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Abstract—Shared mental models are critical to team success;
however, in practice, team members may have misaligned models
due to a variety of factors. In safety-critical domains (e.g.,
aviation, healthcare), lack of shared mental models can lead to
preventable errors and harm. Towards the goal of mitigating
such preventable errors, here, we present a Bayesian approach
to infer misalignment in team members’ mental models during
complex healthcare task execution. As an exemplary application,
we demonstrate our approach using two simulated team-based
scenarios, derived from actual teamwork in cardiac surgery.
In these simulated experiments, our approach inferred model
misalignment with over 75% recall, thereby providing a building
block for enabling computer-assisted interventions to augment
human cognition in the operating room and improve teamwork.

Index Terms—teamwork, surgical data science, cardiac
surgery, Bayesian inference, patient safety, artificial intelligence

I. INTRODUCTION

Alignment of mental models among the members of a team
is critical to achieving effective teamwork. In absence of
shared understanding [1] about the goals, plans and context
of the team, teamwork often results in preventable errors
[2], [3]. For instance, lack of shared mental models between
members of a flight crew can result in aviation accidents [3].
Similarly, misalignment between members of a surgical team
can lead to preventable harm and adverse events [4]. Teams
can adopt best practices (such as team training and debriefing)
to improve their mental model sharing [5]–[7]. Nevertheless,
the possibility of preventable error persists due to the impact
of execution-time factors, such as high workload, surgical flow
disruptions or fatigue [8].

Informed by the challenges of teamwork in the cardiac
operating room (Fig. 1), our goal is to mitigate preventable
errors of human teams performing goal-oriented and time-
critical tasks. Team assessments, through questionnaires and
metrics of evaluating team fluency, provide one avenue for
teams to improve shared understanding and teamwork [9]–

Fig. 1. Teamwork in the cardiac operating room: Surgery being performed
by a team of surgeons, anesthesiologists, perfusionists, and nurses.

[11]. However, due to their inherent post-hoc nature, it is
difficult to utilize these assessments during time-critical tasks
and alleviate preventable errors arising due to execution-time
factors. Moreover, while collaborating, it is not easy for team
members to self-assess their teamwork, due to distributed
cognition and the partially observable nature of collaboration.

We posit that augmenting post-hoc assessments with on-the-
fly interventions can help mitigate preventable errors caused
due to execution-time factors. We envision a digital team
member (AI Coach) that can assess and improve teamwork
by monitoring the team members during their collaborative
task execution and providing timely interventions. Due to
the advances in surgical data science, sensing hardware and
software [12]–[15], the opportunity is ripe to develop such an
execution-time tool. However, several challenging problems
need to be resolved to realize its vision. For instance, based
on the sensed information, the AI Coach would need to infer
whether the mental models (a latent quantity) are aligned. Sim-
ilarly, it would need to identify when to provide interventions
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to improve teamwork. In this work, we describe our research
towards realizing one such capability: namely, execution-time
inference of the alignment of team member’s mental models.

We focus on teams with fixed membership and perform-
ing sequential collaborative tasks in stochastic environments.
Specifically, we consider collaborative tasks that can be repre-
sented as a partially observable variant of Markov decision
processes (MDPs), where the latent variables represent the
team’s preference (or, equivalently, mental model) regarding
collaborative task execution [16]. In the ideal case each team
member should maintain the same preference; however, in
practice, team members may have different estimates of the
“shared” preference (i.e., misalignment of mental models) due
to ineffective team communications, lack of expertise, or a
variety of execution-time factors.

To infer and predict misalignment of mental models, we
provide a Bayesian approach that leverages prior knowledge
about the collaborative task and data of the team members’
task execution (namely, actions and observable states of the
task). As an exemplary application, we demonstrate our ap-
proach using two simulated collaboration scenarios, inspired
by teamwork during cardiac surgery procedures (e.g., CABG,
SAVR, etc): namely (a) protamine administration to reverse
heparin and (b) surgical tool handovers. In the experiments
conducted on simulated tasks, our approach could infer model
misalignment with over 75% recall. Encouraged by these
results, in our ongoing work, we are extending our approach to
enable its use in a simulated operating room (OR). The paper
concludes with a brief discussion of this ongoing and future
work, with emphasis on the computational challenges.

