
MIT Open Access Articles

A Trajectory-Driven Algorithm for Differentiating 
SRB Measures on Unstable Manifolds

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Śliwiak, Adam A and Wang, Qiqi. 2022. "A Trajectory-Driven Algorithm for 
Differentiating SRB Measures on Unstable Manifolds." SIAM Journal on Scientific Computing, 44 
(1).

As Published: 10.1137/21M1431916

Publisher: Society for Industrial & Applied Mathematics (SIAM)

Persistent URL: https://hdl.handle.net/1721.1/145539

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/145539


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. © 2022 Society for Industrial and Applied Mathematics
Vol. 44, No. 1, pp. A312--A336

A TRAJECTORY-DRIVEN ALGORITHM FOR DIFFERENTIATING
SRB MEASURES ON UNSTABLE MANIFOLDS\ast 

ADAM A. \'SLIWIAK\dagger AND QIQI WANG\dagger 

Abstract. Sinai--Ruelle--Bowen (SRB) measures are limiting stationary distributions describing
the statistical behavior of chaotic dynamical systems. Directional derivatives of SRB measure den-
sities conditioned on unstable manifolds are critical in the sensitivity analysis of hyperbolic chaos.
These derivatives, known as the SRB density gradients, are by-products of the regularization of
Lebesgue integrals appearing in the original linear response expression. In this paper, we propose a
novel trajectory-driven algorithm for computing the SRB density gradient defined for systems with
high-dimensional unstable manifolds. We apply the concept of measure preservation together with
the chain rule on smooth manifolds. Due to the recursive one-step nature of our derivations, the
proposed procedure is memory-efficient and can be naturally integrated with existing Monte Carlo
schemes widely used in computational chaotic dynamics. We numerically show the exponential con-
vergence of our scheme, analyze the computational cost, and present its use in the context of Monte
Carlo integration.
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systems, sensitivity analysis, Monte Carlo integration
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1. Introduction. Due to their seemingly irregular and quasi-random behavior,
a mathematical description of chaotic dynamical systems might be challenging. A
major breakthrough in the analysis of chaos was the introduction of the Sinai--Ruelle--
Bowen) SRB measure \mu [28]. This scalar quantity, defined on a compact Riemannian
manifold, contains a coherent statistical description of the dynamics. Intuitively, the
long-time average of a smooth observable, computed along a trajectory initiated at
any point from a nonzero Lebesgue measure set, converges to the \mu -weighted mean of
the same observable. Although the concept of SRB measures was originally applied
to Axiom A systems, several rigorous studies extended this idea beyond the universe
of uniformly hyperbolic systems [40, 12, 13, 33].

Lebesgue integrals with respect to \mu , which indeed represent expected values of
certain smooth observables, are fundamental in the analysis of chaos. Under the
assumption of ergodicity, they equal the time-average of an infinitely long sequence
generated along a trajectory. Integrals of this type can thus be approximated using
a Monte Carlo method. If the integrand involves highly oscillatory derivatives, then
the Monte Carlo integration might be prohibitively expensive due to a large variance
of the sample [36]. In case of derivatives of functions evaluated at a future time
(see examples of such integrands in [11, 34, 16, 2]), the direct use of any integration
scheme might be impossible due to the butterfly effect. Indeed, the application of the
chain rule results in a product of the system's Jacobian matrices whose norms increase
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DIFFERENTIATING SRB DENSITY ON UNSTABLE MANIFOLDS A313

exponentially in time. A remedy for this computational difficulty is integration by
parts, which moves the differentiation operator away from the problematic function
to the SRB measure. This is in fact a consequence of the generalized fundamental
theorem of calculus. In addition to the boundary term, we effectively obtain a new
Lebesgue integral involving a product of the antiderivative of the original integrand
and the SRB density gradient g = \partial log \rho = \partial \rho /\rho , where \rho denotes the density of \mu 
(i.e., the Radon--Nikodym derivative [25]).

The SRB density gradient is critical in the sensitivity analysis of chaos. The ma-
jor implication of Ruelle's linear response theory is a closed-form expression for the
parametric derivative of long-time averages (a.k.a. the system's sensitivity) [29, 31].
The space-split sensitivity (S3) method [9, 11, 34] reformulates Ruelle's formula to a
computable form by splitting the perturbation vector and performing integration by
parts on unstable manifolds. Using the S3 formula, one can construct an efficient and
provably convergent Monte Carlo algorithm for sensitivities in uniformly hyperbolic
systems. This algorithm requires computing the SRB density gradient defined as a
directional derivative of \rho conditioned on the unstable manifold. Indeed, the SRB mea-
sure is generally singular with respect to Lebesgue measure in the stable direction [40].
Several algorithms for sensitivity analysis that stem from the fluctuation-dissipation
theorem (FDT) [18] also require g [2, 1, 7, 22, 16]. An accurate reconstruction of the
linear response operator in FDT-based methods is the major challenge in deriving
reliable numerical schemes. Motivated by empirical data of certain chaotic models,
some methods of this type assume Gaussian distribution of measure (see [16] and
references therein). Such an assumption reduces the FDT linear response operator to
a simple time autocorrelation function, which dramatically decreases the total cost.
However, this simplification restricts the algorithm to a narrow class of atmospheric
chaotic systems. The density gradient can also be used as a reliable indicator of the
differentiability of statistical quantities [35] in chaotic systems. In particular, the
slope of the distribution tail of g has been shown to be strictly associated with the
existence of parametric derivatives of statistics. Therefore, we seek a direct numerical
procedure for g that does not make any assumptions about the statistical behavior of
the system and is thus applicable to any chaotic dynamical system that admits SRB
measures.

There already exist algorithms for the SRB density gradient derived for systems
with one-dimensional unstable manifolds. In case of simple one-dimensional maps, one
can derive an exponentially convergent recursion for g using the measure preservation
property [34]. The same formula can be inferred using the fact that the SRB density is
an eigenfunction of the Frobenius--Perron operator with eigenvalue 1 [35]. The authors
of [10] propose an ergodic-averaging algorithm for self-derivatives (i.e., directional
derivatives along one-dimensional expanding directions) of covariant Lyapunov vectors
(CLVs) corresponding to the only positive Lyapunov exponent, which are tangent to
unstable manifolds at any point on the attractor. Using the chain rule on smooth
manifolds, one can show that g depends on the self-derivative of CLV at the previous
time step, and this relation is governed by a second-order tangent equation [10, 35].
In a recent work on a new method for evaluating the linear response [26], the direct
computation of g is circumvented by re-expressing the unstable divergence as the
volume ratio between the projection onto the contracting (stable) subspace and the
imposed perturbation. Nevertheless, several numerical methods based on the linear
response theory still require g, which justifies the need for a generalizable algorithm
for this particular quantity.

In this paper, we systematically derive a trajectory-driven algorithm for the SRB
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A314 ADAM A. \'SLIWIAK AND QIQI WANG

density gradient by extending the measure preservation property to high-dimensional
smooth manifolds. Using the density-based parameterization of unstable manifolds
and the chain rule, it is possible to establish a recursive relation for the evolution of
first- and second-order parametric derivatives of the coordinate chart. By definition,
this chart is strictly associated with g and can be interpreted as an SRB inverse
cumulative distribution (quantile function). This type of parameterization, motivated
by popular methods of statistical inference [14], has been thoroughly explained by the
authors in [36] in the context of simple Lebesgue measures. Through the relation of g,
the coordinate map, and its parametric derivatives, we show the density gradient can
be computed by solving a collection of first- and second-order tangent equations. We
also show that the recurring problem of the butterfly effect, which leads to exploding
norms of tangent solutions, can be eliminated by iterative orthonormalization of the
chart gradient. The major benefit of our derivation is that it is naturally translatable
to a practicable algorithm that can be easily integrated with existing methods for
sensitivity analysis of chaos.

This paper is structured as follows. In section 2, we introduce the SRB measure
and its gradient, and we highlight their importance in the field of chaotic dynam-
ics. Subsequently, in section 3, we apply the density-based parameterization for the
description of unstable manifolds to derive recursive relations for the SRB density
gradient. This derivation is followed by a numerical example involving a chaotic
map with straight one-dimensional expanding subspaces. Section 4 generalizes all
the concepts to high-dimensional chaotic maps with an arbitrary number of positive
Lyapunov exponents (LEs). Based on the systematically derived iterative relations,
a practicable algorithm for g is thoroughly described. We analyze its cost, memory
requirements, and convergence. In the same section, we also demonstrate a numerical
example of Monte Carlo integration, which requires the computation of g. Section 5
summarizes this work.

