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1 Introduction

Collimated sprays of energetic particles called jets are produced in high energy lepton and
hadron collisions. Because of the large total energy the jets contain, they are produced by
initial hard scattering processes that involve quarks and gluons, followed by further par-
tonic radiation and finally hadronization. Thus by studying jets in collider experiments,
we can learn about both the perturbative and nonperturbative aspects of Quantum Chro-
modynamics (QCD), the theory of strong interaction. Jet observables are important for
testing our understanding of the perturbative aspect of QCD and factorization as well as
for measurements of the strong coupling constant and parton distribution functions.

In recent years, jet substructure observables have drawn a great amount of interest
and been investigated widely [1–15]. These observables look into the internal structure of
the jet and study how the energy and particles are distributed. The construction of jet
substructure observables usually takes two steps: applying jet grooming to remove soft
radiation and then defining interesting observables to measure on the groomed jet, such as
prong-finders or other distributions. By reducing the sensitivity of the observables to the
soft physics we also reduce the impact of nonperturbative effects, and thus increase the
reliability of perturbative calculations. Our understanding of the groomed jet dynamics
can then be tested by comparing calculations with experimental measurements. Further-
more, jet substructure observables can serve as useful probes of the quark-gluon plasma
in heavy-ion collisions [16–18], see e.g. ref. [19] for a recent review. Finally, jet substruc-
ture observables provide tools to distinguish quark- and gluon-initiated jets, which we will
explore here.

In general, jet and jet substructure observables x contain contributions from both
quark- and gluon-initiated jets:

p(x) = fq pq(x) + fg pg(x) , (1.1)

where fq,g denotes the quark and gluon fraction in the jet sample and pq,g(x) is the dis-
tribution of the observable for a quark- or gluon-initiated jet (we will call them quark and
gluon jets for simplicity from now on). A given experimental measurement only gives ac-
cess to the sum of these two contributions, p(x). The physics goal of disentangling quark
and gluon jets aims at separating the two contributions from each other and extract the
individual fractions and underlying quark and gluon distributions. By disentangling quark
and gluon jets, we can increase the sensitivity in searches of the physics beyond Standard
Model which may couple more strongly to either quarks or gluons [20, 21]. Furthermore,
we can use separated quark and gluon jet samples to better constrain parton shower gen-
erators, and better probe the quark-gluon plasma [22]. Many studies have been devoted to
realize the discrimination between quark and gluon jets [5, 23–32]. Among these studies,
two main categories of tools have been explored: jet shapes such as angularities and energy
correlation functions [5, 23, 24] and multiplicity based observables such as the “soft drop
multiplicity” [28]. In the former case, observables exhibit Casimir scaling at leading log-
arithmic accuracy. Deviations from the Casimir scaling start at next-leading logarithmic
accuracy and have been systematically studied in [25, 29]. In the latter case, the leading

– 1 –



J
H
E
P
0
9
(
2
0
2
2
)
1
2
0

logarithmic behavior is already beyond Casimir scaling and becomes Poisson-like. Both
tools are well motivated from theoretical analysis but neither can provide a 100% efficiency
in the discrimination. More recently, a data-driven method called jet topics [33, 34] has
been proposed, which can extract quark- and gluon-initiated jets from experimental jet
samples under certain general conditions.

1.1 Review of jet topics

Jet topics [33, 34] provide a method to assign an operational definition to the meaning of
quark- or gluon-initiated jet samples, and study when these operational definitions agree
with the fundamental distributions one would infer from a quantum field theory calculation
that factorizes the jet dynamics from that of the hard collision. We start with two samples
of jets A and B. For example, the sample A can be taken from a Z-jet event (tagged by a
Z-boson) while the sample B is a dijet event. Instead of looking at the observable x at a
particular value, we study the experimentally measured distributions of the observable for
both samples

pA(x) = fAq pq(x) + fAg pg(x) , (1.2)
pB(x) = fBq pq(x) + fBg pg(x) .

Here fA,Bq,g is the quark or gluon fraction in each sample, and pq,g(x) denotes the individual
quark or gluon jet substructure distribution which is assumed to be independent of the
hard processes A and B producing the quark or gluon jets. The fractions are normalized
such that

fAq + fAg = 1 , fBq + fBg = 1 . (1.3)

Without loss of generality, we can assume fAq > fBq .
By just using the experimental data, jet topics give operational definitions for quark

and gluon jets:

pT1(x) = pA(x)− κ(A|B)pB(x)
1− κ(A|B) , pT2(x) = pB(x)− κ(B|A)pA(x)

1− κ(B|A) , (1.4)

where the reducibility factors are defined by

κ(A|B) = min
x

pA(x)
pB(x) , κ(B|A) = min

x

pB(x)
pA(x) . (1.5)

The same formulas also define reducibility factors for quarks and gluons, κ(q|g) and κ(g|q).
If the condition of mutual irreducibility is satisfied:

κ(q|g) = κ(g|q) = 0 , (1.6)

then using eq. (1.2) one finds κ(A|B) = fAg /f
B
g and κ(B|A) = fBq /f

A
q [33, 34]. This

then implies that the two operationally defined distributions pT1(x) and pT2(x) exactly
correspond to the fundamental quark and gluon distributions respectively, i.e.,

pT1(x) = pq(x) , pT2(x) = pg(x) , (1.7)
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The mutual irreducibility implies the existence of “anchor” bins of the observable x at
which either the quark or the gluon contribution vanishes.

In practice, however, most jet and jet substructure observables do not satisfy the
mutual irreducibility. For example, the jet mass after soft drop (SD) [35, 36] grooming at
leading logarithmic (LL) accuracy gives

κ(g|q) = 0 , κ(q|g) = CF
CA

, (1.8)

where CF,A is the Casimir in the fundamental or the adjoint representation of SU(3).
Without the mutual irreducibility, we can still connect the operational definitions with the
fundamental objects. In the example of the soft drop jet mass, pT2(x) still corresponds to
the pure gluon distribution pg(x). But pT1(x) gives the gluon-subtracted quark distribu-
tion:

pq|g(x) = pq(x)− κ(q|g)pg(x)
1− κ(q|g) , (1.9)

which can be solved to obtain pq(x) if we know κ(q|g). Therefore, in practice, without the
mutual irreducibility one must take a theoretical input calculation in order to carry out
the disentangling procedure.

Another practical challenge when applying jet topics is that the “anchor” bins are
usually defined in a very limited phase space region involving the tail regions of the distri-
butions, where experimental uncertainties are often large. To help address these practical
difficulties (tails of distributions and experimental uncertainties) in applying the jet topics,
we want to explore improving the method by finding pure quark and gluon observables in
a region of phase space. By this we mean that if the jet sample were to only contain quark
(gluon) jets, it will lead to a vanishing result for the pure gluon (quark) observable.

1.2 Disentangling jets with pure quark and gluon observables

To see how distinguishing quark and gluon jets can be simplified in this case, assume we can
construct pure quark and gluon observables Q and G which are active over a significant
region of phase space for an observable y. By measuring these observables in both jet
samples A and B mentioned above, we obtain

QA(y) = fAq Q(y) , GA(y) = fAg G(y) ,
QB(y) = fBq Q(y) , GB(y) = fBg G(y) . (1.10)

By taking ratios of the experimentally measured observables QA,B and GA,B, we can then
obtain the ratios of the quark and gluon fractions in the samples A and B

fAq
fBq

= QA(y)
QB(y) ,

fAg
fBg

= GA(y)
GB(y) . (1.11)

Note that this strategy comes with a built in consistency test by confirming that these ratios
are y independent in the expected phase space region. Together with the normalization
conditions (1.3), we can then solve for the quark and gluon fractions in both samples.
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Once we have obtained the quark and gluon fractions, we can then also solve for individual
distributions pq(x) and pg(x) for a given observable x from eq. (1.2).

This motivates us to think about constructing pure quark and gluon observables.
In this paper, we present a construction using the collinear drop (CD) grooming pro-
cedure [37]. The construction is based on the jet mass observable and relies on both the
perturbative and nonperturbative features of the CD jet mass. A novel feature of the
spectrum in the CD jet mass ∆m2 that we will exploit is that it perturbatively goes to
a constant as the CD cumulative jet mass ∆m2

c → 0. In contrast most jet distributions
vanish in this limit due to the presence of Sudakov exponential that gives zero probabil-
ity for the emission of no radiation. For the CD jet mass the measurement is made on
an intermediate soft region of phase space and a finite number of different events have
∆m2 = 0, and furthermore this number depends sensitively on both the CD parameters
and whether the jet was initiated by a quark or gluon. Our construction of pure quark and
gluon observables will exploit factorization based predictions for the full ∆m2

c spectrum,
as we will explain in the following.

The paper is organized as follows: in section 2, we will review the observable of jet
mass in collinear drop. In section 3 nonperturbative effects are discussed for the cumulative
collinear drop jet mass. The construction of the pure quark and gluon observables is given
in section 4, together with results and analysis. Finally, we will summarize and draw
conclusions in section 5.

2 Review of jet mass in collinear drop

2.1 Observable

In this paper, we consider collinear drop observables in proton-proton (pp) collisions that
are defined by two soft drop procedures with the parameters (zcut1, β1) and (zcut2, β2).

In the soft drop grooming procedure with the parameters (zcut, β) [36], we start with
a jet of radius R constructed from a jet algorithm such as the anti-kT algorithm, and
recluster all the particles in the jet using the Cambridge-Aachen (C/A) algorithm. The
C/A algorithm first recombines particles i and j with the smallest relative angular distance

∆Rij = 2pi · pj
pT i pTj

= 2 cosh(yi − yj)− 2 cos(φi − φj) ≈ (φi − φj)2 + (yi − yj)2 , (2.1)

where yi and yj denote the rapidity of the two particles and φi and φj are their azimuthal
angles. The approximation sign is valid in the limit of small R and often is just used as
the definition for all R values. In the same limit,

∆Rij ≈ θij cosh ηJ , (2.2)

where θij is the angle between particles i and j, and ηJ is the pseudorapidity of the jet. The
reclustering leads to a tree of particles that are ordered by the relative angular distance, so
that the branching with the largest relative angular distance occurs earliest in the tree. This
is also consistent with the branching tree of the jet at leading logarithmic (LL) accuracy.
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Then we sweep through each branching point in the reclustered tree and keep removing
the softer sub-branch until the following condition is satisfied:

min(pT i, pTj)
pT i + pTj

> zcut

(∆Rij
R0

)β
≈ z̃cut θ

β
ij , (2.3)

where

z̃cut = zcut

(cosh ηJ
R0

)β
(2.4)

and R0 is another parameter that sets the typical angular distance in the soft drop grooming
procedure. We choose R0 = 1 throughout the paper.

The collinear drop [37] sample is then constructed from a jet defined by a jet finding
algorithm by first applying a soft drop grooming with the parameters (zcut1, β1), and then
applying an anti-soft drop step, by removing the particles that pass a second soft drop
procedure with the parameters (zcut2, β2). To guarantee a finite number of particles are
left after the two steps, we require the second soft drop grooming is more aggressive than
the first one, which can be implemented by taking zcut1 ≤ zcut2 and β1 ≥ β2. The collinear
drop groomed jet is then the complement of the second soft drop groomed jet in the first
soft drop groomed jet: jetCD = jetSD1 \ jetSD2. The observable we consider in this paper is
the jet mass in collinear drop, which is defined by

∆m2 = m2
SD1 −m2

SD2 , where m2
SD i = p2

SD i =
( ∑
k∈jetSD i

pµk

)2
. (2.5)

The definition in eq. (2.5) is consistent with the following definition

∆m2 =
( ∑
k∈jetCD

pµk

)2
, (2.6)

since the jet mass is a linear observable up to power corrections

∆m2 = (pSD1 + pSD2) · (pSD1 − pSD2) = Qn · (pSD1 − pSD2) + · · · , (2.7)

where Q is the energy scale in the initial hard vertex that generates the jet and n = (1, n̂J)
is a light-like four-vector encoding the jet direction n̂J . The value of Q is given by twice
the jet energy Q = 2EJ or for pp collisions one has Q = 2pT cosh ηJ where pT is the jet
transverse momentum.

Within collinear drop the goal of having soft jet grooming in addition to the removal of
collinear particles is to limit the impact of underlying event and other soft contamination
in the jet. Such radiation is also impacted by the choice of the jet radius R, and we will
find it useful to consider jets with R = 0.2 for our construction.

2.2 Relevant modes in SCET

We primarily consider the collinear jet mass in the hierarchical limit

∆m2

(pTR)2 � zcut i � 1 . (2.8)
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Due to this hierarchy of scales and parameters, large logarithms need to be resummed. To
carry out the resummation, a factorization formula for the collinear drop jet mass cross
section has been constructed [37] by using the Soft-Collinear Effective Theory (SCET) [38–
42], which is based on the factorization formula of energy correlators in soft drop [43, 44].
SCET has been widely applied in studies of jet physics, see e.g. [45–74].

Our analysis at next-to-leading logarithmic (NLL) order will be set up such that it
remains valid when the hierarchies in eq. (2.8) are relaxed. This is achieved following
ref. [37].

The factorization formula consists of several functions that represent specific modes
contributing to the collinear drop jet mass. Each mode is specified by the scaling of its
lightcone momentum pµ = (p+, p−, p⊥) = (n ·p, n̄ ·p, p⊥) where n = (1, n̂J) is the light-like
vector pointing in the direction of the jet and n̂J is along the jet axis in space. The four
vector n̄ is auxiliary and satisfies n · n̄ = 2. It is usually chosen as n̄ = (1,−n̂J). By
construction, the large component of the jet momentum is along the p− direction. We
now discuss all modes relevant for the collinear drop jet mass. Each of them is depicted
in the (ln θ−1, ln z−1) plane in figure 1, where z represents the fraction of the lightcone
energy carried by a parton k in the jet z = p−

k
Q , and sin θ = |p⊥k |

p0
k
≈ 2|p⊥k |

p−
k

≈ θ measures
the angle of the parton with respect to the jet axis. Since the axes are logarithmic, the
relative locations in the plot indicate parametric scaling. The modes for perturbative
soft drop were determined in ref. [44], for perturbative collinear drop in ref. [37], and for
nonperturbative corrections to soft drop in ref. [68]. Here we review these results and
introduce the relevant nonperturbative modes for collinear drop. Note that the simplicity
of the soft drop grooming algorithm is important for ensuring that the enumeration of
modes is not affected by the order of perturbation theory.

Different situations arise depending on the value of the collinear drop jet mass observ-
able ∆m2, as depicted by the four panels in figure 1. The typical momentum of a parton
inside the jet scales as

pµ ∼ zQ
(
θ2

4 , 1,
θ

2

)
. (2.9)

The parton is collinear if θ � 1 and soft if z � 1. Since the jet is constructed initially with
a radius R, the maximum value of θ is θmax ≈ R

cosh ηJ . For jets with zero pseudorapidity
ηJ = 0, we have θmax ≈ R.

The blue line in figure 1 represents the measurement of the collinear drop jet mass,
and is determined by

p+Q ' zQ2 θ
2

4 ' ∆m2 . (2.10)

Here z appears with a linear power since the definition of the jet mass involves a summation
over all partons inside the jet. Rewriting eq. (2.10) leads to the equation for the blue line

ln 1
z
' ln Q2

4∆m2 − 2 ln 1
θ
. (2.11)

If there were no grooming, the intercept of the measurement line with the vertical axis gives
the soft mode while the intercept with the horizontal axis gives the collinear mode. The
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(a) (b)

(c) (d)

Figure 1. Relevant modes of the factorization formula of jet mass in collinear drop in the
(ln(θ−1), ln(z−1)) plane. The orange and red shaded areas indicate phase space regions removed
by the collinear drop procedure. The solid brown line indicates the onset of nonperturbative con-
tributions. The solid blue line represents the measurement of the collinear drop squared jet mass
∆m2. The value of ∆m2 decreases as we go from panel a) to d). In panel a) it is in a perturbative
regime, in panel b) the CS1 mode transitions to being nonpertubative, in panel c) the CS2 mode
transitions to being nonperturbative, and in panel d) we are deep in the nonperturbative regime.

collinear and soft modes appear in the factorization formula of the jet mass cross section,
in the absence of any collinear or soft jet grooming.

The brown line in figure 1 represents where nonperturbative effects become important
and is determined by when p⊥ ∼ ΛQCD, so

zQ
θ

2 ' ΛQCD . (2.12)

Rewriting eq. (2.12) gives the equation for the brown line

ln 1
z
' ln Q

2ΛQCD
− ln 1

θ
. (2.13)

The orange and red lines in figure 1 represent the constraints introduced by the two
soft drop procedures, and can be estimated from the criterion to just pass the soft drop
procedure:

z ' z̃cut i θ
βi . (2.14)

– 7 –
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Rewriting eq. (2.14) leads to an equation for the soft drop or collinear drop grooming lines

ln 1
z
' ln 1

z̃cut i
+ βi ln 1

θ
. (2.15)

For i = 1 (i = 2) only phase space that is below (above) this line can contribute to a
collinear drop observable. However, as θ decreases and ln(θ−1) increases, the grooming
lines will cross either the line for the jet mass measurement or the nonperturbative line,
and the picture will be modified by whichever of these happens first. After this point the
space above the grooming lines can now contribute as indicated by the vertical orange and
red lines. This is because in the C/A reclustering, the branching history is ordered by
angles, from large to small. When the soft drop criterion (2.14) is reached, all remaining
branches with smaller pairwise angles that are part of the subjets being compared are kept.

