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ABSTRACT
There is a perceived dichotomy between structure-based and descriptor-based molecular representations used for predictive chemistry tasks.
Here, we study the performance, generalizability, and explainability of the quantum mechanics-augmented graph neural network (ml-QM-
GNN) architecture as applied to the prediction of regioselectivity (classification) and of activation energies (regression). In our hybrid QM-
augmented model architecture, structure-based representations are first used to predict a set of atom- and bond-level reactivity descriptors
derived from density functional theory calculations. These estimated reactivity descriptors are combined with the original structure-based
representation to make the final reactivity prediction. We demonstrate that our model architecture leads to significant improvements over
structure-based GNNs in not only overall accuracy but also in generalization to unseen compounds. Even when provided training sets of
only a couple hundred labeled data points, the ml-QM-GNN outperforms other state-of-the-art structure-based architectures that have been
applied to these tasks as well as descriptor-based (linear) regressions. As a primary contribution of this work, we demonstrate a bridge between
data-driven predictions and conceptual frameworks commonly used to gain qualitative insights into reactivity phenomena, taking advantage
of the fact that our models are grounded in (but not restricted to) QM descriptors. This effort results in a productive synergy between theory
and data science, wherein QM-augmented models provide a data-driven confirmation of previous qualitative analyses, and these analyses in
turn facilitate insights into the decision-making process occurring within ml-QM-GNNs.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0079574

I. INTRODUCTION

The rationalization and prediction of reactivity trends is one
of the core objectives of (theoretical) chemistry. Before advanced
ab initio quantum mechanics (QM) computations became a com-
monplace, a plethora of heuristic concepts and qualitative theory-
inspired rules—usually tailored to a specific subclass of compounds
or reactions—were already proposed and developed to this end.
Some iconic examples in this regard are the Woodward–Hoffmann
rules for the prediction of reaction outcomes of pericyclic trans-
formations,1 the Bell–Evans–Polanyi principle,2 and the hard–soft
acid–base (HSAB) concept pioneered by Pearson.3

Later on, several competing, overarching theoretical frame-
works emerged, all of which aspire to describe chemical reactions in
a universally applicable manner. Some well-known examples of such
frameworks are conceptual density functional theory (cDFT),4,5

the (molecular orbital-based) activation-strain model (ASM),6,7 and
the valence bond (VB) reactivity model.8,9 At the core of each of
these frameworks is the definition of a limited set of chemically
meaningful quantities or descriptors. These probe, either directly
or indirectly, the magnitude of different fundamental interactions
(e.g., orbital-based or “soft–soft” vs electrostatic or “hard–hard”
interactions in cDFT), which collectively characterize the chem-
ical system and enable an insightful and internally consistent
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(qualitative) discussion of its reactivity. As these frameworks
matured, a concerted effort has taken place to incorporate/embed
the various previously proposed concepts and rules, albeit of limited
scope, into them.10,11 Attempts have also been made to build bridges
between the individual frameworks themselves, thus facilitating
enhanced understanding.12–15

With the advent of machine learning (ML) and artificial intelli-
gence methods, an entirely different approach to chemical reactivity
prediction emerged, not constrained by any specific theoretical
framework. Recent work in this area includes the prediction of
reaction products,16–18 reaction yields,19–21 and bond dissociation
energies.22,23 Instead of building physically motivated represen-
tations of the constituent molecules (e.g., of reactants, products,
and catalysts), many ML approaches take advantage of a model’s
ability to learn meaningful representations and start with simple
structural descriptors/features. These include graph-based molecu-
lar representations using graph neural networks (GNNs),22–25 sim-
pler molecular fingerprint26 representations,16,27 and even simplified
molecular-input line-entry system (SMILES) representations.21,28,29

Such structure-based representations do not necessarily have a direct
connection to reactivity and rely on the nonlinearity and expressiv-
ity of ML models to relate the structure to function.30 Nevertheless,
given sufficient data to train these models, deep learning for reactiv-
ity prediction has been demonstrated to achieve accurate predictions
of reaction products and/or energies.

Unfortunately, the setup of regular GNNs renders the decision-
making process occurring inside them rather opaque. Rationaliz-
ing the predictions made by these networks, i.e., rendering them
“explainable,”31 has largely been limited to brittle techniques for
estimating the sensitivity of predictions to atom- and bond-level
contributions.20,32–35 Therefore, these models have been often char-
acterized as black boxes. Furthermore, structure-based GNNs tend
to/are assumed to underperform in data-limited settings as they
must learn a meaningful representation “from scratch.”36,37 This
represents a significant drawback of GNNs, as large datasets with
thousands of data points are rare in the field of chemistry, especially
when focusing on subtle reactivity questions.38 Other machine learn-
ing methods, e.g., kernel ridge regression (KRR)39,40 or Gaussian
process (GP) regression37 in combination with molecular represen-
tations such as bag-of-bonds (BoB),41 FCHL19,42 or spectrum of
London and Axilrod–Teller–Muto (SLATM) potentials43 are gener-
ally assumed to perform better in the face of data scarcity; even then,
several thousand data points may be needed to train a model to an
acceptable level of accuracy.37,39,40

One strategy to mitigate the drawbacks of these data-hungry
methods is to represent molecules with functional descriptors that
have a more direct (and linear) relationship with their reactivity.
Instead of working within a specific theoretical framework, reactiv-
ity is modeled through statistical methods, but descriptors/features
used as input are inspired by the chemistry and physics underly-
ing the investigated reactivity problem. Champions of this approach
are Sigman et al., among others, who have employed multivari-
ate linear regression to relate sophisticated electronic and steric
descriptors to complex properties such as enantioselectivity,44 and
Zahrt et al., who used support vector machines (SVMs) and feed-
forward neural networks for the same task.45 Recently, Ahne-
man et al. demonstrated the prediction of reaction yields of C–N
cross-coupling reactions with a random forest model by selecting

reaction-specific descriptors, starting from ∼4000 data points
obtained via high-throughput experimentation.20 Other recent
examples of this strategy can be found in the work of Beker et al.,46

