
MIT Open Access Articles

Convex Risk Bounded Continuous-Time Trajectory 
Planning in Uncertain Nonconvex Environments

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Jasour, Ashkan, Han, Weiqiao and Williams, Brian. 2021. "Convex Risk Bounded 
Continuous-Time Trajectory Planning in Uncertain Nonconvex Environments." Robotics: Science 
and Systems XVII.

As Published: 10.15607/RSS.2021.XVII.069

Publisher: Robotics: Science and Systems Foundation

Persistent URL: https://hdl.handle.net/1721.1/145548

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/145548
http://creativecommons.org/licenses/by-nc-sa/4.0/


Convex Risk Bounded Continuous-Time Trajectory
Planning in Uncertain Nonconvex Environments

Ashkan Jasour*, Weiqiao Han*, and Brian Williams
MIT, Computer Science and Artificial Intelligence Laboratory

{jasour,weiqiaoh,williams}@mit.edu

Abstract—In this paper, we address the trajectory planning
problem in uncertain nonconvex static and dynamic environments
that contain obstacles with probabilistic location, size, and geom-
etry. To address this problem, we provide a risk bounded trajec-
tory planning method that looks for continuous-time trajectories
with guaranteed bounded risk over the planning time horizon.
Risk is defined as the probability of collision with uncertain
obstacles. Existing approaches to address risk bounded trajectory
planning problems either are limited to Gaussian uncertainties
and convex obstacles or rely on sampling-based methods that
need uncertainty samples and time discretization. To address the
risk bounded trajectory planning problem, we leverage the notion
of risk contours to transform the risk bounded planning problem
into a deterministic optimization problem. Risk contours are the
set of all points in the uncertain environment with guaranteed
bounded risk. The obtained deterministic optimization is, in
general, nonlinear and nonconvex time-varying optimization. We
provide convex methods based on sum-of-squares optimization
to efficiently solve the obtained nonconvex time-varying opti-
mization problem and obtain the continuous-time risk bounded
trajectories without time discretization. The provided approach
deals with arbitrary probabilistic uncertainties, nonconvex and
nonlinear, static and dynamic obstacles, and is suitable for online
trajectory planning problems.

I. INTRODUCTION

In order for robots to navigate safely in the real world,
they need to plan safe trajectories to avoid static and moving
obstacles, such as humans and vehicles, under perception
uncertainties. The motion planning problem in dynamic en-
vironments is known to be computationally hard [1]. In this
paper, we address the trajectory planning problem in uncer-
tain nonconvex static and dynamic environments that contain
obstacles with probabilistic location, size, and geometry. In
this problem, the time-varying, nonconvex, and probabilistic
nature of the obstacle-free safe regions makes the trajectory
planning problem challenging.

Several approaches have been proposed to address the
trajectory planning problems. In the absence of obstacles, one
can use standard convex optimization to look for polynomial
trajectories that satisfy boundary and way-points conditions
[2]–[4]. In the presence of obstacles, sampling-based methods,
including rapidly exploring random tree (RRT) and probabilis-
tic roadmap (PRM), and virtual potential field methods are
widely used to find obstacle-free trajectories [2], [5]. In [6], a
mixed-integer optimization is provided for trajectory planning
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in the presence of convex obstacles. The proposed method
first uses convex segmentation to compute convex regions of
obstacle-free space. Then, it uses a mixed-integer optimization
to assign polynomial trajectories to the computed convex safe
regions. Also, [7] provides a moment-sum-of-squares-based
convex optimization to obtain piece-wise linear trajectories in
the presence of deterministic time-varying polynomial obsta-
cles without the need for time discretization.

Trajectory planning problems under uncertainty look for
trajectories with a bounded probability of collision with
uncertain obstacles. Existing methods to address trajectory
planning problems under uncertainty either are limited to
Gaussian uncertainties and convex obstacles [8]–[14] or rely
on sampling-based methods [15]–[17]. For example, chance
constrained RRT∗ algorithm in [11] assumes Gaussian un-
certainties and linear obstacles and performs a probabilistic
collision check for the nodes of the search tree. Hence, it
can not guarantee to satisfy the probabilistic safety constraints
along the edges of the search tree. The Monte Carlo-based
motion planning algorithms, e.g., [17], use a large number of
uncertainty samples to estimate the probability of collision of
a given trajectory. Sampling-based methods do not provide any
analytical bounds on the probability of collision and, due to a
large number of samples, can be computationally intractable.

Also, [18], [19] use moment-based approaches to address
non-Gaussian uncertainties in motion planning problems in
the presence of convex obstacles. More precisely, to obtain
the risk bounded trajectories, [18] uses first and second-order
moments of uncertainties and RRT∗ algorithm in the presence
of linear obstacles and [19] uses higher-order moments and
interior-point nonlinear optimization solvers in the presence
of ellipsoidal obstacles.

Statement of Contributions: In this paper, we propose novel
convex algorithms for risk bounded continuous-time trajectory
planning in uncertain nonconvex static and dynamic envi-
ronments that contain obstacles with probabilistic location,
size, geometry, and trajectories with arbitrary probabilistic
distributions. To achieve risk bounded plans:

1) We provide an analytical method to compute risk con-
tours maps. Risk contours allow us to identify risk bounded
regions in uncertain environments and transform nonlinear
stochastic planning problems into deterministic standard plan-
ning problems, in the presence of arbitrary probabilistic un-
certainties. Hence, standard deterministic motion planning
algorithms, e.g., RRT*, PRM, can be employed to look for
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safe (risk-bounded) plans.
2) To solve the obtained deterministic planning problems,

we provide two planners including i) sum-of-squares-based
RRT algorithm and ii) sum-of-squares-based convex optimiza-
tion that allows us to theoretically look for global optimal
plans in nonconvex environments.

3) We also provide continuous-time safety guarantees in
stochastic environments. To ensure safety, existing planning
under uncertainty algorithms “only” verify the safety of a finite
set of waypoints (time-discretization). Unlike the existing
planners, the provided planners of this paper ensure the (risk
bounded) safety of the continuous-time trajectories without the
need for time discretization.

The outline of the paper is as follows: Section II presents the
notation adopted in the paper and definitions of polynomials,
moments, and sum-of-squares optimization. In Section III, we
provide the problem formulation of risk bounded continuous-
time trajectory planning. Section IV provides analytical ap-
proaches to compute static and dynamic risk contours defined
for static and dynamic uncertain obstacles to identify the risk
bounded safe regions in uncertain environments. In Section V,
using the obtained risk contours, we provide sum-of-squares-
based planners to look for continuous-time risk bounded
trajectories in uncertain static and dynamic environments.
In Section VI, we present experimental results on the risk
bounded planning problems of autonomous and robotic sys-
tems followed by a discussion section. Finally, concluding
remarks and future work are given in Section VII.

II. NOTATION AND DEFINITIONS

This section covers notation and some basic definitions of
polynomials, moments of probability distributions, and sum-
of-squares optimization. For a vector x ∈ Rn and multi-index
α ∈ Nn, let xα =

∏n
i=1 x

αi
i .

