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A set of orbital elements to fully represent the zonal

harmonics around an oblate celestial body

David Arnas∗, Richard Linares†

Abstract

This work introduces a new set of orbital elements to fully represent
the zonal harmonics problem around an oblate celestial body. This new
set of orbital elements allows to obtain a complete linear system for the
unperturbed problem and, in addition, a complete polynomial system
when considering the perturbation produced by the zonal harmonics
from the gravitational force of an oblate celestial body. These orbital
elements present no singularities and are able to represent any kind of
orbit, including elliptic, parabolic and hyperbolic orbits. In addition,
an application to this formulation of the Poincaré-Lindstedt perturba-
tion method is included to obtain an approximate first order solution
of the problem for the case of the J2 perturbation.

1 Introduction

In celestial mechanics, analytical solutions and methods of analysis to study
the motion in a gravitational field are of extreme importance for both scien-
tific and engineering applications. These techniques allow, for instance, to
generate new tools for the fast long-term propagation of orbiting objects, to
analyze and better understand the dynamics of these systems, to evaluate
the long term behavior of space debris ([1]), to study the stability of natural
orbits ([2]), or to define and assess satellite constellations ([3]), among other
topics. To that end, a large variety of different formulations have been inves-
tigated over the years to study the long term evolution of the so-called main
satellite problem, that is, the description of the dynamic of a orbiting ob-
ject subjected to the perturbation produced by the oblateness of the central
body (e.g. the Earth). Early examples of that are the solutions proposed
by [4], [5], [6], [7], which have been used extensively both in theoretical and
applied problems.

The main satellite problem, even for the case of just considering the per-
turbation produced by the oblateness of a celestial body (J2 term from the
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gravitational potential) has no analytical solution ([8, 9]). Therefore, sev-
eral sets of orbital elements have been proposed over the years to study this
problem and to ease the generation of approximate solutions. For instance,
the classical or Kepler elements are the most widespread orbital elements
in astrodynamics due to their simplicity and geometrical representation.
In particular, classical variables define the state of a orbiting object based
on the semi-major axis, the eccentricity, the inclination, the argument of
perigee, the right ascension of the ascending node, and the true anomaly
of its orbit. However, and when studying orbital perturbations, it is more
convenient to use of the action-angle variables associated with the dynamics,
which, for the case of the perturbed two-body problem, are the Delaunay
variables ([10, 11, 12, 13, 14]). Another well used set of orbital elements are
the nodal variables, also known as Whittaker or Hill variables ([15, 16, 17,
18]). This is a set of canonical variables that was devised to address some
of the problems of definition that Delaunay variables present at particular
orbits, for instance, near circular orbits. Also, and with a similar objective,
[19] proposed the equinoctial variables, a set of elements that present no
singularities in their formulation, which has been been applied in analyti-
cal, semi-analytical and numerical applications. Another non-singular set
of variables used to deal with this problem are spherical coordinates ([20]).
This trend of defining new sets of variables to ameliorate the complexities
in analytical satellite theories has continued in the literature ([21, 22, 23]),
and is the aim of this work to continue that development by proposing a
new set of variables that have a unique set of properties and that allows the
application of relativity simple perturbation theory methods.

All these sets of orbital elements were devised to be used alongside dif-
ferent perturbation theories in order to generate approximate analytical so-
lutions to the zonal harmonics problem. To that end, and in a seminal work,
[4] proposed a first order solution based on the von Zeipel method that later
was complemented by [24] and [25] to account for small eccentricities and
inclinations, and by [26] to study orbits close to the critical inclination. [5],
on the other hand, presented an alternative approach to generate a first or-
der solution based on a decomposition of the dynamics in first-order secular,
second-order secular, short-periodic, and long-periodic terms, and later, he
proposed a second order solution [27] to the main satellite problem to extend
Brouwer’s formulation.

Some years later, [6] developed the use of Lie series to define a set of
canonical mappings in the form of power series in a small parameter. This
methodology allows to obtain the approximate solution to the system by an
iterative recursive transformation ([28]) that can be extended to an arbitrary
order of the solution. This perturbation technique has lead to the generation
of the so called Lie-Deprit methods, which have been used extensively in the
literature ([28, 29, 10, 30, 31, 22, 23, 32]). This method, for instance, was
used to simplify the problem by an elimination of the parallax ([33]) which
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consisted on the removal of the short period terms from the system. Later,
[34] used a similar idea but to remove the long period terms associated
with the evolution of the perigee, which provided several advantages in the
computation of the solution ([21]).

In this work we introduce a formulation to describe the dynamical sys-
tem of an object orbiting an oblate celestial body. Previous works that
dealt with the definition of new set of elements focused on the removal of
singularities and the simplification of the perturbation methodologies. This
work departs from the past literature by seeking an element set that al-
lows for a completely polynomial formulation, with the goal of allowing for
new perturbation methods to be applied to the central gravity problem. To
this end, our goal is to find a near-linear and completely polynomial sys-
tem, which authors believe has not been tried before in the literature. This
property provides several advantages when used with different perturbation
techniques, including simplicity and lower computation load. This new for-
mulation is achieved using an extended state-space of eight variables but it
allows for a more direct application of perturbation methods while avoiding
intermediary transformations to generate an analytical solution. Moreover,
and in order to simplify the formulation, this work makes use of a universal
variable based on a Sundman transformation ([35]). Additionally, these pro-
posed state variables form a set of non-singular orbital elements that fully
represents the zonal harmonics problem around an oblate celestial body, and
that can be applied to any kind of orbit, including elliptic, parabolic, and
hyperbolic orbits.

The application of this new formulation shows that the resultant system
of differential equations represents the dynamic of two oscillators that have
different frequencies but for the cases of unperturbed dynamics or periodic
orbits. In that regard, we also show that these oscillators are decoupled in
the unperturbed dynamic and coupled in the perturbed one. The presence of
these two oscillators in the system motives the use of the Poncaré-Lindstedt
perturbation method ([36]) which is commonly used to solve systems of
oscillators. Indeed, this work successfully applies a first order Poncaré-
Lindstedt method to this formulation, obtaining the two natural frequencies
of the dynamic, as well as the evolution of the orbital elements introduced in
this manuscript, being this work the first direct application of the Poncaré-
Lindstedt method to the central gravity problem known by the authors.
This result is then compared with a numerical integration based on a Runge-
Kutta scheme ([37]). Particularly, we show that the use of this analytical
solution provides maximum errors in the position of the orbiting object of
the order of tens of meters even for the cases of highly eccentric orbits around
the Earth.

This manuscript is organized as follows. First, we introduce the new set
of orbital elements and apply them to the non-perturbed problem. This will
allow us to show a clear definition of these orbital elements as well as their

Page 3



A set of orbital elements to study zonal harmonics D. Arnas, R. Linares

relation with the more common keplerian or classical elements. Then, we
present the solution of the linear system resultant of using this new set of
orbital elements. Once the non-perturbed dynamic is shown, the perturbed
problem with J2 is studied, showing also how to transform the system of
differential equations into one completely polynomial. After that, we follow
the same approach but for the general case of the zonal harmonics of any
order from the gravitational potential. Once the formulation is presented,
we apply the Poncaré-Lindstedt method to this system to obtain a first
order solution. Several examples of application of this solution are included
to show the performance of the formulation and methodology. Finally, we
present the non-dimensional formulation of the system resultant of using
these orbital elements.

2 Non-perturbed dynamic

We start this manuscript with the presentation of the proposed set of vari-
ables applied to the non-perturbed problem. This is done in order to clearly
show the definition and properties of this new set of variables and how they
relate with the classical variables: the semi-major axis (a), the inclination
(i), the eccentricity (e), the argument of perigee (ω), the right ascension of
the ascending node (Ω), and the true anomaly (ν).

