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Large-Eddy Simulation of Transonic Buffet
Using Matrix-Free Discontinuous Galerkin Method

Ngoc Cuong Nguyen,∗ Sebastien Terrana,† and Jaime Peraire‡

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

https://doi.org/10.2514/1.J060459

We present an implicit large-eddy simulation of transonic buffet over the OAT15A supercritical airfoil at Mach

number 0.73, angle of attack 3.5 deg, and Reynolds number 3 × 106. The simulation is performed using a matrix-free

discontinuousGalerkin (DG)method and a diagonally implicit Runge–Kutta scheme on graphics processor units.We

propose a Jacobian-free Newton–Krylov method to solve nonlinear systems arising from the discretization of the

Navier–Stokes equations. The method successfully predicts the buffet onset, the buffet frequency, and turbulence

statistics owing to the high-order DG discretization and an efficient mesh refinement for the laminar and turbulent

boundary layers. A number of physical phenomena present in the experiment are captured in our simulation,

includingperiodical low-frequency oscillations of shockwave in the streamwisedirection, strong shear layer detached

from the shock wave due to shock-wave/boundary-layer interaction and small-scale structures broken down by the

shear-layer instability in the transition region, and shock-induced flow separation. The pressure coefficient, the root

mean square of the fluctuating pressure, and the streamwise range of the shock wave oscillation agree well with the

experimental data. The results suggest that the proposed method can accurately predict the onset of turbulence and

buffet phenomena at high Reynolds numbers without a subgrid scale model or a wall model.

Nomenclature

a = sound speed
Cp = pressure coefficient, 2�p − p∞�∕�ρ∞u2∞�
c = chord
cp = specific heat at constant pressure

E = total energy
h = element size
k = polynomial degree
M∞ = freestream Mach number
Pr = Prandtl number
p = static pressure
Rec = Reynolds number based on chord length
T = temperature
Ts = computed nondimensionalized time period of shock

wave oscillation
t = physical time
uj = flow velocity components

uτ = friction velocity
u∞ = freestream velocity
x = chordwise distance from wing apex
y = vertical distance from chord line
y� = distance from wall in wall units
z = spanwise distance
α = angle of attack
β = bulk viscosity
γ = ratio of specific heats
Δt = time step
κ = thermal conductivity
μ = dynamic viscosity
ρ = density
τij = viscous stress tensor

Ω = physical domain
� = dimensionalized value

I. Introduction

T RANSONIC flows over an airfoil result in complex interactions
between shock waves and viscous boundary layers. A particu-

larly interesting phenomenon concerning modern supercritical
airfoils is transonic buffet, whereby the flow separation induces a
large-scale self-sustained motion of the shock over the surface of the
airfoil. Transonic buffet can cause large-scale lift oscillations and
structural vibrations that limit an aircraft’s flight envelope. While the
shock buffet phenomenon has been widely studied since it was first
observed by Hilton and Fowler [1] in the aftermath of the Second
World War, there is still no consensus on the exact mechanism
governing the buffet dynamics (see reviews [2,3]). Therefore, new
experimental and numerical studies are still desirable to achieve a
better understanding of the phenomenon.
Among the experimental investigations of transonic buffet, the test

campaign organized by ONERA on the OAT15A airfoil produced a
variety of high-quality pressure and velocity measurements suitable
for comparisons with numerical studies. The OAT15A airfoil was
investigated experimentally by Jacquin et al. [4] at a freestreamMach
number 0.73 and a chord-based Reynolds number 3 × 106. The
OAT15A is a supercritical wing section with a thickness-to-chord
ratio of 12.3%, a chord of 0.23m, and a blunt trailing edgemeasuring
0.005c. The airfoil model was tripped on both sides at x∕c � 0.07
from the leading edge to trigger transition to turbulence at that
location. The trip was 3 mm wide, with 0.089 mm grains on the
lower side and 0.102 mm on the upper side. In the experiment, a
periodic self-sustained shock wave motion with the frequency of
69Hzwas observed over the top surface of the airfoil between x∕c �
0.35 (most upstream shock position) and x∕c � 0.65 (most down-
stream shock position) when the airfoil was kept at 3.5 deg angle of
attack. The flow separates from the foot of the shock as the shock
moves to its most upstream position and reattaches as the shock
moves to its most downstream position.
The numerical prediction of transonic buffet is challenging due

to the coexistence of multiple physical phenomena such as turbulent
structures in the thin turbulent boundary layer (TBL) at high
Reynolds number, unsteady shock wave, shock-induced separation,
acoustic wave generation and propagation, and structural vibrations.
Numerical tools for predicting transonic buffet rely mostly on turbu-
lence models including Reynolds-averaged Navier–Stokes (RANS),
unstead RANS (URANS), and detached-eddy simulation (DES).

Received 28 December 2020; revision received 22 October 2021; accepted
for publication 5 December 2021; published online 22 February 2022. Copy-
right © 2022 by the American Institute of Aeronautics and Astronautics, Inc.
All rights reserved. All requests for copying and permission to reprint should
be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X
to initiate your request. See alsoAIAARights and Permissionswww.aiaa.org/
randp.

*Principal Research Scientist, Department of Aeronautics and Astronau-
tics; cuongng@mit.edu. Senior Member AIAA.

†Research Engineer; currently CEA,DAM,DIF, F-91297Arpajon, France;
sebastien.terrana@cea.fr.

‡Professor, Department ofAeronautics andAstronautics; peraire@mit.edu.
Fellow AIAA.

Article in Advance / 1

AIAA JOURNAL

https://orcid.org/0000-0001-9167-5780
https://doi.org/10.2514/1.J060459
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
www.aiaa.org/randp


RANS is not capable of accurately predicting transonic buffet
because it cannot capture the periodic motion of the shock. In the
numerical simulations of transonic buffet, turbulence models have an
enormous influence on the the prediction accuracy of the buffet onset.
For instance, the study of Thiery and Coustols [5] showed that the
baseline k-omega (BSL) [6] and Spalart–Allmaras (SA) [7] models
yielded a steady solution, while the k-kl turbulence (KKL) [8] and
shear-stress transport (SST) [6] models produced periodic shock
oscillations. DES is a hybrid approach to simulate turbulent flows
by modeling the attached boundary layer with RANS, while resolv-
ing the unsteady separated flow with large-eddy simulation (LES).
Several studies of transonic buffet over theOAT15A airfoil have been
performed by using the various versions of DES [9–11]. Deck [9]
performed both standard DES and zonal DES (ZDES) of the tran-
sonic buffet over the OAT15A airfoil. In that study, ZDES predicted
the self-sustained motion of the shock wave and overestimated the
size of the shock-induced separation, while standard DES did not
reproduce the shock motion. Grossi et al. [10] performed delayed
DES (DDES) over the OAT15A airfoil and compared the results
with URANS and ZDES. Huang et al. [11] performed the improved
DDES (IDDES) with appropriate blending between DDES and wall-
modeledLES functionality. However, the sensitivity of the prediction
accuracy on the switching location between RANS and LES is a
major drawback of the DES approach.
Wall-modeled LES (WMLES) is another turbulence simulation

approach in which LES attempts to resolve turbulence features in the
outer part of the boundary layer, while the unresolved turbulence in
the inner part of the boundary layer is modeled. The recent work of
Fukushima and Kawai [12] is the first WMLES prediction of the
transonic buffet over the OAT15A airfoil. In that work, a selective
mixed-scale model [13] is used to compute the turbulent eddy
viscosity in the LES-resolved region, and the unresolved inner layer
is modeled by solving two coupled ordinary differential equations
(ODEs) for the wall-parallel velocity and the temperature. The num-
ber of total grid points in the WMLES computation is 440 million
grid points, which is about two orders of magnitude higher than the
previously mentioned DES simulations. The results obtained by the
WMLES show good agreement with the experiments, and turbulence
structures are better resolved than those of ZDES,DDES, and IDDES
simulations.When LES resolves the inner part of the boundary layer,
the approach is called wall-resolved LES (WRLES). WRLES is
expected to produce more accurate predictions than WMLES, at a
higher computational cost [14]. Garnier and Deck [15] conducted the
first WRLES prediction of the transonic buffet over the OAT15A
airfoil. To limit the required computational effort, the flow is com-
puted in two-dimensional (2D) RANS mode using the SA model on
the pressure side of the airfoil and in LES mode (the Selective Mixed
Scales Model) on the suction side and in the wake. Despite the zonal
treatment of the flow, 20.8 million cells are used in their coarser grid,
and twice as many are used in their finer grid. The WRLES predic-
tions agree reasonablywell with the experiments in terms of themean
field analysis and spectral analysis.
In the LES approach, the large-scale eddies of the flowfield are