2. SRB measure and its gradient: Definitions and significance. Consider
a diffeomorphic map \varphi : M \rightarrow M , M \in \BbbR n, n \in \BbbZ +, with an Axiom A attractor. The-
orem 1 of [40] asserts that there exists an invariant and physical probability measure
\mu (and its density \rho ), which satisfies the following:

1. Invariance/conservation of measure condition:

(2.1) \mu (A) = \mu (\varphi  - 1(A))

for any Borel subset A \subset M .
2. Physicality condition: there exists a positive Lebesgue measure set V such

that for any smooth observable f : M \rightarrow \BbbR ,

(2.2)

\int 
M

f(x) d\mu (x) =

\int 
M

f(x) \rho (x) d\omega (x) = lim
N\rightarrow \infty 

1

N

N - 1\sum 
k=0

f \circ \varphi k(x0)

for all x0 \subset V . We use d\omega to denote the Riemmanian volume element, and
\varphi k(\cdot ) = \varphi (\varphi k - 1(\cdot )), \varphi 1 = \varphi , \varphi 0 = Id.

3. Absolute continuity: Conditional measure of \mu , denoted by \~\mu x and defined
on the unstable manifold Ux at point x \in Ux, is absolutely continuous (an
analogous property applies to the conditional density \~\rho x).

4. Singularity with respect to Lebesgue measure: \mu is generally sharp in the
stable direction (across unstable manifolds).
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DIFFERENTIATING SRB DENSITY ON UNSTABLE MANIFOLDS A315

Fig. 1. This figure graphically represents the measure preservation property. The localization of
bullets represents the SRB density on some one-dimensional subspace of a two-dimensional manifold
M . All bullets are equally weighted. In this sketch, we observe \mu (Bk) = \mu (Bk+1) and Bk+1 = \varphi (Bk),
where Bk \subset M and Bk+1 \subset M are parameterized by smooth charts, xk(\xi ) : [0, 1] \rightarrow Bk and
xk+1(\xi ) : [0, 1] \rightarrow Bk+1, respectively.

5. Unit measure axiom (probability universe):

\int 
M

d\mu (x) =

\int 
M

\rho (x) d\omega (x) = \mu (M) = 1.

The measure \mu and its density \rho are respectively known as the SRB measure
and the SRB density distribution. We listed their most important properties in the
context of this paper; however, the reader is referred to [40] for a detailed description
of other significant features. One can think about property 1 as the mass conservation
law. For example, consider a Borel subset B \subset M with a uniform measure that is
mapped to \varphi (B) \subset M . If we divide \varphi (B) into a finite number of subsets occupying
the same volume, each of them generally has a different measure. In other words, each
subset generally has its unique weight unless \varphi represents a simple translation and/or
rotation. Property 2 states that the SRB measure is physical, which means that the
system can be observed due to the positive Lebesgue measure sets. Consequently, by
``observing"" the system's evolution for an infinitely long period of time, we can assign
a weight (density) to each nonzero-volume region of the attractor. The expected value
of any smooth function defined onM can be computed as a simple volume integral over
M of that function weighted by the density function. Figure 1 graphically explains
property 1, while the remaining four properties and their consequences are further
explained and illustrated in the following sections.

As mentioned above, SRB measures are guaranteed to exist in Axiom A (or uni-
formly hyperbolic) systems. Different rigorous studies indicate that uniform hyperbol-
icity is in fact not required for the existence of \mu . For example, partially hyperbolic
systems that have a mostly expanding [3] or contracting [8] central direction also
admit SRB measures. In addition, many high-dimensional systems arising from the
discretization of real-world PDE models behave as uniformly hyperbolic systems, per
the hyperbolicity hypothesis [15].

In many engineering applications, the expected value of some physically relevant
quantity f \in L1(\rho ), i.e.,

\int 
M

f d\mu , is usually of interest. The major challenge in the field
of sensitivity analysis is to find a parametric derivative of the expected value, which is
critical in grid adaptation [21], optimization design [17], and uncertainty quantification
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A316 ADAM A. \'SLIWIAK AND QIQI WANG

Fig. 2. Evaluation of the composite function f \circ \varphi t(x) on the manifold M = [0, 1]2 at four
consecutive steps t. In this case, the map \varphi is the Arnold's cat map (2.4), while f(x(1), x(2)) =
sin(\pi x(1)) sin(\pi x(2)). This particular \varphi is a classical representative of an Anosov diffeomorphism.

[38]. Ruelle rigorously derived a closed-form expression for that derivative [29, 31],

(2.3)
d

ds

\int 
M

f(x) d\mu (x) =

\infty \sum 
t=0

\int 
M

D(f \circ \varphi t(x)) \cdot \chi (x) d\mu (x),

where \chi denotes the derivative of \varphi with respect to the map parameter s, while D is
the phase space differentiation operator. One could potentially apply a Monte Carlo
algorithm to the integrals on the RHS of (2.3). However, owing to the butterfly effect,
the direct evaluation of the integrand for a higher t is computationally infeasible. To
illustrate this problem, let us consider the two-dimensional Arnold's cat map \varphi :
[0, 1]2 \rightarrow [0, 1]2 defined as

(2.4) xk+1 = Axk mod1, A =

\biggl[ 
2 1
1 1

\biggr] 
,

and some smooth function f(x). In Figure 2, we observe that even for a low t, f \circ \varphi t

becomes highly oscillatory, which implies that \| D(f \circ \varphi t)\| grows very fast (\| \cdot \| denotes
the Euclidean norm in \BbbR n). Due to the presence of positive LEs in chaotic systems,
the rate of growth is in fact exponential. It means that Ruelle's formula is impractical
for a direct Monte Carlo computation.

To circumvent this problem, one can split the perturbation vector \chi and apply
integration by parts to move the differentiation operator away from the composite
function, as concisely described in [32]. Indeed, this approach gave rise to a form of
the FDT theorem [30] widely used in statistical mechanics and was also utilized to
construct several numerical procedures approximating the linear response [9, 11, 26].
Based on the previous work, we carefully describe every step of the nontrivial partial
integration process.

In case of integrals with respect to a nonuniform measure, integration by parts
requires differentiating the measure itself. However, according to properties 3 and 4,
D\rho generally does not exist. In this section, let us assume \chi equals a unit vector
q that is tangent to the one-dimensional unstable manifold at every point on the
manifold M .1 Thus, every integral from the RHS of (2.3) can be regularized through

1In a general case, \chi \not = q, and thus an extra step is required to regularize Ruelle's formula.
This step involves a splitting of \chi into two terms, such that one term belongs to unstable manifolds
everywhere on M [32]. The reader is also referred to [9, 11] for a detailed description of the entire
process and relevant computational procedures.
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the following multistep process (the description of each step follows the equation):

I =

\int 
M

Dft(x) \cdot q(x) d\mu (x)(2.5)

=

\int 
M/U

\int 
Ux

Dft(s) \cdot q(s) d\~\mu x(s) d\^\mu (x)(2.6)

=

\int 
M/U

\int 
Ux

\partial qft(s) \~\rho x(s) ds d\^\mu (x)(2.7)

=

\int 
M/U

\int 1

0

\partial \xi ft(s(\xi )) \~\rho x(s(\xi )) d\xi d\^\mu (x)(2.8)

=  - 
\int 
M/U

\int 
Ux

ft(s) \partial q \~\rho x(s) ds d\^\mu (x) + (boundary term)(2.9)

=  - 
\int 
M/U

\int 
Ux

ft(s)
\partial q \~\rho x
\~\rho x

(s) d\~\mu x(s) d\^\mu (x) + (boundary term)(2.10)

=  - 
\int 
M

ft(x) g(x) d\mu (x) + (boundary term),(2.11)

where ft(x) := f \circ (\varphi t(x)). To derive the final form of I, we perform the following
steps. First, in step (2.6), we disintegrate \mu on a measurable partition U determined
by the geometry of unstable manifolds. The quotient measure \^\mu is defined such that
for all Borel sets B \subset M ,

\mu (B) =

\int 
M/U

\~\mu x(B \cap Ux) d\^\mu (x),

where \~\mu x is a conditional SRB measure with density \~\rho x. Subsequently, in step (2.7), we
use the measure-density relation, d\~\mu x = \~\rho x ds, where s denotes the path length as we
move along Ux. In step (2.8), we parameterize Ux, which gives rise to ds = \| x\prime (\xi )\| d\xi .
Note that the multiplicative factor is absorbed by the parametric derivative of f ,
because \partial \xi f = \| x\prime (\xi )\| \partial sf . Integration by parts is applied in step (2.9), where the
differentiation operator is moved from f to \~\rho . In steps (2.10)--(2.11), we reshuffle
terms and use the above identities again to simplify the final expression. Integration
by parts also gives rise to a boundary term, which involves two integrals with respect
to the quotient measure of f \~\rho x evaluated at \xi = 0 and \xi = 1, respectively. From
now on, we shall drop the subscript notation for conditional distributions; the tilde \~(\cdot )
notation shall imply the given distribution is restricted to a local unstable manifold.
Note that the boundary term

