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ABSTRACT
The role of turbulence in setting boundary plasma conditions is presently a key uncertainty in projecting to fusion energy reactors. To
robustly diagnose edge turbulence, we develop and demonstrate a technique to translate brightness measurements of HeI line radiation into
local plasma fluctuations via a novel integrated deep learning framework that combines neutral transport physics and collisional radiative
theory for the 33D − 23P transition in atomic helium with unbounded correlation constraints between the electron density and temperature.
The tenets for experimental validity are reviewed, illustrating that this turbulence analysis for ionized gases is transferable to both magnetized
and unmagnetized environments with arbitrary geometries. Based on fast camera data on the Alcator C-Mod tokamak, we present the first
two-dimensional time-dependent experimental measurements of the turbulent electron density, electron temperature, and neutral density,
revealing shadowing effects in a fusion plasma using a single spectral line.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0088216

I. INTRODUCTION

Diagnosing edge plasmas is an essential task for testing tur-
bulence models and better understanding plasma fueling and con-
finement in fusion devices. Gas puff imaging (GPI) of turbulence
is a widely applied experimental diagnostic that captures line emis-
sion based on the interaction of neutrals with the hot plasma. As a
technique with decades of application in a range of settings,1 optical
imaging of fluctuations provides a view of turbulent plasma trans-
port. This transport is critical to the operation and energy gain
of nuclear fusion reactors, but interpretation (e.g., velocimetry2)
of these fluctuations to directly test reduced physics models is not
always straightforward. By tracing the atomic theory underlying
the nonlinear dynamics of observed line emission, we outline a
novel spectroscopic method for understanding turbulent fluctua-
tions based on high-resolution visible imaging of plasma–neutral
interactions.

The plasma edge in magnetic fusion devices is characterized
by neighboring regions: confined plasmas where temperatures can
exceed 106 K and the colder scrape-off layer (SOL) where gaseous
particles may not be completely ionized. These regions exist tightly
coupled to one another and inseparable in many respects. Conse-
quently, accounting for neutral transport in conjunction with ion
and electron turbulence is essential in wholly analyzing boundary
plasma fluctuations. Edge turbulence is characterized by a broad-
band spectrum with perturbation amplitudes of order unity and
frequencies ranging up to 1 MHz. Edge localized modes and inter-
mittent coherent structures convecting across open field lines can be
responsible for significant particle losses and plasma–wall interac-
tions that strongly influence operations. To model the vast dynami-
cal scales present in fusion plasmas accordingly requires sufficiently
complex modeling techniques. In this work, we introduce custom
neural architectures within a multi-network deep learning frame-
work that bounds output to abide by collisional radiative theory3,4
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and searches for solutions consistent with continuity constraints
on neutral transport.5 Learning nonlinear physics via optimization
in this way provides a new way to examine edge turbulence using
experimental data from GPI. While our methodology is not fixed
to any device, this paper focuses on two-dimensional experimen-
tal brightness measurements from open flux surfaces on the Alcator
C-Mod tokamak,6,7 where we find a good signal-to-noise ratio of
localized light emission. Recent advancements in validation tech-
niques of reduced turbulence theories8,9 emphasize the importance
of comprehensive diagnostic coverage of electron dynamics on tur-
bulent spatial and temporal scales. To this end, we describe the first
calculations of the two-dimensional turbulent electron density, elec-
tron temperature, and neutral density fields that self-consistently
include fluctuation-induced ionization using only observations of
the 587.6 nm line via fast camera imaging. With several possible
extensions to the deep learning framework identified, our experi-
mental analysis technique paves new ways to systematically diagnose
edge plasma turbulence.

To demonstrate this framework, we evaluate the validity of the
collisional radiative theory in conditions relevant to fusion plasmas
for atomic helium line emission in Sec. II, an overview of the exper-
imental setup for GPI on the Alcator C-Mod tokamak in Sec. III,
outline a custom physics-informed machine learning optimization
technique designed for turbulence imaging in Sec. IV, present results
from the analysis applied to experimental fast camera data in Sec. V,
and conclude with a summary and future outlook in Sec. VI.

II. TIME-DEPENDENT ANALYSIS OF QUANTUM
STATES IN ATOMIC HELIUM

The electronic transition from 33D to 23P quantum states in
atomic helium results in photon emission with a rest frame wave-
length of 587.6 nm. Atomic physics modeling of this line radiation
in a plasma correspondingly requires tracking all relevant electron
transition pathways that can populate or depopulate 33D. Our start-
ing point in this analysis is to consider the full rate equations where
the evolution of a quantum state p follows

dn(p)
dt

= ∑
q≠p
{C(q, p)ne + A(q, p)}n(q)

−

⎧⎪⎪
⎨
⎪⎪⎩

∑
q≠p

C(p, q)ne +∑
q<p

A(p, q) + S(p)ne

⎫⎪⎪
⎬
⎪⎪⎭

n(p)

+ {α(p)ne + β(p) + βd(p)}nine, (1)

where n(p) is the population density of the p = n2S+1L state, in which
n is the principal quantum number, S is the spin, and L is the
orbital angular momentum quantum number. Similarly, q is another
quantum state with the notation q < p indicating that q lies ener-
getically below p. Equation (1) includes the spontaneous transition
probability from p to q given by the Einstein A coefficient A(p, q),
electron impact transitions C(p, q), electron impact ionization S(p),
three-body recombination α(p), radiative recombination β(p), and
dielectronic recombination βq(p), with ne and ni denoting the elec-
tron density and hydrogen-like He+ density, respectively. All afore-
mentioned rate coefficients except A(p, q) have a dependence on
the electron temperature (Te) that arises from averaging cross sec-
tions over a Maxwellian velocity distribution for electrons, which are

based on calculations with the convergent close-coupling (CCC)10–12

and R-matrix with pseudostates (RMPS)13 methods using high pre-
cision calculations of helium wavefunctions.14,15 For application in
a numerical framework, we follow Goto,4 Zholobenko et al.16 to
model atomic helium with a corresponding energy level diagram
visualized in Fig. 1. All quantum states with L ≤ 2 are resolved
for n < 8, while states with L ≥ 3 are bundled together into a sin-
gle level denoted as “F+.” For n ≥ 8, L is not resolved, while those
with n ≥ 11 are approximated as hydrogenic levels with statisti-
cal weights twice those of hydrogen. Quantum states up to n = 26
are included, with n ≥ 21 being given by the Saha–Boltzmann
equilibrium.3,16,17 For application in magnetized plasmas (e.g., toka-
maks), where rate coefficients vary with magnetic field strength
due to wavefunction mixing, spin–orbit interactions are included
to account for mixing between the singlet and triplet fine struc-
ture levels.4,16 Finite fields largely influence the modeling of
metastable species and higher orbital quantum numbers. To quan-
tify radiation trapping effects, the dimensionless optical depth for
a Doppler-broadened line transition between states j→ k can be
expressed as18