resolved, and the small scales are modeled using an appropriate
subgrid-scale (SGS) model. When the small-scale eddies are directly
resolved by using a fine computational grid and a small time-step
size, the method is called direct numerical simulation (DNS). DNS
remains prohibitive for turbulent flows at highReynolds numbers due
to the enormous grid points required to resolve the small-scale eddies.
When the number of grid points is not sufficient to resolve the small-
scale eddies but enough to resolve the large-scale eddies, the method
is called underresolved DNS (UDNS) or sometimes referred to as
implicit LES (ILES) [16]. In recent years, the use of discontinuous
Galerkin (DG)methods for UDNS/ILES of transitional and turbulent
flows gains considerable attention from researchers in computational
fluid dynamics [16–23]. It is shown in [24] that for moderate poly-
nomial degrees (between 2 and 4) DG methods introduce numerical
dissipation in underresolved computations of convection-dominated
flows, which acts as an implicit filter to dissipate the unresolved
turbulent features. The numerical dissipation is localized near the
Nyquist wave number and applied to the smallest resolved scales,

while the amount of such dissipation dependsmostly on the energy in
those scales. Therefore, by choosing the element size h and the
polynomial degree k, the numerical dissipation can be tuned to filter
the unresolved scales appropriately. Recently, Pazner et al. [25]
applied a high-order DG method to the ILES simulation of transonic
buffet on the OAT15A airfoil to study the effect of mesh refinement,
polynomial degree, and artificial viscosity parameters.
In this paper, we propose an implicit matrix-free discontinuous

Galerkin method for ILES computation of transonic buffet over the
OAT15A supercritical airfoil at at Mach number 0.73, angle of attack
3.5 deg and Reynolds number 3 × 106. To avoid the Courant–Frie-
drichs–Lewy (CFL) limitation on the time step size, we use diago-
nally implicit Rung–Kutta (DIRK) schemes to discretize the time
derivative. We develop a Jacobian-free Newton–Krylov (JFNK)
method to solve nonlinear systems arising from our spatial and
temporal discretization of the Navier–Stokes equations. These meth-
ods are implemented using CUDA C/C++ with MPI-based paralle-
lization to harness the computational power of NVIDIA graphics
processor units (GPUs). Furthermore, accurate prediction of turbu-
lent flows at high Reynolds numbers requires a good approximation
of both laminar and turbulent flows in the boundary layers. To
adequately resolve the boundary layers, we employ a mesh refine-
ment strategy that refines the grid toward the wall and keeps the cell
aspect ratio sufficiently small. Our ILESmethod is used to predict the
buffet onset, the buffet frequency, and turbulence statistics and
capture various turbulence phenomena such as periodical low-fre-
quency oscillations of shockwave in the streamwise direction, strong
shear layer detached from the shock wave due to shock-wave/boun-
dary-layer interaction (SWBLI) and small-scale structures broken
down by the shear layer instability in the transition region, and shock-
induced flow separation. The pressure coefficient, the rms of the
fluctuating pressure, and the streamwise range of the shock wave
oscillation are in good agreement with the experimental data [4].
The results reported in this paper demonstrate that our method can

accurately predict the onset of turbulence and buffet phenomena at
high Reynolds numbers without a subgrid-scale model or a wall
model. The successful computation of transonic buffet over the
OAT15A airfoil could represent an important step toward the devel-
opment and application of wall-resolved simulations for turbulent
flows at high Reynolds numbers. From our perspective, algorithmic
advances in several fronts from discretization schemes, mesh adap-
tivity, and iterative solvers to efficient implementations onmany-core
processors are necessary to make wall-resolved simulations feasible
for flows at Reynolds numbers that are beyond the reach of DNS for a
foreseeable future.Wall-resolved simulations are useful for nonequi-
librium three-dimensional turbulent boundary layers for which
existing wall models lack of capabilities to capture the flow physics.
In particular, nonequilibrium three-dimensional turbulent boundary
layers have peculiar features that are challenging to model, such as
the misalignment of the Reynolds shear stress and the mean shear
stress.
The paper is organized as follows. In Sec. II, we describe the

numerical methodology to discretize the Navier–Stokes equations.
In Sec. III, we discuss and compare the obtained results with the
experimental data [4] and with the available numerical experiments:
ZDES [9], DDES [10], coupled RANS/LES [15], andWMLES [12].
Finally, some concluding remarks and a rationale for the success of
ILES for transonic buffet prediction are presented in Sec. IV.

II. Methodology

A. Governing Equations

Let tf > 0 be a final time, and let Ω ⊂ Rd, 1 ≤ d ≤ 3 be an open,
connected, and bounded physical domain with Lipschitz boundary
∂Ω. The unsteady compressible Navier–Stokes equations in conser-
vation form are given by

q − ∇u � 0; in Ω × �0; tf� (1a)

∂u
∂t

� ∇ ⋅ F�u; q� � 0; in Ω × �0; tf� (1b)
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B�u; q� � 0; on ∂Ω × �0; tf� (1c)

u − u0 � 0; on Ω × f0g (1d)

Here, u � �ρ; ρuj; ρE�; j � 1; : : : ; d is the m-dimensional (m � d
�2) vector of conserved quantities, u0 is an initial state, B�u; q� is a
boundary operator, andF�u; q� are the inviscid and viscous fluxes of
dimensions m × d,

F�u; q� �

0
BB@

ρu

ρu ⊗ u� pI − τ

u�ρE� p� − τu� f

1
CCA (2)

where p denotes the thermodynamic pressure, τ is the viscous stress
tensor, f is the heat flux, and I is the identity tensor. For a calorically
perfect gas in thermodynamic equilibrium, p � �γ − 1��ρE
−ρjuj2∕2�, where γ � cp∕cv > 1 is the ratio of specific heats and

in particular γ ≈ 1.4 for air; cp and cv are the specific heats at constant
pressure and volume, respectively. For a Newtonian fluid with the

Fourier law of heat conduction, the viscous stress tensor and heat flux

are given by

τij�μf

�
∂ui
∂xj

�∂uj
∂xi

−
2

3

∂uk
∂xk

δij

�
�βf

∂uk
∂xk

δij; fj�−κ
∂T
∂xj

(3)

where T denotes temperature, μf is the dynamic (shear) viscosity, βf
is the bulk viscosity, κ � cpμ∕Pr is the thermal conductivity, andPr
is the Prandtl number;Pr ≈ 0.71 for air, and βf � 0 under the Stokes

hypothesis.
To deal with shock waves and discontinuities, we add artificial

viscosities to the physical ones as

β � βf � �β�; μ � μf � �μ� (4)

where �β� and �μ� are the artificial bulk viscosity and artificial shear

viscosity, respectively. The governing equations numerically discre-

tized herein are still Eqs. (1–3), where both μf and βf in Eq. (3) are

replacedwith μ and β in Eq. (4), respectively. The artificial viscosities
are defined in the next section.

B. Shock Capturing

In this work, we modify the physics-based artificial viscosity

approach introduced in our previous work [26,27]. Specifically, we

follow Fernandez et al. [27] without the artificial thermal conduc-

tivitywhich is designed for the strong shocks appearing in hypersonic

flows. This approach relies on shock and shear sensors. The shock

sensor, evaluated pointwise, is constructed such that

sβ�x� � sd ⋅ sω; sd � −
h

k

∇ ⋅ u
a�

; sω � �∇ ⋅ u�2
�∇ ⋅ u�2 � j∇ × uj2 � ε

(5)

where ε is a constant of the order of the machine precision squared, k
is the polynomial degree and a� is the critical speed of sound. In

Eq. (5), the dilatation sensor sd is multiplied with Ducros’s indicator

[28] sω to avoid adding artificial viscosity to vortices. The element

size is taken along the direction of the density gradient

h�x� � href
j∇ρj�������������������������������������

∇ρT ⋅M−1
h ∇ρ� ε

p (6)

whereMh is the metric tensor of the mesh and href is the size of the
reference element used in the construction ofMh. The shear sensor is

also designed to detect underresolved features, namely, velocity

gradients, and is constructed from

sμ�x� �
href
k

kL�u�k2
u∞

(7)

where k ⋅ k2 denotes the Euclidean norm, u∞ is the freestream

velocity, and L�u� � �1∕2��∇u� ∇uT�. Note that the sensors not
only detect discontinuities but also determine the amount of artificial
viscosity to stabilize them.
Finally, we define artificial bulk viscosity and artificial molecular

viscosity as

β��x� � ŝβ
kβh

k

����������������������
juj2 � a�2

q
; μ��x� � ŝμ

kμh

k

����������������������
juj2 � a�2

q
(8)

Here, kμ;κ � 1, kβ � 1.5, and �ŝβ; ŝμ� denote the smoothly bounded
values of the sensors in Eqs. (5) and (7) and are given by

ŝβ�x� � l�sβ; sβ;0; sβ;max�; ŝμ�x� � l�sμ; sμ;0; sμ;max� (9)

The functionl represents a smooth approximation to the following
limiting function: L�s; s0; smax� � minfmaxfs − s0; 0g − smax; 0g
�smax. In particular, it is defined as follows:

l�s; s0; smax� � lmin�lmax�s − s0� − smax� � smax (10)

where

lmax�s� �
s

π
arctan�100s� � s

2
−
1

π
arctan�100� � 1

2
;

lmin�s� � s − lmax�s� (11)

Here, the first parameter s0 represents the starting point of the
limiting function l where it begins to increase with s, while the
second parameter smax > 0 is the upper bound of the nonnegative
variable s. The shock parameters are chosen as sβ;max � sμ;max � 2,

sβ;0 � 0; 01, and sμ;0 � 1 according to Fernandez et al. [27].