(2.12) (boundary term) =

\int 
M/U

[\~\rho (\xi ) fk(\xi )]
\xi =1
\xi =0 d\^\mu (x)

can be expressed in terms of a regular volume integral over M of the divergence on
unstable manifolds, which vanishes according to Theorem 3.1(b) of [29]. This is indeed
a direct consequence of the fact the boundary terms across two neighboring rectangles
of the Markov partition of M cancel out. To visualize this property, let us consider
the Arnold's cat map (2.4), for example. Despite its ``artificial"" discontinuities due
to the modulo operator, this nonlinear transformation in fact maps a smooth torus
to itself. One could arbitrarily change the boundaries of the square M in both phase
space directions without modifying the map itself and still describe the same torus.
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Since
\int 
M

Dfk \cdot q d\mu =  - 
\int 
M

fk g d\mu , we can thus alternatively apply Monte Carlo
to the RHS, which involves the SRB density gradient g [11, 35, 34],

(2.13) g(x) =
\partial q\rho (x)

\rho (x)
=

\partial q \~\rho (x)

\~\rho (x)
= \partial q log \~\rho (x).

Note that the integrand appearing in the regularized version of I does not grow
exponentially with t if f is bounded, which makes the sensitivity formula computable
(immune to the butterfly effect). The integration by parts, as presented above, is
generally useful if the integrand involves highly oscillatory functions. The Monte Carlo
integral example presented in [36] shows that the partial integration may reduce the
number of samples by a few orders of magnitude to achieve the desired approximation
error. Therefore, the computation of g might be beneficial not only in the context
of Ruelle/S3/FDT-based methods for sensitivity approximation but also in a general
setting when the expected value of an ill-behaved quantity of interest in a chaotic
system is needed. The following two sections focus on the computation of g for
systems with an arbitrary number of positive LEs. The primary goal is to derive a
recursive procedure compatible with Monte Carlo algorithms widely used in the field
of chaotic dynamics.

3. Computing SRB density gradient for systems with one-dimensional
unstable manifolds. In this section, we consider a generic n-dimensional, n \in \BbbZ +,
uniformly hyperbolic dynamical system with a one-dimensional unstable manifold
governed by the C2 diffeomorphic map \varphi : M \rightarrow M . M is thus a Riemannian
manifold immersed in \BbbR n. There exists a measurable partition U of M such that each
member of that partition, Ux, coincides with the unstable manifold that contains
x \in M . In this particular case, each Ux \subseteq M is geometrically represented by a curve
embedded in \BbbR n. We strive to compute the directional derivative of the logarithmic
SRB density g defined by (2.13).

3.1. Derivation of the iterative formula. The following notation is used
throughout this section. Let xk(\xi ) : [0, 1] \rightarrow Uk \subset M denote a C2 chart (diffeomorphic
map) that describes the unstable manifold Uk, k \in \BbbZ . For any k, the two charts xk(\xi )
and xk+1(\xi ), defined respectively on Uk and Uk+1, are related as follows:

(3.1) xk+1(\xi ) = \varphi (xk(\xi ))

for all \xi \in [0, 1] (see Figure 1 for an illustration of an n = 2 case). We use D\varphi and D2\varphi 
to respectively denote the Jacobian (n\times n matrix) and Hessian (n\times n\times n third-order
tensor) of \varphi . Since \varphi is invertible, (3.1) can be viewed as a mathematical description
of the evolution of SRB measure. For any observable f defined on M , evaluated
along a certain trajectory, we use the following short-hand notation: f \circ xk(\xi ) := fk.
Derivatives of the chart with respect to the parameter \xi are denoted using the prime
(\prime ) symbol. The reference to the ith component of an array (vector/matrix/tensor) is
indicated inside round brackets located in the superscript; for example, q(i) denotes
the ith component of q. Finally, we use \partial i to denote differentiation with respect to
the ith coordinate of phase space.

Let us parameterize Uk such that

(3.2) \xi =

\int 
\scrC k(\xi )

\~\rho (xk(\xi )) ds,

where \scrC k(\xi ) represents the segment of Uk between xk(0) and xk(\xi ), which implies
that \scrC k(1) \equiv Uk. Consequently, \~\rho k is the conditional SRB density restricted to Uk
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satisfying \~\rho k = \rho k/
\int 
Uk

\rho k ds. We call it measure-based parameterization, as the value

of the parameter \xi coincides with the value of the SRB measure at xk(\xi ) \in Uk. The
variable transformation between \xi and the arc length s implies that

(3.3) \~\rho (xk(\xi )) \| x\prime 
k(\xi )\| = 1.

Note that (3.3) is in fact a formula for the density change from a uniform to a nonuni-
form distribution due to the nonlinear variable transformation xk(\xi ). Since \xi \in [0, 1],
\~\rho k, \xi , xk can be respectively viewed as a probability density function (PDF), a cumu-
lative distribution function (CDF), and an inverse cumulative distribution function
(quantile function). Using the measure-based parameterization as described above,
the SRB density gradient, defined in (2.13), can be expressed in terms of parametric
derivatives of the chart, i.e.,

(3.4) g(xk(\xi )) =
\partial q \~\rho k
\~\rho k

(xk(\xi )) =  - x\prime 
k(\xi ) \cdot x\prime \prime 

k(\xi )

\| x\prime 
k(\xi )\| 3

for any \xi \in [0, 1]. Here, the derivative \partial q is computed in the direction of increasing
value of \xi . The reader is referred to the authors' previous work in [36], where (3.4)
is derived by differentiating (3.3) and is comprehensively described using various nu-
merical examples.

We notice that x\prime 
k(\xi ) = \| x\prime 

k(\xi )\| q(xk(\xi )) and rewrite (3.4) as

(3.5) g(xk(\xi )) =  - q(xk(\xi )) \cdot 
x\prime \prime 
k(\xi )

\| x\prime 
k(\xi )\| 2

:=  - q(xk(\xi )) \cdot a(xk(\xi )) =  - qk \cdot ak.

Equation (3.5) indicates that the magnitude of the SRB density gradient equals the
length of the projection of the (rescaled) curve acceleration vector on the line tangent
to the curve. We now use (3.1), differentiate it twice with respect to \xi , and apply the
chain rule to obtain the following expression:

(3.6) x\prime \prime 
k+1(\xi ) = D2\varphi (xk(\xi ))(x

\prime 
k(\xi ), x

\prime 
k(\xi )) +D\varphi (xk(\xi )) x

\prime \prime 
k(\xi ),

which means that

a(xk+1(\xi )) =
x\prime \prime 
k+1(\xi )

\| x\prime 
k+1(\xi )\| 2

=
\| x\prime 

k(\xi )\| 2D2\varphi (xk(\xi )) (q(xk(\xi )), q(xk(\xi )))

\| x\prime 
k+1(\xi )\| 2

+
D\varphi (xk(\xi ))x

\prime \prime 
k(\xi )

\| x\prime 
k+1(\xi )\| 2

.

(3.7)

The bilinear form that appears in the first term on the RHS of (3.7) can be expressed
using Einstein's summation convention, i.e., [D2\varphi (q, q)](ijk) = \partial i\partial j\varphi 

(k) q(i) q(j).
Given \| x\prime 

k+1(\xi )\| = r(xk(\xi ))\| x\prime 
k(\xi )\| , where r(xk(\xi )) = \| D\varphi (xk) q(xk(\xi ))\| , we

have

(3.8) ak+1 =
(D2\varphi )k(qk, qk) + (D\varphi )k ak

r2k
.

From the parametric derivative of (3.1) and the definition of r(xk(\xi )), the recursion

(3.9) qk+1 =
D\varphi k qk

rk
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automatically follows. We emphasize the fact that the above procedure for g (in-
volving (3.5), (3.8), and (3.9)) is completely analogous to the algorithm proposed in
section 4.2 of [36], which was meant for simple Lebesgue measures evolving due to a
generic nonchaotic diffeomorphism. Here, however, we consider the evolution of the
SRB measure in a chaotic system. Due to the butterfly effect, the tangent solution
exponentially increases in norm. Therefore, we need the normalizing factor r in the
iterative formula for a and q along the trajectory. Since \varphi is uniformly hyperbolic, the
solution to the tangent equation in (3.9) converges exponentially in k to the backward
Lyapunov vector that is tangent to the unstable manifold regardless of the choice of
an initial condition q0. Under the same assumption, the recursion in (3.8) for the
acceleration vector a also uniformly converges to the true solution at an exponential
rate for any initial condition a0 bounded in norm. The reader is referred to Lemma
7.7 in [11] for the proof of the preceding statement.

