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ABSTRACT

The outflow system of the human eye consists of three distinct regions: the tra-
becular meshwork, Schlemm’s canal and the collector channels. As aqueous humor
passes through this network from the anterior chamber to the episcleral venous sys-
tem, its fluid pressure typically drops 7 mmHg in normal eyes and up to 40 mmHg
in glaucomatous eyes. This study investigates the interactions between the thL.ree
regions of the outflow system which determine the flow distribution and, conse-
quently, the intraocular pressure. The outflow system is modeled as a network of
resistors geometrically arranged to correspond to the anatomical orientation of the
outflow regions. Schiemm’s canal is modeled as an elliptic channel with a porous,
compliant inner wall and a rigid, impermeable outer wall. Experiments were per-
formed to obtain pressure-resistance measurements on enucleated human eyes in
the 10-100 mmHg pressure range to study the flow behavior of the outflow system
when Schlemm’s canal is in a highly collapsed state. Based on a comparison of the
model to data accumulated in this study and results reported in the literature, the
following conclusions are reached:

1. A network model of the entire aqueous outflow system including a porous,
compliant inner wall of Schlemm’s canal was constructed and numerically
solved. The predictions are consistent with experimental observations and
previous numerical results.

2. The experimental pressure-resistance curve for enucleated human eyes was ex-
tended to the 50-100 mmHg range. Results indicate that resistance continues
to increase linearly with pressure in this range.

3. A one-third power law model of the septae compression was proposed and
tested. This model successfully produces a linear relationship between pres-
sure and resistance in agreement with the experimental data.

Thesis Supervisor: Roger Kamm
Associate Professor of
Mechanical Engineering
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1 Introduction

1.1 Anatomy of the Aquecus Outflow System

Aqueous humor is produced in the ciliary epithelium by a combination of secre-
tion and ultrafiltration at a rate of about 2 ul/min {5]. The aqueous humor then
leaves the ciliary body and enters the posterior chamber, from which it proceeds to
flow between the iris and the anterior surface of the lens until it reaches the pupil.
Once through the pupil, the aqueous humor proceeds to flow radially in the ante-
rior chamber towards the chamber angle. The function served by the circulation of
aqueous humor via this pathway is to provide nutrients to the lens, vitreous body,
and the cornea.

Upon reaching the chamber angle, the aqueous humor exits from the anterior
chamber via two routes. The first route, commonly referred to as the conventional
outflow pathway, consists of the trabecular meshwork, Schlemm’s canal and the col-
lector channel regions. The aqueous humor can also exit from the anterior chamber
via the anterior surface of the ciliary muscle, the suprachoroid and out through the
sclera. This route is called the uveoscleral or unconventional pathway, and is of
secondary importance as it accounts for only 5-20% of the total drainage at normal
intraocular pressure [5]. Uveoscleral outflow does not change significantly as IOP
increases, and thus carries a smaller fraction of the total drainage at higher pres-
sures [6]. Since this route plays only a minimal role in determining the IOP, it will
not be considered in the context of this study.

The first structure encountered by aqueous humor entering the conventional
outflow pathway is the trabecular meshwork, which can be divided into 4 layers:
uveal meshwork, corneoscleral meshwork, juxtacanalicular tissue (JCT) and the
endothelial lining of Schlemm’s canal.

The uveal meshwork is a forward extension of the ciliary muscle [5]; the open-
ings through this meshwork are large and the flow resistance of this layer can be

considered negligible (7,12].



The second layer underlying the uveal meshwork is the corneoscleral meshwork,
which consists of several flattened, perforated sheets of connective tissue extending
between the scleral spur and the cornea. The aqueous humor must travel a long,
tortuous path between the meshwork sheets, with the dimensions of the intratra-
becular spaces decreasing in the deeper layers of the meshwork (5].

The next layer in the trabecular region is the JCT, which consists of loose connec-
tive tissue containing collagen and elastin fibres, ground substance and endothelial-
type cells. It is believed that the JCT is the primary site of flow resistance in the
trabecular region (7|. The mechanism responsible for this flow resistance is not
currently known but for the purposes of this study, it is sufficient to determine the
magnitude of the resistance in the entire meshwork region. Since the thickness of
the JCT and endothelial lining is much smaller than the thickess of the corneoscleral
meshwork or the characteristic circumferential dimension of Schlemm’s canal, the
precise distribution of the flow resistance within these negligible dimensions need
not be determined.

The final layer traversed by the aqueous humor before entering the lumen of
Schlemm’s canal is the endothelial lining of the inner wall. The mechanism by
which fluid passes through the endothelial lining has not been precisely determined,
but pores and giant vacuoles have been observed and are thought to be responsible
for the passage of aqueous humor through this layer. By counting the number of
pores lining the inner wall surface and calculating the resistance of each pore, Bill
& Svedbergh (7] determined that no more than 10% of the total outflow resistance
could reside in the endothelial lining.

After passing through the endothelial lining, the aqueous humor enters the lu-
men of Schlemm’s canal and moves circumferentially along the canal until it reaches
a collector channel (CC) opening in the outer wall. Schlemm'’s canal has the ap-
pearance of a highly elongated ellipse in cross-section, with the endothelial lining
acting as the inner wall and the sclera comprising the outer wall. The outer wall is

relatively rigid and stationary, maintaining the width of the canal constant as the



system is pressurized. In contrast, the JCT and endothelial lining are supported
by the compliant, sponge-like meshwork which can be compressed or expanded de-
pending on the local pressure forces acting on it. This meshwork compliance allows
the inner wall to distend radially against the rigid outer wall as the IOP changes,
resulting in a variable height for the canal. Beam-like structures called septae [16]
or endothelial tubules [18] originating from the endothelial lining will occasionally
span across the canal lumen. Some of these structures completely bridge the lu-
men and temporarily divide the canal into two ducts for a limited circumferential
distance [7]. The septae are especially numerous near the CC openings, suggesting
that their role may be to prevent complete collapse of the canal and subsequent
occlusion of the collector channels [16).

The aqueous humor exits the canal lumen into the collector channels, also re-
ferred to as aqueous veins. The collector channels run to the surface of the eye
where they anastomose with the episcleral venous system. Casting studies have
shown that the collector channels are 10-100um in diameter (1] and approximately
1 mm in length. Calculations using Poiseiulle’s law demonstrate that the appar-
ent calibre of the veins cannot account for the outflow resistance as observed after
a complete trabeculotomy [26]. Since the post-trabeculotomy resistances of nor-
mal and glaucomatous eyes do not differ significantly (13|, the collector channels

probably do not play a significant role in causing glaucoma.

1.2 Previous Models of the Outflow System

Past efforts to model the aqueous outflow system have focussed on the role of
Schlemm’s canal in tying together the three regions of the outflow network. In
the following section, these models are reviewed to analyse their successes and

limitations in modelling the observed behavior of the outflow system.



1.2.1 Model of Schlemm'’s Canal as a Porous, Rigid Duct

Moses [21] proposed a model consisting of the meshwork and Schlemm’s canal
regions of the outflow system. Schlemm'’s canal is modelled as a rigsd duct with an
elliptical cross-section of constant dimensions and the flow in the canal is assumed
to be inertia-free. The meshwork is represented as a porous inner wall with a
uniformly distributed conductance which leaks fluid into the canal from the anterior
chamber. Since the model neither allows the height nor the width of the canal to
vary as a function pressure across the inner wall, the flow resistance of the canal is
constant per unit circumferential length. The collector channels are evenly spaced
around the outer wall, and the resistance of each CC is negligible compared to the
meshwork resistance; thus, the episcleral venous pressure is approximately equal to
canal lumen pressure a2t the mouth of a CC. When all of the conductance parameters
and the geometric arrangement of the elements are uniform, the model will be
termed Aomogeneous. Under these conditions, the low boundary conditions can be

phrased as:

1. The flow along the canal at the midpoint between adjacent collector channels

is zero due to the symmetry of the system.

