
MIT Open Access Articles

Design subspace learning: Structural design space exploration
using performance-conditioned generative modeling

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Danhaive, Renaud and Mueller, Caitlin T. 2021. "Design subspace learning: Structural
design space exploration using performance-conditioned generative modeling." Automation in
Construction, 127.

As Published: 10.1016/J.AUTCON.2021.103664

Publisher: Elsevier BV

Persistent URL: https://hdl.handle.net/1721.1/145568

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/145568
http://creativecommons.org/licenses/by-nc-nd/4.0/

Design subspace learning: structural design space exploration using performance-1

conditioned generative modeling 2
 3
Renaud Danhaivea,*, Caitlin T. Muellera 4
 5
a Massachusetts Institute of Technology, Building Technology Program, Department of Architecture, Cambridge, MA 02139, USA 6
* Corresponding author. Address: 77 Massachusetts Avenue, Room 5-418, Cambridge, MA 02139, USA. Tel. +1 732 693 7447. Email address: 7
danhaive@mit.edu (R. Danhaive) 8

Abstract 9

Designers increasingly rely on parametric design studies to explore and improve structural concepts based 10
on quantifiable metrics, generally either by generating design variations manually or using optimization 11
methods. Unfortunately, both of these approaches have important shortcomings: effectively searching a 12
large design space manually is infeasible, and design optimization overlooks qualitative aspects important 13
in architectural and structural design. There is a need for methods that take advantage of computing 14
intelligence to augment a designer’s creativity while guiding—not forcing—their search for better-15
performing solutions. This research addresses this need by integrating conditional variational autoencoders 16
in a performance-driven design exploration framework. First, a sampling algorithm generates a dataset of 17
meaningful design options from an unwieldy design space. Second, a performance-conditioned variational 18
autoencoder with a low-dimensional latent space is trained using the collected data. This latent space is 19
intuitive to explore by designers even as it offers a diversity of high-performing design options. 20
 21
Keywords: deep generative modeling, latent space, latent variable, variational autoencoder, design space, 22
computational design 23

Highlights 24

 There is a need to balance performance and diversity in design space exploration. 25
 High-dimensional spaces are hard to explore without resorting to optimization. 26
 Deep latent learning (VAE) can usefully compress high-dimensional design spaces. 27
 Performance-driven sampling yields better latent spaces at less computational cost. 28
 A two-dimensional latent space is a natural interface for design exploration. 29

1 Introduction 30

Computational design offers structural designers ways to explore large arrays of options parametrically 31
generated from formalized design spaces. Design spaces with a large number of parameters are appealing 32
because they have the potential to yield solutions that are unexpected yet high-performing. Unfortunately, 33
they are also tedious to effectively explore through manual means, and human cognition is not effective at 34
processing high-dimensional information. A natural solution is thus to use automated optimization 35
procedures. While optimization certainly has a role to play as part of the arsenal of methods available for 36
design exploration, its applicability is limited because it does not effectively account for human input and 37
leaves no room for intuition. In addition, design spaces may be ill-defined and objective functions are 38
sometimes one but many aspects for a human designer to factor in, rendering optimization results close to 39
useless. 40

1.1 Research objectives and scope 41

There is a need for methods that allow designers to intuitively explore chaotic design landscapes without 42
resorting to automated procedures, given the importance of human factors in design. This research seeks to 43
address this need by capitalizing on advances in generative modeling and artificial intelligence to help 44

Danhaive and Mueller

human designers explore large design spaces in more intuitive, performance-driven ways. To do so, it 45
introduces a method that generates and uses design performance data to build high-performance low-46
dimensional design subspaces which may be explored directly and easily visualized in their entirety. 47
 48
First, a newly proposed performance-driven sampling algorithm is used to generate a dataset of 49
meaningful—i.e. biased toward high-performance design regions—options from a large, unwieldy design 50
space. Second, these datasets are used to train low-dimensional deep generative models that are intuitive to 51
explore by human designers and offer a diversity of high-performing design options. The models allow 52
designers to freely and flexibly explore design options that attain performance levels prescribed by the 53
designer, without the need to rely on optimization. Instead of replacing human intuition with deterministic, 54
quantitative rules, the computer here acts as a design collaborator that augments the human intellect. 55
 56
Because of the large amount of data required to train deep generative models, the proposed method is best 57
suited for applications where simulating thousands of solutions is feasible, either thanks to reasonable 58
simulation times or through massive parallel computing. In terms of simulation time, oft-used structural 59
and architectural analyses—such as linear finite element analysis or energy analysis—range between 60
seconds and minutes, meaning that thousands of solutions may be computed in hours or days at the most. 61
For more computationally expensive analyses, the tenets of the proposed method still hold but it is best to 62
substitute exact analyses for simpler ones—for example, ones that use coarser analysis resolution—or use 63
fast data-driven models. Other than constraints on simulation time, this research applies to any design 64
problem where performance must be considered alongside non-quantifiable characteristics. 65
 66