τj→k = 5.4 × 10−3 fj→kλj→knj(μj/Tj)
1
2 L, (2)

where fj→k is the absorption oscillator strength, λjk (nm) is the line
center wavelength, μj is the mass ratio of the emitting species rel-
ative to a proton, L (cm) is the physical depth of the gas along
the viewing chord, and nj (1013 cm−3

) and Tj (eV) are the density

FIG. 1. Energy level diagram for atomic helium considered in the calculations. An
arrow connects 33D→ 23P, which is the origin of the 587.6 nm photon emission.
The labels 1,3F+ denote the quantum states representing all levels with L ≥ 3.
Reprinted with permission from M. Goto, J. Quant. Spectrosc. Radiat. Transfer 76,
331–344 (2003). Copyright 2003 Elsevier.
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and temperature, respectively, of particles in state j. For 587.6 nm
line emission with a thermal helium puff in conditions relevant
to magnetic confinement fusion devices, where f23P→33D ∼ 0.6,19

τ23P→33D ≪ 1 resulting in the plasma edge region being optically thin
for our spectroscopic analysis of a localized gas puff.1,16

The rate equation (1) for an optically thin plasma can be
equivalently expressed in matrix form as16,20

dn
dt
=M(ne, Te)n + Γ(ne, Te, ni), (3)

where n is a vector of the N atomic states, M represents the N ×N
matrix of rates for collisional ionization, excitation, de-excitation,
radiative decay, and recombination as above, and Γ symbolizes
sources. Since time-evolving every state in atomic helium is compu-
tationally expensive, effective atomic physics models known as colli-
sional radiative (CR) theories are often constructed. This involves
separating the N states into P and Q spaces of sizes NP and NQ,
respectively, such that (3) becomes

d
dt

⎡
⎢
⎢
⎢
⎢
⎢
⎣

nP

nQ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

MP MPQ

MQP MQ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

nP

nQ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ΓP

ΓQ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

dnP

dt
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

By taking the Q space to be time-independent, under the expec-
tation that they evolve on timescales faster than those of plasma
turbulence fluctuations, this allows one to fold the dynamics of the
Q space into effective rates that depend on nP. This can be written as

nQ = −MQ
−1
(MQPnP + ΓQ), (5)

d
dt

nP = (MP −MPQM−1
Q MQP)nP

−MPQM−1
Q ΓQ + ΓP

=MeffnP + Γeff. (6)

However, the applicability of such a separation in dynamical
space needs to be quantitatively tested. In particular, for the con-
structed CR model to be applicable, it should satisfy Greenland’s
criteria,20–22 which require evaluating the normalized eigenvalues
and eigenvectors of M(ne, Te). The N eigenvectors are arranged as
the columns of an N ×N matrix T, in order of increasing eigenvalue,
λ, and can be partitioned into four submatrices

T =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

TP TPQ

TQP TQ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (7)

In terms of these quantities, Greenland’s criteria require that
(i) ∣∣TQP∣∣ ≪ 1 and (ii) ∣∣TQPT−1

P ∣∣ ≪ 1. From this point onwards, we
will adopt in our evaluation an NP = 1 CR model where the P space
consists of only the ground state for atomic helium being dynami-
cally evolved. In this formulation, meta-stable species (e.g., 21S, 23S)
are taken to be in a steady state. Greenland’s criteria for the NP = 1
CR theory were previously examined in a range of conditions rel-
evant to fusion plasmas and found to widely satisfy (i) and (ii),20

but there is an additional unresolved practical condition: (iii) the
shortest timescales over which P space states are evolved should

be larger than the inverse of the smallest Q space eigenvalue, i.e.,
∂
∂t < ∣λQ∣. In more concrete terms, phenomena on timescales faster
than τQ ≡ 1/∣λQ∣ are not resolved. As a result, τQ represents the slow-
est timescale in Q space, which is not tracked, and the ground state
of atomic helium should be evolved on timescales slower than τQ for
the separation of the two dynamical spaces to be consistent since all
timescales faster than τQ are effectively instantaneous. For the CR
formulation to be subsequently applicable in the spectroscopic anal-
ysis of plasma turbulence, the autocorrelation time of ne (τne) and Te
(τTe)must be larger than τQ. Additionally, the exposure time of the
experimental imaging diagnostic, τGPI , should satisfy the timescale
criterion of

τQ < τGPI < τne , τTe (8)

for consistency. This ensures the experimentally observed line emis-
sion in a single exposure time is based on neutrals nominally excited
by a unique ne and Te instead of a range of contributing magnitudes.
Using revised cross sections from Ralchenko et al.23 and Zholobenko
et al.,24 we report τQ under the NP = 1 CR formulation in Fig. 2
at a range of ne and Te relevant to fusion plasmas. This quantity
demarcates the temporal domain of validity. An important trend
from the plot is that as ne increases, the limit on the temporal res-
olution of turbulent fluctuation measurements improves. For high
plasma density fluctuations, such as coherent filamentary structures,
the resolution is roughly τQ ≲ 1 μs for even ne ∼ 1013 cm−3. As ne
increases in higher field devices, the theoretical limit for resolving
temporal scales improves. This aids the application of our GPI anal-
ysis for studying plasma turbulence in new regimes on upcoming
tokamaks. A lower limit on spatial resolution for turbulence diag-
nostic imaging is set by vHeI/A(33D, 23P), provided that it is shorter
than vHeIτne —or vHeIτTe , if smaller—where vHeI is the particulate
velocity of the atomic helium. The validity criteria for the NP = 1
CR formulation are generally satisfied in analyzing the 33D→ 23P
transition for fusion plasmas of sufficient density, but one should

FIG. 2. A contour plot of τQ for the NP = 1 CR model scanned over a range of rele-
vant electron densities and temperatures for magnetically confined fusion plasmas.
A logarithmic scale is applied on all axes, including the color bar.
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take care when checking validity in different scenarios. For exam-
ple, if applying CR theory to cameras imaging different electronic
transitions (e.g., for analysis of line ratios25–27) with long exposure
times where τne , τTe < τGPI , the formulated CR theory is technically
invalid as the condition given by Eq. (8) is no longer met. This could
potentially cause misalignment of ne and Te profiles when compar-
ing existing experimental diagnostics toward closed flux surfaces,
where plasma fluctuations are temporally faster than the observed
autocorrelation time of far SOL turbulence.28 Farther in the SOL as
the plasma pressure drops, one should also be careful to check that
τQ < τne , τTe . Diagnosing edge fluctuations, thus, necessitates suffi-
ciently high resolution for both the experimental diagnostic and
applied CR theory.

