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ABSTRACT

A dynamic state estimator, called a sliding observer, is developed for a
class of nonlinear/uncertain systems. It is shown that a simple observer,
basically a Luenberger observer with a relay or saturation function, can be
made robust against neglected nonlinearities, disturbances, and uncertain-
ties. The class of uncertainties that this observer can handle is limited to
those bounded by constants, and generated by no more sources than the
number of available measurements. Two basic design procedures are sug-
gested. The first one guarantees that the state estimates converge to the
actual states asymptotically, but is limited to the case in which it is pos-
sible that a particular transfer function matrix inside the estimation error
dynamics be made strictly positive real. If this is not possible, a second
method is suggested which will provide bounded estimation errors. The
designer still hes some control over these bounds, but the extent to which
the accuracy can be improved depends on certain transmission zeros. This
thesis concludes with a discussion of the design method when measure-
ment noise is present. A simple example shows that the sliding observer,

with a relay, is naturally robust against changes in the measurement noise
intensity.
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Chapter 1

Introduction

The development of state estimation methods has been a very active re-
search field in system engineering since Wiener and Kalman pioneered this
field in the late forties [67] and in the early sixties (25]. Many estimation
schemes were developed for both linear and nonlinear systems, using both
off-line and on-line recursive implementations. This thesis is a coniribution
to this rich field, using the so-called sliding mode technique.

In this introductory chapter, the state estimation problem, as inter-
preted in this thesis, is defined and motivated. The scope and the main
contributions of this thesis is explicitly enumerated and an outline of the
whole thesis concludes this chapter.

1.1 Problem Definition

The general state estimation problem can be defined as follows.
Given the general nonlinear system described in the state-space form:

z = f(z,0,t,u,w)

y = h(z,0,t,u,v)
where z is the vector of internal states; y, the vector of measurements; u,
the vector of control inputs and w and v, the vectors of process (input) and
measurement noises respectively. The system parameters are contained in
the vector 0, and the system might have explicit dependence on time ¢.

Given this general system description, the state estimation problem can
be stated as: Design a dynamsic system that estimates the states T given that
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the measurements y — and perhaps u - are avaslable. Sometimes, the system
parameters are included as augmented states, and the system identification
problem - that is, identification of system parameters § — can be interpreted
as a state estimation problem.

A meaningful state estimator will provide state estimates that will con-
verge, in some sense, to the real states. This convergence is interpreted in
different ways in different state estimation methods, but in general it can
be interpreted as having the state estimation error, defined as the difference
between the estimated and actual states, bounded within desired limits.

A desirable feature is that the state estimator has to be able to provide
meaningful estimates even in the presence of any kind of modeling errors,
unmeasured inputs u, or disturbances w and v.

The state estimator, as defined here, is often found as a system analysis
tool, as a way to infer the system’s internal behavior from the usually
limited number of measurements. A closely related application is as a
system identification tool, when one wants to identify important system
parameters given system measurements.

For these applications, one can use off-line techniques [34]; therefore
computing power is not, in principle, a serious limitation.

Sometimes one wants information in real time. It can be the case for
problems of analysis or identification, but definitely it is essential in auto-
matic control applications.

Most multivariable control systems assume that the whole state is avail-
able as system measurements, but clearly such an assumption is frequently
violated, since the number of measurements is always limited. In this case,
one wants to use some state estimator, and then to replace the actual states
with estimates in the controller. Obviously, for control applications, the
state estimator has to be able to provide reasonably accurate estimates in
a short time, leading to the necessity of recursive, on-line, state estimation
schemes.

In this thesis, recursive state estimators are called observers.

For general nonlinear systems as defined in this section, usually the ob-
servers can only be implemented using microprocessors, which means that,
if complex nonlinearities have to be handled and fast response is desired,
one has to use powerful microprocessors. Because even powerful micropro-
cessors have their limitations, the available computing power becomes a
constraint on those observation schemes which are feasible in practice.
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Of course, as the application of automatic control systems becomes more
complex, often demanding faster and faster response, the limited power of
microprocessors starts demanding simple observer structures in order to be
implemented.

From this perspective, the ideal state estimation problem can be inter-
preted as designing a simple observer that can provide state estimations
that converge to the actual states within some desired accuracy, even in
the presence of uncertainties.

1.2 Scope and Contribution of this Thesis

Of course, the problem formulated in the previous section portrays the
ideal observer. For any practical observer, the class of problems that can
be handled has to be constrained. In this thesis, it is assumed that the
system can be described as:

z = Az+ Dpg
y = Cz

that is the vector of measurements y are linear combination of the vector of
states z, that are generated by a system that has a “linear part ” Az and a
“nonlinear/uncertain part” Dn which can be function of state variables z,
time and external disturbances. The pair (A, C) is assumed to be observ-
able, and the rank of matrix D is assumed to be d < m, where m is the
number of measurements. This class of problems is not as restricted as it
looks, as further discussed in Chapter 4. Certainly, the process noise can be
included in the uncertainty term, and the effect of noise in the measurement
will be discussed in Chapters 3 and 6.
For this system, a simple observer structure is suggested:

2=(A-HC)2+ Hy+ K1,(y — C%)

It is the Luenberger observer (35,36,37] plus an additional term K1,. The
function 1, is usually defined using the signum function or saturation func-
tion. This observer will be called Sliding Mode Observer, or simply
Sliding Observer(sometimes abbreviated as SO) in this thesis.

Given these definitions, the main contribution of this thesis can now be
listed as follows:
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1. A simple observer is suggested.

2. It is shown that this observer can be made robustly stable against the
class of nonlinearities and uncertainties as defined above.

3. It is shown that under some conditions the state estimates will con-
verge asymptotically to the actual states. Under less restricted con-
ditions, it will be shown that the state estimation errors will be
bounded, and these bounds can be brought into acceptable limits
depending on the location of the zeros of a specified transfer function
matrix.

4. It is shown that in the presence of measurement noise, the sliding
observer using stgnum function in the function 1, is insensitive to
changes in the measurement noise intensity.

1.3 Overview

This thesis is organized as follows. Chapter 2 reviews most of the siate-of-
the-art methods for observer design for nonlinear/uncertain systems. This
review will show the design method, without proofs, and the main advan-
tages and drawbacks will be highlighted. The objective of this review is
twofold: one objective is to provide the reader with useful results for non-
linear state estimation, and other is to set the stage for the introduction of
the sliding observer.

The sliding observer is introduced in Chapter 3. This chapter will show
the potential advantages of sliding observers. In this chapter, the class of
problems is actually more extensive than the class of problems considered
in the rest of this thesis. The observer is also allowed to contain more
nonlinear terms in it. The design and analysis of a sliding observer for a
second-order system is made using phase-plane analysis and concepts from
sliding mode systems. An example illustrates the performance of a sliding
observer designed for a nonlinear plant. The conclusions from phase-plane
analysis, coupled with the usual properties of sliding mode systems, are
extended to higher order systems, on an ad-hoc basis. A simple third-
order example will show that these extensions can actually fail, and the
estimates will diverge. This motivates the need for more detailed studies
and improved design techniques.
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The next chapter, Chapter 4, presents the design techniques suggested
and proved in this thesis. In this chapter all the main results will be pre-
sented. The general framework will be set using the Passivity Theorem!.
The difficulties related to the strzight application of the Passivity Theorem
in the observer design will be commented upon, and more useful results will
be derived for four particular situations, two of then for single-measurement
cases, and two for multiple-measurement cases. The properties of estima-
tion errors will also be discussed.

Chapter 5 shows three “real-life” examples for which the sliding observer
is designed. Some digital simulations will show how these observers should
perform in actual applications.

The next chapter, Chapter 6, discusses the design changes due to the
presence of measurement noise. The main tool used in this chapter is
the Random-Input-Describing-Function. It is shown that, for stochastic
settings the sliding observer can actually be made equivalent to the optimal
filter (Kalman Filter) with the advantage of being insensitive to changes in
measurement noise intensity.

Chapter 7 provides a summary of the conclusions and suggestions for
future research.

1 All the definitions and results from input-output stability used in this thesis are sum-
marized in appendix A.
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Chapter 2

Review of Current Methods
for Observer Design for
Nonlinear Systems

2.1 Overview

Many authors have worked on the development of state estimators for non-
linear and/or uncertain systems. Some observers were developed for a
restricted class of nonlinear systems such as bilinear systems [19,10]. Many
results became available for a broader class of problems during recent years.

This chapter presents a brief review of currently availabie recursive state
estimation techniques applicable to a broad class of nonlinear systems. The
goa! is to provide the reader with the knowledge of what is currently avail-
able, in order to put the Sliding Observer in its proper perspective.

Each method will be introduced with a brief description of its theoretical
basis, followed by a procedure description. A list of strengths and weakness
will conclude the method discussion.

The presentation will start with the Extended Kalman Filter, which
pioneered the current approach to state estimation techniques. The Ex-
tended Kalman Filter does not have a formal proof of convergence , even
though it has been used for quite long time in practice [54]. The only ex-
ception is the Constant Gain Extended Kalman Filter, which is known to
have guaranteed robustness, and is described in Section 2.3

An alternative way to design state estimators for nonlinear systers is

16



through the use of Describing Functions. This is the topic of section 2.4
which describes the Statistically Linearized Filter.

A different approach, that applies a nonlinear transformation, known
as Global Transformation, converts a set of nonlinear differential equations
into a set of linear differential equation, is described in Section 2.5

Because a global transformation is not always possible, Reboulet and
Champetier introduced the concept of Pseudo-Linearization, which some-
times allows the transformation of a system description from the original
form to a canonical form for which one can design a Luenberger Observer
with an additional nonlinear term, which can be known from the measure-
ments.This method is discussed in Section 2.6.

The next method to be discussed is the one that provides the Luenberger
Observer with varying gains based on the method of gain scheduling; this
method is called Extended Linearization method.

In 1973, Thau [58] described the sufficient condition for asymptotic
convergence of the state estimates and suggested a particular structure of
observer. His approach was further developed by Kou et al. [20], Banks
[2] and Tarn and Rasis [57].The basic observer was an extension of the
Luenberger Observer, and is shown in section 2.8.

For time-varying and/or uncertain linear systems adaptive observer is
a valid option. This method fits in our discussion if we view nonlinear
systems as linear systems with time varying parameters. Section 2.9 dis-
cusses an adaptive observer suggested by Gevers and Basin in 1986 with
guaranteed convergence for a class of second order system with bounded
uncertainties/nonlinearities.

Another method, presented in this review, is the linear filter which ap-
plies to a linear system with uncertain parameters; it was presented by
Wang et all and uses a set-theoretic point of view associated with Pontrya-
gin’s Minimum Principle.

Within the framework of variable-structure systems, Walcott and Zgk
[63] introduced a variable structure observer which was shown to have per-
fect modelling error rejection under certain conditions. It is the subject of
the last method discussed in this chapter.

A summary will point to the main points of these observer(filter) design
techniques and will highlight the gaps that still exist. The claim is that the
sliding observer will fill many of these gaps.
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2.2 Extended Kalman Filter

Kalman, in 1960 [25], introduced the concept of an optimqy linear filter;
this filter minimizes the Mmean square estimatjon error and is now known as
the Kalman Filter(16]. This filter assumes that the dynamjc System whose

System model:

2= S0+ w(e), wie ~ v, gpy)
0= A0 4900, oft) ~ (o, By, | (2.1)

wheref:.’l"‘—»!R", h:!R"-—»!R"';:cG.’R",wE?R",zE.’R"‘,vE!R",
m < n, and v and W are assumed to be uncorrelated zero mean Gaussijan
noise with noise intensitijes X£(t) and Q(2) Tespectively. The initja] condition
is assumed to be z(0) ~ N (2o, Py).

For this System, the filter is implemented as:

B = (60,0 + Ko)]a(e) - hgag, o (22)
K(t) = P(t)HT(:‘c(t),t)R‘l(t)
PO = FGw,0P0 + Py, Q) +
o G0 OB OR G, 0
F(3(1),1) = %ﬁi’ (2.4
H(3(t),1) = %ﬁ;" (25)

18



where equations (2.4) and (2.5) are evaluated at z(t) = z(t).

The Extended Kalman Filter is an obvious extension of the Kalman
Filter. Because of its similarity to the Kalman Filter, it is widely used [54],
but some drawbacks are worth remembering:

¢ Because P is only an approximation of the true covariance matrix,
there is no a priori performance or stability guarantee;

* Comparing equations (2.1) and (2.2) (also (2.4) and (2.5)) one can
readily see that perfect system knowledge is assumed;

* evaluating equations (2.4) and (2.5) at z = % can introduce (even if
f is the exact model) arbitrarily large errors in F and H ;

¢ One conclusion that follows from previous observations is that no
robustness against modelling errors can be guaranteed a priori ;

e The implementation requires a great deal of real time computer power
since the filter and covariamce equations are coupled.

Some of these drawbacks can be attenuated through additional im-
provement like the Iterated Extended Kalman Filter or the Second-Order
Kalman Filter [16] with the expense of additional computational burden.
In spite of the improvements, it is still true that the robustness cannot be
guaranteed. The lack of guaranteed robustness and difficulties in imple-
mentation motivated the investigation of Constant Gasin Extended Kalman
Filter.

2.3 Constant Gain Extended Kalman Filter

To overcome the substantial real-time computational burden imposed by
the Extended Kalman Filter, Safonov and Athans [45,47) suggested the use
of Constant Gain Extended Kalman Filter. They also showed the conditions
under which a class of nonlinear observers is nondivergent. The particu-
lar case of Constant Gain Extended Kalman Filter was shown to have an
intrinsic robustness against modelling errors.

The detailed development is given in [45,47], and will not be shown here.

To understand the final results it is necessary to define some terms.
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Let ¥ be an operator, i.e. a mapping of functions into functions, like a
transfer function that takes the input function and gives the output func-
tions. The derivative of 7, or the Gateauz derivative V 7|z, is defined via

V ¥z = lim %(.’r'(zo + €2) — Fz0)

Note that for memoryless or nondynamical ¥ (i.e. (Fz)(t) = f(2(t)),
V #|2] is just the Jacobian (8f/82)(z0).

Using this notation, the estimation problem can be formulated as fol-
lows.
Given the system:

t = Alw]z+ Blwju+ ¢
y = Clwz+8 (2.6)
where w is a vector of functions including y, u, t as well as all other known

or observed functions; £ and @ are the disturbances.
The observer structure is chosen to be:

£ = Alw|z+ Blw]u— H[w|(§ —y)
g = Clw|z (2.7)

The dynamics of the estimation error ¢ = z — z is found by combining
equations (2.6) and (2.7) :

¢ = Alw,zle— Hlw]r—¢

r = Clw,z]le—0 (2.8)
where r = § — y, A[w,z]z = Alw](z + z) — A|w|z, and C[w,z]z = C[w](z +
2) — Clw]z.

Assuming that equation (2.8) can be linearized one gets:

¢ = Alwle—Hlwlr—¢ €0)=0
r = Clwje-#0

20



At this level of generality, the following theorem([45,47]) states the con-
ditions under which the estimator will be nondivergent:

Theorem 2.1 Let the w-dependent matriz S{w| and the constant matriz
P be symmetric uniformly positive-definite solutions of the w-dependent
Lyapunov equation :

(Alw] — H{w]C[w])P + P(A{w] — H[w|C|w])T + S[w] =0

If unsformly for all z, w :
Alw] - V(4[w])(z] - Hlw)(Clu]) - V(C[w])[e]P + 35[u] >0

then the nonlinear observer (2.7) is nondivergent with finite gain, that is
the mapping of the process and measurement nosses £ and 0 into estimation
error e 13 such that:

v = €]
e = z—2¢€{ec L.||e]l <k|nl|}
(2.9)

for some k < oo.

Now, if we take the gain H|w] as the Kalman Filter gain, i.e.:
H(w] = Z[w]CT|w]0~}[w]

where L[w]| is symmetric, positive definite, and satisfies the filter algebraic
Riccati equation:

T (w] AT[w] + Alw]E[w] — E[w]CT[w]0[w]C[w]E]w] + E[w] = 0

where E[w] and ©[w] are w-dependent positive definite covariance matrices
of the disturbances £ and 0, respectively.

The Constant Gasn Ertended Kalman Filter is the filter given by equa-
tion (2.7) when the gain matrix H becomes a constant, i.e. independent of
w. The admissible deviation from the linear model is given by the following
theorem ([47]:
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Theorem 2.2 If T is independent of w and if uniformly for all = and all
w

{Alw] - V(4[w])[z] ~ H(C[w] - V(Clw])[=])}= +
+%(E["’] + ZCT[w]0™}(w|C[w|E) > 0

then the Constant Gain Eztended Kalman Filter is nondivergent with finite
gain.

Through the use of this theorem and by lumping all nonlinearities/un-
certainties in the actuators and sensors, Safonov and Athans showed that
the Constant Gain Extended Kalman Filter has the typical properties of
the LQG-controller/Kalman Filter [45], i.e. infinite gain margin, at least
50 percent gain reduction tolerance, and at least +60 deg phase margin in
each output of the error dynamics given by equation (2.8).

In spite of their guaranteed robustness, the margins given above can
still be quite restrictive, e.g. when one deals with hard nonlinearities.

Also, considering that it is very likely that the matrices A[w], B[w] and
C[w] were determined by linearization about operating points, the differ-
entiatior of equation of motion involved in the linearization process might
also unfavourably affect the guaranteed robustness property.

2.4 Statistically Linearized Filter

Another approach, which uses the Describing Function[17], was suggested

by Phaneuf[43]. It performed better than the Extended Kalman Filter on

re-entry trajectories|5| because it used Gaussian Statistical Linearization.
Assume that a system is given as:

z(t) = f(z(t),t) +w(t); w(t) ~N(0,Q(t))
z = h(z)+v; v(t)~N(0,R())

with initial conditions given by z(0) ~ N(%,,P,). Also it is assumed that v
and w are uncorrelated.
The describing functions for f(z) and for h(z) are defined as:

Ny(P) = E[fz"]P"
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Nu(P) = E[hzT|P!
P = covariance matrix of z

= E[(z - E[z])(z - E[z])7)

If the exact probability density function of z(t) is known, then the de-
scribing function can be determined exactly. In practice this is impossible,
therefore usually the expectations are performed with the stationary gaus-
sian density functions with zero means.

Using these describing functions, the statistically linearized filter be-
comes [5,16,43]:

t = f(2)+ H(z- h(2))

H = PNF(z,P)R™!

P = Ny(z,P)P+ PN7(3,P)+Q - HRHT

This filter suffers the drawback of requiring substantial real-time com-

puting power. An alternative, which requires less computation, was sug-
gested by Beaman [5] :

& = Ny(P)t+ H[z — Nu\(P)3] (2.10)
H = PNf(z,P)R™! (2.11)
0 = (Ny(P)-HN,(P))P+

+ P(N;(P) - HNA\(P))T + HRHT + Q (2.12)
0 = Ny(P)P+ PN{(z,P)+Q (2.13)

One can notice that equation (2.13) can be solved first; this allows
the determination of describing functions Ny and Nj. Then (2.12) can be
solved, hence the gain matrix H can be computed from (2.11). The knowl-
edge of describing functions and the matrix gains permit the evaluation of
estimates Z through equation (2.10).

Tke advantage of the Statistically Linearized Filter is that its perfor-
mance can be better than the Extended Kalman Filter. Its performance is
a function of the matching (or mismatch) between the true statistical prop-
erties of z and those assumed for the describing function. One consequence
is that performance, and even stability, can not be guaranteed beforehand.
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2.5 Global Linearization Methods

For the sake of simplicity, consider the single-output system given by:

f(z) ; z(to)) = zo
v = h(z) (2.14)

where y is the single-measurement. Following Bestle and Zeitz (6], who first
introduced this concept, assume that there exists a nonlinear transforma-
tion T given by:

z="T(z") (2.15)

so that in the new coordinates z*, the system can be described in the
observer form :

= A'z" - f'(z)

y = z (2.16)
(00 ... 0 0]
10 .00
A" = |01 0
00 . 10
[ fo(zn) ]
fi(zn)
[(z) = fi(z7)
Lf;-l(z:u)_

Because f*(z;) is only a function of z;, (the measurements), the observer
can be chosen as:

= a8 - f'(a) - H(z - )

where H is the gain matrix HT = [hg hy ... hay].
Using this observer the error dynamics z* = 2* — z* is given by:

r = Az (2.17)

24



b

i
: O =
-0
o
L
& >
N e

|0 0 ... 1 —h,._IJ

Because the error dynamics given by equation (2.17) are linear, the
observer design can be performed using any linear technique (e.g. pole-pla-
cement).

The case of multiple outputs is treated in the similar fashion; the differ-
ence is in the use of block matrices, each one corresponding to a particular
output.

