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Learning and Planning for Temporally Extended Tasks in Unknown
Environments

Christopher Bradley1, Adam Pacheck2, Gregory J. Stein3, Sebastian Castro1,
Hadas Kress-Gazit2, and Nicholas Roy1

Abstract— We propose a novel planning technique for sat-
isfying tasks specified in temporal logic in partially revealed
environments. We define high-level actions derived from the
environment and the given task itself, and estimate how each
action contributes to progress towards completing the task. As
the map is revealed, we estimate the cost and probability of
success of each action from images and an encoding of that
action using a trained neural network. These estimates guide
search for the minimum-expected-cost plan within our model.
Our learned model is structured to generalize across environ-
ments and task specifications without requiring retraining. We
demonstrate an improvement in total cost in both simulated and
real-world experiments compared to a heuristic-driven baseline.

I. INTRODUCTION

Our goal is to enable an autonomous agent to find a
minimum cost plan for multi-stage planning tasks when the
agent’s knowledge of the environment is incomplete, i.e.,
when there are parts of the world the robot has yet to observe.
Imagine, for example, a robot tasked with extinguishing a
small fire in a building. To do so, the agent could either find
an alarm to trigger the building’s sprinkler system, or locate a
fire extinguisher, navigate to the fire, and put it out. Temporal
logic is capable of specifying such complex tasks, and has
been used for planning in fully known environments (e.g.,
[2–6]). However, when the environment is initially unknown
to the agent, efficiently planning to minimize expected cost
to solve these types of tasks can be difficult.

Planning in partially revealed environments poses chal-
lenges in reasoning about unobserved regions of space.
Consider our firefighting robot in a building it has never seen
before, equipped with perfect perception of what is in direct
line of sight from its current position. Even with this perfect
local sensing, the locations of any fires, extinguishers, and
alarms may not be known. Therefore, the agent must envision
all possible configurations of unknown space—including the
position of obstacles—to find a plan that satisfies the task
specification and, ideally, minimizes cost. We can model
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planning under uncertainty in this case as a Locally Observ-
able Markov Decision Process (LOMDP) [7], a special class
of Partially Observable Markov Decision Process (POMDP),
which by definition includes our assumption of perfect range-
limited perception. However, planning with such a model
requires a distribution over possible environment configura-
tions and high computational effort [8–10].

Since finding optimal policies for large POMDPs is in-
tractable in general [10], planning to satisfy temporal logic
specifications in full POMDPs has so far been limited to rel-
atively small environments or time horizons [11, 12]. Thus,
many approaches for solving tasks specified with temporal
logic often make simplifying assumptions about known and
unknown space, or focus on maximizing the probability a
specification is never violated [13–17]. Accordingly, such
strategies can result in sub-optimal plans, as they do not
consider the cost of planning in unknown parts of the map.

A number of methods use learned policies to minimize the
cost of completing tasks specified using temporal logic [18–
22]. However, due to the complexity of these tasks, many are
limited to fully observable small grid worlds [18–21] or short
time-horizons [22]. Moreover, for many of these approaches,
changing the specification or environment requires retraining
the system. Recent work by Stein et al. [23] uses supervised
learning to predict the outcome of acting through unknown
space, but is restricted to goal-directed navigation.

To address the challenges of planning over a distribution
of possible futures, we introduce Partially Observable Tem-
poral Logic Planner (PO-TLP). PO-TLP enables real-time
planning for tasks specified in Syntactically Co-Safe Linear
Temporal Logic (scLTL) [24] in unexplored, arbitrarily large
environments, using an abstraction based on a given task
and partially observed map. Since completing a task may
not be possible in known space, we define a set of dynamic
high-level actions based on transitions between states in our
abstraction and available subgoals in the map—points on
the boundaries between free and unknown space. We then
approximate the full LOMDP model such that actions either
successfully make their desired transitions or fail, splitting
future beliefs into two classes and simplifying planning. We
train a neural network from images to predict the cost and
outcome of each action, which we use to guide a variant
of Monte-Carlo Tree Search (PO-UCT [25]) to find the best
high-level action for a given task and observation.