To summarize, using the measure-based manifold parameterization, we derived a
simple recursive procedure for the SRB density gradient that exponentially converges
in case of uniformly hyperbolic systems and does not depend on initial conditions.
As for now, we restrict ourselves to systems with one-dimensional unstable manifolds.
Our main intention here is to introduce basic concepts before we move to general
cases in section 4.

3.2. Numerical example: Computing SRB density gradient on straight
unstable manifolds. As a pedagogical example, let us consider a family of n-
dimensional maps, n \in \BbbZ +, whose unstable manifolds are straight and, without loss of
generality, aligned with the first coordinate of the phase space. Certainly, this family
includes, but is not limited to, all one-dimensional chaotic maps. In this particular
case, q(i) = \delta (i1), where \delta denotes the Kronecker delta. Consequently, the paramet-
ric derivative of the chart xk(\xi ), for any k, has all zero entries except the first one
and, therefore, r(xk(\xi )) = | \partial 1\varphi (1)(xk(\xi ))| . Thus, our recursive algorithm for g, which
involves (3.5), (3.8), and (3.9), reduces to a single scalar iterative formula

(3.10) g(xk+1(\xi )) =
g(xk(\xi ))

\partial 1\varphi (1)(xk(\xi ))
 - \partial 2

1\varphi 
(1)(xk(\xi ))

(\partial 1\varphi (1)(xk(\xi )))2

for all \xi \in [0, 1]. We were allowed to drop the absolute values, because x\prime 
k(\xi ) > 0,

which is a consequence of our choice of the manifold parameterization. In this simple
event of a straight unstable manifold, only two scalars are required to advance the
iteration, i.e., the first- and second-order derivatives (in phase space) of the first
component of \varphi , since the map is expanding only in one direction. This result is fully
consistent with early nonsystematic attempts to construct such a procedure for g in
[34, 35]. The previous studies used the measure preservation property to derive an
expression analogous to (3.10).

To verify the correctness of our procedure, we consider the two-dimensional per-
turbed Baker's map \varphi : M \rightarrow M , with M = [0, 2\pi ]2, defined as follows [11]:

xk+1 = \varphi (xk) =

\Biggl( \Biggl[ 
2x

(1)
k

x
(2)
k /2 + \pi \lfloor xk/\pi \rfloor 

\Biggr] 

+

\Biggl[ 
s1/2 sin(x

(1)
k /2) + s2/2 sin(2x

(1)
k ) sin(x

(2)
k )

s3 sin(x
(2)
k ) + s4/2 sin(2x

(1)
k ) sin(x

(2)
k )

\Biggr] \Biggr) 
mod2\pi ,

(3.11)

where s1, s2, s3, s4 are real-valued map parameters. If all of them are zero, we obtain
the classical Baker's map (first term of the RHS of (3.11)), which is named after
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DIFFERENTIATING SRB DENSITY ON UNSTABLE MANIFOLDS A321

Fig. 3. SRB distribution of the Baker's map with s1 = s3 = s4 = 0, s2 = 0.4 (left plot) and
s1 = s2 = s3 = 0, s4 = 0.4 (right plot). We divided M into 2562 rectangular bins of equal width and
counted the number of times the trajectory passed through each of these bins. In this experiment,
we generated 8000 trajectories of lengths 209, 715, 200, which gives us the total of approximately
1.68 \cdot 1012 samples.

the kneading operation that bakers apply to a two-dimensional square dough. In
particular, the dough is first stretched horizontally (in the unstable direction) by
a constant factor, then compressed vertically (in the stable direction) by the same
factor, and so forth. The square-shaped domain is stretched to a 2\times 1 rectangle and
cut into two squares, which are subsequently stacked horizontally. The Baker's map
is an invertible chaotic map with one positive and one negative LE.

By introducing an extra term proportional to the four parameters, we perturb
the kneading operation in the direction not necessarily aligned with the phase space
directions. Indeed, by manipulating these parameters' values, we can control the
shape of the unstable manifold, which gives us an excellent study case in the context
of the SRB gradient computation. Notice, for example, that if s4 = 0 and s3 is

sufficiently small, the iteration in (3.9) produces qk, whose second coordinate, q
(2)
k ,

converges exponentially to zero with k. In this case, therefore, unstable manifolds are
straight and aligned with the x(1)-axis. We use this observation to design our first
numerical test.

In the first experiment, we consider the Baker's map defined by (3.11) with s1 =
s3 = s4 = 0 and s2 = 0.4. The LHS plot in Figure 3 illustrates the normalized SRB
distribution corresponding to this parameter choice, which represents the probability
of the trajectory passing through each square bin everywhere on M (see the caption
of Figure 3 for more details; for completeness, we also included a case with s4 \not = 0).
We observe a smooth behavior of the SRB distribution with respect to x(1) at any
vertical level x(2). However, as we travel vertically, in the stable direction, the SRB
distribution varies sharply. These radically different behaviors are typical symptoms
of properties 3 and 4 of \mu described in section 2, and they can also be observed in
Figure 4, where the conditional and marginal SRB distributions are plotted, using
data from Figure 3.

In Figure 4, we also plot the SRB density gradients defined on five different
unstable manifolds. To compute g, the simplified recursion from (3.10) was directly
applied. To validate our computation, we approximated g by applying the central
finite-difference method to the SRB densities plotted above. We observe a good
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A322 ADAM A. \'SLIWIAK AND QIQI WANG

Fig. 4. Upper left plot: conditional SRB distributions (SRB densities) corresponding to five
different unstable manifolds. The numbers 36, 72, 108, 144, 180 appearing in the legend represent the
index of the horizontal bin row. For example, the red line (seen online only) corresponds to the SRB
density defined on the unstable manifold at x(2) \approx 72/256 \cdot 2\pi \approx 1.76. Upper right plot: marginal
SRB distribution obtained through integrating the first coordinate out. Lower plot: SRB density
gradient g corresponding to SRB densities plotted in Figure 4. The g function was computed using
two distinct approaches: through the simplified trajectory-based recursion (3.10) (solid lines) and
the central finite-difference method (dots). The oscillation of the finite-difference approximation is
a manifestation of the statistical noise.

agreement between the results obtained with these two different approaches, which
confirms the correctness of our algorithm.

To conclude, in case of straight unstable manifolds, the SRB density gradient
can be computed using the simplified recursive relation along trajectory (3.10), which
we verify through finite differencing. This iteration is computationally cheap, as it
involves solving a scalar tangent equation featuring both the first and the second
derivatives of the first component of \varphi . In Appendix A, we show that (3.10) can
also be applied to popular one-dimensional maps that are noninjective. We argue
that certain nonmeasure preserving transformations have their higher-dimensional
analogues similar to the classical Baker's map. Appendix B presents a numerical
study confirming the hyperbolicity of the Baker's map.

4. Computing SRB density gradient for systems with general unstable
manifolds. We shall generalize the concepts introduced in section 3 to systems with
m-dimensional unstable manifolds, m \in \BbbZ +. In other words, we consider general n-
dimensional chaotic systems that have m positive LEs, 1 \leq m \leq n. In this setting,
the chart xk(\xi ), k \in \BbbZ +, is a diffeomorphism that maps an m-dimensional hypercube,
[0, 1]m, to the local unstable manifold Uk \subset M . For example, if m = 2 and n = 3, then
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the system has two positive LEs and its unstable manifolds are surfaces immersed in
\BbbR 3 \supset M .

