MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Aging Wireless Bandits: Regret Analysis
and Order-Optimal Learning Algorithm

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Atay, Eray Unsal, Kadota, Igor and Modiano, Eytan. 2021. "Aging Wireless Bandits:
Regret Analysis and Order-Optimal Learning Algorithm.” 2021 19th International Symposium on
Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt).

As Published: 10.23919/WIOPT52861.2021.9589673

Publisher: Institute of Electrical and Electronics Engineers (IEEE])

Persistent URL: https://hdl.handle.net/1721.1/145435

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

I I I .
I I Massachusetts Institute of Technology


https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/145435
http://creativecommons.org/licenses/by-nc-sa/4.0/

arXiv:2012.08682v2 [eess.SY] 21 Dec 2020

Aging Bandits: Regret Analysis and Order-Optimal
Learning Algorithm for Wireless Networks with
Stochastic Arrivals

Eray Unsal Atay, Igor Kadota, and Eytan Modiano

Abstract—We consider a single-hop wireless network with
sources transmitting time-sensitive information to the destination
over multiple unreliable channels. Packets from each source are
generated according to a stochastic process with known statistics
and the state of each wireless channel (ON/OFF) varies according
to a stochastic process with unknown statistics. The reliability
of the wireless channels is to be learned through observation.
At every time slot, the learning algorithm selects a single pair
(source, channel) and the selected source attempts to transmit its
packet via the selected channel. The probability of a successful
transmission to the destination depends on the reliability of
the selected channel. The goal of the learning algorithm is to
minimize the Age-of-Information (Aol) in the network over 7'
time slots. To analyze the performance of the learning algorithm,
we introduce the notion of Aol regret, which is the difference
between the expected cumulative Aol of the learning algorithm
under consideration and the expected cumulative Aol of a genie
algorithm that knows the reliability of the channels a priori. The
Aol regret captures the penalty incurred by having to learn the
statistics of the channels over the 7' time slots. The results are
two-fold: first, we consider learning algorithms that employ well-
known solutions to the stochastic multi-armed bandit problem
(such as e-Greedy, Upper Confidence Bound, and Thompson
Sampling) and show that their Aol regret scales as ©(logT);
second, we develop a novel learning algorithm and show that it
has O(1) regret. To the best of our knowledge, this is the first
learning algorithm with bounded Aol regret.

I. INTRODUCTION

Age-of-Information (Aol) is a performance metric that
captures the freshness of the information from the perspective
of the destination. Aol measures the time that elapsed since the
generation of the packet that was most recently delivered to
the destination. This performance metric has been receiving
attention in the literature [1], [2], [3] for its application in
communication systems that carry time-sensitive data. In this
paper, we consider a network with M sources transmitting
time-sensitive information to the destination over N unreliable
wireless channels, as illustrated in Fig. 1. Packets from each
source are generated according to an i.i.d. stochastic process
with known statistics and the state of each wireless channel
(ON/OFF) varies according to an i.i.d. stochastic process with
unknown statistics. At every time slot, the learning algorithm
schedules a single pair (source, channel) and the selected
source attempts to transmit its packet via the selected wireless
channel. When a packet with fresh information is successfully
transmitted to the destination, the Aol associated with the
selected source is reduced. The goal of the scheduler is to keep
the information associated with every source in the network

as fresh as possible, i.e. to minimize the Aol in the network.
To decide which pair to select in a time slot, the scheduler
takes into account: i) the packet generation processes at the
M sources; ii) the current values of Aol at the destination;
and iii) the estimated reliability of the N wireless channels.

In this sequential decision problem, the outcomes of previ-
ous transmission attempts are used to estimate the reliability
of the wireless channels. This statistical learning problem is
closely related to the stochastic multi-armed bandit (MAB)
problem in which the wireless channels are the bandits that
give i.i.d. rewards and the scheduler is the player that attempts
to learn the statistics of the bandits in order to maximize
the reward accumulated over time. The main challenge in
the stochastic MAB problem is to strike a balance between
exploiting the bandit that gave the highest rewards in the past
and exploring other bandits that may give high rewards in
the future. To evaluate the performance of different learning
algorithms, we define regret. Regret is the difference between
the expected cumulative reward of a genie algorithm (that
knows the statistics of the bandits a priori) and the expected
cumulative reward of the learning algorithm under consider-
ation. The regret captures the penalty incurred by having to
learn the statistics of the bandits over time. Some well-known
order-optimal learning algorithms in terms of regret are: e-
Greedy, Upper Confidence Bound (UCB), and Thompson
Sampling (TS). The regret of these policies was shown to
increase no more than logarithmically in time [4], [5], [6],
O(logT), and this bound was shown to be tight [7].

We refer to our problem as the Aging Bandit problem. An
important distinction between the stochastic MAB problem
and the Aging Bandit problem is the reward structure. In
the stochastic MAB problem, the player selects a bandit in
each time slot and receives a reward that is i.i.d. over time
and depends only on the probability distribution associated
with the selected bandit. In the Aging Bandit problem, the
scheduler selects a pair (source, channel) and the reward is
the Aol reduction that results from a packet transmission
to the destination. This reward depends on the state of the
selected channel (which is ii.d. over time), since a failed
transmission gives zero reward, and it also depends on the
history of previous packet deliveries and packet generations.
In particular, if the selected source has recently delivered a
fresh information update to the destination, then the reduction
in Aol may be small. In contrast, if the selected source has
not updated the destination for a long period, then the Aol



reduction may be large. The reward structure of Aging Bandits
is closely related to the Aol evolution (formally defined in
Sec. II) which is history-dependent. This intricate reward
structure has significant impact on the analysis of regret and
on the development of learning algorithms when compared to
the analysis of the traditional stochastic MAB.

The literature on MAB problems is vast, dating more than
eight decades [8]. For surveys on different types of MAB
problems, we refer the readers to [9], [10], [11], [12]. Most
relevant to this work are [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24]. The authors in [13], [14], [15]
considered the problem of minimizing the expected queue-
length in a system with a single queue and multiple servers
with unknown service rates. In [13], the authors introduced the
concept of queue-length regret, developed a learning algorithm
inspired by Thompson Sampling, and analyzed its regret. In
[14], [15], the authors used information particular to the queue
evolution to develop a learning algorithm with O(1) queue-
length regret.

