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Optimal Control for Networks with Unobservable Malicious
Nodes

BAI LIU and EYTAN MODIANO,Massachusetts Institute of Technology

Classic network optimization theory focuses on network models with stochastic dynamics and all nodes

being observable and controllable. However, modern network systems often offer limited access and suffer

from adversarial attacks. In this paper, we focus on networks with unobservable malicious nodes, where the

network dynamics, such as external arrivals and control actions of malicious nodes can be adversarial. We first

extend the existing adversarial network models by introducing a new maliciousness metric that constrains the

dynamics of the adversary, and characterize the stability region of a network under adversarial dynamics. We

then propose an algorithm that only operates on the accessible nodes and does not require direct observations

of the malicious nodes, and show that our algorithm is stabilizing as long as the network dynamics are within

the stability region. Finally, we show that our algorithm stabilizes the network even if the estimates of the

network state are erroneous, and characterize the necessary and sufficient conditions for networks with

unobservable malicious nodes to be stabilizable when subjected to estimation errors.
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1 INTRODUCTION
For decades, control theory for network systems has been a central topic in the field of commu-

nication networks. Classic control algorithms like MaxWeight [26] and Drift-plus-Penalty [22]

have been studied thoroughly in a variety of contexts. These algorithms usually possess rigorous

theoretical performance guarantees when applied to a network in which the controller can observe

the network state (e.g., queue backlogs), all nodes cooperatively execute commands given by the

controller, and the network dynamics are stochastic and time-invariant (e.g., the external arrivals

to the network obey a stationary stochastic process).

With the rapid development of information technology, modern network systems are becoming

increasingly complex, which makes the aforementioned framework unrealistic. Moreover, networks

are increasingly vulnerable to attacks such as Distributed Denial-of-Service (DDoS) attack. Even

worse, some of the nodes may be malicious and attempt to destabilize the network. However,

existing network control algorithms either require full observability and/or controllability for

all nodes [1–3, 6, 17, 19, 20, 27], or the network dynamics to be time-invariant and stochastic

[13, 18, 23, 24]. In this paper, we aim to develop a new algorithm that can stabilize networks with

unobservable and uncontrollable nodes under adversarial dynamics (i.e., external arrivals and

actions of malicious nodes).

We consider a network where a subset of the nodes are controlled by an adversary that can

observe the actions of the network controller and plan its dynamics accordingly to maximize
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2 Bai Liu and Eytan Modiano

disruption to the network. Meanwhile, the network controller may not be able to observe the state

of the malicious nodes and can only operate (i.e., control) on the accessible nodes. A concrete

example is a Denial-of-Service (DDoS) attack, where the attacker hijacks and takes control of

multiple machines in the network by planting Trojans or scanning for security holes [21]. The

controlled machines then become malicious nodes, that send a large amount of traffic to other nodes

to block the bandwidth under the attacker’s commands [10]. Another example of malicious attack

is a Structured Query Language (SQL) injection attack which, by injecting and executing malicious

commands, can shut down servers in a data center and thus cause congestion [11]. In this work,

we propose an algorithm named MWUM (MaxWeight for Networks with Unobservable Malicious

Nodes) to stabilize networks in such adversarial environments. To the best of our knowledge,

MWUM is the first control algorithm to stabilize a network with unobservable malicious nodes.

The major technical challenges addressed in this work are two-fold: 1) unobservable and uncon-

trollable nodes and 2) adversarial dynamics (i.e., external arrivals and actions of malicious nodes).

In the following we briefly discuss prior works pertaining to the above challenges.

Control algorithms for networks with unobservable and/or uncontrollable nodes have been

studied in the context of overlay-underlay networks. In an overlay-underlay network, only the

overlay nodes can provide instantaneous state information and be controlled, while the underlay

nodes are modeled as “black boxes” with limited observability and controllability. The authors

of [23] applied a router-forwarder model and proposed the Threshold-based Backpressure (BP-T)

algorithm to achieve throughput-optimality. The work in [13] further extended the model in [23]

and proposed the Overlay Backpressure (OBP) algorithm. In [24], the authors proposed the Optimal

Overlay Routing Policy (OORP) that is applicable to general network topologies. However, OORP

requires instantaneous underlay information and lacks strict theoretical performance guarantees.

The work in [18] proposed the Tracking-MaxWeight (TMW) and Truncated Upper Confidence

Reinforcement Learning (TUCRL) algorithms, which are capable of stabilizing overlay-underlay

networks with general topologies, but still require instantaneous observation of underlay queue

backlogs. Existing overlay-underlay control algorithms that can be applied to general topologies

either lack theoretical performance guarantees or require instantaneous underlay information.

An alternative is to model the network as a Partially Observable Markov Decision Process

(POMDP). POMDPs assume the system states to be unobservable and seek to minimize the long-

term cost only using indirect information. POMDPs are a popular topic in the machine learning

community, yet most works focus on heuristic algorithms and cannot give theoretical performance

guarantees. Theoretical studies on POMDPs [5, 8, 9, 14, 25, 29] attempt to solve POMDPs using

value iteration or policy search, yet can only be applied to small-scale networks.

There has also been a significant amount of work on control algorithms for networks with

adversarial dynamics. A simple version of control problems with adversarial dynamics is the

adversarial multi-armed bandit problem. The work in [4] first systematically introduced the concept

of adversarial bandits and showed that the achieved reward can be optimal even if the system

dynamics are adversarial. A comprehensive analysis for adversarial multi-armed bandit problems

and their extensions can be found in [7]. However, multi-armed bandit problems are stateless and

cannot capture the queueing dynamics of data networks.

The earliest studies on networks with adversarial dynamics can be traced back to [6], which first

proposed the Adversarial Queueing Theory (AQT) framework. Later, the authors of [1] introduced

the more general Leaky Bucket (LB) model. Both the AQT and the LB framework only allow the

external arrivals to be adversarial while the arrival process is required to satisfy the “𝑊 constraint”

that restricts the volume of external arrivals during a certain time window.

In [2, 3], the authors considered a single-hop setting of wireless communication between a base

station and multiple mobile users. Beyond the adversarial external arrivals, the model also allows
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the conditions of communication channels to be adversarial. The results were later extended to

multi-hop settings in [20]. However, all these works require full observability of all nodes, and the

nodes cannot take adversarial actions.

In [17, 19], the authors extended the network model to general topologies and allowed adversarial

actions. They proposed a more relaxed constraint named “𝑉𝑇 constraint”, which only requires the

peak queue backlog under the optimal policy to be constrained to 𝑉𝑇 . The authors showed that as

long as 𝑉𝑇 is sublinear in the time horizon, the queue backlogs of the network can be stabilized.

However, both works [17, 19] require instantaneous information of the underlay dynamics, which

may be unrealistic in adversarial network settings.

As far as we know, existing related network control algorithms either only consider stochastic (i.e.,

non-adversarial) dynamics, or require full observability and can only operate under the relatively

restrictive𝑊 and𝑉𝑇 constraints. In this paper, we consider networks with both unobservable nodes

and adversarial dynamics. Our main contributions are summarized below.

We first propose a new maliciousness metric for the adversary called the 𝑄𝑇 constraint to

characterize the adversarial dynamics. The 𝑄𝑇 constraint bounds the queue size at the end of the

time horizon (𝑇 ). We quantitatively analyze the relationship between the 𝑄𝑇 constraint and the

existing𝑊 constraint [1, 6] and 𝑉𝑇 constraint [17, 19], and show that the 𝑄𝑇 constraint is the least

restrictive constraint among the three. Thus, the 𝑄𝑇 constraint leads to a more powerful adversary

and requires new analysis methods.

Next, we propose MWUM, which uses estimates of the state of the malicious nodes instead of

direct observations and only needs to control the accessible nodes. We rigorously show that for

networks with 𝑄𝑇 -constrained dynamics, as long as 𝑄𝑇 grows sublinearly in the time horizon 𝑇 ,

MWUM can stabilize all queues (including the queues of the malicious nodes). We then use 𝑄𝑇
to characterize the stability region for networks with unobservable malicious nodes and show

that MWUM is throughput-optimal. In contrast, existing related network control algorithms either

require full observability and/or controllability for all nodes, or the network dynamics to be time-

invariant and stochastic. Thus, to the best of our knowledge, MWUM is the first throughput-optimal

control algorithm for networks with unobservable malicious nodes.

Furthermore, by applying our new analysis techniques, we strengthen the existing performance

guarantees in previous works under the𝑊 and 𝑉𝑇 constraints from rate stability at the end of the

time horizon to sublinear queue backlog during the entire time horizon.

Finally, we consider the impact of estimation errors and show that as long as the estimation errors

grow sublinearly in time, MWUM stabilizes the network. We also show that when the estimation

errors grow linearly (or superlinearly) in time, there exists a network that is not stabilizable by

any state-based algorithm and thus MWUM is “maximally robust” to estimation errors. We further

characterize the necessary and sufficient conditions for networks with unobservable malicious

nodes to be stabilizable when estimations are erroneous.

The rest of this paper is organized as follows. We introduce the network model and discuss

the maliciousness metrics in detail in Section 2. We introduce MWUM in Section 3. In Section 4,

we show the stability results under the 𝑄𝑇 constraint, discuss the performance under the𝑊 and

𝑉𝑇 constraints and characterize the stability region. We consider estimation errors in Section 5,

where we characterize the necessary and sufficient conditions for a network to be stabilizable with

erroneous estimations. Section 6 presents simulation results and Section 7 concludes the paper.

2 MODEL
We consider a multi-hop network with 𝑁 nodes and denote the set of nodes by N . The nodes are

classified into two types: the set of accessible nodes A and the set of malicious nodesM. The

network has 𝐾 classes of data and the data of class 𝑘 is destined for sink 𝑑𝑘 . The set of data classes
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4 Bai Liu and Eytan Modiano

is denoted by K . The link capacity between node 𝑖 and 𝑗 is 𝐶𝑖 𝑗 . We assume that time is slotted and

the time horizon is 𝑇 .

At the beginning of time slot 𝑡 , a node 𝑖 ∈ N has 𝑄𝑖𝑘 (𝑡) buffered packets of class 𝑘 and receives

𝑎𝑖𝑘 (𝑡) external packets of class 𝑘 . Since it is possible for the adversary to inject malicious packets

(e.g., DDoS attack), 𝑎𝑖𝑘 (𝑡) can be non-stochastic and even malicious: the adversary first observes

the history, including the past queue backlogs and transmissions, up to time 𝑡 − 1, and then decides

on 𝑎𝑖𝑘 (𝑡) for each node.

For an accessible node 𝑖 ∈ A, we denote by 𝑓𝑖 𝑗𝑘 (𝑡) the number of packets of class 𝑘 to be

transmitted to a neighbor 𝑗 as decided by the network controller. Since the packets available to be

transmitted cannot exceed 𝑄𝑖𝑘 (𝑡) + 𝑎𝑖𝑘 (𝑡), the actual number of packets transmitted might be less

than 𝑓𝑖 𝑗𝑘 (𝑡) and is denoted by ˜𝑓𝑖 𝑗𝑘 (𝑡). Note that the network controller is only capable of controlling
the accessible nodes A. The policy taken by the network controller can be characterized by a set

of routing action sequences 𝜋 =
{
𝑓𝑖 𝑗𝑘 (𝑡)

}
𝑖∈A, 𝑗 ∈N,𝑘∈K,0⩽𝑡⩽𝑇−1. We further denote by

∏
the set of

admissible 𝜋 ’s (i.e., the set of
{
𝑓𝑖 𝑗𝑘 (𝑡)

}
𝑖∈A, 𝑗 ∈N,𝑘∈K,0⩽𝑡⩽𝑇−1 with 0 ⩽

∑
𝑘 𝑓𝑖 𝑗𝑘 (𝑡) ⩽ 𝐶𝑖 𝑗 ).

For a malicious node 𝑖 ∈ M, the network controller cannot directly observe𝑄𝑖𝑘 (𝑡) or implement

control policies. Note that the word “malicious” does not necessarily mean that the malicious nodes

attemp to attack the network. Our setting allows the malicious nodes to be simply uncontrollable.

We assume that by applying network inference methods (e.g., probing [12, 16]), the network

controller can obtain estimates 𝑄̂𝑖𝑘 (𝑡) of queue backlog 𝑄𝑖𝑘 , and that such estimates are only

available sporadically. We denote by Γ𝑖 the set of time slots when estimates are made for node 𝑖 . In

other words, for a malicious node 𝑖 ∈ M, the network controller only has an estimate 𝑄̂𝑖𝑘 (𝑡) of
queue backlog 𝑄𝑖𝑘 (𝑡) for 𝑡 ∈ Γ𝑖 . Note that the estimates do not have to be accurate. We show in

Section 5 that as long as the estimation errors grow sublinearly in time, MWUM still stabilizes the

network.

In addition to not being observable, malicious nodes are controlled by an adversary. Similar

to the aforementioned adversarial external arrivals, the actions taken by the adversary can be a

function of the history up to time 𝑡 − 1 (i.e., {𝑎𝑖𝑘 (𝜏)}𝑖∈N,𝑘∈K,0⩽𝜏⩽𝑡−1, {𝑓𝑖 𝑗𝑘 (𝜏)}𝑖∈A, 𝑗 ∈N,𝑘∈K,0⩽𝜏⩽𝑡−1).
For instance, in DDoS attack, the adversary can hijack a server in the network, and attempt to

destroy the stability by sending tremendous amount of requests to the most heavily loaded nodes.

We denote by 𝜇𝑖 𝑗𝑘 (𝑡) the number of packets of class 𝑘 to be transmitted to a neighbor 𝑗 from a

malicious node 𝑖 ∈ M and the actual number of packets transmitted by 𝜇̃𝑖 𝑗𝑘 (𝑡).
Our goal is to determine a policy 𝜋 ∈ ∏

that stabilizes the queues for all nodes N only using

sporadic (and possibly erroneous) estimates of the state (queue backlogs) of the malicious nodes

M.

Mathematically, the queue backlogs evolve according to the following rule (we use the operator

[𝑥]+ ≜ max{𝑥, 0})

𝑄𝑖𝑘 (𝑡 + 1) =
{[
𝑄𝑖𝑘 (𝑡) + 𝑎𝑖𝑘 (𝑡) −

∑
𝑗 ∈N∪𝑑𝑘 𝑓𝑖 𝑗𝑘 (𝑡)

]+ +∑
𝑗 ∈A ˜𝑓𝑗𝑖𝑘 (𝑡) +

∑
𝑗 ∈M 𝜇̃ 𝑗𝑖𝑘 (𝑡), 𝑖 ∈ A[

𝑄𝑖𝑘 (𝑡) + 𝑎𝑖𝑘 (𝑡) −
∑
𝑗 ∈N∪𝑑𝑘 𝜇𝑖 𝑗𝑘 (𝑡)

]+ +∑
𝑗 ∈A ˜𝑓𝑗𝑖𝑘 (𝑡) +

∑
𝑗 ∈M 𝜇̃ 𝑗𝑖𝑘 (𝑡), 𝑖 ∈ M

.