4.1. Derivation of the iterative formula. As introduced above, let us con-
sider an m-dimensional smooth unstable manifold Uk described by the chart xk(\xi ) :

[0, 1]m \rightarrow Uk \subset M . The vectors xk = [x
(1)
k , . . . , x

(n)
k ]T and \xi = [\xi (1), . . . , \xi (m)]T have

n and m components, respectively, and 0 \leq \xi (i) \leq 1, i = 1, . . . ,m. We use \nabla \xi xk(\xi )
to denote the parametric gradient tensor of the chart. The ith column of \nabla \xi xk(\xi )
contains the derivative of xk(\xi ) with respect to \xi (i), i.e., \partial \xi (i)xk(\xi ). For any Borel
subset V \subset [0, 1]m such that xk(V ) = Bk \subset Uk, the SRB measure-density relation
can be expressed as follows:

(4.1) \mu (V ) =

\int 
Bk

\~\rho k(x) d\omega (x),

where d\omega (x) denotes the natural volume element defined everywhere on Uk. Analo-
gously to the one-dimensional case described in section 3, \~\rho k represents the conditional
SRB density defined on Uk. If we QR-factorize the parametric gradient of xk(\xi ),

(4.2) \nabla \xi xk(\xi ) = Q(xk(\xi )) R(xk(\xi ))

at any \xi \in [0, 1]m, the density conservation property can be expressed as

(4.3) \~\rho (xk(\xi )) | detR(xk(\xi ))| = 1,

which is a generalization of (3.3). By differentiating (4.3) with respect to \xi and
applying a nontrivial chain rule, we obtain

g(i)(xk(\xi )) = \partial Q(:i)(xk(\xi )) log \~\rho (xk(\xi ))

=  - 
tr
\bigl( 
QT (xk(\xi )) \partial \xi (i)\nabla \xi xk(\xi ) R

 - 1(xk(\xi ))
\bigr) 

\| \partial \xi (i)xk(\xi )\| 
,

(4.4)

or, equivalently,

(4.5) g(i)(xk(\xi )) =  - 
Q(:j)(xk(\xi )) \cdot \partial \xi (i)\partial \xi (k)xk(\xi ) (R

 - 1)(kj)(x(\xi ))

\| \partial \xi (i)xk(\xi )\| 

for all \xi \in [0, 1]m, where the repeated indices imply summation (Einstein's conven-
tion), while the superscript (: i) denotes the ith column of a matrix. This expression
was obtained by employing the orthogonality of Q and upper-triangular structure of
R. It is computationally convenient, as it does not involve parametric derivatives of
the determinant of R. The reader is referred to [36] for a step-by-step derivation of
(4.3)--(4.5).

The purpose of this section is to derive an iterative (trajectory-driven) procedure
for g. Analogously to the derivation in section 3, we combine (4.5) and the evolution
equation

(4.6) xk+1(\xi ) = \varphi (xk(\xi ))

and apply the chain rule. The one-dimensional case, however, was computationally
simpler, because the tangent equations for a and q were regularized by the scalar r
every time step, preventing the tangent solutions from blow-ups due to the positive LE
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(i.e., the butterfly effect). Note that here we need to compute all first- and second-
order parametric derivatives of the chart to compute g. Since we strive to derive
a recursive relation, we regularize tangent equations in a fashion analogous to the
approach in section 3. To achieve this goal, one can recursively orthonormalize the
parametric gradient through an iterative linear transformation of the parameterization
and by fixing \xi = 0. In particular, we change variables from step k to k+1 such that

\xi k+1 = Rk+1 \xi k.

Note that at \xi = 0 we stay on the same trajectory despite the transformation. This
particular choice of \xi does not restrict our algorithm to concrete trajectories. Indeed,
we want to ``visit"" all infinitesimally small \mu -typical regions of the attractor after
an infinite number of time steps, regardless of the choice of the initial condition.
Therefore, we can always linearly rescale the feasible space of \xi such that \xi = 0
for our arbitrary choice of the initial condition. To simplify the notation, we skip
the argument in our notation whenever \xi = 0; for example, we use the short-hand
notation xk(0) := xk, Q(xk(0)) := Qk, and so forth. Thanks to this particular
transformation, the parametric gradient is automatically orthonormalized, because
the chain rule implies that

(4.7) \nabla \xi k+1
xk+1 = \nabla \xi kxk+1 R - 1

k+1 = Qk+1,

or, equivalently,

(4.8) \partial 
\xi 
(i)
k+1

xk+1 = \partial 
\xi 
(j)
k

xk+1 (R - 1
k+1)

(ji) = Q
(:i)
k+1.

It means that the parametric gradient of the chart has an orthonormal basis of the
column space in the updated coordinate system. Note that the R matrix represents
the Jacobian of the step-to-step parametric transformation, i.e., Rk+1 = \partial \xi k+1/\partial \xi k.
In an analogous manner, we can derive a similar relation for the Hessian of xk+1,
represented by an n\times m\times m tensor,

(4.9) \partial 
\xi 
(i)
k+1

\partial 
\xi 
(j)
k+1

xk+1 = \partial 
\xi 
(p)
k

\partial 
\xi 
(q)
k

xk+1 (R - 1
k+1)

(pi) (R - 1
k+1)

(qj).

The major benefit of the variable change is a dramatic simplification of (4.5). Indeed,
in the orthonormalized system, the R matrix reduces to the identity matrix, while
the norm of each column of the parametric gradient equals 1. This gives rise to the
following expression for g:

g
(i)
k+1 =  - tr

\Bigl( 
QT

k+1 \partial 
\xi 
(i)
k

\nabla \xi kxk+1

\Bigr) 
=  - Q

(:j)
k+1 \cdot \partial \xi (i)k+1

\partial 
\xi 
(j)
k+1

xk+1 :=  - Q
(:j)
k+1 \cdot a

(i,j)
k+1 .

(4.10)

Consequently, only two ingredients are necessary to compute the density gradient
function at \xi = 0. First, we need the orthogonal basis of the column space of the
parametric gradient \nabla \xi kxk+1. A recursive formula for the basis can be obtained by
differentiating the system in (4.6) and performing QR factorization, i.e.,

(4.11) \nabla \xi kxk+1 = D\varphi k \nabla \xi kxk = Qk+1 Rk+1.

Therefore, per (4.7), we automatically obtain the orthonormal parametric gradient at
the next time step without the need of inverting Rk+1. Since the orthonormalization
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is performed in a recursive manner, \nabla \xi kxk = Qk by construction. To complete the
algorithm, we also need a recursion for a. This equation can be naturally derived by
differentiating (4.6) twice, which gives rise to

\partial 
\xi 
(i)
k

\partial 
\xi 
(j)
k

xk+1 = D2\varphi k(\partial \xi (i)k

xk, \partial \xi (j)k

xk) +D\varphi k \partial \xi (i)k

\partial 
\xi 
(j)
k

xk

= D2\varphi k(Q
(:i)
k , Q

(:j)
k ) +D\varphi k a

(i,j)
k .

(4.12)

Note that in order to compute the SRB density gradient at step k + 1, we need to
apply the Hessian rescaling described by (4.9) to retrieve ak+1. We summarize this
algorithm and carefully analyze its computational properties in section 4.2.

The procedure in (4.11) reduces to the recursion in (3.9) if m = 1. Regardless
of the choice of initial condition Q0, the column vectors of Qk rigorously converge to
backward Lyapunov vectors as k \rightarrow \infty [19]. The set of these column vectors is in fact
an orthonormal basis of the unstable (expanding) subspace Eu

k of the tangent space
TMk. Specific directions of backward Lyapunov vectors, however, depend on the
choice of Q0. Therefore, in this case, the ``convergence"" should be understood that,
for any orthonormal Q0, the column space of Qk is guaranteed to coincide with some
orthonormal basis of Eu

k if k \rightarrow \infty . A similar procedure can be used to compute all
n Lyapunov vectors, including those corresponding to the negative LEs, spanning the
stable (contracting) subspace Es

k. In uniformly hyperbolic systems, TMk = Eu
k \oplus Es

k

at every k, and both the subspaces are D\varphi -invariant (or covariant). The covariance
property implies that the product D\varphi kQk, which we compute in (4.11), outputs m
vectors that belong to the unstable subspace of the tangent space at the next time
step, TMk+1. In general, the new vectors are not orthonormal. By performing the
QR factorization, however, we obtain an orthonormal basis of the unstable subspace
at k+1. Therefore, the components of Rk+1 contain projections of the column vectors
of D\varphi kQk onto the basis vectors of Eu

k+1.
We also observe that the general recursion for the acceleration vector a in (4.12)

can be simplified to its one-dimensional counterpart in (3.8) if m = 1. Using the
properties of uniform hyperbolicity, the authors of [11, 10] rigorously show that the
recursion for a (a.k.a. unstable manifold curvature equation) in systems with one
positive LE rigorously converges at an exponential rate. The proof of convergence for
systems with one-dimensional unstable subspaces uses the fact ak can be expressed as
Ck+D\varphi k - 1 . . . D\varphi 0 a0/