1.2 Design space transformation and reduction 67

Some of the most recent advances in design space exploration powered by a surge of interest in data-driven 68
algorithms focus on the transformation of high-dimensional design spaces into lower-dimensional 69
representations. The established goal of such techniques is to reduce the dimensionality of the original space 70
through visualization or variable transformation or both. When used for visualization, dimensionality 71
reduction helps designers make sense of the design space in formats, 2D maps for example, that clearly 72
emphasize patterns in the design space. In that regard, self-organizing maps [1], [2] have become popular 73
as a means to organize design samples on a two-dimensional plane [3]–[5]. 74
 75
Variable transformation explicitly looks to build meaningful mappings from a new reduced set of new 76
variables to the original variables, such that designers can control a small number of super-variables. The 77
common denominator to these methods is that they are unsupervised, i.e. they do not directly rely on the 78
objective function values. Rather, the objective function is used indirectly to gather the data, as a means to 79
bias collected samples towards well-performing regions of the design space. The hope is that the structure 80
of these regions can be uncovered later on through unsupervised learning. Brown and Mueller [6], for 81
example, use optimization run histories as datasets for which they compute the principal components. The 82
extracted principal directions may then be used as new, composite variables—the first of which is likely to 83
represent the direction of steepest change of the objective function. A different, yet related area of research 84
seeks to objective function as a design variable of sorts through the use of inference. Conti, for example, 85
employs Bayesian networks to predict the probability that a given variable value will yield a desired 86
objective function value [7]. 87
 88
This research similarly seeks to build embeddings in which design exploration is facilitated, but, compared 89
to previous work, seeks to capture the nonlinear manifold structure of the collected dataset and learn a 90
reduced and continuous latent representation of the high-performance regions that can be conditioned by a 91
designer to meet prescribed performance levels. 92

Danhaive and Mueller

1.3 Deep generative modeling 93

Generative modeling—not to be confused with generative design—is a branch of unsupervised machine 94
learning that seeks to understand data by learning to recreate it. While they apply to diverse fields of study, 95
generative models, such as generative adversarial networks (GAN), have made headlines and captured the 96
popular imagination in particular for their ability to generate images that are nearly indistinguishable from 97
real-world pictures [8]. 98
 99
Given a dataset of observations, generative models are trained to retrieve the probability distribution from 100
which the dataset was drawn. Real-world data often lies on complex manifolds in high-dimensional space. 101
The interest of generative modeling in design is that it may be used to generate previously unseen yet 102
probable designs by learning the structure of that manifold. Unfortunately, sampling new designs from 103
generative models is not necessarily intuitive or controllable, and recent years have seen a sharper focus on 104
latent variable models, which overcome this issue by generating data distributions based on a fixed number 105
of variables whose mapping to the original data space is learned through data. 106
 107
This research focuses on one class of deep latent generative models: variational autoencoders [9], [10]. 108
Variational autoencoders (VAE) assume that high-dimensional observations in a dataset are drawn from 109
probability distributions defined over latent variables, which may be used to draw new samples by 110
navigating the learned latent subspace. This subspace thus offers a controlled way to generate new data and, 111
in the context of this research, explore new design options. This work uses the conditional variant of VAE 112
[11] to include performance as an explicit input to the design generation. 113
 114
VAEs consist of two differentiable (neural) networks, one encoding high-dimensional input data into a 115
reduced latent representation and the other decoding back the low-dimensional code into its high-116
dimensional representation (Figure 1). The two networks are chained and trained to minimize a loss 117
function with a term representing the reconstruction error (MSE) between input data fed to the encoder and 118
the output data decoded by the decoder and a regularization term (Kullback-Leibler divergence). VAEs 119
lead to continuous and smooth latent spaces, which are especially advantageous for design space 120
exploration. By continuous and smooth latent space, we mean that the latent space is decoded onto original 121
space by continuous mappings (no local jumps) that are not noisy and mostly exhibit low-frequency 122
(smooth) variations across the latent space. From the standpoint of mathematical terminology, the mappings 123
are indeed continuous, but they are not necessarily smooth—i.e. they are not necessarily differentiable 124
everywhere—since they may use non-smooth activation functions like ReLU. Here, the concept of 125
smoothness should be understood qualitatively and does not refer to the differentiability concept of 126
smoothness. 127
 128