The authors in [16], [17], [18], [19], [20], [21], [22], [23],
[24] considered the problem of minimizing the average Aol
in a single-hop wireless network with unreliable channels.
In [16], [17], [18], [19], [20], [21], the authors posed the
Aol minimization problem in a network with multiple sources
and known channel statistics as a restless MAB problem,
developed the associated Whittle’s Index scheduling policy,
and evaluated its performance in terms of the average Aol. In
[22], the authors considered the Aol minimization problem in
a network with a single source-destination pair and unknown
channel statistics, introduced the concept of Aol regret, and
showed that the Aol regret of UCB and TS scale as O(log T').
In [23], the authors obtained similar results as in [22] for the
more challenging case of correlated wireless channels. In [24],
the authors considered the Aol minimization problem in a
network with multiple sources that generate and transmit fresh
packets at every time slot through (possibly) different channels
with unknown statistics. The authors in [24] showed that the
Aol regret of a UCB-based distributed learning algorithm
scales as O(log® T'). An important modelling assumption com-
mon to [22], [23], [24] is that sources generate and transmit
fresh packets at every time slot. The more realistic assumptions
of random packet generation and scheduled transmissions have
significant impact on the Aol evolution, on the analysis of Aol
regret, and on the development of learning algorithms. For
example, in Sec. IV, we leverage the random packet generation
to develop a learning algorithm with O(1) Aol regret.

In this paper, we study learning algorithms that attempt to
minimize Aol in a network with multiple sources generating
packets according to stochastic processes and transmitting
these packets to the destination over wireless channels with
initially unknown statistics. At every time slot, the learning
algorithm schedules a single pair (source, channel) and the
selected source attempts to transmit a packet through the
selected channel. Note that the source policy, which selects
a source at each time slot, and the channel policy, which
selects the channel to be used in each time slot, can be
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Fig. 1. Tllustration of the wireless network with M sources, N channels, and
a destination.

naturally decoupled, as the optimal channel is independent of
the source selected. In this paper, we focus on the exploration-
exploitation dilemma faced by the channel policy. In particular,
we consider learning algorithms employing the optimal source
policy and different channel policies. Our main contributions
include:

o we analyze the performance of channel policies based
on traditional MAB algorithms including e-Greedy, UCB,
and TS, and show that their Aol regret scales as ©(log T').
These results generalize the analysis in [22] to networks
with multiple sources generating packets randomly. The
analysis of the Aol regret is more challenging in this
network setting since the Aol evolution depends on both
the source policy and the stochastic packet generation
process. These challenges are discussed in Sec. III;

« we develop a novel learning algorithm and establish that it
has O(1) Aol regret. The key insight is that when packets
are generated randomly, the learning algorithm can utilize
times when the network has no packets to transmit, in
order to learn the statistics of the channel. To the best of
our knowledge, this is the first learning algorithm with
bounded Aol regret.

The remainder of this paper is outlined as follows. In Sec. II,
the network model and performance metrics are formally
presented. In Sec. III, we analyze the Aol regret of traditional
learning algorithms. In Sec. IV, we develop an order-optimal
learning algorithm and analyze its Aol regret. In Sec. V, we
compare the Aol regret of different learning algorithms using
simulations. The paper is concluded in Sec. VI. Some of the
technical proofs have been omitted due to the space constraint,
and will be made available in a technical report.

II. SYSTEM MODEL

Consider a single-hop wireless network with M sources, N
channels and a single destination, as illustrated in Fig. 1. Each
source generates packets containing time-sensitive information
and these packets are to be transmitted to the destination
through one of the wireless channels. Let the time be slotted,
with slot index t € {1,2,---, T}, where T is the time horizon
of this discrete-time system. The slot duration allows for a
single packet transmission. We normalize the slot duration to
unity.

At the beginning of every slot ¢, each source generates a
packet with probability A € (0,1). Let a(t) € {0,1} be
the indicator function that is equal to 1 when source m &



{1,2,---, M} generates a packet in slot ¢, and a,,(t) = 0
otherwise. This Bernoulli process with parameter A is i.i.d.
over time and independent across different sources, with
P (am(t) =1) = A\,¥m,t. A packet that is generated in slot ¢
can be transmitted during the same slot t. We denote the vector
of packet generations in slot ¢ by @(t) = [a1(t) -+ an(t)] .

Each source has a transmission queue to store its packets.
Sources keep only the most recently generated packet, i.e. the
freshest packet, in their queue. When source m generates a
new packet at the beginning of slot ¢, older packets (if any)
are discarded from its queue. Notice that delivering the most
recently generated packet provides the freshest information to
the destination. This queueing discipline is known to optimize
the Aol in a variety of contexts [25], [26], [27]. After a packet
delivery from source m, the queue remains empty until the
next packet generation from the same source. However, while
the queue is empty, a dummy packet can be transmitted for
the purpose of probing the channels.

The networked system is empty during slot ¢ if there are no
data packets available for transmission, i.e. if the M queues
are empty. Let E(t) € {0,1} be the indicator function that is
equal to 1 if the system is empty during slot ¢, and E(t) =0
otherwise. Notice that if there is a packet generation at the
beginning of slot ¢, then the system is nonempty during slot ¢
and E(t) = 0. Recall that when the system is empty, sources
can still transmit dummy packets.

In a slot, the learning algorithm selects a single pair (m,n),
where m € {1,2,---, M} is the index of the source and
n € {1,2,---, N} is the index of the wireless channel. Then,
during this slot, source m transmits a packet to the destination
through channel n. If channel n is ON, then the packet is
successfully transmitted to the destination, and if channel n
is OFF, then the transmission fails. The learning algorithm
does not know the channel states while making scheduling
decisions, and the outcome of a transmission attempt during
slot ¢ is known at the beginning of slot ¢ + 1. Let b, () €
{0,1} be the indicator function that represents the state of
channel n during slot ¢. The channel is ON, b, (t) = 1, with
probability u, € (0,1], and the channel is OFF, b, (t) = 0,
with probability 1 — p,,. The channel state process is i.i.d. over
time and independent across different channels.