Polynomials: Let R[x] be the set of real polynomials in
the variables x ∈ Rn. Given polynomial P(x) : Rn → R,
we represent P as

∑
α∈Nn pαx

α where {xα}α∈Nn are the
standard monomial basis of R[x], p = {pα}α∈Nn denotes the
coefficients, and α ∈ Nn. In this paper, we use polynomials to
describe uncertain obstacles and continuous-time trajectories.
For example the set {(x1, x2) : 1− (x1−ω1)2− (x2−ω2)2 ≥ 0}
represents a circle-shaped obstacle whose center is subjected
to uncertainty modeled with random variables (ω1, ω2). Also,[
x1(t)
x2(t)

]
=

[
1
−1

]
t +

[
0.5
2

]
t2, t ∈ [0, 1] is an example of

polynomial trajectory of order 2 in 2D environment between
the points x(0) = (0, 0) and x(1) = (1.5, 1).

Moments of Probability Distributions: Moments of ran-
dom variables are the generalization of mean and covari-
ance and are defined as expected values of monomials of
random variables. More precisely, given (α1, ..., αn) ∈ Nn
where α =

∑n
i=1 αi, moment of order α of random vec-

tor ω is defined as E[Πn
i=1ω

αi
i ]. For example, sequence

of the moments of order α = 2 for n = 3 is defined
as
[
E[w2

1],E[ω1ω2],E[ω1ω3],E[ω2
2 ],E[ω2ω3],E[ω2

3 ]
]
. Moments of

random variables can be easily computed using the charac-
teristic function of probability distributions [20]. We will use

a finite sequence of the moments to represent non-Gaussian
probability distributions.

Sum of Squares Polynomials and Optimization: In this
paper, we will use sum of squares (SOS) techniques to
solve nonconvex optimization problems of the risk bounded
trajectory planning problems. Polynomial P(x) is a sum of
squares polynomial if it can be written as a sum of finitely
many squared polynomials, i.e., P(x) =

∑m
j=1 hj(x)2 for some

m <∞ and hj(x) ∈ R[x] for 1 ≤ j ≤ m. SOS condition, i.e.,
P(x) ∈ SOS, can be represented as a convex constraint of the
form of a linear matrix inequality (LMI) in terms of the coef-
ficients of the polynomial, i.e., P(x) ∈ SOS → P(x) = xTAx

where x is the vector of standard monomial basis and A is a
positive semidefinite matrix in terms of the coefficients of the
polynomial [21]–[23]. One can use different software packages
like Yalmip [24] and Spotless [25] to check the SOS condition
of the polynomials.

Sum of squares polynomials are used to obtain the convex
relaxations of noncovex polynomial optimization problems
[21]–[23]. More precisely, consider the following noncovex
polynomial optimization as:

minimize
x∈Rn

f(x)

subject to gi(x) ≥ 0, i = 1, ...,m
(1)

where f and gi, i = 1, ...,m are polynomial functions. We can
rewrite the polynomial optimization in (1) as the following
form:

maximize
γ∈R

γ

subject to f(x)− γ ≥ 0, ∀x ∈ {x ∈ Rn : gi(x) ≥ 0 |mi=1}
(2)

where we look for the best lower bound of the function f(x)
denoted by γ inside the feasible set of the original optimization
problem. Hence, if x∗ is the optimal solution of the original
optimization problem in (1), then γ∗ = f(x∗) is the optimal
solution of the optimization problem in (2).

Note that in optimization problem (2), objective function
is linear and the constraint is the nonnegativity condition
of polynomial f(x) − γ. Such nonnegativity condition can
be replaced by SOS conditions of polynomials [21]–[23].
Hence, we can transform the optimization in (2) into a convex
optimization, i.e., semidefinite program, with LMI constraints
in terms of the coefficients of the polynomials of the original
optimization in (1). Also, we can recover the optimal solution
of the original polynomial optimization in (1), i.e., x∗, using
the solution of the dual convex optimization problem of (2) as
shown in [22], [23]. One can use different software packages
like GloptiPoly [26] to solve the polynomial optimization in
(1) using SOS-based primal-dual approach.

Recently, SOS optimization techniques have been extended
to address time-varying polynomial optimization problems of
the form

minimize
x∈Rn

f(x)

subject to gi(x, t) ≥ 0, ∀t ∈ [t0, tf ], i = 1, ...,m
(3)

where one needs to make sure that time-varying constraints are
satisfied over the given time horizon t ∈ [t0, tf ]. SOS-based



techniques can be used to solve the time-varying optimization
problem in (3) without the need for time discretization by
transforming the problem into a convex optimization, i.e.,
time-varying semidefinite program [7], [27], [28].

III. PROBLEM FORMULATION

Suppose X ∈ Rnx is an uncertain environment and the
sets Xobsi(ωi) ⊂ X , i = 1, ..., nos and Xobsi(ωi, t) ⊂
X , i = nos + 1, ..., nod are the static and dynamic uncertain
obstacles, respectively, where ωi ∈ Rnω , i = 1, ..., nos + nod
are probabilistic uncertain parameters with known probability
distributions. We represent static uncertain obstacles in terms
of polynomials in x ∈ X and uncertain parameters as follows:

Xobsi(ωi) = {x ∈ X : Pi(x, ωi) ≥ 0}, i = 1, ..., nos (4)

where Pi : Rnx+nω → R, i = 1, ..., nos are the given poly-
nomials. Similarly, we represent dynamic uncertain obstacles
in terms of polynomials in x ∈ X , time t, and uncertain
parameters as follows:

Xobsi(ωi, t) = {x ∈ X : Pi(x, ωi, t) ≥ 0} |nodi=nos+1 (5)

where Pi : Rnx+nω+1 → R, i = nos + 1, ..., nod are the
given polynomials. Note that, in general, the sets in (4) and (5)
represent nonconvex probabilistic obstacles, e.g., nonconvex
obstacles with uncertain size, location, or geometry [29], [30].

Given static and dynamic uncertain obstacles in (4) and
(5), we define risk as the probability of collision with un-
certain obstacles in the environment. In the risk bounded
continuous-time trajectory planning problem, we aim at find-
ing a continuous-time trajectory x(t) : [t0, tf ]→ Rnx defined
over the time horizon t ∈ [t0, tf ] between the start and final
points x0 and xf such that the probability of collision of the
trajectory x(t) with uncertain obstacles is bounded.