The collinear-soft (CS1,2) modes indicated by magenta dots in figure 1 are located at
the intercepts between the lines of soft drop constraints and the line of jet mass measure-
ment. The scaling of the collinear-soft momentum can be obtained by solving eqs. (2.10)
and (2.14), which leads to

θcs i
2 ∼

( 1
z̃cut i

∆m2

2βiQ2

) 1
2+βi

=
( ∆m2

QQcut i

) 1
2+βi

, zcs i ∼
∆m2

Q2
4
θ2

cs i
, (2.16)

where we have defined Qcut i = 2βiQz̃cut i. The collinear-soft scale with Q2
cs i ∼ p2

cs ∼ p⊥ 2
cs

is therefore given by

Qcs i = zcs iQ
θcs i
2 =

(∆m2

Q

) 1+βi
2+βi

Q
1

2+βi
cut i . (2.17)

The intercepts of the orange and purple lines with the vertical axis are at θ = θmax = R
cosh ηJ ,

and give the global-soft (GS1,2) modes, indicated by green dots. Plugging θ = θmax into
eq. (2.14) gives

θgs i = R

cosh ηJ
, zgs i = z̃cut i

(
R

cosh ηJ

)βi
= zcut i

(
R

R0

)βi
. (2.18)

The global-soft scale is given by

Qgs i = zgs iQ
θgs i
2 = pTRzcut i

(
R

R0

)βi
. (2.19)

Although it is possible to work with various scenarios for hierarchies or non-hierarchies
between the two soft drop parameters (see ref. [37]), here we will only consider the hier-
archical case where zcut1 � zcut2 and θcs2 � θcs1. This implies that there are individual
collinear-soft and global-soft modes for i = 1 and i = 2 as shown in figure 1.

Nonperturbative effects will be power suppressed if the line of the jet mass measurement
is far away from the line of nonperturbative regime, as shown in figure 1a. This occurs
when the perturbative CS modes are far away from the nonperturbative regime.

Qcs i � ΛQCD . (2.20)

– 8 –
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Nonperturbative effects on the i-th CS mode will become important when Qcs i ∼ ΛQCD,
which happens when the collinear drop jet mass becomes smaller than the critical value,
∆m . ∆mΛ i, where

∆m2
Λ i = ΛQCDQ

(ΛQCD
Qcut i

) 1
1+βi

. (2.21)

We note that the scale of the jet mass in eq. (2.21) can still be much bigger than ΛQCD

∆m2
Λ i

Λ2
QCD

=
(

Q

ΛQCD

) βi
1+βi

( 1
2βi z̃cut i

) 1
1+βi
� 1 . (2.22)

Since the collinear drop with i = 2 has stronger grooming than the soft drop with i = 1,
as we decrease ∆m2 it is the CS1 mode which will become nonperturbative first, as shown
in figure 1b. At this and smaller values of ∆m2 the CS1 mode is replaced by the Λ1 mode
given by the intersection of the brown and orange lines, since there are always particles
with such nonperturbative momenta available to stop soft drop. At a smaller value of
∆m2 the CS2 mode becomes nonperturbative, and is replaced by the Λ2 mode as shown
in figure 1c. The scaling of these nonperturbative collinear-soft modes can be obtained by
setting Qcs i ∼ ΛQCD in eq. (2.17), which gives

pµΛ i ∼ ΛQCD

(
θcs i
2 ,

2
θcs i

, 1
)
. (2.23)

The scale of these nonperturbative modes is of course p2
Λ i ∼ Λ2

QCD.
Our explicit construction of pure quark and gluon observables will be carried out for

both the perturbative regions in figure 1a and the nonperturbative regions in figure 1c,d.
Our construction of these observables will be valid for the final case in figure 1b, by inter-
polation from the surrounding cases.

2.3 Factorization and summation of large logs

In this subsection, we will review the factorization of the collinear drop jet mass cross
section in the purely perturbative regime Qcs i � ΛQCD, which corresponds to the case in
figure 1a. We will discuss the other cases where the jet mass acquires O(1) nonperturbative
corrections in more detail in section 3. We also only consider the case with fully hierarchical
global-soft and collinear-soft modes, and assume that R/2 � 1, which is a reasonable
approximation for most realistic values of the jet radius R (even working well in practice
for the case R = 1).

Since the global-soft modes are far away from the line of the collinear drop jet mass
measurement, the shape of the jet mass cross section is independent of the GS modes. The
GS modes only modify the overall normalization of the cross section. This is also manifest
in eq. (2.19) where the GS scale is independent of the jet mass. The factorization formula
of the collinear drop jet mass differential cross section is [37, 44]:

dσ
d∆m2 =

∑
j=q,g

NCD
j (pT , ηJ , R, z̃cut i, βi, µ)PCD

j (∆m2, Q, z̃cut i, βi, µ) , (2.24)

– 9 –
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where the sum over j adds contributions from the quark- and gluon-initiated jets. In
different processes (such as dijets and Z boson-jet events), the fraction of quark- and gluon-
initiated contributions are different in general, and this process dependence is carried by
the normalization factors NCD

j , which are independent of the collinear drop jet mass ∆m2.
For an explicit process the normalization factor NCD

j can also be further factorized into
hard, global-soft, and other contributions. For collisions producing an identified groomed
jet of radius R factorized into a hard function and two global-soft functions we have

NCD
j (pT , ηJ , R, z̃cut i, βi, µ) = Hj(pT , ηJ , R)⊗Ω SGj (Qgs1, R, β1, µ)⊗Ω SGj (Qgs2, R, β2, µ) .

(2.25)
The hard function Hj determines the fraction of quark and gluon contributions (with the
presence of gluon jets starting at O(αs)). The global-soft functions SGj and SGj encode
contributions from the first and second global-soft modes respectively, as well as unmea-
sured soft function contributions from outside the jet. The overline in the second GS
function emphasizes that in collinear drop, it is particles removed by the second soft drop
that are kept, which results in an expression of SGj that is different from SGj . Finally
the ⊗Ω indicates that the angular integrals in the functions cannot be done independently
since the modes have the same angular scaling, i.e., they cannot be distinguished by their
angular separation. This generically leads to the presence of so-called non-global loga-
rithms (NGL) that start at O(α2

s ln2) [75]. For both soft drop and collinear drop jet mass
observables with hierarchical scales, the non-global logarithmic effects only appear in the
normalization factors Nj . This occurs due to the fact that the spectrum dependent Pj
functions are factorized in terms of single scale functions [37, 44]. In our observable these
non-global effects only appear in the quark and gluon fractions, which are treated as fixed
numbers to be determined experimentally from our analysis. Therefore we refrain from
going into further detail about these effects.1 We refer the interested reader to the lit-
erature for further details on the calculation of these non-global effects in normalization
factors, see [69, 72] and references therein. For e+e− collisions, Hj(pT , ηJ , R) is given by
a purely perturbative series. For proton-proton collisions it contains convolutions with
parton distribution functions, such as Hj(pT , ηJ , R) =

∑
a,b fa⊗fb⊗Habj(pT , ηJ , R), where

Habj describes the hard dynamics of the partonic process a+ b→ j +X.
At one-loop, the bare in-jet global-soft functions can be evaluated in dimensional reg-

ularization (d = 4− 2ε) as [37]

SGj (Qgs1, β1, ε) = 1 + 4g2Cjµ
2εeεγE

(4π)ε
∫ ddk

(2π)d
1

k+k−
2πδ+(k2) Θ(gs)

SD1 Θalg , (2.26)

SGj (Qgs2, β2, ε) = 1 + 4g2Cjµ
2εeεγE

(4π)ε
∫ ddk

(2π)d
1

k+k−
2πδ+(k2)

(
−Θ(gs)

SD2
)
Θalg ,

where δ+(k2) = δ(k2)θ(k0), the color factor Cq = CF and Cg = CA, Θ(gs)
SD i means the

global-soft mode fails the i-th SD criterion, and Θalg represents the jet finding algorithm.
1We also remark that for R/2 � 1, there can be large lnR terms in the NCD

j factors, which for the
same reason we do not elaborate on here. All such lnR terms in PCD

j are resummed together with other
logarithms at the order of our analysis, again due to the single scale nature of the factorization.
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In collinear drop, the first global-soft mode fails the SD criterion while the second passes.
This is why the signs of the SD kinematic constraints in the two GS functions are opposite.
The kinematic constraints of SD and the jet finding algorithm are given by

Θ(gs)
SD i = θ

(
Qz̃cut i

(2k+

k−

)βi
2
− k+ − k−

)
, Θalg = θ

(
R2 − 4 cosh2ηJ

k+

k−

)
. (2.27)

Explicit calculations give the MS renormalized GS functions as [44]

SGj (Qgs1, β1, µ) = 1 + αs(µ)Cj
π(1 + β1)

(
ln2 µ

Qgs1
− π2

24

)
, (2.28)

SGj (Qgs2, β2, µ) = 1− αs(µ)Cj
π(1 + β2)

(
ln2 µ

Qgs2
− π2

24

)
.

They satisfy the following general renormalization group (RG) equations that are valid
even at higher loops

d
d lnµ lnSGj (Qgs1, β1, µ) = 2Cj

1 + β1
Γcusp[αs] ln µ

Qgs1
+ γSGj [αs] (2.29)

d
d lnµ lnSGj (Qgs2, β2, µ) = − 2Cj

1 + β2
Γcusp[αs] ln µ

Qgs2
+ γS

Gj
[αs] ,

where Γcusp denotes the cusp anomalous dimension, and γSGj and γSGj are non-cusp anoma-
lous dimensions. (At 4-loops the cusp anomalous dimension starts to depend on the index
j in a manner different from the overall Cj factor pulled out here, but this is beyond the
order needed for our analysis.) The solutions to the RG equations are given by

SGj (Qgs1, β1, µ) = SGj (Qgs1, β1, µ1) exp
( 2Cj

1 + β1
K(µ1, µ) + ωSGj (µ1, µ)

)(
µ1
Qgs1

) 2Cj
1+β1

ω(µ1,µ)
,

SGj (Qgs2, β2, µ) = SGj (Qgs2, β2, µ2) exp
( −2Cj

1 + β2
K(µ2, µ) + ωS

Gj
(µ2, µ)

)(
µ2
Qgs2

)−2Cj
1+β2

ω(µ2,µ)
,

(2.30)

where

K(µ1, µ2) =
∫ αs(µ2)

αs(µ1)
dαΓcusp(α)

β(α)

∫ α

αs(µ1)

dα′

β(α′) , (2.31)

ω(µ1, µ2) =
∫ αs(µ2)

αs(µ1)
dαΓcusp(α)

β(α) , ωX(µ1, µ2) =
∫ αs(µ2)

αs(µ1)
dαγX(α)

β(α) ,

for X = SGj , SGj . For LL accuracy, we only need the one-loop result of the cusp anomalous
dimension:

Γcusp(αs) = 4
(
αs
4π

)
. (2.32)

For NLL accuracy, we need the two-loop result of the cusp anomalous dimension:

Γcusp(αs) = 4
(
αs
4π

)
+ 4

[(67
9 −

π2

3

)
CA −

20
9 TFnf

](
αs
4π

)2
, (2.33)
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and the one-loop results of the non-cusp anomalous dimensions, which happen to vanish

γSGj = γSGj
= 0 . (2.34)

To minimize the logarithmic term in the boundary term of the RG equation, we choose
the scales of evaluation as µ1 ' Qgs1 and µ2 ' Qgs2 for SGj and SGj respectively.

At the perturbative level the function that determines the shape of the collinear drop
jet mass cross section, P̂CD

j can be written as a convolution of two collinear-soft functions
ŜCj and D̂Cj [37]:

P̂CD
j (∆m2, Q, z̃cut i, βi, µ) (2.35)

= Q
1

1+β1
cut1 Q

1
1+β2
cut2

∫
d`+1 d`+2 δ

(
∆m2 −Q`+1 −Q`

+
2
)
ŜCj

(
`+1 Q

1
1+β1
cut1 , β1, µ

)
D̂Cj

(
`+2 Q

1
1+β2
cut2 , β2, µ

)
.

At one loop, the dimensionally regularized (d = 4 − 2ε) perturbative CS functions are
obtained from the integrals

ŜCj (`+1 , β1, µ) : 4g2Cjµ
2εeεγE

(4π)ε
∫ ddk

(2π)d
2πδ+(k2)
k+k−

(
δ(k+ − `+1 )− δ(`+1 )

)
Θ(cs)

SD1 , (2.36)

D̂Cj (`+2 , β2, µ) : 4g2Cjµ
2εeεγE

(4π)ε
∫ ddk

(2π)d
2πδ+(k2)
k+k−

(
δ(k+ − `+2 )− δ(`+2 )

)(
−Θ(cs)

SD2
)
,

where the kinematic constraint Θ(cs)
SD i gives the phase space passing the SD criterion

Θ(cs)
SD i = θ

(
k+ + k− −Qcut i

(
k+

k−

)βi
2
)
. (2.37)

Only collinear-soft radiation that passes the first SD grooming and fails the second SD
grooming contributes to the jet mass in collinear drop, which is reflected in the signs of the
theta functions in the one-loop expressions of the CS functions (note that Θ(cs)

SD1(1−Θ(cs)
SD2) =

Θ(cs)
SD1 −Θ(cs)

SD2). Explicit calculations give [37, 44]

ŜCj
(
`+1 Q

1
1+β1
cut1 , β1, µ

)
= δ

(
`+1 Q

1
1+β1
cut1

)
+ αsCj

π

(
δ
(
`+1 Q

1
1+β1
cut1

)2 + β1
1 + β1

(
− 1

2ε2 + π2

24

)
(2.38)

+1
ε
µ
− 2+β1

1+β1L0

(
`+1 Q

1
1+β1
cut1

µ
2+β1
1+β1

)
− 2(1 + β1)

2 + β1
µ
− 2+β1

1+β1L1

(
`+1 Q

1
1+β1
cut1

µ
2+β1
1+β1

))
,

D̂Cj

(
`+2 Q

1
1+β2
cut2 , β2, µ

)
= δ

(
`+2 Q

1
1+β2
cut2

)
− αsCj

π

(
δ
(
`+2 Q

1
1+β2
cut2

)2 + β2
1 + β2

(
− 1

2ε2 + π2

24

)

+1
ε
µ
− 2+β2

1+β2L0

(
`+2 Q

1
1+β2
cut2

µ
2+β2
1+β2

)
− 2(1 + β2)

2 + β2
µ
− 2+β2

1+β2L1

(
`+2 Q

1
1+β2
cut2

µ
2+β2
1+β2

))
,

where Ln(x) is a plus-function that integrates to zero on the region x ∈ [0, 1]:

Ln =
(
θ(x) lnn(x)

x

)
+
. (2.39)
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The convolution (2.35) can be factorized by applying the Laplace transform

f̃(y) =
∫ ∞

0
d∆m2 exp

(
− ye−γE∆m2)f(∆m2) . (2.40)

In Laplace space we have

ˆ̃
P j

CD(y,Q, z̃cut i, βi, µ) = ˆ̃
SCj

(
yQQ

−1
1+β1
cut1 , β1, µ

) ˆ̃
DCj

(
yQQ

−1
1+β2
cut2 , β2, µ

)
, (2.41)

where ˆ̃
SCj ’s first variable is the Laplace conjugate to the first variable in ŜCj , and likewise

for ˆ̃
DCj and D̂Cj . The renormalized one-loop CS functions in Laplace space are given by

ˆ̃
SCj

(
yQQ

−1
1+β1
cut1 , β1, µ

)
= 1 + αsCj

π

2 + β1
1 + β1

(
− ln2 µ y

1+β1
2+β1Q

1+β1
2+β1

Q
1

2+β1
cut1

+ π2

24

)
, (2.42)

ˆ̃
DCj

(
yQQ

−1
1+β2
cut2 , β2, µ

)
= 1− αsCj

π

2 + β2
1 + β2

(
− ln2 µ y

1+β2
2+β2Q

1+β2
2+β2

Q
1

2+β2
cut2

+ π2

24

)
.

We note that the argument yQQ
−1

1+βi
cut i of the collinear-soft function appears only in terms of

logarithms in eq. (2.42). They satisfy the following RG equations that are generally valid
at higher loops as well

d
d lnµ ln ˆ̃

SCj
(
yQQ

−1
1+β1
cut1 , β1, µ

)
= 2CjΓcusp[αs] ln Q

1
1+β1
cut1

µ
2+β1
1+β1Qy

+ γSCj [αs] , (2.43)

d
d lnµ ln ˆ̃

DCj

(
yQQ

−1
1+β2
cut2 , β2, µ

)
= −2CjΓcusp[αs] ln Q

1
1+β2
cut2

µ
2+β2
1+β2Qy

+ γDCj [αs] .