The key step in this method is the transformation (2.15) that takes
the original system described in (2.14) into observer canonical form (2.16).
Walcott et al [62], using arguments given by Bestle and Zeitz [6] showed
that the necessary transformation z = T(z°), in the single output case, can
be determined, under some restrictions, as follows:

L3(dh)(z) [ 0 ]
Ly(dh)(z) | aT 0
.

i (2.18)

L?'l(;h) (z)

Noting that the matrix on the left hand side is the observability matrix
(see Appendix B), one can say that it is nonsingular if the system is locally

weakly observable. Therefore :—; can be determined.
The full Jacobian matrix can then be computed:
oT oT 1, OT ne1, OT
z° = (Gdof, az;) (ad f) a_z;) ces (ad f, -é-z—i- (2.19)

The transformation T'(z*) can be determined by the integration of the Ja-
cobian matrix (2.19).
A similar procedure was shown to exist for multiple-output case [32,62].
The existence of desired transformation (2.15) is associated with the
integrability of (2.19). This condition is given by the following theorem
presented by Krener and Respondek (32] :
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Theorem 2.3 Let g'(£),...,9°(€) be the vector fields defined by

0 f0<I<k-1
L"'L’(y")={6." :';l=k.-—1

where 6.-5 18 the Kronecker delta symbol and k; are the observability sndices.
The change of coordinates z = T(z*) ezists if and only if

[ad*(~f)g',ad (- f)¢’) = 0
IO" 1’J= 1,""p; k=0""’ki _l;l =01""k1' -1

This family of observers was further developed by Keller [27] and Zeitz
(68].

The observer design is reduced to a simple linear design, once the trans-
formation is made. Unfortunately this is not always possible, as suggested
by the above theorem. Furthermore, successive manipulation of f and h
(i.e. taking partial derivatives, Lie derivatives and Lie Brackets) to find the

necessary transformations brings up the issue of robustness. In principle
this method requires a perfect knowledge of the system being observed.

2.6 Pseudo-Linearization Methods

A different transformation, that takes the original system into an observer
canonical form, was proposed by Nicosia et al. [41] and Reboulet and
Champetier [44]. The method, called Pseudo-Linearszation, takes the sys-
tem given by:

z = f(z,u)
y = hk(z) (2.20)
and transforms it, near operating points, to the form:

z = Az2+1(y,u)

y = 2, (2.21)
[0 0 ... 0 0]
10 00

A = 01 0
00 1 OJ
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through successive transformations ([41] and [44]) that involves lineariza-
tions about the set of operating points and a state variable transformation
that brings the system in the form above. When this transformation can
not be performed exactly, it is obtained (whenever possible) by neglecting
second and higher order terms near the operating points. Actually, com-
paring this method with the global linearization method one can see that
the final observable form is exactly the same, therefore the observer design
is carried out in the same manner.

The difference is the procedure used to transform the system into the
observable canonical form (2.21). The existence of the desired transform-
ation can be shown in a constructive way for a single-input-single-output
(SISO) system.

Assume that the system, given by (2.20), has a set of operating points:

Sz,u = {(IO,UO) l f(-"?o, uO) = 0}

Now, suppose there exists a state space transformation :

Y1 = h(z)
% = di(z);i=2,...,n

such that S(y,u) = {(¢% 4% : ¢ =...=¢2 =0;u’ = u(y9)}.
In this new coordinate, the system becomes:

'j) = f(¢1u)
y = th

The linearized system about operating point v, is then:

5 = A(1)6y + B(yy)bu
by = 6y, (2.22)

Now, assume that the linearized system (2.22) is observable. Then one can
make an additional transformation z = z(y) so that

6z = A'6z+ v(v°u0)by + 72(y°, %) 6u
by = 6z, (2.23)

27



Based on equation (2.23), and neglecting second and higher order terms-
provided that they can be neglected—- one can describe the original system,
near operating points, by:

2 = Az+1(y,u)

y = 2z,
which is the desired form (2.21).

The advantage of this method is that the observer design becomes very
easy, once the observer canonical form is obtained. The transformation is
possible for a class of problems for which the global linearization might
fail. The above description shows how to construct such a transformation
for SISO systems; it does not apply for Multiple-Input-Multiple-Output

(MIMO) systems however, and in this case no formal method is known.
The drawbacks of this method are :

e only local properties can be guaranteed;

e perfect knowledge of the system is required, in order to build the
transformation. Some uncertainties are allowed if they only affect
higher order terms in the observer form (2.21).

2.7 Extended Linearization Methods

The Eztended Linearization Method is another method which exploits the
useful tools available for linear systems. It falls into thz category of gain
scheduling methods, i.e. it gets a desired behavior for a family of linearized
systems when in the neighborhood of a set of constant operating points.
Specifically for this case, Baumann and Rugh [4] suggest how the eigenval-
ues of the estimation error dynamics can be made invariant with respect
to the operating points parameterized by a set of constant inputs.
Let us assume that the system is given by :

z = f(z,u); z(t=0)= 2z
y = h(:l:) (2.24)
and let the obsei ver be:

£ = f(zu) +9(y) - 9(0)
y = h(:‘f) (2.25)
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where the analytical function g : R — R" is to be determined, with g(0) =
0.

The dynamics of estimation error Z=z — % is:
= J(z,u) — f(z— Z,u) — g(y) + 9(D) (2.26)

Linearizing about constant operating point, £ = 0 and u = ¢, one can
write : )

z = [D:\f(z,€) — Dg(y) Dh(z)]Z
where: D, f = %é, Dg = gf’-, Dh = %.

If the pair (D,f, Dh) is observable, then a constant matrix C (par-
ameterized by €) can be determined so that [D;f(z,€¢) — C(¢)Dh(z)] has
arbitrary poles at each operating point parameterized by u = .

Gain scheduling can be performed if one can find a function g, such that

Dg(yc) = C(e)

Then, the function g(€) can be found by integration. The resulting ob-
server (2.25) will have invariant time constants with respect to the operat-
ing points.

Bauman and Rugh [4] also showed that a similar procedure can be used
for reduced order observers.

The natural question that arises is when does the function g exist ? The
sufficient condition for the existence of gain function g(€) is given by the
following theorem [4] :

Theorem 2.4 Suppose that the analytic sysiem :
z = f(z,u); z{t=0)=1zq
y = h(z)

is such that D,f(0,0) = [%{] evaluated at z = 0,u = 0 is invertible(i.c.
the system has no free integrators), (D,£(0,0), Dh(0)) is an observable pair
and Dy(0) # 0.

Then there ezists an analytic function g(.) : R* — R™ with g(0) = 0
such that the esgenvalues of the linearized equation

z = [D1f(z,€) — Dg(y) Dh(z))z

are locally snvarsant with respect to e.
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The clear advantage of this method js that it offers an extension of the
Luenberger Observer, formalizing the concept of gain scheduling, guaran-
teeing nominal performance with no reference to robustness, in the neigh-
borhood of constant operating points.

The drawbacks are that only local behavior can be guaranteed, i.e., the
eigenvalues are constant in a sufficiently small neighborhood of constant
operating points. If disturbances and modelling errors are present, then
the performance and stability cannot be guaranteed.

2.8 Thau’s Method

The method introduced by Thau , in 1973, is basically a verification meth-
od, rather than a design method. In his paper, Thau [58] gave a sufficient
condition for estimate convergence. The original work was further extended
for deterministic problem by Kou et al. [30] and Banks [2], and for the
stochastic case by Tarn and Rasis [57].

The original Thau’s method assumes that the system is given by:

f(t, z)
y = h(t,z) (2.27)

The observer is assumed to have a structure given as:
z2=g(t,y,2)

where 2z = §(2), & is invertible.
Thau showed that,

o if g and ® are such that :
a9
3. (62) = 9(t, h(t,2),8(z))

¢ if in the process of linearization of the error dynamics, the second and
higher order terms can be neglected by observing that:

IGa(t, o)l
lep - °
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uniformly in t, as e goes to zero; where e and G,(t,e) are defined as

e = z—¢(z)
é a1(t, e) — ga(t)
ai(t,e) — g2{t) = Gi(t)e+ Ga(t,e)e

o if the linearized system
é = Gl(t)e

is uniformly asymptotically stable

then the local asymptotic stability can be attained through a suitable lin-
earized observer.

A stronger result was derived by Kou et al. {30}, for the system given
by (2.27). Suppose the observer is

z = f(2) + g[h(z), h(2)]

Then the asymptotic convergence (||z(t) — 2(t)|| # 0 as ¢t — oo ) can be
determined if a Lyapunov-like function[30] can be found.

In particular, if g[h(z) — h(z)] = H(h(z) — k(z2)), then a more explicit
condition can be determined.

First, say that a matrix function M(z) (z € R") is Uniformly Negative
Definste (U.N.D.) if there exists an € > 0 such that

wTM(z)w < —¢||w||? ; forall(z,w) € R" x R"

Using this definition the condition for asymptotic convergence is stated
by the following theorem:

Theorem 2.5 For system (2.27), if there exist a constant n X m constant
matriz H and a positive definite, symmelric n X n matriz Q so that

Q(Vf(z) — HVh(z))
18 U.N.D., for some € > 0, then the dynamic system

2= f(z) + H(h(z) - h(2)
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with any initial condstion z(to) is an asymptotically convergent observer for
(2.27) and

l2(8) = 20l < [ Zlelto) = a(to)ll expl-~ (¢ = to)]

for all t > to, where q, and q; are the smallest and largest eigenvalues of @
respectively.

A better result can be obtained for a particular class of problems,
namely for a system that can be described as:

t = Az+¢(z,y,9)

y = Cz
$(z,v,9) = $1(y) + [Ve2(v)]§ + ¢3(<) (2.28)
with any ¢;,4s € C! and ¢, € C? such that C[Vé:(y)|y = 0.
Defining the matrix norm as ||A|| = [Amaz(ATA)]?, where Anaz(A)

(Amin(A)) denotes the largest(smallest) eigenvalue of constant matrix A.
Also define

[Véslloo = sup ||Vés(z)]|
ZER"

The existence of a ezponentially stable observer is guaranteed by the
following theorem:

Theorem 2.8 For the nonlinear system (2.28), if

o (A,C) i3 an observable pair;
o there exists two positive definite, symmetric, n X n matrices P,Q and
a constant matriz H such that
QA-HC)+(A-HC)TQ=-P
and
l_Anﬁn(lj)
2 Amaz(Q)

then there ezists an asymptotically stable observer for (2.28).

> "V¢3”oo
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These results were extended to a more general system by Banks [2].
One particular case is treated by Thau [58]. Assume the system :

= Az + Bu+ f(z)
= Cz (2.29)

and choose the observer as:
%= Aoz + Bu+ f(2) + Hy (2.30)

where Ap = A — HC has eigenvalues in the open left-half plane. Define the
error as T = Z — z. The error dynamics are:

z= Ao+ f(z + 1) — f(2)

Because Ag is Hurwitz (i.e. the eigenvalues are in the open left-half-
plane), given a positive definite matrix P, there is a constant, symmetric,
positive definite matrix @ such that

ATQ+QAg=—2P
Now, assume that f(.) is locally Lipschitz about the origin, i.e.

1£(z1) = f(z2)]| < Lllz1 — 2o

Using a quadratic Lyapunov function V = zTQZz, Thau showed that the
estimation error Z converges asymptotically to the origin if :

Arm'n(P)
Amas(@)

These particular cases show that if the problem at hand can be reduced
to one of these cases, then the observer design can be simple; otherwise,
Thau’s method only allows the verification of stability.

Even this verification is local in general, unless f(.) is globally Lipschitz.
Another drawback is that it does not handle modelling errors.

L
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2.9 Adaptive Observers

A robust adaptive observer for a class of nonlinear second-order systems
whose coefficients are bounded and have bounded time-variation was pre-
sented by Gevers and Bastin in 1986 [18].

It assumes that the system is given by:

y+ai(y, 5, )9 + a2(y, 9,8) + f(y) = b(y, ¥, t)u (2.31)

where a,, a, and b are unknown functions of time( they may depend on y
and y ); f(y) is a known function of y.
Assume that the following conditions hold:

1. The coefficients a;, a; and b are continuous with respect to y, y and
t and differentiable with respect to t; moreover assume that they are
bounded as:

0<h<a;<l, 0<m<a<m. 0<n <b<n

for some finite l,, m, and n, that satisfy:

mg + 2,/mim, + 5m,
VM2 — J/m

2. Given a k, 0 < k < oo, assume that:

[, <

y h>ymy—m

|&1|Sk’ |&'2|Sk
B <k, |aa| <k , Vte€[0,00)

3. u(t) and y(t) must belong to Ua and |u(t)] < M < oo, for all t €
[0,00). U, is defined as:

e definition 1: U, is a set {¢;} of points in [0, 00) for which there
exists a A such that for any ¢;,t;€U, with ¢; # t;, |t; — t;| = A.

e definition 2 : A function u(t) belongs to U, if there exist A and
UA so that

(a) u(t) and u(t) are continuous on {[0, o) — Ua};
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(b) there exist constants M; and M; so that |u(t)] < M, and
|&(t)] < Mz, Vt € {[0,00) —~Ua} ;
(c) lim, ,,+ and lim,_,- are finite for each t; € Ua.

4. 16 > 0,3t0 > 0,3a > 0 so that :
r+6
/ W(t)WT(r)dr > oI
t
for all t > to. WT(r) is defined as:

1
wT(r) = (s—+—7—)3[u su s*u s’u

for some arbitrary 4 > 0.

5. f(y) is a known bounded function of y and 3N, 0 < N < oo such
that:

|f(y)| <N, Vte[0,00) and all u(.)

The system (2.31) can be transformed into an adaptive observer canon-
ical form[18] using the change of variables:

nn =Yy

2 = y+(a1-co)y

0, = ¢c3—aq

0; = a; —az+ca; —c2

for some positive arbitrary constant c;.
And the system (2.31) can be rewritten as:

i) = Rz(t)+ﬂ(u,y)9(t)+[ f?y)]
y(t) = =,

where zT = [z, z;], and:

R=[g _162] , ﬂ(u,y)=[g 2 :] , e=[§;} , Bs=b (2.32)
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Given the system in this form, the adaptive observer s given by:

2 A A 0 az
:1:=Rxﬂ(u,y)@+[ ]-}-[VT(:.)]

where VT = [0 v, vy] and,
!.)2 P—Cz 0 Yy . _
2] = [ S+ [2]  voso

¢ = V2
[ Vs

.
A

© =T®% ; I'>o0

where z;, = z, — Z), and ¢, ¢; and T are the design parameters that
determine the dynamics of the observer.

If the problem at hand falls into the category of problems in the form
(2.31), and if the assumptions are all satisfied, the global stability can be
guaranteed [18].

There are two drawbacks: the first is that the assumptions are difficult
to verify, therefore for uncertain systems they have to be assumed g priori,
and the second is that the scheme requires a substantial amount of real-
time computations due to the seventh-order ordinary differential equation
and the definition of its parameters that are coupled.

2.10 Set Theoretic Approach

Consider an observable linear time-invariant system:

z = Az+ Bu
y = Cz (2.33)
where z € ", u € R* (control vector), y € k™ (measurements), A, B, and

C are constant matrices of appropriate dimensions. C is assumed to be full
row rank.
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Suppose that A and B contain some uncertainties, so that they can be
written as the sum of nominal parts Ao and By and perturbation terms A A
and A B, which can be nonlinearities, i.e.

A = A+ AA
B = By+AB

A reduced order observer is considered in this case, and it is assumed
to be in the form

z2 = Fz+Gy+ Hu
z = My+ Nz

where 2 € R"™™ and % is the vector of state estimates.

Assuming that C has the structure C = [I,, 0], i.e. the measurements
are a subset of the states, one can rewrite the system equation (2.33) in
terms of submatrices of Ay and B, [37]. In this way, one can write the
matrices F', G, H, M and N as:

F = Axp+ LAy,

G = LA+ An—FL
H = LB, + B,
MT = [Ipn-m L]

NT = [0 I,]

T = [L Ln-m)

where the matrix L is the observer design parameter.
The estimation error Z = 2(t) — T'z(t) becomes:

I = Fi(t)+ Tv
v = —(AAz+ ABu)

The “disturbance” v(t) is assumed to be unknown, but bounded, in the
bounding ellipsoidal set sense, i.e.:

v(t) € N
N = {v(t)v'Q v <1}
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where Q is a positive definite matrix defining the bounds. It can be deter-
mined in several ways as described in [55,65].

Using this approach, Schweppe [55] shows that the estimation error at
any time ¢ is contained within an ellipsoidal set (1, given by:

it=0) € {FFY <1}
Q. = {#zT'2<1}

I'(t) = FT(t)+T{)F +B()T(t) + ToT

B(t)
T(t=0) = ¥

where B(t) is a positive real scalar that gives design freedom for the con-
struction of bounding ellipsoidals.

For linear time-invariant systems, assuming ergodicity, one is often in-
terested in the steady state. Assuming that F+ (8/2)I is stable , the I', is
the solution of the Lyapunov Equation:

gy
2

B

(F+ =D, +T,(F+ EI)'+TQT' =0 (2.34)

where Q = 5Q-

The design objective is to minimize the bounding ellipsoidal set, which
means that the estimation error will be reduced, that is determine the
matrix L so that the following criterion is minimized:

J =tr(T,) (2.35)
The solution for this problem is given by the following theorem (65]:

Theorem 2.7 The observer determined uriguely by the matriz L* min-
mizes the criterion (2.85) if and only if the following conditions hold for
some posstive scalar (:

1. L*= —(I‘:A’n-i'én)él'll, where the symmetric positive definite matriz
T'; satisfies:

. 1 - s 1,
I'!(A2 — QuQi Az + Eﬂf)' + (A2 — QuQil Az + Eﬂf)l‘.
- I::A'uéf}lfhzr: + Q22
- Qlel-ll '21 =0
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2. Aj;+ L*A,;; has eigenvalues in the open left half plane.

The above condition involves a particular choice of §, which as was
stated before, determine the estimation error bounding set. Wang et al.[65]
suggested two possible ways to choose S:

e As suggested by equation 2.34, the value of 8 can be used to guar-
antee that the eigenvalues of Az, + L*A,; are well to the left of some
prescribed value;

e another approach is to choose § that minimizes the trace of T';, i.e.
minimizes the “size” of the bounding set. As shown by Wang et al.,
this procedure requires the use of a numerical iterative optimization
method such as a gradient-search method.

This method exploits the convenience of dealing with a linear system,
resulting in an elegant method for observer design. The only drawback is
that it only uses a linear correction term, which may not be sufficient for
many problems [3].

2.11 Walcott and Zak’s Variable Structure
Method

The only Variable Structure Observer in the literature, besides the one
presented in this thesis, is the observer suggested by Walcott and Zak
(63,64].

Let the system be given by:

z = Az+ f(z,t) + Blu(t) + v(t)]
v = Cz

where £ € R*, u € RP, y € R™, A, B, C are constant matrices of appropriate
dimensions, B, C of full rank and f(z,t) is assumed to be continuous. v(t)
is the input disturbance.

This observer requires the following assumptions:

1. The pair (A, C) is detectable. This is equivalent to 4o = A — HC
being Hurwitz for an appropriate choice of H ;
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2. 3Q > 0, Q € R™*™, and vectors k(t,z) and w(t) so that:

f(z,t) = P 'CTh(z,t)
Bu(t) = P7'CTw(t)

where P is the (positive definite, unique) solution of the Lyapunov
Equation:
PAs+ ATP = -Q

3. Let £(z,t) = h(z,t) + w(t) and assume that ||£|| < p, p > O for all x
and positive t.

Let the observer be defined as :

8 = Ao+ S(%,y)+ Hy+ Bu

S5 _ 0 forallze N
(2,9) = =PCI0%) otherwise

where N={z2:Cz=0},z=1% - z.

Walcott and Zak [63,64] show that, if the former assumptions are all
satisfied, then the estimation error Z goes asymptotically to zero as t — oo .

Walcott and Zak also presented a version of this observer using a bound-
ary layer [49].

Analyzing the assumptions, one can see that assumptions 1 and 3 do not
pose severe restrictions, However, assumption 2 imposes a severe restriction
on the structure of nonlinearity/modelling error and disturbances. The
necessary condition for satisfying this assumption is that f(z,t) and Bu(t)
must be in the row space of observation matrix C, i.e., they must “affect”
‘he measured variables directly.

The advantage is that if the assumptions are satisfied, then the observer
is insensitive to disturbances/nonlinearities/uncertainties.

As will be shown, this Variable Structure observer and the sliding ob-
server presented in this thesis are identical under some conditions.

2.12 Summary

In this chapter, a fairly comprehensive, but by no means exhaustive, review
of nonlinear state estimation methods was made. All methods have their
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own positive aspects, either as extensions of linear techniques, or as novel
nonlinear techniques.

Unfortunately they all have serious drawbacks. Some of them require
perfect knowledge of the real system —no modelling error is allowed - and
this is seldom true. Some methods will need powerful microprocessors,
because of heavy computational loads. Some do not have any stability
guarantee, at least in a global sense.

Other methods have known robustness, but they are limited either be-
cause the allowakle modelling error is too restricted, or because it is simply
too difficult to verify the underlying assumptions.