2. All of the flow must enter the first collector channel reached during its transit
in the canal. Thus the rate of flow entering a CC is the same from both sides

of the canal.

It can be deduced from these boundary conditions that the pressure and flow distri-
butions are symmetric with respect to a symmetry line located either at a collector
channel or at the midpoint between two collector channels. Assuming that an av-
erage of 30 collector channels drain Schlemm’s canal [21], there are a total of 60
segments in the outflow system with identical flow distributions. One of the ma-
jor advantages of using a homogeneous model is that only a single segment of the
outflow system (from midpoint to a CC opening) needs to be considered. Since the

flow to each segment is identical, the correct flowrate for the entire system can be
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calculated by multiplying the flowrate into a single segment by the total number of

segments.

The governing differential equation for the fluid mechanical situation decribed
above is linear and second order. This differential equation can be solved analyti-
cally to yield a solution which relates the pressure in the canal lumen to a hyperbolic

function of the location in the canal [21].

p(z) = P+ %coah(xx) (1)

where:
=vRG

R = canal resistance per unit circumferential length

3

G = meshwork conductance per unit circumferential length

x = circumferential coordinate along canal, with x=0 at midpoint

X = distance from midpoint to CC

P; = intraocular pressure

P = episcleral venous pressure at mouth of CC = p(X)
Note that the collector channel resistance has been neglected, so that the episcleral
venous pressure is equal to the pressure in the canal lumen at the CC opening.

This model correctly predicts that the pressure in the canal lumen decreases
towards to CC’and is lowest at the mouth of a CC. However, the broad assumptions
made to arrive at an analytical solution to the problem result in the following

limitations on the phenomenological accuracy of the mode!:

1. Since the canal height is constant, the outflow resistance is also constant
with respect tc IOP, contrary to the findings of many studies of the pressure-

resistance curve for enucleated human eyes (8,11,22].

2. The homogeneity conditions required to arrive at an analytical solution do not
allow for any regional non-uniformities in the outflow system, which would

violate the flow boundary conditions detailed above.
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Despite these limitations, this model was useful in gaining a qualitative understand-
ing of the fluid fiow distribution posed by the geometry of the outflow system. The
hyperbolic analytical solution demonstrates the non-linear decrease in pressure as

the low moves towards the collector channels.

1.2.2 Model of Schlemm'’s Canal as a Porous, Compliant Duct

The next logical step to increase the sophistication of the model introduced
by Moses was to make the inner wall compliant, allowing it to distend towards
the cuter wall as the local pressure gradient between the anterior chamber and
the canal lumen increased. Johnson [17] modelled the trabecular meshwork as a
bed of linear springs with negligible flow resistance which supports an inner wall
(JCT and endothelial lining) with significant resistance. The local canal height
h(x) varies linearly with respect to the local pressure drop across the inner wall
(IOP-P(x)) according to the relation:

!l% —1— IOP;P(z) 2)
where hg is the undeformed canal height and E is the elastic modulus (or stiffness)
of the springs. The flow in the canal is modelled as inertia-free flow between two
flat plates. Substantial mathematical complexity is introduced into the governing
differential equation, and numerical integration is required to obtain a solution.
The differential equation is second order and highly non-linear, with the pressure
gradient along the canal inversely proportional to the third power of the local canal
height (dP(z)/dz ~ 1/h%(z)). A solutions was obtained for the case of a homoge-
neous outflow system; thus only a single segment from a midpoint between two CC’s
to the nearest CC was considered. The collector channels were again presumed to
produce negligible flow resistance, so that only the meshwork and Schlemm’s canal
regions of the outflow system were incorporated into the model. Note that equation
(2) is valid only in the pressure range whkere IOP-P(x)<E since the height of the

canal cannot be negative. Therefore an additional support structure (septae) was
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introduced to prevent the complete collapse of the canal. When the canal collapsed
down to the septae support height h,, the canal was either made more stiff by in-
creasing E or it was made completely rigid by setting the height to be constant at
h, for all pressure drops greater than the value at which the septae become active.

This model simulated the effects of canal collapse on the outflow resistance,
producing a moderate rate of resistance increase with increasing IOP. This result
was in qualitative agreement with the existing experimental data, and lead to the
conclusion that Schlemm'’s canal cannot be the primary cause of glaucoma because

the resistance generated in the fully collapsed state is not glaucomatous.

1.3 Objectives

The Johnson and Moses models both require that the outflow system have a
perfectly uniform geometry and conductance distribution. This places a limitation
on the resistance which Schlemm’s canal can contribute because the greatest possi-
ble distance traversed in the canal for the homogeneous case is from the midpoint
between two CC'’s to the nearest CC opening. The Johnson model showed that the
resistance generated by Schlemm’s canal at 50 mmHg, which corresponds to a com-
pletely collapsed state of the canal, is not high enough to cause glaucoma. However,
a model of the entire outflow system adds a new dimension to the role of Schlemm's
canal because cases can be investigated where substantial low between different
regions of the outflow system is induced by significant inhomogeneity in the system.
This can take the form of natural non-uniformities in the outflow structures or it
can be induced in the system by interventions such as trabeculotomy. Regardless of
the cause of the inhomogeneities, a model of the entire outflow system would give
us the ability to study their relative importance in determining intraocular pressure
in the eye.

The goal in developing a new model of the aqueous outflow system is to retain
the complexity of the Johnson model of Schlemm’s canal while expanding it to

encompass the entire system. This results in the following model criteria:
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1. Schlemm’s canal is modelled with a porous, compliant inner wall which can
deform to locally alter the height of the canal duct according to the mechanical

loading on the support structures (i.e., trabecular meshwork and septae).

2. No symmetry or flow boundary conditions will be imposed within the outflow
system, so that the flow is free to choose any path to go from the anterior

chamber to the episcleral venous system.

3. The collector channel region will be included in the network. The resistance
of this region will be based on experimental measurements which indicate that

a significant fraction of the total outflow resistance resides in this region.

To accomplish criterion 1, a formulation of the canal height and resistance similar
to that of the Johnson model will be used. Criterion 2 eliminates the possibility of
an analytical solution and forces the model to encompass the entire outflow system
rather than just a single symmetric segment. The approach taken to develop the
network model is to accomplish both criteria 1 and 2 by allowing the complexity of
the problem to increase to the level where numerical methods must by employed to
obtain a solution. The model significantly raises the level of realism in simulating
the outflow system at the cost of forgoing the advantages and insights gained by an
analytical solution.

The Johnson model produces a pressure-resistance relation which is qualitatively
consistent with the experimental data at lower pressures (IOP<40mmHg), where
both show the resistance to increase with IOP. The agreement between the model
and experimental data is less satisfactory at higher pressures (IOP>40mmHg). If
the rigid septae model is chosen, the pressure-resistance curve levels off at high
pressure when the inner wall is completely collapsed against the septae. On the
other hand, septae which are stiffer than the meshwork but still linearly compliant
result in a pressure-resistance relation which curves sharply upward as the canal
closed off at high pressure. Thus one of the major tasks in developing the network

model is to determine the resistance of the enucleated human eye at high pressure
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and to find a relation for the septae which will result in good agreement with the

experimental pressure-resistance curve.
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2 The Outflow System Network Model

The conventional aqueous outflow pathway of the human eye consists of three
distinct, structures: trabecular meshwork, Schlemm’s canal and the collector chan-
nels. The goal in this chapter is to create a resistor network which simulates the
flow system described in this section. A set of resistors will be defined for each of
the three outflow regions; these three sets of resistors will then be assembled based
upon the anatomical orientations of the outflow system components, thus creating

the resistor model illustrated in figure 2.1.