Our model learns directly from visual input and can gener-
alize across novel environments and tasks without retraining.
Furthermore, since our agent continually replans as more
of the environment is revealed, we ensure both that the
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Fig. 1. Overview. (A) Given a task (e.g., (¬fire U extinguisher)∧♦fire), we compute a DFA using [1] to represent the high-level steps needed
to accomplish the task. The robot operates in a partially explored environment with subgoals between observed (white) and unexplored (gray) space, and
regions labeled with propositions relevant to the task, e.g., extinguisher and fire. (B) We define high-level actions with a subgoal (e.g., s0), a DFA state z′

(e.g., z0) which the robot must be in when arriving at the subgoal, and a state z′′ (e.g., z1) which the agent attempts to transition to in unknown space.
(C) For each possible action, we estimate its probability of success (PS ) and costs of success (RS ) and failure (RF ) using a neural network that accepts
a panoramic image centered on a subgoal, the distance to that subgoal, and an encoding of the transition from z′ to z′′ (Sec. IV-A). (D) We estimate the
expected cost of each action with these estimates of PS , RS , and RF using PO-UCT search. (E) The agent selects an action with the lowest expected
cost, and moves along the path defined by that action, meanwhile receiving new observations, updating its map, and re-planning.

specification is never violated and that we find the optimal
trajectory if the environment is fully known. We apply PO-
TLP to multiple tasks in simulation and the real world,
showing improvement over a heuristic-driven baseline.

II. PRELIMINARIES

Labeled Transition System (LTS): We use an LTS to
represent a discretized version of the robot’s environment.
An LTS T is a tuple (X,x0, δT , w,Σ, l), where: X is a
discrete set of states of the robot and the world, x0 ∈ X
is the initial state, δT ⊆ X × X is the set of possible
transitions between states, the weight w : (xi, xj) → R+

is the cost incurred by making the transition (xi, xj), Σ
is a set of propositions with σ ∈ Σ, and the labeling
function l : X → 2Σ is used to assign which propositions
are true in state x ∈ X . An example LTS is shown in
Fig. 2A where Σ = {fire,extinguisher}, l(x3) =
{extinguisher} and l(x4) = ∅. States x ∈ X refer to
physical locations, and labels like fire or extinguisher
indicate whether there is a fire or extinguisher (or both) at
that location. A finite trajectory τ is a sequence of states
τ = x0x1 . . . xn where (xi, xi+1) ∈ δT which generates a
finite word ω = ω0ω1 . . . ωn where each letter ωi = l(xi).

Syntactically Co-Safe Linear Temporal Logic (scLTL):
To specify tasks, we use scLTL, a fragment of Linear
Temporal Logic (LTL) [24]. Formulas are written over a
set of atomic propositions Σ with Boolean (negation (¬),
conjunction (∧), disjunction (∨)) and temporal (next (©),
until (U), eventually (♦)) operators. The syntax is:

ϕ := σ | ¬σ | ϕ ∧ ϕ | ϕ ∨ ϕ | © ϕ | ϕ U ϕ | ♦ϕ,

where σ ∈ Σ, and ϕ is an scLTL formula. The semantics are
defined over infinite words ωinf = ω0ω1ω2 . . . with letters
ωi ∈ 2Σ. Intuitively, ©ϕ is satisfied by a given ωinf at step
i if ϕ is satisfied at the next step (i+ 1), ϕ1Uϕ2 is satisfied
if ϕ1 is satisfied at every step until ϕ2 is satisfied, and ♦ϕ
is satisfied at step i if ϕ is satisfied at some step j ≥ i. For
the complete semantics of scLTL, refer to Kupferman and
Vardi [24]. For example, (¬fire U extinguisher) ∧
♦fire specifies the robot should avoid fire until reaching
the extinguisher and eventually go to the fire.

Deterministic Finite Automaton (DFA): A DFA, con-
structed from an scLTL specification, is a tuple Dϕ =
(Z, z0,Σ, δD, F ). A DFA is composed of a set of states,
Z, with an initial state z0 ∈ Z. The transition function
δD : Z × 2Σ → Z takes in the current state, z ∈ Z,
and a letter ωi ∈ 2Σ, and returns the next state z ∈ Z in
the DFA. The DFA has a set of accepting states, F ⊆ Z,
such that if the execution of the DFA on a finite word
ω = ω0ω1 . . . ωn ends in a state z ∈ F , the word belongs
to the language of the DFA. While in general LTL formulas
are evaluated over infinite words, the truth value of scLTL
can be determined over finite traces. Fig. 1A shows the DFA
for (¬fire U extinguisher) ∧ ♦fire.