All these points suggest that a simpie and robust observer is required
for practical application. The following chapters will try to show that the
Sliding Observer can meet some of these requirements.
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Chapter 3

Fundamentals of Sliding
Observers

3.1 Overview

This chapter discusses generzl features offered by sliding mode control, and
which motivated the development of the sliding observer.

General basic concepts of the sliding mode control and the behavior
of the sliding observer is discussed in the next section. In this section, an
intuitive extension to systems in a companion form is shown, together with a
brief analysis of the effect of measurement noise. The section concludes with
a brief discussion of general multivariable systems pinpointing a difficulty
that exists in designing sliding observers.

Section 3.3 describes the design, and performance of a sliding observer
for a nonlinear second-order system, based on simulations in a digital com-
puter. As will be clear, it constitutes 2 successful design.

Unfortunately, the basic design rules that can be derived from the anal-
ysis done in this chapter does not guarantee the convergence of state es-
timations. It is shown, in Section 3.4, that even for a simple third-order
system in canonical form the basic rules may indeed fail. This example
will motivate the need for more involved study and for reliable design tech-
niques. :

This chapter is concluded with a brief section that highlights its main
points. The differences between the sliding mode controller and sliding
observer — which are not dual concepts - is made clear, and the unavoidable
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consequences is presented. These consequences motivates the study done
in the following chapters.

3.2 General Features of Sliding Observers

3.2.1 The basic concept of Sliding Mode Systems

The basic idea of a sliding mode, linked to the potential advantages of using
discontinuous (switching) control laws, is shown in this section. Consider
the dynamic system:

z™(t) = f(x;t) + b(x; t)u(t) + d(t) (3.1)

where u(t) is scalar control input, z is the scalar output of interest, and
x = [z,z,...,2{" V|7 is the state. In equation (3.1) the function f(x;t) (in
general nonlinear) is not exactly known, but the eztent of the imprecision
|Af| on f(x;t) s upper bounded by a known continuous function of z and
t; similarly control gain b(x;t) is not known exactly, but is of known sign,
and is bounded by known, continuous functions of x and t. Both f(x;t)
and b(x;t) are assumed to be continuous in x . The disturbance d(t) is
unknown but bounded in absolute value by a known continuous function
of time. The control problem is to get the state x to track a specific state
Xq = [zd,:i:d,...,:c&"'l)]T in the presence of model imprecision on f(x;t) and
b(x;t), and of disturbances d(t). To guarantee that this is achievable using
a finite control u, one has to assume that:

X|e=0=0 (3.2)

where X := X — x4 = [%, %, ..., Z(""V]T is the tracking error vector; the relax-
ation of this assumption is discussed in greater detail later. One must also
define a time-varying sliding surface s(t) in the state-space R" as s(x;t) =0
with p

8(x;1) := (E +A)" Yz, A>0
where A is a positive constant. Given the initial condition (3.2), the problem
of tracking x = X4 is equivalent to that of remaining on the surface s(t)

for all t > 0_; indeed, 8 = 0 represents a linear differential equation whose
unique solution is Z = 0 given the initial conditions (3.2). Now a sufficient
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Figure 3.1: The sliding condition

condition for such positive invariance of s(t) is to choose the control law u
of (3.1) such that outside of s(t)

%%sz(x; t) < —nls| (3.4)
where 7 is a positive constant. Inequality (3.4) constrains trajectories to
point towards the surface s(t) (Figure 3.1), and is referred to as the sliding
condistion.

The idea behind equations (3.3) and (3.4) is to choose a well-bel: !
function of the tracking error, s, according to (3.3), and then select the
feedback control law u (3.1) so that s? remains a Lyapunov function of
the closed-loop system despite the presence of model smprecision and of
disturbances. Furthermore, satisfying (3.3) guarantees that if condition
(3.2) is not exactly verified, i.e. if X|c=o is actually off x4|i=o, the surface
s(t) will nonetheless be reached in a finite time inferior to |s(x(0);0)|/n
, while definition (3.3) then guarantees that X — 0 as ¢ — oo . Control
laws that satisfy (3.4), however, have to be discontinuous across the sliding
surface, thus leading in practice to control chattering.

The obvious problem in similarly exploiting sliding behavior in the de-
sign of observers, rather than controllers, is precisely that the full state
is not available for measurement, and thus that a sliding surface defini-
tion analog to (3.3) is not adequate. Some intuition can be developed for
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Figure 3.2: Second-order system with single input switching

addressing this difficulty by considering simple second-order dynamics.

3.2.2 Shearing Effect and Sliding Patches

Consider, now, the generation of sliding behavior in a second-order system
through input switching according to the value of a single component of
the state, rather than a linear combination of both components, as in (3.3).
The system

I = I
Zz = —kysgn(z,)
where k; is a positive constant and “sgn” is the sign function, clearly ex-

hibits no sliding behavior (Figure 3.2). On the other hand, consider the
system '

£, = z;— kysgn(z,)
iz = —k,sgn(z;)

where k, and k, are positive constants. The corresponding phase-plane
trajectories are illustrated in Figure 3.3, which can be constructed from
Figure 3.2 by shifting the trajectories on the right half-plane upwards, by
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Figure 3.3: Shearing effect

the quantity k,, and by similarly shifting the left half-plane trajectories by
—~k,. This shearing effect generates sliding behavior in the region

(Ig‘ S kl , Iy = 0 (35)

which is referred to as the sliding patch. The detailed analysis follows. The
condition

éi;(zl)2 <0
is satisfied if condition (3.5) holds, which defines the sliding patch. The
dynamics on the sliding patch itself can be derived from Filippov’s solution
concept (13|, which formalizes engineering intuition: the dynamics on the

patch can only be a convex combination (i.e., an average of the dynamics
on each side of the discontinuity surface

£y = A(z2+ ki) + (1 =9)(z2~ ki)
£z = qk2) + (1~ 7)(—ka)

The value of - , and therefore the resulting dynamics, are then formally
determined by the invariance of the patch itself:

: . ke
) =0 = I,=-—1
ky
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Thus, z, exponentially decreases to 0 after reaching the sliding patch,
with a time-constant k;/k,. Furthermore, one can easily show that all
trajectories starting on the z; axis reach the patch in a time lesser than
|z2(t = 0)|/(k1k2) Actually, sliding can be guaranteed from time t=0 by
making k; and k, time-varying, with

ks

ky, ~

ky > |za(t =0)]e™

where a = a(t) is any positive function of time.

3.2.3 System Damping

Consider now the system
£, = —hyizy + z3 — kysgn(z,)
Tz = —hyzy — ko2sgn(z,)

Repeating the previous analysis, the sliding condition is verified in the
extended region
z2 < ky + hiz, if ;>0
T, > —ky + hzy if <0
as illustrated in Figure 3.4. Thus, the addition of the damping term in h,
increases the region of direct attraction. Furthermore, the value of k; only

affects the capture phase but not the dynamics on the patch itself, which
remains unchanged:

.k
I = —k—l-’ﬁz

3.2.4 Systems in Canonical Form with Single Mea-
surement

Systems with a Single Measurement

Now consider the system

i1=$2
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Figure 3.4: Effect of system damping

where f is a nonlinear, uncertain function of the state x = [z,,z; = ;).
Exploit the preceding development to design an observer for this system,
based on the measurement of z; alone. From the previous discussion, one
can use an observer structure of the form

Zy = hZ,+ Z;+ k1sgn(z;)
Z; = heZy+ kasgn(Z) + f

where 7, = z; — %, f is the estimated value of f, and the constants
hi are chosen as in a Luenberger observer (which would correspond to
ky = 0,kz = 0) so as to place the poles of the linearized system at desired
locations —¢; . The resulting error dynamics can be written:

él = _hlil + J.:z - kl sgn(il)

L = —hgil - kg sgn(i;) + Af

The value of Af = f — f depends both on the modelling effort and on
the computational complexity allowable in the observer itself. Assume that

dynamic uncertainty A f is explicitly bounded. Known nonlinear terms may
also, for simplicity, be treated as bounded error (using known bounds on the
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actual system state) and included in A f. The effect of A f is compensated
by exploiting this knowledge of its generally time-varying bound, as will be
later illustrated.

The methodology could, in principle, be directly extended to n'*-order
systems in companion form: .
n)__ r
where z, is the single measurement available. The observer structure is
then of the form

Z, = hi% + %, + kysgn(z,)
."i:z = hz.‘il + 573 4 kz sgn(fél)
én = hni:l + f+ kn sgn(il)

The n — 1 poles associated with the implicit dynamics on the patch are
defined by

C—kyfky 1 0 -+ O
—ks/ky O 1 -+ 0

det(plon—| 11 . il)=o0 (3.6)
S S |
| —kn/ky 0 0 --- O

Where the I,,_; is the identity matrix of order n — 1. Thus, the poles
on the patch can be placed arbitrarily by proper selection of the ratios
ki/ky,[t = 2,...,n]|. A possible choice is to define k; as the desired precision
in 1.:2. Let
ko 2 |Af]

and let the ratio k,/k; be constant. Finally define the remaining gains
ki, [t = 2,...,n — 1] s0 that the implicit dynamics associated with the patch
is critically damped, i.e., have all poles real and equal to a positive constant

A

3.2.6 Effects of Measurement Noise

Consider again a second order system with a single measurement, now
corrupted by noise v = v(t)

Zy = —hy(Z;+v)+ Z; - kysgn(Z, + v)
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I, = —ha(Zy + v) —kasgn(Z, +v) + Af
Although the presence of the terms in sgn(Z;+v) makes an exact stochastic
analysis fairly involved, useful insight can be obtained by using appropriate
simplifying approximations.

Assume, first, that v is a deterministic C! signal of bounded spectrum:

Ofw<w_orw>w; — F(w)=0

where F, is the Fourier transform of v. Sliding behavior, if any, can then
only occur on the surface
51 +v=0

Repeating the analysis previously made, the sliding region is then defined
by
|Z2 + 9| < Ky

and the equivalent dynamics are given by

531 = -V
. k. k.
I+ k;zz = k1v+Af

Two limiting cases deserve particular attention:
l. wy € ﬁ Then, if Af=0
. . o k2
Iz =-v , |v| < Flv|maz
1
In particular, the estimate of z; is exact if the measurement error in

7, is constant.

2. w_ > . Then,if Af =0
1
=0

The above discussion implies that, as could be expected, the system can-
not remain in a pure sliding mode in the presence of arbitrary measurement
noise. Further analysis can be made using Random Input Describing Func-
tion, as shown in Chapter 6.
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3.2.8 General Multivariable systems
Consider the n'® order nonlinear system:
x= f(x,t) , x€eR" (3.7)

and, for convenience, consider a vector of measurements that are linearly
related to the state vector:

y=Cx ,y€eR™ (3.8)
Define an observer with the following structure:
% = f(x,t) + Hj — K1,

where X € R", f is our model of f, H and K are n x m gain matrices to be
specified, and 1, is the m x 1 vector

1, = [ sen(s) sgn(@) - sgn(im) |

where

Ui = yi — X

and ¢; is the i-th row of the m x n C matrix. Also define the error vectors:

7]

= g=C(x—X) (3.9)
X = x-—-

>

Using equations (3.7) and (3.8) one can write:

x=Af-Hj—- K1, (3.10)
where R

Af= f(xat) - f(iat)
For convenience the equation (3.10) can be rewritten as,

x=f,f=Af-Hj-Kl,

One would say that the straight extension of the discussion regarding the
sliding observer for a second-order system could lead to the conclusion that
the m dimensional surface, s = 0 ,would be attractive if,

88, <0 ,1=1,---,m
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Unfortunately, it is not enough as shown in Section 3.4. This condition
constraints some of the gains, and the remaining ones are free to be chosen
according to some other constraint, e.g. equivalent dynamics. What hap-
pens is that the final choice of the gains are nct necessarily the ones that
will guarantee stability, even inside the siiding patch.

The methods discussed in this section — not valid in general — are now
applied to a second-order system.

3.3 A Second-Order System

Consider a second order nonlinear system, consisting of a mass connected to
a nonlinear spring in the presence of dry friction and stiction, in companion
form :

I = I
2 = —kz}— f(z2) +u
y = 1+v (3.11)

where v is the measurement noise, « is a constant nonlinear spring coeffi-
cient, and f(z;) represents dry friction with stiction. For this system, the
sliding mode observer can be written :

Z hiy + z; + ky sgn(y)
5:2 = hzg - kii - f(fiz) + u -+ kz sgn(ﬂ)
y = —yi

The numerical values used in the simulations are :
e x=10;
e F, = 1.0 = static friction ;
e F;=0.75 = dynamic friction ;
while the estimated values used in the observer are :
e xk=0.75;

e F, = 1.25 = static friction ;
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o Fy=1.00= dynamic friction ;

Dry friction with stiction represents a multivalued function at the origin,
and therefore, no linearization technique can be applied. Assume a white
measurement noise with standard deviation .1. Modelling the effect of
parametric uncertainty as a white process noise acting on state z, with
standard deviation 1, approximating (incorrectly) dry friction by viscous
friction, and linearizing, the Kalman Filter gains h; and h, can be obtained

hy = 38
h.z = 7.2

The switching gain k,; is chosen as a bound on the steady state estimation
error on I, and k; is chosen to be larger than modelling errors.

kl = 0.1
k, = 20

The true system is excited by a sinusoidal input :
u = sin(t)

and the initial conditions are: z,;(0) = 0.0 and z,(0) = 0.5; with the
estimated initial conditions: %,(0) = 0.0 and %,(0) = 0.2.

The simulation results, in the absence of measurement noise, are shown
in Figure 3.6.

The results with gaussian measurement noise of standard deviation .1,
are shown in Figure 3.7. In this simulation, the sign function was replaced
by the relay with dead-zone (Figure 3.5), with dead-zone width é equal
to the standard deviation of measurement noise 0.1. The reason for this
choice is that for small estimation error the linear correction term must
provide adequate correction because the effect of the uncertainty term will
be small. When the estimation errors become larger, the switching term
becomes active, compensating for the modelling errors. Another reason for
replacing the signum function with relay-with- dead-zone is to avoid the
high-gain effect of pure relay at the origin !. These points will be discussed
more extensively in Chapter 6.

10ne can run a simulation with pure relay and verify that actually the sliding observer
will perform poorly.
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Figure 3.5: Relay with dead-zone

These simulations show that, in spite of the parameter mismatch, the
sliding mode observer provides adequate performance.

The reader may be curious about how a simple “Kalman filter” would
perform in this problem. This would correspond with using the linearized
model alone and with letting k; and k, equal zero in the sliding mode ob-
server. The corresponding comparative results are shown in Figure 3.8. As
one can see, the sliding observer yields a considerable increase in perfor-
mance, with a minor increase in complexity.

This example shows the actual potential of sliding observer. The fol-
lowing example shows that the simple rules shown here are actually not
sufficient to guarantee stable observers.

3.4 Motivation for Further Study: a Third-
Order Example

Assurne that a sliding observer was designed for a third-order plant with a
measurement of z; only. The error dynamics would result as:

Z, = —hz;+23-kl,
Ty = —hzi+ 23— kl,
ég = —hgil +w-— ksl.
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Figure 3.6: Nonlinear deterministic case: true and estimated states. One
can see that the estimation is essentially perfect
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Figure 3.7: Nonlinear stochastic case: true and estimated states
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Clcarly, the measurement is done on the first state only. Under this condi-
tion, the sliding surface is chosen as s = Z, = %; — z,. Therefore the sliding
condition ]

%, <0
is satisfied if |Z;| < k;.

Because z, is measured, it is reasonable to assume that Z; can be taken
arbitrarily close to z;, i.e. one can assume that the trajectories start exactly
on the sliding patch.

If this is true, the “linear gains” h;, h; and hs have no effect, therefore
they can be set to zero.

The behavior on the sliding patch - if sliding actually occurs - can be
found by applying the Utkin’s equivalent dynamics [59], or the Filippov’s
arguments [13]. The results is:

~ ~ k2 ~
I2a = ZX8a— 7 T2a
ky
X ks ..
T3ag = W — 7 I2q
ky

Suppose that the modelling errors, input disturbances and reglected dy-
namics are acting as
w = 1.4sgn(Z3)

Since |w| < 1.4, kj is chosen to bound its effect, e.g. let ks = 1.5.

As was shown, k; is linked to the size of the sliding patch, or equivalently
associated with the desired accuracy in the estimation. Say that one wants
the estimation error to be less than 0.1, therefore take k; = 0.1.

It is reasonable, as was shown before, that the behavior on the sliding
patch is made critically damped. This defines the gain k;. The final set of
gains is:

kl = 0.1
kz = 0.774
ks = 1.5

In this case, the “sliding condition”, %,%, < 0, would simply imply that
the sliding patch would be defined by |Z;| < k;. With this condition in
mind, the initial estimation errors are chosen as z, = 0, Z, = 0.05, and
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Z3 = 1.0. Obviously the initial estimation error is well inside the “sliding
patch”. The result of a simulation, using SIMNON, is shown in Figure 3.9.

Even though the system started inside the sliding patch, satisfying the
sliding condition, the estimations are diverging. The instability of error
dynamics, in this example, is unexpected from the analysis made in this
chapter.

In this example, the flaw in the design process is in assuming that the
sliding condition is sufficient to guarantee the stability of error dynamics,
which is not true, as shown. In this example the input disturbance was
chosen so that, even though it is been bounded by ks, it is able to drive
the trajectory to outside the sliding patch. Clearly, the sliding condition
alone does not give a satisfactory guidance over the choice of the gains. In
particular, it gives no explicit clue on how to choose the gains h;, and the
choice of the gains k; are not necessarily the ones that will guarantee global
stability.

Actually such difficulties could be expected. As shown by White [66]
variable control systems with switching based on some, but not all, states
have difficulties in terms of reachability of the sliding surface. This means
that, in some situations, the set of possible trajectories might not include
trajectories on the sliding surface.

3.5 General remarks

Clearly, the analysis made in this chapter shows that sliding observer theory
requires further studies. It was shown that for a simple second-order system
the sliding condition can be derived from the phase-plane analysis, and that
the observer can be made very robust against modelling errors, neglected
dynamics, input disturbances and uncertainties. It was also shown that for
this case the accuracy can also be determined by choosing the size of the
sliding patch.

Some of the analyses done for this particular class of second-order sys-
tems were extended to higher-order systems. Unfortunately, the design
rules drawn from the second-order system are not sufficient to guarantee
stable observers for high-order, that is more than second-order, systems.

Actually, the conditions for the stable sliding observer are more involved
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than the ones shown in this chapter. These are given in Chapter 4. As
will become clear, the combined choice of linear gains and switching gains
guarantees a stable and robust sliding observer. The drawback that appears
is that, in many instances, the sliding patch will not exist any more, and
actual sliding does not occur.
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Chapter 4

Design of Sliding Observers for
Stability Robustness

4.1 Overview

This chapter describes how a control engineer can design a sliding observer
which is naturally robust against certain types of bounded modelling error
and/or disturbance inputs. The descriptions are followed by mathematical
justifications of the given design methods.

The mathematical tools used in this chapter, namely the techniques for
input-output stability, are often found in standard textbooks on nonlinear
system analysis (e.g. [11] and [61]). The main definitions and results, as
used in this thesis, are summarized in Appendix A.

The sections in this chapter are organized as follows: Section 4.2 defines
the working environment, that is, the plant and the model that will be used
for the sliding observer design, and the observer structure that will be used
throughout this thesis. Section 4.3 presents the main conditions for robust
observer design. Because the main conditions are often difficult to verify,
Section 4.4 shows and proves the sliding observer design method that will
guarantee stability robustness for a single measurement case. Section 4.5
extends the design methodology to the multiple measurement case using
passivity and multivariable circle criterion arguments. The chapter is con-
cluded by making some observations, for example on how the performance
issues can be handled in the described design procedures.
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4.2 General Structure and Problem Formu-
lation

The plant is assumed to be described by a system of first-order differential
equations in the form:

= Az+w
Cz (4.1)

where:z € R", y € R™, A € R™**C € R™™™ and w is a n-dimensional
column vector where all nonlinearities and uncertainties were lumped.

The control inputs, if any, can be added in the system description as
known inputs(if they are actually measured) without changing the basic
problem, or they can be regarded as uncertainties and therefore included
in the vector w.

The system (4.1) is assumed to be observable and the nonlinear term
plus the external disturbance w to be bounded, more specifically:

e The pair (A, C) must be observable;
e the entries w; in the vector w are bounded by constants ~;

Notice that this description can be obtained from a more general de-
scription by isolating the (perfectly known) linear part so that the above
conditions are met. Another way to obtain this description is through a
linearization by keeping the linear terms from the Taylor expansion of a
nonlinear model. In this latter case, w would contain the input distur-
bances and the high-order terms from the Taylor expansion.