We further assume the system dynamics to be bounded, i.e.,

0 ⩽ 𝑎𝑖𝑘 (𝑡), 𝑓𝑖 𝑗𝑘 (𝑡), 𝜇𝑖 𝑗𝑘 (𝑡) ⩽ 𝐷, ∀𝑖, 𝑗, 𝑘, 𝑡 (1)

for some constant 𝐷 ⩾ 0. Moreover, to distinguish the variables under different policies, we use

superscripts (e.g., 𝑄𝐴
𝑖𝑘
(𝑡) is the queue backlog of class 𝑘 data at node 𝑖 at 𝑡 under policy 𝜋𝐴).
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2.1 Asymptotic Notations
We apply the Bachmann–Landau notations to compare the limiting behavior between functions.

Given two functions 𝑓 (𝑛) and 𝑔(𝑛), their asymptotic relationships are listed in Table 1.

Table 1. Asymptotic Notations

𝑓 (𝑛) = 𝑂
(
𝑔(𝑛)

) ��𝑓 �� is upper bounded by 𝑔 asymptotically, i.e., lim sup𝑛→∞
| 𝑓 (𝑛) |
𝑔 (𝑛) < ∞

𝑓 (𝑛) = 𝑜
(
𝑔(𝑛)

) ��𝑓 �� is dominated by 𝑔 asymptotically, i.e., lim sup𝑛→∞
| 𝑓 (𝑛) |
𝑔 (𝑛) = 0

𝑓 (𝑛) = Ω
(
𝑔(𝑛)

)
𝑓 is lower bounded by 𝑔 asymptotically, i.e., lim inf𝑛→∞

𝑓 (𝑛)
𝑔 (𝑛) > 0

𝑓 (𝑛) = Θ
(
𝑔(𝑛)

)
𝑓 (𝑛) = 𝑂

(
𝑔(𝑛)

)
and 𝑓 (𝑛) = Ω

(
𝑔(𝑛)

)
2.2 Performance Metric
We focus on the rate stability of the queue backlogs for all nodes N , which is defined as follows.

Definition 1. A network is rate stable if

lim

𝑇→∞

∑
𝑖∈N,𝑘∈K 𝑄𝑖𝑘 (𝑇 )

𝑇
= 0.

By Definition 1, rate stability implies that when 𝑡 → ∞, the average arrival rate is no greater

than the average service rate. Typically, in order to show rate stability, one needs to upper bound

the total queue backlog

∑
𝑖∈N,𝑘∈K 𝑄𝑖𝑘 (𝑇 ) by a sublinear factor of 𝑇 (i.e.,

∑
𝑖∈N,𝑘∈K 𝑄𝑖𝑘 (𝑇 ) = 𝑜 (𝑇 )).

2.3 Maliciousness Metrics
To characterize the power of the adversary, we use the concept of maliciousness metrics. In our

setting, the external arrivals and actions taken by the malicious nodes are adversarial. Therefore, a

meaningful specification of a maliciousness metric places constraints on the sequence of possible

network events

{
𝒂(𝑡), 𝝁 (𝑡)

}
0⩽𝑡⩽𝑇−1.

First proposed in [6], the𝑊 constraint is the earliest maliciousness metric used in the study of

adversarial network control. The𝑊 constraint places restrictions on network events for windows

of length𝑊 time-slots, as defined below.

Definition 2. A network event sequence
{
𝒂(𝑡), 𝝁 (𝑡)

}
0⩽𝑡⩽𝑇−1 is 𝑊 -constrained if there exists

𝜋𝑊 ∈
∏

under which the inequalities
∑𝑡+𝑊 −1
𝜏=𝑡

(
𝑎𝑖𝑘 (𝜏) −

∑
𝑗 ∈N∪𝑑𝑘

˜𝑓𝑊
𝑖 𝑗𝑘
(𝜏) +∑

𝑗 ∈A ˜𝑓𝑊
𝑗𝑖𝑘
(𝜏) +∑

𝑗 ∈M 𝜇̃ 𝑗𝑖𝑘 (𝜏)
)
⩽ 0, ∀𝑖 ∈ A, 𝑘 ∈ K∑𝑡+𝑊 −1

𝜏=𝑡

(
𝑎𝑖𝑘 (𝜏) −

∑
𝑗 ∈N∪𝑑𝑘 𝜇̃𝑖 𝑗𝑘 (𝜏) +

∑
𝑗 ∈A ˜𝑓𝑊

𝑗𝑖𝑘
(𝜏) +∑

𝑗 ∈M 𝜇̃ 𝑗𝑖𝑘 (𝜏)
)
⩽ 0, ∀𝑖 ∈ M, 𝑘 ∈ K

are satisfied for 𝑡 = 0,𝑊 , 2𝑊, · · · .
Definition 2 requires the existence of a policy 𝜋𝑊 , under which there are at least as many served

packets as the arrived packets for each node and each time window of size𝑊 . However, the

𝑊 constraint is relatively restrictive, and to overcome this, the authors in [17] proposed the 𝑉𝑇
constraint, defined as follows.

Definition 3. A network event sequence
{
𝒂(𝑡), 𝝁 (𝑡)

}
0⩽𝑡⩽𝑇−1 is 𝑉𝑇 -constrained if under this net-

work event sequence, the following holds

min

𝜋 ∈∏max

𝑡⩽𝑇

∑
𝑖∈N,𝑘∈K

𝑄𝜋
𝑖𝑘
(𝑡) ⩽ 𝑉𝑇 .
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6 Bai Liu and Eytan Modiano

The minimal value of 𝑉𝑇 is defined to be 𝑉 ∗
𝑇
.

Definition 3 only requires the existence of a policy that upper bounds the peak queue backlog

under the given network event sequence. However, in order to achieve rate stability, we are only

concerned with the queue backlog at the end of the time horizon, i.e.,

∑
𝑖∈N,𝑘∈K 𝑄𝑖𝑘 (𝑇 ). Therefore,

we propose a more relaxed maliciousness metric called the 𝑄𝑇 constraint.

Definition 4. A network event sequence
{
𝒂(𝑡), 𝝁 (𝑡)

}
0⩽𝑡⩽𝑇−1 is 𝑄𝑇 -constrained if under this

network event sequence, the following holds

min

𝜋 ∈∏
∑

𝑖∈N,𝑘∈K
𝑄𝜋
𝑖𝑘
(𝑇 ) ⩽ 𝑄𝑇 .

The minimal value of 𝑄𝑇 is defined to be 𝑄∗
𝑇
.

Compared with the 𝑉𝑇 constraint, the 𝑄𝑇 constraint only requires the queue backlog at the end

of the time horizon to be upper bounded, allowing the queue backlog to exceed the bound prior

to 𝑇 . If there does not exist a 𝑄𝑇 constraint sublinear in 𝑇 , no policy could stabilize the network

event sequence. Note that every network event sequence has corresponding 𝑉𝑇 and 𝑄𝑇 constraints.

However, the scales of 𝑉𝑇 and 𝑄𝑇 may vary and reflect different “maliciousness-levels” of the

network event sequence.

It is necessary to clarify that in Definition 2, 3 and 4, the network event sequences are prede-

termined and are not affected by the policies. For instance, suppose we implement a policy 𝜋0,

and the system generates a network event sequence 𝑆0. For the given network event sequence

𝑆0, there exists a policy 𝜋
∗
under which the 𝑄𝑇 constraint holds. Of course, if we actually apply

𝜋∗ to the system, the generated network event sequence 𝑆∗ can be completely different from 𝑆0.

However, with our novel Lyapunov drift analysis technique,we do not require 𝜋∗ to be actually
implemented to the system.

We then define the maliciousness metrics for network dynamics as follows.

Definition 5. A network is said to have𝑊 /𝑉𝑇 /𝑄𝑇 -constrained dynamics if all generated network
event sequences

{
𝒂(𝑡), 𝝁 (𝑡)

}
0⩽𝑡⩽𝑇−1 are𝑊 /𝑉𝑇 /𝑄𝑇 -constrained, respectively.

The maliciousness metrics discussed above are closely related to each other, described in the

following theorem (see Appendix A for the proof).

Theorem 1. For a given network event sequence
{
𝒂(𝑡), 𝝁 (𝑡)

}
0⩽𝑡⩽𝑇−1, we have

𝑄∗𝑇 ⩽ 𝑉
∗
𝑇 ⩽

∑
𝑖∈N,𝑘∈K

𝑄𝑖𝑘 (0) + 𝑁𝐾𝐷𝑊 .

Theorem 1 implies that 𝑊 = Ω(𝑉 ∗
𝑇
) and 𝑉 ∗

𝑇
= Ω(𝑄∗

𝑇
). Therefore, the 𝑉𝑇 constraint is less

restrictive than the 𝑊 constraint, since 𝑊 = 𝑜 (𝑇 ) guarantees 𝑉 ∗
𝑇

= 𝑜 (𝑇 ) but not vice versa.

Similarly, we have that the 𝑄𝑇 constraint is even less restrictive than the 𝑉𝑇 constraint. We use

the toy example depicted in Figure 1 to further illustrate the maliciousness metrics. The system

consists of an accessible node 1 and link 1→ 𝑑 , with capacity 𝐶1𝑑 = 2. During each time slot, node

1 receives one external packet, and then tries to serve 𝑓1𝑑 (𝑡) = 2 packets to destination 𝑑 (note that

the actual number of served packets,
˜𝑓1𝑑 (𝑡), is smaller than 𝑓1𝑑 (𝑡) if the queue backlog of node 1 is

smaller than 2). The system is attacked and receives another malicious injection of 𝑎′
1
(𝑡) packets at

time 𝑡 . Different distributions of 𝑎′
1
(𝑡) result in different maliciousness metrics, as discussed next.

Consider

𝑎′
1
(𝑡) =

{
2, 𝑘𝑇 /10 ⩽ 𝑡 < 𝑘𝑇 /10 +𝑇 /20
0, 𝑘𝑇 /10 +𝑇 /20 ⩽ 𝑡 < (𝑘 + 1)𝑇 /10

,
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Fig. 1. A toy system to illustrate the relationships among maliciousness metrics.

where 𝑘 = 0, 1, · · · , 9. It is easy to verify that during each interval 𝑘𝑇 /10 ⩽ 𝑡 < (𝑘 + 1)𝑇 /10,
the total arrived packets equals to the total served packets. Thus, by Definition 2, the network

is𝑊 -constrained, with𝑊 = 𝑇 /10. The peak queue backlog is 𝑄1 (𝑘𝑇 /10 +𝑇 /20) = 𝑇 /20, which
shows that the network is 𝑉𝑇 -constrained with 𝑉𝑇 = 𝑇 /20. Finally, since all the packets are served
by 𝑇 , the network is 𝑄𝑇 -constrained with 𝑄𝑇 = 0.

Consider another malicious injection distribution

𝑎′
1
(𝑡) =

{
2, 𝑡 ⩽ 𝑇 /2 +

√
𝑇 /2

0, 𝑡 > 𝑇 /2 +
√
𝑇 /2

.

Since the malicious injections are not periodic, it is straightforward to verify that the network is not

𝑊 -constrained. The peak queue backlog is 𝑄1 (𝑇 /2 +
√
𝑇 /2) = 𝑇 /2 +

√
𝑇 /2, and the terminal queue

backlog is 𝑄1 (𝑇 ) =
√
𝑇 . Therefore, the network has 𝑉𝑇 = 𝑇 /2 +

√
𝑇 /2 = Ω(𝑇 ), which dominates

𝑄𝑇 =
√
𝑇 = 𝑜 (𝑇 ).

The above examples show that different maliciousness metrics correspond to different adversarial

dynamics. The𝑊 constraint requires the adversary to be relatively stationary, with attacks sharing

similar patterns across different intervals. The𝑉𝑇 constraint does not restrict temporal patterns, but

limits the burstiness of the attacks. The𝑄𝑇 constraint is the most relaxed one, with no requirements

on temporal patterns or burstiness, and the adversary can have arbitrary attack patterns. In some

cases, 𝑉𝑇 = Ω(𝑇 ) and 𝑄𝑇 = 𝑜 (𝑇 ) coexist, suggesting that our algorithm advances existing works

that require 𝑉𝑇 to be sublinear in 𝑇 .

We emphasize that the 𝑄𝑇 constraint is a necessary and sufficient condition for adversarial

networks to be stabilizable. Every adversarial network has a 𝑄𝑇 constraint. If 𝑄𝑇 = Ω(𝑇 ), then
there exists a network event sequence under which the queue backlog at 𝑇 is at least linear in 𝑇 . If

the adversary is intelligent, it might insist on generating this network event sequence, regardless

of our actions. In this sense, no policy can stabilize the network. On the other hand, in Theorem 2,

we show that as long as 𝑄𝑇 = 𝑜 (𝑇 ), the adversarial network can be stabilized by MWUM. More

detailed discussion can be found in Section 4.3.

2.4 Variable Notations
For readers’ convenience, we summarize the variable notations in Table 2.

3 OUR APPROACH
The major challenges that need to be addressed are three-fold: 1) the state information of the

malicious nodes cannot be observed directly; 2) the external injections and the behaviors of

malicious nodes can be adversarial; 3) the malicious nodes cannot be controlled by the network

controller. The above limitations render classical algorithms such as MaxWeight [26] unusable,

and traditional analytical techniques based on stochastic analysis and stationary assumptions

ineffective.
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8 Bai Liu and Eytan Modiano

Table 2. Variable Notations

𝑁 The number of queues in the queueing network

𝐶𝑖 𝑗 The link capacity between node 𝑖 and 𝑗

𝑑𝑘 The destination of the data of class 𝑘

𝑇 The time horizon

N , A,M The set of all nodes, accessible nodes, malicious nodes

K The set of data types

Γ𝑖 The set of time slots when an estimation of 𝑄𝑖𝑘 was made for node 𝑖 ∈ M
𝜋 The routing action sequence on accessible nodes, i.e., our policy

𝑄𝜋
𝑖𝑘
(𝑡) Under policy 𝜋 , the queue backlog of class 𝑘 at node 𝑖 ∈ N at 𝑡

𝑄̂𝜋
𝑖𝑘
(𝑡) Under policy 𝜋 , the estimated queue backlog of class 𝑘 at node 𝑖 ∈ N at 𝑡 ∈ Γ𝑖

𝑎𝜋
𝑖𝑘
(𝑡) Under policy 𝜋 , the number of external packets of class 𝑘 arriving at node

𝑖 ∈ N at 𝑡

𝑓 𝜋
𝑖 𝑗𝑘
(𝑡), ˜𝑓 𝜋

𝑖 𝑗𝑘
(𝑡) Under policy 𝜋 , the planned and actual number of packets of class𝑘 transmitted

from node 𝑖 ∈ A to 𝑗 ∈ N at 𝑡

𝜇𝜋
𝑖 𝑗𝑘
(𝑡), 𝜇̃𝜋

𝑖 𝑗𝑘
(𝑡) Under policy 𝜋 , the planned and actual number of packets of class𝑘 transmitted

from node 𝑖 ∈ M to 𝑗 ∈ N at 𝑡

𝑔𝜋
𝑖 𝑗𝑘
(𝑡), 𝑔𝜋

𝑖 𝑗𝑘
(𝑡) In the imaginary network, under policy 𝜋 , the planned and actual number of

packets of class 𝑘 transmitted from node 𝑖 ∈ M to 𝑗 ∈ N at 𝑡

𝑊 , 𝑉𝑇 , 𝑄𝑇 Maliciousness metrics defined in Definition 2, 3, 4, respectively

𝑋𝜋
𝑖𝑘
(𝑡) Under policy 𝜋 , the virtual queue backlog of class 𝑘 at node 𝑖 ∈ M at 𝑡

𝑌𝜋
𝑖𝑘
(𝑡) 𝑄𝜋

𝑖𝑘
(𝑡) − 𝑋𝜋

𝑖𝑘
(𝑡) for 𝑖 ∈ M

𝜏𝑖 (𝑡) The most recent time an estimate of node 𝑖 was made for node 𝑖 ∈ M at 𝑡

𝐿(𝑡) The maximum delay of estimates at 𝑡 , i.e., max𝑖∈M,𝑘∈K 𝑡 − 𝜏𝑖 (𝑡)

While some of the aforementioned challenges have been addressed in the past in various con-

texts (e.g., delayed state information), no approach handles the combination of unobservability,

uncontrollability, and adversarial dynamics together.