In this work we introduce a new set of variables based on spherical co-
ordinates. Therefore, we start this study by defining the problem in terms
of spherical variables. Let r be the distance from the orbiting object to the
center of the celestial body, and ϕ and λ the latitude and longitude of the
object with respect to the inertial frame of reference in a given instant of
time. In these variables, the Hamiltonian of the system is:

H =
1

2

(

p2r +
p2ϕ
r2

+
p2λ

r2 cos2(ϕ)

)

− µ

r
, (1)

where:

pr = ṙ;

pϕ = r2ϕ̇;

pλ = r2 cos2(ϕ)λ̇; (2)

are the conjugate momenta of the coordinates r, ϕ, and λ respectively; µ is
the gravitational constant of the celestial body; and where we denote ẋ as
the derivative with respect to time of a variable x. From this Hamiltonian,
it is possible to obtain the Hamilton equations associated with the system:

Page 4



A set of orbital elements to study zonal harmonics D. Arnas, R. Linares

dr

dt
= pr;

dpr
dt

= − µ

r2
+

p2ϕ
r3

+
p2λ

r3 cos2(ϕ)
;

dϕ

dt
=

pϕ
r2

;

dpϕ
dt

= −p2λ
r2

sin(ϕ)

cos3(ϕ)
;

dλ

dt
=

pλ
r2 cos2(ϕ)

;

dpλ
dt

= 0. (3)

As it can be seen, this system of differential equations is highly non-linear,
which limits its use in many applications, including the development of a
perturbation theory based on this formulation. Therefore, the first objective
is to obtain a linear system of equations by performing a series of variable
transformations and a time regularization.

2.1 Generation of a linear system

2.1.1 Definition of some first integrals

In order to generate a linear system from the set of differential equations
provided by Eq. (3), we require to find some of the first integrals of the
system since we will make use of them later to derive all the new set of vari-
ables. In that regard, there are two first integrals that are directly obtained.
The first one corresponds to the Hamiltonian H itself since the system is
conservative. The second one is derived directly from the differential equa-
tions, where we see that pλ is a constant during the dynamic of the system,
and thus, our second first integral.

The third one can be obtained by relating the derivatives of ϕ and pϕ:

dϕ

dpϕ
=

pϕ
p2λ

cos3(ϕ)

sin(ϕ)
, (4)

which leads to:

C1 =
p2ϕ
p2λ

− 1

cos2(ϕ)
, (5)

where C1 is a constant of motion. However, instead of using C1, we define
the variable pθ as pθ = pλ

√

C1, or in terms of the spherical elements:

p2θ = p2ϕ − p2λ
cos2(ϕ)

. (6)
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It is important to note that pθ is in fact the angular momentum of the orbit,
which is also a constant quantity since pλ and C1 are constants.

A fourth first integral can be obtained by relating the derivatives of ϕ
and λ:

dϕ

dpλ
=

pϕ
pλ

cos2(ϕ), (7)

which can be rewritten into a closed form integral by using Eq. (5) and
performing a change of variable from ϕ to tan(ϕ):

d(tan(ϕ))

dλ
=

√

(

pθ
pλ

)2

− 1− tan2(ϕ), (8)

whose integral is:

β = λ− arcsin













tan(ϕ)
√

(

pθ
pλ

)2

− 1













, (9)

where β is a constant of motion. Moreover, and in order to simplify the
expression, we can define ξ as:

ξ =
1

p2θ
p2λ

− 1

=
p2λ

p2θ − p2λ
, (10)

where as it can be seen, ξ is also a constant of motion. That way, β can be
rewritten as:

β = λ− arcsin
(

tan(ϕ)
√

ξ
)

. (11)

Nevertheless, it can be seen that for the same orbit, and depending on the
initial conditions, we can have different values of β. For instance, in the
nodes of an orbit the value of β can be either Ω or Ω + π. In order to solve
this issue, we can define β as:

β =

{

λ− arcsin
(

tan(ϕ)
√
ξ
)

if pϕ ≥ 0

λ+ arcsin
(

tan(ϕ)
√
ξ
)

+ π if pϕ < 0
, (12)

to avoid the duplicates generated by the arcsin function. That way, β is
defined as the right ascension of the ascending node Ω of the orbit (the
longitude when the orbiting object is over the celestial body Equator and
moving from South to North, also known as ascending pass).

Finally, we define an additional first integral that is dependent from the
ones presented in Eqs. (5) and (9), but that will be used later. This first
integral can be obtained by relating the derivatives of pϕ and λ:

dpϕ
dpλ

= −pλ tan(ϕ). (13)
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Then, by using Eq. (5) we can rewrite the equation in terms of pϕ to be able
to perform the integration:

1

cos2(ϕ)
= 1 + tan2(ϕ) =

(

pθ
pλ

)2

−
(

pϕ
pλ

)2

(14)

therefore:

tan(ϕ) =

√

(

pθ
pλ

)2

−
(

pϕ
pλ

)2

− 1 (15)

and introducing this result in the previous equation leads to the following
differential equation:

dpϕ
dpλ

= −pλ

√

(

pθ
pλ

)2

−
(

pϕ
pλ

)2

− 1, (16)

whose solution is:

η = λ− arccos













pϕ
pλ

1
√

(

pθ
pλ

)2

− 1













= λ− arccos

(

pϕ
pλ

√

ξ

)

, (17)

where η is a constant of motion. Note that as in the case of variable β, η
is not unique for each orbit due to the arccos function, and therefore, needs
disambiguation.

2.1.2 Definition of the new set of variables

The objective now is to find a variable transformation that allows to generate
a linear system. To that end, we first require to perform a time regularization
based on an universal variable, also called Sundman transformation. We
define, θ as a variable such that its time derivative is equal to:

dθ

dt
=

pθ
r2

. (18)

As it can be observed, this new variable θ is related with the angular mo-
mentum of the orbit pθ, and can be identified with the argument of latitude
(or, alternatively, the true anomaly) of the orbit if the constants of integra-
tion are properly chosen for the unperturbed problem. Therefore, using θ
as the new independent variable, the system of differential equations from
Eq. (3) becomes:
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dr

dθ
=

pr
pθ

r2;

dpr
dθ

= − µ

pθ
+

p2ϕ
rpθ

+
p2λ

r cos2(ϕ)pθ
;

dϕ

dθ
=

pϕ
pθ

;

dpϕ
dθ

= −p2λ
pθ

sin(ϕ)

cos3(ϕ)
;

dλ

dθ
=

pλ
pθ cos2(ϕ)

;

dpλ
dθ

= 0. (19)

Once the time regularization is performed, we perform a variable trans-
formation to make the system completely linear. In particular, we propose
α, pr, s, γ, β, pλ as the new set of variables in the problem, where α, s, and
γ are defined as:

α =
pθ
r

− µ

pθ
=

p2ϕ
rpθ

+
p2λ

r cos2(ϕ)pθ
− µ

pθ
,

s = sin(ϕ),

γ =
pϕ
pθ

cos(ϕ). (20)

and whose inverse transformations are:

r =
p2λ

pλα
√

1− s2 − γ2 + µ (1− s2 − γ2)
,

ϕ = arcsin(s),

pϕ = pλ
γ

cos(ϕ)

√

1

1− s2 − γ2
. (21)

Therefore, we have to derive which are the derivatives of this new set of
variables with respect to θ. The derivative of α is provided by:

dα

dθ
= −pθ

r2
dr

dθ
= −pθ

r2
pr
pθ

r2 = −pr. (22)

On the other hand, the derivative of s is:

ds

dθ
= cos(ϕ)

dϕ

dθ
=

pϕ
pθ

cos(ϕ) = γ. (23)
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Finally, the derivative of γ can be obtained through the following equation:

dγ

dθ
=

1

pθ
cos(ϕ)

dpϕ
dθ

− pϕ
pθ

sin(ϕ)
dϕ

dθ

= − 1

pθ
cos(ϕ)

p2λ
pθ

sin(ϕ)

cos3(ϕ)
− pϕ

pθ
sin(ϕ)

pϕ
pθ

, (24)

where we can use Eq. (5) to simplify the expression:

dγ

dθ
= − sin(ϕ)

[

p2λ
p2θ

1

cos2(ϕ)
−

p2ϕ
p2θ

]

= − sin(ϕ) = −s. (25)

Therefore, using α, pr, s, γ, β, and pλ as the new set of orbital variables al-
lows to transform the nonlinear system of differential equations from Eq.(19)
into this linear system:

dα

dθ
= −pr;

dpr
dθ

= α;

ds

dθ
= γ;

dγ

dθ
= −s;

dβ

dθ
= 0;

dpλ
dθ

= 0. (26)

Using these variables and first integrals, the Hamiltonian, and thus, the
energy of the system can be expressed as:

H =
1

2

(

p2r + α2 − µ2

p2θ

)

. (27)

Also, it is worth noticing that for equatorial orbits, β is not defined. How-
ever, in these cases the derivative of λ from Eq. (19) becomes 1, and thus,
the evolution of the longitude of the orbit is λ = θ.