Because the original artificial viscosity fields �β�; μ�� are discon-
tinuous, a node-averaging operator is applied to �β�; μ�� to make

them C0 continuous. The smooth reconstruction of the artificial
viscosity field β��x� is done by averaging all the multiple values of
β��x� along the element boundaries to obtain a continuous field
�β��x�. The proposed reconstruction is particular to the DG discreti-
zation. Let xn; 1 ≤ n ≤ nkne, be DG nodes of a high-order finite
element mesh T h, where nk is the number of nodes per element and

ne is the number of elements. For every node xn, �β
��xn� � �1∕Jn�PJn

j�1 β
��xn�jKj

, whereKj, 1 ≤ j ≤ Jn, are all the elements in which

xn is located. If a mesh node xn is located inside an element, then
Jn � 1, and if it is located on a face, then Jn � 2. If it is located on an
edge or at an element vertex, then Jn is equal to the number of
elements connected to that edge or that vertex, respectively. In

essence, �β��xn� is a polynomial of degree k on every element
and continuous across element interfaces. Therefore, the present
reconstruction is different from the elementwise linear reconstruction
used in [26,27].

C. Discontinuous Galerkin Method

Let Ω ⊆ Rd with d � 3 be a physical domain with Lipschitz
boundary ∂Ω. We denote by T h a collection of disjoint, regular, kth
degree curved elements K that partition Ω and set ∂T h ≔ f∂K:K ∈
T hg to be the collection of the boundaries of the elements in T h. Let

Pk�D� denote the space of complete polynomials of degree k on a

domain D ∈ Rn, let L2�D� be the space of square-integrable func-
tions on D, and let ψk

K denote the kth degree parametric mapping
from the reference element Kref to some element K ∈ T h in the
physical domain. We then introduce the discontinuous finite element
spaces

Qk
h � fr ∈ �L2�T h��m×d:�r ∘ ψk�jK ∈ �Pk�Kref��m×d∀K ∈ T hg;

Vk
h � fw ∈ �L2�T h��m:�w ∘ ψk�jK ∈ �Pk�Kref��m∀K ∈ T hg
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wherem denotes the number of equations of the conservation law, in

other words, m � d� 2 for the Navier–Stokes system. Next, we

define several inner products associated with these finite element

spaces as

�w; v�T h
�

X
K∈T h

�w; v�K �
X
K∈T h

Z
K
w ⋅ v (12a)

�W;V�T h
�

X
K∈T h

�W;V�K �
X
K∈T h

Z
K
W:V (12b)

hw; vi∂T h
�

X
K∈T h

hw; vi∂K �
X
K∈T h

Z
∂K

w ⋅ v (12c)

for w, v ∈ Vk
h, W, V ∈ Qk

h, where ⋅ and : denote the scalar product
and Frobenius inner product, respectively.
TheDGdiscretization of the governing equations reads as follows.

Find �qh�t�;uh�t�� ∈ Qk
h ×Vk

h such that

�qh; r�T h
� �uh;∇ ⋅ r�T h

− hbuh; r ⋅ ni∂T h
� 0 (13a)

�
∂uh
∂t

;w

�
T h

−�F�uh;qh�;∇w�T h
�hbfh�uh;qh�;wi∂T h

�0 (13b)

for all �r;w� ∈ Qk
h × Vk

h and all t ∈ �0; tf�, as well as

�uhjt�0 − u0;w�T h
� 0 (13c)

for all w ∈ Vk
h. Here, buh is the numerical trace, and bfh is the

numerical flux. For DG methods, both the numerical trace and flux

must be continuous across element boundaries. The general form of

the numerical trace and flux on the interior faces that satisfies the

continuity requirement is given by

buh � 1

2
�u�h �u−h ���u�h β ⋅n��u−hβ ⋅n−�� γ ⋅ �q�h ⋅n��q−h ⋅n−�;

bfh �
1

2
�F�u�h ;q�h ��F�u−h ;q−h �� ⋅n��σ ⋅ �u�h −u−h � (14)

where β is a vector-valued function and γ, σ are a matrix-valued

function. Note that u�h � uhjF∈K� and u−h � uhjF∈K− denote the

restriction of the numerical solution uh on interior face F shared by

elements K� and K−. On the boundary faces, the definition of the

numerical trace and flux depends on the boundary conditions. For the

computation performed herein, there are two types of boundary

conditions, namely, the far-field condition and adiabatic wall con-

dition. We refer to [16,29] for the implementation of these two

boundary conditions.
Different choices of the stabilization functions β, γ, σ result in

different DG methods. The Local DG (LDG) method [30] corre-

sponds to γ � 0, the second Bassi–Rebay (BR2) method [31] corre-

sponds to β � γ � 0, and the first Bassi–Rebay (BR1) method [32]

corresponds to β � γ � σ � 0. These stabilization functions play an
important role in the stability and accuracy of the resulting DG

method. Indeed, it is known that the BR1 method is not stable for

elliptic problems [33]. The hybridized DG (HDG) method [16,29]

does not define the numerical trace buh terms of the approximate

solution. In the HDG method, the numerical trace buh becomes a

dependent variable to be solved together with �uh; qh� by introducing
another equation that weakly imposes the continuity of the numerical

flux. The HDG method is computationally efficient when we form

and solve the matrix system because it results in smaller matrix

system than the LDG method and the BR2 method. However, the

HDG method is not suited to our matrix-free approach because

computing the residual of the HDG method involves solving non-

linear local problems for �qh; uh� in terms ofbuh. Hence, it would be

computationally expensive to use the HDGmethod within the JFNK
approach.
In this paper, the BR2 method is used to discretize the compress-

ible Navier–Stokes equations in space because it is suited to the
matrix-free solution method introduced in the next section. Herein,
we choose β � γ � 0 and σ � λmax�buh�I, where λmax denotes the
maximum-magnitude eigenvalue of An�uh� � �∂Finv�uh�∕∂u� ⋅ n
with Finv being the inviscid part of the flux function F. For general
convection/diffusion problems, the stabilization term σ should
include both the convection-stabilizing term σc and the diffusion-
stabilizing term σd, namely, σ � σc � σd, so that the resulting
scheme can be stable in both pure convection limit and pure diffusion
limit. The convection-stabilizing term is usually computed by using
approximate Riemann solvers such as HLL/HLLC schemes, Roe’s
scheme, and the Lax–Friedrich scheme, while the diffusion-stabiliz-
ing term is proportional to the diffusion coefficient. Because our
particular problem presented in the next section is strongly convec-
tion dominated, the diffusion-stabilizing term σd ∼ 1∕Re can be
neglected. See [16,29,34,35] for additional discussion on the stabi-
lization of DG methods.
For computational efficiency, we can eliminate qh to obtain a new

system in terms of uh only as follows. It follows from Eqs. (13a) and
(14) that

qh � ∇uh � L�uh� (15)

whereL�uh� ∈ Pk�K� is solved in an element-by-element fashion as

�L�uh�; r�K � hbuh − uh; r ⋅ ni∂K; ∀ r ∈ Pk�K� (16)

for every element K ∈ T h. Because buh depends linearly on uh, qh
also linearly depends on uh. Hence, we can substitute (15) into (13b)
to obtain the following weak form. Find uh�t� ∈ Vk

h such that�
∂uh
∂t

;w

�
T h

− �F�uh;D�uh��;∇w�T h
�hbfh�uh;D�uh��;wi∂T h

� 0

(17)

for all w ∈ Vk
h, where D�uh� � ∇uh � L�uh�. The given weak

formulation can be written as a system of ordinary differential
equations in matrix form as

M
du

dt
� g�u� � 0 (18)

where u is the vector of degrees of freedom of uh, M is the mass
matrix, and g�u� is a nonlinear vector-valued function corresponding
to the last two terms of Eq. (17).
Finally, the semidiscrete system (18) is further discretized in time

using the L-stable DIRK schemes [36]. The use of L-stable DIRK
methods for the temporal discretization is important to maintain
accuracy and stability because the DG discretization of turbulent
shock flows at high Reynolds number results in very stiff nonlinear
ODE systems. If the use of an implicit time scheme allows us to
alleviate the CFL limitation on the time-step size, the latter cannot
be arbitrary large in practice. Whenever LES or DNS is the aim, the
time step has to be small enough to resolve the viscous time scales
(see [37] and also Sec. III.A.3). Moreover, for aeroacoustic prob-
lems, the time step also has to sample the acoustic high frequencies
of interest.