Product Automaton (PA): A PA is a tuple
(P, p0, δP , wP , FP ) which captures this combined behavior
of the DFA and LTS. The states P = X × Z keep track of
both the LTS and DFA states, where p0 = (x0, z0) is the
initial state. A transition between states is possible iff the
transition is valid in both the LTS and DFA, and is defined
by δP = {(pi, pj) | (xi, xj) ∈ δT , δD(zi, l(xj)) = zj}.
When the robot moves to a new state x ∈ X in the LTS, it
transitions to a state in the DFA based on the label l(x). The
weights on transitions in the PA are the weights in the LTS
(wP (pi, pj) = w(xi, xj)). Accepting states in the PA, FP ,
are those states with accepting DFA states (FP = X × F ).

Partially/Locally Observable Markov Decision Process:
We model the world as a Locally Observable Markov Deci-
sion Process (LOMDP) [7]—a Partially Observable Markov
Decision Process (POMDP) [26] where space within line
of sight from our agent is fully observable—formulated as
a belief MDP, and written as the tuple (B,A, P,R). In a
belief MDP, B represents the belief over states in an MDP,
which in our case are the states from the PA defined by
a given task and environment. We can think of each belief
state as distributions over three entities bt = {bT , bx, bz}: the
environment (abstracted as an LTS) bT , the agent’s position
in that environment bx, and the agent’s progress through the
DFA defined by the task bz . With our LOMDP formulation,
we collapse bx and bz to point estimates, and consider
any states in T that have been seen by the robot as fully



observable, allowing us to treat bT as a labeled occupancy
grid that is revealed as the robot explores. A is the set of
available actions from a given state in the PA, which at the
lowest level of abstraction are the feasible transitions given
by δP . P (bt+1|bt, at) and R(bt+1, bt, at) are the transition
probability and instantaneous cost, respectively, of taking an
action at to get from a belief bt to bt+1.

III. PLANNING IN UNKNOWN ENVIRONMENTS WITH
CO-SAFE LTL SPECIFICATIONS

Our objective is to minimize the total expected cost
of satisfying an scLTL specification in partially revealed
environments. Using the POMDP model, we can represent
the expected cost of taking an action using a belief-space
variant of the Bellman equation [26]:

Q(bt, at) =
∑
bt+1

P (bt+1|bt, at)
[
R(bt+1, bt, at)

+ min
at+1∈A(bt+1)

Q(bt+1, at+1)
]
,

(1)

where Q(bt, at) is the belief-action cost of taking action at
given belief bt. This equation can, in theory, be solved to find
the optimal action for any belief. However, given the size of
the environments we are interested in, directly updating the
belief in evaluation of Eq. (1) is intractable for two reasons.
First, due to the curse of dimensionality, the size of the belief
grows exponentially with the number of states. Second, by
the curse of history, the number of iterations needed to solve
Eq. (1) grows exponentially with the planning horizon.

A. Defining the Set of High-Level Actions

To overcome the challenges associated with solving
Eq. (1), we first identify a set of discrete, high-level actions,
then build off an insight from Stein et al. [23]: that we can
simplify computing the outcome of each action by splitting
future beliefs into two classes—futures where a given action
is successful, and futures where it is not. Note that this
abstraction over the belief space does not exist in general,
and is enabled by our assumption of perfect local perception.

To satisfy a task specification, our agent must take actions
to transition to an accepting state in the DFA. For exam-
ple, given the specification (¬fire U extinguisher)∧
♦fire as in Fig. 1 and 2, the robot must first retrieve the
extinguisher and then reach the fire. If the task cannot be
completed entirely in the known space, the robot must act
in areas that it has not yet explored. As such, our action set
is defined by subgoals S—each a point associated with a
contiguous boundary between free and unexplored space—
and the DFA. Specifically, when executing an action, the
robot first plans through the PA in known space to a subgoal,
and then enters the unexplored space beyond that subgoal to
attempt to transition to a new state in the DFA.