Li et al.,47 and Jorner et al.48

While descriptor-based methods may require less data, be more
generalizable, i.e., achieve an improved performance on classes of
compounds not present in the training set,46 and enable at least some
explainability/interpretability compared to the use of universal/non-
specific representations,49 the selection of suitable descriptors is a
non-trivial and problem-specific matter.38 Even more importantly,
in order to obtain these chemically relevant descriptors, a dataset
specific computational workflow is often required, which creates a
bottleneck that significantly hampers the ease of employability of
this strategy.38

In this work, we build upon a unifying approach proposed by
Guan et al.,50 which aims to combine the advantages of structure-
based GNNs with those of models based on expert-guided descrip-
tors. Instead of feeding computationally expensive, task-specific
descriptors directly to a machine learning model, we start from
graph-based/structural input features but predict, as an intermedi-
ate step, a set of atom- and bond-level QM descriptors prior to the
final reactivity prediction. Taking this approach, it becomes possi-
ble to construct a QM-based representation on-the-fly at minimal
cost.

We assess the model performance on computational and exper-
imental datasets (focusing on competing E2 vs SN2 reactions51

and aromatic substitution reactions,50 respectively) and find that
the resulting model architecture exhibits excellent accuracy in a
data-limited regime. We further evaluate the model’s ability to gen-
eralize to structures not seen during training using non-random
data splits and observe a comparable improvement in performance.
Most importantly, since our ml-QM-GNN models base their final
reactivity predictions on a representation partially comprising QM
descriptors, we are able to build a bridge to the traditional theoretical
reactivity frameworks and explain the neural network’s decision-
making process in terms of traditional chemistry concepts. Overall,
our work underscores that machine learning techniques and con-
ceptual models are not mutually exclusive approaches but are able
to benefit each other in a synergistic manner.

II. COMPUTATIONAL METHODS
A schematic overview of the complete QM-augmented neural

network architecture used in this work is presented in Fig. 1 (cf. Sec.
S1 of the supplementary material for an in-depth discussion of the
individual network branches).

First, the simplified molecular-input line-entry system
(SMILES) representations of compounds involved in the reaction
are parsed into graph-based representations using RDKit,52 and
structural descriptors (atomic number, formal charge, ring status,
bond order, etc.) are calculated for each heavy atom and bond. The
structure-based representation is then used as input for a multitask
GNN for QM descriptor prediction, based on a directed message
passing neural network (D-MPNN) encoder, which has been
adopted without modification from Guan et al.50 (details related
to the setup and training of this D-MPNN encoder are included
in Sec. S1). Note that this multitask GNN part of our network
shares several characteristics with the stand-alone DeepMoleNet
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FIG. 1. Schematic overview of the ml-QM-GNN model architecture. WLN denotes
the Weisfeiler–Lehman network branch, and D-MPNN denotes the directed
message-passing branch of the network.

package and AIMNet, which have been developed to provide QM
descriptors on-the-fly for qualitative reactivity analyses.53,54

The set of descriptors predicted by the D-MPNN encoder can
be subdivided in two main categories: bond descriptors, i.e., natu-
ral population analysis (NPA) bond orders55 and bond lengths, and
atom-centered descriptors, i.e., (Hirshfeld) atomic charges,56 as well
as (atom-condensed) nucleo- and electrophilic Fukui functions,5
and nuclear magnetic resonance (NMR) shielding constants.57 In the

finite-difference approximation,58 the electrophilic Fukui function
on site i ( f +i ) is defined as

f +i = qi(N) − qi(N + 1), (1)

where qi(N) and qi(N + 1) are the (Hirshfeld) partial charges on
atom i for the corresponding (N)- and (N + 1)-electron wave
function evaluated in the optimized N-electron geometry. The
nucleophilic Fukui function ( f −i ) in its turn is defined as

f −i = qi(N − 1) − qi(N), (2)

where qi(N) and qi(N − 1) are the (Hirshfeld) partial charges on
atom i for the corresponding (N)- and (N − 1)-electron wave
function evaluated in the optimized N-electron geometry.

The bond descriptors are converted to a vector representation
through the application of a radial basis function (RBF) expan-
sion and relayed to a separate Weisfeiler–Lehman network (WLN)
branch, which combines them with the initial, structure-based rep-
resentation in a convolutional embedding.59 The atom-centered
descriptors are kept separately and are similarly post-processed, i.e.,
they are scaled and then turned into a vector representation through
RBF expansion.

The learned representation emerging from the WLN and the
expanded atomic QM descriptor representation emerging from the
D-MPNN branch of the network are subsequently concatenated,
after which the concatenated representation is passed through a
dense activation layer followed by a global attention mechanism60

to capture the influence of distant parts of the reacting system.
Because we focus on molecule- or reaction-level prediction tasks in
this work, we aggregate these representations into one final feature
vector by sum-pooling over the (hypothetically) reacting atoms. This
global feature vector is transformed once more in a single-layer net-
work to produce the barrier heights/activation energies in the case
of a regression task and a regioselective preference in the case of a
classification task (vide infra).

The regular GNN, used as the primary baseline in the discus-
sions below, follows an analogous architecture as the ml-QM-GNN,
except that it does not contain the QM descriptor network branch,
i.e., the WLN operates on the original structural features alone and
the attention mechanism takes only the learned features as input (cf.
Sec. S1 of the supplementary material).