D. Solution Method

Our solution method aims to find good initial guesses for both
nonlinear and linear systems in order to reduce the number of
iterations. Newton’s method is used to solve the nonlinear system
of equations, R�un� � 0, resulting from the temporal discretization
of the system (18), where un ∈ Rndof is the vector of degrees of
freedom of unh and R�⋅� ∈ Rndof is the residual vector. We note that

ndof � �d� 2�nkne, where nk is the number of DG nodes per
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element and ne is the number of elements. Furthermore, the time-
stage step is given by n � �nt − 1�ns � s, where nt is the ntth time-
step, ns is the number of stages for a DIRK scheme, and s is the sth
stage. To reduce the number of Newton iterations, we propose to

compute the initial guess un;0 as

un;0 ≔
Xnα
j�1

αju
n−j (19)

where theun−j are the previously computed solutions of the nonlinear
systems and the coefficients αj are found by solving the following

least-squares problem

�α1; : : : ; αnα� � arg min
�β1;: : : ;βnα �∈Rnα

����R
�Xnα

j�1

βju
n−j

����� (20)

This optimization problem is solved by using the Levenberg–Mar-
quardt algorithm [38] in which the gradient vectors ∂R∕∂βj are

approximated by finite difference and thus require nα residual eval-
uations. This procedure introduced in [16] aims to reduce the number
of Newton iterations compared to the standard initialization using the
previous solution as the initial guess. For the computation presented
in this paper, the number of Newton iterations required to converge

for a specified tolerance 10−8 is equal to 2 for nα � 5 and 3 for
nα � 1. Hence, the initialization (19) reduces the number of Newton
iterations from3 to 2, compared to the standard initialization that uses
the previous solution as the initial guess. This can substantially
reduce the computational cost because the number of GMRES
iterations per Newton iteration is about 30 for our simulation of the
buffeting phenomena described in the next section.
For everymth iteration of the Newton method, we use GMRES to

solve the resulting linear system

J�un;m�δun;m � −R�un;m� (21)

for the Newton increment δun;m, where J�un;m� � ∂R�un;m�∕∂u is
the Jacobian matrix. In what follows, we shall drop the superscriptm
to simplify the notation. Hence, the superscript n should be under-
stood as the superscript n, m in the remainder of this section.
Following the same idea applied to the Newtonmethod, we construct
a reduced basis (RB) approximation [39–41] to δun and use it as an
initial guess in order to accelerate the GMRES method. Given a

reduced basisWn � spanfδun−j; 1 ≤ j ≤ nrbg consisting of nrb pre-
vious solution vectors of the linear systems, the RB approximation to
δun is computed as the best least-squares solution of the following
problem:

δunrb � arg min
δw∈Wn

kJ�un�δw�R�un�k (22)

It thus follows that δunrb � Wna
n
rb, wherea

n
rb ∈ Rnrb is the solution of

the RB system, Jrb�un�an
rb � −Rrb�un�, with Jrb�un���J�un�

Wn�T�J�un�Wn) and Rrb�un� � �J�un�Wn�TR�un�. Forming the
RB system requires J�un�Wn, which is approximately computed
by the finite difference (28). Typically, we set nrb � 5, and the cost of
inverting the RB system is thus negligible. The RB approximation
δunrb is used as the initial guess in theGMRESmethod that solves (21)

for δun.We thus obtain δun � δvn � δunrb, where δv
n is the best least-

squares solution of the following problem:

δvn � arg min
δw∈Kr�J�un�;b�un��

kJ�un�δw� b�un�k;

with b�un� � R�un� � J�un�δunrb (23)

Here, Kr�J�un�; b�un�� � spanfb�un�; J�un�b�un�; : : : ; �J�un�r
b�un�g is the Krylov subspace at the rth iteration. Therefore, it
follows from Eqs. (22) and (23) that our method is similar to the
restarted GMRES method. The main difference between our method
and the restarted GMRES method is that the restarted GMRES

method uses the Krylov subspace Kr�J�un�;R�un��, whereas our
method uses the RB space Wn for the first outer iteration.
Furthermore, we make use of the reduced basisWn to construct a

matrix-free preconditioner to be used in the GMRES method for
solving (23). The idea lies in the construction of an approximation to
the Jacobian matrix J�un� through a suitable low-rank approxima-
tion. In particular, the preconditioner has the form

Pn � M� VnD
−1
n WT

n (24)

whereM is a matrix whose inverse is inexpensive to compute, while
Vn and Dn are chosen to satisfy the following condition:

PnWn � J�un�Wn (25)

It thus follows that we obtain Dn � WT
nWn and Vn � J�un�Wn

−MWn. Using the Sherman–Morrison–Woodbury formula, we can
compute the inverse of the preconditioner Pn as

P−1
n � M−1 −M−1Vn�Dn �WT

nM
−1Vn�−1WT

nM
−1 (26)

The preconditioner of the form (24) is similar to the BFGS update
[42–45] with a distinctive feature that our approach allows for
arbitrary-rank approximation, whereas the BFGS update is only a
rank-2 approximation of the Jacobianmatrix. In this paper,we use the
mass matrix to form the matrixM. Note that the mass matrix and its
inverse are block diagonal and computed only once. It follows from

Eq. (26) that the product of P−1
n with any given vector y is given by

P−1
n y � z − s (27)

where z � M−1y,w � WT
nz,p � Hnw, d � Vnp, s � M−1dwith

Hn � �Dn �WT
nM

−1Vn�−1. As a result, we compute and store
Wn ∈ Rndof×nrb , Vn ∈ Rndof×nrb , and Hn ∈ Rnrb×nrb . Because the RB
dimension nrb is very small, computing Eq. (27) is considerably less
expensive than evaluating the residual vector.
Our solutionmethod requires the computation ofJ�un�Wn, which

can be expensive if we have to form the Jacobian matrix J�un� and
perform matrix/matrix multiplication. Instead, the product of the
Jacobian matrix with any vector y can be approximately computed
by the Taylor expansion as

J�un�y ≈ R�un � ϵy� −R�un�
ϵ

(28)

for small enough ϵ. We see that computing J�un�Wn � �J�un�
δun−1J�un�δun−2 : : :J�un�δun−nrb � requires nrb residual evaluations.
In actual practice, we replace J�un�Wn with Un � �J�un�δun−1
J�un−1�δun−2 : : :J�un�1−nrb �δun−nrb �. Because only the first column
ofUn has to be computed, while the remaining columns were already
computed and stored, only one residual evaluation is required to form
Un. By usingUn in place of J�un�Wn to compute the GMRES initial
guess and construct the preconditioner, we reduce the number of
residual evaluations from nrb to 1. Henceforth, both the GMRES
initial guess and the preconditioner add little to the overall cost
because its computational cost can be far smaller than the residual
evaluations required during the GMRES iterations.
A goal of the JFNK approach [46] is to avoid forming the

Jacobian matrix and construct an effective preconditioner to
reduce the number of GMRES iterations. As discussed in great
detail in [46], there is a wide variety of preconditioning techniques
from incomplete LU (ILU) factorizations, multigrid methods,
Schwarz-based domain decomposition methods, physics-based
preconditioning, and matrix-free preconditioning methods. A
number of preconditioning techniques such as ILU still form
matrices that are reduced in complexity as compared to the
full Jacobian. Storage and memory bandwidth limitations provide
a motive for preconditioning approaches that do not require
the formation of any matrix. We emphasize that the solution
method proposed in the paper is completely Jacobian free because
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it does not require any part of the Jacobian matrix in the solution

process. The method makes use of the previously computed sol-

utions of time-dependent systems to compute the initial guesses

and construct the preconditioner. While the main ingredients

of the method are not new, the application of the method for

solving nonlinear semidiscrete systems is first considered in

this paper.