3.1 Overview
To tackle these challenges, we introduce the MWUM algorithm. The core idea behind our approach

is to “track” the state of the malicious nodes as well as the adversarial dynamics, and then make

decisions based on the tracked information.

We first construct an “imaginary” network that shares the same topology and external arrivals

as the real network, except that in the imaginary network, all nodes are fully observable and

controllable. We denote by 𝑔𝑖 𝑗𝑘 (𝑡) the number of packets of class 𝑘 transmitted to neighbor 𝑗 from

a malicious node 𝑖 ∈ M in the imaginary network (also upper bounded by 𝐷). For an accessible

node 𝑖 ∈ A in the imaginary network, we force its queue backlog𝑄𝑖𝑘 to always be the same as that

of the real system, i.e., 𝑄𝑖𝑘 is synchronized with the real system instead of being updated using

the actions taken in the imaginary network. For a malicious node 𝑖 ∈ M, its queue backlog might

differ between the two networks, and we denote by 𝑄𝑖𝑘 and 𝑋𝑖𝑘 the queue backlogs of class 𝑘 at

node 𝑖 in the real network and the imaginary network, respectively.

It is possible to stabilize the queue backlog of the imaginary network

∑
𝑖∈A,𝑘∈K 𝑄𝑖𝑘+

∑
𝑖∈M,𝑘∈K 𝑋𝑖𝑘

by taking proper action in the imaginary network. However, the actual queue size of a malicious

node 𝑖 ∈ M might deviate significantly from 𝑋𝑖𝑘 . Thus, stabilizing the queues of the imaginary
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network does not guarantee the stability of the real network. We define the gap between 𝑄𝑖𝑘 and

𝑋𝑖𝑘 by 𝑌𝑖𝑘 ≜ 𝑄𝑖𝑘 − 𝑋𝑖𝑘 and aim at stabilizing 𝑄𝑖𝑘 for 𝑖 ∈ A, 𝑋𝑖𝑘 and 𝑌𝑖𝑘 for 𝑖 ∈ M, together. In

other words, we decompose the queue backlog in the real system in the following manner,∑
𝑖∈N,𝑘∈K

𝑄𝑖𝑘 (𝑡) =
∑

𝑖∈A,𝑘∈K
𝑄𝑖𝑘 (𝑡) +

∑
𝑖∈M,𝑘∈K

𝑋𝑖𝑘 (𝑡) +
∑

𝑖∈M,𝑘∈K
𝑌𝑖𝑘 (𝑡), (2)

and attempt to stabilizable the three terms on the right side simultaneously.

3.2 Algorithm
We apply the Lyapunov optimization framework to stabilize (2). We first define a Lyapunov function

Φ(𝑡) ≜
∑

𝑖∈A,𝑘∈K
𝑄2

𝑖𝑘
(𝑡) +

∑
𝑖∈M,𝑘∈K

𝑋 2

𝑖𝑘
(𝑡) +

∑
𝑖∈M,𝑘∈K

𝑌 +2
𝑖𝑘
(𝑡), (3)

where 𝑌 +
𝑖𝑘
(𝑡) = max{𝑌𝑖𝑘 (𝑡), 0}.

To control the growth of Φ(𝑡), we define the Lyapunov drift as ΔΦ(𝑡) ≜ Φ(𝑡 + 1) − Φ(𝑡) and
minimize ΔΦ(𝑡) at each time slot. We define Δ𝑄𝑖𝑘 (𝑡), Δ𝑋𝑖𝑘 (𝑡) and Δ𝑌 +

𝑖𝑘
(𝑡) in a similar manner.

Minimizing ΔΦ(𝑡) can be shown to be equivalent to minimizing∑
𝑖∈A,𝑘∈K

𝑄𝑖𝑘 (𝑡)Δ𝑄𝑖𝑘 (𝑡) +
∑

𝑖∈M,𝑘∈K
𝑋𝑖𝑘 (𝑡)Δ𝑋𝑖𝑘 (𝑡) +

∑
𝑖∈M,𝑘∈K

𝑌 +
𝑖𝑘
(𝑡)Δ𝑌 +

𝑖𝑘
(𝑡).

However, for a malicious node 𝑖 ∈ M, the network controller doe not have instantaneous access

to its queue backlog 𝑄𝑖𝑘 (𝑡) and thus the value of 𝑌𝑖𝑘 (𝑡) is unavailable to the network controller. As

discussed in Section 2, the network controller can obtain estimates of 𝑄𝑖𝑘 at certain time slots Γ𝑖 .
Therefore, the network controller can use the most recently estimated 𝑄̂𝑖𝑘 (𝑡) to estimate 𝑌𝑖𝑘 (𝑡), i.e.,

𝑌𝑖𝑘 (𝑡) = 𝑄̂𝑖𝑘 (𝜏𝑖 (𝑡)) − 𝑋𝑖𝑘 (𝑡), (4)

where 𝜏𝑖 (𝑡) is the most recent time when an estimation of 𝑄𝑖𝑘 was made, i.e., 𝜏𝑖 (𝑡) ≜ max𝜏 ∈Γ𝑖 :𝜏⩽𝑡 𝜏
and the objective of minimization now becomes∑

𝑖∈A,𝑘∈K
𝑄𝑖𝑘 (𝑡)Δ𝑄𝑖𝑘 (𝑡) +

∑
𝑖∈M,𝑘∈K

𝑋𝑖𝑘 (𝑡)Δ𝑋𝑖𝑘 (𝑡) +
∑

𝑖∈M,𝑘∈K
𝑌 +
𝑖𝑘
(𝑡)Δ𝑌 +

𝑖𝑘
(𝑡). (5)

We denote by 𝒇𝑀 (𝑡) and 𝒈𝑀 (𝑡) the flow assignments that minimize (5), which can be expressed

as,

𝒇𝑀 (𝑡),𝒈𝑀 (𝑡) = argmin

0⩽𝑓𝑖 𝑗𝑘 ,𝑔𝑖 𝑗𝑘⩽𝐶𝑖 𝑗

∑
𝑖∈A,𝑘∈K

𝑄𝑖𝑘 (𝑡)
[ ∑
𝑗 ∈A

𝑓𝑗𝑖𝑘 −
∑

𝑗 ∈N∪𝑑𝑘

𝑓𝑖 𝑗𝑘

]
+

∑
𝑖∈M,𝑘∈K

𝑋𝑖𝑘 (𝑡)
[ ∑
𝑗 ∈A

𝑓𝑗𝑖𝑘 +
∑
𝑗 ∈M

𝑔 𝑗𝑖𝑘 −
∑

𝑗 ∈N∪𝑑𝑘

𝑔𝑖 𝑗𝑘

]
−

∑
𝑖∈M,𝑘∈K

𝑌 +
𝑖𝑘
(𝑡)

[ ∑
𝑗 ∈M

𝑔 𝑗𝑖𝑘 −min

{ ∑
𝑗 ∈N∪𝑑𝑘

𝑔𝑖 𝑗𝑘 , 𝑋𝑖𝑘 (𝑡) + 𝑎𝑖𝑘 (𝑡)
}]
. (6)

For each time slot, the network controller solves (6) and applies 𝒇𝑀 (𝑡) to the accessible nodes

in the real network, meanwhile using both 𝒇𝑀 (𝑡) and 𝒈𝑀 (𝑡) to update 𝑋𝑖𝑘 (𝑡) for all malicious

nodes 𝑖 ∈ M, according to

𝑋𝑖𝑘 (𝑡 + 1) =
[
𝑋𝑖𝑘 (𝑡) + 𝑎𝑖𝑘 (𝑡) −

∑
𝑗 ∈N∪𝑑𝑘

𝑔𝑖 𝑗𝑘 (𝑡)
]+
+

∑
𝑗 ∈A

˜𝑓𝑗𝑖𝑘 (𝑡) +
∑
𝑗 ∈M

𝑔 𝑗𝑖𝑘 (𝑡), (7)
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where, for technical reasons, we assume that in the imaginary network, malicious nodes can

transmit dummy packets when the allotted packets to be transmitted are less than the queue

backlog (i.e., 𝑔𝑖 𝑗𝑘 ≡ 𝑔𝑖 𝑗𝑘 for 𝑖 ∈ M).

The complete algorithm is given in Algorithm 1.

Algorithm 1 The MWUM algorithm

1: Input: 𝑇 , 𝑄𝑖𝑘 (0), Γ𝑖 for 𝑖 ∈ M
2: Initialization: 𝑋𝑖𝑘 (0) ← 𝑄𝑖𝑘 (0) for 𝑖 ∈ N , 𝑌𝑖𝑘 (0) ← 0 for 𝑖 ∈ M
3: for 𝑡 ← 0, 1, · · · ,𝑇 − 1 do
4: Obtain 𝑄𝑖𝑘 (𝑡) for 𝑖 ∈ A, 𝑋𝑖𝑘 (𝑡) for 𝑖 ∈ M, and 𝑎𝑖𝑘 (𝑡) for 𝑖 ∈ N
5: for 𝑖 ∈ M do
6: if 𝑡 ∈ Γ𝑖 then
7: Obtain an estimation 𝑄̂𝑖𝑘 (𝑡) for 𝑘 ∈ K
8: end if
9: Update 𝑌𝑖𝑘 (𝑡) using Eqn (4) for 𝑘 ∈ K
10: end for
11: Solve Eqn (6) and obtain 𝒇𝑀 (𝑡),𝒈𝑀 (𝑡)
12: Implement 𝒇𝑀 (𝑡) to accessible nodes A in the real network

13: Update 𝑋𝑖𝑘 (𝑡 + 1) using Eqn (7) for 𝑖 ∈ M and 𝑘 ∈ K
14: end for
15: Output: action sequence for accessible nodes 𝒇𝑀 (𝑡) for 𝑡 = 0, · · · ,𝑇 − 1, i.e., 𝜋𝑀

4 PERFORMANCE ANALYSIS
To analyze the stability of MWUM, we start with the case where the estimates 𝑄̂𝑖𝑘 (𝑡) are accurate,
i.e., 𝑄̂𝑖𝑘 (𝑡) = 𝑄𝑖𝑘 (𝑡) for all malicious nodes 𝑖 ∈ M and 𝑡 ∈ Γ𝑖 . We first prove stability under the most

challenging setting - the 𝑄𝑇 constraint. We then extend our analysis to include the 𝑉𝑇 constraint

and the𝑊 constraint and obtain results stronger than rate stability. Finally, with the rate stability

results, we are able to characterize the stability regions for networks with unobservable malicious

nodes.

4.1 Stability for Networks with 𝑄𝑇 -Constrained Dynamics
As mentioned in Section 3.2, 𝜏𝑖 (𝑡) is the most recent time, prior to time 𝑡 , an estimate of 𝑄𝑖𝑘 was

obtained. We define 𝐿(𝑡) to be the maximum delay in observations at 𝑡 , i.e., max𝑖∈M,𝑘∈K 𝑡 − 𝜏𝑖 (𝑡).
Intuitively, for a network with𝑄𝑇 -constrained dynamics, if𝑄𝑇 = 𝑜 (𝑇 ), then there exists a stabilizing
network control policy. Moreover, if 𝐿(𝑡) is also sublinear in 𝑇 , the delay in obtaining queue

information should not affect stability significantly [15, 28].

We show that the action sequence on accessible nodes 𝒇𝑀 (𝑡) generated by MWUM can achieve

rate stability under the aforementioned mild conditions of 𝑄𝑇 and 𝐿(𝑡), as stated in Theorem 2.

Theorem 2. A network with 𝑄𝑇 -constrained dynamics is rate stable under MWUM if 𝑄𝑇 = 𝑜 (𝑇 )
and

∑𝑇−1
𝑡=0 𝐿(𝑡)/𝑇 = 𝑜 (𝑇 ).

Proof. The outline of the proof is as follows. We first upper bound the queue backlog at time

𝑇 with the Lyapunov function Φ in Lemma 1. We then analyze and upper bound the drift ΔΦ in

Lemma 2 and 3. Finally, we obtain an upper bound of Φ(𝑇 ) via Lemma 4 and 5, which shows that

the queue backlog at time 𝑇 is sublinear in 𝑇 and thus concludes the proof.

Directly analyzing the growth of queue backlogs is difficult, thus we first explore the relationship

between queue backlogs and the Lyapunov function Φ (defined in (3)).
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Lemma 1. For any policy, we have∑
𝑖∈N,𝑘∈K

𝑄𝑖𝑘 (𝑇 ) ⩽
√
2𝑁𝐾Φ(𝑇 ).

