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ABSTRACT
Strategies for machine-learning (ML)-accelerated discovery that are general across material composition spaces are essential, but demon-
strations of ML have been primarily limited to narrow composition variations. By addressing the scarcity of data in promising regions of
chemical space for challenging targets such as open-shell transition-metal complexes, general representations and transferable ML models
that leverage known relationships in existing data will accelerate discovery. Over a large set (∼1000) of isovalent transition-metal complexes,
we quantify evident relationships for different properties (i.e., spin-splitting and ligand dissociation) between rows of the Periodic Table (i.e.,
3d/4d metals and 2p/3p ligands). We demonstrate an extension to the graph-based revised autocorrelation (RAC) representation (i.e., eRAC)
that incorporates the group number alongside the nuclear charge heuristic that otherwise overestimates dissimilarity of isovalent complexes.
To address the common challenge of discovery in a new space where data are limited, we introduce a transfer learning approach in which we
seed models trained on a large amount of data from one row of the Periodic Table with a small number of data points from the additional
row. We demonstrate the synergistic value of the eRACs alongside this transfer learning strategy to consistently improve model performance.
Analysis of these models highlights how the approach succeeds by reordering the distances between complexes to be more consistent with the
Periodic Table, a property we expect to be broadly useful for other material domains.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0082964

I. INTRODUCTION

Machine learning (ML) models have been demonstrated
as a powerful alternative to conventional computational
high-throughput screening1,2 by greatly accelerating chemical
discovery,3–8 e.g., with active learning.9–12 It is typically the case
at the outset of a discovery campaign that a great deal is known
from experiments, computation, and associated ML models about a
highly localized region of chemical space, but the most promising
directions for improvement lie outside this region. For example,
many of the most active catalysts13,14 or single molecule magnets15,16

require the use of rare and toxic 4d or 5d metals, and identification

of principles17 for their replacement with 3d metals would be
advantageous18,19 in a number of difficult small molecule catalytic
conversions (e.g., H2,20–25 CO2

26, and O2
27). Thus, ML-accelerated

discovery requires models and representations that generalize well
and strategies to exploit existing knowledge while data in new
regions are scarce.

Despite the need for ML models that generalize across the
Periodic Table,3,28–31 ML models have much more commonly been
applied in narrow regions of chemical space, such as closed-shell
organic (i.e., CHNOF-containing) molecules in the QM9 dataset32

with few exceptions.33 For open-shell transition-metal chemistry,
in particular, unique challenges are present in the generation of

J. Chem. Phys. 156, 074101 (2022); doi: 10.1063/5.0082964 156, 074101-1

© Author(s) 2022

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0082964
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0082964
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0082964&domain=pdf&date_stamp=2022-February-15
https://doi.org/10.1063/5.0082964
https://orcid.org/0000-0001-7137-5449
https://orcid.org/0000-0001-9318-3595
https://orcid.org/0000-0003-2592-4237
https://orcid.org/0000-0001-9342-0191
mailto:hjkulik@mit.edu
https://doi.org/10.1063/5.0082964


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

sufficiently large datasets for ML model training while spanning
a large range of metal centers, ligand chemistry, and the coop-
erative effect the metal/ligand identity play in the resulting spin
or oxidation state of the complex.34 While ML-model-accelerated
computational discovery has targeted numerous transition-metal
catalysts35–39 or functional complexes9,40 and related metal–organic
materials (e.g., metal–organic frameworks41–43 and transition metal
oxides44), these models have also generally been restricted to a
small number of transition metals or modest modifications of
the ligands. While only preliminarily demonstrated on open-shell
transition-metal complexes,45–47 there is evidence that electronic
descriptors such as partial charges or bond valence45 and molec-
ular orbitals46,48,49 or other computed electronic properties50,51 are
one path to training transferable ML models on small datasets.
Sidestepping ML with direct, computationally demanding simula-
tion [e.g., with density functional theory (DFT)] in large spaces
of functional materials and catalysts is plagued by combinatorial
challenges34,52–54 that can only be partly reduced through inverse
design strategies (e.g., with alchemical derivatives53,55–57 or heuris-
tics58). Nevertheless, all such approaches that require an electronic
structure calculation to be completed for property prediction or
optimization hamper the large-scale exploration that is required for
large-scale material discovery.

For transferable ML models, opportunities and challenges
for either conventional 3D-structure-based59–63 or graph-based64–66

representations remain. Given the importance of this challenge,
numerous groups have made effort to understand how to transfer
information learned on small molecules to larger molecules (e.g.,
with persistent homology,67 using a smooth overlap of atomic posi-
tions (SOAP) kernel or atom centered symmetry functions68 or
graph neural networks69) and how to ensure transferability across
different datasets70 and to new solid state materials with unseen ele-
ments (e.g., using Euclidean neural networks71). Here, we focus on
graph-based revised autocorrelations65,72,73 (RACs) that are no-cost
products and differences of heuristic atomic properties (e.g., nuclear
charge or Pauling electronegativity) on the molecular graph that
have been demonstrated for transition metal chemistry. The 155-
feature form of RACs (i.e., RAC-155) was used9 to train a multi-task
artificial neural network (ANN) that accelerated identification of sol-
uble and high redox potential transition metal complexes (TMCs)
for redox flow batteries from nearly 3 M candidates in weeks instead
of decades.9 In this or other discovery campaigns for which there
is a reasonable degree of similarity between training and test data,
RAC-155 and its feature-selected subsets have been used9,35,38,65,74–77

to train ML [e.g., kernel ridge regression (KRR) and ANN] mod-
els that exhibit good performance on modestly sized (∼200 to 1000
data points) datasets of DFT properties for TMCs, including around
1–4 kcal/mol accuracy for adiabatic spin-splitting energies,65,76 bond
lengths,65,74,78 ionization/redox potentials,65 HOMO energies,75 and
catalytic properties.38

Exemplary of how RAC-trained models have limited domains
of applicability, Janet et al. observed76 that introducing new elements
(e.g., P or As) into an out-of-distribution test molecule uniquely
challenged ANN models trained only on first-row, 3d open-shell
transition-metal complexes with primarily 2p ligand chemistry.
Conversely, introducing diverse metal coordination environments
with a wider range of sampled elements into model training greatly
improved ANN model generalization,79 reducing mean absolute

errors by around 25%–30%. Because the distance in feature space
(e.g., in KRR) or latent space (i.e., in the ANN) is a critical compo-
nent, prediction by ML models of new materials with compositions
not well supported by training data is universally challenging. Nev-
ertheless, RACs and other widely used representations60 employ
the nuclear charge in the representation, exaggerating differences
between rows of the Periodic Table with respect to differences in
the group number.80 While some heuristic properties in RACs (e.g.,
the Pauling electronegativity) more faithfully encode chemical sim-
ilarity,64 the nuclear-charge-based features are often emphasized
in feature-selected subsets, highlighting their importance in model
prediction.74

Limitations in the representation will make it challenging for
an ML model to learn relationships between isovalent materials with
elements from different rows of the Periodic Table, despite clear
relationships81–83 in both ligand field strength (e.g., 3p P > S and
2p N > O) and d-filling trends of spin-splitting energies84 between
3d and 4d TMCs. One may anticipate that changing the row of
the metal requires a change in the ligand chemical composition
(e.g., for nitrogen-coordinating ligands vs phosphorus-coordinating
ligands) as well. The existence of these structure–property relation-
ships presents an opportunity for representation improvement. In
this work, we tackle the challenge of improving the transferability
of no-cost representations by introducing the group number as a
heuristic into RACs, an approach previously demonstrated only in
closed-shell organic molecules85,86 or in metallic alloys.33,87 We show
how this always improves model performance and devise a synergis-
tic strategy for leveraging large amounts of data containing elements
from one row of the Periodic Table to improve the learning curves
on materials belonging to a new target row. While demonstrated for
the first time here on open shell 3d/4d learning tasks, we expect this
approach to be broadly useful for other materials.

