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Integrated biosensor platform based on
graphene transistor arrays for real-time
high-accuracy ion sensing

MantianXue 1,4 , CharlesMackin 2,4,Wei-HungWeng1, Jiadi Zhu1, Yiyue Luo1,
Shao-Xiong Lennon Luo 3, Ang-Yu Lu 1, Marek Hempel1, Elaine McVay1,
Jing Kong 1 & Tomás Palacios 1

Two-dimensional materials such as graphene have shown great promise as
biosensors, but suffer from large device-to-device variation due to non-
uniform material synthesis and device fabrication technologies. Here, we
develop a robust bioelectronic sensing platform composed of more than 200
integrated sensing units, custom-built high-speed readout electronics, and
machine learning inference that overcomes these challenges to achieve rapid,
portable, and reliable measurements. The platform demonstrates reconfigur-
able multi-ion electrolyte sensing capability and provides highly sensitive,
reversible, and real-time response for potassium, sodium, and calcium ions in
complex solutions despite variations in device performance. A calibration
method leveraging the sensor redundancy and device-to-device variation is
also proposed, while amachine learningmodel trainedwithmulti-dimensional
information collected through themultiplexed sensor array is used to enhance
the sensing system’s functionality and accuracy in ion classification.

Smart sensors, such as sweat sensors, targeting various
physiologically-relevant biomarkers in biofluids have recently
demonstrated great potential for health-tracking and medical
diagnosis1–3. Such systems are commonly multiplexed to identify dif-
ferent analytes or provide active calibration1. Two-dimensional (2D)
materials are particularly promising in biochemical sensing applica-
tions thanks to their large-surface-to-volume ratio, which allows the
sensor channel to be readily modulated upon chemical changes near
the surface, translating chemical signals into the electrical or optical
domainwith enhanced sensitivity. Graphene is themostwidely studied
material among all 2Dmaterials andprovides themostmaturematerial
synthesis4. It has the largest surface-to-volume ratio5 and exhibits a
number of promising characteristics. The high carrier mobility6, which
translates into high transconductance, makes graphene a more desir-
able transducer compared to organic materials such as poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). In con-
trast to traditional metal oxide-based chemo-resistor sensors, which

suffer from high humidity sensitivity, graphene is stable and chemi-
cally inert7. Thanks to its mechanical flexibility8, graphene can poten-
tially enable innately flexible form-factors in contrast to silicon-based
sensing systems. Graphene is also compatible with a large variety of
surface functionalization chemistries, making it a promising sensing
material for large-area arrays of multiplexed sensors9.

Despite advances in material synthesis, large-area integration of
devices based on graphene and other novel materials still suffer from
strong device-to-device variability caused by intrinsic defects10, gate
oxide nonuniformities11, and parasitic effects12. Device fabrication
also introduces additional variability in sensor response from batch
to batch10. Most sensor papers previously reported contain a single
sensor for each type of analyte, where the performance of each
sensor is evaluated and optimized separately1,3,13,14. This brings into
question the reproducibility and reliability of such devices when
applied to real-world applications, including complex physiological
samples.
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Here we demonstrate an approach to overcome the challenges in
2D material-based sensing devices and achieve high performance and
enhanced functionality. Rather than focusing on the improvement of
intrinsic material quality, fabrication uniformity, or surface functio-
nalization, we develop a high-density graphene-based sensor array
platform to overcome the large degree of variability of advanced
materials. We fabricate arrays (16×16) of graphene devices to provide
more than 200 working sensing units for each chip, and configure
them into multi-ion sensors by functionalizing the surface with three
different ion-selective membranes (ISMs). Ionized calcium, potassium,
and sodium were chosen as analytes of interest due to their com-
monplace in diagnostic tests and their physiological importance in
blood, urine, and sweat3,15,16. They help regulate fluid balance, muscle
contractions, nerve system transmissions, and glandular secretion.
These ions are essential in evaluating human physiological status, as
they are indicators for diuretic use, gastrointestinal losses, kidney
disease, parathyroid condition, thyroid disease, cardiac failure etc17–19.
Attempts havebeenmadewith graphene-based ion sensors in thepast,
but such sensorsmostly target only one type of ion using a very limited
number of test devices20–22. The reproducibility of the sensor perfor-
mance from device-to-device, wafer-to-wafer, and lot-to-lot is mostly
unreported. We demonstrate near-ideal sensitivity, excellent reversi-
bility, and large detection range for each type of sensor despite non-
uniformity in individual devices. The variations and imperfections in
material synthesis and device fabrication can be leveraged by statis-
tical analysis and machine learning algorithms. A profile-matching
calibration method utilizing sensor non-uniformity and redundancy is
introduced to eliminate the need for multiple calibration solutions,

which is especially useful for sensing applications targeting portability
and field use. A Random Forest algorithm is used to quantify analyte
concentrations in the presence of multiple-ions. The abundance
(N > 200) and multiplexity of sensors and sensor types are shown
beneficial for improvingmodel accuracy.Wedemonstrate that system-
level co-design of sensing arrays and algorithms significantly improves
sensor performance thus enabling rapid prototyping and in-depth
data analysis in spite of the limitations present in graphene and other
advanced 2D materials.