More precisely, we define the risk bounded continuous-
time trajectory planning problem as the following probabilistic
optimization problem:

minimize
x(t):[t0,tf ]→Rnx

∫ tf

t0

‖ẋ(t)‖22 dt (6)

subject to x(t0) = x0, x(tf ) = xf (6a)

Prob (x(t) ∈ Xobsi(ωi)) ≤ ∆, ∀t ∈ [t0, tf ] |nosi=1 (6b)

Prob (x(t) ∈ Xobsi(ωi, t)) ≤ ∆, ∀t ∈ [t0, tf ] |nodi=nos+1 (6c)

where objective function (6) is the length of the trajectory x(t)
defined in terms of `2 norm ‖.‖2. Also, constraints (6b) and
(6c) are the defined risks at time t for trajectory x(t) in terms
of the uncertain static and dynamic obstacles, respectively.
Moreover, 0 ≤ ∆ ∈ R ≤ 1 is the given acceptable risk level.
To solve the risk bounded optimization problem in (6), we
will look for the following continuous-time trajectories:

i) Polynomial trajectories over the planning horizon [t0, tf ]
of the form

x(t) =

d∑
α=0

cαt
α, t ∈ [t0, tf ] (7)

where cα ∈ Rnx , α = 0, ..., d are the coefficient vectors,

ii) Piece-wise linear trajectories of the form

xi(t) = ai + bit, t ∈ [ti−1, ti), i = 1, ..., s (8)

where s is the number of linear pieces defined over the time
intervals t ∈ [ti−1, ti] of the form ti−1 = t0 +

(i−1)(tf−t0)
s

and ti = t0 +
i(tf−t0)

s , i = 1, ..., s, and ai,bi ∈ Rnx are the
coefficient vectors.

Solving the probabilistic optimization in (6) is challenging,
because i) we need to deal with multivariate integrals of the
probabilistic constraints in (6b) and (6c) defined over the
nonconvex sets of the obstacles, ii) we need to deal with time-
varying constraints to ensure that they are all satisfied over the
entire planning time horizon [t0, tf ], and iii) optimization in
(6) is, in general, nonconvex optimization; Hence, we cannot
guarantee to obtain the global optimal solution.

In this paper, we provide a systematic numerical procedure
to efficiently solve the probabilistic optimization problem in
(6) in the presence of nonconvex uncertain obstacles with
arbitrary probability distributions. For this purpose, we will
leverage the notion of risk contours to transform the prob-
abilistic optimization in (6) into a deterministic polynomial
optimization problem and use SOS optimization techniques
to obtain optimal continuous-time trajectories with guaranteed
bounded risk.

IV. RISK CONTOURS

In [29], we define the risk contour with respect to the
static uncertain obstacle in (4) and the given acceptable risk
level ∆ in (6b) as the set of all points in the environment
whose probability of collision with the uncertain obstacle
is less or equal to ∆. In this paper, we use static and
dynamic risk contours defined for static and dynamic uncertain
obstacles, respectively, to identify the safe regions in uncertain
environments, i.e., the feasible set of optimization (6).

In [29], to construct the risk contours of uncertain static
obstacles, we propose an (nx + nω)-dimensional convex op-
timization in the form of a semidefinite program (SDP). Such
optimization is not suitable for online computations and is
limited to small dimensions (nx + nω). In this paper, we
propose an optimization-free fast approach, i.e., an analytical
method, to construct the risk contours both for static and
dynamic uncertain obstacles and show how one can use the
obtained risk contours to solve the risk-bounded trajectory
planning problem in (6).

A. Static Risk Contours

Let Xobs(ω) = {x ∈ X : P(x, ω) ≥ 0} be the given static
uncertain obstacle as defined in (4) and ∆ ∈ [0, 1] be the given
acceptable risk level. Then, static ∆-risk contour denoted by
C∆
r is defined as the set of all points in the environment, i.e.,

x ∈ X , whose risk is less or equal to ∆. More precisely,

C∆
r := { x ∈ X : Prob(x ∈ Xobs(ω)) ≤ ∆} (9)

The main idea to construct the static risk contour in (9) is to
replace the probabilistic constraint, i.e., Prob(x ∈ Xobs(ω)) =



Prob(P(x, ω) ≥ 0) ≤ ∆, with a deterministic constraint in terms
of x. In this paper, we provide an analytical method as follows:

Given the polynomial P(x, ω) of the uncertain obstacle
Xobs(ω), we define the set Ĉ∆

r as follows:

Ĉ∆
r =

{
x ∈ X :

E[P2(x,ω)]−E[P(x,ω)]2

E[P2(x,ω)] ≤ ∆,

E[P(x, ω)] ≤ 0

}
(10)

where the expectation is taken with respect to the distribution
of uncertain parameter ω. Note that we can compute polyno-
mials E[P2(x, ω)] and E[P(x, ω)] in terms of x and known
moments of ω. More precisely, E[P2(x, ω)] and E[P(x, ω)]
are polynomials in x whose coefficients are defined in terms of
the moments of ω and the coefficients of polynomial P(x, ω).

The following result holds true.

Theorem 1: The set Ĉ∆
r in (10) is an inner approximation

of the static risk contour C∆
r in (9).

Proof : See Appendix. �

Remark 1: The set in (10) is a rational polynomial-based
inner approximation of the risk contour in (9). It also uses
higher order moments of the uncertain parameter ω up to
order 2d where d is the order of the polynomial obstacle
P(x, ω).

Note that since Ĉ∆
r is an inner approximation of C∆

r , any
trajectory x(t) ∈ Ĉ∆

r ∀t ∈ [t0, tf ] is guaranteed to have a risk
less or equal to ∆. We now provide an illustrative example
to show the performance of the proposed method to construct
the static ∆-risk contours and benchmark our method against
the optimization-based approach in [29].

Illustrative Example 1: Consider the following illus-
trative example where X = [−1, 1]2. The set Xobs(ω) ={

(x1, x2) : ω2 − x2
1 − x2

2 ≥ 0
}

represents a circle-shaped obsta-
cle whose radius ω has a uniform probability distribution over
[0.3, 0.4], [29]. Moment of order α of a uniform distribution
defined over [l, u] can be described in a closed-form as
uα+1−lα+1

(u−l)(α+1) . To construct the static ∆-risk contour, we compute
polynomials E[P(x, ω)] and E[P2(x, ω)] using the polynomial
obstacle and the moments of ω as follows:

E[P(x, ω)] = E[ω2 − x2
1 − x2

2] = E[ω2]− x2
1 − x2

2 = 0.1233− x2
1 − x2

2

E[P2(x, ω)] = E[
(
ω2 − x2

1 − x2
2

)2
]

= E[ω4]− 2E[ω2]x2
1 − 2E[ω2]x2

2 + x4
1 + 2x2

1x
2
2 + x4

2

= 0.0156− 0.2466x2
1 − 0.2466x2

2 + x4
1 + 2x2

1x
2
2 + x4

2

As shown in Figures 1 and 2, we use the sublevels of functions
E[P2(x,ω)]−E[P(x,ω)]2

E[P2(x,ω)]
and E[P(x, ω)] as in (10) to construct the

inner approximations of the static ∆-risk contours for different
risk levels ∆ = [0.2, 0.1, 0.07, 0.05]. We also compare our
proposed method in (10) with the optimization-based method
in [29] as shown in Figure 2. Using the provided SDP in
[29], we obtain a polynomial of order 20 to describe the
inner approximations of the ∆-risk contours. We note that
the proposed analytical method of this paper provides a tight

Fig. 1. Illustrative example 1: Intersection of ∆-sublevel set of function
E[P2(x,ω)]−E[P(x,ω)]2

E[P2(x,ω)]
and 0-sublevel set of function E[P(x, ω)] describes

the static ∆-risk contour as in (10).