2.2 Solution of the linear system

Equation (26) provides a complete linear system of differential equations
that can be solved for any initial condition. Let α0, pr0, s0, γ0, β = β0,
and pλ = pλ0 be the initial conditions of the problem. Then, from the first
two differential equations from Eq. (26) we can obtain the following general
solution for α and pr:

α = α0 cos(θ − θ0)− pr0 sin(θ − θ0),

pr = α0 sin(θ − θ0) + pr0 cos(θ − θ0), (28)
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where θ0 and θ are the initial and final arguments of latitude of the motion.
From the solution in α it is possible to obtain the evolution of the radius of
the orbit:

r =
pθ

α+
µ

pθ

=
pθ

α0 cos(θ − θ0)− pr0 sin(θ − θ0) +
µ

pθ

=
p2θ/µ

1 + α0pθ
µ cos(θ − θ0)− pr0pθ

µ sin(θ − θ0)
, (29)

which represents a more general expression to the well known relation be-
tween the radial distance (r) and the true anomaly (ν) of an elliptic orbit:

r =
a
(

1− e2
)

1 + e cos(ν)
, (30)

where a and e are the semi-major axis and eccentricity of the orbit.
In the same way, the solution for s and γ can be obtained:

s = s0 cos(θ − θ0) + γ0 sin(θ − θ0),

γ = −s0 sin(θ − θ0) + γ0 cos(θ − θ0), (31)

and from them, the spherical variables ϕ and pϕ:

ϕ = arcsin(s),

pϕ =
γ

cos(ϕ)
pθ. (32)

In this regard, it is important to note that for polar orbits, pϕ = pθ, and
thus, γ = cos(ϕ) ∀ϕ, so there is no singularity in the poles. In addition,
since the range in the latitude of the orbit is ϕ ∈ [−π/2, π/2] the arcsin(ϕ) is
a bijective function in the entire domain. Therefore, these transformations
are well defined no matter the type of orbit or the position of the orbiting
object.

The longitude of the orbit, on the other hand, is obtained using the
previous solutions of s and γ from Eq. (31) and Eq. (9). However, there
is one important consideration to be made. The definition of β in Eq. (9)
contains an arcsine as a function of ϕ. This means that the transformation
from {ϕ, pϕ} to λ is not completely well defined since it can result in two
different values. This issue can be solved for instance by using the values of
β and η:

sin(λ) = sin
(

β + arcsin
(

tan(ϕ)
√

ξ
))

,

cos(λ) = cos

(

η + arccos

(

pϕ
pλ

√

ξ

))

, (33)
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where the longitude can be disambiguated using the arctan2 function. This
expression can be only applied in prograde orbits. However for retrograde
orbits, the square root inside the arcsin function changes sign, and then, in
those cases, the expressions become:

sin(λ) = sin
(

β − arcsin
(

tan(ϕ)
√

ξ
))

,

cos(λ) = cos

(

η + arccos

(

pϕ
pλ

√

ξ

))

, (34)

Alternatively, we can perform an equivalent derivation using just β and the
sign of pϕ to determine the orientation of the movement, that is:

λ =

{

β + arcsin
(

tan(ϕ)
√
ξ
)

if pϕ ≥ 0

β − arcsin
(

tan(ϕ)
√
ξ
)

+ π if pϕ < 0
, (35)

for prograde orbits and:

λ =

{

β − arcsin
(

tan(ϕ)
√
ξ
)

if pϕ ≥ 0

β + arcsin
(

tan(ϕ)
√
ξ
)

+ π if pϕ < 0
, (36)

for retrograde orbits.
Therefore, the only thing left to solve is the time evolution of the system.

From the time regularization from Eq. (18) we can define the derivative of
time with respect to θ:

dθ

dt
=

pθ
r2

=

(

1 +
α0pθ
µ

cos(θ − θ0)−
pr0pθ
µ

sin(θ − θ0)

)2

p3θ/µ
2

. (37)

In addition, since r and pθ can be written as a function of θ, the direct
integration of the previous equation can be performed to obtain the following
relation:

t = t0 +

pθ
2H

(

α2
0 + α0

µ
pθ

+ p2r0

)

sin (θ − θ0)

(α0 +
µ
pθ
)( µ

pθ
+ α0 cos (θ − θ0)− pr0 sin (θ − θ0))

− pθ
2H

µpr0
pθ

(1− cos (θ − θ0))

(α0 +
µ
pθ
)( µ

pθ
+ α0 cos (θ − θ0)− pr0 sin (θ − θ0))

+
2µ

(2H)3/2
artanh

(

pr0√
2H

)

− 2µ

(2H)3/2
artanh





pr0 + (α0 − µ
pθ
) tan

(

θ−θ0
2

)

√
2H



 , (38)
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which relates the time evolution with the argument of latitude of the orbit.
Nevertheless, there is an important thing to take into account when using
this expression. Since the expression provided by Eq. (38) only depends on
the angle θ, the result of the time evolution ranges in (t− t0) ∈ [−T/2, T/2],
where T is the period of the orbit. This means that in order to know the
time of propagation it is also required to take into account the number of
complete orbital revolutions performed.

2.3 Relation with classical variables

The objective of this section is to relate the set of variables proposed in
this work with the classical elements semi-major axis (a), eccentricity (e),
inclination (i), argument of perigee (ω), right ascension of the ascending
node (Ω), and true anomaly (ν). To that end, we show in the following
subsections both the direct and inverse transformations associated with the
set of variables proposed in this work.

2.3.1 From spherical to classical elements

We know that the Hamiltonian of an orbit in classical elements is:

H = − µ

2a
, (39)

which is equivalent to the Hamiltonian from Eq. (27), that is:

H = − µ

2a
=

1

2

(

p2r + α2 − µ2

p2θ

)

. (40)

Therefore, the semi-major axis of the orbit is:

a =
µ

µ2

p2
θ

− p2r − α2
. (41)

On the other hand, we know that the angular momentum of the orbit can
be expressed in classical elements as:

pθ =
√

µa (1− e2), (42)

and using the result form Eq. (41) we can obtain the value of the eccentricity:

e =
pθ
µ

√

p2r + α2. (43)

The inclination can be obtained using the projection of the angular mo-
mentum in the z-axis:

pλ = pθ cos(i), (44)
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and so:

i = arccos

(

pλ
pθ

)

. (45)

Alternatively, the inclination can be obtained through:

sin2(i) = 1− cos2(i) = 1− p2λ
p2θ

= 1− cos2(ϕ)

(

1−
p2ϕ
p2θ

)

= sin2(ϕ) +

(

pϕ
pθ

cos(ϕ)

)2

= s2 + γ2, (46)

and thus:
i = arcsin

(

√

s2 + γ2
)

. (47)

In order to obtain the value of the right ascension of the ascending node,
we first need to determine the variables λ, ϕ, pϕ and ξ from the expressions
presented in the previous subsection. Once this variables are available, the
value of the right ascension of the ascending node can be obtained through
the first integral β. In particular, we have to impose the condition that the
longitude of the orbit at the ascending pass over the Equator is in fact the
right ascension of the ascending node. That way:

Ω = β =

{

λ− arcsin
(

tan(ϕ)
√
ξ
)

if pϕ ≥ 0

λ+ arcsin
(

tan(ϕ)
√
ξ
)

+ π if pϕ < 0
. (48)

Finally, the true anomaly can be obtained using Eq. (30):

ν =























arccos

(

a
(

1− e2
)

er
− 1

e

)

if pr ≥ 0

2π − arccos

(

a
(

1− e2
)

er
− 1

e

)

if pr < 0

(49)

On the other hand, the argument of latitude u = ω + ν of the orbit in a
given instant can be derived using spherical trigonometry:

u =

{

arccos (cos(λ− Ω) cos(ϕ)) if ϕ ≥ 0

2π − arccos (cos(λ− Ω) cos(ϕ)) if ϕ < 0
, (50)

and with it, the argument of perigee of the orbit can be obtained ω = u− ν.