The reliability of channel n is represented by the probability
of this channel being ON, p,. Let @ = [pg --- MN]T be
the vector of channel reliabilities. Let p* be the maximum
channel reliability and let n* be the index of the corresponding
channel, i.e. p* = max,pu, = (.. For simplicity, we
assume that the optimal channel n* is unique. Naturally, if the
channel reliabilities were known by the learning algorithm in
advance, then the algorithm would select channel n* in every
slot t. However, since the channel reliabilities /i are initially
unknown, the learning algorithm has to estimate p,, using
observations from previous transmission attempts, while at the
same time attempting to minimize the Aol in the network.
Next, we formulate the Aol minimization problem.
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Fig. 2. The blue and orange rectangles at the bottom represent packets
generated at source m and successful packet transmissions from source m,
respectively. The orange curve shows the Aol evolution hy,(t) associated
with source m.

A. Age of Information

The Aol captures how old the information is from the per-
spective of the destination. Let h,,, (t) be a positive integer that
represents the Aol associated with source m at the beginning
of slot ¢. By definition, we have h,,(t) := t — 7,,,(¢), where
Tm(t) is the generation time of the latest packet successfully
transmitted from source m to the destination!. If the desti-
nation does not receive a fresh packet from source m during
slot ¢, then in the next slot we have h,,(t + 1) = h,,(¢) + 1,
since the information at the destination is one slot older. In
contrast, if the destination receives a fresh packet from source
m during slot ¢, then in the next slot the value of 7., (¢t + 1)
is updated to the generation time of the received packet and
the Aol is reduced by 7,,,(t + 1) — 7,,,(¢). This difference is
the “freshness gain” associated with the received packet. The
evolution of h,,(t) over time is illustrated in Fig. 2. We define
the vector of Aol in slot ¢ as h(t) = [hy(t) --- hM(t)]T.

For capturing the information freshness of the entire net-
work, we consider the expected total Aol h(T), which is
defined as the expected sum of the Aol over all sources and
over time, namely

M T
WT)=E [Z thu)] : )
m=1t=1

where the expectation is with respect to the randomness in
the channel states b, (t), packet generation process a(t), and
scheduling decisions (m, n). The learning algorithm schedules
pairs (m,n) over time so as to minimize the expected total
Aol h(T). Recall that in this sequential decision problem, the
channel reliabilities i, are initially unknown by the learning
algorithm and should be estimated over time. Next, we discuss
the class of learning algorithms considered in this paper.

'We define 7, (t) = O prior to the first packet delivery from source m.



B. Learning Algorithm

In this section, we present three important concepts asso-
ciated with the learning algorithm: the channel policy, the
source policy, and the Aol regret. Prior to discussing these
concepts, we introduce some notation. In each slot ¢, the
learning algorithm selects a single source and a single channel.
Let m(t) be the index of the source selected during slot ¢
and let n(t) be the index of the channel selected during slot
t. Then, the pair selected in each slot can be denoted as
(m(t),n(t)). Notice that the learning algorithm can be divided
into two components: the source policy, which selects m(t),
and the channel policy, which selects n(t). Let b(t) = b,,(4)(t)
be the state of the channel selected during slot ¢, and recall that
@(t) is the vector of packet generations and k(t) is the vector
of Aol in slot ¢. Using this notation, we define the channel
policy and the source policy.

The channel policy may (or may not) take into account the
status of the transmission queues at the sources (in particular
E(t)) in making scheduling decisions n(¢). Hence, we define
two types of channel policies: queue-independent channel
policies and queue-dependent channel policies. Let IIp be the
class of admissible queue-independent channel policies . In
slot ¢, an arbitrary policy 7, € Il selects n(t) using informa-
tion about the outcome of previous transmission attempts. In
particular, the queue-independent channel history in slot ¢ is
given by Hp(t) = {n(1),b(1),--- ,n(t—1),b(t—1)}. Let 5
be the class of admissible queue-dependent channel policies
7. In slot ¢, an arbitrary policy 7, € Ilp selects n(t) using
information about the outcome of previous transmission at-
tempts and about the current status of the transmission queues.
In particular, the queue-dependent channel history in slot ¢ is
given by Hp(t) = Hp(t) U{E(t)}. In Sec. IV, we show that
this small amount of information, namely E(t), can have a
significant impact on the performance of the channel policy. It
is easy to see that both the optimal queue-independent channel
policy 7; and the optimal queue-dependent channel policy 7}
select the channel with highest reliability u* at every slot ¢.
However, since the reliabilities fi are not known a priori, the
channel policies have to estimate i over time. In Sec. III, we
consider queue-independent channel policies and in Sec. IV,
we consider queue-dependent channel policies.

The source policies considered in this paper are work-
conserving, i.e. policies that never transmit dummy packets
when there are undelivered data packets in the system. Let
114 be the class of admissible work-conserving source policies
mq. In slot ¢, an arbitrary source policy 7, € I14 selects m(t)
using information about the current Aol and the generation
times of the packets waiting to be transmitted at the sources’
queues. In particular, the source history in slot ¢ is given
by Ha(t) = {@(1),h(1),--- ,d@(t), h(t)}. The optimal source
policy 7 € II4 is the transmission scheduling policy that
minimizes the expected total Aol in (1). A few works in the
literature [18], [19], [28], [29] have addressed the problem
of finding the transmission scheduling policy that minimizes
Aol in wireless networks with stochastic packet generation

and unreliable channels with known statistics. Despite those
efforts, a full characterization of the optimal source policy is
still an open problem.

