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Provably Safe Trajectory Optimization in the Presence of Uncertain

Convex Obstacles

Charles Dawson, Ashkan Jasour, Andreas Hofmann, and Brian Williams

Abstract— Real-world environments are inherently uncertain,
and to operate safely in these environments robots must be
able to plan around this uncertainty. In the context of motion
planning, we desire systems that can maintain an acceptable
level of safety as the robot moves, even when the exact
locations of nearby obstacles are not known. In this paper, we
solve this chance-constrained motion planning problem using
a sequential convex optimization framework. To constrain the
risk of collision incurred by planned movements, we employ
geometric objects called ǫ-shadows to compute upper bounds
on the risk of collision between the robot and uncertain
obstacles. We use these ǫ-shadow-based estimates as constraints
in a nonlinear trajectory optimization problem, which we then
solve by iteratively linearizing the non-convex risk constraints.
This sequential optimization approach quickly finds trajectories
that accomplish the desired motion while maintaining a user-
specified limit on collision risk. Our method can be applied
to robots and environments with arbitrary convex geometry;
even in complex environments, it runs in less than a second
and provides provable guarantees on the safety of planned
trajectories, enabling fast, reactive, and safe robot motion in
realistic environments.

I. INTRODUCTION

In an ideal world, robots could trust the maps they use

to navigate; however, anyone who has deployed a robotic

system in the real world will know how difficult it is to

obtain a perfectly accurate map. Localization uncertainty,

sensor noise, human unpredictability, and other factors all

ensure that few models survive contact with the real world.

Robots must instead plan using uncertain models, optimizing

performance while limiting the amount of risk incurred in

accomplishing their goals. In the context of motion planning,

this challenge takes the form of optimizing a planned trajec-

tory while limiting the probability of collision with nearby

obstacles (e.g. a human with unpredictable future actions).

Motion planning in the absence of uncertainty is a

well-studied problem. Approaches such as sampling-based

planning (RRT), optimization techniques (TrajOpt [1]), and

combined sampling-optimization planners (as in [2]) have

demonstrated impressive performance in a wide range of

applications. There have been several attempts to apply

similar techniques in the uncertain case [3], [4], [5], [6], [7],

[8], including modified RRT algorithms [5], [4] and outer-

loop optimization approaches [8], [6].

Unfortunately, many uncertainty-aware planners lack sup-

port for complex geometry in the robot or environment,

limiting their usefulness in many applications (e.g. industrial
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Fig. 1. An example of a chance-constrained trajectory for a pick-and-place
task, where the robot navigates around uncertain obstacles (red, with arrows
indicating directions in which the obstacles’ locations are most uncertain).

pick-and-place or home robotics). When the robot can be

approximated as a point and environment as a system of lin-

ear inequalities, collision risk can be estimated analytically,

allowing for efficient path planning under uncertainty [3],

[7], [9]. In these simplified environments, techniques such

as mixed-integer or disjunctive mathematical programming

have been applied to great effect [3]. In contrast, approaches

dealing with more complex geometry (i.e. unions of convex

shapes) cannot rely on analytical solutions. Instead, they

typically rely on computationally expensive sampling- or

numerical integration-based techniques for estimating colli-

sion risk, yielding estimates that are not easily differentiable

(making optimization difficult) and not guaranteed to be

accurate (limiting the safety of such approaches) [10], [8].

One notable approach to chance-constrained motion plan-

ning in the literature is that of Dai et al., which employs

an iterative optimization approach to satisfying chance con-

straints and is notable for supporting complex robot and

environment geometry [2]. This approach uses a quadrature

sampling approach to estimate collision risk stemming from

uncertainty in the robot’s state, but this reliance on sampling

leads to slow performance and a lack of safety guarantees.

In applications such as home robotics or collaborative

manufacturing, uncertainty in the state of the environment

often dominates any uncertainty in the robot’s own state

(simply because joint encoders are much more accurate

than visual object-detection systems). Furthermore, when

developing robots to operate near humans, we seek to

provide guarantees on system safety. As a result, there is

a need for algorithms that can quickly plan motions through
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uncertain environments with rich geometry (as in Fig. 1)

while providing strong guarantees on safety.