E. Residual Calculation

As computing the residual vector is the most expensive operation

in our solver, we vectorize the residual calculation to allow for

efficientGPU implementation. The residual vector is assembled from

the element residual vector Re�un� resulting from the element inte-

gral �F�uh; qh�;∇w�T h
, the face residual vector Rf�un� resulting

from the face integral hbfh�uh; qh�;wi∂T h
, and the mass residual

vector resulting from the discretization of the time derivative. First,

we compute qn, the vector of degrees of freedom of the approximate

gradient qnh ∈ Qk
h, by solving the equation

�qnh; r�T h
� hbunh; r ⋅ ni∂T h

− �unh;∇ ⋅ r�T h
; ∀ r ∈ Qk

h (29)

where ûnh is computed from unh as described earlier. This step requires
us to compute the inverse of themassmatrix and the right-hand side in

Eq. (29). Note that the inverse of the mass matrix is precomputed and

stored. The right-hand side in Eq. (29) is computed by using Gauss

quadrature for all elements at once. Once qn is obtained, we can

compute the element residual and the face residual as described in the

following.
For tensor product elements, the solutionvectorun and the residual

vector R�un� are stored as three-dimensional arrays of size

�k� 1�3 × �d� 2� × ne. They can be viewed as matrices of �k�
1�3 rows and �d� 2�ne columns. Let (ξ, η, η) be the coordinates on
the master element �0; 1�3. The element residual vector is computed

by transforming the integral on physical elements to the one on the

master element and using Gauss quadrature as follows:

Re�un� � �Dξ ⊗ Sη ⊗ Sζ�Hξ
e�un;qn�� �Sξ ⊗Dη ⊗ Sζ�Hη

e�un;qn�
� �Sξ ⊗ Sη ⊗Dζ�Hζ

e�un;qn� (30)

Here,Sα,Dα,α � ξ, η, ζ arematrices of size �k� 1� × l, which store
values of the shape functions and their derivatives at the Gauss

quadrature points on the unit interval �0; 1�, respectively. Note that

Sξ � Sη � Sζ and Dξ � Dη � Dζ because the same polynomials

are used along each direction and that l is the number of quadrature

points on the unit interval and chosen to be equal to the number of

nodes on every element, namely, l � k� 1, to integrate the mass

matrix exactly. Furthermore,Hα
e , α � ξ, η, ζ arematrices of size l3 ×

�d� 2�ne and obtained by computing the flux function at the quad-

rature points for all elements, as well as the mapping between

physical elements and the master element. Note that the same shape

functions are used to represent the approximate solution and

the physical curved elements. Furthermore, we use the tensor

product with sum factorization [47] to compute (30), thereby effec-

tively reducing the computational complexity from O��k� 1�6�d
�2�ne� to O��k� 1�4�d� 2�ne�.
The calculation of the face residual vector is similar to that of the

element residual vector and thus omitted to save space. Note that the

face residual vector must be assembled into the element residual

vector to form the full residual vector. To avoid memory-access

conflicts on GPUs, the coloring scheme [48] is used to assemble

the face residual vector into the element residual vector. Specifically,

faces that does not have the common degrees of freedom of uh are

marked as the same color, and the face residual on the same-coloring

faces can be assembled together into the element residual at once.

As the mass residual vector is the product of the mass matrix and

the temporal discretization of the time derivative of the conserved

variables, it is much faster to compute than the element and face
residual vectors.

F. Implementation

The present discretization and solution methods have been imple-
mented in an open-source software, Exasim [49], which generates
DG codes to numerically solve a wide variety of partial differential
equations (PDEs). Exasim combines high-level languages with low-
level languages to allow users to define PDEmodels and obtain high-
performance C++ codes that can run on both CPU and GPU clusters.
The kernels for the discretization and solution methods are written in
C++withMPI for distributed-memory systems and CUDA/OpenMP
for shared-memory processors, while the code generators and pre-
processors are written in Julia, Python, and MATLAB® to produce
C++ codes that handle fluxes, source terms, boundary conditions,
and initial solutions for a particular PDE system. Exasim have been
thoroughly validated through a large collection of examples for a
wide variety of partial differential equations including the compress-
ible Navier–Stokes equations. The underresolved direct numerical
simulation of transonic buffet flows over theOAT15A airfoil atMach
0.73 and Reynolds number 3 × 106 presented in the next section was
performed using Exasim. The computed solution and source code for
this problem are available on Exasim’s GitHub website.§

III. Results and Discussions

A. Computation Description

1. Computational Mesh

The mesh used for this study is made of 1.12 million quadratic
isoparametric hexahedra elements; in other words, second-order poly-
nomials are used both to parameterize the elements geometry and to
approximate the solution. Therefore, the method can be potentially
third order accurate [50,51]. For a discontinuous Galerkin method, it
represents a total of approximately 30 million nodes using tensor-
product (27-nodes) elements. The three-dimensional mesh is obtained
by extruding a 2D mesh over 0.065c in the z direction, by using 32
elements, in other words, 65 nodes. The spanwise domain size 0.065c
is equivalent to the time-averaged local boundary-layer thickness at
x∕c � 0.075 in the experiment. This spanwise domain size is also
sufficient to capture the separation size induced by the SWBLI (see
[12]). The nodes on every element are uniformly distributed.
As shown in Fig. 1, the 2D mesh consists of both structured and

unstructured grids, which are designed to resolve the boundary
layers and the shock motion over the airfoil top surface. In par-
ticular, the unstructured grid is refined four times toward the wall,
yielding five structured blocks. The first structured block (i.e., the
most outer layer) has zero refinement. The second structured block
is the first refinement, while the third (respectively, fourth and
fifth) structured block is the second (respectively, third and
fourth) refinement. The refinement is done by subdividing an
element into two smaller elements in the streamwise direction,
as shown in the bottom right part of Fig. 1. The aspect ratio of the
2D elements is being kept less than 20 on the top surface and less
than 100 on the bottom surface. The unstructured grid is generated
by using the Gmsh software [52] and has two separate blocks. The
first unstructured block resides on top of the structured grid and
extends from x∕c � 0.3 to x∕c � 0.7. It is carefully constructed to
capture the shock motion of the buffet phenomenon. The second
unstructured block occupies the remaining computational domain,
which extends over 50c around the airfoil in the (x, y) plane;
see Fig. 1.
The mesh has been designed such that Δy� � δy∕dv < 1, where

δy denotes the distance from the wall to the first high-order node
along the wall-normal direction and dv � ν∕uτ is the viscous
distance based on the local friction velocity uτ. Δx� and Δz� are
similarly constructed by using nodes spacings in the streamwise and

§Data available online at https://github.com/exapde/Exasim [retrieved 7
September 2020].
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spanwise directions, respectively. Note that the high-order mesh
nodes are used, not the element sizes. Figure 2 shows the distributions

of Δy�, Δx�, and Δz� postprocessed from our numerical results,
where dv is both spanwise averaged and time averaged over one

buffet cycle. Except near the leading edge,Δy� < 1 on the lower side,
andΔy� < 0.5 on the upper surface (Fig. 2, left).Moreover, aswe use
a stretching coefficient 1.33 for the element sizes in the wall normal
direction, we ensure that typically 20 ∼ 25 high-order nodes sample

the inner boundary layer 0 ≤ y� ≤ 100, following common practice
in wall-resolving LES [53]. Moreover, the average thickness of the
boundary layer at x∕c � 0.28, 0.35, 0.55 and 0.75 is sampled with,
respectively, 38, 38, 54, and 58 high-order nodes, in the wall-normal

direction. In the streamwise direction, Δx� < 40 on the upper side,
which is finer than the maximum grid spacing Δx� ≈ 100 usually
recommended for WRLES ([53,54]). However, the grid spacing in
the spanwise direction is too coarse to meet the wall-resolved LES

requirements, in other words, Δz� ≈ 20 according to [53,54]. Note
that these requirements apply for unshocked attached TBL on flat
plates, so they may actually be too permissive for the flow studied
here. On the lower side, as the mesh is coarser, neither Δx� norΔz�
complies with the customary grid size criteria for WRLES.
Note that, if we had used at least twice more elements in the

spanwise direction, our 30 million nodes mesh would count 60
million nodes, and it would have been somewhat comparable to the
40 million cells mesh used for the LES zone in the coupled RANS/
LES simulations [15]. Interestingly, both our ILES and the RANS/
LES [15] make use of meshes significantly lighter than the WMLES
[12] with 440 million grid points, which seems counterintuitive
because the WMLES approach is expected to save grid points. The
main reason is that the WMLES uses many more points in the
spanwise direction (565 for WMLES vs 280 for RANS/LES and
65 for the present ILES). The other reason is that theWMLES grid is
fully structured on the whole computational domain, while only the
suction side and the wake are finely meshed by using multiple
structured blocks in [15]. As we use a succession of structured blocks
with five levels of refinement, combined with an unstructured mesh
far from thewing, ourmeshing strategy is more flexible, and it allows
us to save many points, mainly in the streamwise direction.