Fig. 2. Illustrative example 1: True static ∆-risk contour C∆
r (green) and

inner approximation Ĉ∆
r obtained using i) the proposed analytical method in

(10) (outside of the solid-line) and ii) the proposed optimization-based method
in ( [29], Fig.4 ) (outside of the dashed-line). While the optimization-based
method in [29] uses a standard polynomial of order 20, the proposed analytical
method in (10) uses 4th order rational and 2nd order standard polynomials to
describe the risk contours.

inner approximation of the ∆-risk contours. This is primarily
due to the facts that i) the proposed analytical approach results
in a rational polynomial representation of the risk-contours as
opposed to a standard polynomial representation provided in
[29] and ii) with the provided analytical approach, we are able
to avoid the numerical issues that arise when solving large-
scale SDPs [31]. The proposed method of this paper is also
suitable for online large scale planning problems.

B. Dynamic Risk Contours

Let Xobs(ω, t) = {x ∈ X : P(x, ω, t) ≥ 0} be the given
dynamic uncertain obstacle as defined in (5) and ∆ ∈ [0, 1] be
the given acceptable risk level in (6c). Then, dynamic ∆-risk
contour at time t denoted by C∆

r (t) is defined as the set of all
points in the environment, i.e., x ∈ X , whose risk at time t is
less or equal to ∆. More precisely,

C∆
r (t) := { x ∈ X : Prob(x ∈ Xobs(ω, t)) ≤ ∆} (11)

Similar to the static risk contours, we can replace the
probabilistic constraint in (11) with deterministic constraints
and construct an inner approximation of the dynamic ∆-risk
contour denoted by Ĉ∆

r (t) as follows:

Ĉ∆
r (t) =

{
x ∈ X :

E[P2(x,ω,t)]−E[P(x,ω,t)]2

E[P2(x,ω,t)] ≤ ∆,

E[P(x, ω, t)] ≤ 0

}
(12)

Note that dynamic ∆-risk contour (12) is described in terms
of the time-varying constraints.

Illustrative Example 2: Consider the following illustrative
example where X = [−1, 1]2. The set Xobs(ω, t) =



Fig. 3. Illustrative example 2: a) Function E[P2(x,ω,t)]−E[P(x,ω,t)]2

E[P2(x,ω,t)]
at

time steps t = 0, 0.5, 1, b) Dynamic ∆-risk contours for ∆ = 0.1 at time
steps t = 0, 0.5, 1 described in (12). Dashed line shows the expected value
of the given uncertain trajectory, i.e., E[(px1 (t, ω2), px2 (t, ω3))]. At each
time t, for any point inside Ĉ∆

r (t) (outside of the closed curve), probability
of collision with the moving uncertain obstacle is less or equal to ∆ = 0.1.

{
(x1, x2) : ω2

1 − (x1 − px1(t, ω2))2 − (x2 − px2(t, ω3))2 ≥ 0
}

represents a moving circle-shaped obstacle with
uncertain radius ω1 and uncertain trajectories
px1(t, ω2) = 2− t+ t2 + 0.2ω2, px2(t, ω3) = −1 + 4t− t2 + 0.1ω3

that describe the uncertain motion of the obstacle over the
time horizon t ∈ [0, 1]. Uncertain parameters have uniform,
normal, and Beta distributions as ω1 ∼ Uniform[0.3, 0.4],
ω2 ∼ N (0, 0.1), ω3 ∼ Beta(3, 3). Moment of order α of
a Beta distribution with parameters (a, b) and a normal
distribution with mean µ and standard deviation σ can be
described in closed-forms as yα = a+α−1

a+b+α−1
yα−1, y0 = 1 and

yα = σα(−
√
−1
√

2)αkummerU(−α
2
, 1

2
, −µ

2

2σ2 ), respectively,
where kummerU is ”confluent hyper-geometric Kummer
U” function. Similar to illustrative example 1, we compute
the polynomials E[P2(x, ω, t)] and E[P(x, ω, t)] using the
moments of the uncertain parameters ωi, i = 1, 2, 3 and the
polynomial obstacle. We then construct the dynamic ∆-risk
contour as a function of time as described in (12). Figure 3
shows the obtained dynamic ∆-risk contours for ∆ = 0.1 at
time steps t = 0, 0.5, 1 along the given uncertain trajectory
(px1(t, ω2), px2(t, ω3)).

Remark 2: We can use (10) and (12) to construct static
and dynamic risk contours in real-time. Therefore, standard
motion planning algorithms such as RRT∗, PRM, and mo-
tion primitive-based methods can be used for real-time risk
bounded motion planning. To accomplish this, one just needs
to use the safe regions, i.e, risk contours, to construct the
trajectories.

In the next section, we provide continuous-time planning
algorithms to look for trajectories with guaranteed bounded
risk over the entire planning time horizon without the need
for time discretization.

V. CONTINUOUS-TIME RISK BOUNDED TRAJECTORY
PLANNING USING RISK CONTOURS

In this section, we will use the static and dynamic risk
contours to solve the continuous-time risk bounded trajectory
planning problem defined in (6). More precisely, we use the

static and dynamic risk contours to transform the probabilistic
optimization in (6) into a deterministic polynomial optimiza-
tion. The obtained deterministic polynomial optimization is,
in general, nonconvex and nonlinear. In addition, we need
to ensure that all the obtained deterministic constraints are
satisfied over the entire planning time horizon [t0, tf ]. In this
section, we provide convex methods based on SOS techniques
introduced in Section II to efficiently solve the obtained
nonconvex time-varying deterministic planning optimization
problem. While the existing planners rely on time discretiza-
tion to verify the planning safety constraints, the provided
SOS-based planners look for continuous-time trajectories with
guaranteed bounded risk over the entire planning time horizon
without the need for time discretization.

We first begin by addressing the continuous-time risk
bounded trajectory planning in static uncertain environments
using the static risk contours. We then use the dynamic
risk contours to address the planning problems in dynamic
uncertain environments.

A. Planning in Static Uncertain Environments

In this section, we are concerned with continuous-time risk
bounded trajectory planning in the presence of static uncertain
obstacles of the form (4). More precisely, we aim at solving
the probabilistic optimization problem in (6) in the presence
of static uncertain obstacles Xobsi(ωi), i = 1, ..., nos , i.e.,

minimize
x(t):[t0,tf ]→Rnx

∫ tf

t0

‖ẋ(t)‖22 dt (13)

subject to x(t0) = x0, x(tf ) = xf (13a)
Prob (x(t) ∈ Xobsi(ωi)) ≤ ∆, ∀t ∈ [t0, tf ], i = 1, ..., nos (13b)

To obtain the deterministic polynomial optimization, we
replace probabilistic constraints (13b) with deterministic con-
straints in terms of the static ∆-risk contours as follows:

minimize
x(t):[t0,tf ]→Rnx

∫ tf

t0

‖ẋ(t)‖22 dt (14)

subject to x(t0) = x0, x(tf ) = xf (14a)

x(t) ∈ Ĉ∆
ri , ∀t ∈ [t0, tf ], i = 1, ..., nos (14b)

where Ĉ∆
ri is the static ∆-risk contour of the static uncertain

obstacle Xobsi(ωi). The set of Ĉ∆
ri , i = 1, ..., nos represents

the inner approximation of the feasible set of the probabilistic
optimization in (13). The obtained deterministic optimization
in (14) is time-varying optimization problem where we need
to ensure to satisfy the constraints over the entire planning
time horizon [t0, tf ].