A. Contributions

This paper makes two main contributions. First, we extend

our previous work on risk estimation [11] to compute the

gradient of collision risk with respect to robot state, through

the use of geometric objects called ǫ-shadows to certify upper

bounds on collision risk. These risk estimates and gradients

can be computed quickly even when the robot and envi-

ronment have complex geometry; moreover, the ǫ-shadow

formulation provides theoretical guarantees that the true risk

of collision will never exceed the certified bound. We focus

our approach on the case where the robot and environment

can be represented as collections of convex shapes and where

the positions of obstacles in the environment are subject to

additive Gaussian uncertainty.

For our second contribution, we use these risk certificates

to optimize robot trajectories subject to a constraint on

the risk of collision over the entire trajectory, employing

a framework we call sequential convex optimization with

risk allocation (SCORA). Using this framework, which we

implement on top of existing sequential optimization solvers,

we demonstrate path planning with bounded collision risk

in simulated environments with non-trivial geometry. This

optimization approach not only runs quickly (< 0.5 s in our

experiments) but provides formal guarantees on the safety of

optimized trajectories.

B. Notation

In the following discussion, we use script symbols (e.g.

X , O) to denote subsets of R
n, such as the set of points

occupied by one link of a robot or the set of points

occupied by an obstacle. In the case when obstacles are

subject to additive uncertainty in position, we denote the

nominal geometry of the obstacle, located at the obstacle’s

expected position, as O ⊂ R
n. Formally, the set of points

O actually containing the uncertain obstacle is related to O
by O = {x+ d : x ∈ O}, where the uncertain translation

d ∼ N (0,Σ) is a zero-mean multivariate Gaussian random

variable with covariance Σ. We will restrict our analysis to

convex obstacle geometry, since non-convex geometries can

be approximated as convex decompositions [12].

II. RISK CERTIFICATES AND GRADIENT CALCULATION

This section reviews our method for estimating the colli-

sion risk between a robot and its environment and extends

this approach to provide the gradient of these risk estimates

as well. We begin by introducing the concept of an ǫ-
shadow: a geometric object that is guaranteed to contain

an uncertain obstacle with some probability. In particular,

as in our previous work on risk estimation [11], we follow

Axelrod, Kaelbling, and Lozano-Pérez in considering only

maximal ǫ-shadows, which we define below [4].

Definition 1: (maximal ǫ-shadow) A set S ⊆ R
n is a max-

imal ǫ-shadow of an uncertain obstacle O if the probability

P (O ⊆ S) = 1− ǫ.

Intuitively, a maximal ǫ-shadow is a shape that completely

contains an uncertain obstacle with some specified probabil-

ity. If there exists an ǫ-shadow of an obstacle O that does not

contact the robot, then the risk that the robot collides with

that obstacle is guaranteed to be no greater than ǫ. Using

these ǫ-shadows, the problem of finding an upper bound on

collision risk reduces to the problem of finding a large ǫ-
shadow for each obstacle (equivalently, a small upper bound

ǫ) that does not intersect with the robot.

How one constructs such shadows varies based on how

obstacle uncertainty is modeled. In their work on this sub-

ject, Axelrod, Kaelbling, and Lozano-Pérez model uncer-

tain obstacles as the intersection of linear inequalities with

normally-distributed coefficients [4]. This model naturally

captures the uncertainty of point-cloud obstacles (e.g. LIDAR

data), but for obstacles detected by other means (e.g. a

visual pose estimation system) it is more natural to model

the object as a known shape O with position subject to

additive Gaussian noise. By choosing this uncertainty model,

we can guarantee that the corresponding ǫ-shadows will

be convex as long as the underlying obstacles are convex,

enabling efficient collision checking (the same is not true for

Axelrod, Kaelbling, and Lozano-Pérez’s formulation). For a

proof of this fact, the reader is referred to our previous work

[11]. Here, we will review our approach for finding large

ǫ-shadows that do not intersect the robot, then present an

extension that also provides the gradient of collision risk

with respect to robot state.