II. REPRESENTING COLLABORATIVE TASKS

A mathematical representation of teamwork is necessary to
enable automated reasoning of team behavior. Motivated by
the variety of teaming contexts, research on human teaming,
multi-agent systems and human-robot collaboration has led to
several formalism to represent teamwork [17]–[19]. Here, we
utilize a multi-agent and partially observable variant of MDPs,
to represent goal-oriented collaborative tasks of interest.

MDPs provide a framework to represent sequential decision-
making tasks [16]. They are specified by a set of states s∈S ,
which represent the task context; a set of actions a∈A, which
represent the actions that can be taken while performing the
task; a transition model T :S ×A×S→ [0, 1], which specifies
the distribution over the next task state given current state
and action; and a reward function R :S →<, which specifies
the reward of reaching a state and can encode task goals. As
MDPs can encode stochastic outcomes and goals, they provide
a useful framework to represent real-world sequential tasks.

MDPs, however, represent tasks with one decision-maker.
To represent teams, we consider its multi-agent variants, where
the action represents joint action of a team. Specifically, for
a team with n members, the joint action is represented as
a = [a1, a2, · · · , an], thereby enabling modeling of multiple
decision-makers. The task progress (through the transition
model), now, depends on the joint action (i.e., action of each

team member). The behavior of a team, for a fully observable
multi-agent MDP, can be specified using n policies, where
πi(ai|s) denotes the policy of the i-th team member.

In real-world tasks, the state may not be fully observable.
Especially for humans, their preferences or (partial) under-
standing of the task may influence their behavior. Similarly,
for human teams, situation awareness may influence each team
member’s policy. Thus, we augment the task state, with a
latent feature x∈X , which denotes the team member’s latent
preferences regarding the task. In general, the latent feature
may evolve during the task; however, here, we limit our
scope to time-invariant latent states. Thus, the collaborative
task can be described using the tuple (S,X ,A, T,R). Next,
we instantiate this task model for two scenarios inspired by
teamwork in the OR.

A. Protamine Administration

Cardiac surgery is performed by a team of surgeons, anes-
thesiologists, perfusionists, and nurses (as shown in Figs. 1-
2); in academic medical centers, a subset of the team can
be trainees (e.g. residents, fellows, students) with limited task
experience. After successful weaning of the patient from the
cardioplumonary bypass machine, alongside removal of the
venous and arterial cannulas, protamine needs to be adminis-
tered to reverse the anticoagulant effect of heparin and restore
normal blood coagulation. The resident anesthesiologist (RA)
administers protamine after receiving a verbal request from
the attending surgeon (AS), after which the surgeon begins
removing the cannulas. One caveat is that a patient may be
allergic to protamine leading to a life-threatening “protamine
reaction” syndrome; hence, protamine needs to be adminis-
tered intravenously incrementally over 5-10 minutes and not
as a single intravenous bolus.

Administration of protamine as a bolus (i.e., all at once)
can lead to a protamine reaction with refractory vasoplegia
unless action is not taken quickly and efficiently by the team;
however, due to limited prior experience, an RA can have
an incorrect mental model of the team’s strategy (incremental
vs. bolus administration). In a prior documented case in the
literature, protamine administration was conducted by the RA
improperly as a bolus, despite the oversight of the attending
anesthesiologist [8]. Meanwhile, physical barriers including
the sterile drape separating the RA from the AS preclude
explicit awareness of such an error by the team unless verbally
communicated. Thus, misalignment of mental models may
occur if the team is not proceeding through the surgical steps
as expected. If an AI Coach can infer this lack of shared
mental models (between the AS and RA), it can help prevent
associated adverse outcomes.

Thus, as our first task, we represent the collaboration
between the AS and RA during protamine administration
using the task model. The goal of the team (encoded as
R) is to safely administer protamine and successfully re-
move cannulas while avoiding any adverse outcomes. The
observable component of the task state s ∈ S is defined by
the following features: protamine administration phase (s1, a



Boolean variable denoting whether the surgical workflow is
in the protamine administration phase), status of protamine
dosage (s2, indicating the percentage amount of protamine
administered), number of cannulas removed (s3), and patient
state (s4, indicating the patient state, as measured by the vitals
and categorized as nominal, allergic, and adverse).