The solutions to the RG equations are given by

ˆ̃
SCj

(
yQQ

−1
1+β1
cut1 , β1, µ

)
= ˆ̃
SCj

(
yQQ

−1
1+β1
cut1 , β1, µcs1

)( Q
1

1+β1
cut1

yQµ
2+β1
1+β1
cs1

)2Cjω(µcs1,µ)

× exp
(
− 2Cj

2 + β1
1 + β1

K(µcs1, µ) + ωSCj (µcs1, µ)
)
,

ˆ̃
DCj

(
yQQ

−1
1+β2
cut2 , β2, µ

)
= ˆ̃
DCj

(
yQQ

−1
1+β2
cut2 , β2, µcs2

)( Q
1

1+β2
cut2

yQµ
2+β2
1+β2
cs2

)−2Cjω(µcs2,µ)

× exp
(

2Cj
2 + β2
1 + β2

K(µcs2, µ) + ωDCj (µcs2, µ)
)
. (2.44)

At one loop, γSCj = γDCj = 0, thus we can set ωSCj = ωDCj = 0 for LL and NLL accuracy.
To minimize the logarithmic terms in the boundary terms of the RG equations, we choose
the scales of evaluation as µcs1 ' Qcs1 and µcs2 ' Qcs2 for ˆ̃

SCj and ˆ̃
DCj respectively. The

inverse Laplace transform is given by

f(∆m2) = 1
2πi

∫ c+i∞

c−i∞
dy e−γE exp

(
ye−γE∆m2)f̃(y) , (2.45)
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where c is chosen such that the integration contour is on the right of all the poles of f̃(y).
For the function f̃(y) = 1/yη, the inverse Laplace transform gives

f(∆m2) = L−1
( 1
yη

)
= (e−γE∆m2)η

∆m2Γ(η) Θ(∆m2) , (2.46)

where Θ(x) is the theta function. Applying the inverse Laplace transform leads to

P̂CD
j (∆m2, Q, z̃cut i, βi, µ)

= exp
(
−2Cj

2 + β1
1 + β1

K(µcs1, µ) + ωSCj (µcs1, µ) + 2Cj
2 + β2
1 + β2

K(µcs2, µ) + ωDCj (µcs2, µ)
)

× ˆ̃
SCj

(
QQ

−1
1+β1
cut1 e

− ∂
∂η , β1, µcs1

) ˆ̃
DCj

(
QQ

−1
1+β2
cut2 e

− ∂
∂η , β2, µcs2

)(e−γE∆m2)η

∆m2Γ(η)

∣∣∣∣
η=2Cjω(µcs1,µcs2)

×
(
Q

1
1+β1
cut1

Qµ
2+β1
1+β1
cs1

)2Cjω(µcs1,µ)(
Q

1
1+β2
cut2

Qµ
2+β2
1+β2
cs2

)−2Cjω(µcs2,µ)

, (2.47)

where we have suppressed the overall Θ(∆m2).
Finally we want to review how to fix the scales for µgs i and µcs i in different regions

of the collinear drop spectrum (see [37] for further details). The natural choice for these
scales is obtained by minimizing the logarithm in the boundary terms of the RG running,
which gives µgs i ' Qgs i and µcs i ' Qcs i. Here the ' indicates that we fix the scale near
this value, which in practice means that central results are obtained at this value while
variations in a region parametrically nearby are used to estimate perturbative uncertainties.
Special treatments are needed when µgs i = µcs i, which happens when the i-th GS and CS
modes merge and the i-th soft drop in the collinear drop grooming becomes ineffective.
The i-th soft drop starts to become ineffective when the CD jet mass satisfies

∆m2 ≥ ∆m2
cut i = (pTR)2zgs i , (2.48)

which is obtained by solving Qgs i = Qcs i for ∆m2. When ∆m2
cut1 ≤ ∆m2 ≤ ∆m2

cut2,
the factorization formulas that have been discussed above still apply if we fix the scales as
µgs1 = µcs1 = ∆m2

pTR
. When ∆m2 ≥ ∆m2

cut2, the second soft drop becomes ineffective and
there is no more phase space for radiation that passes collinear drop, and this therefore
corresponds to the endpoint of the collinear drop jet mass spectrum. Thus the differential
cross section goes to zero when ∆m2 ≥ ∆m2

cut2 and the cumulative cross section that will
be discussed in the next section becomes constant.

2.4 Cumulative jet mass

The cumulative cross section of the collinear drop jet mass can be obtained from integrating
the differential cross section (2.24) over ∆m2:

Σ(∆mc) = 1
σ

∫ ∆m2
c

0
d∆m2 dσ

d∆m2 . (2.49)
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The inclusion of the 1/σ ensures that Σ(∆m2
c) → 1 when ∆m2

c gets to the endpoint of
the spectrum. The ∆m2-dependent part of the differential cross section can be seen from
eq. (2.47) and after the integration it leads to∫ ∆m2

c

0
d∆m2 e

−γEη

Γ(η)
(
∆m2)η−1 =

(
e−γE∆m2

c

)η
Γ(1 + η) . (2.50)

For the purely perturbative result for the cumulative cross section we then obtain

Σ̂(∆mc) =
∑
j=q,g

fj Σ̂j(∆mc) , (2.51)

where

fj =
Hj(pT , ηJ , R)⊗Ω SGj (Qgs1, R, β1, µgs1)⊗Ω SGj (Qgs2, R, β2, µgs2)

SeeGj (Qgs1, β1, µgs1)See
Gj

(Qgs2, β2, µgs2)
σj
σ

(2.52)

are the fractions of quark and gluon jets with σ the full jet cross section. Here we include
the ratio between the full global-soft functions SGj , SGj that are tied to Hj through the
calculation of non-global logarithms beyond NLL order, and the global-soft functions SeeGj ,
See
Gj

for hemisphere jets in e+e− collisions whose structure is fully global. For the latter we
(artificially) employ the same global-soft scales as in eq. (2.19). At one loop the results for
SeeGj , S

ee
Gj

are identical to those in eq. (2.26). This is convenient since logarithms of µgs i

in these global-soft functions fully suffice to cancel µgs i dependence in the renormalization
group improved calculation of Σ̂j order-by-order, and furthermore the ratios in eq. (2.52)
are also µgs i independent order-by-order. In eq. (2.52) the σj = 1 + . . . is a fixed order
series which provides the proper normalization for fj at higher orders, and is defined to
ensure Σ̂j → 1 at the upper limit of ∆m2

c . Using the all-orders form of the perturbative
factorization theorem in eq. (2.47) gives the all-orders result

Σ̂j = 1
σj

exp
[ 2Cj
1+β1

K(µgs1,µ)− 2Cj
1+β2

K(µgs2,µ)−2Cj
2+β1
1+β1

K(µcs1,µ)+2Cj
2+β2
1+β2

K(µcs2,µ)
]

×
(
µgs1
Qgs1

) 2Cj
1+β1

ω(µgs1,µ)( µgs2
Qgs2

)−2Cj
1+β2

ω(µgs2,µ)( Q
1

1+β1
cut1

Qµ
2+β1
1+β1
cs1

)2Cjω(µcs1,µ)(
Q

1
1+β2
cut2

Qµ
2+β2
1+β2
cs2

)−2Cjω(µcs2,µ)

×exp
[
ωSCj (µcs1,µ)+ωDCj (µcs2,µ)+ωSGj (µgs1,µ)+ωS

Gj
(µgs2,µ)

]
×SeeGj (Qgs1,β1,µgs1)See

Gj
(Qgs2,β2,µgs2)

× ˆ̃
SCj

(
QQ

−1
1+β1
cut1 e

− ∂
∂η ,β1,µcs1

) ˆ̃
DCj

(
QQ

−1
1+β2
cut2 e

− ∂
∂η ,β2,µcs2

)(e−γE∆m2
c)η

Γ(1+η)

∣∣∣∣
η=2Cjω(µcs1,µcs2)

.

(2.53)

To make predictions for this cumulative cross section with resummed large logarithms
we should fix the mass dependent scales in terms of ∆m2

c , so the canonical values are
µcs i = Qcs i(∆m2 → ∆m2

c).
At LL and NLL accuracy, the boundary terms in the solutions of the RG equations can

be set to be the tree-level values, which are unity for both the GS functions in momentum
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space and the CS functions in the Laplace space. Also σj = 1, and non-global effects are
neglected. Furthermore, the non-cusp anomalous dimension vanishes at one loop for both
GS and CS functions, so we can set ωSGj = ωS

Gj
= ωSCj = ωDCj = 0. For the purely

perturbative result for the cumulative cross section we then obtain

Σ̂NLL(∆mc) =
∑
j=q,g

fj Σ̂NLL
j (∆mc) , (2.54)

where here the fractions of quark and gluon jets are given by fj = Hj(pT , ηJ , R)/σ0 with
σ0 the tree-level jet cross section, and

Σ̂NLL
j = exp

[ 2Cj
1+β1

K(µgs1,µ)− 2Cj
1+β2

K(µgs2,µ)−2Cj
2+β1
1+β1

K(µcs1,µ)+2Cj
2+β2
1+β2

K(µcs2,µ)
]

×
(
µgs1
Qgs1

) 2Cj
1+β1

ω(µgs1,µ)( µgs2
Qgs2

)−2Cj
1+β2

ω(µgs2,µ)( Q
1

1+β1
cut1

Qµ
2+β1
1+β1
cs1

)2Cjω(µcs1,µ)(
Q

1
1+β2
cut2

Qµ
2+β2
1+β2
cs2

)−2Cjω(µcs2,µ)

× (e−γE∆m2
c)η

Γ(1+η)

∣∣∣∣
η=2Cjω(µcs1,µcs2)

. (2.55)

In the form given in eq. (2.53) or eq. (2.55) with quark and gluon fractions fj , the
results for Σ̂j apply equally well for a jet produced in pp and e+e− collisions. For our
analysis we will commonly refer to scales that are appropriate for the currently more
phenomenologically relevant pp case. To evaluate the perturbative result in eq. (2.55), we
need to specify the scales at which the perturbative RG evolution is stopped. Naturally,
we choose the canonical scales

µgs i = Qgs i = pTRzgs i , (2.56)

µcs i = Qcs i =
(∆m2

c

Q

) 1+βi
2+βi

Q
1

2+βi
cut i .

The CS scales chosen µcs i depend on the CD cumulative jet mass. When we apply the
factorization formula to the small CD jet mass region, the CS scales can become non-
perturbative and the perturbative RG running has to be frozen. We will explain how to
incorporate the nonperturbative effects using shape functions in the next section. At the
moment, we just focus on the purely perturbative calculations and freeze out the CS scales
to the value µ0 continuously and smoothly by taking

µcs i =


µcs i , µcs i ≥ 2µ0

µ0

(
1 + µ2

cs i
4µ2

0

)
, µcs i < 2µ0

. (2.57)

The perturbative results depend on the choice of µ0. However, the µ0 dependence will
be canceled by the µ0 dependence in shape functions, which will be discussed in the next
section.

In figure 2 we plot the perturbative results of the cumulative jet mass Σ̂NLL
j for quarks

and gluons using pT = 800 GeV, ηJ = 0, R = 0.2, and µ0 = 1GeV. The two panels show two
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Figure 2. Perturbative results of the cumulative jet mass in collinear drop for quark and gluon
jets. The constant feature in the limit ∆m2

c → 0 depends on both the jet content and the collinear
drop parameters.

different sets of CD parameters; for the left panel β1 = β2 = 0, zcut1 = 0.02, zcut2 = 0.08,
while for the right panel β1 = 1, β2 = 0, zcut1 = 0.05, zcut2 = 0.4. As discussed at the
end of section 2, the cumulative jet mass spectrum becomes unity at the endpoint of the
spectrum, ∆m2

c = ∆m2
cut2. This upper endpoint corresponds to

log10

(∆m2
c

p2
T

)
= log10

(
R2+β2

Rβ2
0

zcut2

)
, (2.58)

which corresponds to log10(∆m2
c/p

2
T ) = {−2.49,−1.80} for the left and right panels of

figure 2, respectively. On the opposite side of the plots we see that the perturbative
cumulative cross section of the jet mass in collinear drop does not go to zero as ∆m2

c → 0,
but instead approaches a constant value. This is a special feature of the collinear drop jet
mass and is physically different from the soft drop jet mass (and many other observables),
whose perturbative cumulative cross section vanishes in the limit of zero jet mass. In soft
drop, zero jet mass means no radiation passes the soft drop grooming procedure, but since
the energetic collinear core will always pass soft drop the probability of having no radiation
vanishes, and thus so does the cross section. For collider observables this behavior is induced
by the ubiquitous presence of a Sudakov exponential that predicts zero probability for no
radiation. In contrast, in collinear drop the jet mass is defined from an intermediate (soft)
region of phase space with cuts from two sides induced by the collinear drop procedure,
which is obtained from the difference of two soft drop jet masses. Here zero collinear drop
jet mass corresponds to events where the two soft drop jet masses are equal, which happens
for a finite number of events. The contribution in this bin is represented by a δ(∆m2) in
the collinear drop spectrum, and by the constant that appears for Σ̂(∆m2

c → 0). Thus
the constant value in the limit ∆m2

c → 0 corresponds to the fraction of events without
intermediate soft radiation, namely those with only collinear and soft radiation that is
groomed away. This constant value is sensitive to the jet content, i.e., whether it is a
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quark or a gluon jet. Furthermore, as we can see by comparing the two plots in figure 2,
the constant values also depend sensitively on the choice of the collinear drop parameters.
This region of constant Σ̂j begins when the cross section transitions from the perturbative
to nonperturbative regimes, corresponding to the scales µcs i from eq. (2.56) reaching 2µ0
and transitioning to the fixed value µ0, as in eq. (2.57). Since µcs2 reaches small values
later than µcs1, we can solve for when µcs2 = µnp to give

log10

(∆m2
c

p2
T

)
= −2 + β2

1 + β2
log10

pT
µnp

+ 1
1 + β2

log10
Rβ2

0
zcut2

. (2.59)

Recalling that we use R0 = 1, the transition to the flat behavior occurs near µnp = 2µ0 =
2 GeV, which corresponds to log10(∆m2

c/p
2
T ) = {−4.11,−4.81} for the left and right panels

of figure 2, respectively. For the gluon channel in the right panel the cumulative falls
somewhat more steeply, reaching the plateau region already at log10(∆m2

c/p
2
T ) ' −4.2.

The motivating observation for our construction of pure quark and gluon observables
was this constant behavior in the limit ∆m2

c → 0, and exploiting its dependence on the
zcut i parameters. In the region where the perturbative result of the cumulative cross
section becomes constant, nonperturbative effects also become important, and we will
discuss how to include these effects in section 3. The construction of our pure quark and
gluon observables will then be given in section 4. We will see that our construction works
for both the nonperturbative region where Σ̂j is flat in ∆m2

c and for the perturbative
resummation region where Σ̂j has non-trivial dependence on ∆m2

c .

3 Nonperturbative effects in the small jet mass regime

3.1 Nonperturbative regime

As discussed in the previous section, nonperturbative effects will become important in
the limit ∆m2

c → 0, in particular when ∆m2
c . ∆m2

Λ i given in eq. (2.21). In the fully
nonperturbative regime, corresponding to figures 1c and 1d, perturbative calculations of
the CS functions are no longer reliable. To see this more explicitly, we can examine the
boundary terms in the solutions to the RG equations of the CS functions eq. (2.44). One-
loop results of the boundary terms are given in eqs. (2.42) and (2.43). To minimize the
logarithms in the fixed-order results, we choose the scale of evaluation µcs i to satisfy

µcs i y
1+βi
2+βiQ

1+βi
2+βi

Q
1

2+βi
cut i

∼ 1 , (3.1)

which with y−1 ∼ ∆m2
c gives µcs i ∼ Qcs i. However, when µcs i = Qcs i ∼ ΛQCD, the fixed-

order results of the CS functions at the CS scales are no longer reliable. This CS scale
becomes nonperturbative Qcs i ∼ ΛQCD when the cumulative jet mass is smaller than

∆m2
c . ∆m2

Λ i = ΛQCDQ

(ΛQCD
Qcut i

) 1
1+βi

. (3.2)

– 18 –



J
H
E
P
0
9
(
2
0
2
2
)
1
2
0

In this section, we will focus on the case where both the collinear-soft modes become
nonperturbative, which corresponds to the cases shown in figures 1c and 1d. Our con-
struction of pure quark and gluon observables will apply for the cumulative cross section
in both this nonperturbative regime and the perturbative resummation region of figure 1a.
In the case depicted in figure 1b, the first CS mode is nonperturbative ∆m2

c . ∆m2
Λ1, but

the second CS mode is still perturbative with ∆m2
c � ∆m2

Λ2, which serves as a transition
region between Case 1a and Case 1c. We leave the discussion of this transition case to
future work.

3.2 Nonperturbative corrections via shape functions

When ∆m2
c . ∆m2

Λ i, nonperturbative effects can be incorporated into the CS function
by introducing a nonperturbative shape function. The procedure for doing this for the
collinear-soft function in soft drop jet mass has been worked out in ref. [68]. Since the
collinear-soft functions appearing for collinear drop are hierarchically separated for the
scenarios we consider, we can directly apply this shape function setup for each of our
collinear-soft functions. Each CS function is written as a convolution of the perturbative
CS function, that satisfies the RG equation in eq. (2.44), and a shape function F ji (ki, βi)
that depends on the parton species j initiating the jet,

SCj
(
`+1 Q

1
1+β1
cut1 , β1, µ

)
=
∫ +∞

0
dk1 ŜCj

(
`+1 Q

1
1+β1
cut1 − k

2+β1
1+β1
1 , β1, µ

)
F j1 (k1, β1) , (3.3)

DCj

(
`+2 Q

1
1+β2
cut2 , β2, µ

)
=
∫ +∞

0
dk2 D̂Cj

(
`+2 Q

1
1+β2
cut2 − k

2+β2
1+β2
2 , β2, µ

)
F j2 (k2, β2) .