A. Estimating risk using ǫ-shadows

Recall that the uncertain obstacle O is related to the

nominal geometry O by O = {x+ d : x ∈ O}, as shown

in Fig. 2a, where d ∼ N (0,Σ) is a zero-mean Gaus-

sian random variable. By the properties of the multivariate

Gaussian distribution, if we define the ellipsoid Dǫ1 =
{

d : dTΣ−1d ≤ φ−1(1− ǫ1)
}

(as in Fig. 2b), where φ−1

is the inverse cumulative distribution function (CDF) of the

chi-squared distribution with n degrees of freedom, then

P (d ∈ Dǫ1) = 1− ǫ1 [4].

Next, we define the set Sǫ1 as the Minkowski sum of the

nominal obstacle shape and the ellipsoid Dǫ1 , as illustrated

in Fig. 2c, so that

Sǫ1 = {x+ d : x ∈ O, d ∈ Dǫ1} (1)

Theorem 1: Sǫ1 is convex and a maximal ǫ1-shadow of

O.

Proof Sketch: It is helpful to think of Dǫ1 (centered at

some point in O) as an ǫ1-shadow of that point in O. By

taking the Minkowski sum of O and Dǫ1 , we create a shape

that contains every point in O with probability 1 − ǫ1, and

thus contains O with probability 1−ǫ1. Since the Minkowski

sum of two convex shapes is itself convex, Sǫ1 is convex iff

the nominal geometry O is convex (Dǫ1 is always convex).

A detailed proof can be found in [11].

To find the largest such Sǫ1 that does not contact the robot

(correspondingly, the smallest risk bound ǫ1), we can employ

a simple bisection line search; however, ǫ-shadows of this
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Fig. 2. An illustration of the ǫ-shadow approach to finding certifiable
collision risk estimates. (a) The uncertain obstacle is translated from its
nominal location by some uncertain vector. (b) We construct an ellipsoid
to contain that translation vector with probability 1 − ǫ1. (c) We sum that
ellipsoid with the nominal geometry to produce the ǫ1-shadow, guaranteed
by Theorem 1 to contain the obstacle with probability 1− ǫ1. (d) We find
the largest such shadow that does not intersect the robot, but this estimate is
conservative. (e) By expanding the ǫ1-shadow in the n̂ direction away from
the robot, as described in Algorithm 1, we find a larger shadow Sǫ1

∩ Sǫ2

that yields a less conservative estimate (ǫ1 + ǫ2)/2.

form (shown in Fig. 2d) tend to be very conservative. Be-

cause the robot is considered at risk of collision whenever the

obstacle protrudes beyond its ǫ-shadow, even if it protrudes

away from the robot, this simple ellipsoid-sum approach has

a high false-positive rate.

To find a less conservative estimate that still certifies an

upper bound on collision risk, we can exploit the geometric

structure of the problem. As shown in Fig. 2d, there is

often free space extending away from the robot where the

ǫ-shadow can expand without intersecting the robot. We can

take advantage of this free space by preferentially expanding

the ǫ-shadow in that direction until a second intersection

occurs, as shown in Fig. 2e.

To achieve this preferential expansion, we begin with a

single ellipsoid-sum ǫ-shadow Sǫ1 that contacts the robot at

one point and augment it with a second shadow constructed

from a half-ellipsoid, as illustrated in Fig. 2e. If n̂ is the

contact normal between Sǫ1 and the robot, we define the half-

ellipsoid D′

ǫ2
=

{

d : dTΣ−1d ≤ φ−1(1 − ǫ2), n̂
Td ≥ 0

}

and corresponding convex shadow Sǫ2 (extending away from

the robot in the n̂ direction) as the Minkowski sum

Sǫ2 =
{

x+ d : x ∈ O, d ∈ D′

ǫ2

}

(2)

We can find this expanded shadow using a second line

search, which we warm-start with the results of the first

search, as illustrated in Algorithm 1 [11]. Because of this

warm-start, Algorithm 1 will always find some ǫ2 ≤ ǫ1
(ǫ2 = ǫ1 only when there is no surrounding free space).