A. Datasets
We focus the evaluation of our ml-QM-GNN model on two

publicly available datasets: one computational and one experimental
(summary statistics, characterizing the distribution of the individual
sets, are included in Sec. S3). The first dataset comprises computed
stationary points along the potential energy surface for competing
E2 and SN2 reactions in the gas-phase, recently published by von
Rudorff et al.51 In total, four distinct nucleophiles (H−, F−, Cl−, and
Br−), three distinct leaving groups (F−, Cl−, and Br−), and permuta-
tions of five potential substituents (H, NO2, CN, CH3, and NH2), on
an ethyl-based scaffold, were considered [Fig. 2(a)]. As indicated by
the authors, the substituents were selected to (i) maximize electronic
effects, and (ii) minimize steric hindrance, which makes this dataset
ideally suited for our ml-QM-GNN model based on electronic QM
descriptors.
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FIG. 2. Schematic representation of the two considered
datasets. (a) The competing E2/SN2 reaction pathways,
with the respective attacking positions of the nucleophile
indicated in purple/orange, respectively. The top center
table gives an overview of the different substituents (R),
leaving groups (X), and nucleophiles (Y) present in the
dataset. (b) An example of a data point in the aromatic
substitution reaction dataset. The colored dots indicate the
potential reacting sites.

To construct a regression task, 3647 barrier heights calculated
at the DF-LCCSD/cc-pVTZ//MP2/6-311G(d) level-of-theory61–67

were extracted (1286 corresponding to E2 pathways; 2361 to SN2).40

An appropriate input for our GNNs was constructed by convert-
ing the 3D reactant complex geometry for each reaction into a 2D
SMILES representation using xyz2mol.68 Additional details about
the data pre-processing can be found in Sec. S4.

To construct a classification task, we extracted both an E2 and
SN2 transition state (TS) from 791 unique reaction systems (Sec. S5).
These data were used for training classification models to predict
whether the E2 or SN2 pathway is kinetically favored.

The second dataset we examine is a purely experimental one
consisting of regioselective aromatic C–X substitution and C–H
functionalization reactions from the Pistachio database, to which
plausible side products corresponding to regiochemical alterna-
tives, identified through template extraction and application,69 were
added.70 This dataset was originally curated by Guan et al.50 Since
the data in Pistachio are only available to license-holders, Guan et al.
filtered out a subset of 3242 data points for which the reactions
are also present in the USPTO public database. Here, we examine
the multi-way classification performance when predicting the regio-
chemical preference for this subset of reactions [Fig. 2(b)]. In other
words, the model is trained to assign the highest probability to the
correct/“true” product among the various regiochemical alternatives
provided as input for each data point.

As we are mainly interested in understanding the effect of QM-
augmentation under data-scarce conditions, models applied to this
filtered dataset were primarily trained on a sample of only 200 data
points. In each fold and iteration considered, these data points were
randomly selected from the original, full training set. The small
standard deviations in accuracy observed across different iterations

(vide infra) suggest that the model is rather insensitive to the identity
of the specific reactions sampled. Learning curves, visualizing how
the accuracy of the model evolves as more data points are included
during training, can be found in Sec. S6 of the supplementary
material.

III. RESULTS AND DISCUSSION
A. Accuracy—E2/SN2 dataset

As a first step, the performance of our ml-QM-GNN model
was assessed by comparing the accuracy obtained for the barrier
height/activation energy prediction for the competing E2/SN2 reac-
tions with the (structure-based) GNN baseline model. Initially, we
split up the data according to the respective reaction type and
performed three 5-fold cross-validations (CV) on each. In every
iteration, the number of labeled data points considered for the
construction of the model, i.e., the combination of training and val-
idation set, was limited to 125, 250, 500, and 1000 in the case of E2,
and 225, 450, 900, and 1800 points in the case of SN2, matching the
prior evaluation by the work of Heinen, von Rudorff, and von Lilien-
feld.40 The average mean absolute error (MAE) for our WL-based
GNN models, obtained in this manner, are presented in the first two
columns of Tables I and II.

The comparison between the MAEs obtained for the QM-
augmented model and for the baseline model reveals that the inclu-
sion of the QM descriptors in the model architecture results in a 5–6
kcal/mol lower error. The rate at which the accuracy improves as
more labeled data points are included during training/validation is
also improved.

Next to the WL-based GNNs, we also considered the perfor-
mance of a powerful alternative structure-based neural network
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TABLE I. Average MAE (kcal/mol) when predicting SN2 barrier heights, obtained after three 5-fold CVs, for the baseline GNN, our ml-QM-GNN and Chemprop for different
numbers of labeled data points. The standard deviations were determined based on the MAEs for the three replicates. The corresponding accuracies obtained from fivefold CV
for the KRR models combined with BoB, SLATM, FCHL19, and one-hot encoding representations are included as well.40 20% of labeled points were reserved as a validation
set for early stopping while training the GNN models.

Labeled points Baseline GNN ml-QM-GNN Chemprop BoBa SLATMa FCHL19a One-hot encodinga Multivariate regression

225 (180 + 45) 9.07 ± 0.04 3.61 ± 0.14 6.71 ± 0.08 4.89 4.44 3.80 3.53 6.43
450 (360 + 90) 8.89 ± 0.13 3.28 ± 0.04 4.01 ± 0.02 4.28 3.87 3.43 2.80 6.33
900 (720 + 180) 8.61 ± 0.07 2.97 ± 0.03 3.23 ± 0.07 3.78 3.21 3.11 2.42 6.40
1800 (1440 + 360) 8.49 ± 0.03 2.76 ± 0.01 2.85 ± 0.02 3.49 2.92 2.87 2.14 6.43
aTaken directly from the work of Heinen, von Rudorff, and von Lilienfeld.40

TABLE II. Comparison of the average MAE (kcal/mol) values on the predicted E2 barrier heights, obtained after three 5-fold CVs, for the baseline GNN, our ml-QM-GNN, and
Chemprop for different numbers of labeled data points. Standard deviations were determined based on the MAEs for the three replicates. The corresponding accuracies obtained
from fivefold CV for the KRR models combined with BoB, SLATM, FCHL19, and one-hot encoding representations are included as well. 20% of labeled points were reserved as
a validation set for early stopping while training the GNN models.