In addition to the observable features, which can be mea-
sured using sensors and instrumentation in the operating
room [13], [14], the team behavior depends on the proper
understanding of the task. In particular, the team may have
one of two mental states regarding protamine administration:
bolus or incremental (especially because heparin is always
given as a bolus). These mental states correspond to the latent
state x ∈ X in the task model, as they cannot be measured
by a physiological sensor. The surgeon is modeled to have
the following actions a1 ∈ A1: request protamine, remove
cannula, and No-op. Similarly, the anesthesiologist can take
the following actions a2∈A2: administer incremental dosage,
administer bolus, communicate, and No-op.

The transition model T represents the effect of team mem-
bers’ actions on the task state. The task begins prior to the
protamine administration phase (s1=0), and transitions to the
protamine administration phase (s1 = 1) after the surgeon’s
‘request’ action. The ‘remove cannula’ action updates the
status of cannula removal (s3) deterministically. Similarly,
the protamine administration actions update the status of
protamine administration (s2); specifically, ‘bolus’ changes
s2 = 100%, where ‘incremental dosage’ increments s2 first
by a test dosage and, subsequently, by 25%. The incremental
dosage leads to an allergic reaction with 0.01 probability. Sim-
ilarly, bolus administration of protamine leads to an adverse
reaction with 0.8 probability. The No-op and ‘communicate’
actions do not change the task state; however, we posit that
a more engaged resident (with the correct task understanding)
is likely to communicate more often. The scenario terminates
after the goal is achieved or when the patient exhibits adverse
or allergic reaction, after which the surgical team adopts
specific protocols to restore the patient’s stability.

B. Surgical Tool Delivery

As the second task, we model the handovers (between scrub
and circulating nurses) encountered in surgery. To model this
task, we consider a grid-world representation of the operating
area (Fig. 2) and focus on the sub-team of surgeon, scrub nurse
(SN), and circulating nurse (CN). During the preoperational
stage, required surgical tools are prepared and placed in the
sterile area next to the operating table. However, every so
often, an additional tool (or item, such as sutures) may be
required to be delivered from outside the sterile area. In such
situations, SN may ask the CN to deliver the requisite tool.
Incorrect tool delivery, due to lack of shared mental models
arising from ineffective communication of the surgeon’s pref-
erences, can delay the surgery and lead to preventable harm
in time-critical situations. In such situations, an AI Coach
can help detect model misalignment and mitigate delivery of
incorrect tools.

Fig. 2. The tool delivery environment. Circulating nurse (CN) cannot enter
the sterilized area (circled with green line), while the scrub nurse (SN) cannot
retrieve unsterilized items. Hence, during the course of the surgery, SN may
solicit CN’s help to acquire items from the cabinet or storage area.

In our simulated environment, the CN can move in a 5-
by-5 grid world (Fig. 2), while the surgeon and SN are
limited to the sterile area. The task begins with the SN
having sterile sutures and scalpels. Additional sutures are
located in the cabinet in the operating room, while scalpels
in the storage area (in an adjacent room). During the task,
SN may require additional sutures or replacement scalpel (i.e,
X = {Sutures, Scalpel}), and communicate this requirement
to CN. If the CN misunderstands the SN’s request, the team
members will have misaligned mental models X .

The requirement of additional items depends on observable
features of the surgery. For instance, if the scalpel falls off
of the sterile field and become contaminated, the SN is more
likely to request replacement scalpel. Similarly, if the next
step in surgery involves suturing, the SN is more likely to
request sutures. Thus, in addition to the latent feature x, we
model the task using the following observable features s∈S:
tool positions, patient status, request status, and position of
the circulating nurse. The goal of the collaboration scenario
(encoded as R) is for the team to have access to the correct
tool. Transition model encodes the effect of team member’s
action on the task state. For instance, tool position changes if
they are picked and delivered by the CN.

III. ONLINE INFERENCE OF MODEL ALIGNMENT

As demonstrated above, the task model can be used to
represent a variety of collaborative tasks. In these tasks, both
observable and latent features influence the team. While ob-
servable features s are shared among the team, the value of la-
tent feature x can differ across teammates. For instance, during
tool delivery, the circulating nurse might retrieve the incorrect
tool, due to an incorrect assumption about the requested tool
(i.e., the latent feature of the task). Such misalignment can lead
to lack of shared situation awareness, poor collaboration, and
preventable harm. Hence, towards the goal of developing an
AI Coach that can mitigate preventable harm, in this section,
we provide an algorithm to infer model alignment (or lack
thereof) through observation of team’s task execution.