Danhaive and Mueller

Figure 1: General architecture of variational autoencoders. 𝑒௵ projects a high-dimensional input 𝒛 to a compressed representation
𝒙, which the decoder 𝑑ః projects back to its original representation as best as possible. 𝛩 and 𝛷 denote their respective network’s
weights which are optimized during training to minimize a composite loss function combining MSE (reconstruction term) and
Kullback-Leibler divergence (which can be seen as a regularization term).

1.4 Deep generative modeling in design 129

The ability of VAEs to pack complex data distributions into continuous and low-dimensional latent spaces 130
makes them particularly applicable to design applications, mostly thanks to the properties of their latent 131
spaces. For example, Umetani [12] demonstrated that a 10-dimension latent representation may be found 132
for cars based on a dataset of three-dimensional car models. The resulting latent space encompasses large 133
variations and allows novice users to interactively design a car body. In a similar vein, but using image 134
data, Burnap, Liu, Pan, Lee, Gonzalez, et al. [13] build a latent design space of two-dimensional automobile 135
bodies. Further away from product design, Carter and Nielsen [14] use a variational autoencoder to build 136
an intuitive design interface for fonts. This previous work demonstrates the usefulness of VAEs to build a 137
low-dimensional design space based on observed real-world data. 138
 139
Generative adversarial networks (GANs) have similarly been shown to be good candidates for generative 140
design applications, though their latent spaces are often harder to explore. Some of the most impressive 141
results produced by GANs have been images, of human faces in particular [8], and there have been similarly 142
striking advances for design applications. For example, generative adversarial networks have been used to 143
generate voxel-based or point-based three-dimensional models of furniture, cars, and other objects [15]–144
[17]. GANs and their conditional variations like pix2pix [18] have also been used to generate building floor 145
plans [19] and indoor furniture layouts [20], [21]. 146
 147
This research differs from this previous work in that it establishes workflows, which may be applied 148
systematically for design space exploration for which previously explored data is unavailable. While 149
thousands of car designs may have been observed in the past, a dataset of structures designed for a particular 150
site with specific loads is unlikely to exist. Perhaps closer to this research, Yumer, Asente, Mech, and Kara 151
[22] showed how an autoencoder network may be used to ease the burden of exploring procedural models 152
for non-expert users. However, their method does not incorporate performance in any way but focuses on 153
shape features as a means to differentiate data. Conversely, the proposed method is geometry-agnostic and 154
solely focuses on design parameters and objective function values, which ensures that it can be applied 155
systematically for performance-driven design exploration. 156

2 Methodology 157

This section describes the workflow to build subspace representations of the high-performing regions. 158

Danhaive and Mueller

In the following, a design option is specified by a 𝑛-dimensional vector of design variables 𝒙 ∈ 𝐷 ⊂ ℝ௡. 159
The domain 𝐷 formally defines the design space. In this research, 𝐷 is a bounded domain 160
ൈ௜ ൣ𝑥௜,௠௜௡, 𝑥௜,௠௔௫൧ሺ𝑖 ൌ 1, … ,𝑛ሻ. Each design may be evaluated by a performance metric 𝑓ሺ𝑥ሻ, which is 161
computationally expensive to query and unknown except when computed for discrete samples. This 162
formalism corresponds to the definitions broadly adopted in most design space exploration research and is 163
useful for describing the algorithms below. 164
First, we introduce a performance-driven sampling algorithm used to efficiently collect a dataset 165