Labeled points Baseline GNN ml-QM-GNN Chemprop BoBa SLATMa FCHL19a One-hot encodinga Multivariate regression

125 (100 + 25) 9.03 ± 0.18 4.08 ± 0.06 7.49 ± 0.10 4.67 4.43 4.01 3.53 6.43
250 (200 + 50) 8.78 ± 0.35 3.24 ± 0.08 5.78 ± 0.18 4.07 3.87 3.42 3.12 6.27
500 (400 + 100) 8.18 ± 0.04 2.91 ± 0.02 3.29 ± 0.09 3.71 3.21 3.01 2.69 5.90
1000 (800 + 200) 8.04 ± 0.17 2.65 ± 0.02 2.75 ± 0.06 3.27 2.92 2.75 2.40 6.07
aTaken directly from the work of Heinen, von Rudorff, and von Lilienfeld.40

architecture, Chemprop,71 which has recently been developed by
Yang et al., for the same data splits, cf. the third column in Tables I
and II as well as Sec. S7. Remarkably, Chemprop, which makes use
of a D-MPNN72 encoder for its convolutional embedding instead of
a WL one, is significantly more data efficient than our baseline GNN
for the considered task: Whereas for the smallest numbers of labeled
data points, Chemprop does only marginally, i.e., 1–2 kcal/mol, bet-
ter than the regular WL-based GNN, the advantage of the former
grows rapidly as the number of labeled data points considered dur-
ing training increases. Nevertheless, our ml-QM-GNN model out-
performs Chemprop across the entire range of training/validation-
set sizes considered. For the lowest training/validation-set sizes, the
difference in accuracy is stark; the MAE obtained for the QM-
augmented, WL-based GNN is almost half the MAE obtained for
Chemprop. When a 1000 or more data points are considered dur-
ing training, the advantage of our ml-QM-GNN dwindles to about
0.1 kcal/mol.

To contextualize the performance of our models, we also
include kernel ridge regression (KRR) models benchmarked by
Heinen et al. for four different (global) representations—BoB,
SLATM, FCHL19, and one-hot encoding, respectively (in
which every substituent site, as well as the nucleophile and
leaving group site, is assigned a bit vector spanning all the
possible substituent/nucleophile/leaving group species)—in
Tables I and II.40

From Tables I and II, it is straightforward to discern that the
QM-augmented model outperforms BoB, SLATM, and FCHL19 in
combination with KRR for even the smallest number of labeled
data points (125 or 225 points). In the absence of QM augmen-
tation, however, the baseline GNN performs significantly worse
than any of these methods across the board, as does Chemprop

for all but the biggest training/validation set sizes considered.
Further underscoring the excellent performance of the ml-QM-
GNN model is the lack of hyperparameter optimization and the
use of the mean square error loss during training, rather than MAE
directly (cf. Sec. S1). Nevertheless, it should also be noted that simple
one-hot encoding combined with KRR still outperforms the QM-
augmented model here. However, as will be demonstrated below,
one-hot encoding—as well as other models that do not base their
representation on physical principles—suffers from an inherent
limitation related to generalization, i.e., out-of-sample predictions,
which severely limits their appeal with respect to our ml-QM-GNN
in practical applications.

As an additional check, we constructed multivariate linear
models based on the QM descriptor values outputted by our sur-
rogate model, cf. the final columns in Tables I and II, as well
as Sec. S8 of the supplementary material. The accuracies of these
models are significantly worse than those of the (non-linear) ml-
QM-GNN model, and the performance does not increase as more
data points are added to the training set. Furthermore, univariate
analysis reveals that none of the descriptors correlate particularly
well with the activation energies: The maximal R2 values obtained
are 0.24 and 0.44 for the the SN2 and E2 reactions, respectively.
These findings confirm the established insight from the cDFT/VB
perspectives that, even though these electronic descriptors deter-
mine chemical reactivity to a great extent (vide infra), there is no
simple, universally valid linear relationship between their magnitude
and the height of reaction barriers, i.e., non-linearity is required to
fully exploit the reactivity patterns encoded in these physically moti-
vated descriptors.15 Additional evidence for the latter point can be
found in Sec. S13 of the supplementary material: (non-linear) GNNs
that start from an exclusively QM-based representation do recover a
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FIG. 3. Correlation plots for (a) the regu-
lar GNN model and (b) the ml-QM-GNN
model applied to the full E2/SN2 acti-
vation energy dataset from three 5-fold
cross-validations in a 60/20/20-split. The
colorbars indicate the scale of the 2D
kernel density estimate plots. The stan-
dard deviations were determined based
on the MAEs for the three replicates.

reasonable accuracy, although they still underperform with respect
to the full ml-QM-GNNs.

Since our WL-based GNN models involve pooling over react-
ing atoms, they enable simultaneous treatment of distinct reaction
modes for the same reactant/reagent system (in contrast to the
reaction-specific KRR models). Hence, we were able to combine the
data for the E2 and SN2 reactions and train a common model for
both sets of barrier heights. In Fig. 3, correlation plots between the
“true” (computed) and predicted activation energies (Ea), aggre-
gated across all test sets sampled during three 5-fold CVs, are
presented.

The correlation between the predicted and computed values is
weak for our baseline GNN model [Fig. 3(a); R2

= 0.65]; the mean
MAE and root mean square error (RMSE) from three replicates is 8.4
and 10.1 kcal/mol, respectively. The QM-augmented analog achieves
much stronger correlation [Fig. 3(b); R2

= 0.96] and an average MAE
and RMSE of 2.9 and 3.9 kcal/mol.

B. Generalizability—E2/SN2 regression dataset
Next, we considered the ability of our regression models to gen-

eralize to new compounds not present in the training data. While
one-hot encoding representations have proven to be well suited
for reactivity problems focused on interpolation,73,74 they do not
perform well on in out-of-sample predictions.49

To assess model generalizability, training/validation and test
sets were selectively sampled so that for one of the four nucleophiles
in the dataset, all its reactions would consistently be part of the test
set, and consequently, this nucleophile is not “seen” by the model
during training. The random train and validation set sampling (in a
3:1 ratio) was iterated five times, and the resulting predictions were
aggregated. In Fig. 4, the correlation plots for each of the different
“held-out” nucleophiles are presented.