\prod k - 1
i=0 r2k - 1, where Ck does not depend on a0 (see section 3 for

the notation explanation). By the uniform expansion property, the a0-dependent term
exponentially converges to zero if k \rightarrow \infty . In case of general systems, we find similar

dependencies between a
(i,j)
k and all initial conditions for the second-order tangent

equation. Here, instead of rescaling with respect to the length of the projection
of D\varphi k qk onto qk+1, we are rescaling with respect to the collection of projections
included in the Rk+1 matrix. Moveover, the process of computing a in the general
case involves inverting Rk+1, not just a scalar, which makes it hard to directly apply
the properties resulting from the uniform hyperbolicity assumption. In this paper, we
resort to an empirical study of the convergence of our algorithm (see section 4.2). In
our follow-up study [37], we present a mathematical argument confirming the stability
and convergence of the rescaled iteration combining (4.9) and (4.12). Note that even
if that recursion converges, the specific direction of a is not unique at any point on
M , because Q is also not unique, as discussed above. Their product, however, that
equals the SRB density gradient g is unique by construction.
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4.2. General algorithm for high-dimensional systems. We provide a prac-
ticable algorithm based on the derivation presented in the previous section. In ad-
dition, we carefully analyze its computational cost and memory requirements and
numerically investigate its convergence. Algorithm 1 summarizes all steps necessary
to numerically compute the SRB density gradient at N points along a trajectory ini-
tiated at x0 \in M \subset \BbbR n. The only optional step is included in line 1; this step is
meant to compute the dimension of the unstable subspace/manifold m. For many
chaotic maps, this parameter is known a priori, and therefore line 1 can be skipped.
If this is not the case, however, one can apply Benettin et al.'s numerical procedure
[5] to approximate a subset of the spectrum of LEs. This procedure requires solving
i \in \BbbZ + homogeneous tangent equations to identity i largest LEs. The parameter T
represents the trajectory length and affects the accuracy of LE approximation. If the
LE spectrum is evidently separated from the origin (i.e., the value of 0), then T does
not need to be large. Lines 3--22 of Algorithm 1 represent the main time for-loop
that computes the g vector at one point on the manifold per iteration. Inside this
loop, we distinguish five major stages: (1) advancing first-order tangent equations
and QR factorization (see (4.11)), (2) advancing second-order tangent equations (see
(4.12)), (3) inverting the R matrix and rescaling the acceleration vector a (see (4.9)),
(4) evaluating g (see (4.10)), and (5) transitioning to the next time step: updating
the Jacobian and Hessian.

Algorithm 1: SRB density gradient.

Input : N , T , x0, n = size(x0)
1 m = Benettin(T ) if m unknown;

2 Randomly generate Q0, a
(i,j)
0 such that ncol(Q0) = m,

nrow(Q0) = size(a
(i,j)
0 ) = n, QT

0 Q0 = I, and i, j = 1, . . . ,m;
3 for k = 0, . . . , N  - 1 do // main time loop

4 Sk = D\varphi k Qk;
5 QR-factorize: Qk+1 Rk+1 = Sk;
6 Invert Rk+1;
7 for i = 1, . . . ,m do // second-order tangent equations

8 for j = 1, . . . , i do

9 \~a
(i,j)
k+1 = D2\varphi k(Q

(:i)
k , Q

(:j)
k ) +D\varphi k a

(i,j)
k ;

10 end

11 end
12 for i = 1, . . . ,m do // rescaling

13 for j = 1, . . . , i do

14 a
(i,j)
k+1 = \~a

(p,q)
k+1 (R - 1)

(pi)
k+1 (R

 - 1)
(qj)
k+1;

15 end

16 end
17 for i = 1, . . . ,m do // evaluating g

18 g
(i)
k+1 =  - Q

(:j)
k+1 \cdot a

(i,j)
k+1 ;

19 end
20 xk+1 = \varphi (xk);
21 Evaluate: D\varphi k+1 and D2\varphi k+1;

22 end

Output: g
(i)
k , i = 1, . . . ,m, k = 1, . . . , N  - 1
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Table 1
Computational cost of Algorithm 1.

Stage name Line no. Total cost

Computing m (Benettin's algorithm) 1 T n2m
Generating initial conditions 2  - 

Advancing first-order tangent equations 4 N n2 m
QR factorization (Householder) 5 N nm2

Inverting R 6 N m3

Advancing second-order tangent equations 7--11 N n3 m2

Rescaling a 12--16 N nm3

Computing g 17--19 N nm2

Advancing primal equation 20 Varies
Evaluating Jacobian and Hessian 21 Varies

Table 1 summarizes the computational cost of Algorithm 1. The third column of
this table includes the number of floating point operations required in each stage as a
function of the trajectory length (N or T ), system dimension n, and unstable manifold
dimension m. Note that the third column includes only the leading term of the flop
count. The final two stages involve evaluations of nonlinear equations defined by \varphi ,
and thus their computational cost is problem-dependent. In many physics-inspired
chaotic systems, the cost of lines 20--21 is relatively low. Consider the Lorenz '63
system discretized using the Euler scheme, for example. In this case, we can think
of \varphi as a time discretization operator of the continuous system. The Jacobian D\varphi 
involves a collection of linear terms proportional to the coordinates of x, while the
Hessian D2\varphi is constant. In many scientific/engineering applications, PDE models
are discretized in space using schemes with local support (such as the finite element
method), which implies the resulting Jacobians and Hessians of the fully discretized
system are sparse. Therefore, in these special cases, the cost of the most expensive
stage of Algorithm 1, which involves second-order tangent equations, can potentially
be reduced to N nm2. Table 1, however, reflects the worst-case scenario in which no
sparsity patterns occur. We also highlight the fact that in many high-dimensional
chaotic systems m \ll n [6]. Thus, if n is large, the rescaling stage (lines 12--16) is
rather cheaper than the second-order tangent equation stage (lines 7--11).

We conclude that the leading term of the total flop count of Algorithm 1 is
proportional to N n3 m2 in a general chaotic system. In many real-world problems,
however, the final cost can be significantly reduced if one takes advantage of the sys-
tem's special structure. Our algorithm is moderately cheap in terms of the memory
requirements. The most memory-consuming structure is the Hessian which, in the
worst-case scenario, requires storing n3 floats. As we pointed out above, however, in
practical high-dimensional models, the actual ``size"" of the Hessian might be dramat-
ically smaller. Note also that, in order to advance tangent equations, we need to store
m n-dimensional basis vectors (i.e., column vectors of Q) and \sim 1/2m2 acceleration
vectors. The 1/2 factor is a consequence of the assumed smoothness of the coordinate
chart, which implies a(i,j) = a(j,i) everywhere on the manifold. Notice also that our
procedure is in fact a one-step method, which means that all quantities at step k + 1
require data only from step k. We do not need to store data generated at previous
time steps.

Finally, we perform a numerical test to investigate the convergence properties of
Algorithm 1. For this purpose, we use the Baker's map introduced in (3.11), as well
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as its three-dimensional version \varphi : [0, 2\pi ]3 \rightarrow [0, 2\pi ]3, defined as

xk+1 = \varphi (xk) =

\left(   
\left[   2x

(1)
k

3x
(2)
k

x
(3)
k /6 + \pi \lfloor x(1)

k /\pi \rfloor + \pi /3\lfloor x(2)
k /(2\pi /3)\rfloor 

\right]   
+

\left[   s1 sin(2x
(1)
k ) sin(3/2x

(2)
k )

s2 sin(x
(1)
k ) sin(3x

(2)
k )

s3 sin(6x
(3)
k )

\right]   
\right)   mod2\pi ,

(4.13)

which we shall refer to as the three-dimensional Baker's map. The three scalars s1,
s2, s3 are real-valued input parameters of that map. This is an invertible chaotic
map with two positive and one negative LEs and seemingly hyperbolic behavior (see
Appendix B for more details). This map has two expanding directions, along the x(1)

and x(2) axes, and one contracting direction along the third axis. Analogously to its
two-dimensional counterpart, this map models the kneading operation. The dough is
extended by the factors 2 and 3 along the two orthogonal directions on the x(1) - x(2)

plane and cut into 2 \cdot 3 = 6 squares, which are subsequently stacked in the order
defined by the floor functions. These history-dependent floor functions are used to
guarantee the invertibility of the nonlinear transformation by periodically distributing
the third component of xk+1 across [0, 2\pi ]. Higher-dimensional Baker's maps have
been widely used in image encryption as a convenient generalization of Bernoulli shifts
[27, 23].

To analyze the convergence, we generate three sufficiently long trajectories started
at randomly chosen initial conditions x0. For each of these trajectories, we run two
independent simulations with different, randomly chosen initial conditions for the
tangent equations (see line 2 of Algorithm 1). Motivated by the rigorous studies,
we investigate whether (and how) the difference between the SRB density gradients
computed along a single trajectory but using different initial conditions for tangent
equations decreases in norm as we advance the iteration. In particular, we compute
\| gk,1  - gk,2\| , k = 0, 1, 2, . . . , for two random initial condition choices for tangent
equations per trajectory, labelled as 1 and 2. The relation between that norm and
time step k for three different chaotic models is plotted in Figure 5. The g function
is generated using Algorithm 1 for the two-dimensional Baker's map with m = 1 (see
(3.11)), as well as the three-dimensional Baker's map with m = 2 (see (4.13)).