It is important to note that the shape function in momentum space only depends on βi,
but not on zcut i [68]. The nonperturbative shape functions have their dominant support in
the region ki ∼ ΛQCD, and must fall off faster than any polynomial for ki � ΛQCD. They
smear the perturbative CS functions.

With the shape functions included, the result in eq. (2.35) becomes

PCD
j (∆m2, Q, z̃cut i, βi, µ) = Q

1
1+β1
cut1 Q

1
1+β2
cut2

∫
d`+1 d`+2 dk1 dk2 δ

(
∆m2 −Q`+1 −Q`

+
2
)

× ŜCj
(
`+1 Q

1
1+β1
cut1 − k

2+β1
1+β1
1 , β1, µ

)
D̂Cj

(
`+2 Q

1
1+β2
cut2 − k

2+β2
1+β2
2 , β2, µ

)
F j1 (k1, β1)F j2 (k2, β2) .

(3.4)

Changing variables to x1 = `+1 Q
1

1+β1
cut1 − k

2+β1
1+β1
1 and x2 = `+2 Q

1
1+β2
cut2 − k

2+β2
1+β2
2 we find

PCD
j (∆m2, Q, z̃cut i, βi, µ)

=
∫

dx1 dx2 dk1 dk2 δ

(
∆m2 −QQ

−1
1+β1
cut1 x1 −QQ

−1
1+β2
cut2 x2 −QQ

−1
1+β1
cut1 k

2+β1
1+β1
1 −QQ

−1
1+β2
cut2 k

2+β2
1+β2
2

)
× ŜCj (x1, β1, µ)D̂Cj (x2, β2, µ)F j1 (k1, β1)F j2 (k2, β2)

=
∫

d(∆m̂2) dk1 dk2 δ

(
∆m2 −∆m̂2 −QQ

−1
1+β1
cut1 k

2+β1
1+β1
1 −QQ

−1
1+β2
cut2 k

2+β2
1+β2
2

)
F j1 (k1, β1)F j2 (k2, β2)

× P̂CD
j (∆m̂2, Q, z̃cut i, βi, µ) , (3.5)
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which gives the result incorporating hadronization from the shape functions as a convo-
lution with the perturbative result for P̂CD

j , whose form with resummation was given in
eq. (2.47).

In the deep nonperturbative regime, where both the CS scales µcs i enter the nonper-
turbative regime, we need to stop the RG evolution of both the CS functions at some
small, but perturbative scales: µcs i = Λcs i ∼ 2GeV. The final results of the CD jet mass
are independent of the choice of Λcs i since dependence on Λcs i in the calculations of the
CS functions will be canceled by the dependence in the shape functions. In this region it
is convenient to define MS scheme shape functions which combine the F j1 (k1, β1) and the
boundary series at the low scale ŜCj (x1, β1,Λcs1) into a single function F (MS)j

1 (k1, β1,Λcs1),
and likewise combine F j2 (k2, β2) and D̂Cj (x2, β2,Λcs2) into a single F (MS)j

2 (k2, β2,Λcs2).
This is most easily done in Laplace space, and the details are left to appendix A. We refer
to these functions as being in the MS scheme since their dependence on the scales Λcs i
exactly follows the MS RGE for the collinear-soft functions. We thus obtain

PCD
j (∆m2, Q, z̃cut i, βi, µ)

=
∫

d(∆m̂2) dk1 dk2 δ

(
∆m2 −∆m̂2 −QQ

−1
1+β1
cut1 k

2+β1
1+β1
1 −QQ

−1
1+β2
cut2 k

2+β2
1+β2
2

)
× exp

(
− 2Cj

2 + β1
1 + β1

K(Λcs1, µ) + ωSCj (Λcs1, µ) + 2Cj
2 + β2
1 + β2

K(Λcs2, µ) + ωDCj (Λcs2, µ)
)

×
(
Q

1
1+β1
cut1

QΛ
2+β1
1+β1
cs1

)2Cjω(Λcs1,µ)(
Q

1
1+β2
cut2

QΛ
2+β2
1+β2
cs2

)−2Cjω(Λcs2,µ)
(e−γE∆m̂2)η

∆m̂2Γ(η)

∣∣∣∣
η=2Cjω(Λcs1,Λcs2)

× F (MS)j
1 (k1, β1,Λcs1) F (MS)j

2 (k2, β2,Λcs2) . (3.6)

Integrating over ∆m̂2 to get the cumulative distribution gives∫ ∆m2
c

0
d∆m2

∫
d(∆m̂2) δ

(
∆m2 −∆m̂2 −QQ

−1
1+β1
cut1 k

2+β1
1+β1
1 −QQ

−1
1+β2
cut2 k

2+β2
1+β2
2

) (∆m̂2)η

∆m̂2Γ(η)

= 1
Γ(η)

∫ ∆m2
c

0
d∆m2

(
∆m2 −QQ

−1
1+β1
cut1 k

2+β1
1+β1
1 −QQ

−1
1+β2
cut2 k

2+β2
1+β2
2

)η−1

×Θ
(

∆m2 −QQ
−1

1+β1
cut1 k

2+β1
1+β1
1 −QQ

−1
1+β2
cut2 k

2+β2
1+β2
2

)
= 1

Γ(1 + η)

(
∆m2

c −QQ
−1

1+β1
cut1 k

2+β1
1+β1
1 −QQ

−1
1+β2
cut2 k

2+β2
1+β2
2

)η
×Θ

(
∆m2

c −QQ
−1

1+β1
cut1 k

2+β1
1+β1
1 −QQ

−1
1+β2
cut2 k

2+β2
1+β2
2

)
, (3.7)

where the Θ-function originates from the fact ∆m̂2 ≥ 0. After the integration, we can fix
the scales. We are free to pick a common scale Λcs1 = Λcs2 ≡ Λcs, and will use Λcs = 2 GeV
as our default choice. This choice can be made without loss of generality, since the Λcs i
dependence of the RG evolution factors will be exactly canceled order-by-order by the
dependence in the MS shape functions. Effectively this just corresponds to choosing the
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values of Λcs i at which the shape functions in the MS scheme are defined, as discussed in
appendix A. With this choice the value of η = 2Cjω(Λcs1,Λcs2) becomes zero and all ∆m2

c

dependence is given by the shape functions. This is compatible with the constant values
obtained for the perturbative cumulative cross sections in section 2.4.

Putting everything together, we find the cumulative jet mass in the deep nonpertur-
bative regime is given by

Σ(∆mc) =
∑
j=q,g

fj Σ̂j Fj(∆mc) , (3.8)

where the ∆mc independent perturbative cumulant cross sections are given by

Σ̂j = 1
σj
SeeGj (Qgs1, β1, µgs1)See

Gj
(Qgs2, β2, µgs2)

× exp
[ 2Cj

1 + β1
K(µgs1, µ) + ωSGj (µgs1, µ)− 2Cj

1 + β2
K(µgs2, µ) + ωS

Gj
(µgs2, µ)

]
× exp

[ 2Cj(β1 − β2)
(1 + β1)(1 + β2)K(Λcs, µ) + ωSCj (Λcs, µ) + ωDCj (Λcs, µ)

]

×
(
µgs1
Qgs1

) 2Cj
1+β1

ω(µgs1,µ)( µgs2
Qgs2

)−2Cj
1+β2

ω(µgs2,µ)(Q 1
1+β1
cut1

Λ
1

1+β1cs

Λ
1

1+β2cs

Q
1

1+β2
cut2

)2Cjω(Λcs,µ)

, (3.9)

and now we have generalized the ∆mc dependent nonperturbative function to

Fj(∆mc) =
∫

dk1 dk2 F
(MS)j
1 (k1, β1,Λcs)F (MS)j

2 (k2, β2,Λcs)

×Θ
(

∆m2
c −QQ

−1
1+β1
cut1 k

2+β1
1+β1
1 −QQ

−1
1+β2
cut2 k

2+β2
1+β2
2

)
. (3.10)

The shape functions in the MS scheme are defined in eqs. (A.7) and (A.14), and contain
both the original shape functions and the boundary terms of the CS functions.

This result simplifies at NLL accuracy, where various fixed order contributions can
be neglected. We find the cumulative jet mass in the deep nonperturbative region can be
written as

ΣNLL(∆mc) =
∑
j=q,g

fj Σ̂NLL
j Fj(∆mc) , (3.11)

where fq and fg are again the fractions of quark and gluons jets, the perturbative cumulant
cross sections for quarks and gluons are

Σ̂NLL
j = exp

[ 2Cj
1 + β1

K(µgs1, µ)− 2Cj
1 + β2

K(µgs2, µ) + 2Cj(β1 − β2)
(1 + β1)(1 + β2)K(Λcs, µ)

]

×
(
µgs1
Qgs1

) 2Cj
1+β1

ω(µgs1,µ)( µgs2
Qgs2

)−2Cj
1+β2

ω(µgs2,µ)(Q 1
1+β1
cut1

Λ
1

1+β1cs

Λ
1

1+β2cs

Q
1

1+β2
cut2

)2Cjω(Λcs,µ)

, (3.12)
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and the shape function Fj(∆mc) is a simple combination of the original F ji (ki, βi) shape
functions,

Fj(∆mc) =
∫

dk1 dk2 F
j
1 (k1, β1)F j2 (k2, β2) Θ

(
∆m2

c −QQ
−1

1+β1
cut1 k

2+β1
1+β1
1 −QQ

−1
1+β2
cut2 k

2+β2
1+β2
2

)
.

(3.13)

As can be seen from either of eqs. (3.9) and (3.12), the cumulative jet mass cross section
in this small ∆m2

c region now depends on ∆m2
c , in contrast to the purely perturbative

result (2.54) where it was constant. To evaluate the cumulative jet mass, we need to
include the nonperturbative shape functions, for which we discuss general models in the
next subsection.

3.3 Models for shape functions

Due to confinement, any moment of the momentum space shape functions must exist,
implying that they fall off at large momentum faster than any polynomial. We consider
expanding the momentum space shape function F ji (ki, βi) in terms of some basis of func-
tions that are integrable on [0,+∞). To make the expansion converge fast, a necessary
condition is that the n-th moment of the basis function does not grow with n, since it is
expected that the n-th moment of the momentum space shape function scales as (ΛQCD)n.
A good basis for expanding the shape function has been constructed in ref. [76], where the
expansion can be written as

F ji (ki, βi) = 1
Λ

[ ∞∑
n=0

cjn(βi)fn(x, p)
]2
, (3.14)

where i = 1, 2 for the two shape functions, j = q, g represents the jet content (quark
or gluon), x = ki/Λ, the expansion coefficients cjn(βi) are numbers, and Λ ∼ ΛQCD is a
nonperturbative scale introduced to make the mass dimension of F ji (ki, βi) to be −1 and
the basis functions fn(x, p) dimensionless. The orthonormal basis functions are given by

fn(x, p) =
√

(2n+ 1)Y (x, p) Pn
(
y(x, p)

)
, y(x, p) = −1 + 2

∫ x

0
dx′ Y (x′, p) ,

Y (x, p) = (p+ 1)p+1

Γ(p+ 1) xpe−(p+1)x , (3.15)

where p > 0 is a parameter and Pn are the standard Legendre polynomials. If we sum
over all of the basis functions, the completeness of the basis functions make the final result
independent of p. However, in practical applications the sum on n is truncated after
some number of terms, and the choice of p affects how well this truncated series describes
any given shape function model with only a finite number of terms. For our analysis we
will vary the value of p. Note that any choice with p > 0 will cause the collinear drop
jet mass cross section to go to zero as ∆m2 → 0, and thus makes the assumption that
nonperturbative radiation always populates the collinear drop region. In contrast, the
choice p = 0 gives a non-zero probability of having no nonperturbative radiation in this

– 22 –



J
H
E
P
0
9
(
2
0
2
2
)
1
2
0

region. The basis functions are orthonormal with
∫
dxfn(x, p)fm(x, p) = δn,m. This implies

that a normalization condition on F ji (ki, βi) can be implemented as a constraint that the
sum of squares of the coefficients cjn(βi) is equal to one. Since the shape functions in soft
drop (and thus in collinear drop) are not normalized [68], we do not impose any such
normalization constraint in our implementation of the shape functions that are used here.

4 Pure quark and gluon observables

In this section, we construct observables that are pure quark or pure gluon, by exploiting the
structure of the perturbative result of the cumulative jet mass distribution in resummation
and small jet mass regions and the property of the shape functions F ji (ki, βi) that they
are independent of zcut i. We demonstrate that the constructed observables work equally
well in the region where perturbative resummation dominates and in the nonperturbative
region.

4.1 Construction

4.1.1 Linear combinations

We take two sets of collinear drop parameters (z(a)
cut i, βi) and (z(b)

cut i, βi) where the zcut i
parameters are different while the βi parameters are the same between the set (a) and
set (b). We then take linear combination of the cumulative jet mass cross sections in the
two sets

Q = Σ(∆m(b)
c , pT , ηJ , R, z

(b)
cut i, βi)− ξgΣ(∆m(a)

c , pT , ηJ , R, z
(a)
cut i, βi) , (4.1)

G = Σ(∆m(b)
c , pT , ηJ , R, z

(b)
cut i, βi)− ξqΣ(∆m(a)

c , pT , ηJ , R, z
(a)
cut i, βi) ,

where ξg and ξq are coefficients of the linear combinations that we are still free to pick,
and which will be fixed below. The form in eq. (4.1) is suitable for use in experimental
measurement once the ξj values have been provided.

To fix values for the ξj that yield pure quark and gluon observables we make use of our
factorization framework. We will first calculate the ξj at small ∆m2

c , where we are in the
fully nonperturbative regime (pictured in figure 1c,d). Then we will prove that the same
values of the ξj also lead to pure quark and gluon observables in the fully perturbative
regime.

In the fully nonperturbative regime, our result for the cumulative distribution gave

Σ(∆mc) =
∑
j=q,g

fj Σ̂j Fj(∆mc) , (4.2)

where the only ∆mc dependence is in the nonperturbative Fj , while the resummed coeffi-
cients Σ̂j are constants depending on the collinear drop parameters. This leads to

Q =
∑
j=q,g

fj

(
Σ̂(b)
j F

(b)
j − ξgΣ̂

(a)
j F

(a)
j

)
, (4.3)

G =
∑
j=q,g

fj

(
Σ̂(b)
j F

(b)
j − ξqΣ̂

(a)
j F

(a)
j

)
,
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where the superscripts (a) and (b) indicate that the parameters used in Σ̂j and Fj differ
for the two sets. Recall that the hard processes do not know anything about the grooming
and the quark and gluon fractions depend on the jet kinematics: pT , ηJ and R and are
insensitive to the grooming parameters.2 To remove the j = g contribution from the Q
observable, and the j = q contribution from the G observable, the coefficients of the linear
combinations should be chosen such that

Σ̂(b)
g F (b)

g − ξgΣ̂(a)
g F (a)

g = 0 , Σ̂(b)
q F (b)

q − ξqΣ̂(a)
q F (a)

q = 0 . (4.4)

However, immediately we see a problem for this construction so far. The solutions to ξg and
ξq in eq. (4.4) depend on the nonperturbative shape functions, which are not known. This
means we cannot use these results to predict the linear combination coefficients needed to
define the pure quark and gluon observables. We can overcome this difficulty by exploiting
our ability to use different bins ∆m(a)

c and ∆m(b)
c for the two jet masses associated with

the two CD parameters, as we will see next.

4.1.2 Binning jet masses

Let us have a closer look at the nonperturbative shape functions appearing in the cumula-
tive jet mass distributions in the nonperturbative regime, which are given by eq. (3.13):

Fj
(
∆m(a)

c

)
=
∫

dk1 dk2 F
(MS)j
1 (k1, β1,Λcs)F (MS)j

2 (k2, β2,Λcs)

×Θ
(

1− Q(Q(a)
cut1)

−1
1+β1

(∆m(a)
c )2

k
2+β1
1+β1
1 − Q(Q(a)

cut1)
−1

1+β2

(∆m(a)
c )2

k
2+β2
1+β2
2

)
,

Fj
(
∆m(b)

c

)
=
∫

dk1 dk2 F
(MS)j
1 (k1, β1,Λcs)F (MS)j

2 (k2, β2,Λcs)

×Θ
(

1− Q(Q(b)
cut1)

−1
1+β1

(∆m(b)
c )2

k
2+β1
1+β1
1 − Q(Q(b)

cut1)
−1

1+β2

(∆m(b)
c )2

k
2+β2
1+β2
2

)
. (4.5)

Since the CD parameters βi are the same in the set (a) and set (b), we find that we can
make the shape functions F (a)

j and F (b)
j the same by choosing the jet masses and the CD

parameters z(a,b)
cut i such that

(Q(a)
cut1)

1
1+β1 (∆m(a)

c )2 = (Q(b)
cut1)

1
1+β1 (∆m(b)

c )2 , (4.6)

(Q(a)
cut2)

1
1+β2 (∆m(a)

c )2 = (Q(b)
cut2)

1
1+β2 (∆m(b)

c )2 .