To solve the deterministic optimization in (14), we will
look for i) polynomial trajectory defined in (7) and ii) piece-
wise linear trajectory defined in (8). By substituting the
polynomial trajectory x(t) =

∑d
α=0 cαt

α in optimization (14),
we obtain a deterministic optimization with constraints in
terms of the coefficients of the polynomial trajectory x(t),
i.e., (1 − ∆)E[P2(

∑d
α=0 cαtα, ω)] − E[P(

∑d
α=0 cαtα, ω)]2 ≤ 0,



E[P(
∑d
α=0 cαtα, ω)] ≤ 0. Similarly, by substituting the piece-

wise linear trajectory of (8), we obtain the objective function∑s
j=1

∫ tj
tj−1
‖ẋj(t)‖22 dt and constraints aj + bjt ∈ Ĉ∆

ri , ∀t ∈
[tj−1, tj ], i = 1, ..., nos , j = 1, ..., s. To solve the obtained time-
varying deterministic polynomial optimization problems, we
will provide 3 methods based on SOS optimization techniques
as follows:

1) Time-Varying SOS Optimization: we use time-varying
SOS optimization, introduced in Section II, to solve the
time-varying deterministic polynomial optimization in (14). In
implementation, we use the heuristic algorithm introduced by
[7].

2) Standard SOS Optimization: In this method, we obtain
a standard polynomial optimization of the form (1) by elim-
inating time t. We then use the standard SOS optimization
technique in (2) to solve the obtained optimization problem.
To achieve this, let Xobs(ω) = {x ∈ X : P(x, ω) ≥ 0}
be the given static uncertain obstacle defined in (4) and x(t)
be the polynomial trajectory in (7). To eliminate time t,
instead of using the instant risk as in (13b), we work with
the average risk defined as 1

tf−t0

∫ ∫
{(t,ω):P(x(t),ω)≥0} pr(ω)dωdt

where pr(ω) is the probability density function of ω. This is
equivalent to treating t as a random variable with a uniform
probability distribution over the planning time horizon [t0, tf ].
We should note that the average risk is a weak safety measure,
which means that just by bounding the average risk, we
cannot guarantee to satisfy the constraints of the probabilistic
optimization in (13).

By defining the average risk, we substitute the trajectory
x(t) in the probabilistic constraint and follow the same steps
as in Section IV-A to obtain an upper bound of the average risk
and construct the set of all coefficients cα|dα=0 that results in a
risk bounded trajectory of the form x(t) =

∑d
α=0 cαt

α. More
precisely, we obtain the following set for the coefficients:{

cα|dα=0 :
(1−∆)E[P2(

∑d
α=0 cαt

α, ω)]− E[P(
∑d
α=0 cαt

α, ω)]2 ≤ 0,

E[P(
∑d
α=0 cαt

α, ω)] ≤ 0

}
where the expectation is taken with respect to the probability
distributions of ω and t. We can obtain a similar set for the
coefficients of the piece-wise linear trajectories, as well. By
computing such sets for coefficients of the trajectories, we
can transform the probabilistic optimization problem into a
deterministic standard polynomial optimization and use the
standard SOS optimization technique in (2) to obtain the
optimal solution.

3) RRT-SOS: In this method, we use sampling-based mo-
tion planning algorithms like RRT to construct the risk
bounded trajectory of the deterministic polynomial optimiza-
tion in (14). To ensure safety along the edges of the RRT,
we use an SOS-based continuous-time technique to verify the
constraints of the optimization in (14b) as follows:

Let x(t) =
∑d
α=0 cαt

α, t ∈ [t1, t2] be the given trajectory
between the two samples x1 ∈ X and x2 ∈ X in the uncertain
environment. Also, let S = {x : gi(x) ≥ 0 i = 1, ..., `} be
the feasible set of optimization (14), i.e., the set constructed

by the polynomial constraints of all the risk contours Ĉ∆
ri , i =

1, ..., nos . Then, the following result holds true:
Polynomial x(t) satisfies the safety constraints of the de-

terministic optimization in (14) over the time interval [t1, t2],
i.e., x(t) ∈ S for all t ∈ [t1, t2], if and only if polynomials
gi(x(t)), i = 1, ..., ` take the following SOS representation:

gi(x(t)) = σ0i(t) + σ1i(t)(t− t1) + σ2i(t)(t2 − t) |`i=1

(15)

where σ0i(t), σ1i(t), σ2i(t), i = 1, ..., ` are SOS polynomials
with appropriate degrees [22], [23], [32]. Yalmip [24] and
Spotless [25] packages can be used to check the SOS
condition (15) for the given trajectory x(t).

Remark 3: The complexity of the safety SOS condition
in (15) is independent of the size of the planning time
horizon [t1, t2] and the length of the polynomial trajectory
x(t). Hence, one can use (15) to easily verify the safety of
trajectories in uncertain environments over the long planning
time horizons.

The safety condition in (15) can be used in any sampling-
based motion planning algorithms to verify the safety of the
trajectories between the sample points. In this paper, we will
use the following naive RRT algorithm: To expand the RRT,
we use a linear trajectory to connect the given sample point
to the closest vertex in the tree if the linear trajectory satisfies
the SOS condition in (15), i.e., this implies that the linear
trajectory between the two points is inside the risk contours
in (14b). As a termination condition, we also check the safety
of the linear trajectory between the selected safe sample and
the goal points via the SOS condition in (15). If the linear
trajectory satisfies SOS condition (15), we connect the sample
point to the goal point; Hence, a feasible trajectory between
the start and goal points can be constructed.

To improve the obtained feasible trajectory, we perform
the following steps: i) given the obtained tree, we construct
a graph, e.g., PRM, whose nodes are the vertex of the tree
and edges of the graph are all the linear trajectories between
the nodes that satisfy the SOS condition in (15), ii) we then
perform a shortest path algorithm, e.g., Dijkstra algorithm, to
obtain a path from the start to the goal point. We can also
use smart initialization to guide the RRT-SOS algorithm and
improve the run-time. For example, we use the straight line
between the start and goal points to initialize the RRT-SOS
algorithm. We then perform the sampling in the neighborhood
of the given initial path and incrementally increase the size of
the neighborhood until a feasible trajectory is obtained.