ቄቀ𝒙ሺ௜ሻ,𝑓൫𝒙ሺ௜ሻ൯ቁ |𝑖 ൌ 1, … ,𝑁ቅ of design samples. Then, we show how this dataset is used to train conditional 166

generative models and how these can be used for design exploration. 167

2.1 Performance-driven sampling 168

Training deep latent generative models requires significant amounts of data, which may be collected by 169
sampling through the design space. Because the explicit goal of such models is to uncover a reduced number 170
of latent variables that explain the distribution of the data, they are only effective when the data is non-171
uniformly distributed. Sampled datasets produced by uniform sampling schemes are thus not adequate to 172
train a latent variable model. Instead, the datasets used for training need to be biased and mostly include 173
those design samples that present desirable attributes, which are assumed to be grouped in specific regions 174
of the design space. In practice, these attributes are measured by some objective function. For the spatial 175
truss example used to illustrate the proposed method (see Figure 5), the structural mass required to resist 176
imposed loads is the objective of interest. If multiple objectives are simultaneously considered, they may 177
be grouped in a composite objective function, an approach used successfully in previous related work [6], 178
or multi-objective sampling schemes may be considered altogether. 179
 180
The performance bias may be introduced downstream: samples are then obtained through uniform sampling 181
schemes and filtered based on their objective values. If a fine enough sampling resolution may be achieved, 182
this scheme ensures uniform coverage of all high-performance regions. In practice, however, it is typically 183
computationally prohibitive to sample high-dimensional design spaces at a high resolution both because of 184
the curse of dimensionality and the slow simulations typically required in structural and architectural 185
design. An alternative is to sample using schemes that directly incorporate bias. Previous work [6], [23] 186
proposes using optimization histories to collect design samples with a performance bias. Optimization, 187
however, imposes a strong prejudice against regions in the design space that are suboptimal but still may 188
be of interest to designers. In addition, optimization algorithms oversample best-performance regions 189
before reaching convergence. This is true for stochastic optimization algorithms as well, albeit to a lesser 190
extent. Though useful, optimization methods are not designed for sampling. 191
 192
Sampling is often used to build fast surrogate models substituting for complex and slow engineering 193
analyses, whether this sampling is accomplished through physical experiments as in early surrogate 194
modeling research [24] or using computational fluid dynamics [25] and thermal [26] simulations, and much 195
research has been devoted to devising sampling plans that yield surrogate models that are as accurate as 196
possible for a minimum number of samples [27]–[30]. In contrast to previous work, the proposed sampling 197
algorithm is designed to generate samples from pockets of high-performance more than it is geared toward 198
optimal model accuracy. In performance-driven design, low-performance regions are of little interest, and 199
model accuracy there is less important as a result. In other words, the performance distribution of the 200
samples matters more than the quality of the surrogate model they could be used to build because these 201
samples are generated to train unsupervised learning algorithms or building visualizations used to 202
understand, explore, or generate high-performance design options. 203
 204
The proposed algorithm is a sequential, model-based sampling scheme, similar conceptually to Bayesian 205
optimization, that uses filtering to introduce performance bias. It starts by building an initial surrogate 206
model based on a limited number of samples evaluated using the true objective function. These samples are 207

Danhaive and Mueller

used to build an initial surrogate model. This surrogate model is then used to evaluate another set of samples. 208
These samples are filtered using an acceptance criterion which is conditioned on their performance as 209
evaluated by the surrogate model. The filtered-in samples are in turn evaluated using the true objective 210
function and added to the set of collected samples. Based on the samples collected so far, a new surrogate 211
model is built, and the steps above are repeated a prescribed number of times. 212
 213
The introduced sampling scheme is non-deterministic and uses a tunable sigmoid-like gating function 214
defined in Algorithm 1 to determine which samples to evaluate with the true objective function. The 215
algorithm (see Algorithm 1 for the detailed pseudocode) starts with a low-resolution, unbiased sampling—216
such as Latin hypercube sampling—of the design space to build a dataset of 𝑛௜௡௜௧ samples 𝐷 ൌ217
൛൫𝒙௜ ,𝑦௜ ൌ 𝑓ሺ𝒙௜ሻ൯, 𝑖 ൌ 1, … ,𝑛௜௡௜௧ൟ where 𝒙௜ is the design vector of sample 𝑖 and 𝑦௜ is its corresponding 218
score computed with 𝑓, the design performance function (calls to 𝑓 are assumed to be slow). This initial 219
dataset is used to build a surrogate model 𝑓∗ that is hoped to approximate the function 𝑓 as well as possible, 220
but, given the limited sample size, it is expected to be flawed. Once the surrogate model is built, the design 221
space is sampled again, but, this time around, the samples are evaluated using 𝑓∗ instead. These evaluations 222
are cheap and fast. Based on their predicted performance, designs are filtered using a sigmoid-like 223
probabilistic gate with a user-specified growth rate 𝑔 and a performance threshold 𝑝. Accepted designs are 224
then evaluated using the true objective function 𝑓, and they are added to the dataset 𝐷. The augmented 225
dataset is then used to build an updated surrogate model 𝑓∗, and this process is repeated ൫𝑛௦௧௘௣௦ െ 1൯ times. 226
It is worth noting that the growth rate is multiplied by a factor of 1 ൅ 𝛽 in each subsequent iteration, where 227
𝛽 ൒ 0 is usually small and allows to progressively increase the growth rate as the uncertainty of the 228
surrogate model decreases. 229