These can be rewritten as

(∆m(a)
c )2

(∆m(b)
c )2

=
(
Q

(b)
cut1

Q
(a)
cut1

) 1
1+β1

=
(
Q

(b)
cut2

Q
(a)
cut2

) 1
1+β2

=
(
z

(b)
cut1

z
(a)
cut1

) 1
1+β1

=
(
z

(b)
cut2

z
(a)
cut2

) 1
1+β2

, (4.7)

2The fj are explicitly independent of the grooming parameters at NLL, and beyond NLL our expressions
for fj could potentially have small dependence on the grooming parameters due to non-global contributions,
which should however be canceled order-by-order in perturbation theory, due to the Σ̂j(∆mmax

c ) = 1
constraints. Hence it is reasonable to assume they are independent for our construction.
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where in the second line we have used Q(a,b)
cut i = z

(a,b)
cut iQ

(
2 cosh ηJ/R0

)βi . In practice we solve
these equations by specifying z(b)

cut2 and (∆m(b)
c )2 in terms of the other variables:

(∆m(b)
c )2 = (∆m(a)

c )2
(
z

(a)
cut1

z
(b)
cut1

) 1
1+β1

, z
(b)
cut2 = z

(a)
cut2

(
z

(b)
cut1

z
(a)
cut1

) 1+β2
1+β1

. (4.8)

Recall that we considered soft drop parameters that satisfy the constraint zcut1 ≤ zcut2
to ensure that the SD2 grooming is stronger than that of SD1. The solution for z(b)

cut2 in
eq. (4.8) is always compatible with this constraint for β1 = β2, while for β1 > β2 it is
always compatible as long as z(b)

cut1 ≤ z
(a)
cut1. If we have z(b)

cut1 > z
(a)
cut1 then it may still be

compatible, but we must confirm this for each set of parameters considered.
Using eq. (4.8), we have by construction a common nonperturbative shape function

for the (a) and (b) sets,
F (a)
j = F (b)

j ≡ Fj . (4.9)

With this setup the pure quark and gluon observables in eq. (4.4) now become

Q =
∑
j=q,g

fj Fj
(

Σ̂(b)
j − ξgΣ̂

(a)
j

)
, (4.10)

G =
∑
j=q,g

fj Fj
(

Σ̂(b)
j − ξqΣ̂

(a)
j

)
.

Now the desired linear combination coefficients in eq. (4.4) are fixed by purely perturbative
functions, and can be solved to give

ξg = Σ̂(b)
g

Σ̂(a)
g

, ξq = Σ̂(b)
q

Σ̂(a)
q

. (4.11)

This entire construction, including these perturbative expressions, can be used even beyond
NLL order as long as non-global dependence on collinear drop parameters is confirmed to
be small in the fj . We note that due to eq. (4.7) all dependence on the scale Λcs fully
cancels out in the ratios in eq. (4.11), so that calculations of ξg,q are only sensitive to
perturbative results at and above the global-soft scale. With these choices we have the
final results for our pure quark and pure gluon observables, so far in the nonperturbative
regime, namely

Q = fq Fq
(

Σ̂(b)
q − ξgΣ̂(a)

q

)
, (4.12)

G = fg Fg
(

Σ̂(b)
g − ξqΣ̂(a)

g

)
.

This demonstrates that with the above choices these observables are predicted to be entirely
quark or gluon dominated as desired. Here the entire contributions in brackets are per-
turbative. Furthermore, the above construction leaves β1, β2, z(a)

cut1, z
(a)
cut2 and z(b)

cut1 as free
variables that can be varied, thus giving a number of possible variables which have the pure
quark or pure gluon property for a range of choices for the kinematic mass variable ∆m(a)

c .
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Recall that for an experimental measurement of the Q or G observable we use eq. (4.1),
which only requires perturbative input to determine the values to use for ξq and ξg. Using
the NLL result in eq. (3.12) as input for eq. (4.11) we obtain

ξj = exp
{ 2Cj

1 + β1

[
K(µ(b)

gs1, µ)−K(µ(a)
gs1, µ)

]
− 2Cj

1 + β2

[
K(µ(b)

gs2, µ)−K(µ(a)
gs2, µ)

]}
(4.13)

×
(
µ

(b)
gs1

Q
(b)
gs1

) 2Cj
1+β1

ω(µ(b)
gs1,µ)( µ(b)

gs2

Q
(b)
gs2

)−2Cj
1+β2

ω(µ(b)
gs2,µ)( µ(a)

gs1

Q
(a)
gs1

)−2Cj
1+β1

ω(µ(a)
gs1,µ)( µ(a)

gs2

Q
(a)
gs2

) 2Cj
1+β2

ω(µ(a)
gs2,µ)

.

Though the above expression of ξj seems to depend on the scale µ, it can be simplified
to a form that is µ-independent. First we use the definition of K(µ1, µ2) and ω(µ1, µ2) in
eq. (2.31), and d lnµ = dαs/β(αs) to obtain the relation

K(µ1, µ)−K(µ2, µ) = K(µ1, µ2) + ω(µ2, µ) ln µ2
µ1

. (4.14)

Using this in eq. (4.13) gives

ξj = exp
{ 2Cj

1 + β1
K(µ(b)

gs1, µ
(a)
gs1)− 2Cj

1 + β2
K(µ(b)

gs2, µ
(a)
gs2)

}
(4.15)

×
(
µ

(b)
gs1

Q
(b)
gs1

) 2Cj
1+β1

ω(µ(b)
gs1,µ)( µ(b)

gs2

Q
(b)
gs2

)−2Cj
1+β2

ω(µ(b)
gs2,µ)( µ(b)

gs1

Q
(a)
gs1

)−2Cj
1+β1

ω(µ(a)
gs1,µ)( µ(b)

gs2

Q
(a)
gs2

) 2Cj
1+β2

ω(µ(a)
gs2,µ)

.

Inserting 1 = Q
(b)
gs1/Q

(b)
gs1 and 1 = Q

(b)
gs2/Q

(b)
gs2 in the last two ratios, recollecting common

fractions, and using the relation in eq. (4.7) then gives our final NLL result

ξj = exp
[ 2Cj

1 + β1
K
(
µ

(b)
gs1, µ

(a)
gs1
)
− 2Cj

1 + β2
K
(
µ

(b)
gs2, µ

(a)
gs2
)

+ 2Cj
1 + β1

ω
(
µ

(a)
gs1, µ

(a)
gs2
)

ln z
(a)
cut1

z
(b)
cut1

]

×
(
µ

(b)
gs1

Q
(b)
gs1

) 2Cj
1+β1

ω
(
µ

(b)
gs1, µ

(a)
gs1

)(
µ

(b)
gs2

Q
(b)
gs2

)−2Cj
1+β2

ω
(
µ

(b)
gs2, µ

(a)
gs2

)
, (4.16)

which is now manifestly µ-independent. We see here explicitly that the ξj are sensitive to
perturbative contributions at and above the global-soft scales. Later we exploit the depen-
dence on the global-soft scales µ(a,b)

gs i in the evaluations of these coefficients to investigate
the perturbative uncertainty in the NLL determination of ξq,g, and hence the definition of
the Q and G observables.

It is worth emphasizing that although we have quoted explicit results for ξj by work-
ing with NLL expressions, the general construction still applies at higher orders in the
resummed perturbation theory. (The only potential caveat that must be checked at higher
orders is that non-global corrections have small enough dependence on the collinear drop
parameters in the fj , that they can continue to be pulled out as common factors.)

4.1.3 Pure quark and gluon observables in the perturbative region

Next we consider the pure quark and gluon observables in the ∆m2
c region that is dominated

by perturbative contributions in the collinear drop resummation region, corresponding to
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that illustrated in figure 1a. In this region the nonperturbative corrections are power
suppressed and eq. (4.1) gives

Q =
∑
j=q,g

fj

[
Σ̂(b)
j

(
∆m(b)

c

)
− ξgΣ̂(a)

j

(
∆m(a)

c

)]
×
[
1 +O

(
Q Λ

2+β1
1+β1
QCD(

∆m(b)
c
)2 (Q(b)

cut1)
1

1+β1

)]
, (4.17)

G =
∑
j=q,g

fj

[
Σ̂(b)
j

(
∆m(b)

c

)
− ξqΣ̂(a)

j

(
∆m(a)

c

)]
×
[
1 +O

(
Q Λ

2+β1
1+β1
QCD(

∆m(b)
c
)2 (Q(b)

cut1)
1

1+β1

)]
,

where the scaling for the dominant power suppressed terms is shown in the +O(· · · ). In
this region it turns out that the same choice for ξg and ξq given by eq. (4.11), again leads
to pure quark and gluon observables. This occurs because the weights that are needed
to obtain quark and gluon observables in this region, ξg = Σ̂(b)

g (∆m(b)
c )/Σ̂(a)

g (∆m(a)
c ) and

ξq = Σ̂(b)
q (∆m(b)

c )/Σ̂(a)
q (∆m(a)

c ), are independent of ∆mc.
To demonstrate this independence of ξj to ∆mc we first recall that eq. (4.8) fixes

∆m(b)
c in terms of ∆m(a)

c . Examining the all-orders perturbative cumulative cross section
in eq. (2.53) we see that there are two places that ∆mc dependence arises, through the
explicit (∆m2

c)η and through the canonical collinear-soft scales which are functions of the
collinear drop jet mass, µcs i(∆mc) = Qcs i given in eq. (2.56). The conditions used to define
the pure quark and pure gluon observables in eq. (4.7) imply that these canonical scales
are actually related by

µ
(a)
cs i
(
∆m(a)

c

)
= µ

(b)
cs i
(
∆m(b)

c

)
. (4.18)

This implies that in the ratios Σ̂(b)
j (∆m(b)

c )/Σ̂(a)
j (∆m(a)

c ) all dependence on factors like
K(µcs i, µ), ωSCj (µcs1), and ωSDj (µcs2) immediately cancels. The remaining µcs i dependent
factors on the second and fifth lines of eq. (2.53) can be assembled into the form

(
∆m2

c

)−η ˆ̃
SCj
(
QQ

−1
1+β1
cut1 e

− ∂
∂η ,β1,µcs1

) ˆ̃
DCj

(
QQ

−1
1+β2
cut2 e

− ∂
∂η ,β2,µcs2

)(e−γE∆m2
c)η

Γ(1+η)

∣∣∣∣
η=2Cjω(µcs1,µcs2)

.

(4.19)

Thus the ξj involve one factor of eq. (4.19) in the numerator and denominator for the (b)
and (a) sets respectively. Here the action of the derivative operators in ˆ̃

SCj and
ˆ̃
DCj is to

induce in the perturbative series various numerical factors plus logarithms of the form

ln
(

Qµ
2+βi
1+βi
cs i

Q
1

1+βi
cut i ∆m2

c

)
. (4.20)

These logarithms vanish for the canonical scale choice in eq. (2.56), while residual de-
pendence through αs(µcs i) is always systematically canceled out order-by-order in the re-
summed perturbation theory. The explicit (∆m2

c)−η(∆m2
c)η terms then cancel separately in

the numerator and denominator. Finally, the remaining dependence on η cancels between
the numerator and denominator of the ξj ratios due to the relation in eq. (4.18). Thus
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the same values for ξj that were determined for the nonperturbative region in section 4.1.2
also work equally well for the perturbative resummation region.

Thus for the perturbative resummation region we again have pure quark and pure
gluon observables

Q = fq

(
Σ̂(b)
q − ξgΣ̂(a)

q

)
, (4.21)

G = fg

(
Σ̂(b)
g − ξqΣ̂(a)

g

)
,

where for simplicity we have not indicated the continued presence of the same dominant
power corrections that were indicated above in eq. (4.17).

Our analysis so far has thus obtained pure quark and pure gluon observables in two
regions of phase space, for the smallest values of ∆m2

c where nonperturbative corrections
are important, and for an intermediate range of small ∆m2

c where perturbative resummed
contributions dominate. In between these two we have the region illustrated by figure 1b,
where one collinear-soft mode becomes nonperturbative while the other is still perturbative.
Although we have not treated this region explicitly in our analysis, by continuity we fully
expect that the same values of ξj will work equally well in this region too. Taken together,
this yields a significant region of phase space over which we obtain pure quark or pure
gluon observables, thus yielding the desired result.

4.2 Optimizing the parameter choice

With the expression of ξj , we have constructed a class of pure quark and gluon observables
Q and G, that depend on β1, β2, z(a)

cut1, z
(a)
cut2 and z

(b)
cut1. In practice there will be both

theoretical and experimental uncertainties, and thus it is worthwhile to exploit these five
independent variables in order to maximize the ability of the constructed observables to
distinguish between quarks and gluons.

Our construction of quark and gluon observables Q and G leaves β1, β2, z(a)
cut1, z

(a)
cut2 and

z
(b)
cut1 as variables that can be varied for optimization. Another important variable choice
is the jet radius R for the initial jet, on which we apply collinear drop grooming, and then
measure the ∆m(a)

c spectrum. There are both theoretical and practical considerations for
the parameter optimization, which include:

1. Perturbative global-soft scales Q(a,b)
gs i = pTRz

(a,b)
cut i (R/R0)βi � ΛQCD. This constraint

is necessary to ensure that the parameters ξq and ξg used to specify the observables
are perturbatively calculable.

2. For discrimination power of the constructed observables, we want the values of ξq
and ξg to be widely separated. If these parameters are too close it indicates that
the cancellations needed to get pure quark and pure gluon observables are delicate,
and may be spoiled by uncertainties in the determination of ξq,g, or experimental
uncertainties. We will see this requires z(a)

cut1 � z
(a)
cut2 and z

(a)
cut1 and z

(b)
cut1 widely

separated.
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3. Removing contamination from external soft radiation not associated with the jet
itself, such as initial state radiation (ISR) and underlying event/multiparton in-
teractions (MPI). This requires either i) small enough R, or ii) z(a,b)

cut1 & 0.15 for
larger R ∼ 1.

4. In order to benchmark and test our proposal using the collinear drop jet mass fac-
torization formula on which it was based, we require zcut i � 1. In practice, this
constrains the parameters to be z(a,b)

cut i . 0.3.

To get an idea on the impact of the first constraint, taking R0 = 1 and a jet with pT =
800 GeV gives lower bounds of z(a,b)

cut i & {0.004, 0.008} for R = 0.5 and β = 0, 1 respectively,
and z

(a,b)
cut i & {0.01, 0.05} for R = 0.2 and β = 0, 1 respectively. In contrast, the fourth

constraint provides an upper bound on z(a,b)
cut i , while, as we shall see, the second constraint

pushes for these zcut parameters to be well separated. Thus there is a natural tension which
narrows down the potential choices for the z(a,b)

cut i parameters.
The third constraint turns out to be very restrictive. For large R jets removing soft

contamination implies a much stronger lower limit on the two parameters z(a,b)
cut1 than the

first constraint. In general it is natural to take z(a,b)
cut2 ≥ z

(a,b)
cut1 in order to ensure a non-zero

phase space region for the collinear drop radiations, in which case this bounds all zcut
parameters. When considered together with the fourth and second constraints, the three
turn out to be impossible to simultaneously satisfy. Due to this issue we focus on small R
jets to satisfy the third constraint.

In section 4.2.1 we investigate the precise nature of the second constraint in more
detail, and then in section 4.2.2 we study the third constraint with parton shower Monte
Carlo generators.

4.2.1 Maximize disentangling power

An important criterion for distinguishability of the pure quark and gluon observables,
Q and G, is how big the numerical difference is between ξg and ξq. These parameters
are inputs provided by a theoretical calculation which has perturbative uncertainties, and
hence must be distinguishable given those uncertainties. We also want ξg and ξq to be
well separated to avoid relying on fine cancellations when taking the linear combination of
experimental data.

To illustrate this, in figure 3 we plot the values of ξj as functions of z(b)
cut1 for two choices

of z(a)
cut i and three choices of βi. We use a jet with pT = 800GeV, ηJ = 0, R = 0.2, grooming

parameter R0 = 1, and choose the GS scales to be the canonical ones: µ(a,b)
gs i = Q

(a,b)
gs i . This

plot does not include perturbative uncertainties from the calculation of ξj , which at NLL
are estimated to be . 6%, and are left for discussion in section 4.3. We see that for all
three choices of βi shown in the three panels of figure 3, the values of ξq (dashed black)
and ξg (dashed red) in the case with z(a)

cut1 = 0.1 and z(a)
cut2 = 0.15 are very close for most of

the regions of z(b)
cut1, except for the small z(b)

cut1 region for the case with β1 = 1 and β2 = 0.
These close values for ξj are problematic for distinguishability. On the other hand, by
instead taking z(a)

cut1 = 0.05 and z(a)
cut2 = 0.4, the difference between ξq (solid black) and ξg

(solid red) becomes larger, especially when z(b)
cut1 < 0.03.
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ξ j

ξq, z
(a)
cut1 = 0.1, z

(a)
cut2 = 0.15

ξg, z
(a)
cut1 = 0.1, z

(a)
cut2 = 0.15

ξq, z
(a)
cut1 = 0.05, z

(a)
cut2 = 0.4

ξg, z
(a)
cut1 = 0.05, z

(a)
cut2 = 0.4

(a) β1 = β2 = 1.