2. Transition Trips

The mesh geometry models the transition trips as steps (see
Fig. 3), with dimensions equal to the width and the height of the
experimental trips. The trips are located at x∕c � 0.07, and they are
0.013c wide in the chord direction. On the lower surface, the trip

thickness is 3.87 × 10−4c. On the upper surface, the trip thickness

is 4.43 × 10−4c.¶

We emphasize the importance of the transition trips. When per-
forming the simulation without modeling them, we do not observe
the buffet phenomena. Instead,weobserve that the shock is stationary
around x∕c � 0.6 and that transition from laminar to turbulence
occurs near the shock foot. Without the transition trips, the boundary
layer on the top surface is stable all the way to the shock location
because it is a supersonic boundary layer as the localMach number at
the edge of the boundary layer is greater than 1. The presence of the
transition trips makes the flow transition from laminar to turbulence
near x∕c � 0.07, as shown in Fig. 3. Therefore, the transition trips
have a very significant impact on the onset of turbulence and buffet
phenomena.
Note that previous work [9–12] did not consider transition trips to

trigger transition. Instead, transition was prescribed by using trip
terms of the turbulencemodel [9–11] ormodifying the eddy viscosity
at the transition location [12].

3. Computational Time

The numerical study is performed using the DIRK(2,2) method to
discretize the time derivative with a nondimensional time step

Δt � Δt�u�∞∕c� � 10−4. This time step corresponds to a CFL num-

ber of 10 because the the minimum grid spacing at the wall is 10−5c,
and it ensures that the viscous time scale Δt� � u2τΔt∕ν is kept
below 0.4 on all the airfoil, apart from a small area near the leading
edge (x∕c < 0.04). The WMLES computation of Fukushima and
Kawai [12] is carried out using the third-order total variation dimin-
ishing explicit Runge–Kutta scheme with a nondimensional time-

step size Δt�u�∞∕c� � 1.095 × 10−5 and the minimum grid spacing

at the wall of 1.15 × 10−4c. Therefore, the DIRK scheme allows a
much larger time step than the explicit Runge–Kutta method.
The simulation is run for a total of 95 chord-based time units

tu∞∕c. Starting from an extruded 2D solution, the shock oscillations
start after tu∞∕c ≈ 20. Discarding the initial transient flow, we can
record up to five full periodic oscillations of the shock,which are used
to perform the statistical data presented in the following. Note that
one periodic shock oscillation is defined as the time period in
which the shock wave moves from the most upstream position to
the downstream and reaches the most upstream position again. One

x

y

Fig. 1 Section of themesh used for the present paper. Themesh comprises an unstructured part far from the boundary layer and amore structured part
to resolve the boundary layer. The top right picture on the right shows the zoomof themesh near the airfoil, while the bottom right picture shows the zoom
of the top right picture near the wall.

¶This information was obtained from private communication with L.
Jacquin, P. Molton, S. Deck, B. Maury, and D. Soulevant, the authors of the
experiment paper [4], July, 25 2019.
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periodic shock oscillation takes slightly less than 14 chord-based
time units. The tolerance for the residual norm for the convergence of

Newton method is 10−8. It typically takes two Newton iterations to

converge. The tolerance for GMRES is set to 10−3 relatively to the

norm of the residual, and it takes more or less 30 GMRES iterations

per linear solve. Without preconditioning, it would take about 130
GMRES iterations to converge to the same tolerance. We observe

through our experiences that the number of GMRES iterations tends
to scale linearly with the time-step size. The whole computation was

performed using 32 NVIDIA V100 GPUs at the Barcelona Super-
computer Center for approximately 700 run-time hours.

4. Artificial Viscosities

The Fig. 4 shows the artificial viscosities when the shock is reach-

ing its most upstream location. At that stage of the buffet cycle, the

turbulent shear layer is thick and fully separated (see Sec. III.C.2),
which triggers the maximum amount of artificial viscosities. As

expected, the artificial bulk viscosity �β� is activated principally at
the shock location (see Fig. 4, top left) and grows along the shock, as

the mesh becomes coarser, away from the upper surface. To a lesser
extent, the bulk viscosity sensor is also activated by the two expan-

sion waves generated by the transition trip and in the area of the

detached shear layer (Fig. 4, top right). The bottom row of Fig. 4
shows that the artificial shear viscosity added by themethod is limited

to the upper part of the turbulent shear layer. There, the detached

shear layer enters an area where the mesh is abruptly coarsened (see
Fig. 1). As the velocity gradient becomes underresolved, both the
bulk and shear sensors activate the artificial viscosities. Note that they
are not activated closer to thewall, in the lower part of the shear layer.
They are applied neither on the bottom side of the wing nor in the
TBL upstream of the shock, except in a few isolated elements.
Therefore, in the present simulation, the artificial viscosities stabilize
both the shock and the outer part of the shocked shear layer.

B. Flow Statistics and Comparisons to Experiment

1. Mean and Variance of Pressure Fields

The pressure coefficiensCp displayed in Figs. 5 and 6 are spanwise
averaged and time averaged over five buffet oscillations cycles. The
pressure standard deviations Prms are also spanwise averaged. Com-
parisons with experimental data [4] as well as numerical other
numerical simulations (ZDES [9], DDES [10], LES [15], WMLES
[12], and ILES [25]) are shown in Fig. 6. The pressure coefficient and
fluctuations obtained by the ILES agree very well with the exper-
imental data. The pressure coefficient on the suction side decreases

rapidly over a short distance from the leading edge to the transition
location x∕c � 0.07 and flattens out from the transition location to
x∕c � 0.35. It can be seen from Fig. 5 that there is no sharp variation
of the averaged pressure coefficient.A sharp pressurevariationwould
have been the hallmark of a steady shock. Instead, the averaged
pressure smoothly increases over x∕c ∈ �0.35; 0.55� due to the shock

Fig. 3 Zoom of the mesh near the transition trips and the flow structure near the upper transition trip. It can be seen that the flow instability is triggered

by the presence of the trip and that transition from laminar to turbulence occurs within a short distance (0.015c) downstream of the trip. The numerical
transition trips were modeled by using the dimensions of the real trips used in the experiment [4].

Fig. 2 Distribution of the wall-unit high-order nodes spacing in the wall-normal direction (left) and in the streamwise and spanwise directions (right).
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Fig. 5 Averaged pressure and its fluctuation near the airfoil for the present ILES: spanwise-and-time-averaged pressure coefficient distribution
(left) and pressure fluctuation distribution (right).

Fig. 4 2D snapshots of the instantaneous artificial viscosities at z � 0.0325c, when the shock reaches its most upstream location. Top row: normalized
artificial bulk viscosity β�∕μ. Bottom row: normalized artificial shear viscosity μ�∕μ. Right column: zooms into the fully separated turbulent shear layer.

The gray background indicates regions inwhich no viscosity is added. Note that these instantaneous artificial viscosities are discontinuous. They aremade

C0 continuous by using a node-averaging operator described in Sec. II.B.

Fig. 6 Comparisons of the spanwise-and-time-averaged pressure coefficient on the airfoil surface (left) and wall pressure fluctuations on the suction
surface (right). The ILES predictions agree well with the experimental data [4]. The overshoots of the pressure coefficient around x∕c � 0.07 obtained by
the ILES are due to the transition trips.

Article in Advance / CUONG NGUYEN, TERRANA, AND PERAIRE 9



motion in this range. Finally, it slowly increases over a longer
distance from x∕c � 0.55 to the trailing edge. The average location
of the shock is very precisely captured, and the averaged pressure in
the turbulent boundary layer is slightly overestimated upstream of the
shock wave (see Fig. 6). Behind the shock wave (x∕c ≥ 0.6), the
agreement is also fairly good, suggesting that the turbulent reattach-
ment behind the shock wave is correctly predicted by the ILES
computation. Note that the pressure coefficient obtained by the ILES
has small overshoots around x∕c � 0.07, while those obtained by
other computations are smooth there. The overshoot is due to the
transition trips in the ILES computation, whereas other computations
do not employ such trips. The computed pressure fluctuations are
high in the shock motion range x∕c ∈ �0.35; 0.55�, with a maximum
value of 0.12 at x∕c � 0.46 (see the right parts of Figs. 5 and 6). The
fluctuations tend to level off downstream of the shock area, for
x∕c ∈ �0.6; 0.8�, and then increase again while approaching the
trailing edge, for x∕c > 0.8.
Whencompared toother publishednumerical experiments (Fig. 6),

the ILES accurately predicts the pressure distribution on the whole
upper side of the wing. The DDES, LES, and WMLES can also
predict a fairly accurate distribution of Cp. However, the two latter
simulations tend to predict the region of the shock wave oscillation
slightly downstream. The ILES can locate that region more accu-
rately, as illustrated by the peak of pressure fluctuations in the region
of x∕c ∈ �0.35; 0.55�; see Fig. 6. Moreover, the amplitude of the
fluctuations agrees well with the experiment and shows that the
strength of the shock wave is also better predicted by the ILES

approach. Thus, the pressure field statistics in the range [0.35,
0.55], which are typical of transonic buffet, are all accurately mod-
eled by the ILES. Finally, the accurate prediction of the pressure
fluctuations in the region of the attached turbulent boundary layer
upstream of the shock seems to indicate that the fluctuations of the
inner-layer turbulence are resolved well enough with ILES. Interest-
ingly, the ILES in [25] makes use of a numerical setup similar to the
present study (i.e., DG with quadratic hexahedral elements, artificial
viscosity, and without wall model), but it predicts the pressure dis-
tribution less accurately. This is likely due to the use of a coarsermesh
of 0.28 million elements vs 1.2 million for the present study.