Results
ISM functionalized graphene sensor array
The graphene sensing chip used in this study is fabricated on a 4-inch,
200 μm thick glass wafer (Supplementary Fig. 1b). Each sensing unit
consists of a 30 × 30 μm graphene channel with two Ti (5 nm)/Au
(150nm) source/drain electrodes. The optical image of an as-fabri-
cated graphene sensor array is shown in Supplementary Fig. 1c. The
quality of the intrinsic graphene film is analyzed by Raman Spectro-
scopy as shown inSupplementary Fig. 2a, b. TheweakDband indicates
minimal defects in the graphene film and the excellent 2D/G ratio
mapping shows the sheet is single layer. A 500nm SU-8 passivation
film was spin-coated on top of the devices and patterned to leave
openings in the sensing areas above the graphene channels. Amaterial
jetting printer is utilized to deposit various functionalization chemis-
tries onto the sensing area with precise lateral control as illustrated in
Fig. 1a. A measurement system consisting of a custom-built printed-
circuit board (PCB) andmicrocontroller allows for rapid acquisition of
high-quality data from a large number of sensors in a convenient
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Fig. 1 | Highly-integrated sensing system. a Schematic of the sensing chip con-
sisting of N ×N sensor units (N = 16 in this paper). Different surface functionaliza-
tionmembranes can be printed onto different regions of the sensor array, allowing
multiplexedmeasurements. bOptical photograph of themeasurement system and
the sensor array. c Block diagram of themeasurement system color-codedwith the
dashed boxes in b. d Microscope image of the graphene sensing arrays on a glass
wafer. Scale bar: 1 cm. e Schematic of the individual sensing unit with ion-sensitive
surface functionalization membrane. The electrostatic potential as a function of

distance fromgraphene surface is shownon the right. ISM: ion sensitivemembrane;
VM: membrane potential; VGS: gate to source voltage; VDS: drain to source voltage;
VS: potential at source. f Leftward shifts of I–V curves observed in a typical device
from a Na+ ISM functionalized sensing chip with increased sodium ion concentra-
tion and VDS = 300mV. Black dashed line indicates the current level at VGS = −0.1 V
and a decrease in current is observed due to the left-shift of the I–V curves.
g Normalized conductance transient responses of 215 working sensing units to
changing concentrations in ionized sodium at VDS = 300mV, and VGS = −0.1 V.
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manner (Fig. 1b, c). The measurement system also houses an external
low-profile Ag/AgCl reference electrode to provide a stable reference
potential for data acquisition. When performing liquid-phase mea-
surements, the sensor array chip is dipped into a beaker with 10ml of
testing solution at room temperature along with the low-profile
reference electrode, which functions as a global top-gate for the sen-
sing chip. The change in the source-drain current IDS for each row and
columncombinationof the sensor arrayare automaticallymeasured as
a function of gate-source and drain-source voltages, VGS and VDS. For a
standard VGS sweep (−0.6 to 0.9 V with 20mV/s sweeping speed), it
takes roughly three minutes to finish measuring all 256 devices. The
drain current with respect to gate voltage (will be referred to as “I–V”
characteristics) as well as the drain current with respect to drain vol-
tage characteristics of the sensor chip before functionalization are
shown in Supplementary Fig. 3a, b. Non-functional pixels were filtered
out using the criteria outlined in Supplementary Note 2 and the aver-
age yield for the sensing chip is >80%. Large device-to-device varia-
tions in terms of current level, channel resistance, Dirac Point (the
location of the minimum conduction point) and shape of the I–V
characteristics are present for the >200 working devices on one sen-
sing chip (Supplementary Fig. 3). A compact electrolyte-gated gra-
phene-based field-effect transistor model was then applied to extract
parameters like contact resistance, carrier concentration and
mobility23,24 to further showcase the variation within one sensing chip
(Supplementary Fig. 7). Such variations result from a combination of
material and fabrication non-uniformities. In the following section, we
will demonstrate how to overcome and take advantage of such sig-
nificant device-to-device variation.

The versatility of the sensing system is demonstrated by char-
acterizing the performance of the sensors using different ISMs. ISMs in
this workmake use of charge neutral ionophores and draw inspiration
from biological cell membranes. Ionophores are lipophilic molecules
that can selectively bind to an ion of interest25, which provides sensi-
tivity and selectivity towards targeting ions along with pH
independency26,27. Ionophores are assumed confined to themembrane
phase due to their lipophilic properties. When a neutral ionophore is
used, lipophilic ion sites with charge opposite to the analyte ion—in
this case anionic sites—have to be added in order to suppress the
extractionof chloride into themembrane28–30. Previous research shows
that the concentration of these ionic sites within themembrane can be
optimized to effectively reduce the response time, lower the electrical
resistance of the membrane and increase the selectivity28.

The operating principle of the sensor is based on the channel
modulation of the graphene electrolyte-gated field-effect transistor
(EGFET)23,24 as the cation diffuses into the membrane. The transport of
ions through the interface between the electrolyte and the ISM is gov-
erned by the Nernst equation29 (detailed derivation is provided in the
Supplementary Note 1). In equilibrium, diffusion of cations across the
membrane is counterbalanced by the electric field induced by the ions.
This potential is depicted in Fig. 1e at the electrolyte-membrane inter-
face. As the concentration of the cations in the solution is increased, the
electric field required to counterbalance diffusion must increase. Thus,
the potential increases with increasing ion concentration. Because the
polarity of the potential is aligned with the polarity of the source-gate
voltage VGS, an additional potential drop is added on the graphene
channel as shown in Fig. 1e. In the presence of higher ion concentra-
tions, a further accumulation of electrons occurs in the graphene
channel and a larger electron current (lower hole current) is achieved
for the same VGS. Hence, increasing cation concentration results in a
more n-doped channel and thus a leftward shift of the graphene I–V
characteristic. Figure 1f is a representative I–V characteristic for a Na+

ISM functionalized sensor measured in electrolytes containing various
concentrations of sodium ions at ambient room temperature. The
temperature sensitivity of graphene is negligible for ion sensing as
shown in Supplementary Fig. 4. A Nernstian leftward shift of the I–V

characteristic was observed for increases in sodium ion concentration.
Full I–V curves were measured in each solution multiple times with the
same drain voltage and gate voltage range. Hysteresis in graphene’s I–V
characteristics is mitigated by applying a slow voltage sweeping rate of
20mV/s.Weobtain stable and reproduciblemeasurements for bare and
functionalized graphene despite the considerable variation among
devices (Supplementary Fig. 5).