See Appendix B for the proof. Lemma 1 shows that the total queue backlog grows sublinearly in

𝑇 if the terminal value of the Lyapunov function is subquadratic in 𝑇 , i.e., Φ(𝑇 ) = 𝑜 (𝑇 2). We next

turn to deriving an upper bound for Φ(𝑇 ).
For simplicity of exposition, we make the following definitions of the one-slot changes in𝑄𝑖𝑘 (𝑡)’s,

𝑋𝑖𝑘 (𝑡)’s and 𝑌𝑖𝑘 (𝑡)’s. Note that we use 𝛿 instead of Δ for 𝛿𝑄𝑖𝑘 (𝑡) and 𝛿𝑋𝑖𝑘 (𝑡) because they are not

the actual one-slot changes (using
˜𝑓𝑖 𝑗𝑘 , 𝑔𝑖 𝑗𝑘 and 𝜇̃𝑖 𝑗𝑘 ) but the planned one-slot changes (using 𝑓𝑖 𝑗𝑘 ,

𝑔𝑖 𝑗𝑘 and 𝜇𝑖 𝑗𝑘 ).
𝛿𝑄𝑖𝑘 (𝑡) ≜ 𝑎𝑖𝑘 (𝑡) −

∑
𝑗 ∈N∪𝑑𝑘 𝑓𝑖 𝑗𝑘 (𝑡) +

∑
𝑗 ∈A 𝑓𝑗𝑖𝑘 (𝑡) +

∑
𝑗 ∈M 𝜇 𝑗𝑖𝑘 (𝑡), 𝑖 ∈ A

𝛿𝑋𝑖𝑘 (𝑡) ≜ 𝑎𝑖𝑘 (𝑡) −
∑
𝑗 ∈N∪𝑑𝑘 𝑔𝑖 𝑗𝑘 (𝑡) +

∑
𝑗 ∈A 𝑓𝑗𝑖𝑘 (𝑡) +

∑
𝑗 ∈M 𝑔 𝑗𝑖𝑘 (𝑡), 𝑖 ∈ M

Δ𝑌𝑖𝑘 (𝑡) ≜ 𝑌𝑖𝑘 (𝑡 + 1) − 𝑌𝑖𝑘 (𝑡), 𝑖 ∈ M
.

Next we decompose Φ(𝑡 +1)−Φ(𝑡) into analyzable terms. We first upper bound𝑄2

𝑖𝑘
(𝑡 +1)−𝑄2

𝑖𝑘
(𝑡)

for 𝑖 ∈ A and 𝑋 2

𝑖𝑘
(𝑡 + 1) − 𝑋 2

𝑖𝑘
(𝑡) for 𝑖 ∈ M in Lemma 2.

Lemma 2. For each 𝑡 = 0, · · · ,𝑇 − 1, we have{
𝑄2

𝑖𝑘
(𝑡 + 1) −𝑄2

𝑖𝑘
(𝑡) ⩽ 2𝑄𝑖𝑘 (𝑡)𝛿𝑄𝑖𝑘 (𝑡) + 6𝑁 2𝐷2, 𝑖 ∈ A

𝑋 2

𝑖𝑘
(𝑡 + 1) − 𝑋 2

𝑖𝑘
(𝑡) ⩽ 2𝑋𝑖𝑘 (𝑡)𝛿𝑋𝑖𝑘 (𝑡) + 6𝑁 2𝐷2, 𝑖 ∈ M

.

See Appendix C for the proof. We then upper bound 𝑌 +2
𝑖𝑘
(𝑡 + 1) − 𝑌 +2

𝑖𝑘
(𝑡) for 𝑖 ∈ M in Lemma 3.

Lemma 3. For each 𝑖 ∈ M and 𝑡 = 0, · · · ,𝑇 − 1, we have

𝑌 +2
𝑖𝑘
(𝑡 + 1) − 𝑌 +2

𝑖𝑘
(𝑡) ⩽ 2𝑌 +

𝑖𝑘
(𝑡)Δ𝑌𝑖𝑘 (𝑡) +

(
8𝐿(𝑡) + 6

)
𝑁 2𝐷2.

See Appendix D for the proof. Using Lemma 2 and Lemma 3, we can upper bound ΔΦ𝑀 (𝑡) ≜
Φ𝑀 (𝑡 + 1) − Φ𝑀 (𝑡) as follows (the superscript 𝑀 denotes that the variable is obtained under the

action sequence 𝜋𝑀 generated by our algoritm MUWM),

ΔΦ𝑀 (𝑡) ⩽2
∑

𝑖∈A,𝑘∈K
𝑄𝑀
𝑖𝑘
(𝑡)𝛿𝑀𝑄𝑖𝑘 (𝑡) + 2

∑
𝑖∈M,𝑘∈K

𝑋𝑀
𝑖𝑘
(𝑡)𝛿𝑀𝑋𝑖𝑘 (𝑡)+

2

∑
𝑖∈M,𝑘∈K

𝑌𝑀+
𝑖𝑘
(𝑡∗
𝑖𝑘
)Δ𝑀𝑌𝑖𝑘 (𝑡) + (8𝐿(𝑡) + 18)𝑁 3𝐾𝐷2 . (8)

By the definition of𝑄𝑇 -constrained dynamics, for the network event sequence

{
𝒂(𝑡), 𝝁 (𝑡)

}
0⩽𝑡⩽𝑇−1

generated under the application of MWUM, there exists a policy 𝜋∗ such that

∑
𝑖,𝑘 𝑄

∗
𝑖𝑘
(𝑇 ) ⩽ 𝑄𝑇 .

Since MWUMminimizes (5), replacing the actions {𝒇𝑀 (𝑡),𝒈𝑀 (𝑡)}0⩽𝑡⩽𝑇−1 with {𝒇 ∗ (𝑡), 𝝁 (𝑡)}0⩽𝑡⩽𝑇−1
will not decrease (8), i.e.,

ΔΦ𝑀 (𝑡) ⩽2
∑

𝑖∈A,𝑘∈K
𝑄𝑀
𝑖𝑘
(𝑡)𝛿∗𝑄𝑖𝑘 (𝑡) + 2

∑
𝑖∈M,𝑘∈K

𝑋𝑀
𝑖𝑘
(𝑡)𝛿∗𝑋𝑖𝑘 (𝑡)+

2

∑
𝑖∈M,𝑘∈K

𝑌𝑀+
𝑖𝑘
(𝑡)Δ∗𝑌𝑖𝑘 (𝑡) + (8𝐿(𝑡) + 18)𝑁 3𝐾𝐷2. (9)
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Using (9) and summing up ΔΦ𝑀 (𝑡) from 𝑡 = 0 to time 𝑡 = 𝑇 − 1, the value of Φ𝑀 (𝑇 ) is upper
bounded by

Φ𝑀 (𝑇 ) ⩽Φ(0) + 2
∑

𝑖∈A,𝑘∈K

𝑇−1∑
𝑡=0

𝑄𝑀
𝑖𝑘
(𝑡)𝛿∗𝑄𝑖𝑘 (𝑡) + 2

∑
𝑖∈M,𝑘∈K

𝑇−1∑
𝑡=0

𝑋𝑀
𝑖𝑘
(𝑡)𝛿∗𝑋𝑖𝑘 (𝑡)+

2

∑
𝑖∈M,𝑘∈K

𝑇−1∑
𝑡=0

𝑌𝑀+
𝑖𝑘
(𝑡)Δ∗𝑌𝑖𝑘 (𝑡) + 18𝑁 3𝐾𝐷2𝑇 + 8𝑁 3𝐾𝐷2

𝑇−1∑
𝑡=0

𝐿(𝑡). (10)

We next need to upper bound the second, third and fourth term in (10). For the second and third

terms we use the following lemma.

Lemma 4. For each integer 𝐻 > 0, the following holds∑
𝑖∈A,𝑘∈K

𝑇−1∑
𝑡=0

𝑄𝑀
𝑖𝑘
(𝑡)𝛿∗𝑄𝑖𝑘 (𝑡) +

∑
𝑖∈M,𝑘∈K

𝑇−1∑
𝑡=0

𝑋𝑀
𝑖𝑘
(𝑡)𝛿∗𝑋𝑖𝑘 (𝑡) ⩽

2𝑁𝐾𝐷𝑇 2𝑄𝑇

𝐻
+ 8𝑁 3𝐾𝐷2𝐻𝑇 .

See Appendix E for the proof. We next upper bound the fourth term as follows,

Lemma 5. For each 𝑖 ∈ M and 𝑘 ∈ K , we have
𝑇−1∑
𝑡=0

𝑌𝑀+
𝑖𝑘
(𝑡)Δ∗𝑌𝑖𝑘 (𝑡) ⩽ 4𝑁 2𝐷2

𝑇−1∑
𝑡=0

𝐿(𝑡) + 2𝑁 2𝐷2𝑇 .

See Appendix F for the proof. Now, let 𝐻 = 𝑐
√
𝑇𝑄𝑇 /(𝑁 2𝐷) (where 𝑐 is any positive constant

that makes 𝐻 an integer). Using results in Lemma 4 and Lemma 5 in (10) and then applying Lemma

1, we obtain,∑
𝑖∈N,𝑘∈K

𝑄𝑀
𝑖𝑘
(𝑇 ) ⩽

[
4𝑁 3𝐾2𝐷

(
(8𝑐 + 2/𝑐)

√
𝐷𝑇𝑄𝑇 + 11𝑁𝐷

)
𝑇 + 32𝑁 4𝐾2𝐷2

𝑇−1∑
𝑡=0

𝐿(𝑡) + 2𝑁𝐾Φ(0)
]
1/2

= 𝑂

(
𝑇 3/4𝑄1/4

𝑇
+

√√√
𝑇−1∑
𝑡=0

𝐿(𝑡)
)
.

When 𝑄𝑇 = 𝑜 (𝑇 ) and ∑𝑇−1
𝑡=0 𝐿(𝑡) = 𝑜 (𝑇 2), we have ∑

𝑖∈N,𝑘∈K 𝑄
𝑀
𝑖𝑘
(𝑇 ) = 𝑜 (𝑇 ) and the network is

rate stable. □

As discussed before, if the𝑄𝑇 -constrained dynamics do not satisfy𝑄𝑇 = 𝑜 (𝑇 ), then the adversary

can generate a series of

{
𝒂(𝑡), 𝝁 (𝑡)

}
0⩽𝑡⩽𝑇−1 such that no policy can stabilize the network. But as

long as 𝑄𝑇 = 𝑜 (𝑇 ) and ∑𝑇−1
𝑡=0 𝐿(𝑡)/𝑇 = 𝑜 (𝑇 ), MWUM can stabilize the network. Therefore, MWUM

is “throughput-optimal” (i.e., can stabilize a network if the network is stabilizable). More detailed

discussion is provided in Section 4.3.

4.2 Stability for Networks with 𝑉𝑇 /𝑊 -Constrained Dynamics
As discussed in Section 2.3, the 𝑄𝑇 constraint is the most relaxed maliciousness metric. If the

network further satisfies the 𝑉𝑇 constraint or the𝑊 constraint, the adversary is less malicious, and

it is possible to obtain stronger results than rate stability.

For a network with 𝑉𝑇 -constrained dynamics, since the 𝑉𝑇 constraint bounds the maliciousness

for all time slots, we provide a stronger result below,
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Theorem 3. For a network with𝑉𝑇 -constrained dynamics, if 𝑉𝑇 = 𝑜 (𝑇 ) and ∑𝑇−1
𝑡=0 𝐿(𝑡)/𝑇 = 𝑜 (𝑇 ),

we have

lim

𝑇→∞

max𝑡⩽𝑇
∑
𝑖∈N,𝑘∈K 𝑄

𝑀
𝑖𝑘
(𝑡)

𝑇
= 0,

under MWUM.

Proof. Define𝑇 ∗ ≜ argmax𝑡⩽𝑇
∑
𝑖∈N,𝑘∈K 𝑄

𝑀
𝑖𝑘
(𝑡). By replacing𝑇 with𝑇 ∗ in the proof of Theorem

2 and changing the definition of 𝜋∗ to the policy corresponding to Definition 3, we show that∑
𝑖∈N,𝑘∈K

𝑄𝑀
𝑖𝑘
(𝑇 ∗) = 𝑂

(
𝑇 ∗3/4𝑉 1/4

𝑇
+

√√√
𝑇 ∗−1∑
𝑡=0

𝐿(𝑡)
)
, (11)

which completes the proof. □

Since the𝑊 constraint is even more restrictive than the𝑉𝑇 constraint, we can further extend the

analysis in Theorem 3 to𝑊 -constrained dynamics as follows,

Theorem 4. For a network with𝑊 -constrained dynamics, if 𝑊 = 𝑜 (𝑇 ) and ∑𝑇−1
𝑡=0 𝐿(𝑡)/𝑇 = 𝑜 (𝑇 ),

we have

lim

𝑇→∞

max𝑡⩽𝑇
∑
𝑖∈N,𝑘∈K 𝑄

𝑀
𝑖𝑘
(𝑡)

𝑇
= 0,

under MWUM.

Proof. The definition of 𝑇 ∗ remains identical as the proof of Theorem 3. We replace 𝜋∗ with
𝜋𝑊 (as defined in Definition 2). By Theorem 1, the upper bound (11) still holds after replacing 𝑉𝑇
with

∑
𝑖∈N,𝑘∈K 𝑄𝑖𝑘 (0) + 𝑁𝐾𝐷𝑊 , which completes the proof. □

Obviously, Theorem 3 and 4 also imply the conditions to achieve rate stability under 𝑉𝑇 and

𝑊 constraints. Moreover, they imply that when the maliciousness metrics are sublinear in 𝑇 and∑𝑇−1
𝑡=0 𝐿(𝑡)/𝑇 = 𝑜 (𝑇 ), the peak queue backlog along the time horizon is sublinear in time. Theorem

3 and 4 extend previous results [17, 19] which only discussed the rate stability at the end of the

time horizon.

4.3 Stability Region
For networks with stochastic dynamics, the stability region is the set of external arrival rates such

that there exists a policy under which the sum of arrival rates is no greater than the sum of service

rates for each node. If network dynamics (i.e., arrivals, channel conditions) are inside its stability

region, then there exists a policy to achieve rate stability. On the other hand, no policy can stabilize

the network when the dynamics are outside the stability region.

For networks with malicious nodes, the concept of “rate” is no longer applicable (since the

dynamics might be non-stochastic) and the adversarial actions taken by the malicious nodes also

need to be considered.

ByDefinition 4, when𝑄𝑇 = Ω(𝑇 ), the adversarymight implement a sequence of

{
𝒂(𝑡), 𝝁 (𝑡)

}
0⩽𝑡⩽𝑇−1

which cannot be stabilized by any policy. However, as long as 𝑄𝑇 = 𝑜 (𝑇 ), we have shown that

MWUM could stabilize the network. Therefore, we could use𝑄𝑇 to characterize the stability region.

Proposition 1. For a given network, its stability region is the set of
{
𝒂(𝑡), 𝝁 (𝑡)

}
0⩽𝑡⩽𝑇−1 with

𝑄𝑇 = 𝑜 (𝑇 ).

Since Theorem 2 has shown that when 𝑄𝑇 = 𝑜 (𝑇 ) (i.e. inside the stability region), the network is

rate stable under MWUM, we have the following corollary.
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Corollary 1. For a network with 𝑄𝑇 -constrained dynamics, MWUM is a throughput-optimal
algorithm.

5 PERFORMANCEWITH ESTIMATION ERRORS
In Section 4, we analyze stability under MWUM when the estimates 𝑄̂𝑖𝑘 (𝑡) are accurate. However,
in practice, it is common that the estimation is erroneous due to the limits of statistical methods,

transmission errors, or even errors injected by the adversary. For a malicious node 𝑖 ∈ M, data

class 𝑘 ∈ K and 𝑡 ∈ Γ𝑖 , we define the error as 𝜖𝑖𝑘 (𝑡) ≜ 𝑄̂𝑖𝑘 (𝑡) − 𝑄𝑖𝑘 (𝑡). To distinguish from the

estimate 𝑌𝑖𝑘 (𝑡) without estimation error, we denote by 𝑌̃𝑖𝑘 (𝑡) the corresponding erroneous version

of 𝑌𝑖𝑘 (𝑡) and have 𝑌̃𝑖𝑘 (𝑡) = 𝑌𝑖𝑘 (𝑡) + 𝜖𝑖𝑘 (𝜏𝑖 (𝑡)).