II. APPROACH
A. Dataset construction

Mononuclear, octahedral TMCs were assembled from combi-
nations of eight transition metals with ten small, common ligands
to explore relationships among isovalent metal centers and metal-
coordinating ligand atoms. While the electronic structure of some
of these TMCs were discussed in Ref. 84, we reiterate the rationale
for their curation in paired datasets for ML on isovalent properties
here. The TMCs contain 3d or 4d mid-row transition metals (Cr/Mo,
Mn/Tc, Fe/Ru, and Co/Rh) in+2 and+3 oxidation states (Fig. 1). We
study the energetically accessible spin states for these metals, which
correspond to low-spin (LS), intermediate-spin (IS), and high-spin
(HS) states, where the IS and HS states differ by having two more
or four more unpaired electrons, respectively, with respect to the
singlet or doublet LS state. The earliest Cr(III)/Mo(III) and latest
Co(II)/Rh(II) are studied in only two states, a LS doublet and an IS
quartet (supplementary material, Table S1).

The ten common ligands were selected for their varying field
strengths (i.e., from weak field halides to strong field carbonyl).
Six (i.e., three pairs) of these ligands contain isovalent coordinat-
ing atoms that differ in the principal quantum number, e.g., 2p vs
3p NH3 and PH3 (Fig. 1). A large set of possible TMC isomers were
assembled from up to two of these ligands (i.e., L1 and L2) in four
arrangements: (i) homoleptic M(L1)6; (ii) trans M(L1)4(L2)2; (iii) cis
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FIG. 1. Overview of eight metals and ten ligands used to form mononuclear, octa-
hedral transition-metal complexes in the datasets in this work. (Top) 3d and 4d
metals grouped by the row and column order in the Periodic Table. (Middle) Skele-
tal structures of the ten ligands with the metal-coordinating atom shown in bold.
The six left-most ligands are grouped by isovalent 2p metal-coordinating atoms in
the first row (i.e., N, O, and F) with 3p metal-coordinating atoms in the second row
(P, S, and Cl). Four additional ligands that have carbon or nitrogen coordinating
atoms are depicted at right. (Bottom) Symmetries of transition-metal complexes
studied by assembling up to two ligand types (L1 in black and L2 in blue) in octa-
hedral complexes: homoleptic (L1 = L2), 5 + 1 (a single axial L2), and trans or cis
placement of two L2 ligands.

M(L1)4(L2)2; and (iv) 5 + 1 M(L1)5(L2) (Fig. 1). All homoleptic (i.e.,
440) TMCs and trans or 5 + 1 (i.e., 3960 each) structures were set
up for calculation with DFT, whereas only a subset (1,080) of the cis
structures were set up (see Sec. III A and the supplementary mate-
rial, Table S2). For the TMCs in this set, we compute (see Sec. III A)
up to three gas-phase, adiabatic spin-splitting energies, i.e., between
the LS and HS states, ∆EH-L, as well as between the IS state and
either the LS or the HS state (i.e., ∆EH-I and ∆EI-L), which were dis-
cussed in part in Ref. 84. In this work, for a subset of the TMCs,
we now also compute a vertical ligand dissociation (LD) energy,
∆ELD, the energy required to rigidly remove a single axial ligand
(see Sec. III A).

From nearly ten thousand hypothetical TMCs, we obtain a
smaller subset for testing the transferability of ML models by pairing
isovalent species with differing principal quantum numbers via a fil-
tering procedure that is more restrictive than that used in Ref. 84. For
the isovalent metal pairing set, we compare computed properties of
pairs of complexes that have metal centers in the same group of the
Periodic Table but differ in their principal quantum number [e.g.,
3d Fe(II) and 4d Ru(II)] with identical characteristics for all other
TMC properties (e.g., spin multiplicity, L1/L2 ligands, and symme-
try class). After accounting for data fidelity and convergence rates,
we obtain over 1200 pairs of spin-splitting ∆E values depending on
the spin states compared with the I–L set roughly twice as large as
the H–L or H–I sets. The isovalent metal pairing set of ∆ELD values
across spin states contains over 1000 pairs (supplementary material,
Table S3).

We also construct an isovalent ligand pairing set, which com-
pares properties of pairs of TMCs that have ligands with metal-
coordinating atoms that belong to the same group of the Periodic
Table but differ in the principal quantum number (e.g., 2p N and 3p
P). Because only six of the ten ligands belong to one of these 2p/3p
pairs, heteroleptic TMCs could include between zero and two unique
ligands from this subset. For the pairs in the isovalent ligand pairing
set, we change all relevant ligands simultaneously while holding any
incompatible ligands and all other TMC properties (e.g., metal and
oxidation and spin state) fixed. Because we start from a smaller sub-
set of TMCs that have the relevant ligands, isovalent ligand pairing
subsets of spin-splitting and ligand dissociation energies are about
half of the size of the isovalent metal pairing sets (supplementary
material, Table S4). Despite the importance of machine learning to
accelerate discovery in transition metal chemistry, our dataset here
represents the first systematic approach to identify transferability of
properties when changing both the metal center and ligand princi-
pal quantum numbers. The extent to which trends exist in this data
will be assessed in Sec. IV where we show some trends exist but not
enough to rely on simple models (i.e., linear models), thus motivat-
ing development of transferable ML representations (Sec. II B).

B. Representations
We employ Moreau–Broto autocorrelations (ACs)72,88 and

revised AC variants (i.e., RACs),65 which are representations formed
by discrete operations on the heuristic properties of atoms in the
molecular graph in analogy to continuous autocorrelations. A stan-
dard AC is evaluated over all of the n atoms in a molecule that are d
bonds apart,

Pd =
start

∑
i

scope

∑
j

PiPjδ(dij, d),

where P is the chosen property and Pi and Pj are the specific values
of the ith and jth atoms, respectively, that are dij bonds apart. The
five heuristic properties65,72,73,88,89 we have employed for transition-
metal chemistry65,89 include the Pauling electronegativity, nuclear
charge, covalent radius, topology, and the identity (i.e., 1) and pro-
duce a 5d + 5 dimensional vector. ACs have achieved best-in-class
performance for geometry-free descriptor predictions of atomiza-
tion energies on subsets of QM932 using KRR65 or ANN models76

with diminishing returns observed for depth cutoffs above three,65

although higher depth cutoffs are sometimes used.73,89

Extensions of ACs to enrich metal-local descriptors90 in the fea-
ture vector led to the development of RACs, as first introduced in
Ref. 65. RACs include centering (i.e., always including in the sum)
the property evaluation on the metal (i.e., mc-RACs) or the lig-
and atom that coordinates the metal (i.e., lc-RACs). The lc-RACs
are averaged separately over ligands of specific types, which were
referred to as the scope in Ref. 65. In the octahedral complexes
studied here, lc-RACs are averaged separately over the equatorial
or axial ligands. RACs also introduced the difference of two atomic
properties,