The regular, WL-based GNN models barely manage to repro-
duce the qualitative trend in the computed activation energies;
they significantly underestimate the quantitative values for the bar-
riers when either the hydride or fluoride nucleophiles are held-
out, whereas the barriers are vastly underestimated when chlo-
ride and bromide are held-out during training (mean RMSEs
range from 9 to 18 kcal/mol). KRR in combination with one-hot

encoding40 performs even worse than the regular GNN on this task;
upon selectively sampling, RMSEs between 9 and 20 kcal/mol are
obtained for this model architecture (cf. Table S5 of the supple-
mentary material). Remarkably, the FCHL19 and SLATM repre-
sentations do not fare much better than one-hot encoding (mean
RMSEs range from 7 to 35 kcal/mol for SLATM and from 5 to
24 kcal/mol for FCHL19, cf. Table S6). Finally, Chemprop also
fails to produce reasonable predictions (mean RMSEs between 9
and 16 kcal/mol, cf. Table S11 of the supplementary material),
underscoring that limited generalizability is a universal issue for
models that do not base their representation on physical princi-
ples. The ml-QM-GNN on the other hand obtains decent corre-
lations for each of the models trained with hold-out nucleophiles
[Figs. 4(e)–4(h)], and the quantitative agreement between model
predictions and true values is much better: For hydride and flu-
oride, the mean RMSEs amount to 8–9 kcal/mol, whereas for
chloride and bromide, the mean RMSEs amount to a reasonable
5–6 kcal/mol.

These results constitute an unequivocal demonstration that
designing a GNN model so that it constructs a QM-based repre-
sentation before the final reactivity prediction not only improves
the model accuracy in this data-limited setting but also improves
the model’s ability to generalize to unseen nucleophiles, i.e., nucle-
ophiles not found in any example in either the training or the
validation set.

C. Explainability—E2/SN2 dataset
Finally, we aimed to gain some insights into how the model

reaches its decisions/reactivity predictions. It is not always appar-
ent what exactly deep learning models are learning and how they
generalize to new, previously unseen data points, which makes their
performance less predictable in prospective settings. We performed
a set of ablation experiments, where we controlled the number and
type of atom-centered QM descriptors that are used to supple-
ment the structural representation. Specifically, we masked either
the nucleophilic and electrophilic Fukui indices or the Hirshfeld par-
tial charges and NMR shielding constants (the effect of inclusion of
individual descriptors in the model is concisely discussed in Sec. S17
of the supplementary material).
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FIG. 4. Correlation plots for the aggregated predictions made by the regular GNN model across iterations, with held-out nucleophiles: (a) H−, (b) F−, (c) Cl−, and (d) Br−.
Correlation plots for the ml-QM-GNN model with held-out nucleophiles: (e) H−, (f) F−, (g) Cl−, and (h) Br−. The mean RMSE is shown at the top of each individual panel
(cf. Sec. S12 for the obtained standard deviations).

The decision to consider the effect of these pairs of descriptors
simultaneously is inspired by the core principle emerging from phys-
ical organic chemistry/cDFT that the interactions between reacting
species can generally be subdivided in two main types: “hard–hard”
or electrostatic interactions, and “soft–soft” or (frontier) orbital
interactions.3,75 Fukui functions, defined as the (atom-condensed)
distribution of an added and removed electron to the system, probe
the latter, whereas atomic charges and NMR shielding constants,
which reflect the (de)shielding of the nuclei caused by intramolecu-
lar electron donation/withdrawal, probe the former.5,15,76 It should
be noted that this theory-informed dichotomy of the considered
atom-condensed descriptors can also readily be retrieved from
purely data-driven feature analysis: In both datasets considered in
this study, partial charges and NMR shielding constant values cor-
relate with a significant extent, whereas neither of those consistently
correlate with either of the Fukui function values, cf. Sec. S18 of the
supplementary material.

Table III contains the accuracies obtained after three 5-fold
CVs for the baseline GNN model and the models with one or both
sets of estimated QM descriptors. For the baseline model, an average
RMSE of 10.1 kcal/mol was obtained; for the full QM-augmented
model [“ml-QM-GNN (full)”], the average RMSE was reduced to
3.9 kcal/mol. Remarkably, the ablated model that bases its reactivity
predictions solely on atomic charges and NMR shielding constants
as QM descriptors [“ml-QM-GNN (charge + NMR)”] recovers

the exact same accuracy as the full QM-augmented model (RMSE
= 3.9 kcal/mol); the ablated model that only makes use of the Fukui
functions [“ml-QM-GNN (Fukui)”] on the other hand achieves the
same accuracy as the baseline model (RMSE = 10.0 kcal/mol). When
the training set size during these fivefold CVs is reduced to 200
data points, similar results are obtained: The ml-QM-GNN (Fukui)
model only marginally improves the accuracy of the model relative
to the baseline, whereas the ml-QM-GNN (charge + NMR) model
gets exceedingly close to the ml-QM-GNN (full) model (cf. Sec. S19).
These findings suggest that electrostatic/hard–hard interactions are

TABLE III. Model performance as a function of QM descriptor set inclusion. Mean
RMSEs and standard deviations (kcal/mol) obtained for the E2/SN2 barrier height
prediction from three random fivefold cross-validations for the different (ablated) GNN
models tested, as well as the corresponding classification accuracies (and their stan-
dard deviations) for the prediction of E2 vs SN2 preference. The standard deviations
were again determined from the three replicates.