By taking the union of this second shadow Sǫ2 with the

original Sǫ1 , we obtain the larger shadow Sǫ′ = Sǫ1 ∪ Sǫ2

Algorithm 1: Multiple-expansion method for certifying

bounds on robot-obstacle collision risk.

Input: Obstacle O, covariance Σ, and tolerance ǫtol
Result: Risk estimate ǫ
Conduct bisection search to find smallest ǫ1 ∈ (0, 1) to

precision ǫtol such that the ǫ1-shadow of O
constructed using Eq. (1) does not intersect robot;

n̂← unit vector from the robot into the obstacle at the

point of collision;

Conduct bisection search to find smallest ǫ2 ∈ (0, ǫ1) to

precision ǫtol such that the ǫ2-shadow of O
constructed using Eq. (2) does not intersect robot;

ǫ← (ǫ1 + ǫ2)/2

that provides a tighter bound ǫ′ = (ǫ1 + ǫ2)/2 on collision

risk by capturing more of the collision-free workspace.

Theorem 2: Sǫ′ is a maximal ǫ′-shadow of O.

Proof Sketch: By the symmetry of the multivariate

Gaussian (under reflection about the origin), we see that

D′

ǫ2
is a maximal ǫ2/2-shadow for the uncertain translation

d ∼ N (0,Σ). By the same reasoning used in Theorem 1,

the sum Sǫ2 is a maximal ǫ2/2-shadow of O.

Since O is offset from O by d ∼ N (0,Σ), we see that

P (O ⊆ Sǫ′) = P (d ∈ Dǫ1) + P (d ∈ D′

ǫ1
)

− P (d ∈ Dǫ1 ∩ D
′

ǫ2
) (3)

= ǫ1 +
ǫ1
2
− P (d ∈ Dǫ1 ∩ D

′

ǫ2
) (4)

Since Algorithm 1 ensures ǫ2 ≤ ǫ1, we can

simplify the intersection Dǫ1 ∩ D
′

ǫ2
to D′

ǫ1
=

{

d : dTΣ−1d ≤ φ−1(1− ǫ1), n̂
T d ≥ 0

}

. Again, by the

symmetry of the Gaussian distribution, we see that

P (d ∈ D′

ǫ1
) = ǫ1/2, so P (O ⊆ Sǫ′) = (ǫ1 + ǫ2)/2

An important benefit of this risk estimation approach

(compared to that used by Axelrod, Kaelbling, and Lozano-

Pérez) is that both Sǫ1 and Sǫ2 are convex shapes, allow-

ing fast collision checking between the ǫ-shadows and the

robot. Moreover, we can check for collision using implicit

Minkowski sums (represented as support vector mappings),

avoiding the computational cost of constructing set-wise

sums. Support vector mappings represent convex shapes as

functions taking directions to points on the shape furthest

in that direction; they are commonly used in computational

geometry algorithms [13]. For a more detailed proof of the

correctness of this approach, or for details on implementation

and performance, the reader is referred to [11]; our intention

here is to extend this method to compute the collision risk

gradient and develop a trajectory optimization framework,

not to re-derive the basic algorithm.

B. Derivation of risk gradient

A key advantage of our technique is that these risk

estimates are differentiable with respect to robot state, unlike

other estimation methods in the literature (e.g. sampling [8]).

The existence of this derivative will allow us to efficiently



Fig. 3. To derive the gradient, we isolate the component ellipsoid that
makes contact with the robot.

incorporate collision risk as a constraint in a nonlinear

optimization framework.