P′d =
start

∑
i

scope

∑
j
(Pi − Pj)δ(dij, d),

which can be non-trivially computed for metal-centered or ligand-
centered RACs excluding the identity property for any d > 0 bond
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paths. In total, the complete RAC set evaluated on the five origi-
nal heuristic properties consists of 30d + 30 product-based and 12d
difference-based RACs for a total feature vector size of 42d + 30.
For a typical65 cutoff of d = 3, this yields 156 possible features. For
the mononuclear octahedral TMCs that are the focus of this work,
excluding five constant features (i.e., corresponding to connectivity
around the metal center) produces 151 features. In the original work,
four additional descriptors of ligand denticity, oxidation state, spin
state, and Hartree–Fock exchange fraction in the DFT functional
were added, leading to the name RAC-155.65 In this work, we always
include the oxidation state (i.e., for 152 total features) and the spin
state is included only for ΔELD (i.e., for 153 total features) but still
refer to the set as RAC-155.

Because RAC heuristic properties depend on the properties
of individual atoms, we revisit the extent to which such proper-
ties encode useful information about chemical similarity of distinct
elements. Some, such as the Pauling electronegativity, encode close
chemical similarity of distinct elements (e.g., χ: 1.88 for Co vs 1.90
for Tc). Still, the nuclear charge, Z, exaggerates the dissimilarity
of elements with differing principal quantum number belonging to
the same group (e.g., Z: 27 for Co vs 45 for Rh or 7 for N vs 15
for P). Thus, we expect low-complexity kernel models trained on
RAC-155 to exaggerate differences in TMCs with metals or ligands
from differing rows of the Periodic Table in comparison to those
from the same row. To illustrate this, we carried out principal com-
ponent analysis (PCA) on a subset (i.e., d = 0 or 1) of mc-RACs in
RAC-155 applied to all isovalent metal pairing (i.e., with both 3d
and 4d metals) complexes for which we have computed the ∆EI-L
property. For these TMCs, the first PC in this subset of RAC-155
primarily distinguishes the metal centers (Fig. 2). Not only are 3d
and 4d metals very distant from each other, but the strong varia-
tion of the metal Z over the set in comparison to the other heuristics
leads to the later 3d Co being the most proximal metal to the early
4d Mo.

We thus add to our original set of RAC heuristic properties the
group number, G, which had been shown to be beneficial for increas-
ing transferability in organic molecules.85,86 This property increases

FIG. 2. PCA obtained using the subset of features in RAC-155 that are metal-
centered and d = 0 or 1 (left) and using only the metal-centered RACs of the G
atomic property with the same cutoff (right). The PCA was applied to 642 TMCs
from the isovalent metal pairing dataset. The 3d TMCs (circles) and 4d TMCs
(squares) are overlapping in the right PCA. Metals are colored according to their
isovalent pairing: gray for Cr/Mo, green for Mn/Tc, red for Fe/Ru, and blue for
Co/Rh, as indicated in the inset legend.

the number of feature vector dimensions by 6d + 6 product-based
and 3d difference-based RACs. For the d = 3 cutoff used here, this
adds 33 features to our original 152- or 153-dimensional set, and we
refer to this set as eRAC-185. The G is identical for isovalent species
(e.g., 9 for Co and Rh and 5 for N and P) with distinct principal
quantum numbers. As expected, PCA in a subset (i.e., d = 0 or 1)
of the new G-derived mc-RACs distinguishes TMCs by the metal G
in PC1 and by the metal-coordinating ligand atoms in PC2 (Fig. 2
and supplementary material, Fig. S1). As a result, isovalent 3d and
4d metals (e.g., Co and Rh) will be identical in this feature set, and
the full G set of features will order TMCs by increasing d filling and
groups isovalent 3d and 4d metals close to each other (supplemen-
tary material, Figs. S2 and S3). Conversely, both PCA and average
Euclidean distances over isovalent metal pairing complexes for the
full RAC-155 set indicate large differences between isovalent 3d and
4d metal centers and do not reproduce expected trends from the
Periodic Table (supplementary material, Figs. S2 and S3). Because
the new features encode intuitive relationships, we expect that incor-
porating them into ML property predictions should be beneficial for
learning tasks that span multiple rows in the Periodic Table. Despite
this natural expectation, the extent to which including intuitive rela-
tionships is necessary to improve property predictions from models
and in which data regimes this relationship is most needed to pass to
the model will be addressed in Sec. IV.

III. METHODS
A. Electronic structure calculations

Some of the DFT data used for training in this work was
previously published in Ref. 84, and all data generation steps fol-
lowed an established protocol75 for DFT training data for octahedral,
mononuclear transition-metal complexes,45 which we reiterate here.
DFT geometry optimizations were performed using a development
version of TeraChem v1.9.91,92 The B3LYP93–95 global hybrid func-
tional was employed with the LANL2DZ96 effective core potential
for transition metals and the 6-31G∗ basis97 for all other atoms.
Singlet calculations were carried out in a spin-restricted formalism,
while all other calculations were unrestricted. Level shifting98 was
employed to aid self-consistent field convergence with the majority-
spin and minority-spin virtual orbitals each shifted by 0.25 Ha.
Geometry optimizations were carried out in translation rotation
internal coordinates99 using the L-BFGS algorithm. Default toler-
ances of 4.5 × 10−4 hartree/bohr and 10−6 hartree were applied in the
convergence criteria for the gradient and energy difference between
steps, respectively.

Initial structures were generated with molSimplify,76,100,101

which uses Open Babel102,103 as a backend, and calculations were
automated with molSimplify Automatic Design (mAD).40,75 The
mAD calculations run for 24 h of wall time with up to five resub-
missions. Geometric criteria75 were applied after each resubmission
and at tighter thresholds on the final structure (supplementary mate-
rial, Table S5). We use the same geometric criterion values as in
Ref. 75, which preserve connectivity and penalize excessive asymme-
try, except we have tightened the criterion on metal–ligand distance
asymmetry for homoleptic complexes (supplementary material,
Table S5). Out of 9440 initiated 3d and 4d geometry optimizations,
converged structures were obtained for 8729 TMCs, and 6480 TMCs
satisfied all geometric criteria (supplementary material, Table S6).
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As in previous work,45,75,76 criteria based on electronic structure
properties were also used to filter the dataset. For all open shell (i.e.,
non-singlet) complexes, calculations with deviations of ⟨S2⟩ from
its expected S(S + 1) value by 1 μB

2 or more were eliminated (196
runs) as were cases where the Mulliken spin on the metal was at least
1 μB lower than the expected total spin (292 runs, supplementary
material, Table S6). After all filtering steps, 5992 octahedral 3d or
4d TMCs were retained for spin-splitting property prediction, but
because evaluation of this property requires the convergence of mul-
tiple spin states, the final dataset sizes were smaller (supplementary
material, Table S7). The ∆ELD property was only evaluated for trans
or homoleptic complexes with neutral ligands, and filtering steps by
the ⟨S2⟩ and Mulliken metal spin criteria were also applied to these
complexes (supplementary material, Table S8).