2.3.2 From classical to spherical elements

The radial distance can be easily obtained through the well known Eq. (30)
while the angular momentum with Eq. (42). With r and pθ we can obtain
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the value of α using the definition from Eq. (20). Then, from Eq. (43) and
using the geometry of the orbit:

pr =







+
√

µ2

p2
θ

e2 − α2 if sin(ν) ≥ 0

−
√

µ2

p2
θ

e2 − α2 if sin(ν) < 0
. (51)

Also, the conjugate momenta of the longitude pλ can be obtained directly
using Eq. (44), and this result used to obtain ξ using Eq. (10). On the other
hand, we know that β = Ω when considering the definition of β provided by
Eq. (12) to avoid duplicates in the formulation.

From the argument of latitude of the orbit u = ω + ν we can obtain the
orbital element s using spherical trigonometry:

s = sin(ϕ) = sin(i) sin(ω + ν). (52)

Finally, from Eq. (46), the value of γ can be obtained:

γ =

{

+
√

sin2(i)− s2 if cos(ω + ν) ≥ 0

−
√

sin2(i)− s2 if cos(ω + ν) < 0
. (53)

3 J2 formulation

Once the non-perturbed formulation of the set of variables proposed in this
study is presented, we start with the assessment of orbital perturbations.
In particular, in this section we focus on the effect of the oblateness of a
celestial body, represented by the J2 term of the gravitational potential.
Therefore, we know that the Hamiltonian in spherical coordinates of this
perturbed problem with J2 is:

H =
1

2

(

p2r +
p2ϕ
r2

+
p2λ

r2 cos2(ϕ)

)

− µ

r
+

1

2
µR2

⊕J2
1

r3
(

3 sin2(ϕ) − 1
)

, (54)

where R⊕ is the radius of the celestial body at the Equator. From this
Hamiltonian, the associated Hamilton equations can be obtained:

dr

dt
= pr;

dpr
dt

= − µ

r2
+

p2ϕ
r3

+
p2λ

r3 cos2(ϕ)
+

3

2
µJ2R

2
⊕

1

r4
(

3 sin2(ϕ)− 1
)

;

dϕ

dt
=

pϕ
r2

;

dpϕ
dt

= −p2λ
r2

sin(ϕ)

cos3(ϕ)
− 3µJ2R

2
⊕

1

r3
sin(ϕ) cos(ϕ);

dλ

dt
=

pλ
r2 cos2(ϕ)

;

dpλ
dt

= 0. (55)
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In this system of differential equations we can perform the same set of trans-
formations as in the unperturbed problem, including the time regularization
from Eq. (18), and changes of variables provided by Eqs. (9) and (20) to
obtain:

dα

dθ
= −pr − 3µJ2R

2
⊕

(

1− s2 − γ2
)3/2

p3λ
(

α+ µ

√

1− s2 − γ2

pλ

)(

α+ 2µ

√

1− s2 − γ2

pλ

)

γs;

dpr
dθ

= α+
3

2
µJ2R

2
⊕

(

1− s2 − γ2
)3/2

p3λ

(

α+ µ

√

1− s2 − γ2

pλ

)2
(

3s2 − 1
)

;

ds

dθ
= γ;

dγ

dθ
= −s− 3µJ2R

2
⊕

(

1− s2 − γ2
)5/2

p3λ

(

α+ µ

√

1− s2 − γ2

pλ

)

s;

dβ

dθ
= −3µJ2R

2
⊕

(

1− s2 − γ2
)2

p3λ (s
2 + γ2)

(

α+ µ

√

1− s2 − γ2

pλ

)

s2;

dpλ
dθ

= 0, (56)

which completely defines the dynamic of a orbiting object subjected to the
J2 perturbation.

The objective now is to generate an equivalent system of differential
equations that is completely polynomial. In order to do that, we have to
expand the space of configuration of the system by the inclusion of two new
orbital elements Iθ and ξ.

Let Iθ be a new orbital element defined as:

Iθ =
1

pθ
=

1

pλ

√

1− s2 − γ2, (57)

and whose derivative with respect to θ is:

dIθ
dθ

= 3µJ2R
2
⊕I

4
θ (α+ µIθ) sγ. (58)

We introduce this orbital element into the system of differential equations
from Eq. (56), which leads to:
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dα

dθ
= −pr − 3µJ2R

2
⊕I

3
θ (α+ µIθ) (α+ 2µIθ) γs;

dpr
dθ

= α+
3

2
µJ2R

2
⊕I

3
θ (α+ µIθ)

2 (3s2 − 1
)

;

ds

dθ
= γ;

dγ

dθ
= −s− 3µJ2R

2
⊕

(

1− s2 − γ2
)

I3θ (α+ µIθ) s

= −s− 3µJ2R
2
⊕I

5
θ p

2
λ (α+ µIθ) s;

dIθ
dθ

= 3µJ2R
2
⊕I

4
θ (α+ µIθ) sγ;

dβ

dθ
= −3µJ2R

2
⊕

(

1− s2 − γ2
)2

p3λ (s
2 + γ2)

(α+ µIθ) s
2;

dpλ
dθ

= 0, (59)

As it can be seen, all the equations became polynomial except the derivative
of β. In order to solve that, we introduce another orbital element ξ defined
as in Eq. (10):

ξ =
p2λ

p2θ − p2λ
=

1− s2 − γ2

s2 + γ2
, (60)

and whose derivative is:

dξ

dθ
= 6µJ2R

2
⊕ξ

2 Iθ
p2λ

(α+ µIθ) sγ. (61)

Introducing this new variable transforms the system of differential equations
into:

dα

dθ
= −pr − 3µJ2R

2
⊕I

3
θ (α+ µIθ) (α+ 2µIθ) γs;

dpr
dθ

= α+
3

2
µJ2R

2
⊕I

3
θ (α+ µIθ)

2 (3s2 − 1
)

;

ds

dθ
= γ;

dγ

dθ
= −s− 3µJ2R

2
⊕I

5
θ p

2
λ (α+ µIθ) s;

dIθ
dθ

= 3µJ2R
2
⊕I

4
θ (α+ µIθ) sγ;

dβ

dθ
= −3µJ2R

2
⊕ξ

1

pλ
I2θ (α+ µIθ) s

2;

dξ

dθ
= 6µJ2R

2
⊕ξ

2 Iθ
p2λ

(α+ µIθ) sγ;

dpλ
dθ

= 0, (62)
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which as it can be seen, the system is now completely polynomial.
In addition, we can also introduce the variable η (as defined in Eq. (17))

as a new orbital element for the system to disambiguate the value of the
longitude of the orbit. In that respect, the derivative of η is:

dη

dθ
= 3µJ2R

2
⊕

1

pλ
(α+ µIθ)

(

ξ

p2λ
− I2θ (1− s2)

)

, (63)

which is also in polynomial form.