Regardless of the method used to reach to this model, the bounds ~;
can be obtained in several ways, in general problem dependent, but two
basic cases may be considered:

e Sometimes the bounds exist naturally, e.g. when one deais with dry
friction, the friction force is bounded and the bound can b« neasired
experimentally.

e Often the functions w;’s are unbounded function of z, e.g. when they
result from the Taylor Series expansion. In this case it is necessary
to assume that the plant is stable in order to have bounded states.
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Assuming the given system description, a sliding mode observer that will
provide estimates of states z, given the measurements y, has the structure
given by equation (4.2):

t= A%+ H(y — C%) + K1,(tildey) (4.2)
where:
y = y—Cz
HT (RT,k],...,RT], H € R™™™
KT = [kl,k],... k7], K € ™™ (4.3)

This sliding observer is basically the conventional Luenberger Observer
with the additional “switching” term K1, (1, = 1,(§), with § = C(z — 2)
is defined in terms of signum function or saturation function) that will be
used to guarantee robustness against modelling errors/uncertainties w.
With this state estimator, the error dynamics can be described as:

T = z—-%
j = y-Ci=Csx
z = (A-HC)i- K1, +w (4.4)

The purpose of a state estimator is to provide the state estimate %
which is an approximation of the actual state z as fast, and as accurate,
as possible. The estimation error Z should (ideally) go to zero as fast as
possible.

With this picture in mind, the problem to be solved can be stated as:
Determine the gain matrices H and K to make the estimation errors
smaller than some specification within a specified time, in the presence of
bounded modelling errors/uncertainties.

4.3 The Main Result for Robust Sliding Ob-
server Design

4.3.1 Observer Design Using the Passivity Theorem

This section describes the main condition that guarantee the L,-stability
of the estimation error.
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In order to maintain generality, at this point, consider the following
conditions:

¢ Define the terms 1, such that §71, > 0;

o let
w = Dn
where the rank of D is d < m, whose elements are all non-negative,
and |n| < 1;
e Choose the matrix K as
K=Dp
where p is a diagonal matrix dieg(py, p2, ... ,pm);

e write 1, as:
1, =1,(9) = a(§)§ = a(§)Cz

With these conditions one can combine the disturbance and “switching”
term as:

-Kl,+w= _K(la - P—lﬂ) = _K(a(g)g - P'lﬂ)
resulting in the estimation error dynamics described by:
(A-HC)z - K(a(§)7 - »7"n) (4.5)

This equation is described in the block diagram of Figure 4.1. Compar-
ing the Figure 4.1 with the ones shown in the Appendix A used to define
L, - stability, one can readily see that the equation (4.5) is now given in
the exact form required by the Passivity Theorem|11)(see Appendix A).

As should be clear by comparing the equation (4.5 and the figure, the
operators H, and H;, and the input u; are defined as follows:

z

He = C "8(r) K(r)ex(r)dr

Hze; = Hyy := a(§)§—p'n
u; = C®(t)z(0)

where ®(t) = elA~HC)t jg the transition matrix [9,24].
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2 V‘+

Figure 4.1: Estimation error dynamics

In this scheme, e; and e, are defined as:

e1 = uy— Hae;
e2 = uz+ Hyey

The main estimation convergence (stability) result can be stated as a
theorem:

Thecrem 4.1 If :

o A— HC s made stable;

o The gasin matrices H and K, and the function 1, are chosen such that
there are constants o; and B;, 1 =1,2,3, so that:

|Hizllr < aillzlir + 6y
(z|Hiz)r > eqllzl|7 + B (4.6)
(Haz|z)r > as||Haz2||7 + fs (4.7)

Vz € N, VT € [0,00);
e as+ag >0 ;

Then: ey, ez = y,Hyey,Hzes € X (definition sn Appendiz A) , and y =
Cz—0ast— oo.
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This theorem guarantees L;-stability, but it does not state any conclusion
regarding the asymptotic stability of all state estimation errors. However,
the state estimation error is actually bounded because they can be inter-
preted as the outputs of a stable linear system with bounded inputs as seen
in equation (4.4).

The first result in Theorem 4.1, namely that e;,e; = §, H. 161, Hae, € N
for properly chosen gain matrices H and K and function 1, is simply
a restatement of the Passivity Theorem (Appendix A, and Desoer and
Vidyasagar [11]), therefore it will not be proved here. The second result,
namely that § = CZ - 0as ¢t — oo requires more explanation.

Clearly, from the passivity theorem

w ~
/ 7T dt < oo
0

It is also true that § = C% and its derivative are bounded because 7 is
bounded as mentioned before, therefore the only way the integral can be
finite is that § has to go to zero as time goes to infinity[53].

The main result stated in this section gives a fairly powerful result for
the problem at hand. However, the conditions that are easy to state are
also difficult to verify. Therefore one will quickly realize that it is very
difficult to use it as a design procedure.

4.3.2 Linear Strictly Positive Real Subsystem

The passivity theorem can be applied more explicitly when the function 1,
is based on signum function. It will be shown that it will require that the
operator H, must be strictly positive real.

Let the function 1, be

sign (i)

sign(y;)
£ :
81gn(§rm)
where the signum function is

. Yi
sign(g;) = m
)
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with this choice of function 1,, the operator H; can be seen to bg’v:

(-
[ !Pl; j
Hyy (#:T- o :":
(o - 2=
{Um| Pm

therefore, the left hand side of the condition (4.7) becomes:

[marae= [ 30 -Ea s

i

for p; > 1. It has to be compared with ;’[

m 2 -~
JAD SRR LP
U —t P | .'|P.'
Clearly, due to the uncertainty terms 7;, nothing can bei‘said except that
the left hand side of the condition (4.7), given by equation (4.8) is always
positive because the integrand is always positive (recall that |n;| < 1 and
pi > 1). That is
(Ha9l9)r >0

so ag = 0. Therefore, the passivity theorem requires that

(G| Hr§) 1 > aa||§liF + B2

with a; > 0. It means that the operator H; has to be strictly passive.
Because the operator H, is causal, the concept of strict passivity and
the notion of strict positivity are identical [11], therefore the use of signum
function is requiring a quite restrictive condition on the operator H,. As will
be shown, if the observer can be designed satisfying these conditions then,
the state estimation errors go asymptotically to zero. Actually, under these
restrictive conditions, the sliding observer presented in this thesis, with the
matrix p taken as identity matrix, is identical to the variable structure
observer shown by Walcott and Zak in [63,64] and discussed in Chapter
2. These identical results were derived using different routes: Walcott and
Zak derived them introducing the necessary assumptions without any clear
motivation, apparently as a convenient algebraic hypothesis that makes a
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quadratic form to be a Lyapunov function, whereas in this thesis the similar
conditions are derived using the passivity theorem and the signum function.
The explicit conditions that will guarantee that H, is strictly passive
(positive) will be discussed in the following sections as Case 1 for the single
measurement case, and as Case § for the multiple measurement case.
The usual situation is when H, is not strictly passive, that is when
a; < 0. In this case, the passivity theorem requires that

(Hyz|z)r > o3||Hz||% + Bs

with ag > —a,. It is a very difficult condition to verify directly.
An alternative way to look for design criteria when H,; cannot be made
positive real, is to use the definition of strictly positive real systems.
Consider the situation when only one measurement is available. If the
gain K is constant, and A — HC has eigenvalues in the open left half plane
then the transfer function

Hy(s)=C(sI- A+ HC)'K
is strictly positive real if
Re[H,(jw)] > pu VweR

for some fixed 4 > 0. From this definition one can see that the transfer
function H,(s) is not strictly positive real if Hy(jw) is in the closed left half
plane for some values of w.

From this observation, one can use concepts from absolute stability to
conclude that additional constraint on the sector that contains the opera-
tor H, must be introduced. Thic means that the ssgnum function in the
definition of the function 1, must be replaced with another function that
can be placed inside a sector that does not cover the whole first and third
quadrant. An obvious candidate is the saturation function.

The single measurement case, where H;(s) is not positive real will be
discussed as Case 2, using the circle criterion from absolute stability theory
[21,40]. The extension to the multiple-measurement case will be discussed
as Case 4 using the multivariable circle criterion [46,48].
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4.4 Sliding Observer for Systems with Sin-
gle Measurement

4.4.1 General Consideration

The basic design method will first be shown for the single measurement
case. The reasons for explicitly studying this case are:

e The underlying theory can be easily translated as a design tool;

e It permits the designer to use classical concepts like transfer functions
and the circle criterion for absolute stability;

e It is important in its own right, as far as the practical application
goes(e.g. the two link planar manipulator dynamics with position
measurements can be taken as two independent single measurement
systems, with the coupling terms in the equations of motions taken
as bounded modelling errors.

Two cases, that have different constraints, will be considered. The first
case requires that the operator H, must be strictly positive real. The second
case is the case when the strict positivity of H; cannot be imposed.

The methodology is first shown for the first case, which is less likely
to occur in practice, but it shows the application of the circle criterion
irn the Sliding Observer Design Technique. Then the second case will be
considered. It will be shown that this case introduces some additional
constraints that are reflected as changes in the basic design method.

4.4.2 Casel
Development of the Design Method

The first case to be considered is the case when the linear subsystem of
estimation error dynamics can be made strictly positive real.

In this case, it is assumed that only one measurement from the plant is
available, and that all disturbances/modelling errors are generated by the
same scalar function n!:

w = Dy, |n|<1

1This case is included in the clasa of systems considered by Walcott and Zak [63,64]
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DT = [d 4, ... d,)

where d; > 0 (s = 1,2,...,n) are real valued constants (€ R), and n is a real
valued function that can depend on time, states, and external disturbances.

For this case, the function 1, can be defined as the usual signum func-
tion:

|=c.

1, = sign(y) = (4.9)

<

Define the constant gain matrix K as
K=Dp

As was shown before the estimation error dynamics can be described as

y = Cz
i = (A-HC)z— K¢j (4.19)
where the operator ¢ is: 5
=2 1
# 7]

It is easy to see that the operator ¢ is sector constrained due to the
presence of § in the denominator:

G < ¢(t,w,%)§ < Gy

where G = 0 and G = oo.

This representation of error dynamics (see Figure 4.2) is exactly in the
form required by the passivity theorem and also by the absolute stability
theory, where the operators i; and H, are defined as:

4
Hie, = /o C(r)Kedr

Haey = ¢e;
Q(T) o e(A—H(L’)r

where the solutions ¢; and e; ( = § ) are assumed to exist, either in the
usual sense, or in the sense of Filippov [13], in X..

For this case, it was already seen that the operator H, has to be strictly
passive, which is equivalent to strict positivity. Because H, is a SISO
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H,

u; =0 1 vi
——g?—o C(sI-A+ HC)'K >
+ 1.
H,
Y2 é ez =YY+ u; = Cd(t,7)Z(0)

+

Figure 4.2: Estimation error dynamics

system, the strict positivity means that the real part of H,(s) = C(sI —
A + HC) 'K must be positive, that is he Nyquist plot must always be to
the right of the imaginary axis.

A control engineer familiar with absolute stability would readily verify
that the conditions just derived using the Passivity Theorem are exactly
the same conditions that would result if one applies the circle criterion to
the system given by the equation (4.10) and Figure 4.2.

The conclusion is that, if the gain matrix H and the gain p can be
chosen so that the

Re[H,(jw)] = Re[C(jw]l -~ A+ HC)'K] >0

for all values of w € R, then the use of 1, = sign(y) will guarantee that
¥ = 0 ast — oco. Actually the whole state estimation error z will go to
zero. This result will be shown within more general framework in the Case
8 using Lyapunov theory.

The design procedure, for this single measurement case is summarized
as follows:

Design Procedure for Single Measurement Case - Case 1

The design of a sliding observer for this single measurement case can be
easily carried out by applying the following procedure:

71



1. Verify that the problem really falls in this category, i.e. the vector
that lumps all uncertainties/nonlinearities can be written as

wl = nldyd, ... dn)
where the scalar function [n] <1.0;
2. Let 1, = sign(y) as defined in (4.9);
3. Let the constant gain matrix K = pD, with p > 1 ;

4. Choose the gain vector H and the scalar parameter p, so that Nyquist
Plot of the transfer function Hy(s) = C(sI - A+ HC) 'K is com-
pletely contained in the open right half plane, that is Re[H\(jw)] >0
for all w € R.

5. If this last condition cannot be satisfied, then one can iterate either by
changing the matrix D (if possible) or by adding convenient blocks,
in the error dynamics, that change the blocks H, and H; according
to the multiplier theory ([11], section 6.9). If these changes does not
help then one can use the Case 2

A First-Order System

As was mentioned previously, tha design method described in this section
is more likely to find application in first-order systems, even though a few
high-order systems for which this case apply can be found.

This section shows such, a situation. Consider the first-order system:

t = —az+ f(z,t) + v
vy =z

whereze R, ye R we R, and the input disturbance and the nonlinearity
are assumed to be bounded as

lw] = [/(z,t) + w'| <o

where the bound 7 is assumed to be constant.
The sliding observer for this system is:

= —az+ h(y — %) + k sign(y — z)
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The error dynamics is given by:
z= —(a+ h)Z — ksign(%) + w

where the gain k is taken to be greater or equal to the bound ~.
It can be rewritten as:

F=—(a+h)z—koz

where the operator ¢ is contained in the sector that covers the whole first
and third quadrant. In this case the circle criterion will require that the
Nyquist plot of

k
st+a+h
must lie in the open right half plane. Of course one will design a stable
observer, therefore a + h > 0 and k > 0. It means that the condition given
by the circle criterion is trivially verified because the real part of H,(jw)
is always positive, for all w. It was known beforehand, because a stable
proper first-order system is always strictly positive real.

It is also clear that if the original plant is unstable, i.e. a < 0 then the
gain h has to be h > —a in order to guarantee stable sliding observer.

HI(S) =

4.4.3 Case 2

The second case consider the case when the system has only one measure-
ment and only one source of disturbance n and when the transfer function
H,(s) = C(sI — A+ HC) 'K cannot be made strictly positive real.

The design procedure still relies on the absolute stability theory(easier
than applying the Passivity Theory directly) in order to guarantee auto-
matic robustness against bounded uncertainties/nonlinearities, but addi-
tional constraints are introduced due to the loss of strict positive realness.
For this reason the proof of the design procedure is slightly more involved,
therefore for the sake of clarity the design procedure is first presented as
an algorithm, and then the design method is derived formally showing that
it actually guarantees stability robustness.

In this case the design process has two parts. The first part guarantees
that the output estimation error §y = y — CZ remains inside the boundary
layer once it gets into it and the second part guarantees that the boundary
layer is attractive (see Figure 4.3).
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boundary layer

reaching phase

Figure 4.3: The boundary-layer
In this case the design procedure can be organized as follows:

Design Procedure for Single Measurement Case - Case 2

1. Let the 1, to be the saturation function defined as:

@) = sat(z/9 = { Y0 1102 (4.11)

where y =y — C1z.
2. Let K = Dp, where p > 1, and K is a constant gain matrix;

3. Determine the width of the boundary layer, called ¢, which coincides
with saturation limit € in the sat(.)- function defined by (4.11);

4. Design for boundedness inside the boundary layer. It can be done in
two ways:

e Choose the gain matrices H and p such that A— (H + KA™)C
has distinct eigenvalues and such that for all w € R:

Max[Om.s(C(Jwl — A+ (H + KA™Y)C)™)D] +
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+0maz(C)cond(V) max(|Zo]) < e

where 0pq.(M) is the maximum singular value of the complex
matrix A, the norm |z| = (2°2)% (2* denotes the complex con-
jugate), and the cond(V) is the condition number of the matrix
of eigenvectors V of 4 — (H + KA~!)C. max(|Zo|) is an up-
per bound of initial state estimation error Z,. This approach
suffers the drawback that it depends on the scaling factors of
eigenvectors.

o Choose the gain matrices i and p such that for all t € ®, and
for all w € R:

max(0.q..(C(jwl — A+ (H + KA™Y)C)™Y)D] +
+am“(Ce(A“("+KA-')C)max(|§o|) < €

In practice this test has to be verified in the time interval of
interest, typically during the initial transient.

Both methods are very conservative, as will be shown in the examples.

These conditions are expressed in terms of the bound on the esti-
mation error Z(to! for the states at the instant ¢, when the output
estimation error § entered the boundary-layer, and the maximum
magnitudes of uncertainties/nonlinearities d; of vector D.

The above conditions basically state that the “loop™ gain has to be
high encugh to guarantee that the output estimation error § will not
leave the boundary layer once it gets into it. Or more realistically, it
can be assumed that, because y has been measured, § = y — § can
be taken as zero at initial time, therefore the gains have to be high
enough so that § will not leave the boundary layer. Certainly these
comments will be limited when the transfer function G(s) defined by

G(s) = C(sI - A+ (H + ZK)C) ™D

has some finite zeros. In this case, it might be difficult, or even
impossible to obtain the desired decrease in the maximum singular
values;
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5. Check whether the state estimation error bounds are within desirable
limits:

2 < max [omas((jw] — A+ (H + %K)C)“)D]

—oo<w<+o00
6. Check for absolute stability. The error dynamics can be written as:

Cz
(A- HC)i — K¢j (4.12)

|3 TER /3

therefore, it is necessary to verify that (4.12) is stable for ¢ such that
¢ is constrained in the sector:

0<¢<1(1+l)=§
€ P

For instance, if the circle criterion is used, then it is enough to show
that the Nyquist Plot of the transfer function

Hy(s)=C(sI- A+ HC)'K

is to the right of vertical line that intersects the real axis at —é(see
Figure 4.4).

7. Obviously if one concludes that the error dynamics is absolutely sta-
ble, then the design is, in principle, complete. If this is not the case
one iterates through previous steps.

As this design procedure shows, even though additional constraints
make the design procedure more complicated than in the first case, it is
still feasible and fairly straightforward as will be shown in the next exam-
ple.

The proof of this method is presented after the example.

A Second-Order System: Mass with Dry Friction and Nonlinear
Spring

The method shown here is applied to the example used in Chapter 3. The
plant was described in the equation (3.11), in Chapter 3.
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Re[H, (jw)]

Q-

Figure 4.4: Circle criterion for the Case 2

Using the model described as

i1=zz
iz=w

where w contains all nonlinear terms as well as the input which is assumed
to be unknown. Then the sliding observer becomes:

1 = I -k

-

2 = —hyZ; —k,l,

-

where k; was set to zero because there is no uncertainty, or modelling error
in il.

As shown before, the modelling errors, nonlinearities and uncertainties,
all lumped into a single term, can be bounded by v = 2, therefore k; = 2
is a reasonable starting value.

Now, assume that one wants to have the estimation of z; to be accurate
within 2.5%, so take ¢ = 0.025.

Having these values, one can first design the observer so that output
estimation errors § that come into the boundary-layer never leave it. So
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a reasonable strategy is to make the system critically damped inside the
boundary layer, that is, if wy, is the the desired undamped natural frequency,
the gains h; and h; are chosen as:

k
2 2
hz = w, - —E-
In order to choose the gains using the sii.gular values, it is necessary to es-
timate the bounds of estimation errors, when the output estimation error y
gets into the boundary layer, or more realistically the maximum estimation
error that one can expect for I, since Z; can be assumed to be zero.

A safe guess for this problem would be that

|Z2| < 0.5
Using standard CACSD software, and after two iterations, the gains

h1 = 44
h, = 400

resulted in the plot of singular values shown in Figure 4.5, from which one
can conclude that

|Z1| <£0.0042 + 0.5 x 1 = 0.50042 > .025

The effect of initial condition was bounded using the time domain approach
because the eigenvalues were chosen to be coincident, which means that the
approach using the condition number of the matrix of eigenvectors does not
work. Even though the boundedness condition inside the boundary layer
is violated, the simulation shows that the output estimation error error y
remains inside the boundary layer. This fact shows how conservative this
criterion may be.

The last step is to check whether the circle criterion is satisfied.
For this particular example, the nonlinearity ¢ is constrained to be
inside the sector
0<¢p<(1+1)/025=80=G

The Nyquist Plot of 0

s? + 44s + 480

Hy(S) =

78



2.81E-02
2.008-02
1.00-08
1. 20005
1.008-02
7.94E-03
SIE-B3
8.012-03
30003
3116E-03
251803
2.008~-03
1.58E-03
1.286-03
1.00E-03
7.04E-04
0.J1E-04
8.01t-04
3.00E04
3.10E-04
2.31E-04
2.00E-04

J I N S . |

I N GO U D N T W U S T |

T

T

\ T 1 1 L} L

1.00E-01 2.81E-01 6.31E-01 1.36E+00 3.98E+00 1.00E+01 2.31E+01 8.31E+01
frequency (rodians/esc)

Ll L

T

T

T L

a) Gy(jw) = C(jw — A + (H + LK)C)'D

»&
o P

bbb e e ddn o

Svedendn

rY

Pyt

i

1.5 2 2.5
T(4:50)

3

3.5

b) am,(Ce(“("*f")C")

4

4.5

Figure 4.5: Singular value plots for the second-order example
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Figure 4.6: Nyquist plot for the second-order system

is shown in Figure 4.6, and clearly the sector condition is satisfied. The
system composed with the plant and the sliding observer was simulated
using SIMNON and the results are shown in Figure 4.7. The phase-plane
plot shows that, in fact, the output estimation error § = Z, remains inside
the boundary layer, and the estimation errors are in general better than
the results obtained from the Kalman Filter shown in Chapter 3.