The retained TMCs were then processed through two addi-
tional steps to generate the datasets used in ML model training, a
more restrictive procedure than that outlined in Ref. 84. First, TMCs
were paired to construct the isovalent metal pairing and isovalent
ligand pairing datasets, reducing the candidate TMC set sizes by a
factor of two (supplementary material, Tables S3 and S4). We then
detected cases where the electronic structure was qualitatively dis-
tinct between isovalent pairs of complexes, as judged by the metal
d-orbital occupations. The occupation of each d orbital was obtained
from the NBO v6.0 package,38 and a heuristic cutoff of 3e− for the
total difference summed over all d orbitals was used to exclude a pair
of calculations (supplementary material, Fig. S4). This procedure
eliminates a small number (∼10 to 100 for spin-splitting and 250
for ∆ELD) of outliers (supplementary material, Tables S3 and S4).
The final isovalent metal pairing datasets contain ∼300 to 600 pairs
of spin-splitting (i.e., I–L, H–L, or H–I) ∆E values and over 1000
pairs of ∆ELD values, and the final isovalent ligand pairing datasets
are a little more than half the size of the isovalent metal pairing sets
(supplementary material, Tables S3 and S4). The total energies and
structures of all TMCs converged in this work along with details of
structures eliminated are provided in the supplementary material.

B. Machine learning
We largely follow a previously developed protocol65,75 for train-

ing kernel ridge regression (KRR) models to predict properties
in open-shell transition-metal chemistry with some modifications
noted. KRR models with a Gaussian kernel were trained on both
RAC-155 and eRAC-185 representations and isovalent metal pair-
ing or isovalent ligand pairing data using the scikit-learn104 software
package. The pairs of complexes in the isovalent metal pairing or iso-
valent ligand pairing sets were randomly partitioned into 80% train
and 20% validation. We use the 20% validation data to select hyper-
parameters and then report the errors on this set as a lower bound for
the test error. The pairs are preserved during the random partition-
ing, e.g., if an isovalent metal pairing 3d complex is in the training
set, its isovalent 4d counterpart will be as well. All inputs and out-
puts were normalized to have zero mean and unit variance on the
training data.

Two types of models were trained: single-row models that only
are trained on a subset of the training data (in practice, from 1 to 50
points) from the same row as the learning task and transfer models
that are supplemented with all of the training data from the alter-
nate row. Using the 324-pair of complex isovalent metal pairing set

for the 3d to 4d learning task as an example, models (see Sec. IV)
were trained on a subset of the 259-complex 80% 4d-only training
data (i.e., single-row models) or this same subset of points along
with the 80% 3d data (i.e., transfer models). Exhaustive grid search
from 10−12 to 102 with logarithmic spacing was used to select hyper-
parameters (i.e., kernel width and regularization strength). For the
isovalent metal pairing 3d to 4d example, hyperparameters selected
from ten-fold cross-validation errors on 3d data produce models
with low test set mean unsigned error (MUE) on the in-distribution
3d complexes but high MUE on the out-of-distribution 4d test set
(i.e., the isovalent pairs to the 20% 3d test set, supplementary mate-
rial, Fig. S5). Thus, we select hyperparameters for each KRR model
on the 20% data from the same row as the learning task and hereafter
refer to this as the validation MUE, which provides a lower bound of
a true unseen test set model error (supplementary material, Fig. S5).

Feature selection was employed as motivated by
observations65,75 that it improves KRR model generalization
in open-shell transition-metal chemistry. Feature-selected subsets
were obtained in a one-shot fashion using LASSO105 or random
forest (RF)106 as in some prior work.65 Features with an importance
greater than 1% were retained from RF. For LASSO feature selection,
five values for the regularization strength were tested (10−2, 10−1,
100, 101, or 102), and all nonzero features were retained from the
LASSO model with the lowest validation MUE. The overall feature
set (i.e., from LASSO, RF, or the full feature set) that produced the
lowest validation MUE was selected for training the KRR model.
We report the MUE as the ensemble-average MUE and a credible
interval from the ensemble standard deviation. A representative
example of the selected hyperparameters, the feature selection
method, and MUEs is provided in detail in the supplementary
material (Table S9). All other model hyperparameters and feature
sets are provided in the supplementary material.

IV. RESULTS AND DISCUSSION
A. Correlations of properties between rows

Because our modified representations are motivated by the
assumption that isovalent metals or ligands should exhibit similar
properties and structure–property relationships, we first validate this
expectation over the isovalent metal pairing and isovalent ligand
pairing sets. For the isovalent 3d and 4d transition metals in
the isovalent metal pairing set, we observe good correlations
between the adiabatic gas-phase spin-splitting energies of the first-
and second-row metals (Fig. 3). This correlation holds somewhat
better (R2 = 0.9) for the two-electron ∆EI-L and four-electron ∆EH-L
than for the two-electron ∆EH-I (R2 = 0.65) values (Fig. 3 and
supplementary material, Table S10). As observed in prior work,84

all 4d TMC DFT spin-splitting energies are consistently low-spin
shifted with respect to equivalent 3d TMCs, especially for strong-
field ligands (i.e., with positive 3d TMC ∆E values). For the ∆EI-L
and ∆EH-L cases where the correlations hold best, the 4d TMC ∆E
increases by around 1.4 kcal/mol for every 1 kcal/mol increase in the
3d TMC (Fig. 3 and supplementary material, Table S10).

Despite the apparent good linear correlation over the dataset,
the MUE of the linear model for predicting 4d ∆EH-L from its
3d TMC value is still large at around 10 kcal/mol, and the maxi-
mum unsigned error is even larger at 45 kcal/mol (supplementary
material, Table S10). While MUEs are reduced somewhat for ∆EH-I
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FIG. 3. Parity plot for DFT-calculated spin-splitting energies, ΔE (left, in kcal/mol),
and DFT-calculated ligand dissociation energies, ΔELD (right, in kcal/mol), of
Fe/Ru TMCs in the isovalent metal pairing dataset. The spin-splitting energy is col-
ored with ΔEH-L in red, ΔEI-L in blue, and ΔEH-I in green, and all data are shown
in red at right for ΔELD. The parity line is shown as a dashed black line in both
panes.

and ∆EI-L (to ∼7 kcal/mol), the range of values are also smaller
for these properties. Each individual 3d or 4d metal/oxidation state
spans a wide range of ∆EH-L values (∼100 kcal/mol) with metal-
specific distributions that reflect changes in ligand field strength in
our set (i.e., from weak-field halide to strong-field methylisocyanide)
for both 3d and 4d TMCs (supplementary material, Fig. S6). When
linear models are fit on each individual metal and oxidation state,
the MUE of each linear model is somewhat reduced (e.g., ∆EH-L
4–5 kcal/mol vs 10 kcal/mol for the full set) in part due to the
fact that a smaller range of ∆E values is sampled (supplementary
material, Figs. S7–S9 and Tables S10 and S11). Subdividing the data
by metal/oxidation state and building individual linear relationships
as a strategy for TMC design would, nevertheless, be challenged by
variability in dataset sizes (supplementary material, Tables S11 and
S12). Thus, even though these spin-splitting properties are related
for metal pairs in the isovalent metal pairing set, their relationship
is not trivial and could be expected to benefit from a flexible ML
regression model. A predictive ML model would have the added
benefit of not requiring the calculation of one property (e.g., 3d
ΔEH-L) to predict the other (e.g., 4d ΔEH-L) that would be required
for even a better linear fit.