5.1 Stability
Having obtained 𝑌̃ +

𝑖𝑘
(𝑡), in Algorithm 1 𝑌 +

𝑖𝑘
(𝑡) is replaced by 𝑌̃ +

𝑖𝑘
(𝑡) and the goal is to minimize∑

𝑖∈A,𝑘∈K
𝑄𝑖𝑘 (𝑡)Δ𝑄𝑖𝑘 (𝑡) +

∑
𝑖∈M,𝑘∈K

𝑋𝑖𝑘 (𝑡)Δ𝑋𝑖𝑘 (𝑡) +
∑

𝑖∈M,𝑘∈K
𝑌̃ +
𝑖𝑘
(𝑡)Δ𝑌 +

𝑖𝑘
(𝑡). (12)

By expanding the Lyapunov optimization analysis in Theorem 2, we show that as long as the

scale of 𝜖𝑖𝑘 (𝑡) is sublinear in 𝑡 , rate stability still holds, i.e.,

Theorem 5. A network with 𝑄𝑇 -constrained dynamics is rate stable under MWUM if 𝑄𝑇 = 𝑜 (𝑇 ),∑𝑇−1
𝑡=0 𝐿(𝑡)/𝑇 = 𝑜 (𝑇 ), and

��𝜖𝑖𝑘 (𝑡)�� = 𝑜 (𝑡) for each 𝑖 ∈ M, 𝑘 ∈ K and 0 ⩽ 𝑡 ⩽ 𝑇 .

Proof. The analysis is nearly identical to the proof of Theorem 2, with the only difference in

upper bounding 𝑌 +2
𝑖𝑘
(𝑡 + 1) − 𝑌 +2

𝑖𝑘
(𝑡) and ∑𝑇−1

𝑡=0 𝑌̃
𝑀+
𝑖𝑘
(𝑡)Δ∗𝑌𝑖𝑘 (𝑡), as given by Lemma 6 and 7 below.

Lemma 6. For each 𝑖 ∈ M and 𝑡 = 0, · · · ,𝑇 − 1, we have
𝑌 +2
𝑖𝑘
(𝑡 + 1) − 𝑌 +2

𝑖𝑘
(𝑡) ⩽ 2𝑌̃ +

𝑖𝑘
(𝑡)Δ𝑌𝑖𝑘 (𝑡) +

(
8𝐿(𝑡) + 6

)
𝑁 2𝐷2 + 4𝑁𝐷

��𝜖𝑖𝑘 (𝜏𝑖 (𝑡))�� .
Lemma 7. For each 𝑖 ∈ M, we have

𝑇−1∑
𝑡=0

𝑌̃𝑀+
𝑖𝑘
(𝑡)Δ∗𝑌𝑖𝑘 (𝑡) ⩽ 4𝑁 2𝐷2

𝑇−1∑
𝑡=0

𝐿(𝑡) + 2𝑁 2𝐷2𝑇 + 2𝑁𝐷
𝑇−1∑
𝑡=0

��𝜖𝑖𝑘 (𝜏𝑖 (𝑡))�� .
Proof of Lemma 6 and 7 can be found in Appendix G and H respectively. With Lemma 6 and 7, a

similar analysis to the proof of Theorem 2 shows that∑
𝑖∈N,𝑘∈K

𝑄𝑀
𝑖𝑘
(𝑇 ) ⩽ 𝑂

(
𝑇 3/4𝑄1/4

𝑇
+

√√√
𝑇−1∑
𝑡=0

𝐿(𝑡) +

√√√
𝑇−1∑
𝑡=0

��𝜖𝑖𝑘 (𝜏𝑖 (𝑡))��) .
Since

��𝜖𝑖𝑘 (𝑡)�� = 𝑜 (𝑡),
𝑇−1∑
𝑡=0

∑
𝑖∈M,𝑘∈K

��𝜖𝑖𝑘 (𝜏𝑖 (𝑡))�� ⩽ ∑
𝑖∈M,𝑘∈K

𝑇−1∑
𝑡=0

𝑜 (𝑡) = 𝑜 (𝑇 2),

if 𝑄𝑇 = 𝑜 (𝑇 ), ∑𝑇−1
𝑡=0 𝐿(𝑡)/𝑇 = 𝑜 (𝑇 ), and

��𝜖𝑖𝑘 (𝑡)�� = 𝑜 (𝑡), then ∑
𝑖∈N,𝑘∈K 𝑄

𝑀
𝑖𝑘
(𝑇 ) = 𝑜 (𝑇 ), which

completes the proof of Theorem 5. □

Theorem 5 shows that as long as the estimation error

��𝜖𝑖𝑘 (𝑡)�� is sublinear in 𝑡 , then the results of

Theorem 2 still holds. In other words, as long as estimation errors grow sublinearly in time, the

stability of MWUM is not affected. Similar to the performance guarantees provided in Theorem 3

and Theorem 4, the performance of networks with 𝑉𝑇 -constrained and𝑊 -constrained dynamics

under MWUM is as follows.
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Theorem 6. For a network with 𝑉𝑇 (or𝑊 )-constrained dynamics, if 𝑉𝑇 = 𝑜 (𝑇 ) (or𝑊 = 𝑜 (𝑇 )),∑𝑇−1
𝑡=0 𝐿(𝑡)/𝑇 = 𝑜 (𝑇 ), and

��𝜖𝑖𝑘 (𝑡)�� = 𝑜 (𝑡) for each 𝑖 ∈ M and 0 ⩽ 𝑡 ⩽ 𝑇 , we have

lim

𝑇→∞

max𝑡⩽𝑇
∑
𝑖∈N,𝑘∈K 𝑄

𝑀
𝑖𝑘
(𝑡)

𝑇
= 0,

under MWUM.

5.2 Impact of Estimation Errors
Although we have shown that MWUM achieves rate stability as long as the estimation error is

sublinear in 𝑡 , a possible question of interest is: what will happen if the estimation error is larger,

i.e., 𝜖𝑖𝑘 (𝑡) = Ω(𝑡)?
A quick answer to the question is that estimation errors do not affect the existence of a stabilizing

policy. From the definition of𝑄𝑇 -constrained dynamics, for each network event sequence generated

by the adversary, there always exists a policy that ensures the queue backlog at time 𝑇 is sublinear

in 𝑇 . This policy does not need queue backlog estimates and thus estimation errors technically do

not affect the stability region of the network.

However, such a policy requires full knowledge of the adversarial dynamics and is not practical.

Instead, the network controller usually can only make decisions based on observable network state

(i.e., queue backlogs of accessible nodes). We define this large class of “state-based” algorithms in

the following manner and only discuss such algorithms in this section.

Definition 6. A state-based network control algorithm generates actions solely based on the queue
backlogs of the accessible nodes A (i.e., 𝑄𝑖𝑘 for 𝑖 ∈ A) and the estimated queue backlogs of the
malicious nodesM (i.e., 𝑋𝑖𝑘 and 𝑄̂𝑖𝑘 for 𝑖 ∈ M).

MWUM is a state-based algorithm by Definition 6. Since state-based algorithms rely on estimates

of the malicious nodes, estimation errors could affect stability. We highlight this with an example

below.

Theorem 7. There exists a network with𝑄𝑇 -constrained dynamics (where𝑄𝑇 = 𝑜 (𝑇 )) and 𝜖𝑖𝑘 (𝑡) =
Ω(𝑡) for some 𝑖 ∈ M and 𝑘 ∈ K such that no state-based algorithm can achieve rate stability.

Proof. Theorem 7 states that although the network is stabilizable by “some” algorithms, no

state-based algorithm can achieve rate stability. We construct a 2-node network as shown in Figure

2. Node 1 is an accessible node and can directly transmit packets to the destination 𝑑 or relay

through node 2, while node 2 is unobservable and malicious.

Fig. 2. The example system for Theorem 7

Since we assume the external arrivals 𝑎1 (𝑡) and 𝑎2 (𝑡) to be finite, the queue backlogs 𝑄1 (𝑡) and
𝑄2 (𝑡) can grow at most linearly in 𝑡 . Therefore, when the estimation error 𝜖2 (𝑡) grows linearly in 𝑡 ,

the error can completely “mask” the actual queue growth of node 2 and make the estimates 𝑄̂2 (𝑡)
always zero, enticing the network controller to transmit packets from node 1 to node 2. However,
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the external arrival rate to node 2 might be very close to 𝐶2𝑑 and the total arrival rate attack node

2 may exceed 𝐶2𝑑 even if 𝑓12 is small. The queue backlog at node 2 then grows linearly in the time

horizon and the network becomes unstable. A detailed proof of this phenomenon is provided in

Appendix I. □

Theorem 7 shows that when the estimation error scales linearly or sup-linearly in 𝑡 , there does

not exist a state-based algorithm that can stabilize all networks. Combining Theorem 5 and 7, we

have the following theorem on the necessary and sufficient conditions of achieving rate stability

with estimation error.

Theorem 8. There exists a state-based algorithm that stabilizes all networks with 𝑄𝑇 -constrained
dynamics that has 𝑄𝑇 = 𝑜 (𝑇 ) and ∑𝑇−1

𝑡=0 𝐿(𝑡)/𝑇 = 𝑜 (𝑇 ), if and only if
��𝜖𝑖𝑘 (𝑡)�� = 𝑜 (𝑡) for each 𝑖 ∈ M

and 0 ⩽ 𝑡 ⩽ 𝑇 .

6 NUMERICAL EXPERIMENTS
We conduct several simulations to validate the performance analysis of MWUM. We first examine

a simple 3-node case, which has a clear lower bound to illustrate the gap between our algorithm

and the optimum. We then study a more complex system of 12 nodes to show the performance of

our algorithm in a more complex setting. We finally study the impact of estimation errors.

6.1 3-Node Network
We start from a simple network with 3 nodes, as shown in Figure 3, assuming that there is no

estimation error. The network can be analyzed explicitly, and we are able to obtain a lower bound

for queue backlog.

Fig. 3. 3-node network
model.

Fig. 4. Dynamics of the 3-node network model.

In the network, node 1 is accessible, while both node 2 and 3 are unobservable and malicious.

All links have capacity of 4. The estimates of node 2 and 3 are obtained every 𝐿 time slots. We use

the parameter 𝑉 ⩽ 𝑇 /10 to describe the network dynamics as follows (also shown in Figure 4). For

each 𝑛 = 0, 1, · · · , 9,
• When 𝑛𝑇 /10 ⩽ 𝑡 < 𝑛𝑇 /10 + 𝑉 , the external arrivals are 𝑎1 (𝑡) = 4, and both node 2 and 3

transmit one packet to the destination 𝑑 , i.e., 𝜇2𝑑 (𝑡) = 𝜇3𝑑 (𝑡) = 1.

• When 𝑛𝑇 /10 +𝑉 ⩽ 𝑡 < (𝑛 + 1)𝑇 /10, the external arrival is reduced to 𝑎1 (𝑡) = 1. Moreover,

between node 2 and 3, only the node with smaller queue continues transmitting at a rate of

one packet to destination 𝑑 , while the other node pauses transmission. The strategy of node

2 and 3 is malicious in the sense that the node with larger queue is likely to remain unserved

forever even as it may grow unbounded.

The total number of packets received from external arrivals is 10× 4𝑉 + 10(𝑇 /10−𝑉 ) = 𝑇 + 30𝑉 ,
while node 2 and 3 can serve at most 10× 2𝑉 + 10(𝑇 /10−𝑉 ) = 𝑇 + 10𝑉 packets, thus a lower bound

for the queue backlog at 𝑇 is 𝑇 + 30𝑉 − (𝑇 + 10𝑉 ) = 20𝑉 . The control action of node 1 is to decide
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(a) 𝑄𝑇 = 𝑂 (1) (b) 𝑄𝑇 = 𝑂 (𝑇 1/4)

(c) 𝑄𝑇 = 𝑂 (
√
𝑇 ) (d) 𝑄𝑇 = 𝑂 (𝑇 )

Fig. 5. Simulation results for the 3-node network.

how to route packets at node 1 by the choice of 𝑓12 and 𝑓13. Given any network event sequence

{𝜇2𝑑 (𝑡), 𝜇3𝑑 (𝑡)}0⩽𝑡⩽𝑇−1, the policy that sets 𝑓12 (𝑡) = 𝜇2𝑑 (𝑡 + 1) and 𝑓13 (𝑡) = 𝜇3𝑑 (𝑡 + 1) guarantees∑
𝑖∈N,𝑘∈K 𝑄𝑖𝑘 (𝑇 ) to achieve the lower bound of 20𝑉 . Therefore, the network has 𝑄𝑇 -constrained

dynamics with 𝑄𝑇 = 20𝑉 .

We conduct simulations with different scalings of 𝑄𝑇 (i.e., 𝑉 ) in the time horizon 𝑇 . For each

𝑄𝑇 , we obtain the total queue backlog at 𝑇 for different 𝑇 ’s and draw the curve illustrating how∑
𝑖∈N,𝑘∈K 𝑄𝑖𝑘 (𝑇 ) grows with different scalings of𝑄𝑇 under theMWUM algorithm.We also compare

the performance ofMWUMunder different values of estimation interval 𝐿 to analyze the influence of

estimation frequency. Note that the upper bound of

∑
𝑖∈N,𝑘∈K 𝑄𝑖𝑘 (𝑇 ) given in the proof of Theorem

2 is much larger than the actual performance and is omitted from the plots. The simulation results

are shown in Figure 5.

From Figure 5, we can see that

∑
𝑖∈N,𝑘∈K 𝑄𝑖𝑘 (𝑇 ) has the same order as the lower bound. As 𝑄𝑇

increases, the absolute gap between MWUM and the lower bound remains bounded, while the

relative gap diminishes. This shows that MWUM is order-optimal for the 3-node network example.

Also, the comparison among different values of 𝐿 shows that if the estimates are obtained too

sparsely, the performance of MWUM downgrades, which is consistent with the upper bound on∑
𝑖∈N,𝑘∈K 𝑄𝑖𝑘 (𝑇 ) in the proof to Theorem 2. Note that

∑
𝑖∈N,𝑘∈K 𝑄𝑖𝑘 (𝑇 ) might not grow monoton-

ically with𝑇 , and a possible reason is due to the choice of 𝐿. Having fresh information of malicious

nodes can greatly affect

∑
𝑖∈N,𝑘∈K 𝑄𝑖𝑘 (𝑇 ). Sometimes larger 𝐿 divides𝑇 and helps to obtain fresher

information of malicious nodes, thus improves the performance.
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6.2 12-Node Network
We now implement MWUM in a more complex network to illustrate its practicality. The network,

as in Figure 6, contains 3 external arrival sources, 2 destinations and 12 nodes. Among them, node

2, 3, 4 and 6 are unobservable and malicious, while the rest are accessible. All links, including link

9→ 𝑑 and 10→ 𝑑 , have the capacity of 5.