We observe that the norm-versus-k relation is linear in the semilogarithmic scale,
which clearly indicates an exponential convergence of our algorithm if applied to the
Baker's map. This result implies that a relatively small number of steps (k \approx 50) is
required to obtain the machine-precision value of the norm. Note also that the choice
of a trajectory (x0) or model has a negligible effect on the error.

4.3. Numerical example: Monte Carlo integration. To validate Algorithm
1, we consider a square-integrable function f(x) \in L2(\mu ) and integrate it with respect
to the SRB measure \mu using a Monte Carlo procedure. By the central limit theorem,
this integral can be approximated by taking the average of the sample distributed
according to \mu , while the approximation error is upperbounded by

\sqrt{} 
Var(f)/N , i.e.,

(4.14)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
M

f(x) d\mu (x) - 1

N

N - 1\sum 
k=0

f(xk)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C

\sqrt{} 
Var(f)

N
,
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Fig. 5. Relation between \| gk,1  - gk,2\| and the time step k in the semilogarithmic scaling.
This plot contains nine curves of three different colors. Each color corresponds to a different map:
two-dimensional Baker's map with curved unstable manifolds (blue), two-dimensional Baker's map
with straight unstable manifolds (red), and three-dimensional Baker's map with s1 = 0, s2 = 0.9,
s3 = 0.1 (green). In case of the two-dimensional Baker's map, the parameter values are the same
as those in Figure 3. (Color is available online only.)

where C > 0 and xk+1 = \varphi (xk) \in M . Therefore, by generating a sufficiently long
trajectory and evaluating f at every point along it, we gradually approach the sought-
after solution. Motivated by particular applications of the SRB density gradient
function (see sections 1--2), we consider f(x) :=

\sum m
j=1 \partial Q(:j)v(x), where v(x) : M \rightarrow \BbbR 

is some smooth function. In other words, we strive to integrate a sum of m directional
derivatives along m-dimensional unstable manifolds of the scalar function v(x). Note
that integrals of this type are critical in the sensitivity computation using, for example,
the general S3 method [9, 11]. Thanks to the partial integration (see (2.5)--(2.11)),
we can apply Monte Carlo to two alternative versions of the same integral, since

(4.15)

\int 
M

m\sum 
j=1

\partial Q(:j)v(x) d\mu (x) = I =  - 
\int 
M

m\sum 
j=0

g(j)(x) v(x) d\mu (x).

Using this equation, we validate Algorithm 1 for g by comparing numerical approxi-
mations of the LHS and RHS. Due to its trajectory-driven structure, Algorithm 1 is
naturally compatible with the Monte Carlo procedure.

Two different maps shall be tested. First, we shall consider the two-dimensional
Baker's map (see (3.11)) with s4 = 0.4 and s1 = s2 = s3 = 0. As illustrated in
Figure 3, its unstable manifolds are curved, and therefore the simplified version of the
recursion for g (see (3.10)) cannot be used. In this particular case, q has in fact two
nonzero components. Indeed, we numerically estimate that

max
k\in 1,2,...,N

arctan

\bigm| \bigm| \bigm| \bigm| \bigm| q(2)k

q
(1)
k

\bigm| \bigm| \bigm| \bigm| \bigm| \approx 0.24 rad \approx 14\circ ,

which is consistent with the illustration of unstable manifolds in Figure 3. The second
map is the three-dimensional Baker's map (4.13) with s1 = 0, s2 = 0.9, s3 = 0.1. One
can easily verify that unstable manifolds of this map are flat surfaces aligned with
the x(1)-x(2) plane. These expanding surfaces could be curved by adding an x(3)-
dependent perturbation term to the third component of the map.

Figure 6 includes results of the integration test. Our primary conclusion is that
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Fig. 6. Error of the Monte Carlo approximation of the LHS (blue dots) and RHS (orange
dots) of (4.15) versus the amount of data N used. Left: two-dimensional Baker's map. Here,
we compute the relative error with respect to the reference value --1.05335809 (which equals the
approximation of the RHS integral at N = 1013) for v(x) = sin(x(1)) exp(x(2)). Right: three-
dimensional Baker's map. Here, we compute the absolute error with respect to the reference value of
0 for v(x) = sin(x(1)) sin(3/2x(2))x(3). The dashed lines represent the slope  - 1/2 in the logarithmic
scaling. (Color is available online only.)

the Monte Carlo approximations of the LHS and RHS of (4.15) approach each other as
N \rightarrow \infty with the rate \scrO (1/

\surd 
N), which directly confirms the correctness of Algorithm

1. Recall that we require g to regularize the linear response formula, as it involves
derivatives of strongly oscillatory functions (see section 2). The examples presented in
this section, however, include mildly oscillatory functions v(x) with derivatives that
behave similarly (note that they involve a combination of trigonometric, exponential,
and linear functions). Nevertheless, we observe significantly smaller errors of the RHS
approximation in the two-dimensional Baker's map case. Note that the approximation
error of Monte Carlo integration also depends on the variance of the integrand, which
can be upperbounded by a quantity proportional to the L2(\mu )-norm of the SRB
density gradient g, denoted by \| g\| L2(\mu ). Indeed, \| g\| L2(\mu ) equals \scrO (10 - 2) and \scrO (101)
for the two- and three-dimensional Baker's maps, respectively. This explains the
significantly better performance of the Monte Carlo procedure in the former case.
Therefore, if \| g\| L2(\mu ) exists and is sufficiently small, Monte Carlo integration might
be significantly cheaper if applied to the regularized integrals of this type, regardless
of the behavior of v(x). If g is not even Lebesgue-integrable, i.e., g /\in L1(\mu ), the
integrals in (4.15) do not converge, as shown in [35].

5. Conclusions. Ruelle's linear response formula is fundamental in the con-
struction of numerical methods for sensitivity analysis of n-dimensional hyperbolic
chaotic systems. Its original form, however, is impractical for direct computation
due to the presence of derivatives of composite functions that grow exponentially in
time. Fortunately, it is possible to easily regularize this expression through partial
integration. In case of nonuniform measures describing the statistics of chaos, the
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by-product of the integration by parts, per the generalized fundamental theorem of
calculus, involves the SRB density gradient g defined as the directional derivative of
conditional SRB density on m-dimensional unstable manifolds. Computation of g is
the price that must be paid for a computable version of Ruelle's formula.

Using the measure-based coordinate parameterization, the time evolution of the
measure gradient is rigorously derived by applying the measure preservation property,
differentiating the coordinate charts with the chain rule on smooth manifolds. Indeed,
g can be computed in a recursive manner by solving a set of \scrO (m) first- and \scrO (m2)
second-order tangent equations, as well as step-by-step QR-factorization and inversion
of n\times m and m\times m matrices, respectively. While the total cost of approximating g
at N consecutive points along a trajectory is \scrO (Nn3m2) in the worst-case scenario,
the actual computational cost may scale linearly with the dimension of the system
in many real-world models due to their sparse structure. Moreover, this procedure
requires storing \scrO (m2) n-dimensional vectors only from the current time step to
advance the iteration in time. Therefore, in terms of the hardware requirements,
our algorithm would definitely be a reasonable choice for high-dimensional physical
systems, since m \ll n.

The algorithm we propose is compatible with existing methods for sensitivity
analysis that stem from the linear response theory, including the space-split sensitiv-
ity (S3) and FDT-based methods. Many of them approximate sensitivities through
an ergodic-averaging Monte Carlo procedure and require knowledge of the directional
derivative of conditional SRB measures. Moreover, g can be used to assess the differ-
entiability of statistical quantities in hyperbolic systems, which is a recurring theme
in theoretical studies of chaos. Thus, we believe our method provides a new major
tool for both rigorous analysis and applied studies of large chaotic systems.

Supplementary material. To facilitate the reproduction of all reported numer-
ical results, linked to the main article webpage are the Python code and data used to
generate Figures 2--9.

Conflict of interest. The authors declare that they have no conflict of interest.

Appendix A. Applying the simplified recursive formula for SRB den-
sity gradient to one-dimensional noninjective maps. Throughout this paper,
we assume \varphi is an invertible map. Based on this assumption, we directly use the
measure preservation property to derive a recursive formula for g, including the sim-
plified version for maps with straight unstable manifolds, as described in section 3.2.
However, in the literature, one can find several one-dimensional maps, such as the
sawtooth/Bernoulli map [34], cusp map [24], logistic map [39], onion map [35], tent
map [4], and so forth. All of them are scientifically relevant, as they represent some
simplified physics or feature interesting mathematical properties. However, most of
them are noninjective, which violates the basic assumption of our derivation. In this
section, however, we argue that (3.10) can still be used to compute g for such maps.