The basis for our derivation of the gradient is summarized

in Fig. 3. Once we have found the largest ǫ-shadow (cor-

respondingly, smallest ǫ) that lies tangent to the robot, we

can isolate the ellipsoid D =
{

d : dTΣ−1d ≤ φ−1(1 − ǫ)
}

that makes contact with the robot, centered at some point

on O. For simplicity, we will consider just one shadow Sǫ,
but our approach can be extended to the combined shadow

Sǫ′ = Sǫ1 ∪ Sǫ2 , since the gradient of the combined risk

estimate ǫ′ = (ǫ1 + ǫ2)/2 is simply the linear combination

of the gradients of ǫ1 and ǫ2.

Since the size of this isolated ellipsoid Dǫ implicitly

sets the risk estimate ǫ, we can examine how this ellipsoid

changes with small perturbations to the robot state. We

assume that these small joint angle perturbations δθ ≪ θ0

do not change the location of Dǫ, for example by causing

its center to move to another point on O.

Let x be the vector from the center of Dǫ to the point of

contact. This vector can be calculated easily, as it is simply

the support vector of Dǫ in the −n̂ direction. Due to the

definition of Dǫ,

x
TΣ−1

x = φ−1(1− ǫ), (5)

so we can express the risk estimate in terms of x, as

ǫ = 1− φ(xTΣ−1
x). (6)

This expression is differentiable, so we derive the gradient in

terms of the chi-squared probability density function (PDF)

with n degrees of freedom, χ2

n,

∇xǫ = −χ
2

n(x
TΣ−1

x)
(

2xTΣ−1
)

(7)

By linearizing the robot’s pose around its current joint state

θ0 and computing the Jacobian J at the point of contact, we

can express the change in x in terms of a small change in

joint state δθ as

δx = Jδθ (8)

Combining Eqs. (7) and (8) yields the gradient of estimated

risk with respect to the robot’s joint state:

∇θǫ = −χ
2

n(x
TΣ−1

x)
(

2xTΣ−1
)

J (9)

Using this gradient, we can linearize the risk of collision

with each obstacle for a given robot configuration θ0 (where

ǫ0 is the risk estimated for that configuration):

ǫ(θ) ≈ ǫ0 − χ2

n(x
TΣ−1

x)
(

2xTΣ−1
)

J (θ − θ0) (10)

Since x can be calculated quickly using support-vector

geometry and J can be queried from any external kinematics

engine, this gradient can be constructed with relatively little

computational effort. With this linearization in hand, we can

employ sequential convex optimization to find near-locally

optimal trajectories that maintain desired risk levels.

III. SEQUENTIAL CONVEX TRAJECTORY OPTIMIZATION

Optimizing the trajectory of a robot moving around ob-

stacles is a challenging non-convex optimization problem,

even in the absence of uncertainty. Furthermore, complex

robot and environment geometries make it difficult to apply

traditional linear or quadratic programming methods, many

of which use a point-robot approximation [3]. Instead, deter-

ministic trajectory optimizers that support complex geometry,

such as TrajOpt [1], solve this problem using sequential

convex optimization (SCO).

At a basic level, SCO, seeks to solve the non-convex

optimization problem

minimize f(x) (11)

subject to gi(x) ≤ 0, i = 1, 2, . . . , nineq (12)

hj(x) = 0, j = 1, 2, . . . , neq (13)

where f , gi, and hj are (possibly non-convex) objective,

inequality constraint, and equality constraint functions, re-

spectively, and x is a vector of decision variables (typically

joint angles θt at each of T timesteps). Since f , gi, and hj

can be non-convex, SCO repeatedly constructs and optimizes

a convex approximation of Problem (11) until the true non-

convex constraints are satisfied and the solution converges to

a local optimum of f . Some SCO solvers (including TrajOpt)

also dualize the constraints by incorporating a cost penalty

for constraint violations, which improves performance when

initialized with an infeasible solution [1].

In our work, we extend the SCO approach to consider

constraints on the probability of collision in addition to de-

terministic collision-avoidance constraints. In the absence of

uncertainty, one avoids collision by constraining the signed

distance sdO(θt) between the robot and each obstacle O to

be greater than some fixed safety margin at each timestep

[1]. When the obstacles’ locations are uncertain, we need

to consider not only the risk of collision at each timestep

but also how risk accumulates over the entire trajectory.