2. Mean and Variance of Velocity Fields

Figure 7 displays spanwise-and-time-averaged streamwise veloc-
ity profiles at x∕c � 0.28, 0.35, 0.55, and 0.75 for several DES- and
LES-based computations in comparison with the experimental data.
The wall units are based on the viscous distance dv postprocessed
from the ILES results. At the upstream of the shockwave x∕c � 0.28
in the attached TBL region, the ILES predicts remarkably well
the experimental mean bulk velocity in the log-law region
30 < y� < 120, whereas the ZDES, DDES, and WMLES all under-
predict the bulk velocity. The ILES slightly underpredicts the exper-
imental data both below (y� < 30) and above (y� > 150) the log-law
region. The same observations apply for x∕c � 0.35, where the
ZDES computation predicts streamwise velocities even further from
the experiments. It is worth noting that the WMLES predictions of

the velocity profiles are not even valid below hwm ≈ 6 × 10−4c, the

a) x/c = 0.28 b) x/c = 0.35

c) x/c = 0.55 d) x/c = 0.75

Fig. 7 Spanwise-and-time-averaged streamwise velocity profiles on the suction surface compared with experimental data and others numerical
experiments. Note that y is the distance from the wall in the vertical direction.
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interface height between the LES and the wall model. Behind the

shock wave at x∕c � 0.55, the ILES predicts the bulk velocity well

for y∕c > 0.02, while the WMLES shows slightly higher mean bulk

velocity than the experiments. Interestingly, none of the computa-

tions captures the average flow reversal for y∕c < 0.01. Although the
ILESpredicts a reverse flow at some stage of the buffet cycle (see Sec.

III.C.2), that reversal is not strong or long enough to reverse the

averaged velocity profile. At the downstream location x∕c � 0.75,
the results obtained by the ILES and all the other computations show

relatively good agreement with the experiments.

Figure 8 shows the dimensionalized streamwise velocity fluctua-

tions urms �
��������������
u�1

0u�1
0

q
over five shock buffet cycles and the exper-

imental result [4]. We observe that the ILES prediction matches well

with the experimental result. The distribution of the streamwise

velocity fluctuations is quite similar to that of the pressure fluctua-

tions. However, the velocity fluctuations are larger in the separation

region near the wall, while the pressure fluctuations are larger in the

buffet region above the wall. These results are also qualitatively

similar to those of the WMLES [12] and the ZDES [9].

Figure 9 shows the standard deviations of the nondimensional

streamwise velocity profiles urms∕u∞ on the suction surface. In the

region of the fully developed attached TBL, at x∕c � 0.28, only the
WMLES results reproduce the experiments with some accuracy,

while the LES overestimates the velocity fluctuations, the ILES

underestimates them (i.e., the BL is not turbulent enough), and the

DES-based computations predict almost no fluctuation close to the

wall. At x∕c � 0.35, both the WMLES and ILES predict the fluctu-

ations very well, while they are severely overestimated by the ZDES

computation. This is likely related to the accurate prediction of the

range of the shock motion. At x∕c � 0.55, the ILES gives good

predictions near the wall y∕c ≤ 0.007 or far from it y∕c ≥ 0.035. In
contrast, WMLES overestimates the velocity fluctuations inside and

above the shear layer. This last observation may be explained by the

WMLES prediction of the shock location slightly downstream of the

experiments. Behind the SWBLI at x∕c � 0.75, all the computations

quantitatively predict the experiments reasonably well. Overall, we

observe some significant differences in the standard deviations of the

velocity profiles among the simulation results.

As the velocity profiles at the intermediate locations (x∕c � 0.35
and 0.55) were not published in the LES study [15], we could not

include them on Figs. 7 and 9. For the sake of completeness,

it should be noted that Garnier and Deck [15] investigated three

different LES configuration, and only one of them, the simulation

LES-B3, is reported in the present study. Another LES configuration

could compute velocity profiles in excellent agreement with the

experimental data, while it also predicted inaccurate pressure distri-

butions. Interestingly, Garnier and Deck concluded that the accurate

resolution of the attached TBLdoes not guarantee the right prediction
of the shock motion range.
Overall, we see that the LES-based results match the experimental

data better than the DES-based ones, probably owing to the fact that
LES/ILES resolves the turbulent boundary layer more accurately
than DES. However, very close to the wall in the attached TBL,
our ILES predictions of both velocity and pressure are less accurate
than the other LES-based computations.We put forward a hypothesis
to explain these inaccuracies. As the velocity fluctuations are signifi-
cantly underpredicted in the attached TBL, some turbulent features
may be underresolved due to the large Δz� of our mesh. The
comparison with the mesh used by other authors points in the same
direction: at least four time more points are used by the RANS/LES
and the WMLES simulations. Moreover, as Pazner at al. [25] use a
mesh even coarser in the spanwise direction and predict the wall
pressures even less accurately in the attached TBL, this gives an
indication of the sensibility of the DG-ILES results to the spanwise
spacing. Unfortunately, because of the lack of computational resour-
ces, we were unable to verify that hypothesis.

C. Dynamics of the Transonic Buffet

1. Instantaneous Flow Structures

To visualize the instantaneous vortex structures of the flow, Fig. 10
displays the isosurfaces of Q, the second invariant of the velocity

gradient tensor given byQ � �1∕2��tr�∇u�2 − tr�∇u2��. On Fig. 10,
the isosurfaces are colored by the streamwise velocity, and a spanwise
cross-section of the Mach number field is also displayed in the back-
ground. At x∕c � 0.07, the transition trip generates an expansion
wave, visible on the Mach number plots (Figs. 10a and 10b). Two-
dimensional spanwise-coherent vortices are induced by the trip and
immediately break down to smaller three-dimensional structures
(Fig. 10b). Quasi-streamwise vortices and irregular lambda-shape
vortices are visible in the lower part of the boundary layer, where the
two-dimensional vortices breaks down at x∕c ≈ 0.10. The transition
happens very fast, and the boundary layer seems fully turbulent for
x∕c > 0.12. Packets of hairpinlikevortices arevisible in the shock foot
area, and they grow toward the downstream (Fig. 10c). As expected,
the turbulent boundary layer significantly thickens after passing
through the foot shock. From Fig. 10d, it is clear that during the
upstream excursion of the shock the shear layer is thicker and com-
pletely separated downstream of the lambda shock, while during the
downstream shock excursion, the shear layer is thinner and remains
largely attached to the wall, except very locally at the trailing edge.
All these observations are consistent with the experiment [4], with

theQ-criteria analysis of theWMLES [12] computation, andwith the
LES [15] results. Therefore, the ILES seems to resolve most of the
medium-to-small-scale vortices that are found over the airfoil during
the shock buffet cycle, although the smallest scales are probably

Fig. 8 Streamwise velocity fluctuations

���������������
u�1

0u�1
0

q
obtained by ILES and corresponding experimental results.
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underresolved (see Sec. III.B.2). In contrast, ZDES [9], IDDES [11],
and DDES [10] computations are unable to resolve the small vortex
structures, and their predicted flow remains essentially two dimen-
sional even far downstream from the lambda shock.

2. Dynamics of Shock-Wave/Boundary-Layer Interaction

Figure 11 shows instantaneous streamwise velocity u1 and instan-
taneous magnitude of the density gradient k∇ρk at different stages of
the buffet cycle for the ILES simulation. In the streamwise velocity
snapshots (Figs. 11a–11f), thewhite areas indicate the separated flow
regions where u1 < 0.
The lambda structure of the shock foot is clearly observable in the

density gradient snapshots (Figs. 11g–11l), and the vortices in the
turbulent boundary layer noticeably grow as the they pass through the
shock foot. During the downstream excursion of the shock (first four
rows of Fig. 11), as the effective shock Mach number is reduced, the
shock is weaker, and the flow remains largely attached. The turbulent
shear layer stays near the wall, as shown on the velocity snapshots
(Figs. 11a–11d).Moreover, the rear shock of the lambda structure has
a larger density gradient than the upstream oblique compression
wave. During the upstream shock excursion (last three rows of
Fig. 11), the effective Mach number is higher, and the shock
is stronger, inducing a large separation of the turbulent shear
layer (Figs. 11d–11f). The lambda shock foot widens, the rear shock
becomes weaker, and the oblique shock is strengthened (Figs. 11j–
11l). Furthermore, the shock travels upstream faster than it travels
downstream, which was also predicted by [12].