For the ligand dissociation energy, ∆ELD, introduced in this
work, a single linear model obtains good correlation (R2 = 0.91)
between 3d and 4d TMCs over all metals, oxidation states, and
spin states (Fig. 3). The ratio of 4d:3d ∆ELD values (∼0.93) is
close to unity but indicates that ligands bind 4d TMCs somewhat
more weakly than equivalent 3d TMCs (Fig. 3 and supplemen-
tary material, Table S13 and Fig. S10). Subdividing ligand disso-
ciation energies by metal/oxidation state or spin provides limited
benefit because subset comparisons generally have similar 4d:3d
ratios and correlation coefficients to the overall set (supplemen-
tary material, Tables S13 and S14 and Fig. S11). Whether overall
or in metal/oxidation/spin-state-specific subsets, the MUE of the
linear fits is somewhat lower (4–5 kcal/mol) than was observed
for spin-splitting energies (supplementary material, Tables S11 and
S13).

The isovalent ligand pairing set consists of TMCs containing
ligands (i.e., six of ten) that vary by isovalent (i.e., 2p vs 3p) changes
to the metal-coordinating atom of the ligand. Depending on the
metal and oxidation state, the correlation of 2p and 3p spin-splitting

energies ranges from good (R2 > 0.9) to poor (R2 < 0.1), where poorer
correlations correspond most typically to unchanged spin-splitting
energies with the ligand substitution and with earlier (i.e., d3–d4)
transition metals (supplementary material, Fig. S12 and Table S15).
The influence of the 2p to 3p isovalent substitution on spin-splitting
energies depends on the degree of change in ligand field strength
(Fig. 4). A consistent trend can be observed over all d5–d7 metal
centers in either row for the H2O/H2S and NH3/PH3 substitutions
with a good correlation and low standard deviation (Fig. 4 and
supplementary material, Fig. S13 and Table S16). For the majority
of 4d TMCs, this change corresponds to an increase in spin-splitting
energy, but there are some exceptions especially with acetonitrile
ligands (supplementary material, Table S17). While average trends
can be observed over the dataset, linear relationships differ as the
oxidation and spin states being compared are varied. For example, a
correlation that works well for Co(II) metal centers does not trans-
fer to either Co(III) or Rh(II) (supplementary material, Table S15).
This observation motivates our focus on development of machine
learning models.

Conversely, the limited change in field strength among the
halides means these TMCs have a poorer correlation for the substi-
tution (supplementary material, Fig. S13 and Table S16). For ∆ELD,
trends are less clear, but the 2p to 3p substitution of two axial lig-
ands (i.e., including the ligand undergoing dissociation) generally
decreases the ligand dissociation energy (by 12–16 kcal/mol) for the
H2O/H2S and NH3/PH3 pairs (supplementary material, Tables S17
and S18). As with the isovalent metal pairing set, there is a clear
structure to the isovalent ligand pairing data indicating that prop-
erties of 2p complexes are related to their 3p counterparts, but the
relationships depend more strongly on the group identity of the
metal-coordinating atom.

We briefly summarize the structure–property relationships
uncovered for our learning tasks to test ML model and represen-
tation generalization across the Periodic Table. For isovalent metal
pairing spin-splitting energies, 3d/4d relationships are sensitive to
the spin states and ligand field strengths being compared, whereas

FIG. 4. Differences in DFT-calculated spin-splitting energies (ΔEH-L in blue, ΔEH-I
in red, and ΔEI-L in green in kcal/mol) with isovalent ligand swaps (NH3 for PH3,
left and H2O for H2S, right) in the isovalent ligand pairing dataset averaged over all
d5–d7 4d TMCs [i.e., Tc(II), Ru(III/II), and Rh(III/II)] where the spin-splitting energy
is available and defined. The standard deviation is shown as an error bar along
with best-fit lines also fit through (0,0). The majority of both 3d and 4d TMCs
have a positive change in spin splitting from 2p to 3p. Exceptions are listed in
the supplementary material, Table S17.
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isovalent metal pairing ΔELD values are comparable across 3d and
4d TMCs. Thus, conclusions about which features are essential for
learning spin state ordering trends can be expected to differ from
those based on ligand dissociation energy, highlighting the impor-
tance of comparing a range of properties when assessing featur-
izations. For isovalent ligand pairing spin-splitting energies, 3d/4d
relationships are dependent on ligand field strength, and ligand
dissociation energies are more clearly influenced by the principal
quantum number of the dissociated axial ligands. Given the evi-
dence for some relationships between rows of the Periodic Table,
ML model training can be expected to benefit from the G heuristics
present in eRAC-185 for both learning tasks that involve changing
the metal or changing the ligand principal quantum number. Never-
theless, the relative extent to which these features improve property
prediction requires further quantitative assessment (Sec. IV B).

B. ML property prediction across the periodic table
Based on the ability of linear models to predict isovalent metal

pairing properties as well as some evidence of structure in the isova-
lent ligand pairing dataset, we expect that data from one row of the
Periodic Table can be used to inform predictions on isovalent coun-
terparts. To test this hypothesis, we construct a series of KRR models
using both RAC-155 and the eRAC-185 representation. We adopt
two strategies to test model generalization (see Sec. III B). While we
train all models on a randomly selected and small subset (i.e., from
10 to 50) of training points from the same row as the 20% validation
data, we also train “transfer” models that are supplemented with all
available (i.e., the full 80%) training data from the alternate row. To
unambiguously identify the training data included in each model,
we adopt the notation data-representation, where the training data
are only from the same row (S) as the test (here, also validation) data
or transfer (T) data from the alternate row are also included and
representation is the feature set (i.e., RACs or eRACs) used by the
model. For example, a T-eRAC model applied to the 3d to 4d ∆EH-L
learning task will be provided with all available 3d ∆EH-L data in the
isovalent metal pairing set along with a small number (e.g., 10–50)
of randomly selected 4d ∆EH-L points from the isovalent metal
pairing set and trained on eRAC-185 and feature-selected subsets
(see Sec. III B).

We first focus on 3d to 4d prediction of ∆EH-L and ∆ELD in
the isovalent metal pairing dataset to assess the relative performance
of the possible data–representation combinations. Models incor-
porating data from both rows [i.e., T-(e)RACs] consistently out-
perform single-row models [i.e., S-(e)RACs], and simultaneously,
eRAC-185-trained models have lower MUEs than models trained
with RAC-155 (Fig. 5). The MUE is evaluated as the average error
from an ensemble of 25 feature-selected models (see Sec. III B), and
observed differences in model performance are typically larger in
magnitude than the standard deviation of the errors from the ensem-
ble. The benefit of eRAC-185 is most apparent when limited training
data (i.e., <20 points) from the same row as the validation data are
used. For example, prediction of ∆ELD from the isovalent metal pair-
ing dataset has a substantially lower MUE (by ∼6.6 kcal/mol) with
the T-eRAC model with 20 4d points in the training set than with the
S-eRAC model. When we increase the number of 4d training points
modestly (i.e., to 50), the relative benefit of this additional data from
another row is smaller (i.e., the MUE is lower by only ∼3.5 kcal/mol)
but still significant (supplementary material, Table S19).