The sensor chip can also be configured to measure the transient
response. In this case, both gate and source-drain voltage are held
constant, while the chip is immersed in different solutions. The change
in channel conductance shown in Fig. 1g is a typical transient response
for a Na+-ISM-functionalized chip with 215 working devices tested in
dilutions of ionized sodium spanning several orders ofmagnitude. The
changes in device conductance are normalized with respect to their
responses in 1mM NaCl solution. Spikes in data represent transition
times during which the sensors were transferred from one solution to
the next. When the gate is biased at the hole-conducting region (left
side of I–V curves), the conductance of the channel decreases with
higher ion concentration due to theNernstian leftward shift for cations
as indicated by the black dotted line on Fig. 1f. Similar transient
responses were also obtained for potassium and calcium ISMs.

The sensitivities of the functionalized sensors were extracted
from the I–V characteristics from three chips functionalized with K+,
Na+, and Ca2+ ISMs. The shift of the I–V curve is quantified by tracking
the Dirac Point, which was estimated by polynomial fitting the dis-
cretized I–V characteristics and finding the minimum. Further details
are provided in the Supplementary Note 3 and Supplementary Fig. 6.
The average sensitivity plots at room temperature for K+ ISM, Na+ ISM,
and Ca2+ ISM functionalized sensor chips are depicted in Fig. 2a–c. The
histogramplotsfittedwithGaussiandistributions show the variationof
individual sensitivities for each type of sensor. All characterizations of
ISM functionalized sensors were completed at least twice with differ-
ent batches of sensor chips with results remaining consistent (Sup-
plementary Fig. 9). Prior to averaging, the large variation in device
behavior evidenced by the I–V characteristics (Supplementary Fig. 3
andSupplementary Fig. 7) alongwithpotential variations inmembrane
quality led to non-uniformity in ion sensitivities. Some devices show
super-Nernstian behavior, which can be explained by uncontrolled
charge transfer due to defect sites on graphene induced by fabrication
process (Supplementary Note 1). By obtaining a large amount of data
from all devices on the chip, one can overcome the noise signal that
arises from device-to-device variation and capture the universal trend
and enhance sensor signals by averaging. After averaging over the
extracted Dirac Point, all three chips exhibit excellent Nernstian slope
with −54.7 ± 2.90mV/decade for K+, −56.8 ± 5.87mV/decade for Na+

and −30.1 ± 1.90mV/decade for Ca2+. The intrinsic sensitivity of bare
graphene towards K+, Na+ and Ca2+ is also characterized. Although
some of the individual sensors show sensitivity towards change in ion
concentration due to defects on graphene channels31, the averaged
data shows negligible sensitivity (Supplementary Fig. 10). This further
demonstrates the effectiveness of averaging over many devices to
eliminate uncontrolled sensitivity that could originated from defects
and contaminations. The averaged sensitivity of the ISM-
functionalized sensor array is stable and repeatable over multiple
measurements (Supplementary Fig. 11a). The robustness of the ion
sensor array is further showcased by the negligible drift in sensitivity
over a 6-month period (Supplementary Fig. 11b). The average response
time towards K+, Na+, Ca2+ are 7.4 ± 1.3 s, 5.9 ± 3.3 s, 5.1 ± 1.1 s (Sup-
plementary Fig. 12), which are either faster or comparable to pre-
viously reported ion sensors, including commercial ones32–34. The
feasibility of the sensor system’s operation in complex biofluid is
demonstrated through testing in artificial urine (AU) and artificial
eccrine perspiration (AEP), where the relative concentration for K+,
Na+, and Ca2+ ions are within the 1–100mM range. The molecule con-
tents for AU and AEP are listed in Supplementary Table 2 and the
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average sensitivities towardsK+, Na+, Ca2+ areplotted in Supplementary
Fig. 13. The Nernstian sensitivity exhibits little change in the presence
of other molecules and ions. This demonstrates the stability, selec-
tivity, and compatibility of our sensors with real-world and complex
samples for biomedical applications.