For belief state bt, action asz′z′′ defines the act of traveling
from the current state in the LTS x to reach subgoal s ∈
St at a DFA state z′, and then attempting to transition to
DFA state z′′ in unknown space. Our newly defined set of
possible actions from belief state bt is: A(bt) = {asz′z′′ | s ∈
St, z′ ∈ Zreach(bt, s), z

′′ ∈ Znext(z
′)} where Zreach(bt, s) is

Fig. 2. High-level actions. The robot (“R”) is in a partially explored
environment abstracted into an LTS with two subgoals s0 and s1 (A). As
the robot considers high-level actions at different stages of its plan (B), its
color indicates belief of the DFA state (according to Fig. 1A). In this rollout,
the robot considers action as0z0z1 , and outcomes where it succeeds (C),
and fails (D). If successful, the robot has two actions available and considers
as0z1z2 , which in turn could succeed (E) or fail (F).

the set of DFA states that can be reached while traveling in
known space in the current belief bt to subgoal s ∈ St, and
Znext(z

′) = {z′′ ∈ Z | ∃ωi ∈ 2Σ s.t. z′′ = δD(z′, ωi)} is the
set of DFA states that can be visited in one transition from z′.
Fig. 2B illustrates an example of available high-level actions.

When executing action asz′z′′ , the robot reaches subgoal
s in DFA state z′, accumulating a cost D(bt, asz′z′′)
which is computed using Dijkstra’s algorithm in the
known map. Once the robot enters the unknown space
beyond the subgoal, the action has some probability PS

of successfully transitioning from z′ to z′′, denoted as:
PS(bt, asz′z′′) ≡

∑
bt+1

P (bt+1|asz′z′′ , bt)I[Z(bt+1) = z′′],
where Z(bt+1) refers to bz at the next time step
and I[Z(bt+1) = z′′] is an indicator function for
belief states where the agent has reached the DFA
state z′′. Each action has an expected cost of success
RS(bt, asz′z′′) such that RS(bt, asz′z′′) + D(bt, asz′z′′) ≡
1
PS

∑
bt+1

P (bt+1|bt, asz′z′′)R(bt+1, bt, asz′z′′)I[Z(bt+1) =
z′′] and expected cost of failure RF (bt, asz′z′′), which is
equivalently defined for Z(bt+1) 6= z′′ and normalized with

1
1−PS

. By estimating these values via learning (discussed in
Sec. IV), we can express the expected instantaneous cost of
an action as

∑
bt+1

P (bt+1|bt, asz′z′′)R(bt+1, bt, asz′z′′) =
D + PSRS + (1− PS)RF .

B. Estimating Future Cost using High-Level Actions

We now examine planning to satisfy a specification with
minimum cost using these actions, remembering to consider
both the case where an action succeeds—the robot transitions
to the desired state in the DFA—and when it fails. We refer
to a complete simulated trial as a rollout. Since we cannot
tractably update and maintain a distribution over maps during
a rollout, we instead keep track of the rollout history h =
[[a0, o0], . . . , [an, on]] (a sequence of high-level actions ai
considered during planning and their simulated respective
outcomes oi = {success,failure}). Recall that, during
planning, we assume that the agent knows its position x in
known space Tknown. Additionally, conditioned on whether
an action asz′z′′ is simulated to succeed or fail, we assume
no uncertainty over the resulting DFA state, collapsing bz to
z′′ or z′, respectively. Therefore, for a given rollout history,
the agent knows its position in known space and its state
in the DFA. These assumptions, while not suited to solving



Algorithm 1 PO-TLP
Function PO-TLP(θ): // θ: Network parameters

b← {bT0 , bx0
, bz0}, Img← Img0

while True do
if bz ∈ F then // In accepting state

return SUCCESS
a∗sz′z′′ ← HIGHLEVELPLAN(b, Img, θ,A(b))
b, Img← ACTANDOBSERVE(a∗sz′z′′ )

Function HIGHLEVELPLAN(b, Img, θ, A(b)):
for a ∈ A(b) do

a.PS , a.RS , a.RF ← ESTPROPS(b, a, Img | θ)
a∗sz′z′′ ← PO-UCT(b,A(b))

return a∗sz′z′′

Fig. 3. Neural network inputs and outputs. Estimating PS , RF , and
RS for action asz0z1 : attempting to reach an exit while avoiding fire.

POMDPs in general, fit within the LOMDP model.

During a rollout, the set of available future actions is
informed by actions and outcomes already considered in
h. For example, if we simulate an action in a rollout,
and it fails, we should not consider that action a second
time. Conversely, we know a successful action would suc-
ceed if simulated again in that rollout. In Fig. 2F, the
robot imagines its first action as0z0z1 succeeds, while its
next action as0z1z2 fails, making the rollout history h =
[[as0z0z1 ,success], [as0z1z2 ,failure]]. When consider-
ing the next step of this rollout, the robot knows it can always
find an extinguisher beyond s0, and there is no fire beyond
s0. To track this information during planning, we define a
rollout history-augmented belief bh = {Tknown, x, z, h},
which augments the belief with the actions and outcomes
of the rollout up to that point. To reiterate, we maintain the
history-augmented belief bh only during planning, to avoid
the complexity of maintaining a distribution over possible
future maps from possible future observations during rollout.