In this paper, we consider learning algorithms 7 that
are a composition of a source policy and a channel pol-
icy m = (mq,m). Our goal is to study the exploration-
exploitation dilemma faced by the channel policy. To that end,
we analyze the Aol regret of learning algorithms employing
the optimal source policy and different channel policies. To
analyze the Aol regret of learning algorithms without the full
characterization of the optimal source policy 7, we derive
lower and upper bounds on the regret. These bounds are
discussed in Proposition 2, Proposition 3, and Theorem 7,
where we assumed that the optimal source policy 7 is the
same irrespective of the queue-independent channel policy
under consideration, namely

M T
Z Zhﬁ;{am)(t)] ,Vmp, eI, (2)

m=1 t=1

- .
m, =argminE
ma €114

where A7 ™) (t) denotes the Aol associated with source m in
slot ¢ when the learning algorithm 7 = (7, 7) is employed.
An analogous assumption is utilized for the case of queue-
dependent channel policies 7, € IIp.

The Aol regret of a learning algorithm = with queue-
independent channel policy 7, is defined as the difference
between the expected total Aol h™(T) when 7 = (74, mp) is
employed and the expected total Aol h*(T) when the optimal
algorithm 7* = (7}, 7}') is employed, namely

M T M T
RY(T)=E Y Y hrm) =Y > h@®], 3
m=1t=1 m=1 t=1
where the expectation is with respect to the randomness in
the channel states b(t), packet generation process d(t), and
scheduling decisions (m(t), n(t)). The definition of Aol regret
for a learning algorithm 7 with queue-dependent channel
policy 7, is analogous to (3). Next, we analyze the Aol
regret of learning algorithms with queue-independent channel
policies.

III. REGRET ANALYSIS

The problem of learning channel reliabilities over time is
closely related to the stochastic MAB problem. A natural class
of channel policies to consider are traditional MAB algorithms
such as e-Greedy, UCB, and TS. In this section, we derive
bounds on the Aol regret of learning algorithms that employ
queue-independent channel policies. Notice that the class of
queue-independent channel policies IIp includes traditional
MAB algorithms. We describe a learning algorithm employing
TS as its channel policy in Algorithm 1.

Scheduling decisions of a learning algorithm 7 might differ
from those of 7* both in the source and in the channel, which
makes the analysis of the Aol regret Zthl ng:l E[rT (t) —
hi (t)] challenging. To alleviate this challenge, we use
stochastic coupling to create equivalent coupled channel state



Algorithm 1: Learning Algorithm employing TS as its
channel policy

Initialization: time ¢ = 1, estimates ji,, = 0, counters
T, = 0, parameters o, = 8, =1, Vn € {1,--- ,N};
while 1 <t < T do
Optimal source policy selects m € {1,2,---,M};
0” ~ Beta(a'ru Bn);
n = argmax,c(i,... N} On’
Source m transmits packet through channel n and
observes channel state b;
if b = 1 then
‘ ap = op + 1;
else
‘ 571 = Bn +1;
end

. . [y, T, b
Compute new estimate fi,, = M;

T, +1
T,=1T,+1;
t=t+1;

end

processes that are simpler to analyze. Similar coupling argu-
ments were employed in [13], [22].

Remark 1 (Coupled Channel States). Let {U(t)}_, be a
sequence of i.i.d. random variables uniformly distributed in
the interval [0,1]. In each slot t, the channel states b, (t) are
determined as follows

bp(t) =1 <= 0<U{) < ptip , V0. 4)

By construction, the coupled channel states are no longer
independent. In particular, if a channel is ON during slot ¢,
then all channels with higher reliability u,, are also ON during
that slot. Notice that, in each slot ¢, each coupled channel n
has the same probability distribution as the associated original
channel n, namely P (b,,(t) = 1) = p,, Vn, t. Hence, given the
scheduling decision (m(t),n(t)) of = during any slot ¢, the
probability of a successful transmission attempt from source
m(t) through channel n(t) is the same for both the coupled
and original channel states. It follows that the probability
distribution of AT (t) also remains the same for all slots ¢ and
for all sources m and, thus, the Aol regret R™(T") in (3) also
remains the same for both the coupled and original channel
state processes. For simplicity of analysis, henceforth in this
paper, we assume that the channel state processes are coupled
as described in Remark 1.

In Proposition 2, Proposition 3, and Corollary 4, we derive
bounds on the Aol regret of a learning algorithm 7 with respect
to its expected number of suboptimal channel choices, namely

E[K™(T)] = E [Z 1{n"(t) # n*}] 7 ©)
t=1

where 1{n"(t)#n*} = 1 if n™(t) # n* and
1{n™(t) #n*} = 0 otherwise. We consider two classes of

admissible learning algorithms

H:{ﬂ-:(’navﬂ-b):WaGHAa’]TbgnB} ) (6)

)

Both classes employ queue-independent channel policies. The
difference is that I employs any admissible source policy 7, €
IT 4, while IT* employs the optimal source policy 7. Naturally,
we have IT* C IL

" = {m = (wq, m) : mg = m,,m € p} .

Proposition 2 (Lower Bound). For any given network con-
figuration (X, [i), the Aol regret of any learning algorithm
w € 1l scales at least on the order of its expected number
of suboptimal channel choices, namely’

RY(T) = Q(E[K™(T))) - (8)

Proof outline. In addition to the suboptimal channel choices,
source choices m™(t) of algorithm 7 € II can also differ from
the source choices m*(t) of 7*. To overcome this challenge,
we construct an auxiliary algorithm 7* with optimal channel
policy and a source policy that selects the same source® m™ (t)
as 7 in every slot ¢. Then, we focus on the auxiliary Aol regret
S SSMUB[RT (1) — T (1)) associated with the auxiliary
algorithm 7*, which we show to be not greater than the
original Aol regret Zthl Zi\r{:l E[AT,(t) — h,(t)]. We then
observe that each suboptimal channel choice of 7 results in
a penalty to the auxiliary Aol regret, and we show that this
penalty is lower bounded by a constant. Using this constant,
we obtain the desired lower bound on the original Aol regret
in (8). The details are omitted due to the space constraint.