Model RMSE (kcal/mol) Accuracy (%)

Baseline GNN 10.13 ± 0.14 77.0 ± 0.8
ml-QM-GNN (full) 3.92 ± 0.01 89.0 ± 0.6
ml-QM-GNN (Fukui) 10.02 ± 0.02 77.1 ± 0.1
ml-QM-GNN (charge + NMR) 3.93 ± 0.02 88.9 ± 0.6
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FIG. 5. (a) Partial (NPA) charge distribution in the E2-TS
geometry for F− + H3CCH2Cl (top) and H2P− + H3CCH2Cl
(bottom); two model systems frequently used as a starting
point for qualitative analyses of E2/SN2 competition. The
more pronounced (−)–(+)–(−) charge array in the case of
the F− nucleophile causes sufficient electrostatic stabiliza-
tion for the E2-TS to drop below the SN2-TS in energy;
in the case of the H2P− nucleophile, the reduced electro-
static stabilization causes the SN2-TS to remain lower in
energy. (b) Lowest unoccupied molecular orbital (LUMO;
E = 0.025 a.u.; left) and LUMO + 1 (E = 0.047 a.u.;
right) for H3CCH2Cl. The calculations were performed at the
M06/def2-TZVP level-of-theory (cf. Sec. S20).77

the main drivers of the variations observed in the dataset and that
Fukui functions, i.e., frontier orbital interactions, are not particularly
relevant in this regard.

Further evidence that Fukui functions do not play a significant
role in the decision-making process of our QM-augmented network
is obtained when the fully trained ml-QM-GNN model is applied to
all data points after averaging Fukui function values across all atoms.
In this setup, the model predictions are barely affected (R2

= 0.96
between the original predictions and the predictions with Fukui
information averaged out). Averaging out the charges and NMR
shielding constants on the other hand scrambles the predictions
made by the model entirely (Fig. S6).

It is worthwhile to note here that our uni-/multivariate analysis
(vide supra) already contained clues hinting in the same direction:
While—as noted before—none of the descriptors were found to
correlate particularly well with the activation energies in these lin-
ear models, the hard–hard descriptors did collectively outperform
the soft–soft descriptors by a significant margin (cf. Sec. S8 of the
supplementary material).

The same trends discussed above emerge for the classification
models constructed for the second curated dataset, also extracted
from the E2/SN2 reaction data (Table III). Again, an improved accu-
racy is observed when the model bases its predictions on the full
set of predicted QM descriptors (77%–89% accuracy; cf. Sec. S15
for some representative failures to predict the correct preference
for the ml-QM-GNN model). Removing the Fukui function infor-
mation from the QM-augmented model does not affect the accu-
racy in a meaningful way, whereas removing the charge and NMR
shielding constant data again causes the accuracy to drop to the
baseline level.

Our findings about the relative importance of electrostatic/
“hard–hard” vs (frontier) orbital/“soft–soft” interactions, emerging
in both regression and classification tasks, are perfectly in line with
a recent qualitative VB/cDFT analysis undertaken by one of the
authors of the present work.77 In this analysis, it was demonstrated
that the modulation of the E2/SN2 competition is primarily driven by
the electrostatic interactions present in the E2-TS: the formation of
a strongly stabilizing array of point-charges, i.e., (−)–(+)–(−), in this
geometry tends to push its energy below that of the SN2-TS; in the
case that the point-charges in this array—and thus the Coulombic
interaction—are weaker, the SN2-pathway dominates [cf. Fig. 5(a)].

The observation that the Fukui function values are not really
helpful to a GNN aiming to learn this mechanistic competition could

also have been readily anticipated from the analysis presented in
the same qualitative study: The ethylhalide substrates on which the
nucleophiles attack generally carry two relatively close-lying, unoc-
cupied frontier orbitals that are delocalized over both the α-carbon
and the hydrogen on the β-carbon [Fig. 5(b)];77 providing infor-
mation about only the lowest-lying of these orbitals through the
(electrophilic) Fukui function is not very informative.

The discussion above demonstrates that combining a qualita-
tive analysis rooted in conceptual reactivity frameworks with our
QM-augmented machine learning approach leads to a productive
synergy for the considered dataset of competing E2/SN2 reactions:
On the one hand, the qualitative insights provide context to explain
and understand the decision/prediction-making process of the net-
work. At the same time, the results emerging from our ablation study
can also be considered as an indirect, data-driven confirmation of
the qualitative reactivity analysis.

D. Explaining the predicted regioselectivity
of aromatic substitution reactions

To further explore the explainability/interpretability of ml-
QM-GNN models, we revisited the classification dataset containing
regiochemical data for electrophilic substitution reactions, originally
compiled by Guan et al. to demonstrate the potential of this model
architecture in data-limited settings.50 As mentioned in Sec. II,
we select only those data points that are publicly available in the
USPTO database, resulting in a curated dataset of 3242 reactions. In
Table IV, the accuracies achieved by the baseline GNN, the ml-QM-
GNN, and the two ablated models on the curated dataset (training
set limited to 200 data points) are presented. Once more, we observe

TABLE IV. Average accuracies (and their standard deviation across replicates)
obtained from three random fivefold CVs for the different (ablated) WL-based GNN
models applied to the curated aromatic substitution dataset (training set limited to 200
data points).

Model Accuracy (%)

Baseline GNN 71.4 ± 1.3
ml-QM-GNN (full) 86.5 ± 0.7
ml-QM-GNN (Fukui) 84.4 ± 1.1
ml-QM-GNN (charge + NMR) 82.2 ± 1.3
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that the full QM-augmented model significantly outperforms the
baseline GNN. More interestingly, it can be observed now that each
set of descriptors leads to a significant improvement in accuracy over
the baseline, but both are needed to maximize performance.

Even though the differences are rather small, the results pre-
sented in Table IV suggest that for this class of reactions, the Fukui
functions are slightly more informative than charges and NMR
shielding constants, which is in contrast to what was observed for
the E2/SN2 dataset in Sec. III C. These findings can be straight-
forwardly reconciled with the qualitative physical organic reactivity
models that have been constructed and popularized throughout the
years: Aromatic compounds are strongly delocalized, and hence,
orbital interactions/changes in delocalization stabilization as probed
through the Fukui functions are generally considered to be the
main driving force shaping their reactivity.14,78,79 At the same time,
it has been underscored in recent years that electrostatics can-
not be neglected—in particular under conditions favoring kinetic
control—since atomic charges tend to become more pronounced
as the compounds involved in the reaction approach,9 enabling
a significant Coulombic stabilization/destabilization of the wave
function in the transition state region.15,76

To obtain a better understanding of how the (ablated) QM-
augmented models reach their decisions/predictions, we constructed
a set of confusion matrices comparing the respective prediction
accuracies for all test sets considered during the first cross-validation
(Fig. 6).