Fig. 6. 12-node network model.

At each time slot, node 1 receives 9 packets with probability 0.6 and receives no packet otherwise

(i.e., Bernoulli process Ber(9, 0.6)). Similarly, the external arrival process for node 4 and 10 are

Ber(2, 0.5) and Ber(3, 0.5), respectively. Moreover, an adversary injects at each time slot 𝑎′ = 2

packets into the network through node 1, 4 or 10. In an attempt to destabilize the network, the

adversary chooses to inject the 𝑎′ packets into the node with the largest queue. Similarly, node 4

and 6 apply the “join the longest queue” (JLQ) policy that transmits 5 packets to the neighboring

node with the larger queue size and transmits nothing to the other neighboring node. JLQ, in

contrast to the stabilizing “join the shortest queue” (JSQ) policy, is adversarial since the node with

the larger queue is more heavily loaded and hence, easier to destabilize. Node 3 simply transmits 5

packets to node 7 at each time slot. Node 2 transmits 5 packets to node 3 for the first𝑇 /2 time slots,

but starting at 𝑇 /2, it only transmits 1 packet to node 3.

The network is challenging since the expected number of external arrivals at each time slot is

9× 0.6+ 2× 0.5+ 3× 0.5+𝑎′ = 9.9 (packets), while the total service rate is𝐶9𝑑 +𝐶12,𝑑 = 10 (packets).

The network is heavily loaded and can easily become unstable without proper control decisions.

Moreover, starting at 𝑇 /2, the service rate of node 2 drops sharply, which requires the algorithm to

sense the change in time and alter the policy accordingly.

We conduct the simulation for 5000 time slots and compare the performance under different

policies: 1) directly applying MaxWeight to accessible nodes (MaxWeight), 2) assuming all nodes are

accessible, and applying MaxWeight to all nodes (Full MaxWeight), and 3) MWUM under different

estimation intervals (assuming accurate estimates). The simulation results are shown in Figure 7.

From Figure 7, we can see that directly applying the traditional MaxWeight algorithm cannot

stabilize the network. Because of the sudden change of 𝜇23 at 𝑇 /2, node 2 can only serve 1 packet

during the second half of the time horizon. However, the traditional MaxWeight algorithm cannot

observe it and may continue transmitting more than 1 packet to node 2, leading to linear growth

in the queue size. Both the full MaxWeight algorithm and MWUM stabilize the network, yet

surprisingly, MWUM achieves a smaller queue backlog. This is due to the fact that the MaxWeight

algorithm minimizes the drift rather than the queue backlog and can only guarantee stability rather
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(a) Results of all policies. (b) Results of stabilizing policies.

Fig. 7. The growth of total queue backlog.

than minimal queue backlog. In addition, when 𝐿 = 100, MWUM has significantly downgraded

performance after 𝑇 /2. The reason is that since the estimation is heavily delayed, it takes a much

longer time to notice the abnormal growth of the queue at node 2.

We further study whether MWUM successfully tracks the queues of malicious nodes with 𝐿 = 10,

as shown in Figure 8. From the figure, for all malicious nodes, the gaps between 𝑋𝑖𝑘 and 𝑄𝑖𝑘 are

bounded and small. This shows that MWUM tracks the real queue backlogs of malicious nodes

well.

Fig. 8. The gaps between the “imagined” queues𝑋𝑖𝑘
and actual queues𝑄𝑖𝑘 for malicious nodes (𝐿 = 10). Fig. 9. The evolution of 𝑓12 (𝑡) (𝐿 = 10).

Finally, we trace 𝑓12 (𝑡) with 𝐿 = 10 to see how MWUM responds to the sudden drop of 𝜇12 at𝑇 /2,
as shown in Figure 9. From the figure, for the first 𝑇 /2 time slots, since node 2 can serve at the rate

of 5 (packets), MWUM transmits more than 1 packet from node 1 to 2. After 𝑇 /2, MWUM learns

the change in 𝜇12 and reduce the transmission rate to 1 without exceeding the service capacity of

node 2.

6.3 Network with Estimation Errors
We continue using the 12-node network model designed in 6.2, but assuming the existence of

estimation errors when applying MWUM. We take the estimation interval 𝐿 = 10, i.e., the network

controller obtains an estimate for the malicious nodes 2, 3, 4, and 6 every 10 time slots. In simulation,

for a given error scale 𝜀, the estimation error of node 𝑖 at time 𝑡 is uniformly distributed between −𝜀
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and 𝜀, i.e. 𝜖𝑖𝑘 (𝑡) = Unif(−𝜀, 𝜀). The network controller only obtains erroneous estimates 𝑄̂𝑖𝑘 (𝑡) =
𝑄𝑖𝑘 (𝑡)+𝜖𝑖𝑘 (𝑡). We conduct simulations under different values of error scale 𝜀: 1) no error, 2) constant

error, 3) error grows in 𝑡1/4, 4) error grows in
√
𝑡 , and 5) error grows linearly in 𝑡 . The results are

shown in Figure 10.

Fig. 10. The growth of total queue backlog with estimation errors.

From the figure, as the error scale grows, the total queue backlog becomes larger. When the error

has a constant bound, the impact is minor. For errors that grow sublinearly in 𝑡 , the total queue

backlog is larger, but still grows sublinearly in the time horizon and thus stabilizes. For errors that

grow linearly in 𝑡 , MWUM fails to stabilize. The simulation results validate Theorem 8.

7 CONCLUSIONS
In this paper, we focus on networks with unobservable and uncontrollable nodes, under adver-

sarial dynamics (i.e. external arrivals and actions of malicious nodes). We first propose a new

maliciousness metric named𝑄𝑇 constraint to characterize the adversarial network model and make

a comprehensive comparison to the𝑊 and 𝑉𝑇 constraints from previous works. We then propose

the MWUM algorithm that only needs to be operated on accessible nodes, and show that MWUM

achieves rate stability when 𝑄𝑇 = 𝑜 (𝑇 ). We also strengthen the existing stability results under the

𝑊 and 𝑉𝑇 constraints using our analysis framework. We further characterize the stability region

for adversarial network systems and show that MWUM is a throughput-optimal network control

algorithm. Moreover, we discuss the case when estimates are erroneous and show that MWUM can

still stabilize the network, as long as the errors grow sublinearly in time. We finally provide the

necessary and sufficient conditions for networks to be stabilizable under estimation errors.

A possible direction for future work is to develop explicit estimation methods for unobservable

malicious nodes and analyze their estimation error bounds. Moreover, we focus on stabilizing

the queue backlogs in this paper, yet going beyond stability to reach optimality for general net-

works largely remains an open problem. Therefore, another possible problem of interest is how to

minimize the queue backlog of general networks under various settings, e.g., cooperative environ-

ment, adversarial environment, arbitrary environment. The recent emergence of machine learning

techniques may provide new tools in this direction.
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A PROOF OF THEOREM 1
For any given network, we define the policies that achieve 𝑉 ∗

𝑇
and 𝑄∗

𝑇
in Definition 3 and 4 as

𝜋𝑉 and 𝜋𝑄 , respectively. Since 𝜋𝑉 may not minimize

∑
𝑖,𝑘 𝑄𝑖𝑘 (𝑇 ), we have 𝑄∗𝑇 ⩽

∑
𝑖,𝑘 𝑄

𝑉
𝑖𝑘
(𝑇 ). By

Definition 3, 𝑉 ∗
𝑇
⩾

∑
𝑖,𝑘 𝑄

𝑉
𝑖𝑘
(𝑇 ) and we have

𝑄∗𝑇 ⩽ 𝑉
∗
𝑇 . (13)

For any given network with𝑊 constraint and time horizon 𝑇 , we define

𝑡∗ ≜ argmax

𝑡⩽𝑇

∑
𝑖∈N,𝑘∈K

𝑄𝑊
𝑖𝑘
(𝑡).

Since 𝜋𝑉 minimized the peak queue backlog, we have∑
𝑖∈N,𝑘∈K

𝑄𝑊
𝑖𝑘
(𝑡∗) ⩾ 𝑉 ∗𝑇 . (14)

We define𝑀 ≜ 𝑡∗ mod𝑊 and there exists an integer 𝐾 such that 𝑡∗ = 𝐾𝑊 +𝑀 . We then upper

bound the total queue backlog at 𝑡∗ as∑
𝑖∈N,𝑘∈K

𝑄𝑊
𝑖𝑘
(𝑡∗) ⩽

∑
𝑖∈N,𝑘∈K

𝑄𝑊
𝑖𝑘
(𝐾𝑊 − 1) + 𝑁𝐷𝑊 ⩽

∑
𝑖∈N,𝑘∈K

𝑄𝑖𝑘 (0) + 𝑁𝐾𝐷𝑊 , (15)

where the first inequality comes from the fact that the total queue backlog grows at most 𝑁𝐾𝐷

packets during each time slot and𝑀 ⩽𝑊 , and the second inequality holds by Definition 2.

Combining (13), (14) and (15) completes the proof.

B PROOF OF LEMMA 1
From the definitions of 𝑋𝑖𝑘 and 𝑌𝑖𝑘 , we can decompose the total queue backlog at 𝑇 as∑

𝑖∈N,𝑘∈K
𝑄𝑖𝑘 (𝑇 ) =

∑
𝑖∈A,𝑘∈K

𝑄𝑖𝑘 (𝑇 ) +
∑

𝑖∈M,𝑘∈K
𝑋𝑖𝑘 (𝑇 ) +

∑
𝑖∈M,𝑘∈K

𝑌𝑖𝑘 (𝑇 )

⩽
∑

𝑖∈A,𝑘∈K
𝑄𝑖𝑘 (𝑇 ) +

∑
𝑖∈M,𝑘∈K

𝑋𝑖𝑘 (𝑇 ) +
∑

𝑖∈M,𝑘∈K
𝑌 +
𝑖𝑘
(𝑇 ).

Then by applying Cauchy–Schwarz inequality, we have∑
𝑖∈A,𝑘∈K

𝑄𝑖𝑘 (𝑇 ) +
∑

𝑖∈M,𝑘∈K
𝑋𝑖𝑘 (𝑇 ) +

∑
𝑖∈M,𝑘∈K

𝑌 +
𝑖𝑘
(𝑇 )

⩽
√
𝑁𝐾 +|M|𝐾 ·

√ ∑
𝑖∈A,𝑘∈K

𝑄2

𝑖𝑘
(𝑇 ) +

∑
𝑖∈M,𝑘∈K

𝑋 2

𝑖𝑘
(𝑇 ) +

∑
𝑖∈M,𝑘∈K

𝑌 +2
𝑖𝑘
(𝑇 )

⩽
√
2𝑁𝐾 ·

√
Φ(𝑇 ),

which completes the proof.
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C PROOF OF LEMMA 2
We first upper bound 𝑄2

𝑖𝑘
(𝑡 + 1) −𝑄2

𝑖𝑘
(𝑡) for 𝑖 ∈ A. We first have that

𝑄𝑖𝑘 (𝑡 + 1) =
[
𝑄𝑖𝑘 (𝑡) + 𝑎𝑖𝑘 (𝑡) −

∑
𝑗 ∈N∪𝑑𝑘

𝑓𝑖 𝑗𝑘 (𝑡)
]+
+

∑
𝑗 ∈A

˜𝑓𝑗𝑖𝑘 (𝑡) +
∑
𝑗 ∈M

𝜇̃ 𝑗𝑖𝑘 (𝑡)

⩽

[
𝑄𝑖𝑘 (𝑡) + 𝑎𝑖𝑘 (𝑡) −

∑
𝑗 ∈N∪𝑑𝑘

𝑓𝑖 𝑗𝑘 (𝑡)
]+
+

∑
𝑗 ∈A

𝑓𝑗𝑖𝑘 (𝑡) +
∑
𝑗 ∈M

𝜇 𝑗𝑖𝑘 (𝑡).

It is easy to show that the inequality(
[𝑥 − 𝑦]+ + 𝑧

)
2

⩽ 𝑥2 + 𝑦2 + 𝑧2 + 2𝑥 (𝑧 − 𝑦)

holds for 𝑥,𝑦, 𝑧 ⩾ 0. By replacing 𝑥 with 𝑄𝑖𝑘 (𝑡) + 𝑎𝑖𝑘 (𝑡), 𝑦 with

∑
𝑗 ∈N∪𝑑𝑘 𝑓𝑖 𝑗𝑘 (𝑡) and 𝑧 with∑

𝑗 ∈A 𝑓𝑗𝑖𝑘 (𝑡) +
∑
𝑗 ∈M 𝜇 𝑗𝑖𝑘 (𝑡), we upper bound 𝑄2

𝑖𝑘
(𝑡 + 1) as

𝑄2

𝑖𝑘
(𝑡 + 1) ⩽𝑄2

𝑖𝑘
(𝑡) +

( ∑
𝑗 ∈N∪𝑑𝑘

𝑓𝑖 𝑗𝑘 (𝑡)
)
2

+
( ∑
𝑗 ∈A

𝑓𝑗𝑖𝑘 (𝑡) +
∑
𝑗 ∈M

𝜇 𝑗𝑖𝑘 (𝑡)
)
2

+ 2𝑎𝑖𝑘 (𝑡)𝛿𝑄𝑖𝑘 (𝑡) + 2𝑄𝑖𝑘 (𝑡)𝛿𝑄𝑖𝑘 (𝑡)

⩽𝑄2

𝑖𝑘
(𝑡) + 2𝑄𝑖𝑘 (𝑡)𝛿𝑄𝑖𝑘 (𝑡) + 6𝑁 2𝐷2, (16)

where the last inequality comes from the setting that 0 ⩽ 𝑎𝑖𝑘 (𝑡), 𝑓𝑖 𝑗𝑘 (𝑡), 𝜇𝑖 𝑗𝑘 (𝑡) ⩽ 𝐷 .
We then upper bound 𝑋 2

𝑖𝑘
(𝑡 + 1) − 𝑋 2

𝑖𝑘
(𝑡) for 𝑖 ∈ M. Since

𝑋𝑖𝑘 (𝑡 + 1) =
[
𝑋𝑖𝑘 (𝑡) + 𝑎𝑖𝑘 (𝑡) −

∑
𝑗 ∈N∪𝑑𝑘

𝑔𝑖 𝑗𝑘 (𝑡)
]+
+

∑
𝑗 ∈A

˜𝑓𝑗𝑖𝑘 (𝑡) +
∑
𝑗 ∈M

𝑔 𝑗𝑖𝑘 (𝑡)

⩽

[
𝑋𝑖𝑘 (𝑡) + 𝑎𝑖𝑘 (𝑡) −

∑
𝑗 ∈N∪𝑑𝑘

𝑔𝑖 𝑗𝑘 (𝑡)
]+
+

∑
𝑗 ∈A

𝑓𝑗𝑖𝑘 (𝑡) +
∑
𝑗 ∈M

𝑔 𝑗𝑖𝑘 (𝑡),

by applying similar techniques as (16), we have

𝑋 2

𝑖𝑘
(𝑡 + 1) ⩽ 𝑋 2

𝑖𝑘
(𝑡) + 2𝑋𝑖𝑘 (𝑡)𝛿𝑋𝑖𝑘 (𝑡) + 6𝑁 2𝐷2. (17)

Equation (16) and (17) complete the proof.