Using bh, we also define a rollout history-augmented
action set A(bh), in which actions known to be impossible
based on h are pruned, and with it, a rollout history-
augmented success probability PS(bh, asz′z′′) which is iden-
tically one for actions known to succeed. Furthermore,
because high-level actions involve entering unknown space,
instead of explicitly considering the distribution over possible
robot states, we define a rollout history-augmented distance
function D(bh, asz′z′′), which takes into account physical
location as a result of taking the last action in bh. If an action
leads to a new subgoal (st+1 6= st), the agent accumulates
the success cost RS of the previous action if that action was
simulated to succeed and the failure cost RF if it was not.

By planning with bh, the future expected reward can be
written so that it no longer directly depends on the full future

belief state bt+1, allowing us to approximate it as follows:∑
bt+1

P (bt+1|bt, asz′z′′) min
a′∈A(bt+1)

Q(bt+1, a
′) ≈

PS(bh, asz′z′′) min
aS∈A(bhS

)
Q(bhS

, aS)+

[1− PS(bh, asz′z′′)] min
aF∈A(bhF

)
Q(bhF

, aF ),

(2)

where hS = h.append([asz′z′′ ,success]) is the rollout
history conditioned on a successful outcome (and hF is
defined similarly for failed outcomes).

Our high-level actions and rollout history allow us to
approximate Eq. (1) with Eq. (3), a finite horizon problem.
Given estimates of PS , RS , and RF —which are learned as
discussed in Sec. IV—we avoid explicitly summing over
the distribution of all possible PAs, thereby reducing the
computational complexity of solving for the best action.

C. Planning with High-Level Actions using PO-UCT
Eq. (3) demonstrates how expected cost can be computed

exactly using our high-level actions, given estimated values
of PS , RS , and RF . However, considering every possible
ordering of actions as in Eq. (3) still involves significant
computational effort—exponential in both the number of
subgoals and the size of the DFA. Instead, we adapt Partially
Observable UCT (PO-UCT)[25], a generalization of Monte-
Carlo Tree-Search (MCTS) which tracks histories of actions
and outcomes, to select the best action for a given belief
using sampling. The nodes of our search tree correspond
to belief states bh, and actions available at each node are
defined according to the rollout history as discussed in
Sec. III-B. At each iteration, from this set we sample an
action and its outcome according to the Bernoulli distribution
parameterized by PS , and accrue cost by RS or RF .

This approach prioritizes the most promising branches
of the search space, avoiding the cost of enumerating all
states. By virtue of being an anytime algorithm, PO-UCT
also enables budgeting computation time, allowing for faster

Q(bh, asz′z′′) = D(bh, asz′z′′) + PS(bh, asz′z′′)×
[
RS(bh, asz′z′′) + min

aS∈A(bhS
)
Q(bhS

, aS)

]
Underline denotes terms
we estimate via learning +

[
1− PS(bh, asz′z′′)

]
×
[
RF (bh, asz′z′′) + min

aF∈A(bhF
)
Q(bhF

, aF )

] (3)



Fig. 4. A comparison between our planner and the baseline for 500 simulated trials in the Firefighting environment with the specification
(¬fire U alarm)∨ ((¬fire U extinguisher)∧♦fire). The robot (“R”) learns to associate green tiling with the alarm, and hallways emanating
white smoke with fire (A), leading to a 15% improvement for total net cost for this task (B). Our agent learns it is often advantageous to search for the
alarm (C), so in cases where the alarm is reachable, we generally outperform the baseline (highlighted by the cluster of points in the lower half of B). Our
method is occasionally outperformed when the alarm can’t be reached (D), though we perform better in the aggregate and always satisfy the specification.

online execution as needed on a real robot. Once our agent
has searched for the action with lowest expected cost, a∗sz′z′′ ,
it generates a motion plan through space to the subgoal
associated with the chosen action. While moving along this
path, the agent receives new observations of the world,
updates its map, and replans (see Fig. 1 and Algorithm 1).