The NP = 1 CR formulation permits any excited state popula-
tion density in Q space to be written as

nQ∣q = n(q) = R0(q)neni + R1(q)nen(11S), (9)

where R0(q) and R1(q) are known as population coefficients associ-
ated with recombination and electron impact physics. The temporal
evolution of the ground state, the only species in P space for this CR
model, follows

d
dt

nP =
d
dt

n(11S) = αCRneni − SCRnen(11S), (10)

where αCR and SCR are the recombination and ionization rate coeffi-
cients, respectively. To generate photon emissivity coefficients from
this CR model, Eq. (9) is multiplied by the Einstein A coefficient for
the given radiative transition. For the 587.6 nm line, A(33D, 23P)
= 2 × 107 s−1. If q = 33D, by multiplying Eq. (9) with the correspond-
ing spontaneous decay rate, one can compute

PECexc
= R1(33D)A(33D, 23P), (11)

PECrec
= R0(33D)A(33D, 23P). (12)

Contours of all coefficients along with their dependence on ne
and Te are visualized at a magnetic field of B = 5 T in Figs. 3 and
4. Given these rates, one can further simplify the expressions for
Eqs. (9) and (10) when modeling 587.6 nm line emission in the
presence of edge plasma turbulence by removing the effects of volu-
metric recombination, i.e., PECexc

≫ PECrec and SCR ≫ αCR, which
are negligible for edge fusion plasmas unless ni ≫ n0 ≡ n(11S), i.e.,
only if the HeII density is far greater than the ground state neutral
helium density. The effects of charge-exchange are also neglected as
the reaction rate is small compared to electron impact ionization
for atomic helium as long as 5 eV < Te < 5 keV.29 Note that this is
not necessarily true for other atomic or molecular species, e.g., deu-
terium,30 but allows for an expression of 587.6 nm photon emissivity
given by

I = Cn0nePECexc
(ne, Te) = Cn0 f (ne, Te), (13)

where f (ne, Te) can be interpreted as the photon emission rate per
neutral consistent with the NP = 1 CR model. Using an oft-applied
exponential model of f (ne, Te) ∝ nαn

e TαT
e and treating αn and αT as

constants could yield erroneous emissivity predictions where fluctu-
ations of order unity are beyond the perturbative regime. Therefore,
it is important to retain the full range of dependency on ne and Te.
A constant factor C is introduced in (13) to account for the calibra-
tion of the instrument used to measure the line radiation, including
effects introduced by the finite thickness of the observed emission
cloud.

FIG. 3. Photon emissivity coefficients for the HeI 587.6 nm line based on electron impact excitation (left) and recombination (right). These quantities are derived from the
NP = 1 CR model’s population coefficients and follow Eqs. (11) and (12).
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FIG. 4. Ionization (left) and recombination (right) rate coefficients derived from the NP = 1 CR model. These quantities represent sinks and sources in Eq. (10) for atomic
helium when considering their transport in fusion plasmas.

III. EXPERIMENTAL TURBULENCE IMAGING
OF HELIUM LINE EMISSION

Our experimental analysis technique is generic to any plasma
discharge on Alcator C-Mod where good fast camera data exist
for the 587.6 nm line. The plasma discharge chosen for this work
constitutes 1 120 711 021. This is a majority deuterium, lower sin-
gle null diverted ohmic plasma with an on-axis toroidal magnetic
field of 5.4 T and plasma current of 0.83 MA. The tokamak itself
has a major radius of 0.68 m and a minor radius of 0.22 m. The
discharge has independent diagnostic measurements from a main
chamber scanning probe equipped with a mirror Langmuir probe
(MLP) biasing system run in a swept mode in the edge plasma.31

Based on Thomson scattering and electron cyclotron emission diag-
nostic measurements, the core electron density and temperature are
2.0 × 1020 m−3 and 1.5 keV, respectively.

In the present work, the GPI diagnostic on the Alcator C-Mod
tokamak32,33 was configured to capture visible light at a wavelength
of 587.6 nm arising from the dynamic interaction of edge plasma
turbulence with neutral helium puffed locally to the imaged region.
This is a commonly used technique akin to other plasma diagnos-
tics, such as beam emission spectroscopy (BES).34 Helium is an ideal
choice for two-dimensional turbulence imaging for several reasons:
its low atomic number results in radiative losses minimally perturb-
ing the plasma state; its larger ionization energy allows for greater
neutral penetration than thermal deuterium; its lack of molecular
interactions reduces complexity in modeling; and its neutrality keeps
its transport independent of external magnetic fields. The localized
distribution of atomic helium also provides a greater contrast to the
background emissivity in fusion plasmas that primarily fuel with
hydrogen isotopes. HeI emission was imaged onto a Phantom 710
fast camera, installed on Alcator C-Mod in 2009 to view the out-
board midplane region.33 The camera has a maximum framing rate

of 400 000 frames/s at 2.1 μs-exposure/frame when 64 × 64 pixels
are being read out, and each pixel is ∼20 × 20 μm2. The diagnostic’s
resultant temporal resolution is 2.5 μs as it takes 0.4 μs to read values
from the pixel array. The fast camera has a built-in positive offset of
∼80 counts, which is subtracted from all GPI signals before analysis

FIG. 5. Visualization of the experimental GPI setup on a poloidal cross section of a
lower single null diverted plasma discharge (1 120 711 021) on Alcator C-Mod. In
this study, we use measurements from the midplane fast camera with a 587.6 nm
optical filter with full width at half maximum of 11.4 nm that has a largely field-
aligned view of edge fluctuations. The expansion at the right shows raw counts
measured by the fast camera at t = 1.312 858 s and includes overlays of both the
last closed flux surface and the approximate domain of the analysis described in
Sec. V.
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FIG. 6. A section of a panoramic photograph of the Alcator C-Mod outer wall,
showing approximately one-quarter of the device and centered on the split poloidal
limiter next to the gas puff imaging measurement location. Labels indicate the
position of the GPI nozzle, its imaging telescope, and an approximate line of sight
(red dashed). The position of the radial scanning probe, which provides the mirror
Langmuir probe measurements, is also exhibited.

of the experimental data.33 Based on the manufacturer’s specifica-
tions and sample bench tests, the fast camera measurements are
expected to vary linearly with light level over the pixels analyzed.
The brightness is thus offset in absolute magnitude by a constant
scale factor and accounted for in the framework.