The Proof of the Design Method

The proof of this method is done in a constructive way so that the reader
can get further insight into the method just presented.

The estimation error dynamics was given in (4.4) and it is repeated here
for convenience:

z—z

(A- HC)z - K1, - Dy

31
|

318
|

where |n| <1
Let K be defined as:

KT =|kyky ... k)= DTp
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where p > 1.
The combination of these two terms is:

-K1,+ Dn=-K(1,-p""n)
which can be written, using the operator ¢ as:
-K1,+Dn = —-K¢y
¢y = 1,(3) - % (4.13)
The error dynamics can now be written:

= C%
= (A-HC)i- K¢j

He

In this case, it has been assumed that the transfer function
Hy(s)=C(sI- A+ HC)'K

cannot be made strictly positive real, that is part of the Nyquist Plot will lie
in the left half plane, therefore using the concepts from absolute stability,
in particular using the circle criterion, on can see that the sector in which
the function ¢(t,Z,w) has to be contained has an upper limit, say G, as
described in Figure 4.4

Recognizing that there will be an upper limit for the sector, the first
step is to try to make the observer stable in the presence of this sector
bounded nonlinearity.

The obvious sector bounded nonlinearity that also satisfies the condi-
tions imposed on function 1, is the saturation function as defined in (4.11).

In order to proceed, it is necessary to make an additional assumption,
that will later be dropped, and the conseque’ces will be analyzed.

Assume that the following inequalities hold:

Inl < 1

Actually it is very easy to see that it seldom holds (e.g. think about
the dry friction as a disturbance and 1, based on position measurement of
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a mechanical system) and this is the reason why it will be dropped shortly,
but it is invoked here so that the basic setup can be derived.

With this assumption and using the saturation function with saturation
level € (see Figure 4.8 ), the function ¢ will now be constrained to be inside
the sector defined by:

0<¢<

m | -

1 —
(1+;)=G

Now, assuming that ¢ stays inside the above sector the problem becomes
a simple extension of Case 1, namely the stability robustness of the sliding
observer can be guaranteed by choosing the matrix H and the gain p so
that the Nyquist Plot remains to the right of the vertical line that intersects
the real axis at —é— = —e;f_—l. It results from the application of the circle
criterion.

The additional constraint is introduced when the assumption regarding
the limit :

lim |n]
i—0 p|1,|

<1

is dropped. By dropping this assumption, the proof has to be done in two
parts, the first one considering the situation when the output estimation
errors { are outside the boundary layer ( called the “reaching phase”),
when the previous analysis still hold , and the second part when the output
estimation error § is inside the boundary layer, that is when the satura-
tion function is actually acting as a linear gain, and when all the absolute
stability analysis is not valid anymore.

The first part is actually showing that regardless of uncertainties/non-
linearities, the boundary layer is “attractive”, and its proof is identical to
Case 1, and to the case just analyzed with the strong assumption regarding
the limits.

To complete the proof, it is necessary to show that the behavior inside
the boundary layer is such that a output estimation error g that goes inside
the boundary layer never leaves it (the variation of this same theme was
commented upon when the procedure was described).

The proof starts by recognizing that the equations of error dynamics
inside the boundary layer are linear. The error dynamics is described by:

z = (A-(H+ KA )C)z+w
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Figure 4.8: Sector constraint for the function ¢

= Cz
= z(0)att=0

B <&

The output estimation error § can be written as
g(t) = §"(t) + 5°(2)
The first term is due to the uncertainties and the second term is due to the
initial conditions. The first term can be written in the frequency domain
as:
§"(jw) = Cjwl — A+ (H + KA™')C) ™' Dn(jw)

so, using the inverse Fourier Transform y(t) and §(jw) are related as

4

§(t) = / §"(jw)e’™ dw
oo

by using the bounds of frequency response, one can bound the time response
as

7)) < m3X{Omasl Ciw] ~ A+ (H+ KA™)C)'D] [ n(ju)du

Clearly the last term, with the integral, is the function n(t), whose norm is
bounded by one, by definition. It means that

|§"(t)] < m&x[am,[C(ij ~-A+(H+ KA Y)C)™'D)
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The term due to the initial condition can be bounded in two ways. The
first possibility is to use spectral factorization, i.e. by taking the matrix A
of eigenvalues of (A — (H + KA~1)C), and the matrix V of eigenvectors,
one has

A—(H+KA™MC =VAV™!

so,
gO(t) — Ce(A—(H+KA")C)t — CVe(A)tv—lio

therefore the solution y°(t) can be bounded provided that some upper
bound max |Zo| of initial state estimation error is available.

|y°(t)| < 0maz(C)Omaz(V) m?,x[o,,m(e‘“)]om,(V“l) max |Z|

The exponential terin is bounded by one, because it is a diagonal matrix
whosz entries are all bounded by one .ince the underlining system is made
stable. Using the definition of condition number of a matrix, and properties
of singular values, one obtains:

17°(t)| < Omaz(C)cond(V) max |Zy|

An alternative way to bound §°(t) is by taking the bound of matrix expo-
nential: 1
17°(t)| < m?.xam,[Ce(A'("+KA_ )O)) max ||

Using either bound of 3°(t), and combining with the bound of #", one can
impose that

51 < 157 + 1§°] < min(s)

This condition guarantees that the output estimation error § will remain
inside the boundary layer, and completes the proof.

As was described in the design procedure for this case, one can estimate
the bounds of state estimation errors. It can be estimated easily in the
frequency domain by recognizing that the behavior inside the boundary-
layer, where the output estimation error § should be in the steady state,
is essentially linear. Using the singular values, one can easily see that the
state estimation error is bounded by:

2 < max [omee((jw] — A+ (H + %K)C)")D]

— —oco<w<+o0
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4.4.4 Some Remarks Regarding the Design Method
for the Single Measurement Problem

Some comments, related to the generality and conservativeness of the design
methods just presented, can be made:

o Generality: The two classes of single measurement problems pre-
sented in this section are not the most general of their kind. The first
one is too restricted, and (except for first order plants) it is very un-
likely to find application. However, the second case is general enough
to handle systems given in the following canonical form:

T

= [51z;...z2,] ER"
= Az+w
y = Cz
[0 1 0 ... 0
0 0 1 ... 0
A= | i i e
0 0 0 ... 1
| @Gn1 Gn2 Gn3 ... Gpp |
wT='ooo...0w,.]
¢ =[100..00]

which is fairly usual, for example in mechanical systems where posi-
tion is measured and disturbances and nonlinearities in the equation
of motion appear in the acceleration.

o Conservativeness: As is well known, the methods from input-
output stability tend to be very conservative (which is good when the
desired goal is stability robustness), and can require large observer
gains in order to have enough attenuation inside the boundary layer.
As is well known, large gains are not desirable when measurement
noise is present. An heuristic argument, combined with an additional
restriction on the nonlinearity/uncertainty term w can be used to
lower the gains in a suitable way. The drawback is that it will take
several switchings before the output estimation error § gets into the
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boundary layer( that is the boundary layer will be crossed a finite
number of times ).

Assume that the combined uncertainty/nonlinearity vector w is such
that it does not contain any impulse (Dirac-delta) function ;it does
not have to be continuous.

Under these conditions, it is possible to guarantee (due to the inte-
gration effect) that the output estimation error § will not have any
discontinuity (i.e. z(t) will be of class C°), in particular when it
crosses the boundary layer (if this happens), there will not be any
“jumps”.

If this is true, one can design an observer which is guaranteed to be
robust outside the boundary layer (i.e. the boundary layer is “at-
tractive”), and by making the dynamics inside the boundary layer
critically damped, or overdamped, one can argue that the error dy-
namics cannot be going unstable because the output estimation errors
y will be going “inwards” in the output estimation erro space (in terms
of error dynamics). Based on this fact, the designer can set simple
(heuristic) rules. One possible rule would be, “ choose the gains to
achieve critically damped error dynamics inside the boundary layer,
so that if one starts with a estimation error y = ¢, and all its deriva-
tives equal to zero, the output estimation error § will not go outside
the boundary layer”.

This rule applied to systems in the canonical form described in this
section would give:

Choose the gains H and p so that:
max |C(jwl — A+ HC + -IEKC)"‘D| <e
where the vector D was defined previously.

Comparison with Luenberger Observer : One can argue that
in the case 2 a Luenberger Observer with a linear gain given by:

H‘=H+%K

where the gains H, K and € are the values to be used in the Sliding
Observer for a given problem, will essentially give the same steady
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state estimation error, and it must also be robust against bounded
nonlinearity /uncertainty term w = Dn. It is actually true, however
their behavior will be different if some measurement noise is present
(what is always true). In this case, the fact the function 1, acts as
pure relay outside the boundary layer, is reflected as a virtual gain
reduction outside the boundary layer, which actually affect favorably
in the presence of measurement noise, if compared with the high gain
Luenberger Observer. This aspect of sliding observer is discussed in
the corresponding chapter in this thesis.

The extension of the methods presented in these two sections to the
multiple-measurement case can be done using the Positive Real Lemma
and Multivarsable circle criterion for a class of multivariable systems. It is
shown in the following section.

4.5 Sliding Observer for Multiple Measure-
ments

4.5.1 General Consideration

This section extends the sliding observer design method presented in the
previous section to the multiple measurement case. The plant is assumed
to be in the form defined previously:

= Az+Im (4.14)
Cz (4.15)

where: z € R*, y € R™, A € R, C € R™*" and Dn is the column
vector that incorporates all the effects of input disturbances, uncertainties
and nonlinearities in the system description. The matrix D € R™™™ is a
matrix that carries the information about the magnitudes, with rank d < m
and 7 € R™ is the source of disturbances/nonlinearities ( it is the obvious
extension of the function 1 defined in the single measurement case), with
the condition |n;| < 1.

The sliding observer has the structure shown earlier in the equation
(4.2) :

t= A%+ H(y - Cz) + K1,
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vhere:

HT = [hT,h],...,RI],H € ™™
KT = [kT,kT,... k7], K € ™™

With this state estimator, the error dynamics can be described as:

= z—1I

(A— HC)z — K1, + Dn

i 1]

s

There are, as was true for the single-measurement case, essentially two

cases to be considered for this class of problem. These cases will be shown
next.

4.5.2 Case 3

The design procedure described in this section works for a particular class
of problems for which the transfer function matrix

H,(s)=C(sI- A+ HC)™'D

can be made strictly positive real.

Design Procedure

1. Write the vector w as :

dy ... dim N1
w=Dnp=1| : . :
dnl s dnm Nm

where D € R™*™ is a constant matrix with rank d < m, and d;; > 0.

2. Assign K as K = Dp, where p is a diagonal matrix diag(p1,-*,pm)-

Example : These two first steps can be illustrated by this simple
example. Assume that the uncertainty vector is:

w'=[000 w w]
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where |w,;| < 4, and |w;| < 72.

Assume that the first three states is been measured, that is

0
0
0

In this system, the matrices D an

C =

1
0
0

o = O
= O O
(= = =)

(oW

il
o2 cooco

n would be constructed as:

-7'1

= n2

| O

(= =l el e}

0
0
0
0

For this case, the gain matrix K would be

(0 0
0 O
0 O
mn 0

where p; 2> 1.

| 0 72

-

OO0 O OO0
o

3. Check if the gain K can be written as:

or, equivalently:

KTp=C

DTp:
P.
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for some symmetric positive definite matrix? P*. If it is true, then
one can proceed. Otherwise, one has to try to change the definition
of matzix D, so to change the matrix K. If it does not work, then
this method does not apply, and the case 4 must be tried.

4. Let the function 1, be

sign(¥;)
_ sign(ys)

sign.( Im)

5. Choose the gain matrices H and p so that the following conditions
are satisfied:

P(A-HC)+(A-HC)TP = -Q
KTPp = C (4.17)
K = Dp

for symmetric positive definite matrices P and Q. This condition is
usually hard to verify and hard to satisfy, and to the best of author’s
knowledge there is no numerical method that solves these equations.
In this step a symbolic manipulator program, like MACSYMA or
MUSIMP, might be useful.

6. If these conditions are met, then the design is complete. If they are
not met one can either iterate changing the matrix D (if possible) or
using the multiplier theory (see Desoer and Vidyasagar [11] section
6.9) to change the blocks H; and H; by adding convenient operators
in the error dynamics. If these changes don’t help then one can try
the method described in case 4.

The conditions imposed by this method can be too restrictive ( in anal-
ogy to case 1, for the single measurement case ) for a particular problem
at hand. An example of this case is iliustrated next.

2]t requires that the matrix DT has to be in the range space of C.
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Example: Assume that C and D was found to be:

0 0
c o
b= d 0
0 d,

and

1000
C‘[01oo]

In this case the condition (4.18) implies that the following condition must
be satisfied
DTP*=C

It is easy to verify that there is no symmetric positive definite matrix P°*
that satisfies this condition.

The purpose of this example is to show that, quite often it might be
difficult (even impossible) to design the observer using the positive real
lemma, as described here.

This design procedure will actually guarantee that 4 = 0,and 2 — 0
ast — oo.

The proof of this method is given in the next subsection.

Proof of the Design Procedure

The proof of the design method, just presented, relies on the results from
the passivity theorem that was discussed before, and the condition on the
operator H; to be strictly passive transiated into a more useful form using
the Kalman-Yakubovich Lemma ( Positive real lemma).

As was extensively discussed in subsection 4.3.2, the use of pure relay
in the function 1, as adopted in this case, requires that the linear forward
operator H; must be strictly positive real. Because this operator is causal,
it was shown that it implied that the operator H, has to be strictly positive
real.

This condition can be translated in a more useful form, using the Kalman-
Yakubovich Lemma ( the Positive Real Lemma)(33,40].
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Lemma 4.1 H, s strictly positive real if and only if the gain matrices H
and K are chosen so that there exist a symmetric positive defintte matrices
P and Q such that the following equalitses hold:

P(A-HC)+(A-HC)TP = -Q
KTPp = C (4.18)

which is exactly the last condition shown in the design procedure. As
was commented upon, before, the condition imposed by the Positive Real
Lemma is often hard to verify.

One can see that the conditions given by the Lemma 4.1, with p taken
as an identity matrix (recall that K = Dp), are exactly the hypothesis
assumed by Walcott and Zak [63,64], discussed in Chapter 2. Walcott and
Zak, apparently, stated those assumptions as a convenient way to guarantee
the estimation convergence using a quadratic Lyapunov function. In [64] a
brief interpretation, is given in terms of positive real systems. The deriva-
tion shown in this thesis, using the passivity theorem, provides additional
insight on the assumptions made by Walcott and Zak.

The last result in this section that has to be proved is the result regard-
ing the fact that £ — 0 as t — oo.

This fact can be shown using the Lyapunov Stability theory. This result
was derived independently by this author and by Walcott and Zak [63,64].

The estimation error dynamics is given by,

i = (A-HC)z-K1,+ Dp
§j = Cx

And the Positive Real Lemma requires that,

(A-HC)TP+ P(A-HC) = -Q
KTP = C

for symmetric positive definite matrices P and Q. Recall that the gain was
defined as:
K =Dp=>D = Kp~!

Let the candidate Lyapunov Function be the quadratic form:
vV =3i"Pz
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where P is restricted to be symmetric positive definite matrix. Its total
derivative is

y 2T . ~T p~

V= Pz+1z" Pz
which, with the substitution of the equation of estimation error dynamics,
and the definition of gain K becomes

V. = i"[(A- HC)"P + P(A- HC)|z - 2:"PK(1, — p j)=>
=V = -iTQi-2:TPP'CT(1, — p~ln)=>
=V = -zTQz-2(cz)T(1, - p~'n)
Because |n;| < 1 and p; > 1, one can verify that

(L) = Soa(E - %) >0

puri |73 B3
therefore, _
V<0
which means that Z — 0 as t — oo. In this case, Ogata [42] shows that
V< -V

where A is the minimum eigenvalue of P71Q.

A last comment regards the case when the bounds of nonlinearities/un-
certainties are functions of time. In this case, by assigning the gain matrix
K as K = Dp, would give a time-varying gain matrix K(t). In this case,
an alternative lemma can be used to guarantee that the operator H, is still
strictly positive real[33]:

Lemma 4.2 The system described by
z = (A-HC)z+ K(t)u
y = Cz
is strictly positive real if there ezist a symmetric positive definite matriz
P(t), a symmetric matriz Q(t), and a matriz S(t) so that
P(t)+ (A— HC)TP(t) + P(t)(A— HC) = —Q(t)
KT(t)P(t) + ST(t) = ¢

Q) S
ST((tt)) (()t)] >0

Jor all positive t.
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4.5.3 Case 4

This case is the extension of the method described in “case 2”, for the
single-measurement case, for the multiple-measurement case.

One can verify that the case 3 was restricted by the Positive Real
Lemma, which resulted from the strict passivity condition imposed by the
use of pure switching(signum function) for the function 1,.

It suggests that, as for the case 2, taking the saturation function for 1,,
a less restrictive condition would be found. It 1s actually the case, and the
design procedure uses the extension of circle criterion to the multivariable
case.

The design procedure is first presented, and proof of this method is
presented at the end of this subsection.

Design Procedure

The design procedure for this case ‘s very similar to the case 2:

1. Let the 1, to be the vector function whose components are saturation
function defined in the usual way:

sat(gl/el)
B sat(yz/e€2)
5at(Jom/€m)
. Jlal it Jil
-y )V ullyl ifg 2 e
sat(yi/ﬂ) = { g.‘/fi if |g|| < € (4.19)
2. Let w = Dn

3. Set the gain matrix K as:
K = Dp
p = dia'g[pla P2y o Pm]

4. Determine the width of boundary layer for g, called ¢;, and which
coincides with saturation limit ¢; in the sat- function defined by (4.19);
define the matrix

A=diag(el’ €2, ", 6m)
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5. Design for boundedness inside the boundary layer. It can be done in
two ways:

e Choose the gain matrices H and p such that A— (H + KA™!)C
has distinct eigenvalues and such that for all w € R:

max|0pn.(C(jwl —. + (H+ KA™Y)C)™')D] +
+0maz(C)cond (V) max(|Zo|) < m!_in(e.')

where 0,,,:(M) is the maximum singular value of the complex
matrix A, the norm |z| = (2*z)3 (2° denotes the complex con-
jugate), and the cond(V) is the condition number of the matrix
of eigenvectors V of A — (H + KA™')C. max(|Z,|) is an up-
per bound of initial state estimation error z,. This approach
suffers the drawback that it depends on the scaling factors of
eigenvectors.

e Choose the gain matrices H and p such that for all t € R, and
for all w € R:

max|[Oma.(C(jwl — A+ (H+ KA™)C)™)D] +

+ama,(C’e(“'(H+KA_I)C) max(|Zo]) < min(g)

In practice this test has to be verified in the time interval of
interest, typically during the initial transient.

Both methods are very conservative, as will be shown in the examples.

6. Check whether the state estimation error bounds are within reason-
able limits:

|Z| < max [Omez((Jwl — A+ (F+ KA™Y)C) ") D)

—oo<w<+00

7. Check for stability outside the boundary layer. Tha matrices H and
K must k2 so that:

e (A— HC — KMC) has eigenvalues in the open left half plane; the
matrix M is a diagonal matrix whose entries are m;; = §lc_.-(1+ i);
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e The following condition is verified for all values of w € R at
which G~ exists:

Omin([M + G (jw)M7T) 21
where Hy(s) = C(sI — A+ HC)™'K.

8. If this last condition is satisfied, then the design is complete. Other-
wise, one has to iterate.

Proof of the Design Procedure

The proof of this design procedure has to be done in two parts: the first part
corresponds to the situation when the output estimation error g is outside
the boundary layer (i.e. during the reaching phase), and the second part is
the situation when the output estimation error § gets inside the boundary-
layer.

The second situation, that is inside the boundary layer, is exactly equal
to the situation discussed in Case 2, therefore the proof will be omited.

The new situation is when the output estimation error § is outside the
boundary layer. To show that the design procedure presented for this case
is correct, the multivariable circle theorem [45,46,48] is used3.

It is necessary to recognize that the estimation error dynamics can be
described as:

z = (A-HC)z- Kéj
j = Ck

as shown in Figure 4.2. In this case ¢ is:
¢5=1,(3) —p7'n

therefore, outside the boundary layer, each component ¢; of the operator
¢ is contained inside the sector:

0 < ¢ < [0+ )i (4.20)

The last step in the proof is to show that the multivariable circle theorem
(sce Appendix A ) is satisfied:

3See Appendix A
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¢ The functions ¢’s are in the cone (M, R) (using the nomenclature
defined by Safenov [45]), that is it is inside the "cone with center M
and radius R. Because each component of the operator ¢ is inside the
sector defined by (4.20), the center M and the radius R are defined

by:
M=R = diag(ry, r2, -+, Tm)
1 1
i = —(1+—
r 26.'( +Pi)

e By constraining the eigenvalnes of (A - HC - KMC) to the open left
half plane, one can conclude that the estimation error dynamics with
¢ = M is asymptotically stable, therefore £,.-stable.

e The last condition that has to be verified is the condition that involves
the minimum singular value :

Omin([R+ GYM™Y) > 1

for all w at which G™! exists. In this case R = M, and the last
condition is verified.