2.1 Resistor Mcdel of the Meshwork Region

Starting from the angle of the anterior chamber, the aqueous humor first encoun-
ters the trabecular meshwork (TM) region of the outflow network. Flow through
the TM can be modeled as distributed flow through a porous medium. The pri-
mary sites of resistance in the meshwork, the JCT and the endothelial lining, are
considered to be a single inner wall region due to the close proximity of the two
layers. The TM and inner wall region are modelled together as a compliant spring
bed which suppports the porous filter [17] and is tethered at Schwalbe’s line and
the scleral spur.

The inner wall can physically be modeled as a ring-shaped filter with thickness
‘t’ equivalent to the radial distance the aqueous humor must flow to pass through
the inner wall. The effective width ‘W’ of the ring participating in the transport of
aqueous humor is equal to the canal width because the inner wall must be directly
underlying Schlemm’s canal to have access to it. The radius ‘R’ of the ring is equal
to the radius of the iris at the angle of the anterior chamber. Flow through the ring
is assumed to be purely radial, driven by a pressure gradicnt between the inside
and outside of the ring. Assuming that the flow through the meshwork can be
characterised as flow though an isentropic, porous medium which obeys D’Arcy’s
law [28], .

V= —;VP (3)



where:
V = flow velocity vector in the meshwork
k = permeability of the meshwork
A = cross-sectional area
p# = viscosity of aqueous humor
V P = pressure gradient
then the ratio of the circumferential velocity divided by the radial velocity can be

approximated as,

1P

r=EY (4

Ve B ’

The radial pressure gradient can be approximated as %—f ~ ’oTP, and in the circum-
ferential direction, the pressure gradient is on the order of :—tg—‘:- ~ ’g—f:. Substituting

the pressure gradients into equation (4), the velocity ratio becomes,

SIS

t
=X (5)

The thickness of the JCT and endothelial lining is t~10um [5] and X, = 1200um
is the average distance between collector channels [21]. Thus the ratio of the cir-
cumferential flowrate to the radial flowrate is O(10~2), which justifies neglecting
circumferential flow in the meshwork itself.

It is further assumed that the pressure outside of the ring (in Schlemm’s canal)
is dependent upon # (the circumferential direction coordinate) but induces no cir-
cumferential flow in the inner wall itself. This conceptualization of the flow through
the meshwork region is consistent with the earlier models of Moses [21] and Johnson
& Kamm ([17].

The inner wall ring described above is niodeled as a homogeneous, porous filter.
Although one can intuitively sense that the outflow system is not a perfectly uniform
structure, this assumption will nevertheless be made since the statistical variation
of the properties of the outflow system is not known. The model can accomodate
such non-homogeneities, but these will be considered individually as special cases of

the more general, homogeneous model. A total inner wall conductance G;,, can be

16



defined for the entire ring as the total flow through the ring divided by a constant
pressure drop across the inner wall which is independent of §. The local flowrate
through the inner wall depends upon the local pressure drop across the inner wall,
AP = JOP — P(0). If we define the inner wall conductance per unit circumferential
distance to be G;,, = Gim/27R, the inner wall could then be sectioned off and
replaced by N x M (or simply NM) resistors in parallel. N is equal to the number
of collector channels and M is equal to the number of nodes assigned from one CC
to the next, making NM the total number of nodes in the canal. Each resistor has
a flow conductance of AGim = G;, Az, where Az = RA#Q is the circumferential

width of each section.

2.2 Resistor Model of Schlemm’s Canal

Immediately upon passing through the inner wall, the aqueous humor enters
Schlemm’s canal, the second region of the outflow network model. Schlemm’s canal
is modeled as a compliant, porous duct roughly elliptical in cross-section (see section
1.1). The height of the canal ‘h’ (ie. the inner to outer wall distance) is defined
to be twice the semi-minor axis of the elliptical cross-section. The canal height is
variable because the spring bed (TM) allows the inner wall to move relative to a
fixed outer wall (comprised of the scleral tissue). The width ‘W’ (in the limbus
to scleral spur direction) is equal to twice the semi-major axis of the same cross-
section. Note that the trabecular meshwork underlying the canal is also of width W,
exactly matching the width of the canal. The width of the canal can be considered
constant because the outer wall sclera is relatively rigid compared to the inner wall
meshwork and does not strain appreciably when stressed by intraocular pressure. In
the human eye, the meshwork actually extends well beyond the width of the canal
on both sides towards the scleral spur and the limbus. However, only the meshwork
directly underlying the canal is assumed to participate in the outflow of aqueous
humor, this being consistent with the earlier assumption that the flow cannot move

circumferentially in the TM and inner wall region.
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Upon entering the canal, the aqueous humor flows circumferentially in the 4
direction. The curvature of the canal in the #-direction can be neglected if h<R,
which is the case for the human eye. Thus circumferential flow in the direction
parallel to the axis of the duct can be denoted in Cartesian coordinates as the
x-direction (with x=R#@), replacing the # notation in cylindrical coordinates used
earlier. The flow conditions in the canal can be determined by calculating the

Reynold’s number:

_ pR(2)h() _ 4Qmas

~ -3
Rer = — B e 3% 10 (6)

where:
W = canal width = 300 um
Q(x) = volumetric flowrate at point x in canal
Q@maz = Qr/2N = 2/60 = 0.033 pl/min
h(x) = local canal height
A(x) = #Wh(x)/4

v = kinematic viscosity of aqueous humor = 7 x 10-"m?/s (T=37°C)

Note that the flow Reynold’s number is based on the height of the canal (h) rather
than the width (W) because h«W in Schlemm’s canal. The quantity Q(x)/A(x)
represents the average flow velocity in the duct. The maximum canal flowrate Qma;
can be calculated for the case where the aqueous humor exits via N=30 evenly
spaced, uniform collector channels. For such a case, the maximum canal flowrate
will occur right at the entrance to any of the CC openings and is equal to Qr /2N,
where Qr equals the total outflow rate of 2ul/min. Since Rey=3x10"3«1 based
on @mss represents the maximum Re, in the canal, the canal flow must clearly
be inertia-free. It can be further assumed that the flow along the canal is fully-
developed and one-dimensional if the change in canal height is much less than the
section length for each section (Ah €« Az). Assuming that the canal height varies

linearly according to equation (11), this condition can be written as:

Ah h, \ 0P
E—(E‘m)a—z<l (7)
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If the above condition is satisfied, the governing equation for fully-developed, inertia-

free flow in an elliptical duct can be applied to flow in Schlemm’s canal [33):

9P _ 64uQ(z)(h*(z) + W?)

oz TW3h3(z) (8)
Since h(x)« W, the above expression can be simplified to
9P _ 64uQ(2) )
3z TWhd(z)

This equation is identical in form to the equation used by Johnson & Kamm [17],
the only difference being that the constant factor multiplying the pressure gradient
is 64/ rather that 12 for the Johnson & Kamm model. This difference arises from
the modelling of the canal as an elliptical duct as opposed to two infinite flat plates.
The elliptical shape genererates more flow resistance for a give cross-sectional area
because of end-effects from the two-dimensionality.