IV. LEARNING TRANSITION PROBABILITIES AND COSTS

To plan with our high-level actions, we rely on values
for PS , RS , and RF for arbitrary actions asz′z′′ . Computing
these values explicitly from the belief (as defined in Sec. III-
A) is intractable, so we train a neural network to estimate
them from visual input and an encoding of the action.

A. Encoding a Transition

A successful action asz′z′′ results in the desired transition
in the DFA from z′ to z′′ occurring in unknown space. How-
ever, encoding actions directly using DFA states prevents
our network from generalizing to other specifications with-
out retraining. Instead, we use an encoding that represents
formulas over the set of propositions Σ in negative normal
form [27] over the truth values of Σ, which generalizes to
any specification written with Σ in similar environments.

To progress from z′ to z′′ in unknown space, the robot
must travel such that it remains in z′ until it realizes
changes in proposition values that allow it to transition
to z′′. We therefore define two n-element feature vectors
[φ(z′, z′), φ(z′, z′′)] where φ ∈ {−1, 0, 1}n, which serve as
input to our neural network. For the agent to stay in z′, if the
ith element in φ(z′, z′) is 1, the corresponding proposition
must be true at all times; if it is −1, the proposition must
be false; and if it is 0, the proposition has no effect on
the desired transition. The values in φ(z′, z′′) are defined
similarly for the agent to transition from z′ to z′′. Fig. 3
illustrates this feature vector for a task specification example.

B. Network Architecture and Training

Our network takes as input a 128×512 RGB panoramic
image centered on a subgoal, the scalar distance to that
subgoal, and the two n-element feature vectors φ describing
the transition of interest, as defined in Sec. IV-A. The input
image is first passed through 4 convolutional layers, after
which we concatenate the feature vectors and the distance
to the subgoal to each element (augmenting the number of
channels accordingly), and continue encoding for 8 more
convolutional layers. Finally, the encoded features are passed

through 5 fully connected layers, and the network outputs the
properties required for Eq. (3)—PS , RS , and RF . We train
our network with the same loss function as in [23].

To collect training data, we navigate through environments
using an autonomous, heuristic-driven agent in simulation,
and teleoperation in the real world. We assume the agent
has knowledge of propositions in its environments, so it can
generate the feature vectors that encode actions for subgoals
it encounters. As the robot travels, we periodically collect
images and the true values of PS (either 0 or 1), RS , and
RF for each potential action from the underlying map.

V. EXPERIMENTS

We perform experiments in simulated and real-world en-
vironments, comparing our approach with a baseline derived
from Ayala et al. [13]. The baseline solves similar planning-
under-uncertainty problems using boundaries between free
and unknown space to define actions, albeit with a non-
learned selection procedure and no visual input. Specifically,
we compare the total distances traveled using each method.

A. Firefighting Scenario Results

Our first environment is based on the firefighting robot
example, simulated with the Unity game engine [28] and
shown in Fig. 4. The robot is randomly positioned in one of
two rooms, and the extinguisher and exit in the other. One of
three hallways connecting the rooms is randomly chosen to
be a dead end with an alarm at the end of it, and is visually
highlighted by a green tiled floor. A hallway (possibly the
same one) is chosen at random to contain a fire, which blocks
passage and emanates white smoke. Our network learns to

Fig. 5. A) Visual scenes from our Delivery scenario in simulation. The
rooms which can contain professors, graduate students, and undergraduates
are colored differently and illuminated when occupied. B) A comparison
between our approach (left) and the baseline (right) for one of several
simulated trials for the task ♦professor ∧ ♦grad ∧ ♦undergrad.



Fig. 6. A comparison between our approach (A-D) and the baseline (E) for our real-world Delivery scenario. Our agent (blue dot) correctly predicts
actions likely to fail (e.g., dark rooms in A) and succeed (e.g., completing a delivery in an illuminated room in B). Once the robot identifies delivery
actions that lead to DFA transitions in known space, it executes them (C-D). Conversely, the baseline fully explores space before completing the task (E).

associate the visual signals of green tiles and smoke to the
hallways containing the alarm and the fire, respectively.

We run four different task specifications—using the same
network without retraining to demonstrate its reusability:

1) (¬fire U alarm)∨((¬fire U extinguisher)∧
♦fire): avoid the fire until the alarm is found, or avoid
the fire until the extinguisher is found, then find the fire.

2) ¬fire U (alarm ∧ ♦exit): avoid the fire until the
alarm is found, then exit the building.

