity of

monetary incentives to improve treatment adherence and find that the cost-effectiveness of such

programs (at least for the case of India) can be increased substantially.

3. Setting and Data Sources
3.1. Global TB and the Case of Kenya

The global disease burden of TB has been considered a global health emergency by the WHO

since 1993 (Grange and Zumla 2002). While progress has been made, with 7 million new patients

receiving TB care in 2018 (up by 600,000 from 2017), TB remains the deadliest communicable

disease in the world with 10 million cases and 1.8 million deaths in 2018 (WHO 2019). Furthermore,

TB cases are disproportionately concentrated in resource limited settings, with 24% of global

cases in Africa (WHO 2019, Sullivan et al. 2017). Although an effective treatment for TB has

been available for about seventy years (Marshall et al. 1948), patient adherence remains a major

challenge (Fox et al. 1958, Addington 1979). Lack of adherence is partly due to the duration and

complexity of the standard TB treatment regimen, as well as the potential for serious side effects.
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Moreover, lack of adherence contributes to the emergence of drug resistant strains of the virus,

with about half a million new such cases (78% were multi-drug resistant) in 2018 (WHO 2019).

Like many other countries in the region, Kenya has a long history of battling with TB. The

national TB program was originally established in 1980, organizing specialist health workers at

national, regional, and district levels. The first National Health Strategic Plan, initiated in 1990

included multiple initiatives to improve TB control. Since the development of the second National

Health Strategic Plan (for the period 2000-2010), steps have been taken to improve the program,

including the doubling of test facilities and dedicated staff (WHO 2009). Despite these efforts, TB

remains an important challenge to public health in Kenya, with the country listed among the 30

high burden TB states (as well as the 30 high burden drug resistant TB states) in the most recent

WHO TB report (WHO 2019). In fact, recent estimates indicate a higher prevalence than was

previously thought, or 558 infections per 100,000 adult population, since only about 40% of cases

are notified to the relevant authorities (Enos et al. 2018).

3.2. Keheala

We partner with the mobile health start-up Keheala, who have developed a mobile phone service

to motivate and increase adherence amongst patients on TB treatment. For patients enrolled on

the platform, Keheala has two main objectives. The ultimate long-term objective is to reduce

unsuccessful treatment outcomes. The efficacy of the platform to achieve this long-term objective

was confirmed through a randomized controlled trial (RCT) (Yoeli et al. 2019). In light of this

success, the main, practical short-term objective of Keheala is to ensure that enrolled patients

remain engaged with the platform through adherence verification.

The service comprises four main types of interactions with patients. Each of the patient inter-

actions is carefully designed, based on behavioral principles, to overcome well known barriers to

treatment adherence (Sullivan et al. 2017, Yoeli et al. 2019). First, patients are required to verify

their medication adherence on a daily basis through a USSD-based3 mobile phone interface. Second,

patients receive automated reminders each day, which are repeated twice, at hourly intervals, if the

patient does not verify treatment adherence. Third, during sequences of non-verification, patients

are contacted by peer sponsors (former TB patients who have successfully completed treatment)

that enquire if they need any assistance and encourage them to adhere to their medication. Since

TB patients are required to take their medication at the same time, every day, the support spon-

sors usually attempt to reach out shortly before that time. The policy of Keheala is that sponsors

should contact patients using a personalized message after one day of non-verification and call

3 Unstructured Supplementary Service Data (USSD) is a communications protocol which is available to all SIM-based
feature phones (no smart capabilities or cellular data needed).
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their mobile phone after two days of non-verification. However, prior to the trial implementation,

Keheala had no data to estimate the amount of sponsor outreach that would be required to follow

that policy. The data from the trial shows that due to operational reasons (i.e., staffing schedules),

the timing of sponsor outreach during non-verification sequences varied substantially (see discus-

sion of identification strategy in §4.4). Fourth, patients receive automated motivational messages

following sustained (over multiple days) verification sequences. Finally, the USSD interface includes

menu options that the patients can access to obtain educational information about TB as well as

a messaging option for patients to reach out to their support sponsors.

3.3. Data Source

The effectiveness of Keheala was tested in a RCT4 during 2016. Seventeen health facilities around

Nairobi, Kenya participated, randomly enrolling 569 out of 1104 patients into the Keheala service

and providing the standard of care to the remaining patients.

As part of the RCT, health workers collected socio-demographic information from all patients

(treatment and control arms). This information includes the age, gender, language preferences,

housing situation, education, employment, distance from health facility, as well as limited clinical

history (see a full list of variables and summary statistics in Table A1 in §A1). In addition, Keheala

collected engagement data about each patient during their enrollment in the service. This includes

whether a patient verified on a given day, how many reminders they received, whether they were

contacted by a peer sponsor, and whether they accessed any of the educational material on the

USSD system. The outcome of interest in the RCT was the proportion of patients who had an

unsuccessful treatment completion, defined as the patient dying, the treatment failing, or the

patient being lost to follow-up for two or more months during treatment (a definition that is widely

used in the TB literature (Killian et al. 2019)). The results of the RCT were reported in Yoeli

et al. (2019), where Keheala is estimated to reduce the proportion of unsuccessful outcomes by

approximately two-thirds (from 13.1% in the control group, to 4.2% in the treatment group).

The aforementioned results strongly indicate the effectiveness of Keheala in reducing unsuccessful

treatment outcomes. In this paper, we explore the efficiency of the service by investigating whether

the costly intervention of personalized sponsor outreach increases patient engagement and whether

the data on patient behavior can be used to target these interventions towards at-risk patients.

4 The trial was approved by the institutional review board of Kenyatta National Hospital and the University of Nairobi.
Participants provided written informed consent. The protocol and statistical plan were registered at ClinicalTrials.gov
(ID: NCT03135366).
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4. Average Impact of Sponsor Outreach

Our first objective is to evaluate the average effect of peer sponsor outreach on patient engagement

through the Keheala platform. Our unit of analysis is a patient-day and the number of observations

is the sum of all days during which a patient was enrolled on the Keheala platform (a total of

80,931 patient-days for 569 patients).

4.1. Dependent Variables

For this part of the analysis, the outcome of interest is the future treatment adherence verification

of each patient. We define two dependent variables to measure this. First, a binary indicator

variable for whether patient i verified treatment adherence on the day after day d, denoted by

Next Day V erifieri,d. Second, to understand if there are lasting effects of personalized sponsor

messages, we define a binary indicator variable for whether patient i verified treatment adherence

for five out of the seven days following day d, denoted by Next Week V erifieri,d.
5

4.2. Main Independent Variables

Our aim is to evaluate the impact of personal peer sponsor messages to patients, as these require

staffing and therefore contribute significantly to the cost-effectiveness of the Keheala service. We

define an indicator variable, Sponsor Contacti,d, that takes the value 1 if a sponsor writes a personal

message to patient i on day d.

4.3. Control Variables

Our empirical analysis includes a number of control variables. First, we include patient fixed effects,

denoted by Patienti, which control for time-invariant features of each patient. This includes the

socio-demographic characteristic of patients which might affect their overall propensity to engage

with the platform and verify medication adherence. Second, we include controls for each patient’s

verification behavior prior to receiving the sponsor message. We define Last Day V erifieri,d and

Last Week V erifieri,d analogously to our dependent variables, but describing the verification

pattern of patient i during the day and week prior to day d, respectively. In addition, we define a

consecutive streak of days during which a patient does not verify treatment adherence as a non-

verification sequence. We include binary indicators (denoted by X Days From V erificationi,d for

X ∈ {1, . . . ,10}) which capture the duration of a non-verification sequence if a patient is currently

in one. This controls for any systematic interventions that health workers might take during non-

verification sequences, but are not included in our data.6 Third, to capture any general propensity to

5 We note that since this outcome describes patient engagement behavior during the week subsequent to sponsor
contact, it is possible that other interactions with the TAS platform took place during that period. As a result, we
consider Next Day V erifieri,d our primary outcome.

6 We are not aware of systematic interventions and our robustness checks (see §A7) reveal that our results are robust
to excluding these variables.
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Table 1 Total number of sponsor messages during non-verification sequences (% of patients).