Algorithm 1: Sequential performance-gated sampling

Input:

 Ω ൌ ൈ௜ ൣ𝑥௜,௠௜௡, 𝑥௜,௠௔௫൧ሺ𝑖 ൌ 1, … ,𝑑ሻ ⊂ ℝௗ, the design space,
 𝑓: Ω → ℝ, the true objective function,
 𝑛௜௡௜௧, the initial number of samples,
 𝑁, desired number of samples in addition to initial samples
 𝑛௦௧௘௣௦, the number of sampling steps,
 𝑝 ∈ ሿ0,1ሾ, the performance threshold,
 𝑔 ൐ 0, the growth rate,
 𝛽 ൒ 0, the increase rate for 𝑔

Output:

 Dataset 𝐷 ൌ ൛൫𝒙௜ ,𝑦௜ ൌ 𝑓ሺ𝒙௜ሻ൯ൟ of generated design samples

Initialization:

 Sample 𝑛௜௡௜௧ initial designs in Ω using LH sampling.
 Evaluate designs using 𝑓 to build dataset 𝐷 ൌ ൛൫𝒙௜ ,𝑦௜ ൌ 𝑓ሺ𝒙௜ሻ൯, 𝑖 ൌ 1, … ,𝑛௜௡௜௧ൟ.
 Train surrogate model 𝑓∗ based on 𝐷.

for 𝑖 in ൣ0, … ,𝑛௦௧௘௣௦ െ 1൧ do

 Initialize empty set 𝐷௦௧௘௣ ← ሼሽ.
 Set 𝑔௦௧௘௣ ← 𝑔 ∗ ሺ1 ൅ 𝛽ሻ௜.

 while ห𝐷௦௧௘௣ห ൏
ே

௡ೞ೟೐೛ೞ
 do

o sample
ே

௡ೞ೟೐೛ೞ
 designs 𝒙𝒋 ൬𝑗 ൌ 1, . . . ,

ே

௡ೞ೟೐೛ೞ
൰ in Ω using LH sampling,

o evaluate design scores 𝑦௝
∗ ൌ 𝑓∗൫𝒙𝒋൯ using surrogate model 𝑓∗,

Danhaive and Mueller

o compute 𝑝-values 𝑝௝ ൌ
ฬ൜௬ೕ

∗ஸ௬ೖ
∗ ,௞ୀଵ,…,

ಿ
೙ೞ೟೐೛ೞ

ൠฬିଵ

ேିଵ
 for each design,

o compute acceptance probabilities 𝛼௝ ൌ gate௚ೞ೟೐೛,௣൫1 െ 𝑝௝൯ for each design,

o accept design 𝑗 with probability 𝛼௝ , evaluate using true objective function 𝑓, and add to 𝐷௦௧௘௣:

𝐷௦௧௘௣ ← 𝐷௦௧௘௣⋃ ൜ሺ𝒙𝒋,𝑦௝ ൌ 𝑓൫𝒙௝൯ฬ𝐵𝑒𝑟൫𝛼௝൯ ൌ 1, 𝑗 ൌ 1, . . . ,
ே

௡ೞ೟೐೛ೞ
 ൠ, where 𝐵𝑒𝑟 is the Bernoulli

distribution.
 end while
 Add samples generated and accepted in this step to 𝐷: 𝐷 ← 𝐷⋃𝐷௦௧௘௣
 Train surrogate model 𝑓∗ based on 𝐷.