By discretizing the above differential equation using finite differences, Schlemm’s
canal can now be modelled as a set of resistors arranged in series (see figure 2.1).
The pressure, flowrate and height are determined at the nodal points between each
of the canal sections of length Ax. The conductance of each resistor between nodal
points numbered s and 1+1 is calculated by assuming the height and pressure vary
linearly between any two adjacent nodes. The conductance in each Schlemm’s canal
resistor can be determined by integrating equation (9) from s to i+1:

_ _Q(z) _ =Whinrl Az
“' P — P 32u(h; + hiyy)

From equation (10), it is apparent that the dominant controlling parameter deter-

Gne

(10)

mining the flow resistance of Schlemm’s canal is the canal height. This is due to
the cubic dependence of the canal conductance on the local height h(x). Thus it
is important to accurately model the local canal height as a function of the other

known parameters to arrive at the correct flow characteristics for the overall model.

eDetermination of the Canal Height
The height of Schlemm’s canal is controlled by the movement of the meshwork

and inner wall relative to a fixed outer wall (sclera). The movement of the inner
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wall is governed by the material properties of the trabecular meshwork, which acts
as the support structure for the inner wall. The zero-flow, zero-load condition must
first be determined; this was defined by Johnson & Kamm|[17] to be the uncollapsed
height A, of the canal when the anterior chamber pressure is equal to the (local)
pressure in the canal lumen. Assuming the meshwork to be linearly elastic with a
constant modulus of elasticity E;m, the canal height h(x) can be decribed by the
equation,
AP

h(z) = ha(l - E_' (11)

It is evident that when AP=0, the zero loading condition of h(x)=h, is recovered.
Conversely, when AP=E;, the canal is completely collapsed with h(x)=0; thus E,n
is actually a measure of the minimum pressure drop across the meshwork required
to completely obliterate Schlemm’s canal in the absence of any other support mech-
anism to affect the height of the canal. Note that when the inner wall distends
towards the outer wall, the meshwork is under a tensile loading stress.

In reality, it is unlikely that Schlemm’s canal can collapse down to a state which

completely seals off the duct because of two intervening physical effects:

1. The inner and outer walls of Schlemm’s canal are not smooth surfaces which
can perfectly intermesh. A complete apposition of the two walls would still

leave many gaps due to irregularities in both walls surfaces.

2. Between the inner and outer wall, there exist support structures in the canal
commonly known as septae [16]. The septae can be thought of as beams or
posts which separate the walls and prevent complete canal collapse [17]. Note
that the septae balance the force caused by the pressure differential between
the anterior chamber and the lumen of the canal by undergoing compressive

stress, unlike the meshwork which is under tensile stress.

The mechanical characteristics of the canal structures can be modelled as two
different regimes of inner wall support. The first is the linear, elastic deformation

regime during which the tensile loading of the trabecular meshwork determines the
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canal height; the governing relation for the canal height in this regime is given by
equation (11). In this regime, the septae do not contribute significantly in opposing
the collapse of the canal; the septae act like distended springs which must fully
contract before they can produce any compressive stresses to balance the forces
collapsing the canal. When the septae have reached this fully contracted state,
the deformation of the canal enters the second regime where the canal height is
controlled by the compression of the septae as well as the stretching of the meshwork.
The degree of control exerted by the septae will depend on their relative stiffness
compared to that of the trabecular meshwork. If the septae are the stiffer of the
two structures, the compressive stresses opposing canal collapse will dominate over
the tensile stresses which are acting cumulatively in the same direction.

The form chosen for the relation governing the canal height when supported by

the septae is as follows:
K,

AP

where K, is the septae stiffness parameter to be determined later.

h(z) = (12)

The characteristics of the septae are determined empirically by matching the
septae height to the pressure drop across the meshwork such that the overall out-
flow resistance calculated by the model agrees with the experimental data, which
shows the resistance to increase linearly with pressure (see chapter 4). The exact
mathematical form of the empirical relationship between canal height h(x) when
held up by septae and the pressure drop AP = IOP — P(z) is based on an order
of magnitude analysis of Schlemm’s canal resistance as a function of pressure. The
resistance of Schlemm’s canal varies as the inverse third power of the height (see

equation 9).

1
R,. ~ o] (13)
Given that the total resistance increases linearly with intraocular pressure, we can
write
oR,. 1 Jh
3I0P & constant M 3IOP (14)
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-1} h

Intraocular pressure can be approximated by AP and substituting 5755 ~ 35 into
equation (14) results in
1
AP ~ s (15)

which can be rewritten in the form given in equation 12 by taking the cube root of
both sides and introducing the septae stiffness parameter K,..
The %-power law can be further motivated by the tube law depicting the be-

haviour of a collapsible tube [27],
APt ~ A(z) ~ h¥(z) (16)

where A(x)=%Wh is the cross-sectional area of an elliptical duct. In the highly
collapsed state, Schlemm’s canal is assumed to be supported by septae which act
as posts which keep the canal locally open. If the inner wall conforms around the
septae, apposition of the inner and outer wall would occur between adjacent septae,
and the width of the canal is no longer a characteristic length scale of the cross-
sectional area. Approximating the width of the local section cf open canal by the
septum height itself, the area of the canal in the collapsed state is proportional to
the septum height squared, and the tube law for a collapsible tube results in an
identical functional relation between the local canal height and the local pressure
drop across the inner wall.

Since the meshwork supports the canal for relatively small strains, the linear
relation (eqn. 11) should initially be used for AP less than some AP,. For large
strains with AP>AP,, the septae support the canal and thus equation 12 should
be used. AP, is the pressure drop at which the two height relations give the same
canal height; this height at which the septae start acting will be denoted by h,, and

can be calculated using the relation

AP. _ Ku
h, = ho(1 - E....) = 2p (17)

Using the appropriate values for the parameters (see section 3.1), the canal height

can be plotted as a function of the local pressure drop across the meshwork (see
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figure 2.2). Note that the septae begin to support the canal at a height of 2.4 pm.
This value corresponds with the dimension reported by Van Buskirk (31], who found
the canal lumen area to be 1000+700 pm? at JOP=40 mmHg, or h=3.3+2.7 pm
assuming the canal width is 300 pm. For the linear height relation, the stiffness of

the meshwork

AP Eim
“oh "~ h, (18)

is constant and independent of the force acting upon it. But for the %-power law,
the stiffness of the septae holding up the inner wall is variable and increases with

increasing AP as given by
_8AP _ 3A Pt (19)
dh K.

It is intuitively plausible that it should become increasingly difficult to decrease

the size of the canal lumen as the septae become compressed and the inner wall
conforms around the septae structures.

The model developed for Schlemm’s canal is quite rigorous in its derivation of the
flow resistance from fundamental fluid mechanics. In comparison, the resistances
of the meshwork and collector channel regions are empirically derived with a ‘black
box’ approach. It is not neccessary to know in detail how and where the flow
resistances are generated in these two regions because they do not play the critical
interconnective role as Schlemm’s canal does. Since one of the objectives of this
study is to investigate the role of Schlemm’s canal as a communications pathway
between various regions of the entire outflow system, it is the canal which must be

carefully modeled in a rigorous manner.

2.3 The Collector Channel Resistance Component

The collector channnels (CC’s) are vessels which connect the canal (from open-
ings in the outer wall) to the episcleral venous system. The collector channels
constitute the third and final flow region through which the aqueous humor pass

through to complete the passage from the anterior chamber to the episcleral venous
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system. There exists some ambiguity as to the distinction between collector chan-
nels and aqueous veins in the outflow system. For the purpose of clarity, all ducts
which allow fluid to flow from Schlemm’s canal to episcleral veins will be singly
referred to as collector channels.