D PROOF OF LEMMA 3
To avoid confusion, we define that Δ𝑌 +

𝑖𝑘
(𝑡) ≜ 𝑌 +

𝑖𝑘
(𝑡 + 1) − 𝑌 +

𝑖𝑘
(𝑡). Both Δ𝑌𝑖𝑘 (𝑡) and Δ𝑌 +

𝑖𝑘
(𝑡) are

bounded as the following lemma.

Lemma 8. For each 𝑖 ∈ M and 𝑡 = 0, · · · ,𝑇 − 1, we have

−2𝑁𝐷 ⩽ Δ𝑌𝑖𝑘 (𝑡),Δ𝑌 +𝑖𝑘 (𝑡) ⩽ 2𝑁𝐷,
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Proof. Here we fix an 𝑖 and a 𝑡 arbitrarily. We first discuss the range of Δ𝑌𝑖𝑘 (𝑡). From the

definition of Δ𝑌𝑖𝑘 (𝑡), we have

Δ𝑌𝑖𝑘 (𝑡)
=𝑄𝑖𝑘 (𝑡 + 1) −𝑄𝑖𝑘 (𝑡) −

(
𝑋𝑖𝑘 (𝑡 + 1) − 𝑋𝑖𝑘 (𝑡)

)
=𝑎𝑖𝑘 (𝑡) −

∑
𝑗 ∈N∪𝑑𝑘

𝜇̃𝑖 𝑗𝑘 (𝑡) +
∑
𝑗 ∈A

˜𝑓𝑗𝑖𝑘 (𝑡) +
∑
𝑗 ∈M

𝜇̃ 𝑗𝑖𝑘 (𝑡)−

𝑎𝑖𝑘 (𝑡) +
∑

𝑗 ∈N∪𝑑𝑘

𝑔𝑖 𝑗𝑘 (𝑡) −
∑
𝑗 ∈A

˜𝑓𝑗𝑖𝑘 (𝑡) −
∑
𝑗 ∈M

𝑔 𝑗𝑖𝑘 (𝑡)

=
∑
𝑗 ∈M

𝜇̃ 𝑗𝑖𝑘 (𝑡) +
∑

𝑗 ∈N∪𝑑𝑘

𝑔𝑖 𝑗𝑘 (𝑡) −
∑

𝑗 ∈N∪𝑑𝑘

𝜇̃𝑖 𝑗𝑘 (𝑡) −
∑
𝑗 ∈M

𝑔 𝑗𝑖𝑘 (𝑡).

Since we assume the value of 𝜇𝑖 𝑗𝑘 ’s and 𝑔𝑖 𝑗𝑘 ’s is bounded between 0 and 𝐷 , we have

− 2𝑁𝐷 ⩽ Δ𝑌𝑖𝑘 (𝑡) ⩽ 2𝑁𝐷. (18)

With (18) at hand, we first have

Δ𝑌 +
𝑖𝑘
(𝑡) =max{𝑌𝑖𝑘 (𝑡 + 1), 0} − 𝑌 +𝑖𝑘 (𝑡) = max{𝑌𝑖𝑘 (𝑡 + 1) − 𝑌 +𝑖𝑘 (𝑡),−𝑌

+
𝑖𝑘
(𝑡)}

⩽max{𝑌𝑖𝑘 (𝑡 + 1) − 𝑌𝑖𝑘 (𝑡),−𝑌 +𝑖𝑘 (𝑡)} = max{Δ𝑌𝑖𝑘 (𝑡),−𝑌 +𝑖𝑘 (𝑡)} ⩽ 2𝑁𝐷. (19)

For the lower bound 𝑌 +
𝑖𝑘
(𝑡), we have

Δ𝑌 +
𝑖𝑘
(𝑡) =𝑌 +

𝑖𝑘
(𝑡 + 1) −max{𝑌𝑖𝑘 (𝑡), 0} = min{𝑌 +

𝑖𝑘
(𝑡 + 1) − 𝑌𝑖𝑘 (𝑡), 𝑌 +𝑖𝑘 (𝑡 + 1)}

⩾min{𝑌𝑖𝑘 (𝑡 + 1) − 𝑌𝑖𝑘 (𝑡), 𝑌 +𝑖𝑘 (𝑡 + 1)} = min{Δ𝑌𝑖𝑘 (𝑡), 𝑌 +𝑖𝑘 (𝑡 + 1)} ⩾ −2𝑁𝐷. (20)

Combining (18), (19) and (20) completes the proof. □

Since 𝑌 +2
𝑖𝑘
(𝑡 + 1) − 𝑌 +2

𝑖𝑘
(𝑡) can be decomposed as

𝑌 +2
𝑖𝑘
(𝑡 + 1) − 𝑌 +2

𝑖𝑘
(𝑡) =

(
𝑌 +
𝑖𝑘
(𝑡) + Δ𝑌 +

𝑖𝑘
(𝑡)

)
2 − 𝑌 2+

𝑖𝑘
(𝑡) = 2𝑌 +

𝑖𝑘
(𝑡)Δ𝑌 +

𝑖𝑘
(𝑡) +

(
Δ𝑌 +

𝑖𝑘
(𝑡)

)
2

, (21)

we only need to upper bound 𝑌 +
𝑖𝑘
(𝑡)Δ𝑌 +

𝑖𝑘
(𝑡), as follows

𝑌 +
𝑖𝑘
(𝑡)Δ𝑌 +

𝑖𝑘
(𝑡) ⩽𝑌 +

𝑖𝑘
(𝑡) ·max{Δ𝑌𝑖𝑘 (𝑡),−𝑌 +𝑖𝑘 (𝑡)}

=𝑌 +
𝑖𝑘
(𝑡)Δ𝑌𝑖𝑘 (𝑡) +max{0,−𝑌 +2

𝑖𝑘
(𝑡) − 𝑌 +

𝑖𝑘
(𝑡)Δ𝑌𝑖𝑘 (𝑡)}

⩽𝑌 +
𝑖𝑘
(𝑡)Δ𝑌𝑖𝑘 (𝑡) +max{0,−𝑌 +2

𝑖𝑘
(𝑡) + 2𝑁𝐷𝑌 +

𝑖𝑘
(𝑡)}

=𝑌 +
𝑖𝑘
(𝑡)Δ𝑌𝑖𝑘 (𝑡) +max{0,−(𝑌 +2

𝑖𝑘
(𝑡) − 𝑁𝐷)2 + 𝑁 2𝐷2}

⩽𝑌 +
𝑖𝑘
(𝑡)Δ𝑌𝑖𝑘 (𝑡) + 𝑁 2𝐷2, (22)

where the first inequality comes from the fact that 𝑌 +
𝑖𝑘
(𝑡) ⩾ 0 and Δ𝑌 +

𝑖𝑘
(𝑡) ⩽ max{Δ𝑌𝑖𝑘 (𝑡),−𝑌 +𝑖𝑘 (𝑡)}.

The second inequality holds because 𝑌 +
𝑖𝑘
(𝑡) ⩾ 0 and Δ𝑌𝑖𝑘 (𝑡) ⩾ −2𝑁𝐷 .

By inserting (22) into (21) and utilizing Lemma 8, we have that

𝑌 +2
𝑖𝑘
(𝑡 + 1) − 𝑌 +2

𝑖𝑘
(𝑡) ⩽2𝑌 +

𝑖𝑘
(𝑡)Δ𝑌𝑖𝑘 (𝑡) +

(
Δ𝑌 +

𝑖𝑘
(𝑡)

)
2 + 2𝑁 2𝐷2

⩽2𝑌 +
𝑖𝑘
(𝑡)Δ𝑌𝑖𝑘 (𝑡) + 6𝑁 2𝐷2

⩽2𝑌 +
𝑖𝑘
(𝑡)Δ𝑌𝑖𝑘 (𝑡) + 2

(
𝑡 − 𝜏𝑖 (𝑡)

)
· 2𝑁𝐷 · 2𝑁𝐷 + 6𝑁 2𝐷2

⩽2𝑌 +
𝑖𝑘
(𝑡)Δ𝑌𝑖𝑘 (𝑡) +

(
8𝐿(𝑡) + 6

)
𝑁 2𝐷2, (23)

which completes the proof.
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E PROOF OF LEMMA 4
We define𝑀 ≜ 𝑇 mod 𝐻 and there exists an integer 𝐾 such that 𝑇 = 𝐾𝐻 +𝑀 . Then, we have the

following decomposition for 𝑖 ∈ A,

𝑇−1∑
𝑡=0

𝑄𝑀
𝑖𝑘
(𝑡)𝛿∗𝑄𝑖𝑘 (𝑡)

=

𝐾−1∑
𝑘=0

[
𝑄𝑀
𝑖𝑘
(𝑘𝐻 )

(𝑘+1)𝐻−1∑
𝑡=𝑘𝐻

𝛿∗𝑄𝑖𝑘 (𝑡) +
(𝑘+1)𝐻−1∑
𝑡=𝑘𝐻

(
𝑄𝑀
𝑖𝑘
(𝑡) −𝑄𝑀

𝑖𝑘
(𝑘𝐻 )

)
· 𝛿∗𝑄𝑖𝑘 (𝑡)

]
+

𝑇−1∑
𝑡=𝐾𝐻

𝑄𝑀
𝑖𝑘
(𝑡)𝛿∗𝑄𝑖𝑘 (𝑡)

⩽
𝐾−1∑
𝑘=0

[
2𝑁𝐷𝑇

(𝑘+1)𝐻−1∑
𝑡=𝑘𝐻

𝛿∗𝑄𝑖𝑘 (𝑡) +
(𝑘+1)𝐻−1∑
𝑡=𝑘𝐻

2𝑁𝐷𝐻 · 2𝑁𝐷
]
+𝑀 · 2𝑁𝐷𝑇 · 2𝑁𝐷

⩽2𝐾𝑁𝐷𝑇
𝑇−1∑
𝑡=0

𝛿∗𝑄𝑖𝑘 (𝑡) + 8𝑁 2𝐷2𝐻𝑇 ⩽
2𝑁𝐷𝑇 2

𝐻

𝑇−1∑
𝑡=0

𝛿∗𝑄𝑖𝑘 (𝑡) + 8𝑁 2𝐷2𝐻𝑇, (24)

where inequalities hold by using (1), and the fact that𝑀 ⩽ 𝐻 and 𝐾 ⩽ 𝑇 /𝐻 .
Similarly, we show that for 𝑖 ∈ M,

𝑇−1∑
𝑡=0

𝑋𝑀
𝑖𝑘
(𝑡)𝛿∗𝑋𝑖𝑘 (𝑡) ⩽

2𝑁𝐷𝑇 2

𝐻

𝑇−1∑
𝑡=0

𝛿∗𝑋𝑖𝑘 (𝑡) + 8𝑁 2𝐷2𝐻𝑇 . (25)

We then proceed to analyze

∑
𝑖∈A,𝑘∈K 𝛿

∗𝑄𝑖𝑘 (𝑡) +
∑
𝑖∈M,𝑘∈K 𝛿

∗𝑋𝑖𝑘 (𝑡) as follows.∑
𝑖∈A,𝑘∈K

𝛿∗𝑄𝑖𝑘 (𝑡) +
∑

𝑖∈M,𝑘∈K
𝛿∗𝑋𝑖𝑘 (𝑡) =

∑
𝑖∈A,𝑘∈K

(
𝑎𝑖𝑘 (𝑡) −

∑
𝑗 ∈N∪𝑑𝑘

𝑓 ∗
𝑖 𝑗𝑘
(𝑡) +

∑
𝑗 ∈A

𝑓 ∗
𝑗𝑖𝑘
(𝑡) +

∑
𝑗 ∈M

𝜇 𝑗𝑖𝑘 (𝑡)
)
+

∑
𝑖∈M,𝑘∈K

(
𝑎𝑖𝑘 (𝑡) −

∑
𝑗 ∈N∪𝑑𝑘

𝜇𝑖 𝑗𝑘 (𝑡) +
∑
𝑗 ∈A

𝑓 ∗
𝑗𝑖𝑘
(𝑡) +

∑
𝑗 ∈M

𝜇 𝑗𝑖𝑘 (𝑡)
)

=
∑

𝑖∈N,𝑘∈K
𝑎𝑖𝑘 (𝑡) −

∑
𝑖∈A,𝑘∈K

𝑓 ∗
𝑖𝑑𝑘𝑘
(𝑡) −

∑
𝑖∈M,𝑘∈K

𝜇𝑖𝑑𝑘𝑘 (𝑡),

with which we have that

𝑇−1∑
𝑡=0

( ∑
𝑖∈A,𝑘∈K

𝛿∗𝑄𝑖𝑘 (𝑡) +
∑

𝑖∈M,𝑘∈K
𝛿∗𝑋𝑖𝑘 (𝑡)

)
⩽
𝑇−1∑
𝑡=0

( ∑
𝑖∈N,𝑘∈K

𝑎𝑖𝑘 (𝑡) −
∑

𝑖∈A,𝑘∈K
𝑓 ∗
𝑖𝑑𝑘𝑘
(𝑡) −

∑
𝑖∈M,𝑘∈K

𝜇𝑖𝑑𝑘𝑘 (𝑡)
)
. (26)

On the other hand, by the definition of 𝑄𝑇 we have that

𝑄𝑇 ⩾
∑

𝑖∈N,𝑘∈K
𝑄𝑖𝑘 (0) +

𝑇−1∑
𝑡=0

∑
𝑖∈A,𝑘∈K

(
𝑎𝑖𝑘 (𝑡) −

∑
𝑗 ∈N∪𝑑𝑘

˜𝑓 ∗
𝑖 𝑗𝑘
(𝑡) +

∑
𝑗 ∈A

˜𝑓 ∗
𝑗𝑖𝑘
(𝑡) +

∑
𝑗 ∈M

𝜇̃ 𝑗𝑖𝑘 (𝑡)
)
+

𝑇−1∑
𝑡=0

∑
𝑖∈M,𝑘∈K

(
𝑎𝑖𝑘 (𝑡) −

∑
𝑗 ∈N∪𝑑𝑘

𝜇̃𝑖 𝑗𝑘 (𝑡) +
∑
𝑗 ∈A

˜𝑓 ∗
𝑗𝑖𝑘
(𝑡) +

∑
𝑗 ∈M

𝜇̃ 𝑗𝑖𝑘 (𝑡)
)

=
∑

𝑖∈N,𝑘∈K
𝑄𝑖𝑘 (0) +

𝑇−1∑
𝑡=0

( ∑
𝑖∈N,𝑘∈K

𝑎𝑖𝑘 (𝑡) −
∑

𝑖∈A,𝑘∈K

˜𝑓 ∗
𝑖𝑑𝑘𝑘
(𝑡) −

∑
𝑖∈M,𝑘∈K

𝜇̃𝑖𝑑𝑘𝑘 (𝑡)
)
. (27)
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Combining (26) and (27), and use the fact that 𝑄𝑖𝑘 (0) ⩾ 0,
˜𝑓 ∗
𝑖 𝑗𝑘
(𝑡) ⩽ 𝑓 ∗

𝑖 𝑗𝑘
(𝑡) and 𝜇̃∗

𝑖 𝑗𝑘
(𝑡) ⩽ 𝜇∗

𝑖 𝑗𝑘
(𝑡)

hold for each 𝑖, 𝑗, 𝑡 , the comparison between shows that

𝑇−1∑
𝑡=0

( ∑
𝑖∈A,𝑘∈K

𝛿∗𝑄𝑖𝑘 (𝑡) +
∑

𝑖∈M,𝑘∈K
𝛿∗𝑋𝑖𝑘 (𝑡)

)
⩽ 𝑄𝑇 . (28)

By summing up (24) and (25) over all nodes and all data types, and plugging in (28), the proof is

completed.