end for
return 𝐷

Where

gate௚,௣ሺ𝑥ሻ ൌ
ఙ೒,೛
∗ ሺ௫ሻିఙ೒,೛

∗ ሺ଴ሻ

ఙ೒,೛
∗ ሺଵሻିఙ೒,೛

∗ ሺ଴ሻ
 with 𝜎௚,௣

∗ ሺ𝑥ሻ ൌ ቐ
𝜎௚ ቀ

௫ି௣

ଵି௣
ቁ , 𝑖𝑓 𝑥 ൐ 𝑝

𝜎௚ ቀ
௫

௣
െ 1ቁ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

and 𝜎௚ሺ𝑥ሻ ൌ
ଵ

ଵା௘ష೒ೣ

 230
The role of the probabilistic performance gate is to balance exploration and exploitation of the initial 231
surrogate model as well as the ones built at every subsequent step. Since the initial surrogate model is built 232
with a limited number of samples, it is not expected to be very accurate in many regions of the design space. 233
However, it is used to evaluate the next batch of samples because it is extremely cheap to query compared 234
to the true objective function. 235
 236
If the sample filtering used a hard threshold and was completely deterministic, there would be a risk that, 237
based on the incomplete picture provided by the surrogate model, only samples in a narrow area may be 238
accepted. These would then be evaluated with the true objective function and added to the initial set of 239
samples to train a new surrogate model, which, compared to the first one, will have only gained information 240
about that narrow area. This may cause the next sampling steps to drill down (i.e. exploit the model) in that 241
one area without exploring other wells of performance that may have been missed by the initial sampling. 242
The probabilistic gating strategy solves this problem by allowing samples that are predicted to be 243
performing worse than the specified performance threshold to be accepted, albeit with a lesser chance. This 244
results in a wider exploration of the design space and smaller odds that good regions are missed. How much 245
weight is given to exploration versus exploitation is controlled by the growth rate 𝑔, as is explained in the 246
previous section: the larger the growth rate, the more onus is put on exploitation, and vice-versa. In fact, if 247
𝑔 → ∞, the gate is a step function and the filtering is fully deterministic. 248
 249
As the algorithm progresses, more samples are collected, and the quality of the surrogate model improves 250
and hopefully identifies regions of good performance correctly. When it does, it makes sense to put more 251
weight on exploitation. In other words, the first sampling steps require more exploration while the later 252
ones demand more exploitation. To achieve this, an additional parameter 𝛽 introduced and is used to 253
increase the growth rate at each new step by multiplying its previous value by 1 ൅ 𝛽. For example, for 𝛽 ൌ254
0.2, a starting growth rate of 5 translates into a growth rate of about 31 after 10 iterations. 255
 256
The sampling algorithm depends on 6 hyperparameters: the number of initial samples 𝑛௜௡௜௧, the minimum 257
number of desired samples, the number of sampling steps, the percentile threshold, the growth rate 𝑔, and 258
the parameter 𝛽. The first four hyperparameters are readily interpretable and may be chosen with reasonable 259
engineering judgment. The number of initial samples may be increased or decreased depending on the 260