Proposition 3 (Upper Bound). For any given network con-
figuration (X, [i), the Aol regret of any learning algorithm
w € IT* scales at most on the order of its expected number of
suboptimal channel choices, namely*

RY(T) = O (E[K™(T))) . ©)

Proof outline. Despite the fact that both learning algorithms
m € II* and 7* employ the same optimal source policy
7%, they might select different sources m™(t) # m*(t)
over time, due to their different channel policies. To address
this challenge, we use an approach similar to the proof of
Proposition 2. We construct an auxiliary algorithm 7 € IT*
with a source policy that selects the same source m*(t) as 7*
in every slot ¢, and with a channel policy that selects the same
channel n™(t) as m in every slot t. Then, we show that the
auxiliary Aol regret Zthl Zf\,f:l E[hZ (t)—hZ (t)] associated
with the auxiliary al%orithm 7 is not lower than the original
Aol regret Zle Zﬁiﬂ E[AT (¢t)—hZ,(t)]. To derive an upper
bound on the auxiliary Aol regret, we analyze the penalty that
results from each suboptimal channel choice of 7. During a
slot ¢ where 7 makes a suboptimal channel choice, if channel

n®(t) is OFF and channel n* is ON, then a discrepancy is

2f(t) = Qg(t)) <= 3IC >0 3Ttg Vt > to: f(t) > C - g(n)

3Notice that if the selected source m7™ (t) has no packet in its transmission
queue, then the auxiliary algorithm attempts to transmit a dummy packet.

() = O(g(t)) <= 3IC >0 Tt VEt > to: f(t) < C-g(n)



added to the difference between the Aol of 7 and the Aol
of m*, i.e. AT (t +1) — h¥,(t +1) > h¥ (t) — hZ%,(t). This
discrepancy lasts until the next successful transmission of a
packet from source m by the auxiliary algorithm 7, after which
the values of h% (-) and hZ (-) become equal’. We refer to
the duration of the discrepancy as its length. The penalty that
results from a suboptimal channel choice is the product of
the discrepancy and its length. We characterize the auxiliary
Aol regret by expressing it as the sum of the penalties arising
from suboptimal channel choices. Then, using discrete phase-
type distributions, we upper bound the discrepancies and the
lengths by constants (in the expected sense) to obtain the result
in (9). The details are omitted due to the space constraint.

Corollary 4. For any given network configuration (\, i), the
Aol regret of any learning algorithm m € II* scales with its
expected number of suboptimal channel choices, namely®

RY(T) = © (E[K™(T)]) - (10)

Corollary 4 follows directly from Propositions 2 and 3.
Notice that the bounds in Proposition 3 and Corollary 4
are not valid for the broader class of learning algorithms IT
which includes suboptimal source policies. This is because
suboptimal source choices may add to the Aol regret, possibly
making it grow faster than E [K™(T)].

Prior to analyzing the Aol regret of learning algorithms
that employ e-Greedy, UCB, and TS as their channel policy,
we define «a-consistent learning algorithms [12], [13] and
discuss a few of their properties. Let E[T,7 (T")] be the expected
number of times channel 7 is selected by 7 € II in the first
T slots, namely

E[T7(T)] =E (11)

Z 1{n™(t) = n}] .

Definition 5 (a-consistency). For a given o € (0, 1), a learn-
ing algorithm w € 11 is classified as «-consistent if, for any
network configuration (\, i), we have E[TT(T)] = O(T*)
for all suboptimal channels n # n*.

Intuitively, a learning algorithm 7 € II is a-consistent if
its channel policy has good performance in every network
configuration. Consider a learning algorithm with a trivial
channel policy that selects n(t) = 1 in every slot ¢. In network
configurations with n* = 1, this channel policy never selects
suboptimal channels, ie. E[T7(T)] = O(T%),Yn # n*.
However, in network settings with n* = 1, this channel policy
is such that E[T7(T)] = T, which violates the definition
of a-consistency. In the remainder of this section, we focus
on channel policies that have good performance in every
network configuration. In particular, we analyze the Aol regret
of a-consistent learning algorithms with queue-independent
channel policies.

ASRecall from Remark 1 that channel states are coupled. Hence, if channel
n™(t) is ON, then channel n* is also ON.

Sf(t) = ©(g(t) <= f(t) = O(g(t) A f(t) = Qg(1))
3C1,C2 >0 3to Vt > to : C1 - g(n) < f(t) < Ca - g(n)

—

Remark 6 (Aol regret of a-consistent algorithms). In [13,
Corollary 20], the authors show that any learning algorithm
m € 11 that is a-consistent has an expected number of subop-
timal channel choices that scales as E[K™(T)] = QlogT),
Sor any network configuration (\, [i). Hence, it follows from
the lower bound in Proposition 2 that the associated Aol regret
scales as

RY(T) = QlogT) , (12)

for any network configuration (X, [i).

Notice that the lower bound in Remark 6 applies to a-
consistent learning algorithms with queue-independent chan-
nel policies that do not know the statistics of the channels in
advance.

Learning algorithms that employ e-Greedy, UCB, and TS
as their channel policy are known to have suboptimal channel
choices scaling as E[K™(T)] = O(logT) for any network
configuration (A, ) [4], [30], which implies that they are
a-consistent. Hence, it follows from the upper bound in
Proposition 3 and from (12) that the Aol regret of these
learning algorithms scale as

R™(T)=0(ogT) . (13)

In [22], the authors derived lower and upper bounds on
the Aol regret of learning algorithms employing queue-
independent channel policies, including UCB and TS, in
networks with a single source generating and transmitting
fresh packets in every slot t. Propositions 2 and 3 generalize
the results in [22] to networks with multiple sources generating
packets according to stochastic processes. The analysis of the
Aol regret is more challenging in this network setting for the
following reasons: i) the optimal source policy 7 is unknown
and there is no closed-form expression for the expected total
Aol (1) of the optimal algorithm 7* = (7}, 7/); and ii) the
learning algorithm under consideration = = (7, 7) can make
suboptimal choices both in terms of sources m(t) and channels
n(t), and these two types of suboptimal choices affect the
Aol regret R™(T) differently. Next, we develop a learning
algorithm that leverages information about the status of the
transmission queues in making scheduling decisions n(t), and
show that this new learning algorithm has O(1) Aol regret.