Length of non-verification streak

1 2 3 4 5

S
u
m

o
f

m
es

sa
g
es 0 69% 44% 40% 39% 39%

1 31% 53% 52% 46% 48%

2 3% 8% 14% 12%

3 0% 1% 1%

4 0% 0%

5 0%

Patient-Days 4,984 1,207 456 188 121

Patients 513 359 220 131 86

Notes: The columns correspond to mutually exclu-
sive non-verification sequences of a certain length.
E.g., there were precisely 456 occurrences in which
one of 220 patients did not verify adherence
for three consecutive days but verified adherence
before and after those three days.

increase or decrease adherence verification as patients spend more time on the platform we include

a control for the number of days patient i has been enrolled with Keheala prior to day d, denoted

by Days On Platformi,d. Fourth, we include binary indicators for how many reminders patient

i received on day d, denoted by One Reminderi,d, Two Remindersi,d, and Three Remindersi,d.

Finally, we include binary indicators for weekdays to account for patients who might be more or

less prone to adherence verification during weekends.

4.4. Empirical Approach

We are able to identify the impact of sponsor outreach by leveraging operational variation in its

timing. Specifically, we observe that Keheala’s support sponsors did not consistently reach out

to all patients following a single day of non-verification. Table 1 summarizes the total number

of messages patients received during non-verification sequences of duration of one to five days.

We observe that almost 70% of patients who had a single day of non-verification at some point

(but verified the previous day and the following day) did not receive any personal messages from

a peer sponsor. During longer non-verification sequences, approximately 40% of patients did not

receive any messages. Table 2 summarizes at what point during non-verification sequences the

patients who received personal messages from peer sponsors were contacted, demonstrating that

regardless of the ultimate length of a non-verification sequence, only about a third of patients were

contacted on the first day of non-adherence and the majority of those contacted on the second day

of non-adherence were being contacted for the first time.
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Table 2 Timing of sponsor outreach during non-verification sequences.

Contacted by sponsor (%) First contact during non-verification (%)

Length of non-verification streak Length of non-verification streak

1 2 3 4 5 1 2 3 4 5

D
ay

o
f

n
o
n
-v

er
ifi

ca
ti

o
n

1 31% 32% 31% 31% 30% 31% 32% 31% 31% 30%

2 28% 25% 27% 18% 25% 22% 23% 16%

3 12% 11% 13% 6% 4% 7%

4 9% 7% 3% 6%

5 7% 2%

Notes: Each row corresponds to a given day in a non-verification sequence. E.g., for patients who had a non-
verification sequence of three days at some point, 25% of them were contacted by a sponsor on the second day of
non-verification and 6% were contacted for the first time on the third day of non-verification.

The reason for the variability in the timing of sponsor outreach is administrative. Specifically,

it is due to variation in the number of available support sponsors (e.g., due to staffing schedules),

who are responsible for writing personal messages to non-verifying patients, relative to the daily

fluctuations in the number of patients that need outreach on any given day.7 In summary, the

average number of patients enrolled on the platform during each day of the trial was 260, the

average number of patients who did not verify adherence on the previous day was 97, but the

average number of patients who were contacted with a personalized sponsor message was 24.

We leverage this variation to identify the impact of sponsor outreach on the probability of next-

day treatment verification using the following fixed effect logistic specification;8

ln

[
Pr(Next Day V erifieri,d = 1)

1−Pr(Next Day V erifieri,d = 1)

]
= β1 Sponsor Contacti,d +λi,d X

i,d
+ γi Patienti + εi,d, (1)

where β1 captures the impact of peer sponsor contact on the log-odds of next day verification

and the matrix X includes all the time-varying controls introduced in §4.3. The specification

includes fixed effects (Patienti) for each patient, to control for time-invariant differences in patients’

propensity to verify treatment adherence. This ensures that βi is estimated using within patient

variation in adherence verification. However, since estimating non-linear models with a high number

of fixed effects using maximum likelihood can result in inconsistent parameter estimates (due to the

incidental parameters problem (Neyman and Scott 1948)), we estimate the above model using the

conditional logistic approach (Chamberlain 1980). This approach conditions on a sufficient statistic

7 Peer sponsors were not provided with any information beyond what is captured in the dataset. Furthermore, the
peer sponsors worked on a rotating shift schedule, so patients were not assigned to specific sponsors.

8 We repeat the analysis using a linear probability model, as part of our robustness checks in §A7. This does not
affect our results.
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Table 3 The impact of sponsor contact on future verification (odds ratios).

(1) (2)
Next Day Verifier Next Week Verifier

Sponsor Contact 1.353∗∗∗ 1.343∗∗∗

(0.060) (0.067)
Last Day Verifier 2.591∗∗∗ 2.762∗∗∗

(0.129) (0.146)
Last Week Verifier 2.352∗∗∗ 2.371∗∗∗

(0.111) (0.158)
Days On Platform 0.999 0.996∗∗∗

(0.001) (0.001)

Prior non-verification controls X X
Reminder controls X X
Weekday controls X X

Observations 75,237 63,907
Pseudo R2 0.108 0.135

Notes: Prior non-verification controls include dummy variables describ-
ing the number of days since the last verification (for one to ten days),
Reminder controls include dummy variables for the number of reminders
(one to three) received by the patient on a day, and Weekday controls
include dummy variables for the weekday at hand. Full coefficient esti-
mates are included in §A3. Standard errors are robust and clustered at
the patient level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

for each patient (see details in Chamberlain (1980)) which results in the fixed effects cancelling

out in the maximum likelihood function and allows for consistent estimates of the other model

coefficients.9 Finally, we report robust standard errors, clustered by individual patients.

4.5. Results

To evaluate the average impact of personalized sponsor outreach, we estimate the conditional logit

regression (1) using our full dataset. The results are shown in Table 3, where columns (1) and (2)

display the coefficients (log-odds have been transformed into odds ratios) of our main variables of

interest for the two outcomes; Next Day V erifier and Next Week V erifier, respectively.

Since operational constraints at Keheala provide plausibly exogenous variation in which patients

get contacted and when, the first coefficient in column (1) describes the impact of personalized

sponsor contact on the ratio of verification probability over non-verification probability (odds ratio)

for the average patient on the day following outreach. The coefficient estimate indicates a 35%

(p < 0.01) increase in this odds ratio, all other factors fixed. The result in column (2) indicates

a longer-term effect of sponsor contact of a similar magnitude with the odds ratio of patients

verifying at least five out of the next seven days increasing by 34%. While the second result is

9 In general, this approach has two main drawbacks. First, that patients who have no variation in the outcome variable
are excluded from the analysis. This is similar to any fixed effect model, since patients with no variation in the
outcome provide no explanatory power. Second, since the fixed effects cancel out during the maximum likelihood
estimation, we do not obtain estimates for their coefficients. In our case, this does not pose a problem as we are
interested in the effect of sponsor outreach.
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encouraging, we note that since this outcome describes behavior during the subsequent week, it is

possible that other interactions with the TAS platform took place during that period, which might

also affect engagement. Despite that caveat, we include the result as it indicates that personalized

sponsor outreach has some lasting effect. Finally, we observe from Table 3 that prior engagement

(Last Day V erifier and Last Week V erifier) are strong predictors of future engagement and

that patients’ likelihood of engaging with the platform does not seem to change significantly as

they spend more time on the platform (Days On Platform not significant).

To summarize, the results in Table 3 suggest that, on average, peer sponsor messages to patients

on TB treatment are effective for increasing the odds of next-day treatment adherence verification.

This is in line with previous observations that personalized reminders are more effective than

automated reminders (Lekwijit et al. 2019). However, recruiting peer sponsors is costly and will

impact the cost-effectiveness of Keheala at scale. This motivates the question of whether the sponsor

outreach, which seems effective, could be better targeted at patients who are at-risk of ceasing

engagement with the platform or having a bad outcome at the end of their treatment regimen.

This question motivates the analysis of the subsequent sections §5 and §6.

5. Identifying At-Risk Patients

Our second objective is to examine the value of past engagement data for identifying at-risk patients

by predicting their future engagement and treatment outcomes. To do this, we develop a frame-

work for generating personalized real-time predictions that identify which patients on the Keheala

platform are at-risk of either having an unsuccessful treatment outcome or ceasing adherence ver-

ification. Such a system will allow Keheala to proactively target the sponsor outreach towards

patients who require the most TAS. To this end, we develop a rolling horizon framework to mimic

the real time predictions that Keheala could practically obtain for patients currently enrolled on

the platform. As before, we index variables describing properties of patient i on day d, where d is

the number of days the patient has been on treatment.