F PROOF OF LEMMA 5
For 𝑌𝑀+

𝑖𝑘
(𝑡)Δ∗𝑌𝑖𝑘 (𝑡), we first discuss the case when 𝑄𝑀𝑖𝑘 (𝑡) < 𝑁𝐷 . Since 𝑋𝑖𝑘 (𝑡) ⩾ 0 and 𝑌𝑖𝑘 (𝑡) =

𝑄𝑖𝑘 (𝑡) − 𝑋𝑖𝑘 (𝑡) ⩽ 𝑄𝑖𝑘 (𝑡), we have 0 ⩽ 𝑌𝑀+𝑖𝑘
(𝑡) < 𝑁𝐷 , which gives us that

𝑌𝑀+
𝑖𝑘
(𝑡)Δ∗𝑌𝑖𝑘 (𝑡) ⩽

(
𝑌𝑀+
𝑖𝑘
(𝑡) +

(
𝑡 − 𝜏𝑖 (𝑡)

)
· 2𝑁𝐷

)
· 2𝑁𝐷

⩽
(
𝑁𝐷 + 𝐿(𝑡) · 2𝑁𝐷

)
· 2𝑁𝐷 =

(
4𝐿(𝑡) + 2

)
· 𝑁 2𝐷2, (29)

where the first inequality utilizes Lemma 8.

When 𝑄𝑀
𝑖𝑘
(𝑡) ⩾ 𝑁𝐷 , we have 𝑄𝑀

𝑖𝑘
(𝑡) + 𝑎𝑖𝑘 (𝑡) −

∑
𝑗 ∈N∪𝑑𝑘 𝜇𝑖 𝑗𝑘 (𝑡) ⩾ 0 and thus 𝜇̃𝑖 𝑗𝑘 (𝑡) = 𝜇𝑖 𝑗𝑘 (𝑡).

To distinguish between the 𝜇̃𝑖 𝑗𝑘 (𝑡) in the real and imaginary network, we use 𝜇̃ ′
𝑖 𝑗𝑘
(𝑡) to denote the

actual transmitted packets in the imaginary network. Then Δ∗𝑌𝑖𝑘 (𝑡) can be upper bounded as

Δ∗𝑌𝑖𝑘 (𝑡) = 𝛿∗𝑄𝑖𝑘 (𝑡) − 𝛿∗𝑋𝑖𝑘 (𝑡)

=𝑎𝑖𝑘 (𝑡) −
∑

𝑗 ∈N∪𝑑𝑘

𝜇̃𝑖 𝑗𝑘 (𝑡) +
∑
𝑗 ∈A

˜𝑓 ∗
𝑗𝑖𝑘
(𝑡) +

∑
𝑗 ∈M

𝜇̃ 𝑗𝑖𝑘 (𝑡)−

𝑎𝑖𝑘 (𝑡) +
∑

𝑗 ∈N∪𝑑𝑘

𝜇̃ ′
𝑖 𝑗𝑘
(𝑡) −

∑
𝑗 ∈A

˜𝑓 ∗
𝑗𝑖𝑘
(𝑡) −

∑
𝑗 ∈M

𝜇 𝑗𝑖𝑘 (𝑡)

= −
∑

𝑗 ∈N∪𝑑𝑘

𝜇𝑖 𝑗𝑘 (𝑡) +
∑
𝑗 ∈M

𝜇̃ 𝑗𝑖𝑘 (𝑡) +
∑

𝑗 ∈N∪𝑑𝑘

𝜇̃ ′
𝑖 𝑗𝑘
(𝑡) −

∑
𝑗 ∈M

𝜇 𝑗𝑖𝑘 (𝑡)

⩽ −
∑

𝑗 ∈N∪𝑑𝑘

𝜇𝑖 𝑗𝑘 (𝑡) +
∑
𝑗 ∈M

𝜇 𝑗𝑖𝑘 (𝑡) +
∑

𝑗 ∈N∪𝑑𝑘

𝜇𝑖 𝑗𝑘 (𝑡) −
∑
𝑗 ∈M

𝜇 𝑗𝑖𝑘 (𝑡) = 0,

with which we have that

𝑌𝑀+
𝑖𝑘
(𝑡)Δ∗𝑌𝑖𝑘 (𝑡) ⩽ 0. (30)

Combining (29) and (30), we have

𝑇−1∑
𝑡=0

𝑌𝑀+
𝑖𝑘
(𝑡)Δ∗𝑌𝑖𝑘 (𝑡) ⩽ 4𝑁 2𝐷2

𝑇−1∑
𝑡=0

𝐿(𝑡) + 2𝑁 2𝐷2𝑇,

which completes the proof.

G PROOF OF LEMMA 6
For 𝑌 +2

𝑖𝑘
(𝑡 + 1) − 𝑌 +2

𝑖𝑘
(𝑡), we have the following upper bound

𝑌 +2
𝑖𝑘
(𝑡 + 1) − 𝑌 +2

𝑖𝑘
(𝑡)

⩽2𝑌 +
𝑖𝑘
(𝑡)Δ𝑌𝑖𝑘 (𝑡) +

(
8𝐿(𝑡) + 6

)
𝑁 2𝐷2

=2𝑌̃ +
𝑖𝑘
(𝑡)Δ𝑌𝑖𝑘 (𝑡) +

(
8𝐿(𝑡) + 6

)
𝑁 2𝐷2 + 2

(
𝑌̃ +
𝑖𝑘
(𝑡) − 𝑌 +

𝑖𝑘
(𝑡)

)
Δ𝑌𝑖𝑘 (𝑡)

⩽2𝑌 +
𝑖𝑘
(𝑡∗
𝑖𝑘
)Δ𝑌𝑖𝑘 (𝑡) +

(
8𝐿(𝑡) + 6

)
𝑁 2𝐷2 + 4𝑁𝐷

���𝑌̃ +𝑖𝑘 (𝑡) − 𝑌 +𝑖𝑘 (𝑡)��� , (31)
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where the first inequality holds because of Lemma 3 and the last inequality utilizes Lemma 8.

To analyze

���𝑌 +
𝑖𝑘
(𝑡∗
𝑖𝑘
) − 𝑌 +

𝑖𝑘
(𝑡∗
𝑖𝑘
)
���, we first have

𝑌̃ +
𝑖𝑘
(𝑡) − 𝑌 +

𝑖𝑘
(𝑡) =max

{
𝑌̃𝑖𝑘 (𝑡), 0

}
− 𝑌 +

𝑖𝑘
(𝑡) = max

{
𝑌̃𝑖𝑘 (𝑡) − 𝑌 +𝑖𝑘 (𝑡),−𝑌

+
𝑖𝑘
(𝑡)

}
⩽max

{
𝑌̃𝑖𝑘 (𝑡) − 𝑌𝑖𝑘 (𝑡),−𝑌 +𝑖𝑘 (𝑡)

}
⩽ max

{
𝜖𝑖𝑘

(
𝜏𝑖 (𝑡)

)
, 0

}
.

On the other direction, we have a lower bound as follows

𝑌̃ +
𝑖𝑘
(𝑡) − 𝑌 +

𝑖𝑘
(𝑡) =𝑌̃ +

𝑖𝑘
(𝑡) −max

{
𝑌𝑖𝑘 (𝑡), 0

}
= min

{
𝑌̃ +
𝑖𝑘
(𝑡) − 𝑌𝑖𝑘 (𝑡), 𝑌̃ +𝑖𝑘 (𝑡)

}
⩾min

{
𝑌̃𝑖𝑘 (𝑡) − 𝑌𝑖𝑘 (𝑡), 𝑌̃ +𝑖𝑘 (𝑡)

}
⩾ min

{
𝜖𝑖𝑘

(
𝜏𝑖 (𝑡)

)
, 0

}
.

Therefore, we have the upper bound

���𝑌̃ +
𝑖𝑘
(𝑡) − 𝑌 +

𝑖𝑘
(𝑡)

��� ⩽ ��𝜖𝑖𝑘 (𝜏𝑖 (𝑡)) ��. By inserting it into (31), we

complete the proof.

H PROOF OF LEMMA 7
For 𝑌̃𝑀+

𝑖𝑘
(𝑡)Δ∗𝑌𝑖𝑘 (𝑡), we first discuss the case when𝑄𝑀𝑖𝑘 (𝑡) < 𝑁𝐷 . Similar to Lemma 5, we still have

0 ⩽ 𝑌𝑀+
𝑖𝑘
(𝑡) < 𝑁𝐷 , which gives us that

𝑌̃𝑀+
𝑖𝑘
(𝑡)Δ∗𝑌𝑖𝑘 (𝑡) =

(
𝑌𝑀+
𝑖𝑘
(𝑡) + 𝜖𝑖𝑘

(
𝜏𝑖 (𝑡)

) )
· Δ∗𝑌𝑖𝑘 (𝑡)

⩽
(
𝑌𝑀+
𝑖𝑘
(𝑡) + 𝜖𝑖𝑘

(
𝜏𝑖 (𝑡)

)
+

(
𝑡 − 𝜏𝑖 (𝑡)

)
· 2𝑁𝐷

)
· 2𝑁𝐷

⩽
(
4𝐿(𝑡) + 2

)
· 𝑁 2𝐷2 + 2𝑁𝐷

��𝜖𝑖𝑘 (𝜏𝑖 (𝑡)) �� , (32)

where the first inequality utilizes Lemma 8.

When 𝑄𝑀
𝑖𝑘
(𝑡) ⩾ 𝑁𝐷 , the analysis is identical as the proof of Lemma 5 and we have

𝑌̃𝑀+
𝑖𝑘
(𝑡)Δ∗𝑌𝑖𝑘 (𝑡) ⩽ 0. (33)

By combining (32) and (33), we have

𝑇−1∑
𝑡=0

𝑌̃𝑀+
𝑖𝑘
(𝑡)Δ∗𝑌𝑖𝑘 (𝑡) ⩽ 4𝑁 2𝐷2

𝑇−1∑
𝑡=0

𝐿(𝑡) + 2𝑁 2𝐷2𝑇 + 2𝑁𝐷
𝑇−1∑
𝑡=0

��𝜖𝑖𝑘 (𝜏𝑖 (𝑡)) �� ,
which completes the proof.

I PROOF OF THEOREM 7
We assume each link in the system has a capacity of 1. The policy taken by node 2 is 𝜇2𝑑 (𝑡) ≡ 1.

We reinforce to assume that we estimate 𝑄2 (𝑡) at each time slot, with the estimation defined to be

𝑄̃2 (𝑡). The estimation error 𝜖2 (𝑡) = 2𝑡 and gives us 𝑄̃2 (𝑡) = [𝑄2 (𝑡) − 𝜖2 (𝑡)]+.
We assume that there exists a state-based policy 𝜋𝑎 : (𝑄1, 𝑄̃2) → (𝑓 𝑎

1𝑑
, 𝑓 𝑎

12
) that could stablize

any arrival process inside the stability region.

Case 1: Let
𝑎1 (𝑡) ≡ 2, 𝑎2 (𝑡) ≡ 0.

It is easy to verify that the dynamics are within the stability region by taking 𝑓 ∗
1𝑑
(𝑡) = 𝑓 ∗

12
(𝑡) ≡ 1.

Since 𝜋𝑎 could stabilize the system and 𝐶12 = 𝐶1𝑑 = 1, we have that under 𝜋𝑎 ,

lim

𝑇→∞

∑𝑇
𝑡=0

˜𝑓12 (𝑄1 (𝑡), 0)
𝑇

= 1.
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By the definition of limit, we have that there exists a finite constant 𝑇0 such for each 𝑇 ⩾ 𝑇0, we
have ∑𝑇

𝑡=0
˜𝑓12 (𝑄1 (𝑡), 0)
𝑇

⩾
1

2

,

or equivalently (to help the writing for case 2), for each 𝑇 ⩾ 2𝑇0, we have∑𝑇 /2−1
𝑡=0

˜𝑓12 (𝑄1 (𝑡), 0)
𝑇 /2 ⩾

1

2

. (34)

Case 2: Let

𝑎1 (𝑡) =
{
2, 𝑡 = 0, · · · ,𝑇 /2 − 1
0, 𝑡 = 𝑇 /2, · · · ,𝑇 − 1

, 𝑎2 (𝑡) ≡ 0.

The traffic load is lighter than case 1, which naturally implies that the arrival process is inside

the stability region.

During the first 𝑇 /2 time slots, the arrival process of case 2 is identical as case 1 and thus (34)

also holds for case 2. Therefore, we have that under 𝜋𝑎 , for each 𝑇 ⩾ 2𝑇0,∑𝑇−1
𝑡=0

˜𝑓12 (𝑄1 (𝑡), 0)
𝑇

⩾

∑𝑇 /2−1
𝑡=0

˜𝑓12 (𝑄1 (𝑡), 0)
𝑇

⩾
1

4

. (35)

Case 3: Let

𝑎1 (𝑡) =
{
2, 𝑡 = 0, · · · ,𝑇 /2 − 1
0, 𝑡 = 𝑇 /2, · · · ,𝑇 − 1

, 𝑎2 (𝑡) ≡ 1.

It is easy to verify that the dynamics are still within the stability region by taking 𝑓 ∗
1𝑑
(𝑡) ≡ 1 and

𝑓 ∗
12
(𝑡) ≡ 0.

Since for every time slot, there are at most 2 external packets into the system, we have 𝑄̂2 (𝑡) ≡ 0.

Moreover, 𝑎1 has the same pattern as case 2. Thus, for the network controller, the system “looks”

exactly the same as case 2 and (35) holds for case 3. Therefore, for each 𝑇 ⩾ 2𝑇0, the average input

rate to node 2 amounts to at least 5/4, which exceeds 𝐶2𝑑 and leads 𝑄2 to instability.
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