In the human eye, there are typically 30 collector channels distributed through-
out the canal [21]. The collector channels are exit points located on the outer wall of
Schlemm'’s canal which allow the aqueous humor to flow out of the canal and into
the episcleral venous system. The episcleral venous pressure is approximately 9
mmHg in the live human eye, 2nd effectively zero in the enucleated eye. The collec-
tor channels are modeled as 30 flow resistors arranged in parallel which connect 30
separate points in Schlemm’s canal to a common venous pressure. These collector
channel resistors are functionally independent of the Schlemm's canal and trabec-
ular meshwork resistors. As will be detailed in section 3.1, the ccllector channel
resistors are assumed to be dependent only upon the intraocular pressure. If the CC
resistance decreases with increasing IOP as suggested by recent experiments [26],
the CC’s that control the resistance (by carrying most of the flow) are likely to be
radially oriented so that the vessels will expand (and decrease in resistance) as the
sclera stretches with increasing IOP [4]. The resistance of a collector channel under
these conditions has been shown by Battaglioli [4] to be weakly dependent on the
internal vessel pressure. The appropriate total conductance for the collector chan-
nels can be determined experimentally by measuring the outflow resistance of the
human eye at various IOP’s after a complete trabeculotomy has been performed.
This data can then be curve-fitted to obtain a working relationship between CC

resistance and IOP (see section 3.1).
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3 Numerical Implementation of the Network

Model

In chapter 2, an electrical network equivalent to the aqueous outflow system
was formulated. In order to solve this network, the parameters which determine
the values of the resistors must be specified, and an algorithm is developed to

numerically solve the non-linear matrix representation of the network.

3.1 Parameters of the Network Model

In this section, numerical values are assigned to the parameters used to calculate
the conductances of the elements in the network. The motivations for the particular
choices of parameter values come from direct morphological observations of the
outflow system and inferred characteristics based upon experimental measurements

of flow resistance in enucleated eyes.

Number of Collector Channels-N
The generally accepted average value for the number of collector channel open-
ings observed in the outer wall of Schlemm’s canal is 30. This value has been used

in previous models of the outflow system by Moses [21] and Johnson & Kamm (17].

Width of the Canal-W

Using electron microscopy, Hoffmann & Dumitrescu [16] found the width of the
canal to range from 190um to 350um, while Duke-Elder reported an average width
of 280um [10]. A width of W=300 um was chosen for the model, which is the same
value used by Moses [21].

Trabecular Meshwork Stiffness—FE;n

The meshwork is assumed to behave like a perfectly elastic material, with the lo-
cal canal height h(x) directly proportional to the local pressure drop AP=IOP-P(x)
across the meshwork as described in section 2.2. By correlating the morphological
data for canal height at a given IOP to equation (11), an approximate value for
the the meshwork stiffness E;,, can be calculated. From the study of Johnstone &
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Grant [19], the canal first appeared to be collapsed when fixed at a pressure of 20
mmHg. If it is assumed that roughly one half of 20 mmHg pressure drop is across
the meshwork 26|, Eym would then be equal to 10 mmHg.

Undeformed Canal Height-A,

The undeformed canal height is defined to be the height corresponding to a
zero pressure differential between the canal lumen and the anterior chamber. The
morphological findings of various investigators [21,23,24,31] report this height to be
in the 20-30 um range. An undeformed canal height of h,=20 um was chosen for
the model so that the predictions would be in agreement with data from Rosenquist

et al. [26] for a one-hour trabeculomy done at [OP=7 mmHg (see section 5.2).

Viscosity of Aqueous Humor-u

The viscosity of aqueous humor was assumed to be that of water at normal body

temperature (37°C), which is 4 = 7 x 10~ kg/ms.

Distance Between Adjacent Collector Channels- X,

The total circumferential length of Schlemm’s canal is approximately 27R, where
R~6000 pum is the radius of the eye (see section 2.1). Assuming that the 30 collector
channels are evenly spaced, the average distance between adjacent collector channels
would then be

. 27(6000um)

Xee >~ 20 ~ 1200pm (20)

Septae Stiffness Parameter-K,,

As will be shown in section 4.3, the septae stiffness parameter is chosen to be

5um/ mmHg* to match the pressure-resistance data presented in chapter 4.

Collector Channel Resistance-R..

After eliminating the inner wall resistance by complete trabeculotomy, the only
remaining component of the outflow system which could exhibit flow resistance is the
collector channel region. Rosenquist et al. [26] measured the collector channel resis-

tance to be R.. = 1.8 mmHg/ul/min at IOP=7 mmHg, and R,.=1.2 mmHg/ul/min
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at JOP=25 mmHg. An empirical correlation between R.. and IOP is obtained by

linear interpolation of these two data points, resulting in
R.. = 2.033 — 0.033 - IOP (21)

It can be assumed with a fair degree of confidence that equation 21 is valid in the
7-25 mmHg pressure range. However, there is no justification to assume that R
would continue to rise as IOP decreases below 7 mmHg. Likewise, it cannot be
not be assumed that R.. would continue to linearly fall as IOP increases above 25
mmHg. Thus the assumption is made that R.. is constant outside of the specified
IOP range between 7 mmHg and 25 mmHg; in other words R.. remains at the
value measured at 25 mmHg for all IOP>25 mmHg, and R.. remains at the value

measured at 7 mmHg for all IOP<7 mmHg.

Trabecular Meshwork Resistance—Rim

To isolate the contribution of the meshwork to the total outflow resistance,
it is assumed that Schiemm’s canal is wide open at low intraocular pressure and
contributes negligible outflow resistance. This is justified by comparing the low
pressure outflow resistance of a single segment of the outflow system (from midpoint
to CC) to the resistance of a corresponding segment of Schlemm’s canal in the
uncollapsed state. Similar to Johnson & Kamm (17], we introduce the term B2 to
be the ratio between the resistance in the undeformed canal and the resistance of
the outflow system in a segment spanning oue half of the distance between adjacent

collector channels (0.5X..): .
0.5X .84

B = aiw (22)
Using values for the parameters previousl; .:l):f.itned in this section and a typical total
outflow resistance of Rewaw=4 mmHg/ul/min, we find that p?=1.8x1073, which
means that the resistance of the undeformed canal is 3 orders of magnitude smaller
that the total resistance of the entire system.

The inner wall resistance can be isolated by experimentally measuring the re-

sistance before and after a complete trabeculotomy and assuming the difference

27



between these two measurements represents the isolated meshwork resistance Such
a method requires the further assumption that the collector channel resistance mea-
sured after a complete trabeculotomy is the same if the trabecular meshwork over-
lying the collector channels is intact. From the study of Rosenquist et al. [26],
the outflow resistance at IOP=7 mmHg, was found to be 3.8 mmHg/ul/min before
trabeculotomy, and 1.8 mmHg/ul/min after a complete trabeculotomy. Ry, is thus
calculated to be 2.0 mmHg/ul/min, and the conductance of each meshwork element
is determined using the formula

Gim; = % (23)
where D is the diameter of the eye at the plane of the limbus.

An important assumption which has been implicitly made in this analysis is that
the inner wall resistance is constant with respect to the local pressure drop across
the meshwork. Thus, the inner wall is assumed to play a negligible role in raising
the outflow resistance with increasing intraocular pressure. The validity of this

modeling assumption can be evaluated by comparing the behavior of the network

model to experimental findings (see chapter 5).