These matrices show that there are relatively few data points
(97 and 119) where an ablated model makes the correct prediction,
while the model with access to all descriptors reaches the wrong
conclusion; the full QM-augmented model appears to mainly rectify
incorrect predictions by the ablated models (cf. the upper two square

FIG. 6. Confusion matrices comparing the predictions made by the different
(ablated) ml-QM-GNN models for all test sets sampled during the first fivefold
CV combined. The labels in the margins of the individual matrices indicate which
descriptors are considered by the respective model, i.e., either only the soft–soft
or hard–hard descriptors or both descriptor-types combined.

matrices in Fig. 6). Additionally, the lower-right confusion matrix
in Fig. 6 demonstrates that many incorrect predictions by the two
ablated models are distinct: The number of points for which there
is disagreement between the models (245 + 351) is greater than the
off-diagonal elements in the upper matrices.

We then considered whether incorrect prediction of regios-
electivity preference is connected to failures of either the
“hard–hard”/electrostatic or “soft–soft”/(frontier) orbital criterion.
The “hard–hard”/electrostatic criterion is considered to be fulfilled
when the reacting site on the aromatic substrate corresponds to the
site carrying the highest partial negative charge (in the case of elec-
trophilic attack) or partial positive charge (in the case of nucleophilic
attack) since this would maximize the Coulombic stabilization upon
approach between the reacting species. The “soft–soft”/(frontier)
orbital criterion is considered to be fulfilled when the reacting site on
the substrate corresponds to the site on which the nucleophilic Fukui
function is most concentrated (in the case of electrophilic attack)
or the site on which the electrophilic Fukui function is most con-
centrated (in the case of nucleophilic attack)—which would max-
imize the orbital interaction upon approach between the reacting
species.

Since nitration reactions and halogenation reactions involv-
ing N-substituted succinimides are electrophilic without exception,
are straightforward to recognize based on a SMILES representa-
tion, and collectively cover approximately half of the dataset (1534
out of 3242 data points), we decided to focus exclusively on these
reaction types for this part of our analysis. A confusion matrix com-
paring the predictions obtained through naive evaluation of the
individual physical organic criteria (vide supra) with the predictions
made by the (ablated) models during fivefold CV is presented in
Table S14. The predictions made by the models tend to adhere to
the respective criteria: The vast majority of data points for which
both criteria point to the correct reactive site are classified cor-
rectly by the ablated and the full QM-augmented GNNs, whereas
reactions incorrectly classified only by the ablated model that exclu-
sively considers Fukui function values disproportionately violate the
“soft–soft” criterion (and vice versa: The reactions that are only
incorrectly classified by the ml-QM-GNN (charge + NMR) dispro-
portionately violate the “hard–hard” criterion, Fig. 7). Only a hand-
ful of reactions for which neither criterion is fulfilled are classified
correctly.

Putting all this together, one can conclude that the trained QM-
augmented GNN model with all descriptors included appears to be
able to balance the relative importance of the electrostatic and (fron-
tier) orbital criteria, whereas the ablated models are generally biased
toward (a) assigning too much importance to the interaction type
that they have access to and (b) adhering to the rudimentary assign-
ment based on the “soft–soft”/“hard–hard” criterion, even when this
assignment is incorrect.

As such, our ml-QM-GNN model essentially refines the balanc-
ing act that is implicitly part of any cDFT-based qualitative reactivity
analysis. As indicated above, most human theoreticians tend to
assume that the regioselectivity of aromatic reactions is primarily
determined by the Fukui functions, i.e., the soft–soft interactions
dominate, and they will often ignore the electrostatics altogether
(or assume that these are in sync with the Fukui function values).79

Our analysis (cf. Sec. S21) shows that this is not an unreason-
able approximation to make for this dataset; selecting the site to
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FIG. 7. The predictions made by the
ablated models generally adhere to their
corresponding physical organic criterion
(q denotes the predicted partial charge,
and f− denotes the predicted atom-
condensed nucleophilic Fukui function
value; the red dots correspond to the
reported/“true” reactive sites, and the
blue dots are competing sites). (a) For
this example reaction, the hard–hard
criterion is fulfilled, but the soft–soft
one is not; correspondingly, the ablated
model that considers exclusively the par-
tial charges an NMR shielding constants
makes the correct prediction and the
ablated model that considers exclusively
Fukui function values makes the incor-
rect one. (b) Example reaction for which
the situation is reversed.

which the soft–soft criterion points—ignoring the hard–hard crite-
rion completely—results in an accuracy of ≈80%. By relaxing this
rigid guiding rule and replacing it by a more complex classifica-
tion function centered around the same QM descriptors, our models
already reach accuracies exceeding 86% when a mere 200 training
points are used (Table IV) and reaching up to 93%–94% when the
training set size is expanded to 1945 training points (cf. Sec. S6 of the
supplementary material for learning curves visualizing the gradual
rise in accuracy upon training set expansion).

E. Failures in predicting regioselectivity of aromatic
substitution reactions

Finally, we also took a closer look at some of the react-
ing systems for which neither criterion is fulfilled and for which
all our GNN models, trained on only 200 example reactions, fail
to make the correct prediction. While it appears impossible to
assign a specific reason for each failure, there are some recurring
patterns.