Illustrative Example 3: Consider the uncertain obstacle in
illustrative example 1. We want to find a risk bounded trajec-
tory between the points x(0) = [−1,−1] and x(1) = [1, 1] by
solving the probabilistic optimization in (13) with ∆ = 0.1.
For this purpose, we solve the deterministic optimization
problem in (14) with respect to the 0.1-risk contour of the
uncertain obstacle using the discussed 3 methods as shown in
Figure 4. More precisely, we use standard SOS optimization



Fig. 4. Illustrative Example 3: a) risk bounded polynomial trajectories of
order 2 obtained via standard SOS optimization, b) risk bounded piece-wise
linear trajectories obtained via standard SOS optimization, c) risk bounded
piece-wise linear trajectory obtained via RRT-SOS algorithm, d) risk bounded
piece-wise linear trajectory obtained via time-varying SOS optimization.

to obtain a polynomial trajectory of order 2 and also a piece-
wise linear trajectory with 2 pieces. Using GloptiPoly package,
we extract two risk bounded trajectories between the given
start and goal points as shown in Figure 4-a and 4-b. We also
use RRT-SOS algorithm and time-varying SOS optimization to
obtain piece-wise linear trajectories as shown in Figure 4-c and
4-d, respectively. We note that the standard SOS optimization-
based method results in conservative trajectories as shown in
Figure 4-a and 4-b.

We compare our proposed methods with Monte Carlo-based
risk bounded RRT algorithm that uses uncertainty samples and
time discretization to look for the risk bounded trajectories.
To verify the safety of the edges in the RRT, we use only 10
uncertainty samples and 20 uniformly sampled way-points on
the edges. Such RRT algorithm is significantly slower and also
does not provide any guaranteed risk bounded trajectories.

The run-time for the standard SOS optimization to ob-
tain the piece-wise linear and polynomial trajectories are
both roughly 1.5 seconds. Also, the run-time for the time-
varying SOS optimization is roughly 2.2 seconds (for more
information see Section VI-E). The run-time for the RRT-
SOS algorithm to obtain feasible and optimal trajectories
are roughly 9.3 and 92.1 seconds, respectively. The run-time
for the Monte Carlo-based risk bounded RRT algorithm to
obtain feasible and optimal trajectories are roughly 215.12
and 3471.4 seconds, respectively. Also, continuous-time safety
verification of each edge in the RRT-SOS algorithm via (15)
takes roughly 0.1 seconds while the sampling-based safety
verification in the Monte Carlo-based risk bounded RRT
algorithm takes roughly 3 seconds.

B. Planning in Dynamic Uncertain Environments

In this section, we are concerned with continuous-time
risk bounded trajectory planning in the presence of dynamic
uncertain obstacles of the form (5). More precisely, we aim
at solving the optimization problem in (6) in the presence of
dynamic uncertain obstacles Xobsi(ωi, t), i = 1, ..., nod , i.e.,

minimize
x(t):[t0,tf ]→Rnx

∫ tf

t0

‖ẋ(t)‖22 dt (16)

subject to x(t0) = x0, x(tf ) = xf (16a)

Prob (x(t) ∈ Xobsi(ωi, t)) ≤ ∆, ∀t ∈ [t0, tf ] |nodi=nos+1 (16b)

To obtain the deterministic optimization, we replace proba-
bilistic constraints (16b) with deterministic constraints in terms

of the dynamic ∆-risk contours as follows:

minimize
x(t):[t0,tf ]→Rnx

∫ tf

t0

‖ẋ(t)‖22 dt (17)

subject to x(t0) = x0, x(tf ) = xf (17a)

x(t) ∈ Ĉ∆
ri(t), ∀t ∈ [t0, tf ], i = nos + 1, ..., nod (17b)

where Ĉ∆
ri (t) is the dynamic ∆-risk contour of the dynamic

uncertain obstacle Xobsi(ωi, t). The set of Ĉ∆
ri (t), i = ons +

1, ..., ond represents the inner approximation of the feasible
set of the probabilistic optimization in (16). In the deter-
ministic polynomial optimization of (17), we need to make
sure that the constraints are satisfied over the entire planning
time horizon [t0, tf ]. To solve the time-varying deterministic
polynomial optimization in (17), we will use i) time-varying
SOS optimization described in Section V-A1 and also ii)
sampling-based motion planning algorithm similar to the one
in Section V-A3 that uses the SOS-based continuous-time
safety verification. In the sampling-based algorithm, given the
dynamic nature of the environment, one needs to verify the
safety of the trajectory between the given two samples only
for the time interval that is needed to traverse between the
points. In this paper, we will use the following naive RRT-
SOS algorithm: RRT algorithm looks for piece-wise linear
trajectories with s number of linear pieces defined over the
time intervals ∆ti = [ti−1, ti), i = 1, ..., s as in (8). To
construct the tree, we first fix the number of linear pieces
s and build the tree for each time interval incrementally. To
expand the tree for the time interval ∆ti, we connect the given
sample point to a vertex in the tree, built for the time interval
∆ti−1, if the linear trajectory between the two points satisfies
SOS condition (15) for the time interval ∆ti. Moreover, to
construct the tree for the time interval ∆ts−1, we verify the
safety of the linear trajectory between the given sample and
the goal point for the time interval ∆ts as well.

Illustrative Example 4: Consider the uncertain moving
obstacle in illustrative example 2. We want to find a risk
bounded trajectory between the points x(0) = [1,−2] and
x(1) = [3, 2] by solving the probabilistic optimization in (16)
with ∆ = 0.1. For this purpose, we solve the deterministic

Fig. 5. Illustrative Example 4: Risk bounded trajectories between the
start (square) and goal (triangle) points obtained via the time-varying SOS
optimization (solid line) and RRT-SOS algorithm (dashed line) in the presence
of the probabilistic moving obstacle.



optimization problem in (17) with respect to the dynamic 0.1-
risk contour of the uncertain obstacle via the time-varying SOS
optimization and RRT-SOS algorithm as shown in Figure 5.
Note that although the obtained RRT-SOS trajectory looks like
a straight line, it is a piece-wise linear trajectory consisting of
2 pieces with different velocities. The run-time for the time-
varying SOS optimization and RRT-SOS algorithm are roughly
6.9 and 0.5 seconds, respectively.

VI. EXPERIMENTS

In this section, numerical examples are presented to illus-
trate the performance of the proposed approaches. To obtain
the risk bounded continuous-time trajectories, we use the
time-varying SOS optimization and the RRT-SOS algorithm
described in Section V1. Note that the provided RRT-SOS
algorithm uses a naive tree search as explained in Section
V. The main objective of the provided RRT-SOS algorithm
is to demonstrate how the risk contours in (10) and (12)
and the SOS-based continuous-time safety constraints in (15)
can be incorporated into sampling-based motion planning
algorithms to look for guaranteed risk bounded continuous-
time trajectories in stochastic environments. The computations
in this section were performed on a computer with Intel i7
2.7 GHz processors and 8 GB RAM. We use the Spotless
MATLAB package [25] to verify the SOS-based continuous-
time safety constraints in the RRT-SOS algorithm and the
Julia package provided by [7] to solve the time-varying SOS
optimization.