4 Zonal formulation

It is possible to extend the previous result to the zonal harmonics of any
order. Particularly, the Hamiltonian for a perturbed dynamic up to zonal
harmonics of order m is:

H =
1

2

(

p2r +
p2ϕ
r2

+
p2λ

r2 cos2(ϕ)

)

− µ

r

(

1−
m
∑

n=2

JnPn (sin(ϕ))
Rn

⊕

rn

)

, (64)

where Pn(sin(ϕ)) are the Legendre polynomials of order n in the variable
sin(ϕ). The associated Hamilton equations are then:

dr

dt
= pr;

dpr
dt

= − µ

r2
+

p2ϕ
r3

+
p2λ

r3 cos2(ϕ)

+

m
∑

n=2

(n+ 1)µJnPn(sin(ϕ))
Rn

⊕

rn+2
;

dϕ

dt
=

pϕ
r2

;

dpϕ
dt

= −p2λ
r2

sin(ϕ)

cos3(ϕ)
−

m
∑

n=2

µJn
∂Pn(sin(ϕ))

∂ϕ

Rn
⊕

rn+1
;

dλ

dt
=

pλ
r2 cos2(ϕ)

;

dpλ
dt

= 0. (65)

which performing the time regularization from Eq. (18) and the set of ele-
ment transformations from Eqs. (20) and (9), leads to:
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dα

dθ
= −pr −

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s
γ

(

1− s2 − γ2
)(n+1)/2

pn+1
λ

(

α+ µ

√

1− s2 − γ2

pλ

)n−1(

α+ 2µ

√

1− s2 − γ2

pλ

)

;

dpr
dθ

= α+
m
∑

n=2

(n+ 1)µJnR
n
⊕Pn(s)

(

1− s2 − γ2
)(n+1)/2

pn+1
λ

(

α+ µ

√

1− s2 − γ2

pλ

)n

;

ds

dθ
= γ;

dγ

dθ
= −s−

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s

(

1− s2 − γ2
)(n+3)/2

pn+1
λ

(

α+ µ

√

1− s2 − γ2

pλ

)n−1

;

dβ

dθ
= −

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s

s

s2 + γ2

(

1− s2 − γ2
)(n+2)/2

pn+1
λ

(

α+ µ

√

1− s2 − γ2

pλ

)n−1

;

dpλ
dθ

= 0. (66)

Moreover, we can perform the same expansion using the variables Iθ and
ξ to transform the former expression into a polynomial system of differential
equations:
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dα

dθ
= −pr −

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s
γIn+1

θ (α+ µIθ)
n−1 (α+ 2µIθ) ;

dpr
dθ

= α+
m
∑

n=2

(n+ 1)µJnR
n
⊕Pn(s)I

n+1
θ (α+ µIθ)

n ;

ds

dθ
= γ;

dγ

dθ
= −s−

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s
p2λI

n+3
θ (α+ µIθ)

n−1 ;

dIθ
dθ

=

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s
γIn+2

θ (α+ µIθ)
n−1 ;

dβ

dθ
= −

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s

1

pλ
sξInθ (α+ µIθ)

n−1 ;

dξ

dθ
=

m
∑

n=2

2µJnR
n
⊕

∂Pn(s)

∂s

1

p2λ
γξ2In−1

θ (α+ µIθ)
n−1 ;

dpλ
dθ

= 0. (67)

which as it can be seen are also complete polynomial in the variables se-
lected since both Legendre polynomials and their derivatives are always in
polynomial form.

Finally, as for the J2 problem, we can use the variable η as an alterna-
tive manner to disambiguate the longitude of the orbit. In particular, the
derivative of η is:

dη

dθ
= −

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s

1

s

1

pλ
(α+ µIθ)

n−1

(

1

p2λ
In−2
θ ξ − Inθ

(

1− s2
)

)

.

(68)
As it can be seen in the expression, using η makes the formulation non-
polynomial for the zonal terms of the gravitational potential that have an
odd order. Nevertheless, this property allows us to represent in polynomial
form the differential equation of η for the J2 problem.

5 Summary of the transformations and differential

equations

In this section we present a summary of the orbital elements proposed in this
manuscript as well of their transformations from spherical coordinates and
the differential equations resultant of applying a perturbed zonal dynamic
into the system.
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5.1 Orbital elements

α = r

√

ϕ̇2 + cos2(ϕ)λ̇2 − µ

r2
√

ϕ̇2 + cos2(ϕ)λ̇2

;

pr = ṙ;

s = sin(ϕ);

γ =
ϕ̇ cos(ϕ)

√

ϕ̇2 + cos2(ϕ)λ̇2

;

Iθ =
1

r2
√

ϕ̇2 + cos2(ϕ)λ̇2

;

β = λ− arcsin

(

tan(ϕ)

√

cos4(ϕ)λ̇2

ϕ̇2 + cos2(ϕ)λ̇2 − cos4(ϕ)λ̇2

)

;

ξ =
cos4(ϕ)λ̇2

ϕ̇2 + cos2(ϕ)λ̇2 − cos4(ϕ)λ̇2
;

pλ = r2 cos2(ϕ)λ̇. (69)
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5.2 System of 6 variables in non-polynomial form

dα

dθ
= −pr −

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s
γ

(

1− s2 − γ2
)(n+1)/2

pn+1
λ

(

α+ µ

√

1− s2 − γ2

pλ

)n−1(

α+ 2µ

√

1− s2 − γ2

pλ

)

;

dpr
dθ

= α+
m
∑

n=2

(n+ 1)µJnR
n
⊕Pn(s)

(

1− s2 − γ2
)(n+1)/2

pn+1
λ

(

α+ µ

√

1− s2 − γ2

pλ

)n

;

ds

dθ
= γ;

dγ

dθ
= −s−

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s

(

1− s2 − γ2
)(n+3)/2

pn+1
λ

(

α+ µ

√

1− s2 − γ2

pλ

)n−1

;

dβ

dθ
= −

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s

s

s2 + γ2

(

1− s2 − γ2
)(n+2)/2

pn+1
λ

(

α+ µ

√

1− s2 − γ2

pλ

)n−1

;

dpλ
dθ

= 0. (70)
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5.3 System of 8 variables in polynomial form

dα

dθ
= −pr −

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s
γIn+1

θ (α+ µIθ)
n−1 (α+ 2µIθ) ;

dpr
dθ

= α+

m
∑

n=2

(n+ 1)µJnR
n
⊕Pn(s)I

n+1
θ (α+ µIθ)

n ;

ds

dθ
= γ;

dγ

dθ
= −s−

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s
p2λI

n+3
θ (α+ µIθ)

n−1 ;

dIθ
dθ

=

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s
γIn+2

θ (α+ µIθ)
n−1 ;

dβ

dθ
= −

m
∑

n=2

µJnR
n
⊕

∂Pn(s)

∂s

1

pλ
sξInθ (α+ µIθ)

n−1 ;

dξ

dθ
=

m
∑

n=2

2µJnR
n
⊕

∂Pn(s)

∂s

1

p2λ
γξ2In−1

θ (α+ µIθ)
n−1 ;

dpλ
dθ

= 0. (71)

6 Application of Poincaré-Lindstedt method to the

J2 formulation

The Poincaré-Lindstedt method is a technique to study perturbed peri-
odic systems of ordinary differential equations. The main idea behind this
method is to remove the secular terms arising from the direct application
of the perturbation theory from the solution by a proper selection of the
frequencies of the problem. That way, the solution remains periodic under
the perturbation.

6.1 Formulation

For simplicity of equation manipulation and integration we will use for this
section the polynomial formulation in the variables {α, pr, s, γ, Iθ, β, η, ξ, pλ}.
In addition, we will focus on the first order solution of the system and
show its error performance for typical orbits that can be found in celestial
mechanics.