To investigate if this observed maximum benefit of eRAC-
185 when few examples from the same row as the validation data
are available is a general phenomenon, we expanded our analy-
sis to models trained to predict ∆EI-L and ∆EH-I with only 20 4d
data points. Indeed, we find that transfer models consistently out-
perform single-row models, and the use of eRAC-185 feature set
is synergistic with this benefit (Fig. 6). The T-eRAC models con-
sistently achieve the lowest overall MUEs for predicting all three
spin-splitting properties, and those trained on eRAC-185 achieve
larger reductions in MUE (∼2 to 5 kcal/mol) than equivalent mod-
els training using RAC-155 (∼1 to 2 kcal/mol). For predicting ∆ELD,
transfer models significantly improve over single-row models (by
∼6 kcal/mol), but this improvement is observed for both RAC-155
and eRAC-185 representations (supplementary material, Table S19).
We attribute the difference in ∆ELD model errors to the observed
lack of dependence on the principal quantum number of the metal
for this property (see Sec. IV A). Comparing MUEs scaled by the
property range in the dataset, T-RAC or T-eRAC models pre-
dict ∆ELD with a scaled MUE roughly half of that of the
S-eRAC model (0.04 vs 0.07, supplementary material, Table S20).

FIG. 5. Mean unsigned error (MUE in kcal/mol) for the prediction of ∆EH-L (left) and ∆ELD (right) properties for the isovalent metal pairing (IMP) 3d to 4d learning task and
isovalent ligand pairing (ILP) 2p to 3p learning task with addition of training data as indicated on the x axis. Transfer-learning models (i.e., that contain all available 3d or 2p
data) with eRAC-185 (blue) and RAC-155 (green) are shown alongside a single-row model (i.e., that only contains 4d or 3p data) trained on eRAC-185 (red). Shaded areas
indicate the standard deviation of the ensemble of 25 models, and the solid line represents the average of this ensemble.
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FIG. 6. Mean unsigned error (MUE in kcal/mol) for the prediction of 4d TMC prop-
erties with only 20 4d data points with eRAC-185 (red) or by including 3d data with
20 4d data points and using either the RAC-155 (green) or eRAC-185 (blue) on the
isovalent metal pairing dataset. The colored bars represent the average from an
ensemble of 25 feature-selected KRR models, and the error bars are the standard
deviation of the ensemble.

Similar improvements are observed on scaled MUE values for the
spin-splitting properties (i.e., from as high as 0.1 to as low as 0.05,
supplementary material, Table S20). While the lowest scaled errors
from the transfer models are slightly larger than those obtained
on models with the same metals in train and test data, they still
represent a significant improvement.

To probe the source of benefit of the inclusion of the first 20
inter-row data points, we developed an additional ML model train-
ing procedure in which we grouped inter-row data by metal in order
to preferentially add one metal at a time to the training set. When
the training data includes only a single 4d metal (i.e., Mo, Tc, Ru,
or Rh) for ∆EI-L, no improvement in the model is observed (sup-
plementary material, Fig. S14). Rather than reducing MUEs with
more data, the MUEs are instead high and constant at ∼15 kcal/mol
when one to 15 training points of this type are added (supplemen-
tary material, Table S21). If data points are added from multiple
additional 4d metals, performance instead improves significantly. In
this case, MUEs for predicting ∆EI-L reduce to ∼11 kcal/mol when
training data include two 4d metals (supplementary material, Table
S21). After adding fewer than 20 points, the T-eRAC model with
knowledge of two 4d metals alongside all 3d metals outperforms
the S-eRAC model (MUE: 13 kcal/mol) that was trained on 20 ran-
dom points that included all 4d metals (Fig. 6 and supplementary
material, Fig. S15). The MUE is reduced further when a third 4d
metal (i.e., to 7.8 kcal/mol) and all 4d metals (i.e., to 6.2 kcal/mol)
are included in the training set (supplementary material, Table S21).
Thus, we expect that inter-row models perform best when examples
of each new metal type are included in the training data by giving
the model balanced information about the relationship among all
groups of the Periodic Table studied in the validation set. The sig-
nificance of the identified sample size of 20 inter-row data points
maximizing benefits in transfer models is likely attributable to reach-
ing a sample that includes sufficient diversity of isovalent metals or
ligands. This result is non-trivial because at such small set sizes, the
model has information about all metals but not in combination with

ligands and thus must infer the cooperativity of metal and ligand
field effects.

Returning to the eRAC-185 representation, we tested whether
its observed benefit in the isovalent metal pairing dataset 3d to 4d
learning task is general to both the reverse learning task (i.e., 4d to
3d isovalent metal pairing) as well as to changes in ligand chemistry
(i.e., 2p to 3p isovalent ligand pairing and 3p to 2p isovalent ligand
pairing). Across all of these learning tasks, a combination of transfer
models and eRAC-185 reduces validation MUEs for most properties
with results and improvements comparable to those observed for
the isovalent metal pairing 3d to 4d learning task (supplementary
material, Fig. S15). In all learning tasks and properties compared,
isovalent ligand pairing 2p to 3p and 3p to 2p ∆EH-I are the only
cases where RAC-155-trained models outperform eRAC-185, but
these differences are small (0.3 kcal/mol) and within the standard
deviation (0.6 kcal/mol) of the 25-model ensembles (supplementary
material, Table S22). As in the isovalent metal pairing dataset, the
benefit of inter-row, transfer models trained to predict ∆ELD in
the isovalent ligand pairing set (∼6 kcal/mol) is observed to be
independent of the representation (i.e., RAC-155 or eRAC-185)
chosen. For spin-splitting energy prediction in the isovalent ligand
pairing set, we again observe that eRAC-185 improves inter-row
models with T-eRAC models outperforming single-row models by
a slightly larger margin (∼2 to 6 kcal/mol) than T-RAC models
(∼2 to 4 kcal/mol). Taken together, we conclude that the use of
eRAC-185 in combination with a transfer model trained on a small
set of examples from the new learning task provides a near-universal
benefit and never significantly degrades the accuracy in compari-
son to a standard ML model. The converse is thus also true and
an important conclusion from our study. Specifically, while some
transferability could have been expected given the relationship of
properties when changing the metal or ligand identity (Sec. IV A),
once sufficient data are available, the benefit of feature engineering
diminishes although it never worsens the learning performance. We
expect these conclusions to be broadly true across other material
classes, but to understand what chemical trends are learned by the
models, we carry out further analysis of selected features next in
Sec. IV C.