A coherent fiber bundle/image guide was used to couple light
from viewing optics mounted on the outer wall of the vacuum vessel
to the Phantom camera detector array. The optics imaged a roughly
60 × 60 mm2 region in the (R, Z)-plane just in front of a gas puff
nozzle through a vacuum window onto the image guide. The viewing
chords pointed downward at a fixed angle of 11.0○ below horizontal
toward the vertically stacked 4-hole gas nozzle displaced from the
telescope by ∼35.5○ in toroidal angle. The central ray of the imaged
view, thus, pierced the gas puff plane approximately parallel with
the local magnetic field line.33 This aligns the GPI optics with field-
aligned fluctuations for typical operational parameters of an on-axis
toroidal field of 5.4 T and a plasma current of 1.0 MA. For discharge
1 120 711 021 conducted at a plasma current of 0.83 MA, the view-
ing chords are oriented at an angle of ∼2○ to the local field. Spatial
blurring due to this angular misalignment, θB, consequently limits
resolution to Δx = L∥tan θB, where L∥ is the emission cloud’s length
parallel to the local magnetic field line. For L∥ between 5 and 40 mm,
the smearing will be 0.2–1.4 mm in addition to the 1 mm pixel spot
size in the image plane. Since the gas cloud expands after exiting the
4-hole nozzle and the local magnetic field’s pitch angle varies, the
smearing increases for those chords farther away from the nozzle
depending on the collimation of the gas cloud.1,35 With this setup
and under these plasma conditions, we, thus, estimate the spatial
resolution over the portion of the field-of-view that we analyze to
be ∼1–2 mm. Figure 5 displays a visualization of the experimental
setup’s poloidal cross section with the camera telescope in Fig. 6.

As noted earlier, helium gas is injected into the vessel via four
vertically displaced plasma-facing capillaries located at Z = −4.2,
−3.4,−2.6, and − 1.9 cm, which are mounted in a port on a shelf just

below the outer midplane sitting in the shadow of two outboard lim-
iters. The position Z = 0 corresponds to the vertical location of the
magnetic axis. The gas tubes’ orifices are positioned at R = 91.94 cm
with the channel exit diameter being 3 mm. The helium atoms are
supplied by the Neutral gas INJection Array (NINJA) storage and
delivery system36 that has a pneumatically controlled valve at the
plenum that is connected to a 3.48 m-long, 1 mm-diameter capil-
lary that feeds the four diverging gas tubes. Previous measurements
indicate that the gas cloud exiting a single 1 mm-diameter capillary
expands with an angular half-width of 25○ in both the poloidal and
toroidal directions. This is the basis for our estimate of the 1–2 mm
spatial resolution given above. Due to the tubes’ spatial displace-
ment, the helium gas puff is intended to be relatively uniform in
the vertical direction. By definition, there is a shock at (or near)
the vacuum–nozzle interface for this sonic flow since only particles
moving downstream can escape, and there is consequently no infor-
mation being communicated to upstream particles.37 The neutral
dynamics, thus, transition from a fluid regime in the gas tube to a
kinetic regime upon entering the tokamak from the nozzle. The HeI
exiting the diverging nozzles is approximately modeled by a drift-
ing, cut-off Maxwellian distribution with a mean radial velocity
of vx ∼ −900 m/s and a mean vertical velocity of vy ∼ −20 m/s
since the direction of the non-choked flow in the gas tubes is roughly
2.4○ away from being purely radial in orientation.

To examine the experimental relevance of applying the NP
= 1 CR theory outlined in Sec. II for the analysis of edge plasma
turbulence on Alcator C-Mod, we review a few key characteristic
parameters of interest based on scanning MLP measurements of
ne and Te in plasma discharge 1 120 711 021. Magnetically discon-
nected from the GPI field of view, the scanning MLP is located at
Z = 11.1 cm roughly 20○ in toroidal angle from the GPI view and
radially traverses the tokamak plasma from the far edge to just inside
the last closed flux surface (LCFS) with a temporal resolution of
0.3 μs. Measurements mapped to the midplane radius are visualized
in Fig. 7 based on a probe plunge nearly coincident temporally with
our GPI analysis of this plasma discharge. While the probe bias is
inherently perturbative due to the collection of charged particles, we
assume that its effects on local plasma conditions are negligible.38

From the MLP data, we can obtain autocorrelation times of fluctu-
ations near the LCFS and ∼8–10 mm radially outward into the SOL
when mapped to the midplane radius. Toward closed flux surfaces,
τne and τTe are ∼4.2 and 6.1 μs, respectively. In the far SOL, τne and τTe

increase to 15.6 and 22.9 μs, respectively. Since the probe has a finite
velocity and the autocorrelation length of fluctuations is finite, these
estimates of τne and τTe act as conservative lower bounds as long as
there is no aliasing nor phase-alignment between the probe’s motion
and turbulence structures. We note that the fast camera exposure
time of 2.1 μs is expected to be suitable for the analysis of edge
plasma fluctuations in this ohmic discharge, although faster cameras
could be helpful in analyzing plasma conditions. Further, for turbu-
lence near the LCFS where ne ≳ 1019 m−3 and Te ≳ 20 eV, then τQ
< 1 μs, and the condition of τQ < τexp < τne , τTe is well-satisfied. For
fluctuations farther out into the SOL, this condition is still generally
valid, especially in the treatment of high pressure filaments, but one
should be careful when ne drops below 2.5 × 1018 m−3 in fusion plas-
mas. For spectroscopic techniques analyzing line intensities, each
optical camera’s exposure time needs to be suitably adjusted to sat-
isfy the timescale condition. This is especially important toward
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FIG. 7. Experimental ne and Te measurements in discharge 1120711021 from the independent scanning mirror Langmuir probe. The full probe plunge duration is 1.288 <
t (s) < 1.318. As the probe is scanning back from closed flux surfaces, time series of ne and Te are plotted to compute autocorrelation times. At distances near the LCFS
(red), τne and τTe

are ∼4.2 and 6.1 μs, respectively. Farther into the SOL (green), τne and τTe
increase to 15.6 and 22.9 μs, respectively. For reference, the gray shaded

regions in (a) and (d) roughly correspond to the radial extent of the GPI data analyzed.

closed flux surfaces where long camera exposure periods and shorter
autocorrelation times would render time-dependent examination of
brightness ratios arising from turbulent fluctuations as inconsistent.