To investigate the reversibility of the sensing system, wemeasure
the change in channel conductance versus ion concentration in
Fig. 2d–f, where black dots are forward measurements (increasing ion
concentration) and red ones are backwardmeasurements (decreasing
ion concentration). The sensor’s reversibility is quantified by

calculating the percentage difference between slopes fitted to
the forward measurements versus the backward measurements.
Figure 2d–f insets show the reversibility of individual devices on the
sensing chip. The average differenceof fitted slopes is below 10%while
the difference of an individual device could be over 80% in the worst
case. Similar reversibility results were observed using the shift in Dirac
Point instead of channel conductance (Supplementary Fig. 14). This
again highlights that sensormetrics such as sensitivity and reversibility
can be improved significantly by averaging over a large number of
devices. Compared toother reported ion sensors, whichnormally have
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Fig. 2 | ISMs-functionalized graphene sensing chip and profile matching cali-
bration. The minimum conduction point as a function of ion concentration for
a K+ ISM, b Na+ ISM, and c Ca2+ ISM functionalized graphene sensor chips. Error
bars indicate the standard deviation of the Dirac Points of all the working
devices on the chip. Dashed lines are the linear fits of the Dirac Points and the
slopes of the fitted lines are the sensitivity. Insets depict the sensitivity dis-
tribution of individual devices on each chip. d–f The average change in channel
conductance for K+ ISM, Na+ ISM, and Ca2+ ISM functionalized sensing chip
showing excellent reversibility over several magnitude change in K+, Na+, and
Ca2+ concentration. Black dots are measurements going from low ion con-
centration to high, while red dots are measurements going from high ion
concentration to low. The percentage change in conductance is normalized

with respect to the data taken at 1 mM and the error bars are given by the
standard deviation. Histograms in the insets show the reversibility distribution
of individual devices on the sensor array. g Current transient response of all
devices with VGS = 0 V. The black dotted line indicates the source-drain current
distribution at Ca2+ concentration of 10mM. h I–V characterization of all
devices at Ca2+ concentration of 10mM and the correlation coefficients (R2)
obtained by matching the transient slices of 10mM Ca2+ to I–V characteriza-
tions at different VGS slices. i Calculated concentration at discrete intervals
(black squares) using the profile-matching calibration method are plotted as x-
values against the true concentration as the y-values. A fitted line (red dashed
line) with a slope of 0.969 with an R-squared value of 0.996, indicating the
effectiveness of the calibration method.
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less than five devices tested or reported, our ion sensing arrays exhibit
excellent sensitivity, good reversibility, large detection range, and
long-term stability (Supplementary Table 1). In comparison to the
commercial ion-selective electrodes (ISEs), our sensor array system is
able to detect ions with comparable sensitivity (Supplementary
Table 1) but with enhanced portability. Graphene’s high surface-to-
volume ratio also makes it possible to have more than 200 devices
within a small form-factor, something not possible when using bulky
ISEs. The three-terminal transistor structure of the sensing units also
adds gain and tunability compared to traditional ISEs. The biofluid
compatibility and functionality in multi-ion detection, which will be
discussed in latter section, make our sensor system a step closer to
realizing reliable sensing for biomedical applications.

Profile-matching calibration
Apart from using statistics to overcome the material and device var-
iations to achieve stable, reliable, and highly accurate sensor behavior,
the variations in the I–V profiles between devices can be used to ease
the system-level calibration. Here we propose a time-efficient calibra-
tion method based on the quasi-linearity in graphene’s I–V curves and
one dataset gathered from the large sensor array representing the
unique current level distribution among sensing units due to device-
to-device variation. The Profile-Matching Calibration method is based
on the fact that changes in concentration produce changes in the
sensor operating currents IDS at a fixed gate voltage. As an example,
first consider the current transient response and I–V characteristic
curves of a Ca2+ ISM functionalized sensor chip. The black dotted line
on the transient data (Fig. 2g) indicates a slice of operating current IDS
at the 10mM concentration at VGS = 0, and the distribution of such
current data due to inhomogeneities between the different devices in
the array will be utilized and referred as “test current slice”. The I–V
characteristic curves taken at 10mM concentration canalsobe sliced at
different VGS values, and the IDS distribution of each slice will be
referred as “calibration current slice” (Fig. 2h, upper). We have a cali-
bration current slice for each value of VGS. The test current slice can
then be compared to each calibration current slice using a standard
optimization technique such as least squares fitting off-chip to find
which slice of calibration current matches it the best (Supplementary
Fig. 8). Since the test current slice was taken at VGS = 0 at the same
concentration as the calibration, the regression analysis will show a
higher R2 value with the calibration current slice closer to VGS = 0 as
shown in Fig. 2h.

Now, consider measuring with an unknown concentration. The
corresponding test current slice taken at a fixed VGS, can be mapped
onto the calibration I–V characteristic at the reference concentration
in the same way as discussed above. The optimum calibration current
slice is calculated by finding the value of VGS that provides the highest
correlation coefficient R2 between the calibration current slice and the
test current. The relative voltage shift is the difference between gate
voltage of the test current slice and that of the optimum calibration
current slice. The solution concentration can thenbe readily calculated
using the reference concentration, the voltage shift, and the
sensitivity slope.

Calibration is essential for almost all sensing systems since
sensors can deteriorate through wear, aging, and environmental
influences35. Similarly, electrolyte-gated graphene field-effect tran-
sistors (EGFETs) will also need to be re-calibrated due to the una-
voidable drift overtime because of graphene’s property changes in
ambient air (Supplementary Fig. 15). The methods typically used to
calibrate EGFETs perform full I–V characterization of the devices
under multiple dilutions spanning the entire range of interest36–38.
The profile-matching method however requires only a single mea-
surement of I–V characteristics using one calibration solution of
known concentration. The calibration solution should be within the
linear range of the device (10 µM–100mM) in order to utilize the

quasi-linearity in graphene’s I–V curve. Since the sensitivity drift of
the ion sensors is negligible over six months as shown in Supple-
mentary Fig. 11, the sensors can be easily calibrated with the profile-
matching approach to achieve the same sensing accuracy over mul-
tiple testing sessions.