C. Feature analysis reveals learned chemical trends
To investigate the source of the improved performance

observed when using eRAC-185, we evaluate the averaged, down-
selected feature space. For each model in the ensemble, features are
selected independently (i.e., from one-shot LASSO or random forest
1% cutoff, see Sec. III B), so this analysis is on the normalized
feature contribution averaged over the KRR models in the ensemble.
Features containing the G atomic property are frequently selected
in inter-row models for predicting both spin-splitting energies and
∆ELD (see the supplementary material for all features and models).
For 3d to 4d prediction of ∆EI-L (i.e., on the isovalent metal pairing
set), G eRACs involving the metal center, atoms one bond-path away
from the metal, and atoms two bond-paths away from the metal are
all selected (Fig. 7). This suggests that the T-eRAC models achieve
performance improvements by positioning both metals and ligands
closer to their inter-row counterparts in the feature space than stan-
dard RACs. In contrast, for 3d to 4d prediction of ∆ELD, G features
involving the metal are rarely selected (Fig. 7). This analysis mir-
rors our observation that the expanded representation did not lead

J. Chem. Phys. 156, 074101 (2022); doi: 10.1063/5.0082964 156, 074101-8

© Author(s) 2022

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0082964
https://www.scitation.org/doi/suppl/10.1063/5.0082964
https://www.scitation.org/doi/suppl/10.1063/5.0082964
https://www.scitation.org/doi/suppl/10.1063/5.0082964
https://www.scitation.org/doi/suppl/10.1063/5.0082964
https://www.scitation.org/doi/suppl/10.1063/5.0082964
https://www.scitation.org/doi/suppl/10.1063/5.0082964
https://www.scitation.org/doi/suppl/10.1063/5.0082964
https://www.scitation.org/doi/suppl/10.1063/5.0082964
https://www.scitation.org/doi/suppl/10.1063/5.0082964
https://www.scitation.org/doi/suppl/10.1063/5.0082964
https://www.scitation.org/doi/suppl/10.1063/5.0082964
https://www.scitation.org/doi/suppl/10.1063/5.0082964
https://www.scitation.org/doi/suppl/10.1063/5.0082964


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 7. Feature fraction grouped by the most metal-distant atom in the feature
(i.e., metal, first, second, third, or global) and shown as a stacked bar plot. Colors
within each feature fraction correspond to whether the features are obtained from
RACs (green), the eRAC-specific G features (blue), or features encoding the metal
center’s spin and oxidation (ox) state (gray). The selected features are obtained
from their normalized weight in an ensemble of 25 models (i.e., T-RACs or T-
eRACs) trained to predict 4d properties using 3d data along with 20 4d data points.

to significant improvements for a ∆ELD inter-row, transfer model
(see Sec. IV B) due to the relative lack of dependence of the ligand
dissociation on the principal quantum number of the metal.

We analyzed other learning tasks (i.e., beyond 3d to 4d learning
of ∆EI-L and ∆ELD) to confirm that the benefit of using eRAC-185
was due to the presence of G features in feature-selected subsets.
Prior to feature selection, the G features comprise 18% of the initial
eRAC-185 set, and they are frequently retained after feature selection
regardless of the learning task or property (supplementary material,
Fig. S16). For the ∆EI-L and ∆EH-I properties where G-based features
were most beneficial in model performance (see Sec. IV B), G contri-
butions are enriched (to ∼23% of features) after feature selection. For
∆ELD and ∆EH-I, cases where G-based features provided less benefit,
they are retained at a comparable frequency (∼18% of the down-
selected features) to others in the set, confirming that these features
are neither particularly detrimental nor beneficial (supplementary
material, Table S23).

As in previous work,38,65,75,77 we also analyzed the selected fea-
tures to reveal qualitative chemical trends in the dataset. We select
∆EI-L 3d to 4d learning as a representative property for spin-splitting
energy trends (supplementary material, Fig. S16). Features retained
by models trained on ∆EI-L are strongly metal-local with 80%
corresponding to the metal or its immediate coordinating atoms.
Since this result recapitulates observations from prior work65 that

emphasized the metal-local nature of spin-splitting energy predic-
tion, the tailored representation preserves known trends (Fig. 7 and
supplementary material, Table S24). We next analyze the features
selected for predicting ∆ELD, which is a property for which we had
not previously trained ML models. In this case, the retained fea-
tures are 79% distal (i.e., with information from atoms two or more
bonds away) from the metal (Fig. 7 and supplementary material,
Table S24). The high weight of ligand-based features and more
global information is consistent with our observations of reduced
dependence on the principal quantum number of the metal for ∆ELD
prediction (Fig. 3). Thus, feature analysis suggests that it is possible
to design ligand binding strength (e.g., for catalysis) in a metal-
row-independent fashion (e.g., predicting 4d properties from data
obtained on 3d TMCs). Conversely, because the spin state is dic-
tated by both the metal center and only the immediate coordinating
atoms of the ligand, inter-row transfer models trained on eRACs and
minimal but chemically diverse TMCs79 should enable accelerated
prediction of 4d TMC spin-splitting in cases where only 3d TMC
data are available.

Because the property prediction obtained from a KRR model
depends on a combination of feature-space distances and the kernel
width, the relative distances between TMCs in a representation are
critical for understanding model performance. We thus quantify the
Euclidean norm distance between complexes with differing metals
in feature-selected subspaces that have been averaged and normal-
ized over the 25-model ensembles used for property prediction. In
the features selected in T-RAC models, these Euclidean distances do
not represent what we would expect from the arrangement of ele-
ments on the Periodic Table (supplementary material, Table S25).
For example, in the 3d to 4d prediction of ∆EI-L, Cr is positioned
closer to Fe and Co in the feature space than it is to the more chem-
ically similar Mn. Furthermore, Cr is comparatively distant to all of
the 4d metals, artificially reducing its influence on predicting their
properties (Fig. 8). In contrast, the features retained in T-eRAC
models rearrange the feature space to more closely match intuition
from the Periodic Table with Cr in closest proximity to Mn and Mn
in closest proximity to Cr and Fe. The 3d and 4d metal pairs are
also shifted closer together in T-eRAC models. For example, 3d Cr
is closer to isovalent 4d Mo than to a dissimilar 3d metal such as Co
(Fig. 8). The rearrangement of the feature space is observed for other
metals with 3d/4d pairs shifted an average of 13% closer in T-eRAC
models in comparison to equivalent T-RAC models (supplementary
material, Table S25). These results suggest that the reduced predic-
tion error when using eRAC-185 (see Sec. IV B) can be attributed to
this representation encoding chemical trends more efficiently.

To demonstrate the value of using the eRAC representation in
chemical discovery, we apply transfer learning models with both
RACs and eRACs to new out of sample sets of TMCs. For the
out of sample sets, we construct 4d TMCs from monodentate
OHLDB79 ligands from previous work. The OHLDB ligands consist
of up to two heavy (i.e., C, N, O, P, or S) atoms in combina-
tion with hydrogen atoms enumerated in an exhaustive fashion and
scored against heuristic rules.79 The goal of the OHLDB set was
to generate a set of ligands distinct from more commonly studied
ligands and thereby to enable chemical discovery of novel metal-
local environments. We now evaluate our best-performing IMP
ΔEH-L transfer learning models on never-before-studied 4d TMCs of
OHLDB ligands as a representative chemical discovery example. All
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FIG. 8. Distribution of average, normalized distances of TMCs with the feature-
selected subsets of T-RACs (top) or T-eRACs (bottom) from the ensemble of 25
KRR models trained to predict 4d ∆EI-L based on 3d data and 20 4d examples
(i.e., transfer models) visualized in a two-dimensional projection of the feature
space. The average distances between Cr TMCs and TMCs with other metal
centers are labeled. Elements are colored by their G values to highlight isovalent
3d/4d pairs according to inset legend. The feature-space distances were normal-
ized such that the average distance between any two TMCs is equal to one, and
the weight of features selected from the ensemble was also normalized.