Therefore, if all the steps in the design procedure are satisfied, then the
multivariable circle theorem is verified, and the £;—stability, can be con-
cluded [45,46,48]. It shows that the boundary layer is attractive, and it
completes the proof.

4.6 General Remarks

In this chapter, the sliding observer design procedures for stability robust-
ness were presented and proved.

The procedures were presented as algorithms, so that the control engi-
neer could try to apply these methods without deep understanding of the
proofs of each of the methods.

Nowhere in these procedure descriptions was the issue of convergence
rate mentioned. Even though the design methods do not guarantee any
performance measure, it is possible to guide the design in such a way to
improve the speed of response.
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The easiest rule is to place the poles of error dynamics ( either of the
linear part A — HC at the “reaching phase” - i.e. outside the boundary
layer, or the whole A — (H + 1K)C inside the boundary layer) at suitable
positions, so that the conditions for stability robustness are not violated
and yet guarantee quick response.

In Case 4, the performance, in terms of the speed of response can be
more explicitly reinforced if jw — a is substituted for jw in the stability
tests: it will guarantee that the error dynamics will have an exponential
rate of decay e~ .

As was mentioned several times in this chapter, the design procedure
does not cover the whole range of possible state estimation problems. If
the problem at hand can be described in the form given by equations (4.14)
and (4.15), but if the simplified design procedures described in this chapter
do not apply, then the design can still be carried out by applying Theorem
4.1.
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Chapter 5

Design Examples

In this chapter, three examples are developed to illustrate the use of sliding
observers for state estimation of real systems.

In all examples, the presented results were obtained from simulations
in the digital computer, due to the unavailability of actual hardware.

In the first example, the sliding observer is used to estimate the angular
velocity (“yaw rate”) and the angular acceleration of a super-tanker. The
second example shows the application of a sliding observer to estimate the
states of a one link manipulator with flexible joint. The third example
shows the application of a sliding observer for shaft torque estimation in a
automatic transmission for cars.

5.1 Super-Tanker Lateral Dynamics

In this example, the sliding observer is used to estimate the yaw rate and
its derivatives, from the measurement of the “heading”, i.e. the yaw angle
of a Super-Tanker.

The plant is described as an unstable third-order system, whose equa-
tion of motion was identified by Frimm [14]. It is described as:

i‘l = Is
Z; = z3

k 1 1 k .
by = — —(Z + =) Ts + ——(6 + Toé
I3 TszH(-'L'z) (T1 + Tz)xs + Tng( + T3 )

where:
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z, = 1 is the yaw angle (degree);

£ = ¢ is the yaw rate (degree/sec);

z3 is the derivative of yaw rate;

6 is the rudder angle (degree);

This is an observable system, given the measurement of z,.

The function H(z,) = H(4), and the constants were identified, from
the actual ship as:

H(¥) = 1.8419 — 21.294¢) — 8.0534¢)* + 96.5283y° — 24.9247y"°

T, = -60.26
T, = 1.77
Ts = 175

x = —.04696

Obviously, if the measurement of z, is truly noiseless, one can simply take
the derivatives of z, in order to get the estimates of z; and zs. In practice
all sensors have some ncise therefore an alternative method must be used.
Due to the presence of nonlinearities, the obvious candidate for alternative
estimator is the sliding observer. The goal of this problem is to design a
sliding observer that provides the estimates for the second and third states,
given the measurement of yaw angle. A linear model, given by Arie[1] will
be used and the rudder inputs will be lumped with the nonlinearity and
regarded as an uncertainty.
The model used for the observer design is then:

.1.71 = I

I, = I3

. 1 1 1

o= pmm(grgute
lw| < v

where the uncertainty bound - will be determined based on the knowledge
of the actual system as will be shown shortly.
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The sliding observer, after setting the gain matrix as K = pD, becomes:

él = I+ hI,

Z, = Zg+ hox,

By = -1 3 (l+l)i + hsZy + kssat(Z,/e)
3 = T, 2 P 3 3T 3 1
I, = n,—%

where the h;’s are the “linear gains” and ks is the switching gain to be
determined.

Following the design procedure for the single-measurement problem -
Case 2 - one has to determine the bound for the modelling error.

In this case, the modelling errors are mathematically unbounded, there-
fore it is necessary to use the physical knowledge to determine the bounds
for modelling errors. The experimental data was obtained by feeding back
the position measurement through a relay, inducing a limit cycle.

The experimental data shows that

|z;] < 1(degree)
|z2| < .2(degree/sec)
|6 < 10(degree)

Because the relay output looks like a square wave, the derivative of the input
6 is theoretically infinite, therefore unbounded. Since this singularity only
occurs in a very few instants —actually 5 = 0 during most of the time — it was
neglected in the bounding process. The effect of this simplification is that,
if this singularity ever becomes important, then the trajectory would leave
the boundary layer momentarily. Soon after this singularity disappears,
the stability is again guaranteed and the trajectory would return to the
boundary layer.

Using the physical bounds given above, and using the triangle and
Schwarz inequalities, the bound on the uncertainty term is found to be:

1
TT,

k .
I‘UJI = I (.‘52 - kH(Iz)) + —(6 + Ts&)l < .023
T

Taking d = .023, and k = .1(that is p = 4.3), one can now proceed through
the following steps.
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Say that, for control applications, one allows the estimation error for
the estimation of z; of 0.1 degree, that is one can set ¢ = .1.

With this information, the behavior inside the boundary layer is deter-
mined assuming that the initial estimation error would roughly be bounded

by

571 = 0
|5:2Imaz S 1.5
|1.:3|maz S 0.5

which gives |Z| < 1.58.

Using standard CACSD ! software, the singular value analysis given in
Chapter 4 is easily carried out. By constraining the behavior inside the
boundary layer to be criticallv damped, the gains were chosen as:

hy = 14.89
h, = 73.3

One can see that the boundedness condition is violated (Figures 5.1 and
5.2) due to the effect of initial conditions, which is not surprising considering
its conservativeness. The simulations shows that the output estimation
error y remains inside the boundary layer, once it gets into it, even though
this condition is violated.

The final step in the design process requires that the absolute stability
must be checked. This is done by drawing the Nyquist plot of the transfer
function G(s) = C(sI — A+ HC) 'K (the necessary matrices are evident
from the model description).

From the given information, it is desized that the Nyquist plot stay to
the right of the vertical line that intersects the real axis at —0.081.

The Nyquist plot is shown in Figure 5.3, and the absolute stability is
guaranteed, by large margin, using the circle criterion.

Simulating the plant and the observer, using the program SIMNON,
the time history for the real and estimated states were obtained. They are

1Computer Aided Control System Design
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Figure 5.3: Nyquist plot for the observer design for the super-tanker

shown in the Figures 5.4 and 5.5 for the time plot and the trajectories in
the state-space of error dynamics.

Clearly, we obtained convergence in less than 2 sec, and the trajectory
actually goes into the boundary layer, and never leaves it.

One might wander how the heuristic “rule” mentioned in the design
procedure would perform in this case. Following that rule, the absolute
stability is guaranteed with h, = 5.89, hy = 11.34, hy = 4.74, k = 0.1,
¢ = 0.05, as long as the trajectory is outside the boundary layer. Running
the simulations with these numbers, one can verify (the simulation results
are not shown here, in order to avoid proliferation of Figures) that the
behavior is very close to the first one: The convergence is obtained in
about 4 sec. and the largest overshoot of Z, is less than 0.1 degree. The
largest estimation error for z; and zs are twice the ones obtained before,
but they are still small.

This remark gives some sense of how conservative this design process is.

Another question that the reader might ask is what is the effect of the
switching gain, since the linear gains are proportionally much larger. The
answer is that, for this particular problem, the performance is not really
affected if the switching gain is set to zero as seen in Figure 5.6. However, by
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doing it the robustness cannot be guaranteed because the only knowledge
of the uncertain term is its bound.

5.2 One Link Manipulator with Flexible Joint

An interesting application of the sliding observer can be found in the estima-
tion of angular velocities, given the measurement of positions in a one-link,
elastic-joint, manipulator.

5.2.1 The Elastic Joint Manipulator

The system, illustrated in Figure 5.7, was described by Spong [56]. The
equations of motion for this system in state space form are:

il I9

. mgl . k

Zy ———Ig— sin(z;) — T(zl — Z3)

i3 Iy

. k 1

Iy = }'(.‘El - 23) + ju (5.1)

where z, = 8,, £o—0, etc... ; with the parameters given in the International
System of Units (meter-kilogram-second) are:

e mass=m=1

stifflness k = 100

length (2) =1

gravity ¢ = 9.8

inertias I =J =1

The manipulator is controlled by a compensator designed using Global
Linearization [22], shown in [56]. The controller is given by:

1J
° =

k

—(v— F(zy,z3,13,4))
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Figure 5.6: Comparison of estimation errors from the linear filter and the

sliding observer
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4
9+ Zai—l(y? - u)

=1

stn(wt)
vir1, Vi=1,2,3
T
Z2
mgl . k
——sinzy - -I-(:rl — z3)
mgl k
——] COSTiTz — T(:r:, — z,)
Elg—lsin T,75 + (ngl cos z, + -’IE)(?'%g—lsinzl + ;(zl - z3)) +
k2
77 (21— 2s) (5.2)

where the controller parameters a; were chosen so that the poles of the
globally linearized system are at A = —10. It gives:

* a9 = 10*
e a; = 4000
e a, = 600
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e a3 =40

Given this system description, the goal is to design a sliding observer, given
the measurement of the positions z; = 6, and z; = 6,.

5.2.2 Model for Sliding Observer Design

A slightly simplified model is used for Sliding Observer Design. Neglecting
the nonlinear term due to the gravity term, and assuming that the input
is not measured, the simplified equations of motion are:

I, = 1

Iy = —'I'(Il —z3) + wy

I3 = I4

. k

Iy = 7(1:1 - Is) + w, (5.3)

Comparing equations (5.1) and (5.3), one can identify the disturbance terms
w; and w, explicitly and find bounds for them.
Because the sine function is bounded, the term w, is bounded as:

lwy| < 9.8 <10.0

Bounding the term w; = u/J is difficult. In this case, the bound were
obtained by looking at the input signal in some simulations. By taking the
reference input as y¢ = sin(3t), one can verify that :

|ws| < 10.0

Actually, depending on the initial conditions, this bound is violated during
the initial transient. The effect of this violation is that the estimation may
diverge in the beginning, but once the tracking is obtained, the estimation
will also converge properly. When the observer is used inside the control
loop, a more conservative bound must be used in order to account for the
transient large inputs.
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5.2.3 Sliding Observer Design

The model (5.3) can be described in the matrix form as:

= Az + Dn
= Cz
where:
0 1 0 0
4 = -100 0 100 O
o 0 0 0 1
| 100 0 -100 ©
0 O
10 O
D = 0 O
| 0 10
(1 000
¢ = (0010
|m] < 1.0
In2] < 1.0

One can readily see that this system cannot be designed using the method
discussed in case 8 because the condition

DTp=cC

cannot be satisfied by any symmetric positive definite matrix P.
The alternative is to use the method discussed as Case 4.
Let

0 0
10 0
0 10p2

Also, let p; =1 and p, = 1.
And choose the boundary layer width to be

61 = 62 = 0.01
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that is,

_[100 o0
A ‘[0 100

The next step is to design the observer, so that the trajectories inside
the boundary layer remain inside the boundary layer. The gain matrix H
was selected using the constant gain Kalman filtering theory, with artificial
process and measurement noise intensities. This is an iterative process, and
the choice of process noise intensity

[Nl ol o]
O O~ O
O OO0
-0 o 0O

and the measurement noise intensity

10T« |10
R=10 X[O 1]

gave the gain matrix H as:

670 1.0

2249 67.0
H= 1.0 67.0

67.0 2249

With this choice of gain matrices the condition on the maximum singular
value is satisfied. In fact, the plot of singular values of

Gi(jw) = C(jwI — A+ (H+ KA™Y)C)™'D

is as illustrated in Figure 5.8, and the maximum singular values of

CelA-(H+KA-1)O)t

is illustrated in Figure 5.9. Clearly, the condition

|7l = |C(z — £)| <0.01 =6 = &
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is satisfied, provided that |Z,| < 0.096. It is quite conservative, and the
simulation shows that much larger initial estimation error will not pose
any problem.

The next step is to check robustness using the multivariable circle cri-
terion. The cone (M, R) is defined by the saturation function plus the
uncertainty term. It is found to be:

1 1
w="ri=;7(1+—)=100
T =T 25.'( N Pi)
therefore,

100 0
M_R‘[ 0 100]

Because the eigenvalues of
A—-(H+ KM)C

are in the open left half plane, the only condition that must be checked is
the one that says that the minimum singular value of

V(jw)=[M+ Ggl(jm)]R'l
with
Gs(jw) = C(jwI — A+ HC)'K

must be always larger or equal to one. This condition is easily satisfied, as
shown in Figure 5.10

One can also estimate the bounds of the estimation errors at the steady
state. The estimation error can be bounded by the largest maximum sin-
gular value, over all frequencies, of

Gy= (jwl — A+ (H+ KA™)C)D

The frequency domain plot is shown in Figure 5.11. One can see that the
maximum singular value is always smaller than 0.25, therefore

£ < 0.25

One can see that the observer design was carried out easily for this
problem. Some digital simulation shows how this observer works for some
initial conditions.
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states | tnitial condstions
actual | estimated

z 0.0 0.0

I 3.0 2.5

g 0.0 0.0

T4 3.0 2.5

Table 5.1: Flexible joint manipulator — first initial conditions

5.2.4 Simulations

The simulations were run using SIMNON, for basically two different initial
conditions.

The first set of initial conditions are shown in Table 5.1 Clearly the
estimation error is starting inside the boundary layer. It is a natural as-
sumption since the state z; and z; are both been measured. The simulation
for this set of initial conditions are shown in Figure 5.12. The correspond-
ing estimation errors are shown in Figure 5.13. It is clear that the sliding
observer is working properly, and the estimated bounds of the estimation
errors actually agree with the estimation errors shown in Figure 5.13.

A more challenging situation is when the estimation error starts outside
the boundary layer. In this case one can expect that the trajectory will come
inside the boundary layer after a finite number of switchings.

Consider the initial conditions shown in Table 5.2. The simulation con-
sidering these initial conditions gave the estimates shown in Figure 5.14
and the estimation error shown in Figure 5.15.

Obviously, the trajectories come into the boundary layer after two switch-
ings, and the resulting estimation error in steady state remains within the
estimated bounds.

5.3 Shaft Torque Estimation in Automatic
Transmission

In this section, a sliding observer for shaft torque estimation in automo-

tive automatic transmission is presented. The basic model was previously
published by Masmoudi and Hedrick in [38].
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states | snitial condstions
actual | estimated

I 3.0 0.0

T2 3.0 2.5

z3 3.0 0.0

Iy 3.0 2.5

Table 5.2: Flexible joint manipulator — second initial conditions
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Figure 5.15: Estimation errors — second initial conditions

The basic setup, describing the model of the system as well as the model
for the sliding observer design, is first shown. The bounds on the neglected
noni:mnearities are then derived. In the sequel, it will be first shown that
“he case 3 —that is, the method that requires strictly positive real linear
part—cannot be applied, thus the more involved method described in case 4
is applied to the sliding observer design.

5.3.1 The Automatic Transmission Model

The problem considered here is the shaft torque estimation during the
torque phase of the first to second gear powered upshift. The model that
describes the system is the one shown in [38]:

z, = —56.93Rpzs+ 1.6629u; —0.7705A R uspisriction

. 100

I2 = T z3 — Tiead

3 = 76.25Rpz, — 76.25z, (5.4)
Kfriction = sign(z,){0.0631 + 0.0504 exp(—.0446|z,])] (5.5)
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50.85

Tioaa = 0.000116z2 +

with the outputs:
nn = 0
Y2 = Iz
where:

e 1, is the reaction carrier speed, z; is the wheel speed and z; is the
shaft torque

e u; = 210 is the engine torque
e uz = 2.0 x 10% is the clutch pressure (¢ is the time)

All units are given in the International System of Units (meter-kilogram-
seconds).
The parameters are

e Rp =0.3521
o I, =169.8218
o A.R.=0.0045

Given this system description, the goal is to estimate the shaft torque,
state z3, using the measurements y; and y,. The observer design uses a
more simplified model as shown next.

5.3.2 The Model for Sliding Observer Design

The Sliding Observer is designed assuming that the nonlinearities and un-
certainties are bounded disturbances. In this case, they are results of ne-
glected nonlinearities and unmeasured inputs:

I, = —azs+w
Z; = brs+ w,
3 = ez, —dz, (5.6)

with the parameters
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e a=56.93Rp = 20.05
o b=12 =059

e ¢c="176.25Rp = 26.85
e d=176.25

and the uncertainty terms w; and w, are assumed to be bounded by con-
stants v, and «,. The actual value of these constants can be evaluated
using the model given by (5.4):

w, = 1.662911.1 - 0.7705A¢RCU2ﬂfn'¢ﬁo"

knowing that |z;| < 150, as shown by [38] and knowing that the shift
duration is less than 1.0 seconds, one can find the value of 7, considering
the worst case and using the triangle and Schwarz inequality. It results as

|w1| S 349.0 = 1
Analogously, with the knowledge that |z2| < 60.0, and using the explicit

formula for w,: 50.85

wp = —1.16 x 107422 — T

one can find the bound ~; to be:
I‘LU2| S 0.72 = Y2

The model can be written in matrix form as:

Tt = Az+ Dy
y = Cz
.
I = A
| T3
(0 0 -a
A= |0 0 b (5.7)
l_c -d 0
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(349 O
D = 0 0.72 (5.8)
0 0
[y
— 1
y _.’Jz]
(1 00
c=lota) (59
Im| < 1.0

It is worth noting that the choice of matrix D is, to some extent, arbitrary
in the sense that the first and second row could be exchanged with suitable
exchange in the roles of n, and n.. The adopted form of matrix D is
important, because it will reflect on the positive realness of the linear part
as will be shown in the next subsection.

5.3.3 Design using Case 8

The observer structure is the usual one:
t=At+ H(y-C%) + K1,
where 1, is chosen to be:

[ sign(z, — %;)
1, = . a
sign(z; — ;)

The switching gain matrix K is chosen as:
K = Dp

where p is the diagonal matrix whose entries are p; and p,, which are greater
than or equal to one. The gain matrix K becomes:

349p, O
K = 0 0.72[)3
0 0
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The next step in the design procedure is to check whether the systein given
by C(sI — A+ HC) 'K is strictly positive real (S.P.R.). One of the con-
ditions is:

KTp=cC
which gives
1
Pn = 349p,
. 1
P22 = o872,

pss > O (arbitrary)
P12z = pis=p=0

The other condition requires that the following equality holds for symmetric
positive matrix Q:

(A- HC)TP+ P(A-HC) = -Q
—hyn —hy, —a
(A-HC) = —ha —hay b
Cc— h31 —d - hsz 0

Clearly, one would choose a gain matrix H using some technique like pole-
placement or Kalman Filtering, and check whether the matrix @ is positive
definite?. First it is necessary to check if one can hope to find such gain
matrix.

The matrix @ can be found to be:

—2hupn —ha1p22 — hi2py  pss(c — ha) — eps:
-Q = | —hup2— hi2pn —2ha22p22 bpzz — pss(d + hs2)
pss(c — hs1) —apiy  bpzz — pss(d + hss) 0
so @ is the symmetric matrix:
qu1 Q12 Qi3
Q=| q1z g2 gz
is Gz 0

2Depending on the number of state and the number of measurement, it is cometimes
possible to first choose the matrices P and Q, and then compute the gain matrix H so
that the Lyapunov Function V = z7 Pz decreases exponentially with the bound V < -V,
where ) is the minimum eigenvalue of P~1Q
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It will be positive definite if and only if

qua > 0

gz —q; > 0
2¢12G13923 — 11923 — 22435 > O

Taking ¢;; and ¢z; as positive numbers that satisfy the first and second
inequalities and noting that the effect of ¢;3 and g3 are similar, one can try
to find the interval for g¢;3, on the real axis, in which the third inequality is
satisfied. It would give

923, < q23 < G23,

where ¢23, and ¢23, are the solution of

01195 — (2912q13)g23 + g22¢33 = O

Solving this equation, one finds that

— q12q13 + Qi3

2
qi2 — q11922
q11 12

q23
Because ¢;,, 22 and ¢;2 must satisfy the second inequality, the solutions
are actually a complex pair, therefore the desired interval on the real axis
does not exist. The conclusion is that, due to the ¢33 = 0, the matrix
Q cannot be positive definite, and so there is no gain matrix H that can
make C(sI — A+ HC) 'K strictly positive real. This conclusion could be
expected due to the existent of zero in the diagonal position.
It means that the method described as case $ in the chapter 4 cannot
be applied in this problem, therefore the method described as case 4 must
be used.