The accuracy of this alternative measurement technique is
investigated over several orders of magnitude change in Ca2+ con-
centration as an example. Calculated concentrations are then com-
pared to nominal concentrations capturing the combined accuracy of
the graphene Ca ion sensors and measurement technique. Figure 2i
shows that graphene Ca ion sensors quantify Ca2+ concentration
exceptionally well over several orders of magnitude with only one I–V
characteristics calibration as a reference.

Highly integrated array for multiplexed sensing
We have demonstrated graphene-based sensor arrays with enhanced
performance for Ca2+, Na+, and K+ detection by averaging over the
device-to-device variation. To further push the functionality of the
sensing system,wedemonstrate a sensing chip that integrates all three
ISMs discussed earlier in the manuscript (Fig. 3a). The sensor chip is
designed to have three separate regions. AMaterial Jetting 3D printing
machine is used to deposit three ISMs to designated regions with
spatial control of 100 µm and an average roughness under 5 nm
(Supplementary Fig. 17). Details of the printing recipe can be found in
Methods and the optical image of the sensor array after ISM printing is
shown in Supplementary Fig. 1e. Figure 3b shows the I–V character-
istics of the chip measured in electrolytes with K+, Na+, and Ca2+ ions
after functionalization. In addition to the intrinsic variation in the I–V
characteristics of pristine graphene (Supplementary Fig. 3a), the I–V
curves from each type of ISM sensor also have their unique signature
shapes, indicating that each ISM modifies the electrical properties of
graphene in a different way13,38,39. Both K+ and Ca2+ ISMs heavily p-dope
the graphene channel while Na+ membrane shows a more neutral
functionalization. The difference in the doping effect can be attributed
to themolecular structure of different ionophores40,41 (Supplementary
Note 6). The color map of Dirac Points (Fig. 3a) shows a clear distinc-
tion between three ISMs.

Two sets of measurements were conducted using the integrated
sensing chip. The first set, called “pure solutions,” contains 15 elec-
trolyte solutions with only one type of analyte ion with various
concentrations spanning several orders of magnitude. The second
set, called “mixture solutions,” contains electrolyte solutions with
multiple types of analyte ions in deionized water and will be dis-
cussed in the following section. Figure 3c shows the average shift in
Dirac Points of the integrated chip tested in solution containing
various Na+ concentrations. Even though the sodium membrane
exhibits the most significant change with respect to Na+ concentra-
tion, there is also useful information embedded in the response of
calcium and potassium ISMs. All three ISMs are highly selective and
exhibit the highest sensitivity towards their target analytes. They
also, however, exhibit some cross-sensitivity to other ions. Other
researchers have observed similar behavior, but most have assumed
absolute selectivity from ISMs and have ignored the cross-selectivity
in their data analysis38,42,43. We perform principal component analysis
(PCA) using Dirac Points of individual devices from measurements
with the pure solutions as features to visualize the multivariate data
under a lower dimensional space while preserving the largest var-
iance. The first two principal components (PC) accounted for 92.1%
of the total variance in the data. The score of PC1 and PC2 is plotted
in Fig. 3d and the details of the PCA analysis are explained in Sup-
plementary Note 7. The clusters of K+, Na+, and Ca2+ ions are well-
separated, indicating the sensor’s ability to distinguish between dif-
ferent types of ions in electrolyte. Further separation can be achieved
by using the ion sensitivities of individual sensors as the feature set as
shown in Supplementary Fig. 20.
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Algorithm-enhanced sensing accuracy
Dirac Point is not the only parameter that has shifted upon the
deposition of the membranes. The shape of the I–V curves also con-
tains useful information about the functionalization and analytes that
can be analyzed. Therefore, in addition to the Dirac Point, we also
extract features from the I–V curves includingmaximumandminimum
transconductance, which represent electron and hole currents, in an
attempt to capture the relevant changes in graphene’s physical prop-
erties. The full list of features and extraction methods are listed in
Supplementary Fig. 21. RandomForest, a tree-based ensemble learning
algorithm, was chosen to analyze the multidimensional features
extracted from raw sensor signals because of its previous success in
analyzing the biomedical sensor data44. This technique uses a robust
ensemble learning approach tomake the final decision through voting
of predictions of many decision trees into a model but with less arbi-
trary hyperparameter search and tuning45,46. Such ensemble learning
reduces variance and mitigates overfitting with internal cross-
validation. Due to its tree-based nature, Random Forest is also much
more interpretable and less data-hungry than complex learning fra-
meworks suchas deepneural networks,making itmore suitable for the
dataset from our sensing chip. Other classification algorithms that are
commonly used for disease prediction problems47, including latent
Dirichlet allocation (LAD), support vector machine (SVM), K-nearest
neighbors (k-NN), and Gaussian process (GP), are also compatible with
the dataset gathered by the multiplexed sensing chip as shown in
Supplementary Fig. 23. Themodel implementedby theRandomForest
algorithm has comparable or better performance relative to other
classification algorithms.

We first trained a classifier with data from the pure solution tests
and we are able to achieve 97.6% accuracy in classifying the presence
of ion types as shown in Fig. 4a. The feature importance of the trained
model is analyzed using the game theory-based interpretability

algorithm, SHAP (Shapley Additive exPlanations)48,49 and the top four
most important features are shown in Fig. 4b. The Dirac Point of cal-
cium ISM and sodium ISM contribute themost in the ion type classifier
while potassium ISM provides less information. This gives insights in
designing a large area cross-reactive array for specific tasks. For simple
tasks such as classification between K+, Na+, and Ca2+ ions, only two
types of functionalization would suffice.