FIG. 8. (a) Some examples of nitra-
tion reactions with an NH2-substituent
on the aromatic substrate for which
both physical organic criteria and all
QM-augmented models fail (the blue
dots indicate the—incorrectly—predicted
sites; the red dots indicate the true reac-
tive sites). (b) Some examples of nitra-
tion reactions with an OH-substituent
on the aromatic substrate for which
both physical organic criteria and all
QM-augmented models fail. (c) Mecha-
nism of a regular (electrophilic) nitration
reaction involving a (protonated) aniline
substrate. (d) Proposed radical mecha-
nism for nitration of halogenated phenol
analogs.80
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As an example, all criteria and models consistently appear to
fail for most nitration reactions involving aniline analogs, i.e., aro-
matic substrates with an NH2-substituent [Fig. 8(a)]. For this type
of reaction, nitration in ortho- or para-position is expected, but the
“true” reactive site corresponds to the meta-position. This failure is a
reflection of the fact that nitration reactions are usually performed in
strongly acidic reaction media to promote the protonation of nitric
acid into the active nitronium ion species, which inherently results
in simultaneous protonation of the NH2-substituent, rendering this
substituent meta-directing instead of para-directing [Fig. 8(c)].

Another recurring failure is observed for nitration reactions
involving halogenated phenols. In this type of reaction, both
the criteria and models predict the reaction to occur in ortho-
/para-position relative to the halogen substituent, whereas the
“true”/recorded reactive site is consistently the ortho-position rel-
ative to the OH-substituent [Fig. 8(b)]. This failure can most likely
be attributed to a mechanistic crossover: Instead of a conventional
electrophilic aromatic substitution mechanism, reactions between
phenolic compounds and nitric acid/nitronium ions have been
demonstrated to involve a (pure) single electron transfer step, fol-
lowed by radical recombination [Fig. 8(d)].80,81 This change in lthe
mechanism can be expected to impact the balance in directing
strengths of the halogen- and hydroxy-substituents with respect to
regular electrophilic aromatic substitution reactions, resulting in a
modification of the regiochemistry.

Since both the physical organic criteria and our GNN models
are agnostic to reaction conditions and “concealed” reaction steps,
they are unable to capture these modifications to the directing char-
acter of the NH2 and OH-substituents under data-scarce conditions.
One can anticipate that by adding more and more training data, the
model may learn to overrule the “regular” QM descriptor assign-
ment when NH2/OH-substituents and nitric acid are simultaneously
present in the reacting system, but since only 200 data points were
used for the initial training here, there are simply not enough exam-
ples to capture these particular patterns. Indeed, we find qualitative
evidence for this assertion in the case of the nitration reactions of
halogenated phenols: With 1945 training points, the correct regio-
chemical predictions are generally recovered by the ml-QM-GNN
model for this class of failures (cf. Sec. S22 of the supplementary
material).

IV. CONCLUSIONS
In this work, the performance, explainability, and generalizabil-

ity of the QM-augmented GNN (ml-QM-GNN) model architecture
have been assessed for a few distinct predictive chemistry tasks. Our
models achieve a significantly improved accuracy over an analo-
gous, conventional GNN baseline and generalize markedly better
to unseen compounds, particularly in a data-limited regime. Even
when only a couple hundred labeled data points are available, our
ml-QM-GNN models are competitive with traditional “low-data”
KRR models.

Importantly, since the predictions made by our models are
rooted in (predicted) QM descriptors, it becomes possible to build
bridges between their predictions and the existing physical organic
frameworks, developed to qualitatively analyze chemical reactiv-
ity. Through a series of selective descriptor ablation experiments,
we have demonstrated that for competing E2/SN2 reactions, Fukui

function values, i.e., information about soft–soft interactions, are of
limited value; charges and NMR shielding constants are the main
drivers of the improvement in model accuracy with respect to the
baseline GNN model. These findings can be rationalized through
consideration of a recent qualitative valence bond/cDFT analysis of
this mechanistic competition.77

For aromatic substitution reactions, we observed that the ml-
QM-GNN model appears to make its decision/predictions in a
similar manner as human theoreticians trained in physical organic
chemistry/cDFT, i.e., by considering soft–soft and hard–hard inter-
actions separately through their corresponding local descriptors.
What makes our models excel with respect to a naive conceptual
treatment is their ability to fine-tune the relative importance of the
individual physical organic criteria based on subtle patterns present
in the data, resulting in a more complex classification function and
a significantly higher accuracy.

Overall, our analysis underscores that a productive interplay
between machine learning models and qualitative reactivity analysis
is possible: On the one hand, qualitative insights into the consid-
ered reactivity problem provide context to explain and understand
the decision-making process of the network. Additionally, they can
provide clues about the suitability to include specific QM descrip-
tors in the neural network. At the same time, the results emerging
from machine learning models augmented with QM descriptor
information can provide an indirect, data-driven confirmation of a
qualitative reactivity analysis.

SUPPLEMENTARY MATERIAL

See the supplementary material for an in-depth technical
description of the WL-based GNN model architectures, technical
details related to the overall training process and cross-validation,
summarizing statistics to characterize the data distributions, the
effect of removing “duplicate” data points from the E2/SN2 dataset,
note regarding the data curation procedure for the E2/SN2 classifi-
cation dataset, learning curves for the aromatic substitution dataset,
computational details related to the application of Chemprop to
the E2/SN2 dataset, multi- and univariate analysis for the E2/SN2
dataset, selective sampling results for one-hot encoding in combi-
nation with KRR, selective sampling results for Chemprop, RMSEs
and standard deviations obtained for the WL-based GNN and ml-
QM-GNN during selective sampling, performance of a GNN with
an exclusively QM-based representation as input for the E2/SN2
dataset, the effect of averaging out the respective descriptors for
the full QM-augmented model trained on the E2/SN2 dataset, rep-
resentative examples of failures of the ml-QM-GNN model for the
E2/SN2 classification, performance of the full ml-QM-GNN model,
trained exclusively on either the E2 or SN2 data, on the held-out
reaction type, the effect of inclusion of individual QM descriptors
in the ml-QM-GNN, correlation analysis of the QM descriptors
included in the ml-QM-GNN, methodology for the DFT calcula-
tions in Fig. 5, confusion matrix comparing the classifications by the
QM-augmented models to the physical organic criteria for the aro-
matic substitution dataset, and recovery of the correct regiochemical
predictions as the training set increases for the aromatic substitution
dataset.
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