5.1. Outcome Variables

In line with Keheala’s two main objectives (see §3.2), we generate personalized predictions for two

primary outcomes that inform the risk stratification of patients. First, we predict the probability of

patient i having an unsuccessful treatment outcome, denoted as the event {Bad Outcomei = 1}.10

Second, we use data prior to day d to predict treatment verification cessation on the next day. For

this we use the same variable as before, Next Day V erifieri,d, but predict the probability of it

taking a value of 0, denoted as the event {Next Day V erifieri,d = 0}. With these definitions, a

higher probability of either event signifies higher risk.

10 This exercise predicts the probability of the event {Bad Outcomei = 1} in the presence of the TAS provided by
Keheala during the RCT, in which roughly a third of non-verifying patients received sponsor outreach every day.
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5.2. Feature Generation

For prediction purposes we use two sets of patient features; static and dynamic. The static (time-

invariant) features comprise the socio-demographic data (described in §3.3 and §A1) for each

patient, which is available to Keheala at d= 0. We model gender, language preferences, whether

patients are slum dwellers, educational background, employment situation, and prior medical his-

tory using a set of binary indicators. The other variables—including patient age, the number of

other household members, and the travel time to a TB clinic—take integer values. These 35 features

inform the prediction at d= 0, which illustrates the prediction accuracy that is achievable in the

absence of behavioral data (see discussion of results in §5.5). The dynamic (time-variant) features

describe the recent and cumulative engagement of patients with the Keahala platform (prior to day

d), including their verification history, the number of reminders received, the number of personal

messages sent or received, and the amount of time the patient has spent on the platform. Full

details are provided in Appendix A5.

Importantly, each one of the above features can be readily calculated by Keheala on any day

for any patient on the platform (see discussion of current implementation in §8). We believe that

generating a relatively high number of features (44 in total) to describe patient behavior is war-

ranted since the objective of this component of our analysis is prediction accuracy (as opposed to

evaluating the impact of each individual feature). In particular, we consider it important to include

features for cumulative behavior (from enrollment) and recent behavior (during last week), since

the adherence motivation of TB patients is known to oscillate (Munro et al. 2007).

5.3. Models

To evaluate how prediction accuracy would evolve in practice, as Keheala collects more informa-

tion on patients’ behavior, we conduct 177 separate prediction exercises for each outcome. The

first corresponds to day 0, in which we predict the outcomes of interest ({Bad Outcomei = 1} or

{Next Day V erifieri,0 = 0}) using only the socio-demographic data available on day 0. The sub-

sequent 176 correspond to each day from d= 10 to d= 18511, augmenting the socio-demographic

data with the dynamic behavioral features defined above.

For each prediction exercise we compare the prediction accuracy of three models; K-Nearest

Neighbours (KNN), Regularized Logistic Regression (RLR), and Random Forests (RF). For each

algorithm on each day d, we use leave-one-out cross validation to evaluate model performance (in

terms of AUC) and predict the out-of-sample outcome of interest for each patient. To compare

models, we calculate the number of days that each of the algorithms had the best prediction.

11 This range covers 95% of our observations, which reflects the fact that the most common course of treatment
requires six months of medication. Beyond d= 185, we have too few patients to calculate meaningful predictions.
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We find that the RF and KNN models have the highest predictive accuracy for engagement and

outcomes, respectively (see discussion of prediction results in §5.5). For clarity of exposition, we

omit the results from the other models; see §A6.

5.4. At-risk Classification

The final step of the ML analysis is to generate distinct patient groups based on the predictions.

On each day we assign each patient to an at-verification-risk and/or an at-outcome-risk group if

their predicted probability of the events {Next Day V erifieri,0 = 0} or {Bad Outcomei = 1} is

greater than thresholds τverifier or τoutcome, respectively.12 The choice of the τ thresholds determines

a point on the trade-off curve between the number of false positives and false negatives for each

outcome. In practice, Keheala could set the thresholds to either emphasize sensitivity (i.e., the

proportion of truly at-risk patients accurately identified) or specificity (i.e., proportion of not-at-

risk patients accurately identified). For our main analysis, we select τ values to match the number

of false negatives of a benchmark policy that considers non-verifying patients as being at-risk for

each outcome, which is the intended heuristic of Keheala. Following this approach, we set τverifier =

0.443 and τoutcome = 0.067, which results in enrolled patients being classified as at-verification-

risk and at-outcome-risk on 33% and 21% of patient-days, respectively. By matching the number

of false negatives of our models to the benchmark policy, we implicitly focus on improving the

cost-effectiveness of the platform as our models will identify the same proportion of truly at-risk

patients but minimize the proportion of patients who are mis-classified as at-risk, allowing for more

targeted allocation of resources (see more detailed discussion of managerial implications in §7).

5.5. Results

As we describe in §5.3, we consider three models as part of our rolling-horizon ML framework

for identifying at-risk patients in real time (i.e., on each day). For clarity of exposition, we focus

our discussion of the results on the best performing models for predicting the two adverse events;

{Next Day V erifieri,d = 0} and {Bad Outcomei = 1}. For the former, a RF model provided the

highest AUC on 102 out of 177 days (57.6%), whereas a KNN model performed best for the latter

outcome, with the highest AUC on 156 out of 177 days (88.1%). Based on the results for those two

sets of models, we make four main observations.

First, our models predict both outcomes consistently and with good accuracy. The average

AUC (across days d ∈ {0,10,11, . . . ,185}) of the RF model for predicting engagement cessation

12 Another approach would be to define separate thresholds τoutcome,d and τverifier,d for each day d (i.e., the number
of days a patient has spent on the Keheala platform). However, using consistent thresholds throughout the entire
period is a superior approach since Keheala provides TAS to patients who are at various stages of their treatment
regimen. Using different thresholds for different days could result in the undesirable situation of Keheala prioritizing
patients who are at a lower risk, simply because the risk distribution for a given day is different from another day.
Furthermore, using consistent threshold definitions is easier to implement in practice.
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Figure 1 Predictive performance of rolling-horizon algorithms for patients at different days of enrollment.
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Notes: Our rolling-horizong ML framework generates predictions for each patient on each day they spend on the

platform. For clarity, the figures above present prediction results for a subset of days. We note that as d increases,

we have fewer observations to train our models (since only 20% of patients spend 180 days or more on the platform).

({Next Day V erifieri,d = 0}) is 0.883 with a standard deviation of 0.033 across days. Similarly,

the average AUC of the KNN model for predicting a bad outcome ({Bad Outcomei = 1}) is 0.751

with a standard deviation of 0.036 across days.

Second, for both outcomes, we observe that the behavioral data describing individuals’ engage-

ment with the TAS platform is valuable for predictions. Figure 1 (a) compares the predictive

accuracy of our best performing RF model for {Next Day V erifieri,d = 0} on the subset of days;

d ∈ {0,10,60,120,180}. Importantly, the algorithm has no behavioral information to inform the

predictions at d = 0 and thus relies on socio-demographic data only—with very modest success

(AUC=0.56). However, from d= 10 to d= 185 the model leverages behavioral data in addition to

the socio-demographic data and predicts engagement with very high accuracy (AUC ∼ 0.9), as

illustrated in the ROC curves corresponding to the days d≥ 10. Figure 1 (b) provides the accu-

racy of the best KNN model for predicting {Bad Outcomei = 1} for the same subset of days. We

observe a milder but similar phenomenon in that outcomes cannot be predicted accurately using

socio-demographic data only (AUC=0.59 at day d= 0) but improve substantially once behavioral

engagement data becomes available (AUC ∼ 0.75). To further demonstrate the value of patient

behavior data, we repeat our rolling-horizon prediction analysis excluding all features describing

the platforms actions, thereby focusing on the predictive power of the features describing patient

behavior. This does not affect the predictive accuracy of either model and further supports that

our observed predictive accuracy is driven by patient behavior (see Appendix A6 for details).