The ion concentration can also be predicted. Since the ion con-
centration of testing solutions varies across several orders of magni-
tude, we use a classification approach instead of a traditional
regression model. The resulting models produce classification
accuracies of 83.1, 86.9, and 77.9% for K+, Na+, and Ca2+ ion con-
centrations, respectively (Supplementary Fig. 22). Themodels can also
indicate if the incorrect model was used for an unknown solution. For
example, if the Ca model is used for sodium solution, the model will
output concentration class “zero”.

Although it is important to determine the ion type and con-
centration in pure solutions, real-world applications require high
performance in solution with multi-ions. Therefore, a second set of
experiments was performed using multi-ion solutions, where all three
types of ions are present simultaneously. Multiclass Random Forest
classifiers are trained to predict the concentration of K+, Na+, and Ca2+

and the accuracy for each ion is 90.6, 82.6, and 61.7%, (Fig. 4c–e). From
the machine learning perspective, the Ca2+ concentration prediction
task is harder since the representation learned from the selected fea-
tures may have less explanation power to high Ca2+ concentration
values (note: 10 and 100mM) even though themodel can do relatively
well at lower concentrations. These results show thepotential for these
multiplexed sensing chips to perform well in complex, real-world
environments.

In addition to complex electrolyte profiles, biological fluids also
contain antibodies, antigens, and hormones that introduce more
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confounders into the analysis. The graphene-based sensorswill behave
differently in terms of current level, Dirac Point, cross-sensitivity,
detection limits and so on (Fig. 4f). The multiplexed sensor array
analyzes the collective response of an array instead of assuming
absolute sensitivity or selectivity of one device. Models can be readily
calibrated or re-trained using real-world biological samples in future
studies. Here we simulate how the system would be used in a real-
world setting, where biofluids are analyzed using the concentration
profile of the K+, Na+ Ca2+ ions as biomarkers for electrolyte imbalance
disorders. We re-categorized the mixture solutions and trained the
model to predict the mixture concentration profile instead of the
concentration of individual ions (Supplementary Table 4). The confu-
sion matrix of the result model is shown in Supplementary Fig. 24. We
achieve an average accuracy of 84.7% for the classification of ion
concentration profiles with solutions containing multiple ion types.
The model is less confident at identifying higher calcium and higher
potassium. This could be due to the imbalanced training data in these
classes, i.e., there are fewer observations with a higher calcium/
potassium level that make the learning more difficult. The lower con-
fidence on concentrated Ca2+ solutions is also observed in the Ca2+ ion
concentration model shown in Fig. 4e. A possible reason could be the
intrinsic lower Nernstian slope for bivalent ions and the choice of
features. Quantifying higher calcium concentrations could be further

improved by carefully redesigning the functionalization matrix and
optimizing feature selection. This analysis demonstrates thepossibility
of coupling the multiplexed sensing array with machine learning
models to achieve fast andhigh accuracy electrolyte imbalance-related
disease diagnoses. The performance of the model could be greatly
improved with a larger, balanced training dataset. The model could
also be readily re-trained towards specific diseases using training data
collected with real biofluid from patients in a clinical trial.

We further analyze the importance of sensor redundancy and
sensor multimodality by evaluating the model accuracy when sam-
pling from a smaller device pool, which mimics more conventional
approaches of 2D material-based sensors using fewer devices.
Figure 4g shows the accuracy of different tasks sampling from 1, 1/2, 1/
4, and 1/8 of the total devices using the pure solution set. Compared to
the accuracies stemming from 25 devices (1/8 chip), which already
contains more devices than most works on ion sensors (Supplemen-
tary Table 1), we show that large scale integration, with over 200
devices, can improve the accuracies more than 20 percentage points.
For complicated tasks, it is necessary to have a large set of sensors
available for training in order to achieve the desired accuracy. It is
possible to occasionally have comparable or slightly better model
performance due to the random dropping of the training samples
while decreasing the number of sensors. It is also possible that data
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distributions between the test samples and the training samples after
dropping some sensors are similar compared with the whole training
set, and therefore will not produce improvement even after adding
more samples in the training. Therefore, large device-to-device varia-
tions, which are typically detrimental inmost advanced-material-based
sensors, can actually be beneficial in our approach. The benefits of
sensor redundancy are also quantified by analyzing the relationship
between device number and accuracy when performing the profile-
matching calibration methods. 50,000 synthetic test current respon-
ses and I–V characteristics are generated according to empirical
cumulative distribution functions (ECDFs) derived from experimental
data so as tomimic experimental data as closely as possible. The result
is depicted in Supplementary Fig. 25 and shows tightening of 95%
confidence intervals from ±50% to within ±10% of the Ca2+ concentra-
tion. The tightening of the confidence intervals further demonstrates
the importance and effectiveness of high-density sensor arrays on
enhancing sensor performance.

We also investigate the role of each functionalization and further
improve the model’s interpretability by performing ablation tests.
Supplementary Fig. 22d shows the testing error if one of the ISMs is
removed. For ion type classification, removing the calcium or potas-
siummembrane does not increase the error significantly but removing
the sodium ISM yields a larger error. This aligns with the SHAP inter-
pretation in Fig. 4b where the Dirac point of the Na+ ISM is the most
significant factor for the ion classification. For ion concentration pre-
diction tasks, we find that removing the corresponding ISM leads to
the largest performance drop except for calcium. The result also
confirms that models for potassium and sodium concentration pre-
diction have better performance than calcium, since predicting the
Ca2+ concentration requires the information from other ISMs, or even
more information is needed for constructing a better data repre-
sentation for modeling. Similar results were found with the mixture
solution test as shown in Supplementary Fig. 22e.