Many of the popular one-dimensional chaotic maps (such as those listed above)
are two-to-one. Thus, we assume \varphi satisfies this condition; however, the argument we
present can be naturally extended to other types of surjection. Let us also assume,
without loss of generality, that \varphi : [0, 1] \rightarrow [0, 1] and \varphi is monotonic in [0, 0.5) and
(0.5, 1]. Let us now define a two-dimensional analogue of \varphi , denoted by \varphi 2D : [0, 1]2 \rightarrow 
[0, 1]2 and satisfying

(A.1) xk+1 = \varphi 2D(xk) =

\Biggl[ 
\varphi (x

(1)
k )

x
(2)
k /2 + 0.5\lfloor 2x(1)

k \rfloor 

\Biggr] 
.
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Note that \varphi 2D is invertible and resembles the two-dimensional Baker's map (see

(3.11)). The invertibility is guaranteed by adding the floor function in \varphi 
(2)
2D. Analo-

gously to the two- and three-dimensional Baker's maps, here the discontinuity point

is located at x(1) = 0.5, which means that the value of 0.5 is added to x
(2)
k /2 if

x
(1)
k > 0.5. If the monotonicity breaking point was different, then the coefficients

of the floor function would need to be modified accordingly. One of the main mes-
sages of this example is to point out that any surjective one-dimensional map can be
represented as a higher-dimensional invertible map with one positive LE.

Note that one-dimensional unstable manifolds of \varphi 2D are aligned with the first
phase space coordinate, per the argument given in section 3.2. Thus, its SRB dis-
tribution is similar to the one of Baker's map presented in Figure 3. Note also that
the horizontal deformation of the trajectory of \varphi 2D is solely determined by \varphi . This
implies that the SRB distribution of \varphi is in fact an integral of SRB distributions of
\varphi 2D restricted to single unstable manifolds over all values of x(2). In other words,
\varphi 2D scatters the SRB measure of \varphi (which is supported on [0,1]) over an infinite set
of vertically stacked intervals [0, 1] (which geometrically coincide with unstable mani-
folds of \varphi 2D). This further implies the SRB density of \varphi equals the SRB distribution
of \varphi 2D integrated with respect to the vertical (second) coordinate.

In case of the map defined by (A.1), the simplified recursive formula for g can be
expressed in terms of phase space derivatives of \varphi (see section 3.2 for the derivation),

(A.2) g(\varphi (x)) =
g(x)

\varphi \prime (x)
 - \varphi \prime \prime (x)

\varphi \prime (x)2
.

Here, the prime symbol (\prime ) denotes differentiation with respect to phase space. Let
\rho (x) be the SRB density of \varphi . The g(x) function that satisfies (A.2) is not the SRB
density gradient of \varphi , defined as g\varphi (x) := \rho \prime (x)/\rho (x). According to our discussion
in section 3.2, g(x) is in fact a conditional SRB density gradient of \varphi 2D associated
with the unstable manifold parameterized by x(2). However, as we discussed in the
previous paragraph, the SRB measure of \varphi can be computed by integrating ``slices""
of the SRB measure of \varphi 2D parallel to x(1). This implies that, given the definition of
the SRB density gradient, g\varphi (x) can be computed by Lebesgue-integrating the SRB
density gradients obtained in the above iteration along the vertical axis.

In practice, to construct a trajectory-based algorithm for g\varphi , we can directly use
the recursion in (A.2). The algorithm we propose is the following. Divide the phase
space [0, 1] in K \in \BbbZ + bins of equal width. Generate a sufficiently long sequence
\{ g0, g1, g2, . . . \} using (A.2) starting from a random initial condition g0. For each bin,
take the average of the members of the sequence that correspond to one bin. Based
on our discussion above, the obtained average value converges to g\varphi . This algorithm
in fact provides a piecewise constant approximation of g\varphi .

To verify our argument, we present a numerical experiment in which we apply the
algorithm to two different one-dimensional maps, the sawtooth map and onion map.
Both of them are two-to-one and piecewise smooth. Figure 7 shows raw values of the
sequence \{ g0, g1, g2, . . . \} obtained using (A.2) and their averaged values, as well as
the finite-difference (FD) approximation of g\varphi using empirical SRB densities of these
maps. We observe there is a good agreement between the averaged values and FD
approximations in both cases.

Finally, we perform the relative error convergence test of the averaged values
with respect to the trajectory length N . We focus on two different bins and compute
the relative error with respect to a reference value generated using significantly more

D
ow

nl
oa

de
d 

09
/2

0/
22

 to
 1

8.
9.

61
.1

11
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIFFERENTIATING SRB DENSITY ON UNSTABLE MANIFOLDS A333

Fig. 7. SRB density gradient generated for the sawtooth map xk+1 = 2xk + s sin(2\pi xk) mod 1

at s = 0.1 (left) and the onion map xk+1 = 0.97
\sqrt{} 

1 - | 1 - 2xk| \gamma at \gamma = 0.4 (right). The averaged
values (red dots) were computed by averaging the raw values (blue dots) in each of 2048 bins. The
finite-difference approximation data points represent the central finite-difference approximation of
the SRB density gradient using the definition of g and empirically computed SRB densities. We
generated a trajectory of length N = 106 to compute the raw/averaged values of g. (Color is available
online only.)

samples. Our results generated for the sawtooth map are shown in Figure 8. As
expected, the error decays and is upperbounded by \scrO (1/

\surd 
N), which is a consequence

of the Lebesgue integration (or, equivalently, weighted averaging) of (conditional) SRB
density gradients. This example shows that a trajectory of minimum length N = 109

should be generated in order to obtain an approximation with a relative error smaller
than 1\%.

Appendix B. Probing the hyperbolicity of the Baker's map. Hyperbolic-
ity guarantees the tangent space can be decomposed into two D\varphi -invariant subspaces,
where one is asymptotically expanding (unstable), while the other one is asymptoti-
cally contracting (stable). If the expansion/contraction is uniform, then such systems
are uniformly hyperbolic. Hyperbolicity is the major assumption for the dynamical
systems we consider in this paper. Indeed, if the system is hyperbolic and has abso-
lutely continuous conditional measures on unstable manifolds, then the SRB measure
exists [12]. It is not always possible to analytically verify that a particular map is
hyperbolic. Fortunately, there exist numerical procedures allowing for an efficient
assessment of hyperbolicity [19]. Most of them test the two basic criteria of hyperbol-
icity: (1) no zero LEs, and (2) strict separation of the stable and unstable subspaces.
Here, we apply the method proposed in [20], which computes the basis vectors of the
two subspaces and approximates the smallest angle between them at different points
of the manifold. If any of these angles is close to zero, then the stable and unstable
subspaces are (almost) tangent, which implies the system is likely to be nonhyperbolic.
In Figure 9, we compute the PDF of d \in [0, 1], which is a normalized quantity associ-
ated with the smallest principal angle between the stable and unstable subspaces (our
d equals k! dk; see the above reference for a rigorous definition of dk). If the distribu-
tion is evidently separated from the origin (d = 0), then it is highly likely there are
no tangencies between the two subspaces. We observe that the normalized parameter
d is highly unlikely to drop below the value of 0.97. As a by-product of the applied
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Fig. 8. Relative error of the approximation of g\varphi (x) versus the trajectory length N . The error
was computed for the sawtooth map at s = 0.1 at two phase space coordinates, x \approx 0.4 (blue curve)
and x \approx 0.6 (orange curve). All error values were computed with respect to the reference value
generated using N = 3.3 \cdot 1011 samples. The reference dashed line represents the slope  - 1/2 in the
logarithmic scaling. (Color is available online only.)

Fig. 9. Hyperbolicity test performed for the two- and three-dimensional Baker's maps. The pa-
rameter values are the same as the ones used is the numerical examples in section 3 (two-dimensional
Baker's) and section 4 (three-dimensional Baker's). To generate the PDF, we computed N = 106

samples of d along a trajectory.

algorithm, we computed the spectrum of LEs (alternatively, one can use Benettin et
al.'s algorithm [5]). The LEs are approximately equal: 0.69 \approx log(2),  - 0.69 (two-
dimensional Baker's with straight unstable subspaces), 0.69 \approx log(2),  - 0.71 (two-
dimensional Baker's with curved unstable subspaces), 1.09 \approx log(3), 0.69 \approx log(2),
 - 1.16 (three-dimensional Baker's). Although a small change in the parameter value
does not significantly impact the LE values, it may move the PDF of d closer to the
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origin. Based on the empirical evidence presented in this section, we conclude that
the two- and three-dimensional Baker's maps are clearly hyperbolic at the chosen
parameter values.
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