Third, this component of our analysis is focused on prediction and we make no attempt at a

causal interpretation. However, it is of interest to understand which variables provide the most
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predictive power. We highlight only key observations here and refer to §A6 for details on how these

results were obtained. For the KNN model that predicts {Bad Outcomei = 1}, we find that longest

non-verification streak and TB type are most important, followed by indicator variables for loca-

tion and the number of patient initiated messages to the platform. For the RF model that predicts

{Next Day V erifieri,d = 0}, we find 12 features with a relative importance13 of at least 0.025. The

four most importance features represent recent behavior (recent verifications, automated motiva-

tional verification messages sent from the platform, the number of educational options accessed,

and seconds spent on the platform in the last week), but some cumulative behavioral features

are also predictive (including the total number of prior verifications, total number of motivational

messages, and the length of the longest non-verification streak of the patient).

Fourth, we examine the consistency of the prediction results. Specifically, we observe the risk

classification of each patient throughout their time on the platform and count how frequently they

are reassigned (we will refer to those as switches) from not-at-risk (for one or both of the main

outcomes) to at-risk, and vice versa. Qualitatively, we want to know whether the risk predictions

for a given patient are mostly constant across days—which might be accurate but not provide much

useful information for dynamic prioritization. Similarly, we check whether the risk classification of

patients change very frequently—which would indicate some noise in the classification and make

it less valuable for resource allocation. Figure 2 demonstrates the number of switches (using the

baseline thresholds τoutcome and τverifier introduced in §5.4) of a patient throughout the course of

the trial, for at-verificaton-risk in (a) and for at-outcome-risk in (b). We observe from (a) that

163 patients have no switches in their at-verification-risk classification for their duration on the

platform. Specifically, 107 patients are never considered at-verification-risk and 56 patients are

always considered at-verification-risk. The remaining 353 patients switch groups once or more

during their time on the platform. The average number (standard deviation) of switches for at-

verification-risk was 9 (11) across all patients (12 (11) for the 353 patients with one or more

switches). We observe slightly more consistent predictions for the at-outcome-risk classification,

with 203 patients who are never classified as at risk for a bad outcome, 39 patients who are always

classified as at-outcome-risk, and the remaining 274 switching between groups. The average number

(standard deviation) of switches for this outcome is 4 (6) for the whole population, but 7 (7) for

the patients who switch at least once. Notably, the rate of unsuccessful treatment outcomes in the

population which never enters the at-outcome-risk group is 1.5%, as compared to 23% among the

patients who are always classified as at-outcome-risk (and a rate of 4% among all patients).

13 The importance of each feature is computed as the total reduction of the Gini importance metric (i.e., the model
objective function) brought by that feature. These values are then normalized to sum to one across all features.
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Figure 2 Number of switches between risk groups.

(a) (b)
Notes: The graphs, above, summarize the number of times each patient switches to or from being classified as

at-risk for each of the two outcomes {Next Day V erifieri,d = 0} (a) and {Bad Outcomei = 1} (b).

6. Impact of Sponsor Outreach for At-Risk Patients

Our third objective is to evaluate the effect of sponsor outreach on at-risk patients. The aim of the

first empirical analysis, described in §4, is to evaluate the population average impact of sponsor

outreach on the odds of next-day treatment adherence verification. If it is possible to identify

patients who are at-risk of verification cessation or unsuccessful treatment outcomes, using the

methods described in §5, the ultimate question is whether peer sponsor outreach is effective for

increasing the engagement of this population. A positive answer to this question indicates that

Keheala should focus its outreach effort on this at-risk population.

6.1. Empirical Approach

We explore this question by repeating the analysis described in §4, but allowing for heterogeneous

treatment effects based on whether patients are at-risk or not-at-risk, at the time they receive the

sponsor message. Using the at-risk definitions introduced in the previous subsection, we extend

the regression specification (1) as follows;

ln

[
Pr(Next Day V erifieri,d = 1)

1−Pr(Next Day V erifieri,d = 1)

]
= α1 Sponsor Contacti,d ∗Not At Riski,d (2)

+ α2 Sponsor Contacti,d ∗At V erificaton Riski,d

+ α3 Sponsor Contacti,d ∗At Outcome Riski,d

+ α4 Sponsor Contacti,d ∗At Both Risksi,d

+ α5 At V erificaton Riski,d +α6 At Outcome Riski,d

+ λi,d X
i,d

+ γi Patienti + εi,d.

In the above specification, the impact of sponsor outreach is estimated separately for each risk

group, relative to no outreach. We capture the effect of sponsor outreach for patients classified as

at-verification-risk, at-outcome-risk, or at-both-risks (defined as the set of patients, on a given day,
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who are predicted to be at risk for both adverse outcomes) using α2, α3, and α4, respectively. For

comparison, we also evaluate the impact of sponsor outreach to patients who belong to neither risk

group on a given day (α1). As before, we include the control variables introduced in §4.3 (including

patient fixed effects), estimate the coefficients using a conditional logistic approach, and cluster

standard errors at the patient level. Similar to our first empirical analysis, identification is enabled

by the fact that for administrative reasons, only a subset of patients belonging to a given risk group

on a given day, receive sponsor outreach on that day.14

6.2. Results

We know from §4.5 that peer sponsor outreach is effective for increasing patient verification on aver-

age. In this section, we explore heterogeneous effects, by estimating (2), which focuses on whether

sponsor outreach is effective for the at-risk population identified in §5.5. As before, identification

is enabled by the operational constraints at Keheala resulting in plausible exogenous variation in

which patients are contacted and which are not.

The results of this analysis are included in Table 4. Columns (1) and (3) report results for the

analysis which corresponds to our main analysis in Table 3. We include these estimates here because

our analysis of heterogeneous effects relies on a smaller sample than the previous analysis, since we

only have at-risk predictions for patients until they reach 185 days on the platform. These results

correspond closely (in direction, magnitude, and significance) to the results presented in Table 3.

We make two sets of main observations about our results (reported as odds-ratios) for the hetero-

geneous effects (across risk groups) of sponsor outreach, on the likelihood of next day verification,

reported in column (2). First, unsurprisingly the odds ratio associated with being at-verification-

risk is significant and less than one, confirming that patients classified in this risk group are less

likely to verify treatment adherence on the following day. In contrast, the patients classified as

at-outcome-risk on a given day are not necessarily less likely to verify treatment adherence on

the following day. Including these controls is important as it ensures that the interaction effects

(Sponsor Contact ∗At V erification Risk and Sponsor Contact ∗At Outcome Risk) reflect the

impact on the verification odds-ratio for patients in each of the at-risk groups.

Second, the impact of sponsor outreach on subsequent verification behavior is not uniform

across risk groups. For patients who are not considered at-verification-risk or at-outcome-risk on

a given day, sponsor outreach has a statistically significant (p < 0.05) but modest (α1 = 1.157)

effect to increase the odds of next day treatment verification. For patients, who are classified as

14 Specifically, §A4 shows that patients received sponsor outreach on 8.8% (9.1%) of patient-days when they were
classified as at-verification-risk (at-outcome-risk). This is comparable to the percentage (9.1%) of patient-days for
which patients who were identified by the intended benchmark heuristic of Keheala (of reaching out to patients who
did not verify on the previous day) received sponsor outreach.
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Table 4 The heterogeneous impact of sponsor contact on future verification, by risk classification (odds ratios)

(1) (2) (3) (4)
Next Day Verifier Next Day Verifier Next Week Verifier Next Week Verifier

Sponsor Contact 1.361∗∗∗ 1.340∗∗∗

(0.064) (0.073)
Sponsor Contact*Not At Risk 1.157∗∗ 1.129∗

(0.068) (0.072)
Sponsor Contact*At Verification Risk 1.719∗∗∗ 1.790∗∗∗

(0.139) (0.173)
Sponsor Contact*At Outcome Risk 0.972 1.118

(0.126) (0.168)
Sponsor Contact*At Both Risks 1.707∗∗∗ 1.557∗∗∗

(0.174) (0.190)
At Verification Risk 0.540∗∗∗ 0.516∗∗∗

(0.031) (0.035)
At Outcome Risk 1.011 1.073

(0.066) (0.127)
Last Day Verifier 2.581∗∗∗ 2.319∗∗∗ 2.776∗∗∗ 2.473∗∗∗

(0.139) (0.114) (0.161) (0.131)
Last Week Verifier 2.348∗∗∗ 1.801∗∗∗ 2.372∗∗∗ 1.795∗∗∗