0.0 0.1 0.2 0.3 0.4

z
(b)
cut1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ξ j

ξq, z
(a)
cut1 = 0.1, z

(a)
cut2 = 0.15

ξg, z
(a)
cut1 = 0.1, z

(a)
cut2 = 0.15

ξq, z
(a)
cut1 = 0.05, z

(a)
cut2 = 0.4

ξg, z
(a)
cut1 = 0.05, z

(a)
cut2 = 0.4

(b) β1 = 1, β2 = 0.

0.0 0.1 0.2 0.3 0.4

z
(b)
cut1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ξ j

ξq, z
(a)
cut1 = 0.1, z

(a)
cut2 = 0.15

ξg, z
(a)
cut1 = 0.1, z

(a)
cut2 = 0.15

ξq, z
(a)
cut1 = 0.05, z

(a)
cut2 = 0.4

ξg, z
(a)
cut1 = 0.05, z

(a)
cut2 = 0.4

(c) β1 = β2 = 0.

Figure 3. Values of ξj as functions of z(b)
cut1 for two choices of z(a)

cut i for a jet with pT = 800GeV,
ηJ = 0 and R = 0.2. The three different panels show three choices for β1 and β2. For the case
with β1 = 1, β2 = 0, zcut1 = 0.1 and zcut2 = 0.15, the curves are truncated when the condition
z

(b)
cut2 ≥ z

(b)
cut1 is violated.

We will use figure 3 as a guidance when we choose the CD parameters to enhance the
disentangling power of the pure quark and gluon observables.

4.2.2 ISR and MPI effects

In proton-proton collisions, the effects of ISR and underlying event (modeled by MPI)
cannot be neglected, and can contaminate the construction of the pure quark and gluon
observables. In practice to minimize the impact of these effects either a small R� 1 should
be used, or a larger R ∼ 1 with larger values of the soft drop grooming parameters z(a,b)

cut1 .
To demonstrate this in a quantitative manner we carry out Monte Carlo studies of

the differential cross sections that enter into our pure quark and gluon observables. We
use Pythia 8 [77] and Vincia [78] to generate quark and gluon jets in 13TeV proton-
proton collisions and always consider fully hadronized events. The jets are reconstructed
by using the anti-kT algorithm, which is implemented in FastJet [79]. Jets in the transverse
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(a) dσq with zcut1 = 0.02 and R = 0.2.
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(b) dσq with zcut1 = 0.1 and R = 0.2.
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(c) dσq with zcut1 = 0.02 and R = 0.5.
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(d) dσq with zcut1 = 0.1 and R = 0.5.

Figure 4. Monte Carlo results of the differential jet mass cross sections of quark jets in collinear
drop, with β1 = β2 = 0. The top panels have R = 0.2 and the bottom panels have R = 0.5, while
the left panels have zcut1 = 0.02 and the right panels have zcut1 = 0.1. The red solid and green
dotted lines include ISR and MPI effects and are results from Pythia and Vincia, respectively.
The black dashed line is the Pythia result without ISR and MPI effects.

momentum region 780 GeV ≤ pT ≤ 820 GeV and the rapidity region 0 ≤ yJ ≤ 1 are
selected and passed to the collinear drop grooming procedure, implemented in JETlib [80].
In figures 4 and 5 we show the impact of ISR and MPI for the quark and gluon contributions
to the differential cross sections, respectively. Comparing the Pythia and Vincia curves
with both ISR and MPI turned on, we see that there are some noticeable difference, likely
reflecting the fact that in some cases the Monte Carlos have trouble predicting the spectrum
of soft radiation that dominates collinear drop observables. Comparing only the Pythia
curves with and without ISR+MPI, we see that the smallest impact of ISR and MPI occurs
in the top-right (b) panels when both the jet grooming and jet radius are chosen to reduce
the effect (zcut = 0.1 and R = 0.2). We also see from the top-left (a) and bottom-right (d)
panels that the impact of these contributions is still fairly small when only a small jet radius
or more substantial jet grooming are used to mitigate these effects. In the bottom-left (c)
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(a) dσg with zcut1 = 0.02 and R = 0.2.
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(c) dσg with zcut1 = 0.02 and R = 0.5.
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Figure 5. Monte Carlo results of the differential jet mass cross sections of gluon jets in collinear
drop, with β1 = β2 = 0. The top panels have R = 0.2 and the bottom panels have R = 0.5, while
the left panels have zcut1 = 0.02 and the right panels have zcut1 = 0.1. The red solid and green
dotted lines include ISR and MPI effects and are results from Pythia and Vincia, respectively.
The black dashed line is the Pythia result without ISR and MPI effects.

panels we see that effects are fairly substantial if neither method is applied (zcut = 0.02
and R = 0.5).

However, the ability to exploit smaller values of z(a,b)
cut1 is useful in order to obtain more

distinct values of ξq and ξg, as shown in figure 3, and thus obtain stronger discrimination
power of the constructed observables. This favors using small R jets for the pure quark
and gluon observable construction, and we will use R = 0.2 henceforth.

For larger R jets it is possible that other procedures could be used to mitigate the im-
pact of ISR and MPI, while still having a smaller z(a,b)

cut1 . We investigate one such possibility
in appendix B.
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4.3 Analytic results for Q and G

Having fixed reasonable parameter ranges to use for our analysis, we now give results
of the pure quark and gluon observables based on our factorization theorem with NLL
resummation, and with and without the contributions of the shape functions. For both
the quark and gluon shape function models we truncate the series at n = 0 and take
p = 1, c0 = 1, and Λ = 300MeV in eq. (3.14) as our default parameters used in the
cumulative distribution of the jet mass. Variations about this choice will be considered as
an uncertainty. We also choose the jet kinematics to be pT = 800GeV, ηJ = 0 and R = 0.2.
The grooming parameter R0 is chosen to be R0 = 1.

We continue to consider three choices of βi: β1 = β2 = 1, β1 = 1 with β2 = 0, and
β1 = β2 = 0. As discussed in ref. [37], the perturbative series for the collinear drop jet mass
does not contain leading double logarithms for cases when β1 = β2. Our choices of βi here
take two examples where this is the case, and one where it is not. The zcut i parameters for
these three cases are chosen based on improving the distinguishability following figure 3,
and listed in table 1. In table 1, once we fix z

(a)
cut i and z

(b)
cut1, the value of z(b)

cut2 and the
jet mass ratio are determined from the constraints (4.6) and (4.8), which depend on the
choice of jet pT , jet rapidity, and jet radius. These values are also listed for our default jet
kinematics and will vary with other choices for the kinematics. Since it will turn out that
the plots of cases with β1 = β2 and those with β1 6= β2 are qualitatively similar, we will
suppress some plots for the β1 = 1, β2 = 0 case.

Also shown in table 1 are our NLL predictions for the ξj parameters using eq. (4.16).
Again the calculation of these values depends on the jet pT , ηJ , and R, and we have shown
values for our default kinematics. Since these parameters are determined perturbatively,
they have a perturbative uncertainty from missing higher order contributions, which affects
how well we can specify the pure quark and pure gluon observables. We will refer to
this as the “observable uncertainty”, and estimate it by varying the global-soft scales
µ

(a,b)
gs i = rigsQ

(a,b)
gs i where central values use canonical scales with rigs = 1 and uncertainties

are estimated by factor of two variations, rigs = 0.5 and rigs = 2. For i = 1, 2 the up/down
variations are considered independently. However, since this provides an estimate for the
same missing higher order terms in the (a) and (b) cumulative distributions, it makes
sense to vary these scales either up or down in both (a) and (b), which is why rigs does
not depend on the choice of (a) or (b). The resulting uncertainties are shown by ± entries
in table 1, and are quite small due to cancellations of common uncertainties in the (a)
and (b) sets used for the ratio of perturbative cumulative cross sections. We have cross
checked that the O(αs) fixed order corrections to the global-soft functions (which enter at
NNLL), give shifts that are well within these uncertainty estimates. Note that unlike other
sources of theoretical uncertainty, this observable uncertainty also influences experimental
predictions for the pure quark and pure gluon observables using eq. (4.1), since it is an
intrinsic uncertainty in how precise these observables have been defined to do what we
want them to do.

For the β1 = β2 = 1 case, both z
(a)
cut1 and z

(b)
cut1 are constrained to be relatively large

to ensure that the GS scales remain perturbative (constraint 1 from section 4.2). Thus
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Parameter Choice Fixed NLL results

z
(a)
cut1 z

(a)
cut2 z

(b)
cut1 z

(b)
cut2

∆m(b)
c

∆m(a)
c

ξq ξg

β1 = β2 = 1 0.1 0.4 0.05 0.2 1.19 1.11+0.01
−0.02 1.26+0.02

−0.05

β1 = 1, β2 = 0 0.4 0.4 0.05 0.141 1.68 1.43+0.01
−0.05 2.26+0.04

−0.16

β1 = β2 = 0 0.1 0.4 0.02 0.08 2.24 1.41+0.02
−0.05 2.17+0.08

−0.16

Table 1. Cases considered for the βi, z(a)
cut i, and z

(b)
cut1 parameters. For our choice of pT = 800GeV,

ηJ = 0 and R = 0.2 the required values for z(b)
cut2 and the ratio of jet mass bins for sets (a) and (b),

and our NLL determination of the corresponding ξq and ξg are also shown.

their difference becomes smaller, which results in less well separated values of ξq and ξg,
as seen in table 1. For the β1 = β2 = 0 case, the GS scale is still perturbative even
with z

(b)
cut1 = 0.02, which differs significantly from z

(a)
cut1 = 0.1. Therefore the gap in the

β1 = β2 = 0 case is large, which leads to stronger distinguishing power to separate quark
and gluon jets.

When making theoretical predictions for the pure quark and pure gluon observables,
we also have uncertainties associated to the calculation of the Σs in eq. (4.1). These can be
separated into two sources appearing in the use of eq. (4.10) or eq. (4.12): a perturbative
uncertainty associated to calculating Σ̂(a,b)

j , and a nonperturbative uncertainty associated
to modeling the shape functions Fj . To estimate the perturbative uncertainty we vary the
global-soft scales in the perturbative parts of eq. (3.12) around their canonical values by
a factor of two. This uncertainty should be treated as independent from the observable
uncertainty, despite the fact that our estimate for it comes from varying the same underlying
parameters. The reason is that even if we consider fixed observables with definite values of
ξj , there will still be a perturbative uncertainty in predicting those observables. In contrast,
the observable uncertainty provides information on how well we are able to ensure that the
constructed Q and G for given values of ξj are truly pure quark and pure gluon observables.
When estimating the perturbative uncertainty, we do not alter the nonperturbative CS
scales µcs i = Λcs i, since the dependence of the final results on Λcs i is supposed to be
canceled between the perturbative parts and the shape functions. The uncertainty from
varying Λcs i is therefore captured by the uncertainty in the functional form of the shape
function models, which we vary to estimate the nonperturbative uncertainty.

4.3.1 Results in the nonperturbative ∆m2
c region

We start by examining the NLL results of the pure quark and gluon observables in the
nonperturbative regime, with the smallest values of ∆m2

c . Results are shown in figure 6 for
the two cases with β1 = β2 = 1 and β1 = β2 = 0, and with and without the shape functions
to make clear how they shape the curves. For illustration purpose, we assume an equal
contribution from quarks and gluons in the observable sample (fq = fg = 1/2), and plot
−Q/fq and G/fg. This normalization makes the displayed non-zero signal contributions
independent of the assumed quark and gluon fractions. For the pure quark observable
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Figure 6. Pure quark (left column) and gluon (right column) observables with and without the
shape functions included for the β1 = β2 = 1 (upper row) and β1 = β2 = 0 (lower row) cases. The
uncertainty bands add contributions from the observable uncertainty and perturbative uncertainty
in quadrature. The curves with the light shading for uncertainties do not include the shape function,
whereas shape functions are included for the curves with the darker hatched uncertainties.

Q, the gluon contribution vanishes independent of the assumed fj fractions, but a small
non-zero result will still be obtained once we account for uncertainties (and similarly for
G). The smaller contribution displayed for how gluons contribute to Q/fq does depend
on the chosen quark and gluon fractions, and can be scaled directly proportional to the
input value of fg/fq (and likewise for G/fg where the quark contribution can be scaled by
fq/fg). Due to the larger values of ξg for the pure quark observables we consider, the linear
combination for Q is negative for the signal, and we choose to plot −Q/fq so that the plots
have a more uniform appearance.

As explained in section 2.4, the perturbative results of the observables without the
shape functions, shown in figure 6, become constant in the small jet mass region, which is
closely related to the fraction of events with no radiation in the phase space that is kept
after the grooming. Once we include the nonperturbative shape functions, we see that the
observables go to zero in the limit ∆m2

c → 0. This can be understood mathematically by
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examining eq. (3.13). As ∆m2
c → 0, the integration measures for both k1 and k2 vanish

and thus the integral vanishes. Physically, the shape functions represent contributions
from nonperturbative soft radiation. In the limit ∆m2

c → 0, the phase space for this
nonperturbative soft radiation vanishes and thus the observables go to zero when the shape
function is included. The uncertainty bands shown include both the observable uncertainty
for specifying ξj from table 1, and the perturbative uncertainty in predicting Σ̂(a,b)

j at NLL
from eq. (4.12). These uncertainties are added in quadrature to obtain the bands shown.
The percent uncertainty remains constant for the shape function curves, so the absolute
uncertainties decrease as the shape function suppresses the cross section.

From figure 6 we see that the gap between the vanishing and nonvanishing components
of each observable is sensitive to the collinear drop parameters chosen. Recall that for the
β1 = β2 = 1 case there was less distinguishability between ξq and ξg. This is reflected in
the fact that the gap between the vanishing and nonvanishing cross section components is
smaller than for the other βi choices, accounting for the uncertainties. For the β1 = β2 = 0
case, the GS scale is still perturbative even with z

(b)
cut1 = 0.02, which differs significantly

from z
(a)
cut1 = 0.1. Therefore here the gap is larger, leading to better distinguishing power

to separate quark and gluon jets.
We also see that the observable values depend on the jet content. More explicitly, the

pure quark observables take larger values than the pure gluon observables in general. The
reason is two-fold: first, the linear combination coefficients in the pure quark observables
are bigger than those in the pure gluon observables ξg > ξq, since the quadratic Casimir
of the gluon is bigger than that of the quark CA > CF , as shown in eq. (4.16). (Recall
that ξg appears in the construction of the pure quark observable while ξq appears in the
construction of the pure gluon observable, as shown in eq. (4.12).) The bigger the ξj value
is, the bigger the observable is, since the observable is a difference between two cumulative
jet mass cross sections, and only one of them is multiplied by the linear combination
coefficient. The second reason is that the perturbative result of the cumulative jet mass
cross section of a quark jet is bigger than that of a gluon jet, as shown in figure 2.

Next we consider how sensitive the results are to the nonperturbative shape function
models, and construct estimates for the resulting nonperturbative uncertainty in our the-
oretical predictions. To do this we vary the parameter p and Λ in the models of the shape
functions to obtain the results shown in figure 7. Different values of the parameter p change
the jet mass dependence of the pure quark and gluon observables, but only mildly. We
also see that the variation in the parameter Λ leads to a bigger change in the results and it
partially determines how fast the results approach zero. In addition to the uncertainty of
the parameters p and Λ, another unknown aspect of the shape function is its normalization.
As discussed in ref. [68], the shape functions in soft drop grooming are not normalized to
be unity. So the shape function curves depicted in figure 7 can be varied by an overall
scaling factor, which would be implemented here by varying the coefficient c0 in eq. (3.14).
The scaling factor can be different for the quark and gluon jets, and it only depends on
the parameter β1 or β2. However from figure 7 we see that varying the overall scale with
c0 will be highly correlated with the result from changing Λ, and hence we only retain the
latter for our nonperturbative uncertainty estimate.
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Figure 7. Pure quark (left) and gluon (right) observables with different shape function models
included for the case with β1 = β2 = 0. The parameters p and Λ of the shape functions are varied
to show the sensitivity of the predicted values in the deep infrared region to the nonperturbative
physics these shape functions describe.

4.3.2 Including results in the perturbative ∆m2
c region

Recall that our construction of pure quark and gluon observables is valid all the way
from the nonperturbative region just considered, to the perturbative resummation region
at larger ∆m2

c values. Hence it is interesting to study the complete factorization based
predictions for our pure quark and gluon observables in the full jet mass region.

In figure 8 we show all the three cases with different βis. Similar to figure 6 above
we fix fq = fg = 1/2, so the same discussion given there (about extending the results
to other values for these quark and gluon fractions) applies here as well. Our formulas
directly give results in two specific regions: i) the nonperturbative regime on the left of
the plots for small ∆m(a)

c , where eq. (4.10) is used, and ii) the perturbative regime on the
right of the plots for large ∆m(a)

c , where eq. (4.21) is used. Directly obtaining results in
between these two regimes requires a treatment of the case illustrated in figure 1b, which
we have not done here (it is left to future studies). Hence for these intermediate values of
∆m(a)

c we simply show the expected interpolation by dotted lines in the panels of figure 8.
Since the gluon contribution to Q and quark contribution to G are predicted to vanish in
the nonperturbative and perturbative regions, the interpolation in the intermediate region
is also predicted to remain purely quark or purely gluon. In this intermediate region the
interpolation gives an estimate for the size of the non-zero contribution to the observable
as well as the uncertainties.