Danhaive and Mueller

complexity of the objective function for which designers generally have a good working intuition. The 261
choice of the number of desired samples would likely be based on the requirements of the data-driven 262
method they may be used (in our case, it is reasonable to assume that a deep neural network will require 263
thousands of samples to effectively train). 264
 265
Choosing the number of sampling steps essentially amounts to choosing how many surrogate models will 266
be built throughout the sampling process. Choosing as many steps as the desired number of samples would 267
mean building a new surrogate model for every new sampled design, surely an inefficient strategy since 268
any single point does not contribute so much new information as to warrant training a new model, so 269
keeping the number of steps relatively low is reasonable. This is confirmed by experimental results 270
discussed in Section 3.1 which demonstrate that the quality of collected samples quickly improves only 271
after a few steps. The number of sampling steps and the minimum number of desired samples constitute 272
rigid stopping criteria that are commonly used for sampling algorithms. Convergent behavior is clearly 273
observed in experimental results, especially at the distribution level (Figure 7), but basing a stopping 274
criterion on a relative metric like relative convergence of sample mean would not be practical because the 275
algorithm’s primary objective is to provide a desired number of high-quality samples. The percentile 276
threshold explicitly controls the targeted percentile of the sampled designs compared to the performance 277
distribution of a uniformly sampled population of designs. 278
 279
The influence of the last two hyperparameters is also significant as shown experimentally in Section 3.2. 280
The growth rate 𝑔 controls how lax the performance filtering is at each step of the sampling process. 281
Because trust in the surrogate model is low at the beginning of sampling, using a relatively low growth rate 282
during the first steps of the algorithm prevents it from getting stuck in a limited region of the design space. 283
However, as the algorithm progresses, the surrogate model improves and the stringency of filtering can be 284
increased. To do so, the initial growth rate is progressively increased at each sampling step with a rate 285
controlled by the parameter 𝛽. Figure 8 shows the influence of 𝑔 and 𝛽 on the algorithm’s progress on the 286
long-span roof case study used to illustrate this research. 287
 288
One of the objectives of the proposed sampling algorithm is to be able to control the diversity and the 289
quality (performance) of the generated samples. The trade-off between sample diversity and quality is 290
usually hard to navigate with existing sampling algorithms, but, here, it can be explicitly mediated by the 291
growth rate and the performance threshold. It is also worth noting that, while the probabilistic gating looks 292
to ensure a good balance of exploitation and exploration at each step, additional unfiltered LH samples may 293
be collected at each step to further increase the odds of widespread coverage. 294

2.2 Performance-conditioned VAE 295

This research uses a conditional VAE instead of a standard based on two observations. First, conditioning 296
the generative model on performance scores improves the model by helping it encode and decode designs 297
more easily. Instead of having to learn projections that work for all sampled designs at once, the 298
performance-conditioned VAE (Figure 2) can adapt its mappings to different performance values: this 299
facilitates disentangling performance contours that may otherwise not be discernable. Second, the 300
performance condition can be used after the model is trained to control the decoder’s output. This is 301
particularly useful when designers are looking to trade-off performance for other qualitative design 302
attributes: they can start by generating high-performance design options and can progressively relax their 303
performance condition to explore suboptimal solutions that may fulfill unformulated objectives. 304

Danhaive and Mueller

Figure 2: Performance-conditioned VAE. The performance condition is fed to both the encoder and the decoder.

2.2.1 Performance condition: the p-value 305

The performance-conditioned VAE (PVAE) is trained on a dataset of design samples (represented by their 306
design vectors) and their corresponding performance scores evaluated based on engineering simulation 307
results. However, absolute performance values are not directly used. Instead, we reuse the concept of the 308
𝑝-value, which was introduced in the last chapter and can be seen as a normalized rank of sorts. Given a set 309
of 𝑁 design samples ሼሺ𝒙௜ ,𝑦௜ሻ, 𝑖 ൌ 1, … ,𝑁ሽ with design vectors 𝒙௜ and scores 𝑦௜, the 𝑝-value of design 𝑖 is 310

computed as 𝑝௜ ൌ
ห൛௬ೕஸ௬೔,௜ୀଵ,…,ேൟหିଵ

ேିଵ
. The definition of the 𝑝-value is slightly modified compared to the 311

definition in the sampling algorithm such that lower 𝑝-values represent designs with lower performance 312
scores. Again, using this strategy allows to map the scores of all designs used for training the PVAE, which 313
can vary widely in magnitude, to the fixed interval ሾ0,1ሿ. In addition, compared to the absolute performance 314
scores, the design 𝑝-values are distributed evenly on the unit segment. 315
Using the 𝑝-value as the performance condition also makes exploiting the PVAE more intuitive after it is 316
trained: the performance condition can then be seen as a simple knob or slider that can be tuned from 0 to 317
1 to generate designs with lower or higher objective values. 318

2.3 Latent space dimensionality 319

One of the key decisions to make when building a VAE is to choose the dimensionality of the latent space 320
onto which data will be projected. Latent spaces with fewer dimensions generally extract more meaningful 321
directions of change from the data, but they also incur a larger compression loss, which means that it is 322
harder to reconstruct input data from its latent representations. In the context of design space exploration, 323
this means that lower-dimensional latent spaces are likely to generate less diverse design candidates. On 324
the other hand, the lower the dimensionality of the latent space, the easier it is to explore. 325
 326
In practice, designers may explore the trade-off between ease of exploration by varying the dimensionality 327
of the latent space. This research chooses to build two-dimensional latent spaces, which heavily compress 328
input data, because it allows for the representation of complex design subspaces as two-dimensional 329
landscapes that are easy to explore and provide designers a global view of the design candidates meeting a 330
prescribed performance level. In the long-span roof case study used here, the latent spaces built displayed 331
good diversity such that the benefits brought about by their low-dimensionality outweighed the diversity 332
trade-off. With that said, the proposed method can be readily applied to latent spaces with higher dimensions 333
that are nonetheless significantly easier to explore than the original. 334