(0.120) (0.085) (0.171) (0.127)
Days On Platform 1.000 1.000 0.996∗∗∗ 0.996∗∗∗

(0.001) (0.001) (0.001) (0.001)

Prior non-verification controls X X X X
Reminder controls X X X X
Weekday controls X X X X

Observations 64,098 64,098 50,661 50,661
Pseudo R2 0.103 0.108 0.128 0.133

Notes: Prior non-verification controls include dummy variables describing the number of days since he last verification
(for one to ten days), Reminder controls include dummy variables for the number of reminders (one to three) received by
the patient on a day, and Weekday controls include dummy variables for the weekday at hand. Full coefficient estimates
are included in §A3. Standard errors are robust and clustered at the patient level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

at-verification-risk on a given day, the impact of sponsor outreach is more substantial (α2 = 1.719,

p < 0.01). This confirms that sponsor outreach is effective for improving the engagement of patients

who are at risk of verification cessation. In contrast, the verification behavior of patients who are

classified as being at-outcome-risk is not significantly affected by sponsor outreach. This could

reflect the fact that some patients can have a high likelihood of a bad outcome, despite being dili-

gent in verifying treatment adherence. (This also highlights that patients who are at-outcome-risk

might benefit from a different type of sponsor outreach, which is not focused on adherence verifi-

cation. See further discussion of managerial implications in §7.). Most importantly, the interaction

Sponsor Contact ∗ At Both Risks is positive (α4 = 1.707) and significant (p < 0.01), indicating

that sponsor outreach to patients who are both at-outcome-risk and at-verification-risk can be

motivated to continue treatment adherence verification. This is encouraging for Keheala since it is a

priority to reach patients who are likely to stop adherence verification (i.e., are at-verification-risk)

and are likely to need TAS to successfully complete their treatment (i.e., are at-outcome-risk).
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The results in column (4) of Table 4, which show the impact of sponsor outreach on treatment

adherence verification during the subsequent week, are similar to our results for next day verification

(in column (2)). As before, we note the caveat that when we use Next Week V erifier as the

outcome variable, it is possible that patients were contacted by a sponsor on another occasion

during the subsequent week (regardless of whether they were contacted on the day at hand or not).

However, these results suggest some lasting effect of sponsor outreach, specifically for patients who

are at-verification-risk or at-both-risks.

In summary, the implication of the results in Table 4 is that sponsor outreach can be effective

for improving patient engagement (through treatment adherence verification). This is important

for Keheala since it confirms that sponsor outreach is effective for increasing the engagement

of patients who would otherwise be at risk of adherence verification cessation. Furthermore, the

results are quite robust. As part of our robustness checks in §A7, we repeat this analysis on a

matched sample, using a dynamic binary panel model (Bartolucci and Nigro 2010), using various

classification thresholds τoutcome and τverifier, as well as estimating a linear probability model,

obtaining qualitatively similar results in all cases.

7. Managerial Implications

We illustrate the managerial implications of our analysis, for Keheala, in two steps. First, we

discuss how the ML predictions (developed in §5) can be used to generate ML-based policies to

prioritize which patients receive sponsor outreach on which day (§7.1). We then compare the ML-

based policies to the benchmark heuristic of Keheala—reaching out to patients who fail to verify

medication adherence the previous day—in terms of prediction accuracy and capacity requirements

(§7.2). Finally, we discuss managerial implications of our work, beyond the case of Keheala (§7.3).

7.1. Developing ML-based Outreach Strategies

As we discuss in §1, Keheala has two main objectives for patients enrolled on the platform; a long-

term objective of increasing the probability of successful treatment completion and a short-term

objective of ensuring that patients remain engaged with the platform through adherence verifica-

tion. The two predictions from our rolling-horizon ML framework—one for the risk of verification

cessation and one for the risk of having an unsuccessful treatment outcome—allow Keheala to

generate a range of outreach strategies, depending on their prioritization of the two risks.

We explore four such prioritizations, focusing exclusively on each of the two types of risk (the

Verification Risk Prioritization and the Outcome Risk Prioritization) as well as their intersection

(the Verification AND Outcome Risk Prioritization) and union (the Verification OR Outcome Risk

Prioritization). For each prioritization, the classification thresholds (τverifier and τoutcome) deter-

mine how many instances (patient-days) of peer sponsor outreach would be required by following
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a corresponding ML-based policy. A high τverifier (τoutcome) results in only patients with a high

predicted probability of non-verification on the following day (high predicted probability of an ulti-

mately unsuccessful treatment outcome on a given day) being considered at-risk. A high τverifier is

therefore likely to result in a high number of false negatives (e.g., mis-classifying a patient who will

not verify treatment adherence on the following day as not at-verification-risk), but would require

relatively few instances of sponsor outreach. In contrast, a low τverifier is likely to result in a high

number of false positives (e.g., mis-classifying a patient who will verify on the subsequent day as

at-verification-risk) and would result in many instances of sponsor outreach.

7.2. Comparison of Accuracy and Capacity Requirements

Table 5 summarizes the main performance metrics for each policy (including the benchmark heuris-

tic). Prediction accuracy is described using the instances (patient-days) in which each classification

policy resulted in a true positive (T.P.), false positive (F.P.), false negative (F.N.) or true nega-

tive (T.N.) prediction15. Capacity refers to the number of sponsor outreach instances the platform

would have to conduct to reach out to all patients classified as at-risk by a given policy.

Figure 3 provides a visual depiction of which patients would receive outreach according to each

of the four ML-based strategies. The scattered dots are the same in each panel, denoting the ML

prediction of verification risk and outcome risk for a given patient on a given day. We observe

that while the RF-generated prediction of non-verification on the subsequent day (our measure for

engagement) is continuously distributed between zero and one, the KNN-generated predictions for

the probability of a bad outcome are clustered on ten values (ranging from 0 to 0.3).16 The long-

dash (short-dash) lines depict the τverifier and τoutcome thresholds for each matching F.N. (matching

capacity) policy and the shaded areas demonstrate the prediction characteristics of the patients

who would receive sponsor outreach, according to each policy.

7.2.1. Verification Risk Prioritization. The top panel of Table 5 compares the benchmark

heuristic to two ML-based policies tailored to the case in which Keheala prioritizes identifying

patients who are at-verification-risk. We observe that the heuristic accurately predicts the next

day treatment verification behavior of patients on 56,724 (18,100 + 38,624) instances. However,

on 6,319 occasions a patient is mis-classified as being at-verification-risk when they are not (we

15 We acknowledge that if Keheala would have consistently followed the heuristic during the field trial, this could bias
the number of false positives for the heuristic upwards (e.g., if a patient was considered at-risk by the heuristic on a
given day and therefore received sponsor outreach, they might have subsequently verified treatment adherence and
hence been classified as a false positive). However, Table A4 in §A4 demonstrates that the subset of patients who
were classified as at-risk and received sponsor outreach is consistent in size, regardless of the classification policy. We
therefore believe that the statistics for the heuristic are comparable to those for the ML-based policies.

16 This clustering is a function of the number of neighbours (10) and the relatively fewer data points for the outcome
prediction (only one outcome per patient).
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Table 5 Prediction accuracy and capacity requirements comparison for the heuristic and ML-based policies.