Our framework outlined in the next sections can be applied to
regions with arbitrary geometries (e.g., X-point, divertor) if using
sufficiently planar helium beams where the width of the collimated
gas is smaller than the parallel autocorrelation length of the plasma
fluctuations in the direction of the viewing chords. Since the view-
ing chords are roughly field-aligned over the pixels being analyzed,
this parallel scale condition is expected to be satisfied. Finally, we
note that the signal-to-noise ratio degrades in the inboard portion
of the field-of-view, which includes plasma close to or on closed
flux surfaces where the electron pressure and ionization rate increase
sharply.39,40 Accordingly, we analyze fluctuations a few millimeters
away from the LCFS on a two-dimensional (R, Z)-grid co-located
at the nominal gas puff plane. In future work, if greater neutral
penetration can be achieved such that high signal-to-noise can be
attained on closed flux surfaces, the capability to then probe pedestal
dynamics also exists where priming our optimization framework on
available one-dimensional data may help.41 This opportunity may

already be viable on devices with smaller line-integrated ne, and the
methodology can extend to unmagnetized plasmas, too.

IV. DEEP LEARNING OF TIME-DEPENDENT NEUTRAL
TRANSPORT PHYSICS AND COLLISIONAL RADIATIVE
THEORY

Combining the theory governing atomic emission and neu-
tral transport with experimental turbulence measurements via fast
camera imaging into an integrated analysis framework requires suf-
ficiently sophisticated modeling techniques. Neural networks are
differentiable computational programs that can provide natural
representations for physical systems determined by differential-
algebraic equations. They extend ordinary regression models into
robust universal function approximators with generalized con-
straints that are highly effective in solving inverse optimization
problems with sufficient training given their high plasticity. We out-
line a novel multi-network deep learning framework custom-built
for the analysis of 587.6 nm helium line emission in fusion plasmas
to uncover ne, Te, and n0. The networks only receive experimental
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brightness measurements from GPI while being optimized against
the NP = 1 CR theory for photon emissivity along with the continu-
ity equation for neutral transport that accounts for the ionization
of helium atoms on turbulent scales. In this way, we combine
training upon both mathematical laws and observational data. To
begin, we represent the unobserved quantities ne, Te, and n0 each
with their neural network. The initial layer inputs correspond to
the local spatiotemporal points (x, y, t), with the (x, y)-coordinate
being equivalent to (R, Z), from the approximately two-dimensional
domain viewed by the fast camera in the poloidal plane of the
gas puff nozzle. The only output of each network is the respective
dynamical variable being represented. Every network’s inner archi-
tecture consists of five hidden layers with 150 neurons per hidden
layer and hyperbolic tangent activation functions (σ) using Xavier
initialization.42 To provide reasonable intervals for the optimization
bounds, the networks for ne, Te, and n0 are constrained via out-
put activation functions to be between 2.5 × 1018

< ne (m−3
) < 7.5

× 1019, 2.5 < Te (eV) < 150.0, and 0.1 < n0 (arb.units) < 10.0. While
required for numerical stability, care must be taken since the solu-
tions existing near these limits may not be fully converged. We note
that the learnt constant calibration factor, C, is similarly represented
by a network but does not vary spatially nor temporally. Physically,
this results in n0 being determined up to a constant scaling. The
scalar constant also accounts for the two-dimensional approxima-
tion of the localized gas puff, which has a finite toroidal width from
the helium atoms exiting the capillaries. By assuming ne, Te, and
n0 to be roughly uniform along the camera’s sightline, the effect of
this finite volume is absorbed when learning the calibration factor.
While the two-dimensional approximation is reasonable for suffi-
ciently planar gas injection, the deep framework can technically be
generalized toward natively handling three-dimensional space since
it employs a continuous domain without any discretization. This is
a future extension.

Our optimization is conducted in stages. To begin learning
CR theory, we construct novel neural network structures where the
outputs of the ne and Te networks serve as inputs to a new architec-
ture representing the photon emissivity per neutral, f ≡ f (ne, Te).
The connectivity of the neurons conjoining ne and Te toward the
network’s output, f , is visualized in Fig. 8. These weights and biases
are trained against nePECexc

(ne, Te), which is derived from the NP
= 1 CR theory. The corresponding emissivity coefficient is plotted
in Fig. 3. The ionization rate per neutral, neSCR(ne, Te), which is
based on the coefficient plotted in Fig. 4, is similarly represented
by an architecture with ne and Te serving as inputs. All the train-
ing of the two architectures representing f (ne, Te) and neSCR(ne, Te)

is conducted in the first stage prior to any optimization against the
fast camera data. This ensures the next stages involving training
with collisional radiative constraints take place under an integrated
optimization framework with all quantities being represented by
neural networks. For numerical purposes, ne are Te are normalized
by 1019 m−3 and 50 eV, respectively, and time is converted to units of
microseconds during the optimization. For low temperature plasmas
where Te < 2 eV, training with the networks and output CR coeffi-
cients from4,16 based on fitted electron impact cross sections should
be carefully checked due to potential corrections to fits for collision
strengths at such low energies. We also prime only the ne and Te
networks against constants of 1019 m−3 and 50 eV, respectively, for
initialization during this first stage. The priming of ne and Te and

FIG. 8. Structure of networks to represent f(ne, Te) = nePECexc(ne, Te), which
is one of the terms composing the total emissivity function, I = Cn0 f(ne, Te).
The ionization rate per neutral, neSCR(ne, Te), is similarly represented when
applied in the transport equation and is important to account for the “shadowing” of
neutrals.5,32,43 The left side of the overall network consists of the networks for the
predicted ne and Te, while the right side output represents the photon emissivity
per neutral given by the NP = 1 CR theory.

learning of CR coefficients by their respective networks takes place
over the first 5 of 20 total hours of training on 32 cores with Intel
Haswell-EP.

Next, we train the ne, Te, and C networks against Eq. (13) such
that the predicted brightness intensity consistent with CR theory
matches experimental measurements from the fast camera. Based on
past high-resolution MLP data, turbulent fluctuations propagating
in the edge were observed to exhibit strong correlations between the
electron density and electron temperature.44 Additional constraints
are thus placed in our optimizer such that solutions where ne and Te
are correlated are favored. This helps to avoid the learning of triv-
ial solutions. Namely, the full loss function being collectively trained
upon in this second stage is

L C,ne ,Te =
1

N0

N0

∑
i=1
(LGPI + C1Lcorr + C2Lrelcorr), (14)

where

LGPI = ∣I∗(xi
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with I∗(xi
0, yi

0, ti
0) following Eq. (13), and the points {xi

0, yi
0, ti

0, Ii
0}

N0
i=1

corresponding to the set of observed data from GPI. Here, we use
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the notation that superscripts on L identify the multiple networks
being simultaneously trained during optimization of the respective
loss function, e.g., L C,ne ,Te indicates that the networks for C, ne, and
Te are being jointly optimized against this particular loss function.
We note that the results from the converged solutions reported in
Sec. V are largely unchanged by removing (17) in the optimiza-
tion framework, although keeping it was found to enhance stability
and, thus, the total number of realizations that converge. Better
physics-informed optimization constraints may exist and should
be investigated going forward to advance this turbulence analy-
sis. While the coefficients C1 and C2 in Eq. (14) can be adaptively
adjusted for optimal training in each iteration, they are set to con-
stants of 1000 and 1, respectively, in this framework. The variables
with asterisks symbolize predictions by their respective networks at
the spatiotemporal points being evaluated during training. The nota-
tion ⟨X⟩ denotes the batch sample mean of X. This second training
stage lasts for 100 min.