The experimental application of the pure quark and pure gluon observables for quark
and gluon jet separation, only relies on our prediction for the absence of the “wrong parton”
contributions, and in particular does not require perturbative predictions for the non-zero
value of the observables from the “right parton” (which do show more uncertainty in the
interpolation in the figures). For this reason the uses of the pure quark and pure gluon
observables for quark and gluon jet tagging, are quite robust, and meet the original goal
of working over a wide region of values for the phase space variable ∆m(a)

c .
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Figure 8. Pure quark (left column) and gluon (right column) observables with the shape functions
included for cases with β1 = β2 = 1 (upper row), β1 = 1, β2 = 0 (middle row) and β1 = β2 = 0
(lower row) in the full jet mass region. Only the results in the deep nonperturbative regime and in
the fully perturbative regime are shown. The results in the transition region are omitted here. The
uncertainty bands include uncertainties from the observable definition, the perturbative calculation
and the shape functions.
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In figure 8 we also include uncertainty bands on the factorization based predictions
in both the nonperturbative and perturbative regimes of ∆m(a)

c . The bands for the non-
perturbative regime are determined by computing the observable uncertainty, perturbative
uncertainty, and nonperturbative uncertainty using the methods described above, and then
summing these in quadrature. In the fully perturbative region, the perturbative uncertainty
is estimated by varying the µcs i and µgs i scales simultaneously up/down by a factor of two.
These simultaneous variations ensure that the scales never go into unphysical configura-
tions, such as by crossing each other. These variations are done in a correlated way for
the two sets (a) and (b), since we are again providing an estimate for the same missing
higher order terms in these two sets of parameter choices from the same cumulative cross
section. As can be seen, the distinguishing power remains robust in the presence of the
uncertainties, in particular for the lower most panels with β1 = β2 = 0. The observable and
perturbative uncertainty can both be reduced by carrying out higher order calculations,
and it is clear that this would be beneficial for the β1 = β2 = 1 case. The gluon observable
for the β1 = 1, β2 = 0 case may be difficult to use due to the more rapid fall off in the
gluon contribution in the region where the quark contribution has become zero.

A relevant question is the acceptance for the jets used in our analysis, i.e., what
fraction of the jets are retained by restricting to the necessary region of ∆m(a)

c . This can
be obtained directly by considering the cumulative cross sections Σ(a,b)(∆m(a)

c ) which enter
Q and G. Since these cross sections are normalized to one at the maximum value of ∆m(a)

c ,
the acceptance is obtained from the smaller value of Σ(a,b) at the value of ∆m(a)

c below
which the pure quark and gluon observables are active. For the β1 = β2 = 0 case, varying
the quark fraction in the range 0.25–0.75, we find that the acceptances for our method are
in the range 37–52%. For this same range of quark fractions, we find the acceptances fall in
the ranges 18–33% and 57–70% for the β1 = 1, β2 = 0 and β1 = β2 = 1 cases respectively.

It is also interesting to examine in more detail the reason why the curves undergo
several changes in slope in figure 8. Starting from the right side of the plots at large
∆m(a)

c we are beyond the endpoint of the spectrum in eq. (2.58), and hence have Σ̂(a)
j = 1

and Σ̂(b)
j = 1, so from eq. (4.21) the curves are flat with their constant value given by

1−ξj . Moving to smaller ∆m(a)
c we reach the endpoint of the ∆m(a)

c spectrum, after which
Σ̂(a)
j is changing, and we then reach the endpoint of the ∆m(b)

c spectrum whereby Σ̂(b)
j

is changing too. For the three cases {βi = 1, β1 − 1 = β2 = 0, βi = 0} the endpoint for
the ∆m(a)

c spectrum occurs for log10((∆m(a)
c )2/p2

T ) = {−2.5,−1.8,−1.8} respectively, while
the endpoint for the ∆m(b)

c spectrum happens for log10((∆m(a)
c )2/p2

T ) = {−3.0,−2.7,−3.2}
respectively. Shortly after this transition we enter the perturbative resummation dominated
regime and the gluon contribution to Q and quark contribution to G vanish as predicted.
Next we enter the intermediate region which is indicated by dashed uncertainty bands.
Then finally we hit the fully nonperturbative region at the values given by eq. (2.59), which
for the three cases correspond to log10((∆m(a)

c )2/p2
T ) = {−4.2,−5.4,−5.4} respectively.

From figure 8 we see that the case with β1 = β2 = 0 does the best job of separating
quark and gluon jets of the cases we have considered, since the non-vanishing contributions
are well separated from zero in a wide kinematic region, even after the uncertainties are
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taken into account. This is mostly due to the larger difference between ξq and ξg and the
larger perturbative of the cumulative jet mass cross sections, as shown in figure 2. The
values of ξj depend on the choice of the z(a,b)

cut i parameters and larger differences in the z(a,b)
cut i

lead to bigger values of ξj , as in the β1 = β2 = 0 case. These observations make clear
the importance of scanning through the parameter space of the remaining free variables
to maximize the discrimination power, and a more detailed analysis than what we have
carried out here may well be warranted.

Since the pure quark and gluon observables are applicable even in the intermediate
region (with dashed curves), this motivates future theoretical studies to obtain better
control of the theoretical interpolation and uncertainties in this region.

4.4 Monte Carlo results for Q and G

For realistic proton-proton collision events, the Q and G observables will have contami-
nation from initial state radiation (ISR) and multiparton interaction (MPI) effects. The
size and impact of these effects are not tested by our analytic predictions for Q and G in
section 4.3, and hence we will study them here using Monte Carlo. Here we focus on the
β1 = β2 = 0, z(a)

cut1 = 0.1, z(a)
cut2 = 0.4, z(b)

cut1 = 0.02 and z(b)
cut2 = 0.08 case.

As we have seen from the Monte Carlo studies of collinear drop jet mass cross sections in
section 4.2.2, smaller values of the jet radius R (or larger values of z(a,b)

cut1 ) are favored in order
to remove the dominant ISR and MPI effects. This motivated our choice of R = 0.2. Here
we again use Pythia 8 [77] and Vincia [78] with the same setup described in section 4.2.2.
For convenience we again take fq = fg = 1/2 by normalizing the cumulant jet mass cross
sections for the quark and gluon jet events independently. As discussed previously, results
for any other values are obtained by a simple rescaling. We will separately consider Monte
Carlo results with and without ISR and MPI effects.

We start by considering results for pure quark and gluon observables using Pythia
events that have been generated with the ISR and MPI effects turned off, which enables
us to benchmark the accuracy of the Monte Carlo results against our analytic hadronic
predictions. This is important since one of the original motivations [37] for constructing
the collinear drop observables was to have soft sensitive observables for which predictions
of Monte Carlo generators are not as reliable, and which hence could be utilized to test
improvements to Monte Carlos.

Using eq. (4.1) with the linear combination coefficients ξj calculated with NLL precision
given in table 1, and results for the Σs from Pythia without ISR or MPI, gives the
results in the upper panels of figure 9 (dashed curves). These results can therefore be
directly compared to those in the lower panels of figure 8. We observe that the curves
change their slope at similar points to our analytic predictions, but in the region around
log10((∆m(a)

c )2/p2
T ) = −3.7, the Pythia results are not purely quark or gluon, despite the

fact that this is the perturbative resummation region where our NLL formulae indicate
they should be. Quite possibly this result comes about due to an inability of the Pythia
shower to accurately predict the structure of the soft radiation in this region (since after
all, it is designed with the goal of accurately predicting collinear radiation that is being
dropped here). Possible sources for this discrepancy in Pythia include the use of our
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Figure 9. Monte Carlo results for the pure quark and gluon observables with β1 = β2 = 0, z(a)
cut1 =

0.1, z(a)
cut2 = 0.4 and z(b)

cut1 = 0.02 from Pythia (with results also from Vincia in the bottom panels).
The top and middle panels have ISR and MPI turned off. The dashed curves in the top panels
use the ξj predicted from our NLL resummation. The remaining panels with solid curves use the
ξj values chosen in the text, which better purify the quark and gluon observables in Pythia. The
bottom panels have ISR and MPI effects turned on.
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NLL parameter values ξg = 2.18 and ξq = 1.41, which encode assumptions about the
resummation of radiation above and between the global-soft scales, and the soft radiation
predictions for the shape of Σ̂j(∆mc).

We can easily test these sources by making Monte Carlo predictions using different
values of the ξj parameters. Taking the same values for the collinear drop parameters but
using ξg = 1.62 and ξq = 1.21 to construct the Q and G observables, we obtain the results
shown in the middle panels of figure 9 (solid curves). We observe improved purity for the
quark observable for log10((∆m(a)

c )2/p2
T ) . −4, while there still do appear to be residual

shape differences. For the gluon observable the improvement is not very good, possibly
because the gluon observable was smaller to begin with which magnifies the impact of
shape deviations.

Since our construction of the pure quark and gluon observables crucially relies on the
rebinning relation between the jet masses, eq. (4.7), the Monte Carlo results indicate that
only the gluon jet generated from Pythia behaves as our analytic calculations predict after
the CD grooming, in the sense of the parametric dependence of the cross section on the
jet mass. As the jet mass dependence of the gluon jet cross section is consistent with our
analytic study, we can make the gluon contribution vanish by modifying ξg and obtain a
mostly pure quark observable from the Pythia Monte Carlo result. In contrast, the failure
of the pure gluon observable in Pythia implies a disagreement between Pythia and our
analytic prediction for the parametric dependence of the quark jet mass cross section on
∆mc. We have tested that these observations persist when considering Q and G observables
based on other values of the βi, and with different pT . In the future, it will be useful to
study the parametric dependence of the cross section on the jet mass in more detail and
with other Monte Carlo generators to further explore this issue.

Next we consider Monte Carlo results with both the ISR and MPI effects included. We
use the same jet kinematics and CD parameters as in the studies with both ISR and MPI
turned off, and again take ξq = 1.21 and ξg = 1.62 to obtain results from both Pythia
and Vincia. Comparing the middle and bottom panels of figure 9 we see that the ISR and
MPI effects are very mild for the small R = 0.2 jets considered here. Thus we find that
again the pure quark observable works in the region of log10((∆m(a)

c )2/p2
T ) ≤ −4, while

the pure gluon observable does not work here for the same reason discussed above for the
case with the ISR and MPI effects turned off.

We conclude by commenting that regardless of finding ways to improve Monte Carlo
predictions for the collinear drop observables that are dominated by soft physics, if one
constructs our theoretically predicted pure quark and gluon observables (e.g. from table 1)
in the experimental data, we can then use eq. (1.11) to extract the fractions of quark and
gluon jets in jet samples. A cross check on the results can be obtained by carrying out the
quark/gluon fraction determination with several different collinear drop observables. After
determining the quark and gluon jets fractions in particular jet samples, we can obtain
individual distributions of the quark and gluon jets for any observable one measures on
these samples.

Note that we did not explore how the ISR and MPI effects depend on the jet kine-
matics such as transverse momentum pT and rapidity ηJ , which might also be exploited to
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remove the ISR and MPI effects for larger R jets. (See for example ref. [53] for a study of
these dependencies for ungroomed jets.) We have also not considered the use of fractional
values of β, like β = 0.5 to construct pure quark and gluon observables. We leave these
investigations to future studies.

5 Conclusions

In this paper, we constructed a class of pure quark and gluon observables using the cu-
mulative distributions of the jet mass with collinear drop jet grooming. We formed linear
combinations of two cumulative jet mass cross sections with the same βi but different zcut i
parameters in collinear drop. The linear combination coefficients ξq,g are perturbatively
calculable and defined such that either the quark or the gluon perturbative contribution
to the cumulative cross section vanishes. This yields pure quark and gluon observables in
the perturbative region where logarithmic resummation dominates. In the small jet mass
region, nonperturbative effects become important and have to be taken into account in
the construction, which we did by using the theoretically predicted leading hadronization
effects from nonperturbative shape functions. The choice of different jet mass bins for the
two cumulative cross sections used in the linear combinations, ensures that the nonpertur-
bative shape functions become overall factors, and thus the same purely perturbative linear
combination coefficients work in this region. In this way, we constructed a class of pure
quark and gluon observables, by using different collinear drop parameters. In practice,
one can vary the remaining free parameters to maximize the disentangling power of these
observables.

Analytic results of the pure quark and gluon observables for three sets of βis were pre-
sented. We estimated both the “observable uncertainty” from calculating the ξj parameters,
the standard perturbative uncertainty from scale dependence, and the nonperturbative un-
certainty by varying parameters in the shape function models. As can be seen from figure 8,
our results in the case β1 = β2 = 0 are most promising in the sense of experimental feasibil-
ity: the observables have a large gap between the quark and gluon contributions in a wide
kinematic region, where one contribution vanishes, even if the uncertainties are accounted
for. Thus, our constructed pure quark and gluon observables are promising for use with
real data in the presence of experimental uncertainties. Our results in the β1 = β2 = 1
case also look promising, but require predictions using perturbative results beyond NLL in
order to reduce the theoretical uncertainties.

Finally we carried out Monte Carlo studies of these observables. Such studies are
challenging since Monte Carlo parton showers are primarily designed to predict observables
dominated by collinear radiation, and hence have some trouble predicting all the features
of collinear drop spectra [37], since they are dominated by soft radiation. Without ISR and
MPI effects the Pythia results differ from our predictions for the pure quark and gluon
observables at NLL. By further tuning the fraction ξg we obtained a pure quark observable
in Pythia that works over a range of phase space, while tuning ξq did not significantly
improve the Pythia pure gluon observable. Nevertheless we can use Monte Carlo to test
the impact of initial state radiation and underlying event (MPI) effects for proton-proton
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collisions, on our construction, by comparing curves with and without these effects turned
on. We found that the ISR and MPI effects have a negligible impact for jets with small jet
radii in proton-proton collisions.

To use our pure quark and gluon observables in eq. (4.1) with experimental jet samples,
we recall that measurement of Q(∆m(a)

c ) and G(∆m(a)
c ) in two distinct jet samples (such as

dijets and Z+jet) immediately yields a measurement of the quark and gluon jet fractions
through eq. (1.11). We recommend the use of the best performing parameter choice that
we have identified, which gives the strongest distinguishing power taking all factors into
consideration. This corresponds to β1 = β2 = 0, z(a)

cut1 = 0.1, z(a)
cut2 = 0.4, z(b)

cut1 = 0.02,
which fixes z(b)

cut2 = 0.08 and the ratio ∆m(b)
c /∆m(a)

c = 2.24. The observables are evaluated
in the appropriate kinematic region of the cumulative jet mass observable ∆m(a)

c , shown
in figures 8e and 8f. As a consistency check these measurements can be carried out using
several different values of ∆m(a)

c in the identified phase space, to make sure the same
results are obtained. To minimize underlying event effects it is useful to consider small
R jets, so here we used R = 0.2. To have valid perturbative calculations for the required
ξj linear combination parameters, it is necessary to consider sufficiently large pT jets, and
for illustration we took pT = 800 GeV at central rapidity ηJ = 0. The resulting ξq and
ξg parameters for this choice of pT , R, and ηJ are given in table 1, and can be easily
recomputed at NLL for other choices of jet kinematics using eq. (4.16). For this choice of
parameters consideration of the appropriate region of ∆m(a)

c corresponds to a rather high
acceptance on the reconstructed jets, estimated to be in the range 37–52% across a range
of different jet samples.

In the future it would be worth carrying out a more substantial scan over parameters
and kinematic variables to further optimize the parameter choice for the construction of
pure quark and gluon observables, while satisfying various constraints.
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A Collinear-soft functions and shape functions in Laplace space

The CS functions with the nonperturbative shape functions can be written as [68]

SCj
(
`+1 Q

1
1+β1
cut1 , β1, µ

)
=
∫ +∞

0
dk1 ŜCj

(
`+1 Q

1
1+β1
cut1 − k

2+β1
1+β1
1 , β1, µ

)
F j1 (k1, β1) , (A.1)

DCj

(
`+2 Q

1
1+β2
cut2 , β2, µ

)
=
∫ +∞

0
dk2 D̂Cj

(
`+2 Q

1
1+β2
cut2 − k

2+β2
1+β2
2 , β2, µ

)
F j2 (k2, β2) ,
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where ki ∼ ΛQCD, the shape functions F ji (ki, βi) depend on the parton species j initiating
the jet, and are mass dimension −1. These shape functions only depend on βi, and not on
zcut i. With the shape functions included, the convolution in eq. (2.35) can be written as

PCD
j (∆m2, Q, z̃cut i, βi, µ) = Q

1
1+β1
cut1 Q

1
1+β2
cut2

∫
d`+1 d`+2 dk1 dk2 δ

(
∆m2 −Q`+1 −Q`

+
2
)

× ŜCj
(
`+1 Q

1
1+β1
cut1 − k

2+β1
1+β1
1 , β1, µ

)
D̂Cj

(
`+2 Q

1
1+β2
cut2 − k

2+β2
1+β2
2 , β2, µ

)
× F j1 (k1, β1)F j2 (k2, β2) . (A.2)

The Laplace transform is given by

P̃CD
j (y, µ) =

∫ +∞

0
d∆m2 exp

(
− ye−γE∆m2)PCD

j (∆m2, µ) , (A.3)

where for simplicity we suppress the dependence of PCD
j on Q, zcut i and βi. Applying this

to eq. (A.2) we find

P̃CD
j (y,µ) =Q

1
1+β1
cut1 Q

1
1+β2
cut2

∫
d`+1 d`+2 dk1 dk2 exp

(
−ye−γEQ`+1 −ye

−γEQ`+2
)

(A.4)

×ŜCj
(
`+1 Q

1
1+β1
cut1 −k

2+β1
1+β1
1 ,β1,µ

)
F j1 (k1,β1)D̂Cj

(
`+2 Q

1
1+β2
cut2 −k

2+β2
1+β2
2 ,β2,µ

)
F j2 (k2,β2)

= ˆ̃
SCj

(
yQQ

−1
1+β1
cut1 ,β1,µ

)
F̃ j1 (yQQ

−1
1+β1
cut1 ,β1) ˆ̃

DCj

(
yQQ

−1
1+β2
cut2 ,β2,µ

)
F̃ j2 (yQQ

−1
1+β2
cut2 ,β2) ,

where

ˆ̃
SCj

(
yQQ

−1
1+β1
cut1 , β1, µ

)
=
∫

dq1 exp
(
− ye−γEQQ

−1
1+β1
cut1 q1

)
ŜCj (q1, β1, µ) , (A.5)

ˆ̃
DCj

(
yQQ

−1
1+β2
cut2 , β2, µ

)
=
∫

dq2 exp
(
− ye−γEQQ

−1
1+β2
cut2 q2

)
D̂Cj (q2, β2, µ) ,

F̃ ji
(
yQQ

−1
1+βi
cut i , βi

)
=
∫

dki exp
(
− ye−γEQQ

−1
1+βi
cut i k

2+βi
1+βi
i

)
F ji (ki, βi) .