In practice, we would like to limit the risk incurred by

the robot over the entire plan rather than merely limiting

risk at each timestep (this type of constraint is referred to

as a joint chance constraint). We enforce the joint chance

constraint by adding the additional constraint (17), which

allows the optimizer to intelligently allocate risk across

timesteps, taking more risk at some points and less at others

in order to satisfy the joint risk threshold. In previous work



on chance-constrained optimization, this allocation has been

shown to improve the performance of risk-aware systems, as

it allows the system to spend and save risk at different times

as needed to achieve its objective [3], [9].

To formalize this approach, which we call SCORA (se-

quential convex optimization with risk allocation), we denote

the estimated risk of collision with obstacle O in state θt as

ǫO(θt), which we incorporate into the optimization problem:

minimize

T−1
∑

t=1

‖θt − θt−1‖
2

subject to (14)

sdO(θt) ≥ dmargin, t = 0, . . . , T − 1; ∀O (15)
∑

O

ǫO(θt) ≤ δt, t = 0, . . . , T − 1 (16)

T−1
∑

t=0

δt ≤ ∆ (17)

Our decision variables in this problem are the joint an-

gles at each timestep θt and the risk allocations δt. We

assume trajectory tracking is accomplished using a low-

level controller and do not consider dynamics. Since the

risk of collision at each timestep is bounded by δt, the risk

of collision during the entire plan cannot exceed
∑T−1

t=0
δt.

Thus, constraints (16) and (17) ensure that the joint chance

constraint is met while providing the freedom to take on

more or less risk as needed to achieve good performance.

We retain the constraint on signed distance in our formulation

because the collision risk estimates saturate at 1 when the

robot is in contact with the nominal obstacle geometry, so

this constraint is needed to penalize contact and escape risk-

saturated configurations.

Although the objective (14) and joint chance con-

straint (17) are convex functions of the decision variables

θt and δt, the functions sd(θ) and ǫ(θ) are non-convex in

general, so we need to construct a convex approximation of

Problem (14) about the current solution θt,0 and δt. We can

linearize the individual chance constraints (16) according to

Eq. (10) and the signed distance function (15) according to

[1], yielding the convex approximation:

minimize

T−1
∑

t=1

‖θt − θt−1‖
2

subject to (18)

sd(θt,0) + n̂
T
J (θt − θt,0) ≥ dmargin,

t = 0, . . . , T − 1; ∀O (19)
∑

O

[

ǫO(θt,0)− χ2

n(x
TΣ−1

x)
(

2xTΣ−1
)

J (θ − θt,0)
]
∣

∣

O

≤ δt, t = 0, . . . , T − 1 (20)

T−1
∑

t=0

δt ≤ ∆ (21)

This approximation is a quadratic program that can be

solved quickly using an off-the-shelf convex optimizer. Of

course, additional linear (or convexifiable) constraints can

be added to this formulation if desired (e.g. to enforce joint

angle limits).

IV. RESULTS

We implement the risk estimation algorithm presented in

Section II using the C++ Bullet collision checking library.

A detailed analysis of the performance of this algorithm in

environments of varying complexity is presented in [11]; in

summary, Algorithm 1 provides strong upper bounds on col-

lision risk and runs in less than 200 µs in test environments.

Here, we extend this implementation to provide the gradient

of the risk estimate along with the estimate itself.

We implement our SCORA optimization framework using

TrajOpt’s built-in SCO solver, to which we add our risk

estimation, gradient, and allocation methods [1]. All exper-

iments were run on an Intel i9-7960X CPU. We tested our

approach in the scenarios shown in Figs. 4 and 5 (where

orange arrows indicate uncertainty in obstacle location, with

standard deviations ranging between 7-30 cm). We set a joint

chance constraint of 1% and 10% for the scenarios in Figs. 4

and 5, respectively.

To benchmark our approach, we provide two comparisons.