3.2 Numerical Algorithm for Solving the Network
3.2.1 The Nodal Equations and Kirchoff’s Laws

For a network with N collector channels (CC’s) and M nces between adjacent
CC’s, the total number of nodes in the canal is Nx M, (denvtec by NM). The
anterior chamber is represented by a single node at intraocular pressure, bringing
the total number of nodes to NM+1 in the network with unknown pressures. The
pressure of the episcleral venous system is defined to be zero (for the case of an
enucleated eye), giving us a common ground potential which all of the collector
channels exit to. The total number of resistor elements in the network is 2NM+N,
consisting of NM elements in parallel representing the meshwork, NM elements

in series representing the canal, and N elements connecting each collector channel
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entrance at the outer wall of the canal to the episcleral veins (see figure 2.1). The
flowrate through each of these resistor elements is also unknown. Note that pressure
in the network is equivalent to voltage in an electric circuit, and flow is equivalent
to current.

The total numier of variables in the outflow network is 3NM+N+1, obtained
by adding together the flow and pressure variables. The object now is to formulate
a matching number of equations which will give a unique solution to the network
problem which has been formulated.

Kirchoff’s Voltage Law is applied to each resistor in the network, resulting in
2NM+N equations. For the meshwork resistors, one end of each element is con-
nected to the node in the anterior chamber (at IOP). The other end of each mesh-
work element is connected to the node in the canal which is directly underlying the
element of meshwork. Using Ohm’s Law, the flew (or current) going through the
+'» meshwork element (or resistor) can be expressed as a function of the pressure

drop (or voltage) across this element.

The flowrate is defined to be positive for flow going from the anterior chamber to
the canal. The canal elements are connected in series at both ends to nodes in the
canal, and the flow along the canal can be expressed as a function of the discretized

pressure change between two adjacent nodes.

Qae.- = Gae.-(Pi - P-+l) (25)

The flowrate is defined to be positive for flow going from the s** node to the s + 1
node. Each collector channel element is connected at one end to the node in the
canal located at the entrance of a channel opening, and at the other end, to the
episcleral venous pressure (which is 0 by definition). Flow through the K** collector

channel is denoted by Q..,, and can be expressed as

Qu,( = Pim - Gce,; (26)
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where P,n, is the pressure in the canal at the (K x M)** node.

By applying Kirchoff’s Current Law (KCL) to each node in the canal, a further
NM equations are obtained. As applied to the network, KCL states that the sum
of the flows entering a node must equal the sum of the flows leaving a node. For
nodes not located at a collector channel opening, the circuit is illustrated in figure
3.1 with the appropriate nomenclature assigned to the nodes, pressures, flows and

conductances; application of KCL to this circuit results in the equation

th.- + Qu.- + Qu.-.... =0 (27)

All of the flows have been arbitrarily assigned directions, with the sign convention
that all flows entering a node are defined to be positive. For nodes at collector
channel openings, the circuit given in figure 3.1 is slightly modified to produce the

circuit of figure 3.2, and the current law equation for this circuit is

le.- + Qu.- + Qu.-“ - qu =0 (28)

If intraocular pressure is specified, (ie. in the constant pressure mode), the number
of unknowns is reduced by 1 to 3NM+N, and equations (24) to (28) form a closed
problem with an equal number of equations and unknowns. However, if the total
system flowrate (Qr) is specified in the constant flow mode, one more equation is
required. Applying KCL globally from the anterior chamber to the canal lumen, we
find that the total outflow rate (@Qr) must equal the sum of the flow going through
all of the meshwork elements, which results in the equation
NM

Qr— ‘; Qim, =0 (29)
where Qum, is positive flowing from the anterior chamber to the canal. The number
of equations and unknowns can be reduced from 3NM+N+1 to NM+1 by substi-
tuting equations (24) to (26) for each element into equations (27) to (29) for each

node. The KCL equations can then be rewritten as
Gtm.-(IOP - P.) + Gu.- (P'—l - Ps) + Gu.-.,.. (Pl'+l - P.) =0 (30)
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Glm.-(IOP - R) + Gu.-(Pe'-l - R) + Glc.'+| (Pl'+l - Pl) - Gcexl:’i =0 (31)

NM
Y Gim,(IOP-P,)—Qr =0 (32)

=1
A sample matrix is presented in figure 3.3 for a network with 2 collector channels
(N=2) and 2 nodes per CC (M=2). Note that if the constant presgsure mode is
specified, the last row and last column of the system matrix are eliminated, reducing
the matrix to NM by NM in size. In such a case, the canal node pressures are solved

for first before the outflow rate Qr is calculated using the global KCL equation.

3.2.2 Numerical Methods and Costs

To begin solving the system of equations derived in the previous section, an
initial guess of the pressure in the canal is obtained by neglecting the canal resistance
and lumping R, and R, into two global resistance values, resulting in a single
pressure guess for the all the canal nodes. In the constant pressure mode (with IOP

specified), the initial estimate of the canal pressure would be

Ppss = IOP ( Fim )

Rim + R..

In the constant flow mode, an initial guess would be required for IOP as well as the

(33)

pressure in the canal.

IOPpuss = Qr(Rim + Re.) (34)
P, gusss = QrR.. (35)

The number of nodes from CC to CC (M) required to obtain an acceptable level of
numerical accuracy (error < 1%) under all conditions was determined by trial and

error to be 40. The error is defined to be:

|R(M) — Ro|
R

where R(M) is the outflow resistance for a given M and R, is the asymptotic outflow

%Rerror = (36)

resistance as M — o0o. A typical percentage error curve as a function of M for an
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intraocular pressure of 50 mmHg (see figure 3.4) shows the error to be less than the
set criterion at around M=20.
Solving the system matrix (see figure 3.3 for an example) by numerical iteration

involves two separate processes. The inner-loop process solves the linear system
G(p*)p*+! = ¢ (37)

where G(p) is the conductance matrix, p is the pressure vector [py, p3, ..., Py,,» IOP),
and ¢ is the flowrate vector [0,0,...,0,Qr|. Each time this linear system is solved,
the updated pressure vector is used to recalculate the conductance matrix, which
forms the outer-loop (non-linear) iteration process. The conductance matrix is re-
calculated using the updated values of the pressure vector, and usually must be
performed O(10%) times before convergence is achieved. The linear system is solved
using two methods: Gauss-Seidel iteration with over-relaxation and direct Gaus-
sian elimination. The Gaussian elimination method uses a special algorithm to
take advantage of the sparseness of the G-matrix, and vectorizes the G-matrix to
minimize memory storage requirements. Standard LU decomposition method re-
quires n®/3 + O(n?) floating point operations (flops) to decompose the matrix and
backsolve, where ‘n’ is the rank or size of the matrix. The specialized Gaussian
elimination solver written to solve the specific system matrix generated by the net-
work model maintains the sparseness of the matrix, dramatically lowering cost to
approximately 16n. With N=30 and M=40 for the network model, the numerical
cost incurred in solving the 1200x 1200 matrix is ~ 6 x 10® flops by standard Gaus-
sian elimination, while the vectorized Gaussian solver costs only ~ 2 x 10* flops.
The vectorized Gaussian solver is very efficient but the residual of the non-linear
iteration process, which is defined to be

Res — J e p?'ﬂ) _ ps_:'))z (38)

n

can only be brought down to O(10~?) before numerical fluctuations prevent further

gains in accuracy. For this reason, the Gauss-Seidel method is used after an initial