IV. ORDER-OPTIMAL LEARNING ALGORITHM

In this section, we develop a learning algorithm 7 € TII
with a queue-dependent channel policy that selects n(t) using
information about the outcome of previous transmission at-
tempts, namely Hg(t) = {n(1),b(1), - ,n(t—1),b(t — 1)},
and about the current status of the transmission queues, E(t).
Then, we derive an upper bound on its Aol regret. In particular,
we show that the Aol regret of 7 is such that R7(T") = O(1).
Notice that the only difference between the learning algorithms
m € 1I in Sec. III and the order-optimal learning algorithm #
is the knowledge of E(t). This seemingly modest addition led
to the reduction of the Aol regret from R™(T") = Q(logT) to
R7(T) = O(1). To the best of our knowledge, this is the first
learning algorithm with bounded Aol regret.



Algorithm 2: Order-Optimal Learning Algorithm

Initialization: time ¢ = 1, estimates fi,, = 0, counters
T,=0,Yne{l,--- ,N};

while 1 <t < T do

Optimal source policy selects m € {1, 2,

if system is empty then

n = Unif{1,--- ,N};

Source m transmits dummy packet through
channel n and observes channel state b;

o Tt b,
“”_TQ+1’
else

n = argmax, c(q.. N} fn’;
Source m transmits data packet through
channel n and observes channel state b;

end
t=t+1;

end

The key insight is that when packets are generated ran-
domly, the learning algorithm 7 can utilize times when the
network has no data packets to transmit, i.e. when E(t) = 1,
to transmit dummy packets and learn the statistics of the
channels without incurring an opportunity cost. The order-
optimal learning algorithm 7 = (7,,7) has optimal source
policy 7, = 7 and a channel policy 7, € Iz that oper-
ates as follows: when the system is empty, E(t) = 1, the
policy chooses a channel uniformly at random and uses the
outcome of the transmission attempt to update its estimates
of the channel reliabilities and, when the system is nonempty,
E(t) = 0, the policy chooses the channel with the current
highest estimated reliability. Notice that the channel policy
only updates its estimates of the channel reliabilities when
the system is empty. A similar channel policy was used
in [14], [15] to develop a learning algorithm with bounded
queue-length regret. The order-optimal learning algorithm 7
is described in Algorithm 2. The upper bound on the Aol
regret is established in the theorem that follows.

Theorem 7. For any given network configuration (\, i),
the Aol regret of the order-optimal learning algorithm 1 is
bounded, namely

(14)

Proof. Recall that the two components of the order-optimal
learning algorithm are 77 = (7),, 7). Similarly to the proof of
Proposition 3, we start by constructing an auxiliary algorithm
71 = (T, Tp) which has a source policy 7, that selects the
same source m*(t) as 7* in every slot t. Since 7, = 7} is
optimal, it follows that 7, is suboptimal, which implies that

M T i M T .
> D ERL () = hy (0] < Y D ERL() -

m=1 t=1 m=1t=1

hin (8] -
(15)

We denote the RHS of (15) as the auxiliary Aol regret. Prior
to deriving the upper bound on the auxiliary Aol regret, we
introduce some definitions that are particular to the channel
policy 7.

Consider the time slots when the system becomes empty,
i.e. time slots ¢ such that E(t — 1) = 0 and E(t) = 1. We
denote the time interval between two such slots as a period
and we divide time t € {1,2,--- , T} into successive periods,
with period index p € {1,2,--- , P}. By definition, the system
is empty, E(t) = 1, in the beginning of each period p and it
remains empty until the first packet generation. Once the first
packet is generated, the system becomes nonempty, FE(t) = 0,
and it remains nonempty until the end of the period. Hence,
each period p has two phases: an empty phase and a nonempty
phase, with each phase having at least one slot. Let s, and
fp be the first and the last slots of period p, respectively, with
s1 =1 and sp41 = fp + 1,Vp. Then, the cumulative Aol of
source m during period p can be written as

£
np) = hL(t)

t=sp

(16)

Recall from Algorithm 2 that estimates of the channel
reliabilities are only updated during empty phases. Within a
nonempty phase, the estimates do not change and, thus, the
selected channel also does not change. Let 72(p) be the channel
selected by policy 7, during the entire nonempty phase of
period p. If n(p) = n*, we refer to period p as an optimal
period. Otherwise, we refer to period p as a suboptimal period.
Next, we derive an upper bound on the auxiliary Aol regret
in terms of the expected Aol contributions of the suboptimal
periods.

Lemma 8. The auxiliary Aol regret is upper bounded by

M T
Z E[h by (1))
m=1 t=]\14 .
< S 3 E[L®) | alp) #0°] P (alp) #0%) . (D)

To establish Lemma 8, we first show that if period p is an
optimal period, then k7, (t) = h%,(t),Ym,Vt € {sp, -+, [»},
which implies that optimal periods do not contribute to the
auxiliary Aol regret. Then, we obtain the upper bound in (17)
by manipulating the expression of the auxiliary Aol regret.
The complete proof of Lemma 8 can be found in Appendix
A.

In Lemmas 9 and 10, we derive upper bounds on the first
and second terms on the RHS of (17), respectively.

Lemma 9. There exists a constant Cy, such that

E [yl (p) | n(p) # n*] < (18)



To establish Lemma 9, we first show that the cumulative
Aol y!I (p) of source m in period p can be upper bounded by

fp fp—sp
ym) =D () < Y (W (sp) +1)
t=s, =0
= hﬁm(sp)[fp —sp+ 1]+ %[(fp - Sp)2 + fo = 5] -

19)

Then, we derive an upper bound on the conditional expectation
of (19). In particular, we show that A’ (s,) can be upper
bounded by a geometric random variable. Then, we show that
the random variable f, — s,, which represents the length of
period p, follows a discrete phase-type distribution. The upper
bound on the conditional expectation of (19) follows from
the fact that the geometric random variable has finite second
moment and the phase-type random variable has finite first
and second moments. The details are omitted due to the space
constraint.