Verification Risk Prioritization
Objective: Identify patients who will not verify on subsequent day

T.P. F.P. F.N. T.N. Capacity
Benchmark heuristic 18,100 6,319 6,416 38,624 24,419
ML Policy (matching F.N.) 18,100 (0%) 4,560 (-28%) 6,416 (0%) 40,383 (5%) 22,660 (-7%)
ML Policy (matching capacity) 18,625 (3%) 5,593 (-11%) 5,891 (-8%) 39,350 (2%) 24,218 (-1%)

Outcome Risk Prioritization
Objective: Identify patients who will have a bad outcome

T.P. F.P. F.N. T.N. Capacity
Benchmark heuristic 1,371 23,048 748 44,292 24,419
ML Policy (matching F.N.) 1,406 (3%) 13,243 (-42%) 713 (-4%) 54,097 (23%) 14,649 (-40%)
ML Policy (matching capacity) 1,649 (20%) 22,370 (-3%) 470 (-37%) 44,970 (2%) 24,019 (-2%)

Verification AND Outcome Risk Prioritization
Objective: Identify patients who will not verify on subsequent day and have a bad outcome

T.P. F.P. F.N. T.N. Capacity
Benchmark heuristic 1181 23238 196 44844 24419
ML Policy (matching F.N.) 1,181 (0%) 17,142 (-26%) 196 (0%) 50,940 (14%) 18,323 (-25%)
ML Policy (matching capacity) 1,227 (4%) 22,740 (-2%) 150 (-23%) 45,342 (1%) 23,967 (-2%)

Verification OR Outcome Risk Prioritization
Objective: Identify patients who will not verify on subsequent day or have a bad outcome

T.P. F.P. F.N. T.N. Capacity
Benchmark heuristic 18,290 6,129 6,968 38,072 24,419
ML Policy (matching F.N.) 18,330 (0%) 4,541 (-26%) 6,928 (-1%) 39,660 (4%) 22,871 (-6%)
ML Policy (matching capacity) 18,676 (2%) 5,741 (-6%) 6,582 (-6%) 38,460 (1%) 24,417 (0%)

Notes: The units in the table are in patient-days. E.g., 18100, in the top row, corresponds to the sum of all instances
when a given patient at a given day was correctly classified as at-risk for not verifying treatment adherence on the
following day, using the Non-Verifier heuristic. T.P., F.P., F.N., and T.N., denote true positives, false positives, false
negatives, and true negatives for the outcome defined in the objective for each policy, respectively. Capacity refers
to the number of sponsor outreach instances (patient-days) required to reach out to each patient identified as at-risk
for a given policy. Numbers in parentheses represent the performance change, relative to the Non-verifier heuristic.

refer to these false positives as waste, since it would result in unnecessary sponsor outreach) and

on 6,416 occasions a patient is mis-classified as not being at-verification-risk when they are (we

refer to these false negative instances as misses).

In contrast, the second line of the panel demonstrates how an ML-based policy can be tuned to

achieve the same number of misses, with 28% less waste, which results in the policy requiring 7%

fewer sponsor outreaches than the heuristic. Alternatively, an ML-based policy can be tuned to

require the same amount of capacity as the heuristic, but resulting in 11% less waste (F.P.) and

8% fewer misses (F.N.).

The inclusion thresholds for the two ML-based policies are demonstrated by the horizontal lines

in Figure 3(a). In this case, the threshold for classifying patients as at-risk is horizontal, as it relies

exclusively on the probability of a patient not verifying treatment adherence on the subsequent

day. Intuitively, the threshold for matching the capacity of the heuristic is lower than the threshold

for the policy which matches the misses (F.N.), as it allows for more instances of a patient being

classified as at-verification-risk on a given day.
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Figure 3 Risk predictions and inclusion thresholds for ML-based risk classification policies.

(a) Verification Risk Prioritization (b) Outcome Risk Prioritization

(c) Verification AND Outcome Risk Prioritization (d) Verification OR Outcome Risk Prioritization

Notes: The dots are the same in each panel, denoting the prediction of verification risk and outcome risk for a given

patient on a given day. The shaded areas correspond to the instances (patient-days) when a patient would have been

targeted by a given outreach policy. The red long-dash (blue short-dash) thresholds correspond to the inclusion

criteria for the ML-based policy which matches the current heuristic on false negatives (capacity requirements).

7.2.2. Outcome Risk Prioritization. The second panel in Table 5 describes the predictive

accuracy and capacity requirements of each classification strategy for identifying patients who are

at-outcome-risk, corresponding to the case in which Keheala prioritizes identifying patients who are

at-risk of having an unsuccessful treatment outcome, based on patients’ behavior on the platform.

As before, we observe that the ML-based policies can outperform the heuristic—either by reduc-

ing capacity or by reducing waste. The heuristic correctly classifies patients at-outcome-risk on

1,371 instances, while only missing 748 instances where patients eventually have an unsuccessful

treatment outcome despite having verified treatment adherence on the previous day (which results

in them not being classified as at-risk by the heuristic). However, the relatively few misses (F.N.)

come at the expense of having significant waste (F.P.). In contrast, an ML-based strategy tuned

to achieve the same number of misses is able to do so with 42% lower waste. Alternatively, an
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ML-based strategy requiring the same capacity could jointly achieve a 3% and 37% reduction in

waste and misses, respectively.

Figure 3(b) demonstrates the classification thresholds for the two ML-based strategies priori-

tizing outcome risk. The policy which closest matches the misses (F.N.) of the heuristic is the

one which classifies all patients who have a predicted probability of a bad outcome exceeding 0.06

as at-outcome-risk. The alternative policy, which matches the heuristic on capacity requirements,

expands the set of at-outcome-risk patients to also include 71% of the instances when a patient

had a predicted probability of a bad outcome of 0.03.

7.2.3. Verification AND Outcome Risk Prioritization. The third panel in Table 5

describes the performance of the benchmark heuristic and two ML-based strategies for identifying

patients who at a given day are both at-verification-risk and at-outcome-risk. As before, we observe

that using an ML-based classification strategy, in this case based on both prediction models, is able

to either achieve the same number of misses with 26% less waste or reduce the waste and misses

by 2% and 26%, respectively—using the same capacity. Figure 3(c) demonstrates the thresholds

for the ML-based strategies. In this case, only instances when a patient is above both τverifier and

τoutcome on a given day result in that patient being classified as at risk. As a result, only patients

who are in the shaded upper-right corner of the figure would be considered at-risk.

7.2.4. Verification OR Outcome Risk Prioritization. The final potential prioritization

approach aims to identify patients who are either at-verification-risk or at-outcome-risk. In Figure

3(d) this is illustrated by the fact that patients whose predictions on a given day lie above either

τverifier or τoutcome would be considered at risk and prioritized for sponsor outreach (i.e., the shaded

area includes the highest values on both axes). Similar to before, an ML-based policy can either

reduce waste by 26% while maintaining a similar number of misses or reduce both waste and misses

by 6% with the same capacity requirements as the benchmark heuristic.

7.3. Broader Managerial Implications

Beyond the practical impact on the operations of Keheala, our work has more general implications

for the design of mHealth programs as well as other TB TAS services.

7.3.1. Implications for the Design of mHealth Programs. Fostering patient engagement

is a well-known challenge for behavioral mHealth applications (Subbaraman et al. 2018, Druce

et al. 2019, Birnbaum et al. 2015). Our work demonstrates that personal outreach from support

sponsors is effective for maintaining patient engagement. Going forward, providers of behavioral

interventions could benefit from incorporating personal outreach in the design of their platforms,

in addition to automated reminders and push notifications.
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An obvious drawback of the above recommendation is that personal outreach requires more

resources than automated messages and can make or break the cost-effectiveness (i.e., the business

model) of behavioral mHealth programs. However, our work demonstrates that requiring patients

to provide self-verification of the desired behavior has the side-benefit—beyond motivating the

behavior itself—of providing valuable data to the mHealth platform.

In addition, our work is motivated by an mHealth application in a resource-limited setting. Our

results demonstrate that even in settings with limited technological infrastructure, personalizing

behavioral health interventions is not only feasible but potentially a major driver of operational

efficiencies. Even if data is collected through low-tech interactions with patients, sophisticated

analytics can be conducted on the back-end, allowing for highly accurate risk scoring of individual

patients. Such risk scoring, in turn, enables timely and targeted interventions.

Finally, understanding how to design mHealth applications focused on TAS is useful. The effec-

tiveness of TAS services is inconclusive (Lekwijit et al. 2019, DiMatteo et al. 2012). We study the

operations of a service which has been shown to be effective through an RCT, to unpack which

elements of its service (peer sponsor outreach, specifically) are effective for maintaining the engage-

ment of patients with the platform. Understanding the specifics of how to structure TAS is relevant

for many conditions besides TB, such as cardiovascular health (Chaudhry et al. 2007, 2010).

7.3.2. Implications for TB TAS. Our work is highly relevant for other TAS services focused

on TB, including programs that use mHealth platforms, electronic pill bottles, and ingestible sen-

sors. The results from controlled studies on the effectiveness of TAS services are mixed and there

have been calls for programs to enhance (rather than limit) personal engagement to improve TB

patient treatment adherence (Subbaraman et al. 2018), particularly since predicting when a patient

benefits from motivational support can be challenging. Our work establishes that personal out-

reach can improve engagement and provides evidence for shifting the current treatment adherence

paradigm from observational (i.e., monitoring and collecting data on patient adherence) to action-

able (i.e., combining patient adherence data with analytics to actively improve patient treatment

adherence in a targeted way). Our results indicate that other TB TAS programs should be designed

to collect engagement data via active participation from end-users, because that data is useful to

provide targeted outreach.