The next stage involves optimizing the n0 network against both
Eq. (15) and its transport equation that accounts for neutral drifts
and fluctuation-induced ionization of helium. Namely, in implicit
form,

fn0 =
∂n0

∂t
+
∂(n0vx)

∂x
+
∂(n0vy)

∂y
+ n0neSCR, (18)

where, based on three-dimensional Monte Carlo neutral trans-
port simulations of this region, closures of vx ∼ −900 m/s and vy
∼ −20 m/s are applied for modeling HeI as it exits the capillar-
ies into the GPI frame of view.45 This approximation of a drifting,
cut-off Maxwellian for HeI may be reasonable for a narrow radial
region, but the true velocity distribution characterizing helium gas
particles becomes increasingly skewed the farther one goes away
from the gas nozzles. Modeling other atomic and molecular species
(e.g., deuterium) in this way may be inadequate as charge-exchange
and recombination effects on trajectories are increasingly important.
In addition, neutral–neutral collisions and their impacts on veloc-
ity closures are presently neglected in this treatment. This allows
for a scaling constant to be factored out of Eq. (18), i.e., permitted
by its linearity in n0. If using a sufficiently high spectral resolu-
tion spectrometer to view the emission cloud, the Doppler shift can
be experimentally measured. We leave this task for further explor-
ing momentum transport physics and potentially even learning the
velocity closure directly from the GPI data within our optimization
framework for future work.

The null formulation following Eq. (18) is vital for training
since all physical terms collectively sum to zero when the unknown
dynamical variables in the equation are correctly solved to self-
consistently account for neutral propagation and ionization. The
physical theory is computationally expressed by differentiating the
n0 neural network with respect to its input spatiotemporal coor-
dinates via the application of the chain rule through automatic
differentiation.46 By then multiplying and adding the graph outputs
to construct representations of the physical constraints, the network
for n0 can be trained against (14) and (18) to satisfy the physical
theory constraining the nonlinear connection between networks.
This accounting of Eq. (18) is particularly essential since the Kubo
number, which quantifies the strength of turbulent perturbations
on neutral transport, is large (≳ 1) for helium.45,47,48 There are no

explicit boundary conditions applied for n0, but instead, we train the
network against the fast camera’s experimentally measured inten-
sities to learn how n0 should be treated around the boundaries of
the analyzed camera image. Namely, the loss function in this third
following stage is given by

Ln0 =
1

N0

N0

∑
i=1

LGPI +
C fn0

Nf

N f

∑
j=1

L fn0
(19)

with
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where {x j
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f , t j
f }

N f
j=1 denote the set of collocation points that can

span any arbitrary domain but taken to be equivalent to the ones
encompassed by {xi

0, yi
0, ti

0, Ii
0}

N0
i=1, and f ∗n0 is the null partial differ-

ential equation prescribed by Eq. (18) in normalized form directly
evaluated by the neural networks. For the remainder of the train-
ing time, Eqs. (14) and (19) are sequentially trained in repeating
intervals of 100 min to iteratively find convergence in their respec-
tive networks. The only difference in later stages is that C is no
longer a free parameter while training against Eq. (14), and C fn0

in
Eq. (19) is increased from 102 to 106 to improve the focused learn-
ing of neutral transport physics. If C fn0

is increased any higher, we
risk finding trivial solutions at a higher occurrence. Generalizing
our training framework to adaptively update training coefficients49

is an important pathway for future investigation. All loss func-
tions are optimized with mini-batch sampling where N0 = Nf = 1000
using the L-BFGS (limited-memory Broyden-Fletcher-Goldfarb-
Shanno) algorithm—a quasi-Newton optimization algorithm.50 In
addition, points found to have difficulty converging (e.g., optimizer
becomes stuck in local minima) were removed from training in
subsequent stages to improve learning of turbulent fluctuations in
the remaining regions of the spatiotemporal domain analyzed. In
the end, this results in the multi-network framework training only
on 8 (radial) × 38 (vertical) pixels over 39 frames imaged by the
fast camera. We note that by embedding f (ne, Te) in Fig. 8, the
emissivity predictions by the networks are forced to satisfy CR
theory. Similarly, the ionization rate per neutral, neSCR, is encoded in
Eq. (18). We, thus, ensure that the unobserved ne, Te, and n0 being
learned are in agreement with the experimentally measured bright-
ness while trying to satisfy the neutral transport physics for HeI that
self-consistently includes time-dependent ionization in the presence
of plasma turbulence. The repeated differentiation and summation
of networks to represent every term in the ascribed loss functions
resultantly constructs a far deeper computation graph representing
the collective constraints beyond the eight hidden layers in each
dynamical variable’s network. The cumulative graph is therefore
a truly deep approximation of the physics governing the observed
587.6 nm line emission.

Due to the stochastic nature of the initialization and multi-
task training, learned solutions for ne, Te, n0, and C vary each time
an individual optimization is run. This may arise due to a unique
solution not necessarily existing given the above optimization con-
straints. Therefore, we run an ensemble of realizations and consider
this collection of runs that roughly follow Gaussian statistics. Based
on past testing within our optimization framework, the necessary
criteria for convergence in normalized units are set to LGPI < 102.5,
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FIG. 9. Histogram of the ne (a), Te (b), and Cn0 (c) fluctuations at [R = 90.7 cm, Z = −4.2 cm, t = 1.312 850 s], i.e., with corresponding normalized poloidal magnetic flux
coordinate ψn = 1.07, based on 50 converged realizations when training against experimental GPI data from plasma discharge 1 120 711 021 in the optimization framework.
The ensemble mean and standard deviation of these realizations are used to construct the results presented in Sec. V.