32



stage of vectorized Gaussian elimination to bring the residual down to O(107*)
mmHg or less. The Gauss-Seidel method iteratively arrives at pli*!) according to

the algorithm
pU*Y = we, (—(D + U) ™ (LY + @) + (1 — wyor)p!?) (39)

where w,,, is the successive over-relaxation factor, and the conductance matrix has
been subdivided into the diagonal (D), strictly upper triangular (U), and strictly
lower triangular (L) such that G=D+L+U. By trial and error, the cptimum w,,,
factor was found to be around 1.5. Since D+U is an upper triangular matrix, the
above expression can be backsolved directly. The numerical cost of a single iteration
of the Gauss-Seidel algorithm is roughly 8n, or about one-half of the cost of a single
call of the vectorized Gaussian routine. However, the number of iterations with
Gauss-Seidel required to obtain reasonably accurate solution to the linear system is
0(10?), making the total cost incurred ~50 times greater than an equivalent single
call of the vectorized Gaussian routine. Gauss-Seidel does offer one major advantage
in that a (non-linear) update of the conductance matrix can be performed before an
accurate solution to the linear system (equation 37) is obtained. Indeed, it seems
logical to avoid unneccessary numerical expense incurred in solving accurately the
linear system when the conductance matrix itself is incorrect because the pressure
vector used to calculate it is far from the final answer. The optimum combination
of linear Gauss-Seidel iterations and non-linear system matrix updates was found
to be approximately 16 Gauss-Seidel iterations between each update of G(p).

The final algorithm chosen to numerically solve the system matrix, a combina-
tion of vectorized Gaussian elimination and Gauss-Seidel with over-relaxation, is

outlined below:

1. Vectorized Gaussian elimination is used for the first 10-20 iterations, which
typically will bring down the residual to O(10~?) from an initial value of O(1)
after the first iteration.

2. Gauais-Seidel is used for 400-800 iterations with a non-linear update every 10
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iterations, for a total of 40-80 updates of the system matrix which will lower

the residual to O(1074).

The computational time required to achieve numerical convergence is typically

on the order of one minute of CPU time on a VAX 11/755 machine.
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4 Experimental Perfusion of Human Eyes

4.1 Purpose of the Experiment

A number of investigators have measured the resistance of enucleated human
eyes as a function of IOP (8,11,22]. All of these studies measured the resistance
only up to a maximum pressure of 50 mmHg or less. The IOP of a normal living
eye is ~15 mmHg, (or ~7 mmHg pressure drop across the outflow system), and an
IOP of ~25 mmHg or greater is generally considered glaucomatous. The question
then arises: what is the usefulness of studying the human eye under high pres-
sure conditions that are never clinically manifested? Intraocular pressure induces a
number of changes to the outflow system, and septae which normally do not play
a significant role in determining the outflow resistance can be studied under such
conditions.

Consider the morphologically observed appearance of the canal lumen when
fixed at an IOP of 50 mmHg. By all accounts, the lumen is only a small fraction of
its original cross-sectional area, and in some places it may appear to be completely
obliterated [19,23,29]. The inner wall cannot be modelled as a linear elastic ma-
terial when subject to such a high degree of deformation. In this state, the inner
wall mechanically counters the pressure force causing collapse by compressing and
deforming around the septae. Johnson & Kamm [17] modelied the septae in two
ways: perfectly rigid (with E,,pe,—00) or linearly compliant (eg. E,iptae = 8Eim).
The behavior of the outflow system is markedly different for the two different septae
models. For the case of the rigid septae, the resistance increases with increasing
IOP in the low pressure range but gradually reaches an asymptotic limit in the
mid to high pressure range, (say 30-70 mmHg, depending on the model parameters
chosen). With the linearly compliant septae, the slope of the P-R curve increases
in the mid to high pressure range. The model eventually becomes numerically un-
stable at high IOP when the P-R curve turns up sharply. Note though that the

characteristics of the P-R curves for rigid and compliant septae differ significantly
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only in the high pressure range when the canal is collapsed against the septae.

The method chosen to model the septae should result in a P-R curve which cor-
rectly reproduces the behavior of the eye at high pressure, since it is assumed that
canal collapse accounts for all of the change in outflow resistance with increased
intraocular pressure and septae are the dominant factor in determining canal resis-
tance in the highly collapsed state. However, the P-R characteristics of the eye at
high IOP have not been established by previous investigators. Studies on enucle-
ated eyes have shown the resistance to increase linearly with IOP, but the highest
pressure measured previously is only 50 mmHg '[8]. Thus, the P-R curve must
be established in the high pressure range above 50 mmHg to determine what the
best model of the szptae should be to correctly reflect the highly collapsed state of
Schlemm’s canal.

A secondary objective of this experimental study is to investigate the role of
canal collapse as a possible mechanism causing glaucoma. By finding the maximum
increase in outflow resistance which can be realized by raising the intraocular pres-
sure to very high levels, one could determine whether canal collapse as might be
caused by a loss of elasticity in the trabecular meshwork could generate glaucoma-

tous flow resistance.

4.2 Methods

Human eyes provided by National Disease Research Institute were perfused
within 24 hours of enucleation using a constant pressure technique with feedback
control of the flowrate. Between the time of enucleation and the start of the per-
fusion experiment, the eyes were stored in a sealed container packed in ice. Thirty
minutes prior to initiating the perfusion, the eyes were placed in a 0.9% saline bath,
where they remained for the duration of the experiment.

The eyes were perfused using Dulbecco’s buffered phosphate solution, with 99 mg

1Levene & Hyman [20] measured the resistance up to a pressure of 70 mmHg with tonography
on live eyes, and found the resistance reached a maximum at high IOP.
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of glucose added per 100 ml of fluid. A 23G needle is passed through the cornea near
the limbus and then inserted under the iris to allow free communication between the
posterior and anterior chambers. All equipment which comes in contact with the
perfusion fluid was pre-washed with water cleaned by passing it through a 0.08um
Millipore filter. The perfusion fluid was also cleared of contaminants in the same
way after glucose had been added to it. The eyes were suspended in 0.9% saline
solution up to the level of the limbal area. A Kimwipe tissue was placed over
the cornea to keep it moist during the experiment. A cover was closed over the
saline bath of each eye and the bath was heated to maintain an iscthermal 30°C
environment.

A schematic diagram of the experimental apparatus is given in figure 4.1. The
set-up perfuses two eyes simultaneously, but measures the fiow resistance of only
one eye at a time. Two methods were used to perfuse the eyes under pressure.
The first uses a reservoir placed at a variable height relative to the eye. The pres-
sure is monitored with the pressure transducer (Microswitch Honeywell piezoelectric
pressure transducer, model 130PC, Marshall Industries, Burlington, MA), but the
inflow rate cannot be determined. This first method is used during the equilibra-
tion period following the alteration of the perfusion pressure to a new level. The
second perfusion method uses the Harvard pump (Model 944, Harvard Apparatus
Co., South Natick, MA) with computer control (Minc 11-23 digital computer) of
the inflow rate via pressure signal feedback. This method is used when it is de-
sired to measure the instantaneous flow resistance. The pump pushes forward the
plunger of a 2.5 ml glass syringe (Hamilton Syringe Co., Reno, Nevada) to provide
a known flowrate which is input controllable. Assuming that the flow resistance of
the connecting lines is negligible, the pressure monitored by the transducer should
be equal to the pressure in the anterior chamber of the eye. In constant flow mode,
the desired inflow rate is entered into the computer control unit, and the pressure
in the eye would then be an open-loop output signal. In constant pressure mode,

the inflow rate is continuously varied by the computer to maintain pressure at the
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desired level. The pressure signal P(t) is compared to a desired set-point Py, and

the inflow rate Q(t) is varied according to the control law

dQ(t) _
—5 —olPt)-Fi)-p

20 (10)
If the pressure is given in mmHg and the flowrate in ul/min, typical values for the
control parameters are @ = 5 and # = 3 in the appropriate units.