In these Laplace transforms, the mass dimension of qi is 2+βi
1+βi and the three functions on

the left-hand side are dimensionless. Using the solutions to the general RG equations of
the perturbative CS functions in Laplace space (2.44), we find

P̃CD
j (y, µ) = F̃ j1

(
yQQ

−1
1+β1
cut1 , β1

) ˆ̃
SCj

(
yQQ

−1
1+β1
cut1 , β1,Λcs1

)
(A.6)

× F̃ j2
(
yQQ

−1
1+β2
cut2 , β2

) ˆ̃
DCj

(
yQQ

−1
1+β2
cut2 , β2,Λcs2

)
× exp

(
− 2Cj

2 + β1
1 + β1

K(Λcs1, µ) + ωSCj (Λcs1, µ)
)(

Q
1

1+β1
cut1

yQΛ
2+β1
1+β1
cs1

)2Cjω(Λcs1,µ)

× exp
(

+ 2Cj
2 + β2
1 + β2

K(Λcs2, µ) + ωDCj (Λcs2, µ)
)(

Q
1

1+β2
cut2

yQΛ
2+β2
1+β2
cs2

)−2Cjω(Λcs2,µ)

,
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where Λcs i are perturbative scales introduced as the endpoint of the RG evolution of the
CS functions. Here the dependence on Λcs i cancels order-by-order between the boundary
condition terms on the first two lines, and the evolution kernel terms on the last two lines.

In the perturbative region the scales Λcs1 = µcs1 and Λcs2 = µcs2 are parametrically
different. However when both scales are frozen prior to entering the nonperturbative region
we are free to make the simplifying choice of Λcs1 = Λcs2 = Λcs ∼ 2 GeV. For this region
the factorization formula provides a way of defining the shape function in the MS scheme,
through the combinations appearing in the first two lines of eq. (A.6):

F̃
(MS)j
1

(
yQQ

−1
1+β1
cut1 , β1,Λcs

)
= F̃ j1

(
yQQ

−1
1+β1
cut1 , β1

) ˆ̃
SCj

(
yQQ

−1
1+β1
cut1 , β1,Λcs

)
, (A.7)

F̃
(MS)j
2

(
yQQ

−1
1+β2
cut2 , β2,Λcs

)
= F̃ j2

(
yQQ

−1
1+β2
cut2 , β2

) ˆ̃
DCj

(
yQQ

−1
1+β2
cut2 , β2,Λcs

)
.

To transform back to the momentum space, we apply the inverse Laplace transform

PCD
j (∆m2) = e−γE

2πi

∫ c+i∞

c−i∞
dy exp

(
ye−γE∆m2)P̃CD

j (y) , (A.8)

where c is constant, chosen to be large enough that all the poles of the integrand P̃CD
j (y)

are on the left of the integration line. It turns out that it is convenient to separately
consider two cases, since the optimal method for carrying out this inverse transform differs
in the perturbative and nonperturbative regions.

Perturbative region: first we consider values of ∆m2, and thus y, in the perturbative
regime where nonperturbative effects are power corrections. Here the endpoints of the
collinear-soft evolution are Λcs i = µcs i given by the canonical ∆mc dependent scales in
eq. (2.56). The dimensionlessness of the Laplace space CS functions implies

ˆ̃
SCj

(
yQQ

−1
1+β1
cut1 , β1, µcs1

)
= ˆ̃
SCj

(
ln Q

1
1+β1
cut1

yQµ
2+β1
1+β1
cs1

, β1, αs(µcs1)
)
, (A.9)

ˆ̃
DCj

(
yQQ

−1
1+β2
cut2 , β2, µcs2

)
= ˆ̃
DCj

(
ln Q

1
1+β2
cut2

yQµ
2+β2
1+β2
cs2

, β2, αs(µcs2)
)
.

Using

f

(
ln 1
y

)(1
y

)η
= f

(
∂

∂η

)(1
y

)η
, (A.10)

for the polynomial functions f that show up in perturbation theory, we find

P̂CD
j (∆m2, µ) (A.11)

= exp
(
− 2Cj

2 + β1
1 + β1

K(µcs1, µ) + ωSCj (µcs1, µ)
)(

Q
1

1+β1
cut1

Qµ
2+β1
1+β1
cs1

)2Cjω(µcs1,µ)

× exp
(

+ 2Cj
2 + β2
1 + β2

K(µcs2, µ) + ωDCj (µcs2, µ)
)(

Q
1

1+β2
cut2

Qµ
2+β2
1+β2
cs2

)−2Cjω(µcs2,µ)
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× ˆ̃
SCj

(
∂

∂η
+ ln Q

1
1+β1
cut1

Qµ
2+β1
1+β1
cs1

, β1

)
ˆ̃
DCj

(
∂

∂η
+ ln Q

1
1+β2
cut2

Qµ
2+β2
1+β2
cs2

, β2

)

× e−γE

2πi

∫ c+i∞

c−i∞
dy exp

(
ye−γE∆m2)(1

y

)η∣∣∣∣
η=2Cjω(µcs1,µcs2)

= exp
(
− 2Cj

2 + β1
1 + β1

K(µcs1, µ) + ωSCj (µcs1, µ)
)(

Q
1

1+β1
cut1

Qµ
2+β1
1+β1
cs1

)2Cjω(µcs1,µ)

× exp
(

+ 2Cj
2 + β2
1 + β2

K(µcs2, µ) + ωDCj (µcs2, µ)
)(

Q
1

1+β2
cut2

Qµ
2+β2
1+β2
cs2

)−2Cjω(µcs2,µ)

× ˆ̃
SCj

(
∂

∂η
+ ln Q

1
1+β1
cut1

Qµ
2+β1
1+β1
cs1

, β1

)
ˆ̃
DCj

(
∂

∂η
+ ln Q

1
1+β2
cut2

Qµ
2+β2
1+β2
cs2

, β2

)
e−γEη(∆m2)η−1

Γ(η)

∣∣∣∣
η=2Cjω(µcs1,µcs2)

.

For the cumulative jet mass in collinear drop, we need to integrate ∆m2 from 0 to ∆m2
c ,

which just replaces (∆m2)η−1

Γ(η) with (∆m2
c)η

Γ(1+η) in eq. (A.11) and gives Σ =
∑
j=q,g fjΣ̂j where

Σ̂j(∆m2
c) = 1

σj
SeeGj (Qgs1,β1,µgs1)exp

( 2Cj
1+β1

K(µgs1,µ)+ωSGj (µgs1,µ)
)(

µgs1
Qgs1

) 2Cj
1+β1

ω(µgs1,µ)

×See
Gj

(Qgs2,β2,µgs2)exp
(−2Cj

1+β2
K(µgs2,µ)+ωS

Gj
(µgs2,µ)

)(
µgs2
Qgs2

)−2Cj
1+β2

ω(µgs2,µ)

×exp
(
−2Cj

2+β1
1+β1

K(µcs1,µ)+ωSCj (µcs1,µ)
)(

Q
1

1+β1
cut1

Qµ
2+β1
1+β1
cs1

)2Cjω(µcs1,µ)

×exp
(

+2Cj
2+β2
1+β2

K(µcs2,µ)+ωDCj (µcs2,µ)
)(

Q
1

1+β2
cut2

Qµ
2+β2
1+β2
cs2

)−2Cjω(µcs2,µ)

× ˆ̃
SCj

(
∂

∂η
+ln Q

1
1+β1
cut1

Qµ
2+β1
1+β1
cs1

,β1

)
ˆ̃
DCj

(
∂

∂η
+ln Q

1
1+β2
cut2

Qµ
2+β2
1+β2
cs2

,β2

)

× e
−γEη(∆m2

c)η

Γ(1+η)

∣∣∣∣
η=2Cjω(µcs1,µcs2)

. (A.12)

At LL and NLL accuracy, the boundary function contributions from the GS and CS func-
tions can be set to be unity. These results were used in the text in sections 2.3 and 2.4.

Nonperturbative region: in the nonperturbative region it is more convenient to carry
out the inverse Laplace transform in terms of the MS shape functions in eq. (A.7). It also
turns out that it is easier to integrate over ∆m2 before applying the inverse Laplace trans-
form for the calculation of the cumulative jet mass. The relevant piece of the integration
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can be written as∫ ∆m2
c

0
d∆m2 e

−γE

2πi

∫ c+i∞

c−i∞
dy eye−γE∆m2

F̃
(MS)j
1

(
yQQ

−1
1+β1
cut1 , β1

)
F̃

(MS)j
2

(
yQQ

−1
1+β2
cut2 , β2

)(1
y

)η
= e−γE

2πi

∫ c+i∞

c−i∞

dy
e−γE

(
eye
−γE∆m2

c − 1
)
F̃

(MS)j
1

(
yQQ

−1
1+β1
cut1 , β1

)
F̃

(MS)j
2

(
yQQ

−1
1+β2
cut2 , β2

)(1
y

)1+η
.

(A.13)

From the Laplace transform of the shape function eq. (A.5), the inverse Laplace transform
is given by

e−γE

2πi

∫ c+i∞

c−i∞
dy exp

(
ye−γE∆m2

c

)
F̃

(MS)j
i

(
yQQ

−1
1+βi
cut i , βi

)
= F

(MS)j
i (ki, βi)

∣∣∣∣
k

2+βi
1+βi
i =Q−1Q

1
1+βi
cut i ∆m2

c

.

(A.14)
The inverse Laplace transform of 1/y1+η is given by

e−γE

2πi

∫ c+i∞

c−i∞
dy exp

(
ye−γE∆m2

c

)(1
y

)1+η
= e−(1+η)γE (∆m2

c)η

Γ(1 + η)θ(∆m
2
c) . (A.15)

Using the fact that the inverse Laplace transform of three functions multiplied is their
convolution,

L−1(f(s)g(s)h(s)
)

= f ∗ g ∗ h(t) =
∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2 f(t− τ1 − τ2)g(τ1)h(τ2) , (A.16)

we have Σ =
∑
j=q,g fjΣj with

Σj(∆m2
c) = 1

σj
SeeGj (Qgs1,β1,µgs1)exp

( 2Cj
1+β1

K(µgs1,µ)+ωSGj (µgs1,µ)
)(

µgs1
Qgs1

) 2Cj
1+β1

ω(µgs1,µ)

×See
Gj

(Qgs2,β2,µgs2)exp
(−2Cj

1+β2
K(µgs2,µ)+ωS

Gj
(µgs2,µ)

)(
µgs2
Qgs2

)−2Cj
1+β2

ω(µgs2,µ)

×exp
(
−2Cj

2+β1
1+β1

K(Λcs,µ)+ωSCj (Λcs,µ)
)(

Q
1

1+β1
cut1

QΛ
2+β1
1+β1cs

)2Cjω(Λcs,µ)

×exp
(

+2Cj
2+β2
1+β2

K(Λcs,µ)+ωDCj (Λcs,µ)
)(

Q
1

1+β2
cut2

QΛ
2+β2
1+β2cs

)−2Cjω(Λcs,µ)

×
∫ ∞

0
dk1

∫ ∞
0

dk2 θ

(
∆m2

c−QQ
− 1

1+β1
cut1 k

2+β1
1+β1
1 −QQ

− 1
1+β2

cut2 k
2+β2
1+β2
2

)
F

(MS)j
1 (k1,β1)F (MS)j

2 (k2,β2) ,

(A.17)

where we have set Λcs1 = Λcs2 = Λcs and thus η = 0. This result was used in section 3.2.

B Treating ISR and MPI in large R jets

As discussed in the main text, grooming most ISR and MPI effects away requires z(a/b)
cut1 &

0.15 for jets with large radii R ∼ 1. Such large values significantly reduce the discrimination
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Figure 10. Monte Carlo results of the differential jet mass cross sections of quark jet (top row)
and gluon jet (bottom row) in collinear drop with β1 = β2 = 0, zcut1 = 0.02, zcut2 = 0.08 (left)
and zcut1 = 0.1, zcut2 = 0.4 (right). The red solid and green dotted lines are results obtained by
Pythia and Vincia generators respectively, with the ISR and MPI effects included. The black
dashed line labels the Pythia result without the ISR and MPI effects included and the black dotted
line indicates the same results but multiplied by a scaling factor. These phenomenological factors
are 0.59, 0.91, 0.46 and 0.91 for the four cases (a)–(d).

power of the observables as can be seen from figure 3, since well separated zcut1 and
zcut2 lead to stronger discrimination power. However, we observe that the ISR and MPI
effects in the nonperturbative region can be accounted for by an overall phenomenological
scaling factor ρISR

j that depends on the collinear drop parameters, such that ΣISR
j (∆mc) '

ρISR
j Σno ISR

j (∆mc). This implies that we can still obtain pure quark and gluon observables
in the nonperturbative region in the presence of ISR and MPI effects, just with different
values of the linear combination coefficients, e.g. ξq → ξq ρ

ISR
(b)q/ρ

ISR
(a)q. (It turns out that the

ISR effects dominate over those from MPI, so we only use a superscript ISR for simplicity
even though both effects are included.)

To illustrate the idea introduced above, we consider jets with pT ∈ [280, 320]GeV
and R = 0.8. In figure 10, we plot Monte Carlo results of the differential jet mass cross
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sections in collinear drop from Pythia in three cases: with both ISR and MPI turned
on, with both ISR and MPI turned off, and with both turned off but multiplied by an
overall ρISR

j factor. In addition, we also plot the results from the Vincia Monte Carlo
generator with both ISR and MPI turned on. Two sets of CD parameters are considered
here: β1 = β2 = 0, zcut1 = 0.02, zcut2 = 0.08 and zcut1 = 0.1, zcut2 = 0.4. In both cases, we
see that in the log10(∆m2/p2

T ) ≤ −3 region, the ISR and MPI effects are multiplicative.
The values of these factors are ρISR

q = 0.59, 0.91 and ρISR
g = 0.46, 0.91 for the four cases

shown in figure 10, from left to right. Experimentally, one could extract these ρISR
j factors

by comparing jet mass cross sections in the small jet mass region from electron-positron
and proton-proton collisions, with the same CD grooming parameters.

As shown in figure 10, even with a small zcut1 parameter such as 0.02, the ISR and
MPI effects are multiplicative in the kinematic region log10(∆m2/p2

T ) ≤ −3. This enables
us to lift the third constraint listed in section 4.2. This multiplicative behavior in the
nonperturbative region will not change the ∆mc scaling behavior of the cumulative jet
mass cross section, which is the most crucial part of our construction of the pure quark
and gluon observables. If we focus on constructing pure quark and gluon observables
in the kinematic region log10(∆m2

c/p
2
T ) ≤ −3, the ISR and MPI effects only result in a

multiplicative change of the linear combination coefficients:

ξISR
q = ξw/o ISR

q

ρISR
(b)q

ρISR
(a)q

, ξISR
g = ξw/o ISR

g

ρISR
(b)g

ρISR
(a)g

. (B.1)

Then the quark and gluon contributions to the pure quark and gluon observables with the
ISR and MPI effects are expected to have the form

ΣISR
(b)q(∆mc)− ξISR

g ΣISR
(a)q(∆mc) , ΣISR

(b)g(∆mc)− ξISR
q ΣISR

(a)b(∆mc) , (B.2)

for small ∆m2
c .

By comparing the Pythia and Vincia results of the differential jet mass cross sections,
we see that they agree reasonably well in the deep nonperturbative region log10(∆m2/p2

T ) <
−3 but differ quite significantly in the intermediate and perturbative regions. This further
emphasizes the need for a more dedicated study of the predictions of various Monte Carlo
programs for the behavior of soft radiation in the perturbative region of the observables
we exploit here.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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