3) (¬fire U extinguisher) ∧ ♦(fire ∧ ♦exit):
avoid the fire until the extinguisher is found, then put
out the fire and exit the building.

4) ¬fire U exit: avoid the fire and exit the building.

Over ∼3000 trials across different simulated environments
and these four specifications, we demonstrate improvement
for our planner over the baseline (see Table I). Fig. 4 gives
a more in depth analysis of the results for specification 1.

TABLE I
Average Cost Percent Savings

Spec Known Map Baseline Ours Net Cost Per Trial (S.E.)
1 187.0 264.6 226.9 15% 14.4% (1.3)
2 392.1 696.0 461.2 34% 28.4% (1.0)
3 364.3 539.3 471.3 13% 6.1% (1.3)
4 171.2 269.1 203.3 25% 14.6% (1.0)

B. Delivery Scenario Results in Simulation

We scale our approach to larger simulated environments
using a corpus of academic buildings containing labs,
classrooms, and offices, all connected by hallways. Our
agent must deliver packages to three randomly placed in-
dividuals in these environments: one each of a professor,
graduate student, and undergraduate, using the specification
♦professor ∧ ♦grad ∧ ♦undergrad. Professors are
located randomly in offices, graduate students in labs, and
undergraduates in classrooms, which have differently colored
walls in simulation. Rooms that are occupied have the lights
on whereas other rooms are not illuminated.

Our agent is able to learn from these visual cues to
navigate more efficiently. Over 80 simulations across 10
environments, the mean per-trial cost improvement of our
agent compared with the baseline is 13.5% (with 6.1%
standard error). Our net cost savings, summed over all trials,
is 7.8%. Fig. 5 illustrates our results.

C. Delivery Scenario Results in the Real World

We extend our Delivery scenario to the real world using
a Toyota Human Support Robot (HSR) [29] with a head-
mounted panoramic camera [30] in environments with mul-
tiple rooms connected by a hallway. The robot must deliver
a package and a document to two people, either unordered
(♦DeliverDocument ∧ ♦DeliverPackage) or in or-
der (♦(DeliverDocument∧♦DeliverPackage)). As
in simulation, rooms are illuminated only if occupied.

We ran 5 trials for each planner spanning both specifica-
tions and 3 different target positions in a test environment
different from the one used to collect training data. We show
improved performance over the baseline in all cases with a
mean per-trial cost improvement of 36.6% (6.2% standard
error), and net cost savings, summed over all trials, of 36.5%.
As shown in Fig. 6, the baseline enters the nearest room
regardless of external signal, while our approach prioritizes
illuminated rooms, which are more likely to contain people.

VI. RELATED WORKS

Temporal logic synthesis has been used to generate prov-
ably correct controllers, although predominantly in fully
known environments [2–6]. Recent work has looked at satis-
fying LTL specifications under uncertainty beyond LOMDPs
[11, 12], yet these works are restricted to small state spaces
due to the general nature of the POMDPs they handle. Other
work has explored more restricted sources of uncertainty,
such as scenarios where tasks specified in LTL need to
be completed in partially explored environments [13–17]
or by robots with uncertainty in sensing, actuation, or the
location of other agents [31–34]. When these robots plan in
partially explored environments, they take the best possible
action given the known map, but either ignore or make
naive assumptions about unknown space; conversely, we use
learning to incorporate information about unexplored space.

To minimize the cost of satisfying LTL specifications,
other recent works have used learning-based approaches [18,
20, 21, 36], yet these methods are limited to relatively small,
fully observable environments. Sadigh et al. [19] and Fu
and Topcu [20] apply learning to unknown environments and
learn the transition matrices for MDPs built from LTL speci-
fications. However, these learned models do not generalize to
new specifications and are demonstrated on relatively small
grid worlds. Paxton et al. [22] introduce uncertainty during
planning, but limit their planning horizon to 10 seconds,



which is insufficient for the specifications explored here. Carr
et al. [37] synthesize a controller for verifiable planning in
POMDPs using a recurrent neural network, yet are limited
to planning in small grid worlds.

VII. CONCLUSION AND FUTURE WORK

In this work, we present a novel approach to planning
to solve scLTL tasks in partially revealed environments. Our
approach learns from raw sensor information and generalizes
to new environments and task specifications without the need
to retrain. We hope to extend our methods to real-world
planning domains that involve manipulation and navigation.
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