The objective is to find an approximate solution to Eq. (62) defined for
the initial conditions {α(t = 0) = α0, pr(t = 0) = pr0, s(t = 0) = s0, γ(t =
0) = γ0, Iθ(t = 0) = Iθ0, β(t = 0) = β0, η(t = 0) = η0, ξ(t = 0) = ξ0, pλ =
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pλ0}. To do that we will assume a series solution in the form:

α = α|0 + ǫα|1;
pr = pr|0 + ǫpr|1;
s = s|0 + ǫs|1;
γ = γ|0 + ǫγ|1;
Iθ = Iθ|0 + ǫIθ|1;
β = β|0 + ǫβ|1;
η = η|0 + ǫη|1;
ξ = ξ|0 + ǫξ|1;

pλ = pλ; (72)

where x|0 and x|1 are the zero and first order solutions of the variable x,
and ǫ is a small parameter, that for the J2 problem has been selected as:

ǫ = µJ2R
2
⊕C

3
θU, (73)

where the constant Cθ = 1/
√
µR⊕ is included in order to normalize the

perturbing terms, and U is a constant of value 1 whose purpose is to make
the expression non-dimensional (units of longitude divided by time). In
particular, and for the case of the Earth, the value of the small parameter
ǫ ≈ 1.9833·10−5 . Also, as part of the normalization of the equations, instead
of using the variable Iθ, we use the transformed variable iθ = Iθ/Cθ, and
thus, we assume a solution for this variable in the form:

iθ = iθ|0 + ǫiθ|1 =
1

Cθ
Iθ|0 + ǫ

1

Cθ
Iθ|1. (74)

In addition, since in this formulation we have two independent oscillators,
we also assume that the variables {α, pr} are periodic with frequency wr =
wr|0 + ǫwr|1, while {s, γ} are periodic with frequency wϕ = wϕ|0 + ǫwl|1,
that is:

α(θ = 0) = α(θ = 2πwr);

pr(θ = 0) = pr(θ = 2πwr);

s(θ = 0) = s(θ = 2πwϕ);

γ(θ = 0) = γ(θ = 2πwϕ). (75)

That way, we can separate the problem into the zero order and first order
solution by grouping terms in the powers of ǫ.
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6.1.1 Zero order solution

The zero order solution correspond to this problem of initial conditions:

dα|0
dθ

= −pr|0;
dpr|0
dθ

= α|0;
ds|0
dθ

= γ|0;
dγ|0
dθ

= −s|0;
diθ|0
dθ

= 0;

dβ|0
dθ

= 0;

dη|0
dθ

= 0;

dξ|0
dθ

= 0;

−→



























































α|0(θ = 0) = α0;

pr|0(θ = 0) = pr0;

s|0(θ = 0) = s0;

γ|0(θ = 0) = γ0;

iθ|0(θ = 0) = iθ0;

β|0(θ = 0) = β0;

η|0(θ = 0) = η0;

ξ|0(θ = 0) = ξ0;

whose solution is in fact the non-perturbed solution of the problem:

α|0 = α0 cos(θ)− pr0 sin(θ),

pr|0 = α0 sin(θ) + pr0 cos(θ),

s|0 = s0 cos(θ) + γ0 sin(θ),

γ|0 = −s0 sin(θ) + γ0 cos(θ),

iθ|0 = iθ0,

β|0 = β0,

η|0 = η0,

ξ|0 = ξ0.

and thus, wr|0 = wϕ|0 = 1.
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6.1.2 First order solution

The first order solution is defined by this system of differential equations:

dα|1
dθ

= −pr|1 +wr|1pr|0 +
3

U
iθ|30 (α|0 + µCθiθ|0) (α|0 + 2µCθiθ|0) γ|0s|0;

dpr|1
dθ

= α|1 − wr|1α|0 +
3

2U
iθ|30 (α|0 + µCθiθ|0)2

(

3s|20 − 1
)

;

ds|1
dθ

= γ|1 − wϕ|1γ|0;
dγ|1
dθ

= −s|1 + wϕ|1s|0 −
3

U
p2λC

2
θ iθ|50 (α|0 + µCθiθ|0) s|0;

diθ|1
dθ

=
3

U
iθ|40 (α|0 + µCθiθ|0) s|0γ|0;

dβ|1
dθ

= − 3

U
ξ|0

1

pλCθ
iθ|20 (α|0 + µCθiθ|0) s|20;

dη|1
dθ

=
3

U
ξ|20

1

pλC
3
θ

(α|0 + µCθiθ|0)
(

ξ|0
p2λ

−C2
θ iθ|20(1− s|20)

)

,

dξ|1
dθ

=
6

U
ξ|20

iθ|0
p2λC

2
θ

(α|0 + µCθiθ|0) s|0γ|0; (76)

where all the initial conditions of the variables x|1 are set to zero, that is,
initially, the orbital perturbation has not altered the solution of the system
yet. It is important to note that the zero order solutions are already known
from Section 6.1.1 but with the corresponding perturbed frequencies, that
is:

α|0 = α0 cos(wrθ)− pr0 sin(wrθ),

pr|0 = α0 sin(wrθ) + pr0 cos(wrθ),

s|0 = s0 cos(wϕθ) + γ0 sin(wϕθ),

γ|0 = −s0 sin(wϕθ) + γ0 cos(wϕθ),

iθ|0 = iθ0,

β|0 = β0,

η|0 = η0,

ξ|0 = ξ0.

(77)

The system of differential equations from Eq. (76) provides a closed form
analytical solution where the variables {α, pr, s, γ, β, η} have secular terms,
and thus they are not periodic. Conversely, variables β and η also show a
secular variation, but due to the fact that they are closely related with the
right ascension of the ascending node (see Eqs. (9) and (17)), we already
know that they are going to present a secular variation over time. In fact
these secular terms cannot vanish no matter the values of wr|1 and wϕ|1.

On the other hand, for variables α, pr, s, and γ, we can impose that their
secular variation vanishes with a proper selection of the perturbing terms in
the frequency wr|1 and wϕ|1. In particular, these secular terms disappear
when these perturbing frequencies are:
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wr|1 =
3

4U

(

−2µCθi
4
θ0 + 3µCθi

4
θ0γ

2
0 + 3µCθi

4
θ0s

2
0

)

=
3µ

4UC3
θp

4
λ

(

1− s20 − γ20
)2 (−2 + 3γ20 + 3s20

)

;

wϕ|1 =
3

2U
p2λµC

3
θ i

6
θ0 =

3µ

2UC3
θp

4
λ

(

1− s20 − γ20
)3

; (78)

This means that the two characteristic frequencies of this system for a first
order approximation are:

wr = 1 +
3µǫ

4C3
θp

4
λ

(

1− s20 − γ20
)2 (−2 + 3γ20 + 3s20

)

ǫ

= 1 +
3µ2J2R

2
⊕

4p4λ

(

1− s20 − γ20
)2 (−2 + 3γ20 + 3s20

)

;

wϕ = 1 +
3µǫ

2C3
θp

4
λ

(

1− s20 − γ20
)3

ǫ = 1 +
3µ2J2R

2
⊕

2p4λ

(

1− s20 − γ20
)3

.(79)

6.1.3 General first order solution

In general, the first order solution provided by the Poincaré-Lindstedt method
contains a large number of terms which makes it unpractical to include the
complete solution in this manuscript. However, in order to show the struc-
ture of the solution, we have included the expressions of iθ and β.

The solution of iθ is provided by:

iθ = iθ0 −
3µJ2R

2
⊕C

3
θ

4wl(4w
2
l − w2

r)

(

− 4α0γ
2
0i

4
θ0w

2
l − 4Cθγ

2
0i

5
θ0µw

2
l + 4α0i

4
θ0s

2
0w

2
l

+ 4Cθi
5
θ0µs

2
0w

2
l − 4γ0i

4
θ0pr0s0wlwr + Cθγ

2
0i

5
θ0µw

2
r − Cθi

5
θ0µs

2
0w

2
r

+ 4Cθγ
2
0 i

5
θ0µw

2
l cos(2wlθ)− 4Cθi

5
θ0µs

2
0w

2
l cos(2wlθ)

− Cθγ
2
0 i

5
θ0µw

2
r cos(2wlθ) + Cθi

5
θ0µs

2
0w

2
r cos(2wlθ)

+ 4α0γ
2
0 i

4
θ0w

2
l cos(2wlθ) cos(wrθ)− 4α0i

4
θ0s

2
0w

2
l cos(2wlθ) cos(wrθ)

+ 4γ0i
4
θ0pr0s0wlwr cos(2wlθ) cos(wrθ)− 8Cθγ0i

5
θ0µs0w

2
l sin(2wlθ)