The first is with a trajectory optimized without any chance

constraints. This risk-blind comparison provides a baseline

for both the length of the optimal collision-free path and the

time needed to find that path, allowing us to quantify the

cost of imposing chance constraints in later examples.

The second comparison is with a trajectory optimized

using the iterative risk allocation (IRA) method presented

presented by Dai et al. in [8]. This approach uses sampling

to approximate the risk of collision at each timestep and

repeatedly re-solves a deterministic optimization with safety

margins dmargin adjusted to penalize regions of high colli-

sion risk. The IRA algorithm presented in [8] focuses on

uncertainty in robot state, but we adapt this approach to

consider obstacle uncertainty instead. This method provides a

means for comparing SCORA against a previously-published

chance-constrained trajectory optimization algorithm.

Our results are shown in Table I. The collision-free

optimization was seeded with straight lines in joint space,

while IRA and SCORA were seeded with the output of the

collision-free optimization.

TABLE I

COMPARISON OF TRAJECTORY OPTIMIZATION ALGORITHMS

Algorithm Runtime1 Path length1 Collision

(s) (rad) risk2

Fig. 4 Risk-blind 0.005 2.35 59.16%
∆ = 1% IRA 0.480 2.65 20.85%
T = 10 SCORA 0.195 4.56 0.48%

Fig. 5 Risk-blind 0.154 7.21 18.87%
∆ = 10% IRA 2.202 7.22 9.22%
T = 17 SCORA 0.358 7.72 1.65%

1 Averaged over 1, 000 trials.
2 Averaged over 100, 000 trials.

Since neither scenario is a “piano-mover” problem where

very few feasible paths exist, we see that the risk-blind

optimization quickly finds a nominally collision-free tra-

jectory in both cases. Unsurprisingly, this trajectory is not



Setup Collision-free

IRA + sampling SCORA

Fig. 4. Optimized trajectories in our example scenario. The orange arrows
indicate directions in which obstacle locations are uncertain. Our SCORA
approach yields the most conservative trajectory, but it is the only approach
that satisfies the 1% collision risk constraint.

Setup Collision-free

IRA + sampling SCORA

Fig. 5. Optimized trajectories with a 10% collision risk constraint in a
pick-and-place task. Our SCORA approach not only satisfies the chance
constraint but also runs much faster than the IRA algorithm.

robust to uncertainty in obstacle position. The IRA approach

is somewhat more robust, but its reliance on sampling to

estimate collision risk means that even though the algorithm

converges, it often significantly underestimates the true risk

of collision. In particular, the sampling strategy it employs

cannot accurately measure low probabilities. As a result, IRA

successfully achieves the 10% risk bound but fails to achieve

the 1% bound.

In contrast, the SCORA approach proposed here not only

satisfies the chance constraint in both cases (due to the formal

guarantees of the ǫ-shadow method) but also converges

2.5-6 times more quickly than IRA. Our approach yields

longer, more conservative trajectories, in part due to the

conservatism of the ǫ-shadow bound, but this performance-

safety trade-off is typical in risk-aware systems, as the robot

can improve its performance by taking on more risk.

V. CONCLUSIONS

In this paper, we develop a sequential convex optimization

approach for solving the chance-constrained motion planning

problem. To quickly estimate the probability of collision

between the robot and uncertain obstacles, we use ǫ-shadows

to simultaneously certify an upper bound on collision risk

and derive the gradient of that risk with respect to robot state.

This gradient allows us to construct a convex approximation

of the chance-constrained trajectory optimization problem,

which we solve efficiently using sequential convex optimiza-

tion with risk allocation (SCORA).

We demonstrate our approach in simulation, yielding plan-

ning times under 0.5 s (2.5-6 times faster than previously-

published approaches) while ensuring that the optimized

trajectory respects the user-specified risk bound. Because

ǫ-shadow risk certificates are guaranteed never to under-

estimate the true risk of collision, our approach produces

provably safe motion plans even in the presence of obstacles

with rich geometry and uncertain location.
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