5.3.4 Design using Case 4

Because the design procedure just described cannot be applied to this prob-
lem, the method described as Case 4, is used.
The estimation error dynamics inside the boundary layer is given by:

Hee

(A-(H+ KA™)C)z+ Dn
Ci (5.10)

<<
|
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T = z—%

y = y—-Cz
10

s = o1

where the matrices A,D and C are given by equations (5.7),(5.8) and (5.9)
respectively.

In this case, one can verify that the system described by the equations
(5.10) has a transmission zero at the origin. One can expect that this zero
limits strongly the design freedom; actually, using the Kalman Filtering
Theory to choose the linear gains one can verify that it is very easy to
limit the trajectory to be inside the boundary layer with widths ¢; = 1 and
€2 = 1. Also it is very easy to verify the stability outside the boundary
layer, but the bounds of estimation error of shaft torque is as big as the
shft torque itself. This result is not acceptable, so some different route has
to be used.

In this particular system, one can see that the bounds of disturbance
inputs are:

72 = 0.72 < shaft torque (~ 20)

therefore, one might want to neglect the effect of disturbance input ws,.

On the other hand, the shaft stiffness, modelled as a linear spring ,may
have considerable uncertainty in its spring constant. Assuming that one
has 30% uncertainty in the spring constant, one has the disturbance term
in the third equation of (5.6), given by:

w3 = 0.3(61:1 - dzz)

that is the model used for the observer design becomes:

il = -azg+ w;
iz = bI3
3 = cx; —dzy+ ws (5.11)

with the measurements of speeds z; and z,.

The bound of ws can be found using known bounds, from simulations, of
z) and z,. A tighter bound can be easily found from simulations, computing
the term wjy explicitly. It was found to be:

|wa| < 45 =15
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One can verify that the estimation error dynamics, inside the boundary
layer, resulting from this system has no finite transmission zeros, in this
case the design process must be easier.

The first step in the design process is to design the observer, inside the
boundary layer.

Using the Kalman filtering theory to choose the gains, with fictitious
noise intensities

Q = D.Dj
R = 0.0011
349 0
Dg = 0 0
0 15

with I as the identity matrix, and taking the gains p, and p; to be one, the
gain matrix H was found to be:

110020 O
H= 0 74
—81.4 4652
which placed the poles at:
Xy = —1.1036 x 10°
Az 3 = -37+ 37.8].

One can see that the gain matrix H has one very high gain. Noting that it
is related to the very fast pole, one can just reduce this gain. By choosing
the gain matrix H to be:

1100 0
H= 0 74
—81.4 4652
the poles becomes:
A1 = —145x10°
Az.s = -37.8:!:37.8]
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Figure 5.16: Singular values of G(s) = C(sI — A+ (H + K)C)™'D,

which seems to be a satisfactory choice of poles. The singular values that
determine the boundedness inside the boundary layer are shown in figures
5.16 and 5.17. It can be seen that if the initial estimation error are so that:

Iy = 0
52 =
|Zs} < 1

then the trajectory will not leave the boundary-layer.

The next step is to check for stability outside the boundary layer. In
this case, because the saturation levels were taken as unity, the matrices M
and R used in the multivariable circle criterion are also identity matrices.
The application of the multivariable circle criterion is shown in Figure 5.18.
Clearly, the minimum singular values are larger than one, therefore the L,-
stability can be concluded.

The overall bound of estimation error can be found using the singular
value plot shown in Figure 5.19. The estimation error, mainly of Zs is less
than 1. This observer was simulated, using the original nonlinear de-
scription given by equalion {5.4) as the plant. The result of this simulation
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Figure 5.18: Multivariable circle criterion — shaft torque estimation
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Figure 5.19: Maximum singular value of (jwI — A+ (H + K)C)™'D,

is shown in Figure 5.20. For all practical purpose, the convergence in less
than 0.2 seconds was achieved, and satisfactory estimation accuracy was
obtained, even with initial estimation error larger than one.

5.4 Summary

In this chapter three examples were used to illustrate the application of
sliding observers.

The first example used a model of lateral dynamics of a super-tanker,
and a sliding observer was designed in order to estimate the yaw rate and
its derivative given the measurement of the yaw angle only. The design was
shown to be successful, and in principle no limitation was found.

A model of a one-link manipulator with a flexible-joint was the subject
of the second example. A sliding observer was designed to estimate the
angular velocities, given the angular position measurements. Again, the
design process was fairly easy, and the design was again successful.

The third example was used to illustrate the eventual limitations that
the observer designer might found. This example uses a nonlinear model of
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Figure 5.20: Actual versus estimated states — shaft torque estimation prob-
lem

an automotive automatic transmission, and the goal is to estimate the shaft
torque, given the two speed measurements. Two difficulties were found in
the design process: the first limitation was found when the design method
described as Case 3 was used and verified that this method could not be
used; the second limitation appeared when the design was attempted using
the method described as the Case 4. The problem was the existence of
zero at the origin,in the estimation error dynamics inside the boundary
layer. This zero limited the accuracy of shaft torque estimation, and a
different model was used. Assuming that the shaft spring constant had
some uncertainty, a new model for observer design was chosen, and then
the observer design became successful.

These examples also demonstrated that the condition for boundedness
inside the boundary layer determined by the maximum singular value of a
function with a matrix exponential is very conservative.

In these examples, the measurement noise was always assumed to be
absent — even though the measurement noise is the only reason why one
would not use pure differentiator in the first two examples —, however they
are known to be always present. In this case, some of the high gains might
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not be acceptable.
The effect of measurement noise, and an alternative design procedure
is shown in next chapter.
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Chapter 6

Design for Noisy
Measurements

6.1 Overview

Because there is no such thing as noiseless sensors, measurement noise is
always present and a useful state estimator must reject the sensor noises as
efficiently as possible.

Drakunov [12], in 1983, suggested an adaptive filter which is actually
the sliding observer presented in this thesis without the linear term “HC%".
Using the averaging theory, this paper showed that this kind of filter can be
robust against changes in the intensity of measurement noise, resulting in
a suboptimal filter as the measurement noise becomes white, for a specific
choice of gains[12]. Drakunov’s results actually inspired this chapter, and in
particular the first-order example presented in this chapter used to show,
qualitatively, the intrinsic robustness properties of sliding observer. The
results presented in this chapter confirms the results in [12].

Drakunov(12], however, did not include the linear gain “HCZ” which,
as shown in the previous chapters, is important to guarantee stability ro-
bustness of a sliding observer. This chapter includes this linear term in the
observer. Also the analysis done for a first-order system complements the
results in [12], because the effect of changes in the process noise intensity,
as well as the effect of parameter mismatch, are included.

In the case cf the sliding observer, assuming that the sensor noises
have known statistical properties — Gaussian noise preferably — and if all
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uncertainties in the input can be modeled as white noises then one can use
Random Input Describing Function (RIDF) in the design process. In this
case, some optimality can be claimed to scme extent, however robustness
has to be checked separately.

In this chapter, the plant is assumed to be described as in Chapter 4,
with the addition of measurement ncise:

T = Az+w
y = Cz+v
where v is the measurement noise.

For this system, using the usual sliding observer structure, the estima-
tion error dynamics can be described as:

i = (A-HC)i—K1,+w+ Hv
17 = [sgn(d) sen(d) --- sen(d) |
Vi = ui—-Ci=Cz+v
#Ht=0) = (6.1)

Given this estimation error dynamics, the sliding observer design can
be carried out as follows.

6.2 Random Input Describing Function Ap-
proach

Recall that the estimation error dynamics is described by equation (6.1).
Using the RIDF, the “switching” function 1, can be approximated by:

1, = ng = NI(C:E+ v)

where N; is the m X m matrix of RIDF of 1,, which is function of statistical
properties of §. In practical terms, because these properties are not known,
an approximation is made assuming that ¢ is a zero mean Gaussian Process
and therefore determined by covariance matrix of ¥.

By doing this approximation, the gains H and K can be combined in a
single term H*:

H'=H+ KN,
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where, obviously, H* is a function of the covariance matrix of y.

From this point, one can perform the initial observer design following
different routes depending on the problem at hand, which will determine
the lumped gain matrix H*. For example, two possibilities are:

e if the uncertainty term w only contains known nonlinear terms then
the nonlinear terms in w can be approximated using RIDF and the
optimal observer design can be done using the technique shown by
Beaman [5] and reviewed in Chapter 2.

o if the uncertainty term w is actually a process noise that can be as-
sumed to be a white noise and if the measurement noise can also be
assumed to be white, then the design can be made using the conven-
tional Constant Gain Kalman Filter Theory.

Whichever method one decide to use, the gain matrix H* can be, in
the optimization process, regarded as a matrix of constant gains. It can be
done because the gain matrix H and K can always be adjusted conveniently
so that the optimal gain H* can be obtained.

When the gain matrix H* is determined, one also has the covariance
matrix of estimation errors Z, usually denoted as P. With the knowledge of
covariance matrix of measurement noise — assumed to be white ~ denoted
as R, and the matrix P, one can easily verify that the covariance matrix of
y is given by:

E[§(t)§"(t)] = CPCT + R

where E|[.] denotes ensemble average.

It is clear that once the covariance matrix E[§jT] is determined the
matrix of RIDF’s IV, for a particular choice of function 1, can be evaluated.
Because H" is now fixed, implying that the combined effect of gains H and
K is to give an optimal filter — provided that the approximation made to
get the RIDF holds true — one can now proceed to choose each of the gains
H and K, so that the robustness can be guaranteed.

In the process of robustness verification, as described in Chapter 4,
one has to assume noiseless measurements because the measurement noise
cannot be included explicitly in these methods.

One important choice that is left to the designer is the choice of the
function 1,. It must be chosen so that the robustness can be guaranteed,
but also the particular choice of function 1, will have a great impact on the
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behavior of sliding observer in the presence of modelling errors or deviations
in the process noise intensity. More precisely, a common situation is when
the uncertainty term w, due to the unmodelled dynamics or neglected non-
linearities, has its frequency content in the low frequency band compared
with the frequency content of the measurement noise. In this case, because
the role of function 1, is to make corrections based on the information from
the uncertainty terms, one useful procedure is to low pass the error signal
¥, cutting-off the effect of measurement noise, before entering the function
1,

Another situation occurs when, not only the uncertainty term has low
frequency content, but also the matrix A in the plant model is a good
representation of the system near working operating point. It often occurs
when the linear part in the plant model is obtained by linearization using
Taylor expansion. If the white noise statistics are alsc close to the real ones,
obviously the Kalman Filter is expected to be the best filter to use when
the system is operating near the operating point. In this case, one would
take the gain H to be the Kalman Filter gain and one would choose the
function 1, as the relay with dead-zone, with the dead-zone width of order
of standard deviation of the measurement noise. With this choice, when
the estimation error is small, one can expect that the Kalman Filter (which
is the case because the gain K will be virtually zero due to the dead-zone)
will be working properly. When the estimation error grows, which means
that the effect of uncertainty term became important, then the error signal
y will go beyond the dead-zone width and the switching term will become
active. The benefit of this procedure was already seen in the example shown
in Chapter 3.

As will be shown, the use of pure relays has some advantages, namely
robustness against deviations in the measurement noise intensity, but one
should always remember that looking strictly at the case of small signals
entering the signum function (relay), the relay can be working as a high
gain element due to the infinite slope at the origin which can be disastrous
in some applications.

It was a general outline of the design method using RIDF. In the follow-
ing subsection, the design process is detailed using a third possible route,
namely that the uncertainty term w is actually a white noise and that the
measurement noise is correlated. In general it would require that the gain
matrix H", has to be determined using some iterative optimization method.

137



In the case of a simple first-order system considered in the example, the op-
timal gain can be found in the closed form, and some numerical parametric
analysis will show how this method works.

6.2.1 The Design Process
Let the plant be described in the usual way:

T = Az+w
y = Cz+v

Assume that the uncertainty term w can be modeled as a white noise
process:
Elw(t)w(t + )] = Q&(r)

Suppose that the measurement noise is colored, i.e. it is correlated. It is
assumed that the measurement noise can be modeled through the use of a
“shaping filter”:

v = FEv+ Fuy,

where the matrices £ and F are chosen properly and v, is a white noise

process:
E[vy(t)vi(t + r)T] = Ré(r)

One can define an augmented state x as xT := [z, v], in this way, the
plant can be modeled as:

R EHIHE U

where I is the identity matrix with proper dimension.
Using RIDF, the sliding observer can be written as:

= Az + H'(y — C3) (6.2)

therefore, the estimation error dynamics can be described, using augmented
estimation error states:

o[£ L ][5

138



For this description, the covariance matrix of estimation error can be
partitioned as:
E[zzT] E[zv7)
P = =T T
E[vz"] E[vv]

which can be propagated as:
P= AP+ PAT + G867

where ¢ = diag(Q, R).

Assuming that the original process is ergodic, oune is often interested
in designing the state estimator with constant gains. It is done by solving
the covariance propagation equation for the steady-state, that is by setting
P = 0 the resulting equation is the well-known Lyapunov Equation, for a
fixed matrix H*.

In order to have the optimal gain for the filter given by equation (6.2),
in the least-square sense, it is desirable to find the gain matrix H* that
minimizes the cost function:

J = trace(E[2z"]) = trace(M PMT)

where M is the n x (n + m) matrix where the first n X n submatrix is the
identity matrix, and the rest is zero.

What is desired here is an optimal filter with fixed structure, and to
the best of this author’s knowledge, the closed form solution for this mini-
mization problem is unknown, however the optimal gain can still be found
by solving this minimization problem using some iterative optimization
method, like the gradient-search method.

Once the optimal gain H* is found, one can now go back and try to
choose the original gains H and K so that the resulting filter is robust for
the given uncertainties/modelling errors. If the uncertainty term is truly a
white noise, the robustness is actually guaranteed from this design process.
Moreover, if w is really white, and if the noise statistics are the real ones,
then the Kalman Filter is the optimal one, so there is no need to use the
switching term in the observer. Of course it is not always true, and actually,
in many situations the use of switching function has some advantages as
will be shown in the example.

It is worth noting that the gains H that would result if one assumes,
right from the beginning, that the measurement noise is white is often
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sinaller than the gain H* that results from the method described in this
section. This suggests that the gain H can be taken as the plain Kalman
Filter gain, and the difference H* — H can be assigned to the switching
term K N,.

This method will be illustrated in a simple first-order system, for which
the optimization procedure suggested in this section can be solved in closed
form.

6.2.2 Example

In this example consider a simple first-order system, with correlated mea-
surement noise that can be modeled as a first-order Gauss-Markov Process:

= —azx+w
= z4+v
™ = —v+uy
where w and v, are assumed to be zero mean White Gaussian Noise with
noise intensities g> and r2 respectively.

Assume that one wants to get the estimate of the state z, given the mea-
surement of y, and the statistical properties of process and measurement
noise:

¢ =10
r? = 0.01

and the numerical values of the parameters:

a = 1

T = .05
The estimate is to be obtained using a suitable filter. The linear filter -
which is the Kalman Filter if the gain is the optimal one in the least-square

sense — looks like: )
T=—-az+ h(y- %)

whereas, the sliding observer is

% = —at + ksign(y — %)
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Notice that, because it is a first-order system, there is no need for the linear
correction term, in order to guarantee stability robustness 1.

Because the bandwidth of the measurement noise is much larger than
the plant bandwidth, the first filter that one might want to design is the
classical Kalman Filter. Assuming that the measurement noise v is white,
with noise intensity r? = 0.01, the Constant Kalman Filter gain becomes?:

h =9.05

The Kalman Fllter with this gain will be called, in this example, as the
Kalman Filter 1 or simply KF1.

Because the measurement noise is actually correlated, one can hope to
design a better filter by exploiting the available measurement noise model.
The improved linear filter will use the optimal gain H* described in the last
section.

The first step in the design process would be to get the statistical steady
state variance of estimation error Z = z — Z. It can be solved explicitly,
resulting:
¢*[(a + k)7 + 1] + h?r?
2(a+ k)[(a + R)T + 1]

where h is the filter gain. The design goal is to find the gain h that will
result in the minimum value of p.

In this case, this optimization process can be solved explicitly. By taking
the first partial derivative dp/8h and setting it equal to zero, one can find
the optimal gain h*:

Be = (1 + ar)[rg? — a*r? £ \/a?r* + ¢%r?]

r?(2ar + 1) — ¢*72

p=E[&"] =

from which the positive solution is taken. Numerically it will give:
h* = 17.356

The linear filter with this optimal gain will be called the Kalman Filter 2
or simply KF2 in the analysis that will be done shortly.

1See example for Case 1, in Chapter 4
2See [16]; the gains can easily be obtained using standard CACSD software
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One can now proceed to compute the gain for the sliding observer,
because the optimal gain h* is known. For this case, the covariance of
estimation error is

p = 0.069

therefore the covariance E[§?], § = y — %, can be found as:
o; = E[3*] = 0.282

therefore, the gain k in the sliding observer becomes:

k=h'o;\/7/2 =6.13

Using these gains for the Kalman Filter ( KF1 and KF2 ) and the sliding
observer (SO) a series of simulations were done, in order to study the
sensitivity of Sliding Observer with respect to changes in the intensities of
process noise and measurement noise. Both Kalman Filters , KF1 and KF2,
were also simulated under the same conditions for comparative purposes.

At the same time, the agreement between the simulations and the pre-
diction of steady state covariance of estimation error for the sliding ob-
server, using Random Input Describing Function, was verified. The steady
state covariance, for this case, is given by:

2 _ 1 (a® —1/7%)r%/r - ﬁ
Y 2a+y2/nk) [at 1/t f2/nE r?
a+1/r r?

a+1/T+\f2/n) | 27

In the following analyses the following notation will be used:v2so for
the covariance of estimation error from the sliding observer, v2kf1 for the
covariance of estimation error from the Kalman Fiiter 1 (with the gain
h = 9.05), and v2kf2 for the covariance of estimation error from the Kalman
Filter 2 (with the gain h = 17.356).

Poo = E[£2]=a§+ 1-2

Effect of Measurement Noise

Obviously, when the noise intensities are the ones considered in the design
process the Kalman Filter KF1 is the optimal one. In this analysis, the
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Figure 6.1: Effect of measurement noise

effect of deviation of measurement noise intensity from the nominal value,
is investigated.

Both the predictions and the results from the averaging the time aver-
ages over 10 simulations are shown in Figure 6.1. Clearly, at the nominal
condition the KF1 is the optimal one, seen both from the predicted values
and from the values from simulations. When the measurement noise in-
tensity deviates from the nominal value, the inherent robustness of Sliding
Observer with respect of changes in the measurement noise becomes evi-
dent: for all values of measurement noise intensities off from the nominal
value the sliding observer is the best one.

This result is due to the fact that the sign functicn has an inherent
adaptive-type of behavior with respect to changes in the measurement

noise®. This fact can be clearly observed if one recalls the definition of

3This result was first observed by Drakunov [12]
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RIDF for the sign function:

sign(7) = \/2/70L

because o; is directly affected by changes in the measurement noise, one
can see that increase in the measurement noise reflects as a virtual decrease
in the filter gain. The opposite is also true, that is a decrease in the
measurement noise intensity is reflected as virtual increase in the filter
gain. This behavior is exactly the behavior desired from an adaptive filter
in order to maintain a good performance for a wide range of changes in the
measurement noise intensity.

Effect of Process Noise

The effect of changes in the process noise intensity was also verified. The
predicted results and the results from the simulations — as averages of time
averages of 10 simulations — are shown in Figure 6.2. In this case, for
large deviations of process noise intensity the Kalman Filters were the clear
winners. For large increase in the process noise intensity, the KF2 was the
best one, while the sliding observer was the worst filter; it is probably due to
the fact that for large process noise intensity a larger filter gain is required
so that suitable corrections is provided to the filter. Apparently the sliding
observer was unable to provide enough compensation for the large noise
intensity.

For very small process noise intensity, the KF1 was clearly the best one.
It is exactly the symmetric situation from the one just discussed, For small
process noise intensity, with fixed measurement noise intensity, one wants
to decrease the filter gain in order to have suitable filter. The KF1 has
smaller gain than the other filters used in this comparison. The sliding
observer, for this situation worked as well as the KF2 , even though the
prediction and the simulated values deviated from each other.

For deviations close to the nominal value, one can see that the KF2 was
the best one, followed closely by the sliding observer.

Effect of Parametric Mismatch

Here the effect of mismatch between the parameter a used in the filter and
the real one used in the plant is investigated. Because the RIDF cannot be
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used to predict such effect in the sliding observer, the parametric analysis
was done based only on the simulations ( as always ensemble average of 10
time averages).

The results are summarized in Figure 6.3: For this type of situation,
the SO and KF2 worked very similarly for values close to and larger than
the nominal value. For values of actual a much smaller than the nominal
value, the Kf2 is much better than the SO. For values of a much larger than
the nominal one, the KF1 is clearly the best one.