A. Problem Statement

To arrive at the algorithm, we first provide a mathemat-
ical description of the problem statement. For a given task
specification, we assume that each team member as well as
the AI Coach can observe (through sensors) the task’s ob-
servable features and, thus, maintains a shared understanding
of the state component s. However, each team member can
potentially maintain a different understanding regarding the
latent feature x, where the estimate of i-th team member is
denoted as x̂i. Further, the policy of the i-th team member
depends on both latent and observable features, and is denoted
as πi(ai|s, x̂i). In a team with shared understanding, all team
members will maintain the same estimate of the latent feature
(i.e., x̂1= x̂2= · · ·= x̂n). However, if the estimates differ, the
team members will have misaligned mental models.

The AI Coach seeks to infer this model misalignment
given the task model (S,X ,A, T,R), team members’ policies
(π1, π2, · · · , πn), and data of team’s task execution (i.e., s, a-
sequences). The task execution sequences are represented as
τ = (s0, a0, s1, a1, ...sk, ak), where the subscript denote the
sequence indices, s0 denotes the initial task state, and k
denotes the sequence length. Note that only observable state
features can be sensed, thus the task execution data excludes
latent feature of the task state (x).

B. Inference Algorithm

We adopt a Bayesian approach to infer model misalignment.
To estimate the quantity of interest (x), in addition to data,
Bayesian algorithms require specification of prior probability
p(x) and likelihood model p(data|x). Here, we utilize the task
and policy specifications to arrive at the likelihood model,
while noting that, in general, its specification is non-trivial.
In our ongoing work, we are actively developing approaches
to learn these models from training data, for the case where
team members’ policies are difficult to specify.

In our case, the Bayesian algorithm seeks to infer the latent
state x̂i for each member of the team. Let us denote this joint
estimate as x̂= (x̂1, x̂2, ...x̂n). Given the data, the posterior
probability is computed as follows,

p(x̂|τ)∝ p(τ |x̂)p(x̂)= p(s0,a0, s1, · · · , st|x̂)p(x̂)

= p(x̂)p(s0)

k−1∏
j=0

T (sj+1|aj , sj)P (aj |sj , x̂)

∝
n∏

i=1

p(x̂i) k−1∏
j=0

πi(a
j
i |s

j , x̂i)

 , (1)

where, we assume that the prior probabilities and policies
corresponding to each team member are independent, i.e.,

p(x̂)= p(x̂1)p(x̂2) · · · p(x̂n) (2)
P (a|s, x̂)=π1(a1|s, x̂1)π2(a2|s, x̂2) · · ·πn(an|s, x̂n). (3)

Given 1, the latent state is inferred as the maximum poste-
riori estimate. In the inferred latent state of each agent are not
identical, then the algorithm reports a model misalignment.

IV. EXPERIMENTS

To evaluate the inference approach, we utilize the collab-
oration scenarios described in Sec. II. For each scenario, we
implement the Markovian task model (detailed in Sec. II-A-
II-B), specify ground truth policies of the team members,
and generate synthetic data of task execution using the task
and policy specifications. Execution sequences are created by
first assigning latent states x̂i to the team member and, then
iteratively, (a) sampling team members’ action a using their
policy, latent state x̂i, and task state s, and (b) sampling
the next state s′ in the sequence using the transition model
T (s′|s, a), until the task termination criteria is reached.

A. Protamine Administration

We generate 300 task sequences for the simulated protamine
administration task, where model misalignment could occur
due to incorrect task understanding. In our simulations, the AS
always expects incremental protamine administration, while
the RA may (incorrectly) administer it as a bolus with prob-
ability 0.5. We describe the team member’s policies next.