structures are provided in the supplementary material. For consis-
tency with our established approach, the best IMP transfer models
were trained with 3d data and 20 seeded 4d data points (i.e., all
from the initial ligand set) and applied to 70 new 4d homoleptic

OHLDB complexes. Prediction errors over this set are systemati-
cally higher for complexes containing 3p atoms two bonds distant
from the metal, none of which are present in any of the training
data (supplementary material, Figs. S17 and S18). We thus focus
our analysis on the subset of 52 data points that exclude more
metal-non-local 3p atoms in ligands. Comparison of the T-RAC
model and T-eRAC models for this subset emphasizes the advantage
of using the group number as a descriptor (supplementary mate-
rial, Fig. S19). Despite having the same number of seeded 4d data
points, the T-eRAC model predicts double the number of points (i.e.,
26 vs 14) to lower than 10 kcal/mol error (supplementary material,
Fig. S19). The T-eRAC model also predicts all points with a
lower overall MUE (21 kcal/mol vs 27 kcal/mol). For example, the
T-eRAC model correctly predicts Tc(III)(methylamine)6 to have a
HS ground state with a modest error (i.e., 5 kcal/mol), whereas
the T-RAC model error is over three times larger (19 kcal/mol,
supplementary material, Fig. S19). We emphasize that OHLDB lig-
ands are particularly challenging for our models to predict because
they represent a set of ligands designed to increase diversity from
more commonly studied ligands. Thus, the T-eRAC approach is
expected to be most beneficial when starting to collect data in spaces
where chemistry is most distinct. We thus conclude that while many
ML tasks have relied on large datasets and narrow chemical com-
positions, this work has highlighted the minimum new data needed
to develop transferable ML models across a wider range of chemical
compositions. While demonstrated here on mononuclear transition
metal complexes with 3d and 4d metals and 2p and 3p ligands, we
plan to next extend this approach to other heavier (i.e., 5d and 4f )
elements as well as more diverse ligand chemistry. In all such cases,
this work has revealed opportunities in the small data limit to carry
out chemical exploration once a minimum amount of data is used in
combination with transferable ML representations.

V. CONCLUSIONS
For many materials design challenges in transition metal chem-

istry, it is common to find one element that works well for a chemical
property or a transformation, even if it is preferred to use another
due to price or scarcity of the element. Furthermore, when carrying
out ML-accelerated chemical discovery efforts, one may start with
a specific range of chemical compositions but then aim to change
course. It is not known a priori how much prior data can be used in
these cases. It is also unknown the extent to which chemical obser-
vations from one element (e.g., 3d vs 4d) for either the metal or the
ligand (e.g., 2p vs 3p) within the same group of the Periodic Table
should be transferable. Intuitively, chemical relationships between
neighboring elements in the Periodic Table are expected, so efficient
strategies for ML-driven discovery should leverage representations
that preserve these similarities. To thus tackle these challenges, we
carried out the first study of the extent to which ML models can best
leverage transferability of properties between 3d and 4d transition
metal complexes with 2p and 3p ligands.

After confirming the strong inter-row structure–property rela-
tionships for spin-splitting energies and ligand dissociation in iso-
valent 3d/4d metals and 2p/3p ligands in large sets (∼1000 pairs)
of data, we identified a strategy for increasing ML model trans-
ferability. We introduced eRAC-185, a tailored representation that
blends together the monotonically increasing nuclear charge with
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the periodic in nature group number heuristics. We showed how the
addition of the G heuristic property in eRACs altered feature-space
distances to encode a more intuitive degree of similarity among
isovalent elements essential for kernel-based ML models.

Next, we demonstrated the synergistic value of eRACs along-
side a transfer learning approach to leverage inter-row data in
sets containing isovalent metals or ligand-coordinating atoms in
transition-metal chemistry. To assess the potential improved per-
formance of eRAC-185, we trained KRR models using data from
either only the same row as the prediction task or both rows of the
Periodic Table. While including data from the alternate row always
reduced prediction errors, the eRAC-185 model errors were most
substantially improved in the limit of very low data (∼20 points). The
model error improvement was strongest when the relationship being
learned deviated most from parity. This highlights how transferable
representations will be essential to improve ML model generaliza-
tion from one row of the Periodic Table to another especially when
carrying out chemical discovery where limited prior knowledge is
available.

To identify differences in models trained on eRAC-185, we
analyzed the distance and heuristic atomic properties retained dur-
ing feature selection. Feature-space distances of TMCs grouped and
averaged by metals confirmed that eRAC-185 subsets faithfully rep-
resented trends expected from the Periodic Table, causing elements
from the same or adjacent group to influence KRR predictions
most strongly. These representations, models, and approaches can
be leveraged to accelerate the discovery of earth-abundant catalysts
or materials from known materials featuring scarcer elements. We
expect our strategies for inter-row design and expanding transfer-
ability to be broadly useful to other material challenges across the
Periodic Table.

SUPPLEMENTARY MATERIAL

See the supplementary material for spin multiplicity defini-
tions; subset of combinations studied for cis TMCs; statistics for
filtering and pairing structures as well as 3d/4d comparisons to
obtain properties; PCA of RAC and eRAC representations; compar-
ison of the Euclidean distance between metals by the featurization
type; geometry metrics used for geometric filtering; number of com-
pounds failed at each filtering step with reasons; details of NBO
d orbital check elimination; cross-validation heat maps for hyper-
parameter selection; KRR model hyperparameters by the model
number; linear models for inter-row property prediction for the
isovalent metal pairing dataset, overall and broken down by metal;
histograms of property distributions for spin-splitting energy; inter-
row parity plots for properties by the metal and oxidation state; lig-
and dissociation energy distribution broken down by the metal and
oxidation state; frequencies of ligand dissociation energy by metal,
oxidation, and spin state in the isovalent metal pairing and isova-
lent ligand pairing datasets; parity plots for spin-splitting energy
in the isovalent metal pairing set; changes in the property by lig-
and mixing for three spin-splitting energy properties; linear models
for spin-splitting energies in isovalent ligand pairing dataset split by
metal, oxidation state, and type of spin-splitting energy; change in
spin-splitting energy as a function of ligand mixing in the isova-
lent ligand pairing dataset; quantification of ligand substitution in
the isovalent ligand pairing dataset quantified by the ligand type;

differences in ligand dissociation energy for compounds that vary
only in equatorial ligands or only in axial ligands; quantification
of test set errors for KRR model ensembles for various inter-row
learning tasks; model performance by ordered metal addition for
4d metals; quantification of errors with ordered metal addition of
4d metals; mean unsigned errors for various inter-row learning
schemes over the isovalent metal pairing and isovalent ligand pair-
ing datasets; stacked bar charts for the feature character for different
properties obtained during each scheme of inter-row learning and
tabulation of the corresponding feature character by the property
and bond depth; quantification of feature space distances for feature
selected subspaces of 3d/4d models in the isovalent metal pairing
dataset (PDF); structures and total energies of all 3d and 4d TMCs
studied in this work; reasons complexes were not included in the
dataset; spin-splitting values for all pairs of 3d/4d TMCs; ligand
dissociation energies for 3d/4d TMCs; total energies of all TMCs;
OHLDB out of sample predictions; and KRR model performance
and selected features and ensemble quantification (ZIP).
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