+ 2Cθγ0i
5
θ0µs0w

2
r sin(2wlθ)− 8α0γ0i

4
θ0s0w

2
l cos(wrθ) sin(2wlθ) (80)

+ 2γ20 i
4
θ0pr0wlwr cos(wrθ) sin(2wlθ)− 2i4θ0pr0s

2
0wlwr cos(wrθ) sin(2wlθ)

− 4γ20 i
4
θ0pr0w

2
l cos(2wlθ) sin(wrθ) + 4i4θ0pr0s

2
0w

2
l cos(2wlθ) sin(wrθ)

+ 4α0γ0i
4
θ0s0wlwr cos(2wlθ) sin(wrθ) + 8γ0i

4
θ0pr0s0w

2
l sin(2wlθ) sin(wrθ)

+ 2α0γ
2
0 i

4
θ0wlwr sin(2wlθ) sin(wrθ)− 2α0i

4
θ0s

2
0wlwr sin(2wlθ) sin(wrθ)

)

,

where it can be seen that the expression has no secular terms. Note that
this non-secular behavior is also repeated for the variables {α, pr, s, γ, ξ}.
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However, for the case of the solution of β (and also for η) we find some
secular terms:

β = β0 −
3µJ2R

2
⊕C

3
θ

4Cθwlwr(4w2
l − w2

r))

(

− 8ξ0γ
2
0Iλi

2
θ0pr0w

3
l

− 8ξ0Iλi
2
θ0pr0s

2
0w

3
l + 8α0ξ0γ0Iλi

2
θ0s0w

2
l wr

+ 8Cθξ0γ0Iλi
3
θ0µs0w

2
l wr + 4ξ0Iλi

2
θ0pr0s

2
0wlw

2
r

− 2Cθξ0γ0Iλi
3
θ0µs0w

3
r + 8Cθξ0γ

2
0Iλi

3
θ0µw

3
l wrθ

+ 8Cθξ0Iλi
3
θ0µs

2
0w

3
l wrθ − 2Cθξ0γ

2
0Iλi

3
θ0µwlw

3
rθ

− 2Cθξ0Iλi
3
θ0µs

2
0wlw

3
rθ

− 8Cθξ0γ0Iλi
3
θ0µs0w

2
l wr cos(2wlθ)

+ 2Cθξ0γ0Iλi
3
θ0µs0w

3
r cos(2wlθ)

+ 8ξ0γ
2
0Iλi

2
θ0pr0w

3
l cos(wrθ)

+ 8ξ0Iλi
2
θ0pr0s

2
0w

3
l cos(wrθ)

− 2ξ0γ
2
0Iλi

2
θ0pr0wlw

2
r cos(wrθ)

− 2ξ0Iλi
2
θ0pr0s

2
0wlw

2
r cos(wrθ)

− 8α0ξ0γ0Iλi
2
θ0s0w

2
l wr cos(2wlθ) cos(wrθ)

+ 2ξ0γ
2
0Iλi

2
θ0pr0wlw

2
r cos(2wlθ) cos(wrθ)

− 2ξ0Iλi
2
θ0pr0s

2
0wlw

2
r cos(2wlθ) cos(wrθ)

− 4Cθξ0γ
2
0Iλi

3
θ0µw

2
l wr sin(2wlθ)

+ 4Cθξ0Iλi
3
θ0µs

2
0w

2
l wr sin(2wlθ)

+ Cθξ0γ
2
0Iλi

3
θ0µw

3
r sin(2wlθ)

− Cθξ0Iλi
3
θ0µs

2
0w

3
r sin(2wlθ)

− 4α0ξ0γ
2
0Iλi

2
θ0w

2
l wr cos(wrθ) sin(2wlθ)

+ 4α0ξ0Iλi
2
θ0s

2
0w

2
l wr cos(wrθ) sin(2wlθ)

− 4ξ0γ0Iλi
2
θ0pr0s0wlw

2
r cos(wrθ) sin(2wlθ)

+ 8α0ξ0γ
2
0Iλi

2
θ0w

3
l sin(wrθ)

+ 8α0ξ0Iλi
2
θ0s

2
0w

3
l sin(wrθ)

− 2α0ξ0γ
2
0Iλi

2
θ0wlw

2
r sin(wrθ)

− 2α0ξ0Iλi
2
θ0s

2
0wlw

2
r sin(wrθ)

+ 8ξ0γ0Iλi
2
θ0pr0s0w

2
l wr cos(2wlθ) sin(wrθ)

+ 2α0ξ0γ
2
0Iλi

2
θ0wlw

2
r cos(2wlθ) sin(wrθ)

− 2α0ξ0Iλi
2
θ0s

2
0wlw

2
r cos(2wlθ) sin(wrθ)

+ 4ξ0γ
2
0Iλi

2
θ0pr0w

2
l wr sin(2wlθ) sin(wrθ)

− 4ξ0Iλi
2
θ0pr0s

2
0w

2
l wr sin(2wlθ) sin(wrθ)

− 4α0ξ0γ0Iλi
2
θ0s0wlw

2
r sin(2wlθ) sin(wrθ)

)

, (81)
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where we denoted Iλ = 1/pλ. In that sense, we have to note that the variable
β is directly related to the right ascension of the ascending node of the orbit,
which is already known to have a secular variation over time. In fact, the
secular terms seen in the solution of β are related precisely with this drifting
of the orbital plane due to J2 perturbation. In particular, if we only consider
the secular terms from Eq. (81), we obtain a secular variation of β equal to:

dβ

dθ
= −3

2
µ2J2R

2
⊕I

5
θ pλ, (82)

which transformed into keplerian elements provides the following expression:

dβ

dθ
= −3

2
J2

(

R⊕

a(1− e2)

)2

cos(i). (83)

As it can be seen, this result is equivalent to the well know secular variation
of the right ascension of the ascending node if we consider an average motion
of the system:

dΩ

dt
= −3

2
J2

(

R⊕

a(1− e2)

)2√ µ

a3
cos(i). (84)

6.2 Search of periodic orbits

The formulation presented in this manuscript can be used to search periodic
orbits. In particular, if we impose that both characteristic frequencies of
the problem (wr and wϕ) are equal, we will have a dynamic that repeats
periodically in the variables {α, pr, s, γ, Iθ, ξ} at the same frequency wper =
wr = wϕ. That way, the following relation can be obtained:

(

−2 + 3γ20 + 3s20
)

= 2
(

1− s20 − γ20
)

(85)

and thus:

s20 + γ20 =
4

5
. (86)

If we relate this result to classical variables:

s20 + γ20 = 1− p2λ
p2θ

= sin2(i) =
4

5
, (87)

whose solution corresponds to the critically inclined orbits at i = 63.435 deg
and i = 116.565 deg. Note also that the relation:

(

1− s20 − γ20
)2

p4λ
=

1

p4θ
= 0, (88)

allows to make both frequencies equal. This case corresponds to a situa-
tion where the angular momentum is infinite, that is, the orbiting object is
located at an infinite distance orbiting the celestial body. Note also, that
these positions correspond to the stable points of the orbit.
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6.3 Examples of application

The objective now is to show the performance of the solution provided by the
Poincaré-Lindstedt method to the J2 formulation presented in this work. To
that end, we show three examples of orbits around the Earth corresponding
to three very different orbit designs: a near circular orbit, a very eccentric
elliptic orbit, and an hyperbolic orbit. We present the results of these ex-
amples in the following subsections. In all the cases, the analytical solution
is compared with a Runge-Kutta numerical scheme of order 4-5 (Dormand-
Prince method) with a relative tolerance of 10−13.