The eyes were perfused at 10 mmHg, 50 mmHg and 100 mmHg;, the pressure
sequence was randomly chosen between pairs of eyes. The perfusion pressure was
maintained for 60 minutes before it was changed, and every eye was perfused for two
separate 60 minute periods at each pressure level, which resulted in a total perfusion
time of 6 hours. The pressure sequence for any given pair of eyes was staggered by
a 30 minute time lag between the two eyes. The first 30 minutes of a 60 minute
period was spent perfusing with the reservior, since resistance measurements are
not required during the equilibration period after a pressure change. During the
last 30 minutes, the Harvard pump was used to obtain measurements of the flow

resistance at steady state.

4.3 Results and Discussion

The resistance measurements for 5 eyes are presented in table 1, as are the
average resistances for the group of 5 eyes at each pressure (R) and the average
resistances when normalized with respect to the resistance of each eye at JIOP=10
mmHg (R/Ry). The average resistances and normalized average resistances are
plotted in figures 4.2 and 4.3 respectively (see section 5.1 for an explanation of the
normalization method used to present the P-R data). The results indicate that
the resistance increases linearly as a function of intraocular pressure in the 10-100
mmHg range covered in this study. This is consistent with the earlier study by
Brubaker [8] that found the outflow resistance to increase linearly with respect to
IOP in the 5-50 mmHg range.

The normalized rate of resistance increase was calculated to be 0.9% per mmHg
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rise in IOP, which agrees fairly well with the 1.2% figure found in the Brubaker
study [8]. The slopes from both of these studies are substantially lower than the
2.0% per mmHg slope found by Ellingsen and Grant [11] in the smaller 10-30mmHg
IOP range.

Assuming that the average rate of resistance increase as a function of IOP for
a normal human eye is 1.0% per mmHg, this would limit the pressure increase
which could be caused solely by meshwork weakening and a concomitant collapse
of Schlemm’s canal. At pressures which can be considered glaucomatous (ie. a
pressure drop of 20 mmHg or more), the outflow resistance increases by only ~20%
from the baseline value at zero pressure, which correlates to only a small increase
in pressure (~2mmHg) under constant flow conditions.

K,. was determined by numerical trial and error so that the model produces a
normalized resistance vs. pressure slope of ~1% per mmHg in the 50-100mmHg
pressure range to match the experimental data presented in this chapter. If the
pressure drop is given in units of mmHg, and h(x) in um, K,. would be equal to
5.0 um/mmHgt.
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5 Comparison of the Model to Experimental

Data

5.1 The Relationship Between IOP and Outflow Resistance

eExperimental Pressure-Resistance Data

One of the major difficulties with modelling the P-R characteristics of the enu-
cleated human eye is the enormous scatter in the data between different researchers
(see figure 5.1). A number of factors can cause this variability, amongst which are
the average age of the eyes and the time allowed for steady state conditions to be
achieved. It is desirable to collapse the data of the various researchers into a single
curve which would represent the P-R characteristics of the ‘typical’ human eye.
Normalizing the experimental data by the resistance measured at IOP=10 mmHg
for each data set produces the desired effect, reducing the data scatter to an ac-
ceptable level. The resistance at 10 mmHg (R,o) was selected as the normalization
parameter because it is the lowest pressure common to all the data sets. A similar
method of analysis was used by Brubaker (8] to compare the P-R curves of different
investigators. Noting that all of the P-R curves were roughly linear, Brubaker in-
troduced an ‘outflow obstruction coefficient’ Q which is the slope of the normalized
P-R curve. These two methods of analysis are equivalent because scatter reduction
after normalization would only occur if the Q’s of the various data sets are similar.
One can show that the normalization procedure is at least consistent within itself
for a given set of data. By separating the data of Brubaker (courtesy of Dr. R.
Brubaker, via letter to Dr. M. Johnson) into two groups consisting of the eyes
with the five highest and five lowest resistances, one can replot the data set as two
separate P-R curves (figure 5.2). At first glance, the correlation between these two
dal. sets seems to be quite minimal, but normalizing with respect to (R)o) again
resulis in the collapse of the two curves into a single line (figure 5.3).

The success of the normalization suggests that the change in resistance as a

function of IOP is dependent upon the characteristics of the outflow system in the
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uncollapsed state (at low prezsure). The network model assumes that the change
in resistance as a function of IOP is solely caused by canal collapse. If such an
assumption is indeed valid, the normalized P-R curve of the model would also have
to be indepedent of the resistance at low pressure, a hypothesis which is tested in

section 6.1.

ePressure-Dependent Characteristics of the Network Model

To model the P-R curve, all the network parameters are taken to be uniform
throughout the system; in other words, the homogeneous case (see section 1.2)
is studied as the basis for comparison. The absolute and normalized resistance
curves of the network model are plotted in figures 5.4 and 5.5 respectively, with the
experimental data also included for figure 5.5. The slight decrease in resistance in
the 5-10 mmHg range is caused by the decrease in collector channel resistance. Such
fine details in the P-R curve would not expected to be rendered in the human eye
because of natural variability in the outflow system. Parameter variability tends
to "smooth out” the model P-R curve because canal collapse would then occur at
different pressures in various regions of the system.

The experimental results presented in chapter 4 show that the resistance in-
creases linearly with respect to IOP in the 10-100 mmHg pressure range. The
3-power law chosen to model the septae height (see section 2.2), produces a fairly
linear P-R curve in the range covered by the experiment. Agreement with the previ-
ous experimental data in the 10-50 mmHg pressure range is quite good, the closest
correlation being with the Brubaker data.

The pressure distribution in Schlemm'’s canal as predicted by the model is pre-
sented in figure 5.6 normalized with respect to IOP. At IOP=10 mmHg, canal
resistance is negligible, and thus the pressure in the canal is independent of loca;
tion in the canal. As JOP increases, the pressure in the canal increases everywhere
but the normalized pressure (P(x)/IOP) decreases in the region surrounding a col-
lector channel, while increasing in the midsection between adjacent CC’s. Canal

resistance increases as IOP is elevated, resulting in a greater fraction of the total
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pressure drop across the outflow network o~ urring before the collector channels.

The canal height distribution in Schlemm’s canal as predicted by the model is
presented in figure 5.7. Canal collapse begins to occur at IOP~15 mmHg, when
the canal starts to pinch down near the CC’s. Quantitatively, the average height of
the canal predicted by the model as a function of IOP agrees well with the findings
of Johnstone & Grant [19], which is to be expected since the meshwork stiffness
(Etm) is based on data from the same study. At IOP=5 mmHg, Johnstone & Grant
observed the canal to be wide open, which is consistent with the model prediction
that the canal retains 75% of its maximum (uncollapsed) height at that particular
IOP. At IOP=15 mmHg, Johnstone & Grant found the canal lumen to be in a
transition state, being partially collapsed in some areas. Again, this is consistent
with the model results which show the canal to be partially collapsed only near
the CC’s when IOP=15 mmHg. Finally, Johnstone & Grant observed the canal to
be fully collapsed at IOP=30 mmHg, which agrees with the model prediction that
~T70% of the canal lumen is compressed down to the level of the septae support
structures.

One interesting finding which can be inferred from the height distribution plot
(figure 5.7) is that the canal height rema<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>