Lemma 10. There exists a constant C,, such that

T
> P(na(p) #n*) < C,p. (20)
p=1

To establish Lemma 10, we use Hoeffding’s inequality
to upper bound P (7(p) =n) by an exponential function
of —p, for every suboptimal channel n. The result in (20)
follows directly from this upper bound. The complete proof
of Lemma 10 can be found in Appendix B.

From the upper bound on the Aol regret in (15) and the
results in Lemmas 8, 9 and 10, we have

RUT) < Y Y EIL(E) = b (0)]

m=1t=1
M T
< 3D E[L®) | ak) #n*] P (a(p) # )
m=1p=1
< CyMC, Q1)
which establishes the bound in (14). O]

In the particular case of a network with sources generating
fresh packets at every slot ¢, i.e. A = 1, the algorithm 7 cannot
utilize slots in which the system is empty to learn the channel
reliabilities without incurring a cost in terms of Aol regret,
which results in a R7(T') that grows over time. The upper
bound in Theorem 7 is only valid for the network models
described in Sec. II, in which A € (0,1). Next, we evaluate
the Aol regret of the different learning algorithms discussed
in this paper using MATLAB simulations and we propose a
heuristic algorithm that leverages the fast learning rates of TS
and the bounded regret of the order-optimal algorithm.

V. SIMULATIONS

In this section, we evaluate the performance of learning
algorithms in terms of the Aol regret in (3). We compare
learning algorithms employing the Age-Based Max-Weight

8000
lé 6000 —e-Greedy| |
& —ucB
€ TS
2 L —Optimal | |
o_: 40001/ ——Hybrid
<

2000/

0 1 2 3 4 5 6 7 8 9 10
Time horizon, T’ «10%

Simulation of a network with A = 0.1.

15000

Aol regret, R™(T)

0 1 2 3 4 5 6 7 8 9 10
Time horizon, T'

Fig. 4. Simulation of a network with A = 0.75.

source policy [29, Sec. 5] and different channel policies,
namely: i) e-Greedy; ii) UCB; iii) TS; iv) Optimal; and v)
Hybrid. The Age-Based Max-Weight source policy selects,
in each slot ¢, the source m associated with the packet that
gives the largest Aol reduction, 7,,,(t + 1) — 7,,,(¢), if the
transmission in slot ¢ is successful. Intuitively, this policy is
selecting the source with highest potential reward in terms of
Aol. In [29], the authors evaluate the performance of the Age-
Based Max-Weight source policy both analytically and using
simulations, and show that it achieves near optimal Aol. The
first three channel policies, namely e-Greedy, UCB, and TS,
were discussed in Sec. III. The Optimal policy is the order-
optimal channel policy 7, developed in Sec. IV. The Hybrid
policy employs TS for a fixed period in the beginning of
the simulation and then employs the Optimal policy in the
remaining slots.

We simulate a network with a time horizon of T = 10°
slots, M = 3 sources, each generating packets according to
a Bernoulli process with rate A\, and N = 5 channels with
reliabilities 7 = [0.4 0.45 0.5 0.55 0.6]T. Figures 3 and 4
show simulation results of the evolution of the Aol regret over
time for A = 0.1 and A = 0.75, respectively. Figure 5 shows
simulation results of the evolution of the reliability estimates
associated with the channels with py = 0.55 and pus; = 0.6
over time for A = 0.75. Each data point in Figs. 3, 4, and 5
is an average over the results of 10% simulations.

The results in Figs. 3 and 4 suggest that, as expected, the
Aol regret associated with Optimal and Hybrid is bounded,
while the Aol regrets associated with e-Greedy, UCB and TS
grow over time. By comparing the Aol regret of Optimal
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and TS in Figs. 3 and 4, it is clear that the Aol regret of
the Optimal channel policy varies significantly with \. In
particular, for T = 10°, when \ increases from 0.1 to 0.75,
the Aol regret of TS increases by a factor of 1.5 (from 1, 318
to 1,963), while the Aol regret of Optimal increases by a
factor of 491.0 (from 1,068 to 481,700). A main reason for
this performance degradation is that when A increases, empty
systems with E(¢) = 1 occur less often and, as a result, the
Optimal channel policy takes longer to learn the reliability
of the channels, as can be seen in Fig. 5. To improve the
performance of the Optimal policy for networks with large A,
we propose a heuristic policy called Hybrid channel policy,
which employs TS in the first 10? slots to quickly learn the
reliability of the channels, and then shifts to the Optimal policy
which has bounded Aol regret in the long term. Figure 5
illustrates the difference in the learning rates between Optimal
and Hybrid. Notice in Fig. 5 that there are extended periods
of time in which the Optimal channel policy assigns a larger
estimated reliability to a suboptimal channel, which leads to
the large Aol regret shown in Fig. 4. However, as established
in Theorem 7, for a long enough time-horizon 7', the Optimal
policy will eventually converge to the true reliabilities, at
which point the Aol regret will stop increasing.

VI. CONCLUSION

This paper considers a single-hop wireless network with A
sources transmitting time-sensitive information to the destina-
tion over [V unreliable channels. Packets from each source are
generated according to a Bernoulli process with known rate
A and the state of channel n (ON/OFF) varies according to a
Bernoulli process with unknown rate pu.,,. The reliabilities [
of the wireless channels is to be learned through observation.
At every slot ¢, the learning algorithm selects a single pair
(m(t),n(t)) and the selected source m(t) attempts to transmit
its packet via the selected channel n(t). The goal of the
learning algorithm is to minimize the expected total Aol h(T).
To analyze the performance of the learning algorithm, we
derive bounds on the Aol regret R™(T") associated with dif-
ferent learning algorithms. Our main contributions include: i)
analyzing the performance of learning algorithms that employ
channel policies based on traditional MAB algorithms (e-
Greedy, UCB, and TS) and showing that their Aol regret scales

as O(logT); and ii) developing a novel learning algorithm
and establishing that it has O(1) Aol regret. To the best
of our knowledge, this is the first learning algorithm with
bounded Aol regret. Interesting extensions of this work include
consideration of sources with unknown packet generation rates
and channels with time-varying statistics.
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APPENDIX A
PROOF OF LEMMA 8

To establish Lemma 8, we first show that optimal periods do
not contribute to the auxiliary Aol regret defined in (15). Then,
we obtain an upper bound on the contribution of suboptimal
periods by manipulating the expression of the auxiliary Aol
regret.