8. Conclusion

The third objective of the U.N. Sustainable Development Goals aims to “ensure healthy lives and

promote well-being for all”. A key target (3.3) is to end the TB epidemic by 2030 (WHO 2019).

Despite the current strains of TB being curable, progress towards the target has been slow (WHO

2019). Reasons include the long duration of state-of-the-art treatment regimens (usually six months
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or longer) which—in the presence of community stigma, challenges in access to care, and treatment

side effects—drives significant fluctuations in TB patients’ motivation to adhere to treatment (Yoeli

et al. 2019). Rigorous evidence is lacking for how to motivate diligent and sustained TB treatment

adherence and how to identify patients in need of support.

We contribute to developing an evidence-base for TAS operations by conducting a post-hoc

analysis of data collected by Keheala in an RCT. The results of the original trial show a significant

impact on treatment outcomes for patients enrolled on the Keheala platform (Yoeli et al. 2019). In

this paper, we take the next step of exploring whether the most costly intervention of the Keheala

platform (direct peer sponsor outreach) is effective for improving patient treatment adherence

verification and whether the behavioral data collected by the platform allows for personalized

outreach strategies through an ML-based risk stratification of the enrolled patients.

We find that, on average, sponsor outreach to patients increases the odds ratio of next-day

treatment adherence verification by 35%. Furthermore, patients’ prior verification behavior can be

used to accurately predict short-term (treatment adherence verification) and long-term (successful

treatment completion) outcomes. These results allow the provider to target and implement behav-

ioral interventions to at-risk patients. Compared to a benchmark policy, the TAS platform could

reach the same number of at-risk patients with 6%-40% less capacity or reach 2%-20% more at-risk

patients with the same capacity, by using various ML-based prioritization policies that leverage

patient engagement data. Personal sponsor outreach to all patients is likely to be very costly, so

targeted TAS may substantially improve the cost-effectiveness of TAS programs.

The scope of our work is to estimate the impact of sponsor outreach on patient engagement and

evaluate the usefulness of treatment adherence self-verification data for risk prediction. Multiple

important research questions remain for future work. Most importantly, our data source does not

allow for establishing a clear association between patient self-verification of treatment adherence

and actual treatment adherence (although summary statistics suggest a correlation, see discussion

in §A2). Establishing this link is important, since our work demonstrates that sponsor outreach can

improve patient self-verification of adherence and it is well known that actual treatment adherence

is a prerequisite of successful treatment completion (WHO 2020). While researchers have assumed

equivalence between self-verification of adherence and actual adherence (see e.g., Killian et al.

2019), additional field data collection that permits a rigorous demonstration of the link between

the two would solidify the intuition that self-verification leads to improved health outcomes.

Acknowledgments

The authors are grateful to Jon Rathauser, founder and CEO of Keheala, for the collaboration. The authors

also thank the Keheala Operational Team (Alice, Faith, Edwin, Jacinta, Jill, Lewis, Moreen, Trish). Finally,

the authors thank Jiong Wei Lua for excellent research assistance.



Boutilier, Jónasson, and Yoeli: Improving TB Treatment Adherence Support
29

References

Addington, W.W. 1979. Patient compliance: the most serious remaining problem in the control of tuberculosis

in the united states. Chest 76(6) 741–743.

Angst, C.M., S. Devaraj, C.C. Queenan, B. Greenwood. 2011. Performance effects related to the sequence

of integration of healthcare technologies. Production and Operations Management 20(3) 319–333.

Aswani, A., P. Kaminsky, Y. Mintz, E. Flowers, Y. Fukuoka. 2019. Behavioral modeling in weight loss

interventions. European Journal of Operational Research 272(3) 1058–1072.

Bartolucci, F., V. Nigro. 2010. A dynamic model for binary panel data with unobserved heterogeneity

admitting a n-consistent conditional estimator. Econometrica 78(2) 719–733.

Bartolucci, F., V. Nigro. 2012. Pseudo conditional maximum likelihood estimation of the dynamic logit

model for binary panel data. Journal of Econometrics 170(1) 102–116.

Bavafa, H., L.M. Hitt, C. Terwiesch. 2018. The impact of e-visits on visit frequencies and patient health:

Evidence from primary care. Management Science 64(12) 5461–5480.

Bavafa, H., S. Savin, C. Terwiesch. 2019. Redesigning primary care delivery: Customized office revisit

intervals and e-visits. Available at SSRN 2363685 .

Bergstra, J., Y. Bengio. 2012. Random search for hyper-parameter optimization. Journal of Machine

Learning Research 13 281–305.

Bidargaddi, N, G Schrader, P Klasnja, J Licinio, S Murphy. 2020. Designing m-health interventions for

precision mental health support. Translational psychiatry 10(1) 1–8.

Birnbaum, F., D.M. Lewis, R. Rosen, M.L. Ranney. 2015. Patient engagement and the design of digital

health. Academic emergency medicine: official journal of the Society for Academic Emergency Medicine

22(6) 754.

Boutilier, J.J., T.C.Y. Chan. 2020. Ambulance emergency response optimization in developing countries.

Operations Research 68(5) 1315–1334.

Chamberlain, G. 1980. Analysis of Covariance with QualitativeData. The Review of Economic Studies 47(1)

225–238.

Chaudhry, S.I., J.A. Mattera, J.P. Curtis, J.A. Spertus, J. Herrin, Z. Lin, C.O. Phillips, B.V. Hodshon, L.S.

Cooper, H.M. Krumholz. 2010. Telemonitoring in patients with heart failure. New England Journal of

Medicine 363(24) 2301–2309.

Chaudhry, S.I., C.O. Phillips, S.S. Stewart, B. Riegel, J.A. Mattera, A.F. Jerant, H.M. Krumholz. 2007.

Telemonitoring for patients with chronic heart failure: a systematic review. Journal of Cardiac Failure

13(1) 56–62.

De Boeck, K., C. Decouttere, J.O. Jónasson, N. Vandaele. 2020. Vaccine supply chains in resource-limited

settings: Mitigating the impact of rainy season disruptions Working Paper.

De Boeck, K., C. Decouttere, N. Vandaele. 2019. Vaccine distribution chains in low-and middle-income

countries: A literature review. Omega 97.

Delana, K., S. Deo, K. Ramdas, G. Babu, T. Ravilla. 2020. Multichannel delivery in healthcare: The impact

of telemedicine centers in southern india. Available at SSRN 3505318 .



30

Deo, S., M. Sohoni. 2015. Optimal decentralization of early infant diagnosis of hiv in resource-limited settings.

Manufacturing & Service Operations Management 17(2) 191–207.

DiMatteo, M.R., P.J. Giordani, H.S. Lepper, T.W. Croghan. 2002. Patient adherence and medical treatment

outcomes a meta-analysis. Medical Care 794–811.

DiMatteo, M.R., K.B. Haskard-Zolnierek, L.R. Martin. 2012. Improving patient adherence: a three-factor

model to guide practice. Health Psychology Review 6(1) 74–91.

Druce, K.L., W.G. Dixon, J. McBeth. 2019. Maximizing engagement in mobile health studies: lessons learned

and future directions. Rheumatic Disease Clinics 45(2) 159–172.

Enos, M., J. Sitienei, J. Ong’ang’o, B. Mungai, M. Kamene, J. Wambugu, H. Kipruto, V. Manduku, J. Mburu,

D. Nyaboke, et al. 2018. Kenya tuberculosis prevalence survey 2016: Challenges and opportunities of

ending tb in kenya. PloS One 13(12) e0209098.

Esk̊as, P.A., S. Heimark, J. Eek Mariampillai, A.C.K. Larstorp, F.E.M. Fadl Elmula, A. Høieggen. 2016.

Adherence to medication and drug monitoring in apparent treatment-resistant hypertension. Blood

Pressure 25(4) 199–205.

Fox, W., et al. 1958. The problem of self-administration of drugs; with particular reference to pulmonary

tuberculosis. Tubercle 39(5) 269–74.