6.3.1 Example: near circular orbit

For the example of near circular orbit, we select a typical sun-synchronous
frozen Earth observation orbit with the following initial orbital elements:
a = 7077.722 km, e = 0.001043, i = 98.186 deg, ω = 90.0 deg, Ω = 0.0 deg
and ν = 0.0 deg. Figures 1 and 2 show the evolution of the variables radial
distance, latitude and longitude respectively as a function of the time reg-
ularization variable θ. These figures also include the error when compared
with the numerical solution using a Runge-Kutta scheme. As it can be
seen, even for a first order solution of the equations, the precision is remark-
able, having less than 50 meters of error in the radial distance, less than
3 · 10−5 deg of error in the latitude of the orbit, and less than 2.5 · 10−4 deg
in the determination of the longitude.

0 50 100 150 200 250 300 350

7080
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0 50 100 150 200 250 300 350
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0 50 100 150 200 250 300 350

-100

0

100

Figure 1: Evolution of radial distance, latitude and longitude for a frozen
sun-synchronous orbit.
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Figure 2: Evolution of error in radial distance, latitude and longitude for a
frozen sun-synchronous orbit.
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Figure 3: Long term error evolution in the radial distance, the latitude and
the longitude for a frozen sun-synchronous orbit.

Additionally, we can study how the error evolves in longer propagation
times. To that end, we perform a 100 orbital period propagation using these
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equations and compare the results with the numerical integrator. Figure 3
shows the result of this comparison. As it can be seen, the error on the
radial distance remains bounded while the error in the latitude and the
longitude of the orbit increases with time. This effect is due to the first order
approximation performed in the frequency of the solution which produces a
phasing between the analytical solution and the real solution that increases
with time. This effect was observed for all the solutions studied for this
work.

6.3.2 Example: Molniya orbit

As an example of this formulation to eccentric orbits, we select a typical Mol-
niya orbit with initial elements: a = 26600.0 km, e = 0.74, i = 63.435 deg,
ω = 270.0 deg, Ω = 0.0 deg and ν = 0.0 deg. Figures 4 and 5 present
the results of applying this formulation to this particular initial conditions.
From these figures, it can be seen that, even for very eccentric orbits, the
formulation along with the perturbation theory used provides a very good
approximation to the problem even for a first order solution. In particular,
the order of magnitude of the error in latitude and longitude remains the
same as in the near circular case, while the radial distance experiences an
increase in its error due to the larger variation of this variable during the dy-
namic. Therefore, this example shows that this formulation can be applied
without any problem even to high eccentric orbits.

0 50 100 150 200 250 300 350

1

2

3

4

104

0 50 100 150 200 250 300 350

-50

0

50

0 50 100 150 200 250 300 350

100

200

300

Figure 4: Evolution of radial distance, latitude and longitude for a Molniya
orbit.

Page 31



A set of orbital elements to study zonal harmonics D. Arnas, R. Linares

0 50 100 150 200 250 300 350
0

0.02

0.04

0.06

0.08

0 50 100 150 200 250 300 350
-4

-2

0

10-5

0 50 100 150 200 250 300 350

-6

-4

-2

0

2
10-5

Figure 5: Evolution of error in radial distance, latitude and longitude for a
Molniya orbit.

6.3.3 Example: hyperbolic orbit

For the final example, we select an hyperbolic orbit to show that this formu-
lation can also be successfully applied to this kind of orbits. To this end, an
orbit with the following initial orbital elements is used: a = −35000.0 km,
e = 1.2, i = 50.0 deg, ω = 0.0 deg, Ω = 0.0 deg and ν = 0.0 deg. Figures 6,
and 7 show the solution for these initial conditions. Note that, since the
orbit is hyperbolic, only a section of the orbit was plotted. Nevertheless,
the formulation can also generate the imaginary solution when the orbiting
object is in the infinite which, to be more precise, generates negative radial
distances. As it can be seen from the figures, the precision of the solution
is also maintained in this case.
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Figure 6: Evolution of radial distance, latitude and longitude for an hyper-
bolic orbit.
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Figure 7: Evolution of error in radial distance, latitude and longitude for an
hyperbolic orbit.
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7 Non-dimensional formulation

Finally, in order to extend the possibilities of application of this set of orbital
elements and formulation, we propose in this section the non-dimensional
representation to the formulation introduced before. The goal of this new
transformation is to normalize all the variables of the problem and to gen-
erate a polynomial system of differential equations where all the coefficients
are either ones, or multiples of the zonal terms of the gravitational potential
from the celestial body in study.

Let α̂, p̂r, Îθ, Îλ be the new set of variables that will substitute α, pr,
Iθ, Iλ respectively in the equations and that are defined as:

α̂ = α

√

R⊕

µ
; p̂r = pr

√

R⊕

µ
;

Îθ = Iθ
√

µR⊕; Îλ =
1

pλ

√

µR⊕. (89)

Then, if we introduce these transformations in Eq. (62), the following system
of equations is obtained:

dα̂

dθ
= −p̂r − 3J2Î

3
θ

(

α̂+ Îθ

)(

α̂+ 2Îθ

)

γs;

dp̂r
dθ

= α̂+
3

2
J2Î

3
θ

(

α̂+ Îθ

)2 (
3s2 − 1

)

;

ds

dθ
= γ;

dγ

dθ
= −s− 3J2Î

3
θ

(

1− s2 − γ2
)

(

α̂+ Îθ

)

s;

dÎθ
dθ

= 3J2Î
4
θ

(

α̂+ Îθ

)

sγ;

dβ

dθ
= −3J2ξÎλÎ

2
θ

(

α̂+ Îθ

)

s2;

dξ

dθ
= 6J2ξ

2Î2λÎθ

(

α̂+ Îθ

)

sγ;

dÎλ
dθ

= 0, (90)

As it can be seen, all the coefficients of the polynomial are ones for the unper-
turbed terms, and multiples of J2 for the perturbed terms. This formulation
can be useful for its application in different perturbation theories that rely
on defining the problem based on a perturbation in a small parameter.

In addition, the same transformation can be performed in the general
zonal problem from Eq. (67) to obtain:
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dα̂

dθ
= −p̂r −

m
∑

n=2

Jn
∂Pn(s)

∂s
γÎn+1

θ

(

α̂+ Îθ

)n−1 (

α̂+ 2Îθ

)

;

dp̂r
dθ

= α̂+
m
∑

n=2

(n+ 1) JnPn(s)Î
n+1
θ

(

α̂+ Îθ

)n
;

ds

dθ
= γ;

dγ

dθ
= −s−

m
∑

n=2

Jn
∂Pn(s)

∂s
În+1
θ

(

1− s2 − γ2
)

(

α̂+ Îθ

)n−1
;

dÎθ
dθ

=

m
∑

n=2

Jn
∂Pn(s)

∂s
γÎn+2

θ

(

α̂+ Îθ

)n−1
;

dβ

dθ
= −

m
∑

n=2

Jn
∂Pn(s)

∂s
ÎλsξÎ

n
θ

(

α̂+ Îθ

)n−1
;

dξ

dθ
=

m
∑

n=2

2Jn
∂Pn(s)

∂s
Î2λγξ

2În−1
θ

(

α̂+ Îθ

)n−1
;

dÎλ
dθ

= 0. (91)

which has again the same property as in the case of the J2 perturbation.

8 Conclusions

This manuscript presents a new set of non-singular orbital elements that
allows the fully representation and study of the perturbation produced by the
zonal harmonics of the gravitational potential about an oblate celestial body.
This set of elements are derived from spherical coordinates with respect to
the primary body, and provide a linear non-perturbed system when a time
regularization is performed. In addition, after performing an expansion of
the variables of the problem, the system of differential equations resultant
becomes completely polynomial, which provides some advantages for the
propagation and also for the application of perturbation theory as we have
shown in this manuscript.

In addition, this work includes the application and study of the Poincaré-
Lindstedt method to the formulation proposed for the particular case of the
J2 problem. That approach allows to generate an approximated analytical
solution of the problem under J2 perturbation. Particularly, for a motion
about the Earth, we show that the formulation has very good accuracy even
for a first order solution for orbits at any eccentricity, including elliptic,
parabolic and hyperbolic orbits. Note also that the proposed formulation
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requires no averaging nor removal of the parallax, and thus, it is not required
to separate long and short term components of the solution.
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