The scenario begins prior to protamine administration phase,
during which the RA may communicate (e.g., ask for supervi-
sion, provide updates) with AS. We model that an RA which
communicates more often is less likely to have an incorrect
understanding of the task (i.e., misaligned mental model).
During the task, the AS initiates the protamine administration
phase through a verbal communication, after which protamine
is administered bolus or incrementally by the RA based on
their task understanding x̂. Cannula removal is interleaved
with the protamine administration. The AI Coach can sense
the observable state s, team’s actions a, and seeks to infer
x̂. Among the 300 task sequences generated, in 155 the
team exhibits model misalignment. We evaluate the inference
performance with both full and partial task sequences.

Post-hoc performance As the AI coach can monitor the
amount of protamine administered, with full task sequences,
it can always infer model misalignment accurately. While post-
hoc inference of misalignment does not prevent the anesthe-
siologist from performing the erroneous action (bolus), it can
help identify near-miss events (i.e., where the incorrect action
did not lead to an adverse outcome; 31 out of 300 in our
synthetic data) and help the team achieve a shared mental
model for subsequent surgeries.

Execution-time performance Since the algorithm does not
impose any condition on the length of sequence, it can also
provide an estimate during the task (i.e., given partial task
execution). For the current task, we evaluate this capability for
when the surgeon requests protamine (i.e., before a potential
error). Even with a partial task sequence, the algorithm results
in overall estimation accuracy of 66.3%. In life-critical tasks,
where the goal of AI Coach is to mitigate adverse outcomes,
false alarms are less critical. Among the 155 sequences with
misaligned mental models, the algorithm could predict model
misalignment in 119 cases, i.e., exhibiting 76.8% recall.



B. Surgical Tool Delivery

For the tool delivery task, we generate 300 synthetic task
sequences and 271 samples among them include the situation
where a tool was requested. The task sequences include the
positions of the tools and CN, patient status (i.e., whether
an incision has been made or not), item request status (i.e.,
whether SN has requested an item from CN), and actions
of the team members. While the AI Coach can sense when
an item request is made, to reflecting sensing capabilities in
the OR, it cannot detect which item was requested in our
simulations. Thus, the inference algorithm needs to infer the
latent states (i.e., tool being requested, x̂) for both SN and CN,
to estimate model alignment. Similar to the protamine case, we
evaluate both the post-hoc and execution-time performance.
On average, the full sequences are ≈ 30 steps; while the
partial sequences include 7 steps (2 steps before the request
and 5 steps after the request). The inference algorithm results
in 75.9% and 98.5% recall with partial and full sequences,
respectively.

V. DISCUSSIONS

In this paper, we propose the problem of inferring men-
tal model alignment in collaborative tasks and provide an
execution-time approach to infer model alignment using ob-
servable features of team behavior. Through computer simu-
lations of surgery-inspired collaborative scenarios, we provide
proof-of-concept results that demonstrate that the inference
of model alignment is computationally feasible and can help
mitigate preventable harm. For instance, in the protamine
administration scenario, the proposed approach could predict
model misalignment (and associated errors) 76.8% given task
model, policy specifications, and partial task sequences.

Further, even in the challenging tool delivery task where
multiple strategies may be valid (e.g., request of either tool
is valid in the tool delivery domain), the inference algorithm
could infer model misalignment with 75.9% recall with partial
task sequences (i.e., before the tool is delivered). In addition
to mitigating preventable harm, thus, this execution-time infer-
ence of can also help improve team’s task performance. For
instance, an AI Coach that provides interventions based on
inferred model misalignment, can help in the early detection
of incorrect tool delivery; note that, without an AI Coach, the
team would realize their error only after it is made.

Encouraged by these results, we are working towards the
vision of realizing an AI Coach for human teams by relax-
ing the requirement of model specification and addressing
associated sensing challenges. For instance, the proposed
approach assumes accurate specification of team members’
policies and complete observablity of their actions, both of
which might be difficult to meet in practice. Hence, we are
exploring learning-based approaches to arrive at team policies
in presence of latent states [20], [21]. To address the challenges
associated with state and action observability, the development
of an AI Coach would be greatly enhanced by nuanced
surgical tool detection and people tracking methodology. The
possibilities of incorporating these approaches into the OR

are steadily increasing as surgical data science takes hold in
surgical environments [14]. Additionally, robust and sensitive
psychophysiological sensors equipped to team members may
provide insight into impending mental model misalignments
and function to provide automated feedback on team members’
cognitive states.
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