Lcorr < −103, and L fn0
< 10−3. Checks for spurious gradients, trivial

solutions, and a low number of training iterations were additionally
investigated for downselecting converged realizations. For analysis
of C-Mod discharge 1 120 711 021, there were 800 runs with 50 suffi-
ciently converging within our present analysis. The scatter in learned

turbulent fluctuations among these realizations is used to quantify
uncertainty intervals associated with the optimization framework,
and as an example, the distribution of inferred measurements at a
particular spatial and temporal point is plotted in Fig. 9. It is also
important to note that the loss functions never truly go to zero either

FIG. 10. The learned two-dimensional ne (a), Te (b), and Cn0 (c) for plasma discharge 1 120 711 021 along with the experimentally observed 587.6 nm photon emission (d)
at t = 1.312 815 s. The learned measurements are based on the collective predictions within the deep learning framework training against the neutral transport physics and
NP = 1 CR theory constraints. Multimedia view: https://doi.org/10.1063/5.0088216.1.
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and act to quantify potential discrepancies involved in modeling the
physical system with deep networks, e.g., L fn0

can be understood
as the outstanding error in approximating the neutral transport
theory. Of these converged runs, the normalized mean loss func-
tions at the end of training for the collection of realizations were
found to be LGPI = (1.44 ± 0.42) × 102, Lcorr = (−4.51 ± 0.20) × 103,
Lrelcorr = 6.75 ± 0.03, and L fn0

= (3.57 ± 3.79) × 10−5. Values of the
loss metrics remaining finite signify departures from exactly satis-
fying the training conditions being learnt. Identifying these errors
allows for their iterative improvement while identifying even better
loss functions for generalized training is left for future work.

V. UNCOVERING DYNAMICS IN EXPERIMENTAL
TURBULENCE IMAGING IN ALCATOR C-MOD

The learned turbulent ne, Te, and Cn0 from our time-dependent
analysis of fast camera imaging for plasma discharge 1 120 711
021 using an ensemble of 50 optimizers are visualized in two-
dimensional space along with experimentally observed GPI mea-
surements in Fig. 10 (Multimedia view). A correlation matrix for the
normalized relative fluctuations in two-dimensional space over the
roughly 100 μs time window analyzed is displayed in Table I.

The positive fluctuations in brightness are largely correlated
with ne and Te, and these regions tend to have depressed values of n0
as the ionization rate is elevated. This results in a “shadowing effect”
in atomic helium trajectories arising from fluctuation-induced ion-
ization. The autocorrelation time of n0 also decreases with radius,
while it increases for ne and Te. Temporal variation with radius is
visualized in Fig. 11 where, considering a one-dimensional slice of
Fig. 10 (Multimedia view), the same physical quantities are plotted
at Z = −4.0 cm. While correlations vary poloidally and radially, and
precise dependencies across the turbulent variables change as ne and

TABLE I. A correlation matrix of the turbulent measurements inferred and observed
experimentally in plasma discharge 1 120 711 021. For reference, I∗ is the pre-
dicted emissivity given by Eq. (13), and I0 is the experimentally observed brightness
of the 587.6 nm line. Each quantity’s normalized fluctuation amplitude, i.e., {X}
= (X − ⟨X⟩)/⟨X⟩, is based on measurements over 90.3 < R (cm) < 90.9, −4.6
< Z (cm) < −1.0, and 1.312 799 < tGPI (s) < 1.312 896.

{ne} {Te} {n0} {I∗} {I0}

{ne} 1.000 0.887 −0.325 0.843 0.822
{Te} 0.887 1.000 −0.307 0.925 0.902
{n0} −0.325 −0.307 1.000 −0.051 −0.059
{I∗} 0.843 0.925 −0.051 1.000 0.971
{I0} 0.822 0.902 −0.059 0.971 1.000

Te increase, the observed line emission is found to be strongly corre-
lated with electron pressure. The atomic helium density fluctuations
do not vary directly proportional to I0 in this far edge region on
open field lines near the gas tubes. There is instead a weak negative
correlation over this narrow radial extent arising from the largest
brightness fluctuations corresponding to trajectories with elevated
ionization rates causing a depletion, or shadowing, of HeI. The max-
imal n0 fluctuation amplitudes tend to be roughly 30%–40% from
peak-to-trough in this far edge region that sits away from the LCFS,
where sharper equilibrium gradients and smaller relative fluctuation
levels may result in different correlations. While relative fluctua-
tions may be correlated from 90.3 < R (cm) < 90.9 as in Table I,
connections between the turbulent quantities are nonlinear. To
better visualize their interdependence, Fig. 12 displays histograms
for ne, Te, and Cn0 vertically along R = 90.3 cm (with ψn in the
range 1.035–1.053). The fluctuations follow different statistical
distributions and cannot necessarily be linearly mapped from the
noisy HeI line intensity measured by the fast camera.

FIG. 11. The learned ne (a), Te (b), and Cn0 (c) along with the experimentally observed 587.6 nm photon brightness (d) for plasma discharge 1 120 711 021 at Z = −4.0 cm.
These quantities are plotted as a function of radius and time.
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FIG. 12. Histograms displaying the distribution of the experimentally observed 587.6 nm line intensity (a) along with turbulent ne (b), Te (c), and Cn0 (d) at [R = 90.3 cm,
−4.6 < Z (cm) < −1.0, 1.312 799 < tGPI (s) < 1.312 896].

We note that these learned ne, Te, and Cn0 are consistent
solutions with the collisional radiative and optimization con-
straints being trained upon, but not necessarily unique solutions.
Accordingly, in Fig. 13, we display the predicted light emis-
sion from the ensemble of realizations against the fast camera’s
measurements. We also plot the mean outputs and uncertainty
intervals for the turbulent ne, Te, and Cn0 associated with the
scatter of running an ensemble of our stochastic realizations.
There is no temporal averaging of the profiles in Fig. 13. For GPI
on Alcator C-Mod, sharp features exist in the experimental data

potentially associated with noise, while the learned line intensity
from the collection of networks is smoother and consistent in
both magnitude and shape with the observed brightness. These
measurements enable novel research pathways into the two-
dimensional tracking of experimental parameters (e.g., turbulent
particle and heat fluxes both radially and poloidally) and calculation
of fluctuating fields for turbulence model validation.8,9 They further
provide the first quantitative estimates of a two-dimensional
turbulent structure for neutrals in an experimental fusion
plasma.