All these predictions are qualitatively similar to the experimental

schlieren pictures [4] and to the WMLES results [12] and are typical

of a shock buffet cycle [3]. Contrary to the WMLES, the ILES does

not predict any compression wave train downstream of the shock

foot. However, Jacquin et al. [4] suggest that thewave trains observed

during the experiment may be due to three-dimensional effects at

the side walls of the wind tunnel, which are not modeled in the
present study.

3. Power Spectral Analysis and Pressure Waves

Several theories have been proposed to explain the mechanisms

governing the transonic shock buffet (see the review by Giannelis

et al. [3]). Some popular explanations involve an aeroacoustic
feedback loop between the shock and the trailing-edge pressure

perturbations. Lee [55] suggested that the fluctuations of the shock

foot generate hydrodynamic instability waves propagating down-

stream in the turbulent shear layer. When these perturbations reach

the sharp trailing edge, they generate acoustic waves traveling

upstream above the shear layer. Finally, the upstream pressure

waves exchange energy with the shock wave, which completes
the feedback loop. Jacquin et al. [4] enriched the previous feedback

mechanism considering also acoustic waves propagating along the

lower surface of the wing, turning around the leading edge, and

hitting the shock from upstream. Hartmann et al. [56] proposed

another acoustic feedback loop, where the shock motion drives the

strength of the vortices generated at the shock foot. As these vortices

a) x/c = 0.28

c) x/c = 0.55

b) x/c = 0.35

d) x/c = 0.75

Fig. 9 Standard deviations of the streamwise velocity profiles on the suction surface comparedwith experimental data ans other numerical experiments.
Note that y is the distance from the wall in the vertical direction.
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Fig. 10 Instantaneous Mach number at z � 0 and isosurfaces ofQ-criterion (Q∕M2
∞ � 200) colored by the streamwise velocity obtained by ILES. Left

column:maximal downstream shock location (tu∞∕c � t0). Right column:maximal upstream shock location (t � t0 � 0.5Ts). In part b, the trip width is
indicated with an arrow.
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impinge on the trailing edge, they generate acoustic waves with

varying sound pressure levels which propagate upstream before

interacting with the shock. In this feedback loop, the shock motion

is driven by the sound pressure levels at the trailing edge. The

influence of the the acoustic waves on the shock dynamics was

experimentally investigated by Alshabu and Olivier [57], support-

ing the findings of Hartmann et al.

Therefore, it seems that a numerical simulation has to accurately

solve the pressure wave field in order to deliver accurate shock buffet

predictions. The present subsection assesses the ILES ability to

model all the pressure perturbations involved in the buffet feedback

mechanism.

Figure 12a displays the time history of thewall pressure computed

by the ILES at x∕c � 0.45, compared with the experiment. The

Fig. 11 Left column: instantaneous streamwise velocity u1 at different stages of the buffet cycle. White areas indicates u1 < 0. Right column:
instantaneous magnitude of the density gradient k∇ρk at the same stages.
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low-frequency large-amplitude oscillations are due to the periodic

shock motion. While the amplitude is correct, the buffet frequency is

overpredicted. As observed in the experiment, when the shock loca-

tion is downstream of the pressure sensor, there is little pressure

fluctuation, and when the shock is upstream of the sensor, the

pressure fluctuations are stronger. It indicates that the ILES predicts

the previously mentioned pressure perturbations generated at the

shock foot and propagating downstream in the TBL.

An autoregressive power spectral density (PSD) estimate of the

wall pressure has been computed, via Burg’s method, as advised by

a) Wall pressure at x/c = 0.45 b) SPL at x/c = 0.9

Fig. 12 Time history of dimensionalized wall pressure in the shock region (left) and power spectral density of wall pressure fluctuation near the trailing
edge (right).

Fig. 13 Instantaneous dilatation fields ∇ ⋅ u.

Article in Advance / CUONG NGUYEN, TERRANA, AND PERAIRE 15



Deck [9]. Figure 12b shows the PSD of thewall pressure fluctuations
at x∕c � 0.9 expressed in terms of sound pressure level (SPL), in
decibels. The main peak corresponds to the main frequency of the
shock periodic motion. The ILES slightly overpredicts the buffet
frequency (76 Hz instead of 69 Hz for the experiment). However,
such overprediction is quite common and was also observed with
ZDES [15], IDDES [11], DDES [10], and to a lesser extent with the
coupled RANS/LES [15]. On the other hand, both ZDES [9] and
WMLES [12] could predict the correct buffet frequency. The ILES
correctly captures the three first harmonics but also predicts a fourth
one, which is not present in the experiment, suggesting that the ILES
may overestimate the periodicity of the flow. Below 100 Hz, the
lower-frequency spectrum is underpredicted, probably because the
pressure signal is not long enough to compute an accurate PSD
estimate in this frequency band. In the high-frequency region, the
predicted PSD agrees reasonably well with the experiment. The
rather flat PSD at high frequency (400 to 3000 Hz) is reproduced
by the computation. As the flat high-frequency spectrum is due to the
various scales of the turbulent structures, these results suggest that a
large range of turbulence scales are resolved by the ILES.
Although the fine mesh in the shear layer can resolve all the

acoustic frequencies of interest (up to 5000 Hz), it is no longer the
case above the shear layer (y∕c > 0.1) and downstream of the shock,
where the acoustic waves travel from the trailing edge to the shock.
There, the mesh size h ≲ 0.02c is larger due to the aggressive mesh
coarsening. From this mesh size and from the velocity≳0.2u∞ of the
upstream propagating pressure waves, the highest resolved dimen-

sional frequency f�max ≈ 3 × 103 Hz can be estimated for that area.
Therefore, the aeroacoustic feedback mechanism is likely to be
affected by the mesh resolution for frequencies f� > f�max, which
may explain the overprediction of the buffet frequency by the ILES.
The affected frequency band is represented by a shaded area on
Fig. 12b, and it corresponds to a drop of the predicted SPL, while
themeasured drop of SPL happens after 4000Hz due to experimental
low-pass filtering. Also, there is no temporal resolution effect on the
acoustic predictions, as the time step is based on the turbulent time
scales, which are several order of magnitudes lower than the acoustic
periods of interest.
To visualize the complete pressure wave field, the instantaneous

divergence fields of velocity ∇ ⋅ u obtained by the present ILES,
WMLES, IDDES, and ZDES are displayed in Fig. 13. All simula-
tions predict the low-frequencyupstreampropagating acousticwaves
generated when the shear-layer instabilities impinge on the trailing
edge. Both ILES and ZDES predict acoustic waves propagating
along the lower surface. However, with ILES, we cannot see these
waves rounding the leading edge and interacting with the shock from
upstream, as speculated by Jacquin et al. [4]. Both the ILES and
WMLES also show small-scale structures and high-frequency acous-
tic waves, some of which may be numerical artifacts like the vertical
wave train predicted by WMLES or the noisy wake predicted by
ILES. Indeed, our mesh is aggressively coarsened in the immediate
wake area, where the elements are very stretched. When the small
turbulent structures enter this area, they become severely underre-
solved (see Fig. 10d) and generate high-frequency oscillations and
possibly spurious pressure waves before being tamed by the artificial
viscosity and the natural DG dissipation. Figure 13a shows that ILES
predicts upstream pressure waves originating from both the trailing
edge and from the noisy wake.

IV. Conclusions

In this paper, the authors performed an underresolved direct
numerical simulation of transonic buffet phenomena over the
OAT15A supercritical airfoil using the implicit discontinuous Galer-
kin method. They propose a Jacobian-free Newton/GMRES method
to solve the nonlinear systems of the implicit DG discretization by
forming the reduced basis to compute good initial guesses and
construct a matrix-free preconditioner. It makes the implementation
of the implicit DG method efficient on GPUs because only the
residual vectors are calculated. As a result, one can afford to resolve
the boundary layers at high Reynolds numbers to capture flow

transition and onset of turbulence. In the authors’ simulation, the
flow transition was triggered by using the strips that have the same
dimensions as the real strips used in the experiment. Making use of
neither subgrid scale models nor wall models, the ILES method
successfully predicts the buffet onset, the buffet frequency, and
turbulence statistics. Various turbulence phenomena are predicted
and demonstrated, such as periodic low-frequency oscillations of
shock wave in the streamwise direction, strong shear layer detached
from the shock wave due to shock-wave/boundary-layer interaction
and small-scale structures broken down by the shear layer instability
in the transition region, and shock-induced flow separation. The
pressure coefficient, the rms of the fluctuating pressure, and the
streamwise range of the shock wave oscillation agree well with
experimental data. The ILES computation represents a different
approach to this problem, as the previous computations use a turbu-
lence model or a subgrid scale model.
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