6.3 Summary
In this chapter, the effect of measurement noise was considered as changes

in the design procedure. Basically, when the measurement noise is present
then the design should be primarily done using the Random Input De-
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scribing Function —~RIDF- and the robustness must be checked using the
methods discussed in Chapter 4.

It was shown that several routes exist, once one quasi-linearizes the
error dynamics, or the sliding observer, using RIDF. One of them that can
claim some optimality was discussed with some detail, and a simple example
was used to show the potential advantages and drawbacks of using sliding
observers for systems with noisy measurements.

The example showed that the sliding observer has inherent robustness
against deviations in the measurement noise intensity. For this first-order
system, the behavior of the sliding observer and the Kalman Filter were
comparable, in terms of deviations in the process noise and parameter mis-
match. This is due to the fact that the uncertainty term w and the mea-
surement noises have energies in the same range of frequencies. When the
uncertainty term has energy at low frequencies compared to the frequency
content of the measurement noise — as is often the case — the use of switching
function with dead-zone plus the use of linear gain, or the use of low-passed
error signal in the switching function can improve the performance of sliding
observer significantly as was shown in Chapter 3.
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Chapter 7

Conclusion and Suggestions
for Further Research

7.1 Thesis Summary

This thesis showed that a simple observer, basically a Luenberger Observer
with an additional term d~fined in terms cf either signum or saturation func-
tion, can be made robust against bounded neglected nonlinearities and/or
uncertainties.

In Chapter 2, an extensive review of the current methods for state
estimation applicable to nonlinear uncertain systems was made.

In Chapter 3, the basic properties of the sliding cbserver were presented,
showing that it can be very robust against the class of uncertainties that
was considered in this thesis. This chapter motivated the need for more
careful investigation using a simple third-order example.

Chapter 4 is the main chapter in this thesis. It showed that, in a
fairly general framework the sliding observer can be said to be stable, i.e.
nondivergent, if the conditions stated by the passivity theorem are satisfied.
It was shown that this general framework was difficult to apply as a design
tool, so more useful design procedures were sought. Four basic cases were
considered, and the design of a robust sliding observers became feasible.
These design procedures are summarized in the next section.

Three examples presented in Chapter 5 illustrated the application of
sliding observers. The first example considered the estimation of yaw rate,
and its time derivative, given the measurement of yaw angle, for a super-
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tanker. It was shown that the sliding observer worked nicely in spite of
neglected nonlinearities and control inputs. The second example consid-
ered a one-link, elastic joint, manipulator. It has two angular position
measurements, and the goal was to estimate angular velocities in the pres-
ence of neglected nonlinear gravity effect and the control torque input. In
this multiple-measurement case, the observer also worked properly. The
third example, an automotive automatic transmission, assumes that two
angular speeds are measured, and the goal is to estimate the shaft torque,
in the presence of neglected nonlinearities and inputs. This is a more in-
volved example, and it was used tc show the limitations of this method.
It was shown that the method described as Case 8, which was a candidate
for this case !, could not be applied to this case. The method described as
Case 4 was then considered.

Chapter 6 discussed the change in the design procedure when measure-
ment noise is present. The Random Input Describing Function is used to
quasi-linearize the error dynamics, and some procedures to choose the gains
are suggested. The case of colored measurement noise and white gaussian
process noise is considered with some detail, and a first-order system illus-
trates the suggested design procedure and its performance is analyzed.

7.2 Conclusions

The main results presented in this thesis are summarized in this section.
These results are given in terms of estimate convergence properties and in
terms of the recommended design procedure.

The system is assumed to be described by

z = Az+ Dn
y = Cz
with some conditions on the matrices described in Chapter 4.
The strongest result, which is also the one with the most restricted
applicability, uses the concept of strictly positive real system. In this case

it was shown that the state estimation error £ = z — £ goes to zero as time
goes to infinity. In this case, the sliding observer:

i=(A-HC)z+ Hy+ K1,

lwhich is actually a rare situation.
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with o
sign(y)
sign (i)

[y
[
I

8ign(Jrm)
and the gain K defined as
K= Dp

where p is a m—dimensional diagonal matrix with elements p; > 1, is shown
to be asymptotically convergent if the transfer function matrix

G(s)=C(sI- A+ HC) 'K

can be made strictly positive real.

If only one measurement is available, G(s) is a transfer function, there-
fore the strict positivity means that the real part of the stable transfer
function G(jw) has to be in the open complex right half plane for all values
of real w. The design procedure can use the transfer function itself, or the
Nyquist plot in order to choose the gain matrix H and the gain p that
guarantees that this condition is satisfied.

For multiple measurement system, the strict positivity can be trans-
lated to a useful form using the positive real lemma. The designer has
to choose the gain matrices H and p so that the following conditions are
simultaneously satisfied:

(A-HC)TP+ P(A-HC) = -Q
KT'p = C

for symmetric positive definite matrices P and @, and A — HC has poles
in the open left half plane.

One can see that this last condition is quite restrictive. If the system is
so that these conditions cannot be satisfied, one can iterate changing the
matrix D, or using convenient operators that change the blocks H; and H,
according to the multiplier theory ([11], section 6.9). If these approaches
does not work, one still has the option to design the observer using an
alternative method described as Case 2 and Case 4.
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In this case, one should choose the function 1, as:

sat(y;/e;)
sat(y2/€2)

5t (i €m)

e @l if |%]
- vi/lvi| if 4] 2 &
sat(y;/€) = p ep |~
(8i/e) { vife if |yi| <¢€
The first step in the design procedure is to guarantee that the trajectories
inside the boundary layer never leave it. It is guaranteed by choosing the

gain matrices H and p so that the following frequency domain inequalities
are satisfied:

max [Omez(C(jwI— A+ (H+ KA™')C)™Y)D] +

—oco<w<+00
+0maz(C)cond(V) max(|Zo]) < min(e)

where o maz(A) is the maximum singular value of the complex matrix A,
and the norm |z| = (2°2)% (z* denotes the complex conjugate). The matrix
A is defined as:

A=diag(€1, €2, °°*, em)

One should also check whether the state estimation error bounds are
within reasonable limits:
. _— -1y -1
|Z] < _mgl3§+w[oma,((1w1 A+ (H+ KA™Y)C) ™) D] (7.1)
The next step is to check for stability outside the boundary layer.
For systems with single measurement, the stability can be verified using
the circle criterion. This criterion will state that the matrices H and K
must be so that the Nyquist plot of G(s) = C(sI — A+ HC)™'K has to be

to the right of vertical line that intersects the real axis at —1/G, where G

is defined by:
- 1 1
= -{1 -
-1+ p)
For systems with more than one measurement, the matrices H and K

must be so that:
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e (A — HC — KMC) has eigenvalues in the open left half plane; the
matrix M is a diagonal matrix whose entries are m;; = ;:—.(1 + i);

e The following condition is verified for all values of w € R at which
G™! exists:
Omin([M + G™I(jwW)|R™?) > 1

where G(s) = C(sI — A+ HC) K.

In this case, one can verify that the placement of eigenvalues of (A —
HC — KA™!C) will be reflected in the convergence time.

Clearly, if the system has finite transmission zeros, in the error dynam-
ics inside the boundary layer, there will be some limits in the achievable
performance, that will allow the designer to meet or not meet the above
conditions.

For this case, for which the strict positivity cannot be reinforced, the
state estimation error will be bounded and the bound wiil be given by the
inequality (7.1).

These results were derived assuming that no measurement noise was
present. In this case, the achievable estimation error from the sliding ob-
server using saturation function is comparable to the estimation error re-
sulting from a Luenberger observer with the gain matrix H* = H + KA~
It results from the fact that, inside the boundary layer both observers are
essentially the same. The difference emerges when the measurement noise
is present.

When the measurement noise is present, the analysis/synthesis prob-
lem becomes fairly involved due to the terms like sign(y + v), where v is
the measurement noise. An approximation was shown in Chapter 6 and,
depending on the particular problem that is being considered one of the
suggested optimal design — in the least square sense — can be used. The
first-order example shown in Chapter 6 illustrates the robustness against
changes in the measurement noise intensity when the sliding observer uses
signum function.

Surely, in principle there is no reason why the optimal gains obtained
through quasi-linearization and some optimization criterion, for a particular
problem, would also satisfy the robustness criteria shown in Chapter 4. If
they are conflicting criteria one has to use engineering judgment to trade-off
between sub-optimal filter and robust sliding observer.
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7.3 Suggestions for Further Research

7.3.1 Use of Nonlinear Model in the Observer

Intuitively, when the estimation errors arc == ~ the use of an available
nonlinear model should improve the accur' y o. estimation. The passivity
theorem provides a general framework that can include additional nonlin-
earities in the observer. Further research is necessary to translate the gen-
eral statement provided by passivity theorem into a useful observer design
technique.

The use of a nonlinear model in the observer should be investigated
carefully, because two drawbacks might exist:

o If the state estimation error is large, as in the beginning of estimation
process, the use of nonlinear model might have a negative effect and
a linear model might he preferable.

e The introduction of nonlinear model will increase the computational
load, that will go against initial goal of having a simple observer.
It has to be traded against the improvement in the observer perfor-
mance.

7.3.2 Use of Available Degrees of Freedom

When the gain K was set
K = Dp

several elements in the gain matrix K were set to zero, and they were not
used. This eliminates the possibility of sliding behavior in many instances.
Keeping all the elements of the gain matrix K, and defining tie operators
H 1 and Hz as:

He = C /o' A-HO (K ()1, (r) — w(r))dr
Hye; = 1,(e2)

one can, in principle, use the passivity theorem to design the observer, so
that if § — 0, sliding behavior is obtained. The degrees of freedom available
in the gain matrix K can be used to assign desired behavior on the sliding
surface, as shown in Chapter 3.
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7.3.3 Rigorous Analysis of Random Measurement Noise
Effect

As commented upon before, the coupling between estimation error sig-
nal and measurement noise inside the nonlinear clement 1, makes rigorous
analysis very difficult. As suggested by Drakunov [12], the use of a weak
convergence method for stochastic processes might lead to further insight
into the problem and useful design technigues might emerge.

7.3.4 The Use of Sliding Observer Inside the Control
Loop

The use of sliding observer inside the control loop must be analyzed in
detail. Intuitively, if the sliding observer provides estimates quickly, it
should not affect the stability of the closed loop system. However, because
the separation theorem does not hold for nonlinear systems, it is an issue
that has to be analyzed in great detail.

In the case of unstable plants, for which the assumption on bounded
uncertainties may not hold, the designer might design the observer assum-
ing that the states remain within some desired bounds. A separate design
would provide the necessary controller that would stabilize the plant and
bring the states into desired bounds. If the coupled sliding observer - con-
troller does not destabilize the closed loop systcm, the system would work

properly.
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Appendix A

Mathematical Concepts

This appendix summarizes the main mathematical definitions and results
used in this thesis. These mathematical tools are mainly related to stability
of dynamical systems, namely input-output stability. Only the essential
information is given and the readers are referred to Desoer and Vidyasagar
[11], Vidyasagar (61, and Safonov [45,46,48] for rigorous treatment and
more details.

A.1 Normed Inner Product Space

Consider some preliminary definitions: Let £ be a vector space (in this
thesis £ = R"), and let V be a normed linear vector space; a norm is
defined based on scalar product as:

lz(t)|| = (z(t)|=(2))"/?
where the scalar product is defined as:
@Ol = [ (b))

typically z € R".

Also define ¥ as the class of function that maps the non-negative real
numbers into V.

A inner product function space ¥ - also denoted as £, — is defined as:

W= {=(t) € Flll=()I* = (2(t)|=(t)) < oo}

161



Notice that this class of functions requires that the integral of the square
of the function, from zero to infinity, must be finite. Intuitively one might
expect that such functions have to be bounded and they must go to zero,
at least asymptotically. This is actually not true, as shown in Chen [9]
and Slotine [53]: the function can actually be unbounded, i.e. it might
have some “spikes” that grow unbounded but so that their occurrence gets
rarer and rarer as time goes to infinity. As shown by Slotine in [53], if the
function is differentiable and if it has bounded derivatives then the function
that has bounded integral of its square actually goes to zero asymptotically.

Another important concept is the concept of truncation of a function.
The function zr(t) is called the truncation of z(t) to the interval [0, T] and

is defined as \
z(t) 0<t<T
z"(t)={o(' t>T

for all T € [0,00). The function z(t) is assumed to be measurable [11,61] (
“almost” all functions considered in the engineering practice are measurable

)-
The extended i.ner product function space ¥, — also indicated as L, -
is defined as:

He = {z(t) € FIVT € Ry, ||zr|* = (zr|zr) < 00}
Note the equivalence:

lzz||* = llzl|7 = (zlz)r = (zr|z7)

An example of function that belongs to ¥, and does not belong to ¥ is a
constant function, or bias. A function that does not belong to neither ¥
nor X, is the tangent function.

A fact that is worth noting, because it is of special interest for sliding
mode systems, is the fact that a chattering function as defined using limiting
process as shown by Filippov [13] and Utkin [59] actually belongs to ¥. This
fact can be shown using the Dominated Convergence Theorem [11,28].

Indeed, consider a oscillating function f,(t) with amplitude ¢,, perhaps
generated by a system with a relay with delay or dead-zone, as shown in
figure A.1. Assume that the sequence of amplitude ¢, is such that

#, — 0 as n — oo monotonically
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Figure A.1: A chattering function

Clearly, by definition f,(t) = f = 0, and f, as defined by Utkin [59] will
be oscillating at infinite frequency.
The classical theory of integration [28] states that:

lim [ fade = [ (lim )t

where D denotes the domain of integration.
In order to show that f € ¥, it is necessary to show that

/:o fi(t)dt < o0

Consider the truncated version of this statement:
0o T m 1 ¢2 m 2
2 = 2 = —HAT. =18 L. In
[7 srwar= [ freye > j#aTi= Y AT = 2T
So,
T T
/0 F(t)%dt = lim /o fidt =0

It shows that f(t) € X.. Since this result does not depend on any particular
interval T, then

fo“ f(t)%dt =0 < oo

With the definition of £, spaces, one can define £;-stability as follows.
Let H : L5, — L3.. The mapping H ( or the system represented by mapping
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H) is said to be L, -stable if Hz € £, whenever z € L,, and if there exist
finite constants k& and b such that

|Hzl||2 < k|jz|2+ b Vz € L,

A.2 Positive Real System

The concept of a positive real system, and the concept of a strictly positive
real system as used in this thesis, is well discussed in [33,40]. The reader is
referred to these books for further details.

A rational function h(s) of the complex variable s = ¢ + jw is said to
be strictly positive real if

1. h(s) is real for real s.

2. h(s) has no poles in the closed right half plane Re[s] > 0.
3. Re|h(jw] >0, for all w € R.

Moreover, the linear time-invariant system

= Az + Bu
y = Cz

is strictly positive real and the transfer functior matrix
H(s)=C(sI - A)™'B

is a strictly positive real transfer function matrix if and only if there exist
a symmetric positive definite matrices P and @ so that

PA+ ATP = -Q
BTpP = C
(A.1)

This result is also known as the Kalman-Yakubovich Lemma, or the Positive
Real Lemma.
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A.3 Passivity

The concept of passivity is explained in [11], and the reader is referred to
this book for all the details.

First consider the definitions.

H : Y. — X, is passive if and only if there exists some constant § so
that:

(Hz|z)r 2 B
forallze X, and T € R,.
H : X, — X, is strictly passive if and only if there exists § > 0 and exists
[ so that:
(Hz|z)r > 6|2r|* + B

forallz€ X, and T € R,.

Basically this definition is stating that H is more dissipative than a
resistor of 6 ohms.

The powerful result used in this thesis, called the Passivity Theorem, is
stated as:

Theorem A.l1 Consider a feedback system as shown sn Figure A.2, and
described by:

e = u;— He,
€, = u2+H1e1

where H, and H, map X, into X,. Assume that for any u, and u, in X,
there are solutions e, and e; in },. Suppose that there are constants «;,, a,,
as, P, P2 and B3 such that:

|Hizllr < aillz|lr+ B
(z|Hiz)r > oz} + B,
(Hpz|z)r > as||Hz2||7 + Bs

Vz € N., VT € [0,00); Under these conditions, if a, + as > 0, then:
er, ez, Hiey, Haes € H.
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u, €1 Y1

Y2

€ Jb-i; Uy
+

H,

Figure A.2: “closed loop” system considered in the passivity theorem

A.4 Multivariable Circle Criterion

The multivariable, or multiloop, circle criterion is a very powerful result and
is shown in complete form in (45,46,47]. The simplified form is presented
here.

Consider the feedback system shown in Figure A.3 and described by:

y = H()z Hi=hi(zit) or Hi= H;(s)
z = —-G(s){y+v)+u (A.2)
H, is said to be strictly inside the L, -cone (C;, R;, S)) if:

15:(ki(.) = Gz 1F < I Rim(®) |7 — ellz (@I

15 () (Hi(jw) — Ciliw) Xa(G)) I < |1 Ri(w) Xi(iw) I — || Xi(gw)|I*

for some matrices C;, R; and S;. C; is called the center of the cone, and
(Ri, Si) its radius.
The multivariable circle criterion is stated as a theorem:

Theorem A.2 Suppose the feedback system shown in Figure A.8 is L,-
stable for the case when h; = ¢;z; or H; = Ci(s). Thena sufficient condition
for the feedback system to be L; - stable for every H(.) satisfying the conicity
condition is that, for all real w:

Omin(S () (C(3w) + G (jw)) R7'(jw)) 21
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Y

——— H()

G(s)

Figure A.3: “Closed loop” system considered in the Multivariable Circle
Criterion

for all w a which G™(jw) ezists.
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Appendix B

Observability

In this chapter the concept of observability of dynamical systems is re-
viewed, and the algebraic conditions for observability are given. Roughly
speaking, observability studies the possibility of estimating the states of a
dynamical system given measurements of its outputs.

B.1 Observability of Linear Time Invariant
Systems
The concept of observability of linear time invariant systems was developed

by Kalman [26], and it is a very well known result.
The linear time invariant system

T = Az ze®R"

y = Cz ye R™ (B.1)
is observable if and only if the observability matrix
C
CA
0= .
CA™?

has rank n [9,24]. This result can be derived by looking at the measurement
y and its derivatives as an hypothetical way to estimate the states. Differ-
entiation is not feasible in practice, but it gives a limit on the observability
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inherent in the system (B.1):
y = Ct=CAz

y* = CA" !z

or in the matrix form,
c y
CA ]
. = .
CA.n—l y(.")

Therefore, given y and its derivatives the vector of states can be obtained at
any instant provided that the observability matrix O has full rank. Clearly,
due to the Cayley-Hamilton theorem, there is no need to take more deriva-
tives since they will be linear combination of terms already obtained.

For linear time invariant systems, observability is 2n easy condition to
verify. For nonlinear systems, the situation is quite different.

B.2 Observability of Nonlinear Systems

When the dynamical system being considered is nonlinear, the concept of
observability becomes quite involved. Several researchers had investigated
this issue in the past [7,15,20,29,31,32]. As shown by Herman and Krener
[20], even though global observability is desirable, only a local and weak
version yields useful results.

Consider a nonlinear dynamical system, with trajectories on a manifold
M € R", given as

t = f(z) zeR"
y = h(z) ye ™ (B.2)
Let z°(t) and z,(t) be the trajectories starting from different initial con-

ditions z, and z,. Let the outputs y(¢) resulting from these trajectories
be y°(t) = h(z°) and y'(t) = h(z'(t) respectively. The system given by
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(B.2) is said to be locally weakly observable if for each z, € M there ex-
ists an open neighborhood U in which a different initial condition I, can
be taken, so that the trajectories z°(t) and z'(t) contained in every open
neighborhood V' of zy - contained in U - result in distinct outputs v(¢)
and yi(t). Intuitively, the system (B.2) is locally weakly observable if one
can instantaneously distinguish each point from its neighbors based on the
available measurements.

Several algebraic conditions for locally weakly observable systems are
found in the literature.

A condition similar to the one derived for linear time invariant systems
by taking the measurements and its derivatives can be found for nonlinear
systems. As suggested by Krener and Respondek [32] and by Krener and
Isidori [31], by taking the measurements y and its derivatives,

y = h(z)
g = 208

Defining the Lie derivatives recursively, as:
Li(hi)(z) = hi(z)

. o .
Ly(hi)(z) = o-(L7(hi)(=))S(2)

one can rewrite the measurements and its derivatives as:

vi = L[f)(hi)(x)

% = Lj(hi)(z)
o= (B.3)
= L (h)(2) (B.4)
for all 7 = 1,...,m. The system will be locally weakly observable if for all
T € M, the nonlinear algebraic equation (B.3) has unique solution. This

condition is given as an algebraic condition by Krener and Isidori [31]. The
system (B.2) is locally weakly observable if

L)(dh)(z) §=0,---,n—1 (B.5)

yM
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are linearly independent for z € U, U contained in M. Note the definitions:

ihiz) = (3-(2) s 5(2)

L(dh)(z) = d(Ly(R)(z)

The condition (B.5) is called the observability rank condition. Detailed
discussion of this point of view is given in [20,32,31].
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