A. Risk Contours

The purpose of this example is to demonstrate how the
provided approach can be used to compute the risk contours
in the presence of highly complex uncertain unsafe regions.

1) 2D Uncertain Obstacle: Static uncertain obstacle of the
form (4) is described by the polynomial P(x, ω) = −0.42x5
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where the uncertain parameter ω has a Beta distribution with
parameters (9, 0.5) over [0, 1]. Figure 6 shows the uncertain
obstacle for different values of the uncertain parameter ω. We
obtain the static risk contours defined in (10) for different risk
levels ∆ as shown in Figure 6 and 7.

2) 3D Uncertain Obstacle: Static uncertain obstacle of
the form (4) is described by the polynomial P(x, ω) =
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Fig. 6. Example A-1: a) Nonconvex obstacle with uncertain parameter ω ∼
Beta(9, 0.5), b) Obtained static risk contours Ĉ∆

r defined in (10) for different
risk levels ∆ = [0.3, 0.1, 0.05, 0.02, 0.01].

0.03x1x4
3 − 0.06x2x4

3 − 0.31x5
3 − ω − 0.84 where the uncertain

parameter ω has a normal distribution with mean 0.1 and
variance 0.001, [30]. Figure 8 shows the uncertain obstacle
for different values of the uncertain parameter ω. We obtain
the static risk contours defined in (10) for different risk levels
∆ as shown in Figure 8.

B. Risk Bounded Lane Changing for Autonomous Vehicles

In this example, we generate a risk bounded trajectory
for the lane-change maneuver of an autonomous vehicle in
the presence of surrounding vehicles. In this scenario, un-
certain locations of the surrounding vehicles are modeled as
the following sets: Xobs1(ω1, t) = {(x1, x2) : 0.32 − (x1 −
p1(t, ω1))2 − (x2 − 1)2 ≥ 0} and Xobs2(ω2, t) = {(x1, x2) :

0.32− (x1−p2(t, ω1))2−x2
2 ≥ 0} where p1(t, ω1) = t+0.4+ω1

and p2(t, ω2) = 2t + 0.6 + ω2 are the uncertain trajectories
of the surrounding vehicles with uncertain parameters ωi ∼
Uniform[−0.1, 0.1], i = 1, 2. For the lane-change maneuver,
we look for a risk bounded trajectory between the points
x(0) = (0, 0) and x(1) = (2, 0) over the planning time
horizon t ∈ [0, 1]. Figure 9 shows the obtained trajectory using
the time-varying SOS optimization and RRT-SOS algorithm
considering the dynamic 0.1-risk contours of the surrounding

Fig. 7. Example A-1: True ∆-risk contour C∆
r (green) and its inner approx-

imation Ĉ∆
r (outside of the solid-line). Inside the risk contours, probability

of collision with the uncertain obstacle is less or equal to the associated risk
level ∆.



Fig. 8. Example A-2: a) Nonconvex obstacle with uncertain parameter
ω ∼ N (0.1, 0.001), b) Obtained static risk contours Ĉ∆

r defined in (10)
for different risk levels ∆ = [0.5, 0.3, 0.1, 0.05].

vehicles. The run-time for the time-varying SOS optimization
and RRT-SOS are roughly 1.2 and 6.5 seconds, respectively.

C. Risk Bounded Trajectory Planning for Delivery Robots

In this example, we generate a risk bounded trajectory for a
delivery robot in the presence of uncertain moving obstacles.
In this scenario, uncertain locations of the moving obstacles
are modeled as the following sets: Xobs1(ω1, t) = {(x1, x2) :

0.42 − (−x1 + p1(t, ω1))2 − (x2 − 1)2 ≥ 0}, Xobs2(ω2, t) =

{(x1, x2) : 0.42 − (x1 + p2(t, ω1))2 − (x2 − 2)2 ≥ 0}, and
Xobs3(ω3, t) = {(x1, x2) : 0.42− (−x1 +p3(t, ω3))2− (x2−3)2 ≥
0} where p1(t, ω1) = t − 0.5 + ω1, p2(t, ω1) = 2t − ω2 − 0.8,
and p3(t, ω3) = 1.8t − 0.7 + ω3 are the uncertain trajec-
tories of the moving obstacles with uncertain parameters
ωi ∼ Uniform[−0.1, 0.1], i = 1, 2, 3. We look for a risk
bounded trajectory between the start and destination points,
x(0) = (0, 0) and x(1) = (0, 4), over the planning time
horizon t ∈ [0, 1]. Figure 10 shows the obtained trajectories
using the time-varying SOS optimization and RRT-SOS algo-
rithm considering the dynamic 0.1-risk contours of the moving
obstacles. The run-time for the time-varying SOS optimization
and RRT-SOS are roughly 7 and 197 seconds, respectively.

Fig. 9. Example B: Risk bounded trajectories for the lane-change maneuver
between the start (square) and goal (triangle) points obtained via the time-
varying SOS optimization (solid line) and RRT-SOS algorithm (dotted line)
in the presence of surrounding vehicles with uncertain trajectories. Dashed
lines show the expected values of the uncertain trajectories of the surrounding
vehicles.

Fig. 10. Example C: Risk bounded trajectories for a delivery robot between
the start (square) and goal (triangle) points obtained via the time-varying SOS
optimization (solid line) and RRT-SOS algorithm (dotted line) in the presence
of moving uncertain obstacles.

D. Planning in Cluttered Uncertain Environments

In this example, we look for risk bounded trajectories in
cluttered static and dynamic uncertain environments.

1) 2D Static Environment: In this scenario, we use the RRT-
SOS algorithm to obtain a risk bounded trajectory with ∆ =
0.1 between the start and goal points, x(0) = (0, 0), x(1) =
(5, 5), in the presence of circle-shaped obstacles with uncertain
position as shown in Figure 11. The position of the obstacles
is subjected to an additive zero mean Gaussian noise with
0.001 variance. The run-time to obtain the feasible and optimal
trajectories are roughly 27 and 92 seconds, respectively.

2) 3D Dynamic Environment: In this scenario, we use
the RRT-SOS algorithm to obtain a risk bounded trajectory
with ∆ = 0.1 between the start and goal points, x(0) =
(−1,−1, 0), x(1) = (1, 1, 1), in the presence of moving
sphere-shaped obstacles with uncertain radius and uncertain
trajectories as shown in Figure 12. Radius of the obstacles
has a uniform distribution over [0.1, 0.2]. Also, trajectories of
the obstacles are subjected to an additive zero mean Gaussian
noise with 0.001 variance. The run-time to obtain the risk
bounded trajectory is roughly 29 seconds.

E. Discussion

The provided risk bounded algorithms not only are faster
than Monte Carlo-based risk bounded RRT algorithms (illus-

Fig. 11. Example D-1: Risk bounded trajectory between the start (square)
and goal (triangle) points obtained via the RRT-SOS algorithm in the static
uncertain cluttered environment.