Lemma 11. If period p is an optimal period, then for any
slot t within period p and for any source m, we have hl (t) =

Ry, (2).

Proof. Consider the time slots preceding period p in a network
employing the auxiliary learning algorithm 7). In slot s, —1, the
algorithm 7 delivers the last packet in the system and in slot
sp the system becomes empty, with E(s,) = 1. Let ¢/ be the
slot in which the latest packet generated from source m was
delivered by 7. It follows that ¢/, < s, — 1 and source m did

not generate new packets during the time interval [t), + 1, s,].

Recall that (by construction) algorithms 7 and 7* select the
same source m*(t) at every slot ¢ and (due to the coupling
argument in Remark 1) when a transmission by 7) is successful,
the transmission by 7* is also successful. Hence, it follows
that algorithm 7* also delivered the latest packet generated
from source m during (or before) slot ¢/, which implies that
771 (s,) = 77 (s,) and, as a result, we have h7l (s,) = s, —
T (8p) = 8p — Ty (8p) = I (5).

Since R (sp,) = hi,(sp) for every source m and for the
first slot of every period p, it follows that if period p is an
optimal period (in which 7 and 7* select the same source and
the same channel in every slot t) then h? (t) = h¥, (t) in every
slot ¢ within period p and for every source m. O

From Lemma 11, we have that if period p is an optimal
period, then

M fp M fp

S =3 S w0

m=1t=sy m=1t=s,

(22)

Using this result in the expression of the auxiliary Aol regret,
we obtain

M T A
B> ST [hiw) - h ]| =
m=1t=1

M T
=B | Y[ t) = k()] 1{n(t) # n* N E(t) = 0} +

m=1 t=1

<hp (t)

+ [R0,(t) = b, ()] L{n(t) =n* UE(t) = 1}

=0
(a) M T X
<E|D D vl 1{ap) #n"}
M m; " )
=S STE(p) 1{a(p) #n*}]
(b)mlf = A
ZSTSTE[ () | alp) #0°] P (ap) #0%) (23)
m=1p=1

where (a) follows from the fact that each period p has duration
of at least 1 time slot, and (b) follows from the law of total
expectation.

APPENDIX B
PROOF OF LEMMA 10

To establish Lemma 10, we first use Hoeffding’s inequality
to upper bound P (72(p) = n) by an exponential function of
—p, for every suboptimal channel n. The result then follows
directly from this upper bound.

Lemma 12. For every suboptimal channel index n # n*, the
probability of channel policy 1y, selecting channel n in the
nonempty phase of period p is bounded by

2

1 A
P (n(p) =n) < 2exp (—Wp> +2exp <—4](}p) , (24)

where Ay, = p* — iy,

Proof. The channel policy 7, uses the empty phases of each
period p to explore the channels and update its estimate of the
channel reliabilities. We know that at the beginning of each
period p there is an empty phase with at least one exploration
slot. Let N, (p) be the number of exploration slots in which
channel n is selected within the first p periods and let p’ be
the total number of exploration slots within the first p periods.
It follows that

N

1
> Nu(p)=p >p and E[N,(p)] = ~r 29
n=1



Let fi,(p') be the estimate of the reliability of channel n Using Lemma 12, we obtain
after a total of p’ exploration slots. Then, for any suboptimal

T T
channel n # n*, we have ZP (A(p) #n*) = Z ZP (A(p) = n)
P ((p) = n) <P (fn(p') > p=1 nzn* p=1

> ZT: {2exp (—2;[219) + 2exp (—ﬁp)}

i
(a) R n + nF s,
<P () > ) o p (BT > ) s
2 2 n#n* p=1
A A 0o 2
— ( "y — > " 0 (p)) — k< ——2 1 An
P () -z ) 42 (100 -7 < -5 < 35 e (gmar) 20 (- 25)]
(26) nen* p=1
where (a) follows from the union bound. Denote fi,, (p)—pn =
2 2
I,,. Then, = 1 + A2
n#n* lexp| —= | —1 exp|-—] -1
P (ﬂn(p’> > A2> b (2N2) ’ <4N>
2(N —1 2(N —1
—PI>ﬁN()<p—/ +PI>ﬁN()>p—, B (1 ) (AQ-) &9
=P (L > Nalp) < o n> 50 Nap) > o eXp(2N2>_1 eXp<4n;\;n>_1
<p(Np < Z)ip (6> | N > 2 hich | here A .
< n(P) < o5 n 5 n(P)> 55 ) - which is a constant, where A, = 1 _7?;%35“”'

27
Next, we upper bound each of the last two terms by Hoeffd-
ing’s inequality.
Notice that:
e N,(p) is the sum of p’ i.i.d. Bernoulli random variables
with mean —; and

e [in(p’) is the average of N, (p) ii.d. Bernoulli random
variables with mean p,,.

Thus, by Hoeffding’s inequality
1
P(N,(p)<—=p )=
< (p) <3 Np)

and
A 1 A2
P = | N, 9] < N N ¢
(n> B n(p)>2Np>_€Xp< 4Np) (29)

Inequalities (27), (28) and (29) imply

A 1 A2
~ / n / n, ./
p <Mn(p ) = Hn > 2) < exp <—2N2p> + exp (_4Np> .
(30)
Analogously, we have
A 1 A?
Ak ] * n / /
p <u (p') —p" < 2> < exp <—2N2p> + exp <—4J(}p) :
(31
Now, inequalities (26), (30) and (31) imply that

1 A2
P (n(p") =n) < 2exp <2sz’) + 2exp <4]Gp/>

1 A2
< 2exp —Wp + 2exp —Wp (32)

O
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