Gallien, J., I. Rashkova, R. Atun, P. Yadav. 2017. National drug stockout risks and the global fund disburse-

ment process for procurement. Production and Operations Management 26(6) 997–1014.

Grange, J.M., A. Zumla. 2002. The global emergency of tuberculosis: what is the cause? The journal of the

Royal Society for the Promotion of Health 122(2) 78–81.

Hasvold, P.E., R. Wootton. 2011. Use of telephone and sms reminders to improve attendance at hospital

appointments: a systematic review. Journal of Telemedicine and Telecare 17(7) 358–364.

Hovell, M.F., C.L. Sipan, E.J. Blumberg, C.R. Hofstetter, D. Slymen, L. Friedman, K. Moser, N.J. Kelley,

A.Y. Vera. 2003. Increasing latino adolescents’ adherence to treatment for latent tuberculosis infection:

a controlled trial. American Journal of Public Health 93(11) 1871–1877.

Jónasson, J.O., S. Deo, J. Gallien. 2017. Improving hiv early infant diagnosis supply chains in sub-saharan

africa: Models and application to mozambique. Operations Research 65(6) 1479–1493.

Kalichman, S.C., L. Eaton, M.O. Kalichman, T. Grebler, C. Merely, B. Welles. 2016. Race-based medical

mistrust, medication beliefs and hiv treatment adherence: test of a mediation model in people living

with hiv/aids. Journal of Behavioral Medicine 39(6) 1056–1064.

Kardas, P., P. Lewek, M. Matyjaszczyk. 2013. Determinants of patient adherence: a review of systematic

reviews. Frontiers in Pharmacology 4 91.

Killian, J.A., B. Wilder, A. Sharma, V. Choudhary, B. Dilkina, M. Tambe. 2019. Learning to prescribe

interventions for tuberculosis patients using digital adherence data. Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining . 2430–2438.

Kvedar, J., M.J. Coye, W. Everett. 2014. Connected health: a review of technologies and strategies to

improve patient care with telemedicine and telehealth. Health Affairs 33(2) 194–199.



Boutilier, Jónasson, and Yoeli: Improving TB Treatment Adherence Support
31

Lekwijit, S.T., C. Terwiesch, D. Asch, K. Volpp. 2019. Evaluating the efficacy of connected healthcare: An

empirical examination of patient engagement systems and their impact on readmission. Available at

SSRN 3420495 .

Leung, N.Z., A. Chen, P. Yadav, J. Gallien. 2016. The impact of inventory management on stock-outs of

essential drugs in sub-saharan africa: secondary analysis of a field experiment in zambia. PloS one

11(5).

Levi, R., G. Perakis, G. Romero. 2017. On the effectiveness of uniform subsidies in increasing market

consumption. Management Science 63(1) 40–57.

Marshall, G., J.W.S. Blacklock, C. Cameron, N.B. Capon, R. Cruickshank, J.H. Gaddum, F.R.G. Heaf, A.B.

Hill, L.E. Houghton, J.C. Hoyle, et al. 1948. Streptomycin treatment of pulmonary tuberculosis: a

medical research council investigation. The BMJ 2(4582) 769–82.

Martins, N., P. Morris, P.M. Kelly. 2009. Food incentives to improve completion of tuberculosis treatment:

randomised controlled trial in dili, timor-leste. BMJ 339 b4248.

Mills, S. 2020. Personalized nudging. Behavioural Public Policy 1–10.

Munro, S.A., S.A. Lewin, H.J. Smith, M.E. Engel, A. Fretheim, J. Volmink. 2007. Patient adherence to

tuberculosis treatment: a systematic review of qualitative research. PLoS Medicine 4(7).

Natarajan, K.V., J.M. Swaminathan. 2014. Inventory management in humanitarian operations: Impact of

amount, schedule, and uncertainty in funding. Manufacturing & Service Operations Management 16(4)

595–603.

Neyman, J., E.L. Scott. 1948. Consistent estimates based on partially consistent observations. Econometrica:

Journal of the Econometric Society 1–32.

Nieuwlaat, R., N. Wilczynski, T. Navarro, N. Hobson, R. Jeffery, A. Keepanasseril, T. Agoritsas, N. Mistry,

A. Iorio, S. Jack, et al. 2014. Interventions for enhancing medication adherence. Cochrane Database of

Systematic Reviews (11).

Parvin, H., S. Beygi, J.E. Helm, P.S. Larson, M.P. Van Oyen. 2018. Distribution of medication considering

information, transshipment, and clustering: Malaria in malawi. Production and Operations Management

27(4) 774–797.

Rabbi, M., M.S.H. Aung, G. Gay, M.C. Reid, T. Choudhury. 2018. Feasibility and acceptability of mobile

phone–based auto-personalized physical activity recommendations for chronic pain self-management:

pilot study on adults. Journal of medical Internet research 20(10) e10147.

Rajan, B., T. Tezcan, A. Seidmann. 2019. Service systems with heterogeneous customers: Investigating the

effect of telemedicine on chronic care. Management Science 65(3) 1236–1267.

Richterman, A., J. Steer-Massaro, J. Jarolimova, L.B.L. Nguyen, J. Werdenberg, L.C. Ivers. 2018. Cash

interventions to improve clinical outcomes for pulmonary tuberculosis: systematic review and meta-

analysis. Bulletin of the World Health Organization 96(7) 471.

Ruggeri, K., A. Benzerga, S. Verra, T. Folke. 2020. A behavioral approach to personalizing public health.

Behavioural Public Policy 1–13.

Sacarny, A., D. Yokum, A. Finkelstein, S. Agrawal. 2016. Medicare letters to curb overprescribing of con-

trolled substances had no detectable effect on providers. Health Affairs 35(3) 471–479.



32

Saghafian, S., W.J. Hopp, S.M.R. Iravani, Y. Cheng, D. Diermeier. 2018. Workload management in telemed-

ical physician triage and other knowledge-based service systems. Management Science 64(11) 5180–

5197.

Subbaraman, R., L. de Mondesert, A. Musiimenta, M. Pai, K.H. Mayer, B.E. Thomas, J. Haberer. 2018.

Digital adherence technologies for the management of tuberculosis therapy: mapping the landscape and

research priorities. BMJ global health 3(5).

Suen, S., M.L. Brandeau, J.D. Goldhaber-Fiebert. 2018. Optimal timing of drug sensitivity testing for

patients on first-line tuberculosis treatment. Health Care Management Science 21(4) 632–646.

Suen, S., D. Negoescu, J. Goh. 2020. Design of incentive programs for optimal medication adherence.

Available at SSRN 3308510 .

Sullivan, B.J., B.E. Esmaili, C.K. Cunningham. 2017. Barriers to initiating tuberculosis treatment in sub-

saharan africa: a systematic review focused on children and youth. Global Health Action 10(1) 1290317.

Taylor, T.A., W. Xiao. 2014. Subsidizing the distribution channel: Donor funding to improve the availability

of malaria drugs. Management Science 60(10) 2461–2477.

Volmink, J., P. Garner. 2007. Directly observed therapy for treating tuberculosis. Cochrane Database of

systematic reviews (4).

Walley, J.D., M.A. Khan, J.N. Newell, M.H. Khan. 2001. Effectiveness of the direct observation component

of dots for tuberculosis: a randomised controlled trial in pakistan. The Lancet 357(9257) 664–669.

WHO. 2009. A brief history of tuberculosis control in kenya. Tech. rep.

WHO. 2019. Global Tuberculosis Report . World Health Organization and others.

WHO. 2020. Global Tuberculosis Report . World Health Organization and others.

Yadav, A., B. Wilder, E. Rice, R. Petering, J. Craddock, A. Yoshioka-Maxwell, M. Hemler, L. Onasch-Vera,

M. Tambe, D. Woo. 2018. Bridging the gap between theory and practice in influence maximization:

Raising awareness about hiv among homeless youth. IJCAI . 5399–5403.

Yoeli, E., J. Rathauser, S.P. Bhanot, M.K. Kimenye, E. Mailu, E. Masini, P. Owiti, D. Rand. 2019. Digital

health support in treatment for tuberculosis. New England Journal of Medicine 381(10) 986–987.

Zhang, C., A. Atasu, T. Ayer, L.B. Toktay. 2020. Truthful mechanisms for medical surplus product allocation.

Manufacturing & Service Operations Management 22(4) 735–753.