FIG. 13. Radial profiles of the inferred turbulent Cn0 (b), ne (c), and Te (d) at [Z = −4.0 cm, t = 1.312 866 s] along with a trace of the experimentally observed and predicted
GPI intensity profiles. The computed line emission is based on the deep learning framework following Eq. (13). The dark line in each plot corresponds to the average output
of the ensemble of realizations, while the shaded uncertainty intervals correspond to scatter (±2σ) arising from the independently trained networks.
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To further examine the validity of these results, we juxtapose
turbulent ne and Te from our GPI measurements of the single spec-
tral line against an independent MLP with four electrodes. This
scanning probe is plunged at times overlapping with our gas puff
analysis, i.e., 1.287631 < tMLP (s) < 1.317671 vs 1.312799 < tGPI (s)
< 1.312896, although located at different positions toroidally and
vertically. The MLP measures fluctuations in time as it scans through
the edge plasma, and we consider its resultant constructed radial
profile. For comparison, we time-average our turbulent measure-
ments at different Z-locations to compare the ne and Te fluctuations.
While the measurement regions spatially spanned by the two inde-
pendent diagnostics are magnetically disconnected, we map the

FIG. 14. For evaluation of radial profiles, we compute the time-averaged ne (a)
and Te (b) over roughly 100 μs from the experimental GPI at different vertical
locations. These quantities inferred from GPI are compared against independent
scanning mirror Langmuir probe measurements from four electrodes that are not
time-averaged. This MLP is located at Z = +11.1 cm with a radially moving probe
head in the edge plasma. Shaded intervals on the time-averaged ne and Te

inferred from GPI correspond to the temporal scatter (±2σ) associated with the
learned turbulent fluctuations in our optimization framework. All measurements are
mapped to normalized poloidal magnetic flux coordinates, ψn.

fluctuations to common poloidal magnetic flux coordinates based on
magnetohydrodynamic equilibrium reconstruction in the tokamak
plasma using the EFIT code.51 Deconstructing the GPI fluctuations
into the turbulent ne, Te, and n0 instead of the raw brightness
from atomic emission largely resolves diagnostic misalignment chal-
lenges,52 and, in contrast with the past analysis of plasma discharge
1120711021,53 there is no radial shift applied to align the turbu-
lent fluctuation profiles from these two independent experimental
diagnostics. Profiles on these open field lines fluctuate strongly with
perturbations of up to 10%–100%. For turbulence measurements
by GPI in this two-dimensional spatial domain spanning ∼100 μs,
peak ne and Te fluctuations do not far exceed 2.5 × 1019 m−3 and
25 eV, respectively, which are roughly consistent with the MLP
measurements in the far SOL. When evaluating the two sets of mea-
surements side-by-side in Fig. 14, we find excellent agreement in
magnitude and structure between the Te measurements. For the
electron density channel, the MLP ne data are slightly elevated on
average although still quantitatively consistent within the measure-
ment bounds of the four electrodes. A potential contributing factor
to this observed difference in ne peaks could be natural variations
in the poloidal structure of turbulent fluctuations over the narrow
time window. Temporal averaging over longer durations may help
reduce the imprint of intermittent plasma transport when com-
paring radial profiles at different vertical positions. One should
also remember that, beyond the diagnostics viewing different spa-
tiotemporal locations, systematic uncertainties extant in both the
GPI and probe measurements can cause discrepancies left to be
reconciled.54,55 For example, the MLP is intrinsically perturbative
to local edge plasma conditions and experimental analysis of the
probe edge sheath assumes electrons can be described by a single
Maxwellian velocity distribution.38 Additionally, while our training
paradigm attempts to find consistent solutions within the applied
optimization framework, questions of uniqueness and generalized
constraints are still being explored.

VI. CONCLUSION
In summary, we have developed a novel time-dependent deep

learning framework for uncovering the turbulent fluctuations of
both the plasma quantities, ne and Te, as well as the neutrals under-
lying experimental imaging of HeI line radiation. Significantly, this
allows the determination of two-dimensional fluctuation maps in
the plasma boundary, revealing the detailed spatiotemporal struc-
ture and nonlinear dynamics. It thereby extends the usefulness of
the gas puff imaging method. The computational technique intrin-
sically constrains solutions via collisional radiative theory and trains
networks against neutral transport physics with constraints on cor-
relations between ne and Te. This advancement has allowed for
the first estimates of the two-dimensional turbulent ne, Te, and n0
that reveal fluctuation-induced ionization effects in a fusion plasma
based on optical imaging of just the 587.6 nm line. While our anal-
ysis is demonstrated on the edge of the Alcator C-Mod tokamak
with quantitative agreement found with independent probe mea-
surements, this technique is generalizable to ionized gases in a wide
variety of conditions and geometries (e.g., stellarators, spheromaks,
and magneto-inertial fusion).
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A number of opportunities for future development exist. One
key outstanding question is the identification of underlying numer-
ical and physical factors contributing to non-uniqueness in outputs
during optimization. From experimental noise to the chaotic prop-
erties of the turbulent system, finding sufficient conditions for
precise convergence is the focus of ongoing research. Future exten-
sions of the framework also include expanding the radial domain of
coverage toward closed flux surfaces, which will require widening
the queried bounds on ne, Te, n0, and improving the overall train-
ing paradigm via adaptive training and architecture structures.49

For example, neutral density amplitudes can vary over orders of
magnitude with steep shapes in background equilibrium profiles.
Tactfully embedding this information during the training of the net-
works can aid with the overall physical modeling via optimization. In
this way, better experimental constraints from one-dimensional data
may help uncover further dynamics not otherwise directly probed.

Adaptation to other experiments is a logical next step, and
translating our present technique to contemporary experimental
devices using helium beams is a pathway that can be explored
immediately for regions that are traditionally difficult to probe
(e.g., X-point regions). Alternatively, our deep learning frame-
work does not apply any discretization of the spatiotemporal
domain—networks provide natural continuum representations for
dynamical variables—and can thus be extended, in principle, to
three-dimensional geometries as well to account for integrated light
emission along the camera’s lines-of-sight if using wide gas distribu-
tions as expected, for example, when running He plasmas on ITER.56

Furthermore, this global turbulence imaging technique provides
new ways to diagnose high pressure plasma events, e.g., disruptive
instabilities, such as edge localized modes, that can be destructive
to plasma facing components. Translating our framework for direct
analysis of deuterium instead of helium is also possible with a few
modifications, but requires investigation of relevant CR physics22

where charge exchange and molecular effects are no longer nec-
essarily negligible.29 One prospect is to couple the turbulent ne
and Te learned within our framework with Monte Carlo neutral
transport codes,57 potentially allowing recovery of two-dimensional
time-dependent estimates of atomic and molecular deuterium den-
sity and its emissivity, e.g., through the ultraviolet Lyα line. These
could be compared directly to experimental measurements of line
emission from deuterium.58,59 Such extended comparisons will
be important in the testing of reduced edge plasma turbulence
models.8
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