Discussion
In this work, we develop a highly integrated graphene-based sensing
platform that addresses and overcomes the current limitations in 2D
materials technology and achieves high performance and enhanced
functionality. The scalable fabrication process provides a promising
way for future sensors to achieve both excellent performance and low
cost. The portable sensing platform uses more than 200 graphene
sensors to demonstrate accurate detection of calcium, sodium, and
potassium ions in simple electrolytes, artificial urine, and artificial
eccrine perspiration. The proposed sensing platform combines a sta-
tistically significant sample size and a calibrationmethod to overcome
device-to-device variation and demonstrates excellent sensitivity and
reversibility. The Random Forest algorithm was used to demonstrate
accurate ion type classification, concentration prediction, and poten-
tial applications in electrolyte imbalance-related disease diagnostics.
The importance and effectiveness of combining a large dataset with
statistics and machine learning was demonstrated in terms of sensor
performance enhancement. Our sensing platform can be readily
adopted for other analytes of interest as well as with other advanced
2D materials to realize accurate and reliable multiplexed sensing for
biomedical applications.

Methods
Device fabrication
The transducer part of the sensor platformdescribed in this paper is an
array of functionalized graphene-based EGFETs fabricated on a dis-
posable glass slide. Fabrication of the array begins with piranha
cleaning a 200 μm thick 4-inch Corning willow glass (MTI Corpora-
tion). The substrate was coated with 25 nm aluminum oxide using
atomic layer deposition to enhance adhesion in subsequent photo-
lithography steps. A layer of Ti/Au (5 nm/150nm) was deposited using

electronbeamdeposition to form the rowcontacts of the sensor array.
A 30 nm layer of aluminum oxide was then deposited as interlayer
dielectric using atomic layer deposition. Openings were etched into
the interlayer dielectric using a BCl3 plasma to allow contact between
the first and second metal layers in the array where appropriate. A
second metal layer of Ti/Au (5 nm/150nm) was then deposited using
electron beam deposition. Graphene coated with poly(methyl metha-
crylate) (PMMA) (ACS Materials Trivial Transfer Graphene™ 1 cm× 1
cm)was transferred on the substrate to cover the entirety of the array.
The graphene filmwas single-layeredwithminimal defects as shown in
the Raman spectrum in Supplementary Fig. 2a, b. The chip was baked
at 60 °C for 30min and 130 °C for 2 h. This allows PMMA reflow and
enhances adhesion between the graphene and substrate. The sensor
array chip was then immersed in acetone for several hours to remove
the PMMA. The chip was subsequently annealed at 350 °C in 400 sccm
Ar and 7000 sccm H2 to reduce PMMA residue and further enhance
adhesion between the graphene and substrate. Graphene sensors were
isolated from each other using oxygen plasma and a patterned PMGI/
SPR700 resist stack as amask. Photolithography is used to reduce cost
while achievinghigher throughputs. The resist stackwas then removed
by immersion in N-Methyl-2-pyrrolidone (NMP) for several hours. The
chip was spin-coated with SU-8 and openings were defined over the
graphene channel regions and contact leads. Thewhole process can be
easily scaled up for 6 or 8-inch process and the cost will be further
reduced. The Raman Spectrum after fabrication is shown in Supple-
mentary Fig. 2c and the D/G band mapping of a 20 µm × 20 µm gra-
phene channel is shown in Supplementary Fig. 2d. Insert in
Supplementary Fig. 2c shows the distribution of ID_band/IG_band ratio
sampled from 20 devices across the array. The low D band intensity
indicates low density defects and minimal damage to the graphene
channel.

Measurement setup
All electrical measurements were performed using the custom-built
measurement system (Fig. 1b, c) at room temperature. The mea-
surement systemmakes use of an Atmel SAM3Xmicrocontroller with
an 84MHz clock, which enables very high-speed data acquisition.
Dual 12-bit digital-to-analog converters (DACs) are employed to vary
the VDS and VGS voltages applied throughout the sensor array
appropriately depending on themeasurement configuration (e.g. I–V
sweep, transient IDS). The microcontroller is paired with a custom
printed circuit board (PCB) designed to precisely match the input
and output ports of themicrocontroller in order to achieve an overall
compact form factor and portable measurement system (about the
size of a cell phone). The custom PCB includes 16 transimpedance
amplifiers (one for each column of the sensor array) that make use of
2-stages along with low-noise resistors and operational amplifiers to
achieve an overall gain of 10,000 V/I so that μA (and sub-μA) sensor
currents can be amplified to the appropriate voltage range and
measured with very high accuracy using a 12-bit analog-to-digital
converter (ADC).