Fig. 12. Example D-2: Risk bounded trajectory between the start (square)
and goal (triangle) points obtained via the RRT-SOS algorithm in the dynamic
uncertain cluttered environment.

trative example 3), but also provide continuous-time trajecto-
ries with guaranteed bounded risk. In addition, compared with
the RRT-SOS algorithm, the time-varying SOS optimization
is generally faster. The run-time of the time-varying SOS
optimization is a function of the order of polynomials of risk
contours, the number of the linear pieces of risk bounded
trajectories, and the number of iterations of the heuristic
algorithm. We use the heuristic algorithm introduced by [7]
that trades off theoretical guarantees for more efficiency to
avoid large scale time-varying SOS optimization. Hence, the
heuristic algorithm may fail to obtain a feasible trajectory as
observed in Experiment D. To ensure safety, we verify the
trajectory returned by the heuristic algorithm using the SOS
condition in (15). In the time-varying SOS optimization, one
can initially start with a small number of iterations and linear
pieces and then increase the parameters if the obtained trajec-
tory is infeasible. On the other hand, the RRT-SOS algorithm
is more robust and always returns a feasible trajectory. The
provided SOS-based RRT algorithm uses a naive tree search
algorithm to look for the risk bounded trajectories. One can
improve the performance and run-time by considering efficient
sampling-based motion planning algorithms and high-order
polynomial trajectories between the samples.

VII. CONCLUSION

In this paper, we provided continuous-time trajectory plan-
ning algorithms to obtain risk bounded polynomial trajecto-
ries in uncertain nonconvex environments that contain static
and dynamic obstacles with probabilistic location, size, and
geometry. The provided algorithms leverage the notion of
risk contours to transform the probabilistic trajectory planning
problem into a deterministic planning problem and use convex
methods to obtain the continuous-time trajectories with guar-
anteed bounded risk without the need for time discretization
and uncertainty samples. The provided algorithms are suitable
for online and large scale planning problems. For the future
work, we will incorporate the provided approaches into a
model predictive control (MPC) framework to address the
online planning problems. Also, we will extend the provided
approaches to deal with inaccurate models of uncertain param-
eters, e.g., inaccurate probability distributions and moments.

VIII. APPENDIX: PROOF OF THEOREM 1

To compute the static risk contour in (9), we obtain the
deterministic constraint as follows: For a given point x ∈ X ,
the probability of collision with the uncertain static obstacle,
i.e., Prob(x ∈ Xobs(ω)), is equivalent to the expectation of the
indicator function of the superlevel set of P(x, ω) as follows
[29], [30]:

Prob(P(x, ω) ≥ 0) =

∫
{(x,ω):P(x,ω)≥0}

pr(ω)dω = E[IP≥0] (18)

where pr(ω) is the probability density function of ω and
IP≥0 is the indicator function of the superlevel set of P(x, ω)
defined as IP≥0 = 1 if (x, ω) ∈ {(x, ω) : P(x, ω) ≥ 0},
and 0 otherwise. The expectation of the indicator function,
however, is not necessarily easily computable. To compute the
expectation value, we will find a polynomial description of the
indicator function that upper bounds the true indicator function
IP≥0. If we can find a polynomial PI : Rnx+nω → R of the
order d with coefficients cij that upper bounds the indicator
function, i.e., PI(x, ω) :=

∑
(i,j) cijx

iωj ≥ IP≥0, then we can
apply the expectation w.r.t. the probability density function of
ω to the both sides and describe the upper bound probability
in terms of the known moments of ω as follows:

E[PI(x, ω)] =
∑
(i,j)

cijx
iE[ωj ] ≥ E[IP≥0] = Prob(P(x, ω) ≥ 0) (19)

where E[ωj ] is the moment of order j of random vector
ω defined in Section II. Hence, we can construct an inner
approximation of the ∆-risk contour in (9), denoted by Ĉ∆

r ,
using the upper bound probability in (19) as follows:

Ĉ∆
r = { x ∈ X : P (x) ≤ ∆} (20)

where polynomial P (x) = E[PI(x, ω)] =
∑

(i,j) cijE[ωj ]xi

as shown in (19).
According to (19) and (20), the problem of constructing ∆-

risk contour (9), reduces to the problem of finding an upper
bound probability and an upper bound polynomial indicator
function of the superlevel set of P(x, ω). In [29], to compute
the upper bound polynomial indicator functions, we provide
an (nx + nω)-dimensional convex optimization problem in
the form of a semidefinite program. Such optimization is not
suitable for online computations and is limited to small dimen-
sions (nx+nω). In this paper, we propose an optimization-free
approach to obtain upper bound probability and polynomial
indicator function that is suitable for online computations and
large scale problems as follows:

Let Xobs(ω) = {x ∈ X : P(x, ω) ≥ 0} be the given static
uncertain obstacle as defined in (4). To obtain an upper bound
of the probability Prob(x ∈ Xobs(ω)) = Prob(P(x, ω) ≥ 0), we
begin by defining a new random variable z ∈ R as follows:

z = P(x, ω) (21)

Note that z ∈ R is a random variable, while P(x, ω) :
Rnx+nω → R is a polynomial in x ∈ Rnx and random



vector ω ∈ Rnω . By doing so, we can transform the
(nx + nω)-dimensional probability assessment problem into
a one-dimensional probability assessment problem in terms of
the new defined random variable z, i.e., Prob(x ∈ Xobs(ω)) =

Prob(P(x, ω) ≥ 0) = Prob(z ≥ 0), [30]. Note that the statistics
of the random variable z, e.g., moments, are functions of x
and the statistics of the random vector ω.

Now, to compute an upper bound of the probability
Prob(z ≥ 0), we just need an upper bound polynomial de-
scription of one-dimensional indicator function Iz≥0 defined as
Iz≥0 = 1 if z ≥ 0, and 0 otherwise. In this paper, we will use
the upper bound polynomial indicator function and the upper
bound probability provided by Cantelli’s inequality defined
for scalar random variables as Prob(z ≥ 0) ≤ E[z2]−E[z]2

E[z2]

whenever E[z] ≤ 0. In other words, the probability of
collision, i.e., Prob(z ≥ 0) = Prob(P(x, ω) ≥ 0), is bounded
if the expected value of remaining safe is nonnegative, i.e,
E[z] = E[P(x, ω)] ≤ 0. For other different one-dimensional
indicator function-based probability bounds see [30], [33],
[34].

Hence, the upper bound of the probability of collision can be
described in terms of the polynomial of the uncertain obstacle
as follows:

Prob(x ∈ Xobs(ω)) ≤ E[P2(x, ω)]− E[P(x, ω)]2

E[P2(x, ω)]
(22)

whenever E[P(x, ω)] ≤ 0. This will results in an inner
approximation of the ∆-risk contour as in (10). Note that
although the standard Cantelli’s inequality uses the first two
moments of the scalar random variable z, we need higher order
moments of random vector ω to construct the set in (10). In
fact, in this paper, we generalize the standard scalar Cantelli
probability bound to obtain multivariate probability bound (22)
involving nonconvex and nonlinear sets of obstacles.
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