Row and column selection is performed using 16×1 bidirectional
analog multiplexers with low on-resistance (2.5 Ω) to minimize dis-
tortion of the applied VDS voltages and sensor current readouts. One
analog multiplexer is used to apply VDS along a single row of devices.
The resulting column currents are all continuously amplified using the
16 transimpedance amplifiers. The second analog multiplexer is used
to rapidly switch which transimpedance amplifier output is applied to
the ADC for readout. After all column currents have been read out, VDS
can be applied to the subsequent row and the process is repeated. In
this way, we are able to rapidly scan the entire array of devices. Low
dropout regulators are employed so that the entire measurement
system can be conveniently powered using a single universal serial bus
(USB) power supply. All measurement instructions and results are
transmitted via USB as well.
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For I–V sweep measurements, the drain-source voltage VDS was
held constant and the gate-source voltage VGS was swept from −0.6 to
0.9 V in 10mV increments. A 10 s hold time was used before the gate-
source voltage VGS was swept at a rate of 10mV/500ms. This provides
adequate time for charged species to migrate and reach steady-state
before measurement. All measurements were conducted under
ambient conditions at room temperature. Solutions were prepared by
serial dilution of 1m aqueous K+, Na+, and Ca2+ solution over several
orders of magnitude to provide a variety of concentrations: 100mM,
10mM, 1mM, 100 μM, 10 μM. The transient responsewas investigated
by dipping the graphene sensor array in each dilution for approxi-
mately 20–30 s. The experiment starts with the lowest ion con-
centration to reduce the potential for altering solution concentrations
due to cross-contamination. For the integrated chip, additional mix-
ture solutions were prepared. The full list of solutions tested in this
paper are listed in the Supplementary Information Tables 3, 4.

Functionalization preparation and deposition
Ion-selective membrane solutions were made by mixing of
2-nitrophenyl octyl ether (NPOE), high molecular weight polyvinyl
chloride (PVC), the specific ionophore, and potassium tetrakis(4-
chlorophenyl) borate (KTCB). Calcium ionophore II (ETH 129), sodium
ionophore X, and valinomycin were used for calcium, sodium, and
potassium ISMs, respectively. The mixtures were dissolved in 6mL of
tetrahydrofuran (THF), which is approximately 85% by weight. All
materials were bought from Sigma-Aldrich. The recipes for each ISM
are listed in detail in Supplementary Information Table 5. For indivi-
dual ion sensing arrays, the ISM solution was spin coated over the
entire array at 1500 rpm for 120 s for and allowed to air dry. The
deposition of the multiple functional layers on a single integrated
sensing chip was performed using a jet valve droplet dispensing sys-
tem (Pico Pulse, Nordson EFD). By modulating applied pressure,
stroke, nozzle close and open times, actuation frequency, and nozzle
size, wewere able to fine-tune the sizeof the dispensed liquid droplets,
and hence the dimensions of each functional layer. We adjusted the
applied pressure to 20–30 psi and the stroke to 60–70% (percentage
of voltage drop during the valve actuation) with the closed valve vol-
tage of 100V. The membrane uniformity over an area of 2.5mm ×
0.5mm is characterized and shown in Supplementary Fig. 18. Three
different functional layers were dispensed in ~1000 μm lines respec-
tively; droplets were dispensed 0.2mm apart at the frequency of
500Hz from a 50 µm nozzle (7362574, Nordson EFD).

Biofluids
Two types of artificial biofluids used in the study are Artificial Eccrine
Perspiration (BZ112) and Artificial Urine (BZ186) purchased from Bio
Chemazone INC. The human serum used in the study is sterile-filtered
humanmale ABplasma (H4522) purchased fromSigma-Aldrich Co. LLC.

Synthetic responses
ECDFs were used to generate transient responses and I–V character-
istics. Extending population size allows for more thorough statistical
analysis. It also remedies statistical issues arising when the randomly
generated sample size approaches the population size. Further details
regarding the data synthesis process can be found in the Supple-
mentary Notes 4, 5 and Supplementary Fig. 16. For each sample size,
the corresponding number of transient responses and I–V character-
istics are randomly sampled from the overall population size. This
captures the randomness associatedwith fabricating individual sensor
arrays with N graphene Ca sensors. Ca2+ concentrations are then cal-
culated to capture the randomness in measurement accuracy for a
sensor array with N graphene Ca2+ sensors. This process is repeated at
each sample size 1000 times in order to generate a distribution and
capture the randomness associated with measurement accuracy as a
function of sample size. These distributions allow the mean and 95%

confidence intervals to be calculated for Ca2+ concentrations as a
function of sample size. This quantifies the benefits of having redun-
dancy in sensors.

Data processing and modeling
We categorized the sensors with respect to their functionalization into
three groups and randomly sample adevice fromeachgroup as a set of
training data. Selected features (Supplementary Fig. 21) were extracted
and an additional 5% Gaussian noise was added to feature vectors to
prevent overfitting. Then all input features were normalized before
feeding into the algorithm. The tree-based ensemble learning algo-
rithm, Random Forest, was utilized to conduct the ion and con-
centration classification tasks due to its capacity to identify non-linear
relationships between selected features. We set the number of trees in
the forest to 100, the maximum depth of the tree to 20, and used the
Gini impurity tomeasure the quality of tree splits. For each task, we did
five independent experiments with the random 80/20 train/test split,
and computed the mean, standard deviation, and 95% confidence
interval of the classification accuracy. All input features were normal-
ized before feeding into the algorithm. For the feature contribution
analysis, we adopted Tree SHAP (TreeExplainer)48,49 to compute the
SHAP values for interpreting the output of Random Forest classifiers.
Weused the scikit-learnpackage to implement the data preprocessing,
Random Forest model training, and evaluation, and used the SHAP
package to investigate feature contributions. All experiments were
conducted in Python version 3.6.

Data availability
All data supporting this study and its findings are available within the
article, its Supplementary Information, and associatedfiles. Any source
data deemed relevant is available from Figshare under accession code
10.6084/m9.figshare.20399175 and from the corresponding authors
upon request.

Code availability
All code that supports the findings of this study is available from the
corresponding authors upon request.
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