Danhaive and Mueller

2.4 Decoding the latent space 335

Once the PVAE is trained, we can detach the decoder and use it to generate designs by moving through the 336
latent space, whose directions are effectively synthetic and reduced design variables. With a two-337
dimensional latent space, this navigation can be done through a computer screen by moving a point across 338
a two-dimensional slider. Because the latent space dimensionality is small enough, it is also possible to 339
precompute many design candidates and evaluate their performance to build two-dimensional performance 340
maps (Figure 3) that can be overlaid directly on the latent space. 341
 342

Figure 3: Thanks to the low-dimensionality of the latent space, explorable performance maps can be precomputed by decoding a
grid of designs in the latent space and computing their performance scores.

These performance maps can then be navigated with a cursor whose location in the latent space is decoded 343
to generate designs (Figure 4). This allows designers to intently explore diverse, high-performing structures. 344
The 𝑝-value constitutes an additional control that allows designers to relax performance requirements and 345
modify the performance landscape to explore other design options. 346
 347

Figure 4: Navigating the latent performance map. A designer can move through the performance map—adjusting it by modifying
the 𝑝-value—with a cursor, whose location is decoded to generate its corresponding design (represented here by an abstract shape
with arrows suggesting the morphing that occurs as the cursor moves across the performance map).

3 Results 348

To demonstrate the effectiveness of the algorithm on a high-dimensional design space, we use a long-span 349
roof example controlled by 36 design variables (Figure 5). The roof geometry is defined by two surfaces, 350

Danhaive and Mueller

whose control points can be moved vertically by to modify the depth of the space truss generated between 351
them. Space trusses or space frames are often used in structural design to span long distances: in addition 352
to their inherent structural performance, they can be easily shaped for greater structural efficiency or to 353
conform to an architectural designer’s vision or both. 354
Shaping the space truss in this example is thus an exercise in both structural and architectural design since 355
its shape will affect its structural performance, its architectural form, and the space it spans. The proposed 356
space truss intentionally presents a substantial cantilever to exacerbate the architectural and structural 357
impact of the design variables. 358

Figure 5: Long span roof example: summary of initial geometry, design variables, and performance measure. Design variables 1
through 18 control the bottom surface and variables 19 through 36 control the top surface.

Controlling the shape of the space truss with two NURBS surfaces (each of degree 2) allows a level of 359
control that can be arbitrarily increased or decreased by introducing additional control points without 360
needing to parametrize the location of every single node in the space truss. For this example, we deliberately 361
use surfaces with a moderate number of control points (25 per surface) to generate a design space that 362
contains diverse and potentially surprising solutions. Because the geometry is constrained to be symmetric 363
and only the 𝑧-coordinates of the control points are in play (the roof footprint is fixed), this results in a total 364
of 36 design variables (18 per surface). By parametric design standards, this is a high-dimensional design 365
space, which is likely to contain good solutions both aesthetically and structurally as well as grotesque ones. 366

3.1 Structural modeling and performance metric 367

The spatial truss is connected to 4 pin supports by a total of 16 columns and is subject to a load of 50 psf 368
or 2.39 kN/m2 applied as individual downward point loads on each node of the space frame (17.3 kN per 369
node) in addition to its self-weight. The structure is modeled as a perfect truss (elements only deform 370
axially) built with steel (S355; 𝜎௬௜௘௟ௗ ൌ 355 𝑀𝑃𝑎ሻ circular hollow sections. Each truss member is sized 371
automatically using the cross-section optimizer of Karamba [31], a structural analysis plug-in. Based on a 372

Danhaive and Mueller

user-provided catalog of cross-sections, the cross-section optimizer starts by assigning each member with 373
the smallest cross-section possible and analyzes the structure—using linear static FEA—accordingly to 374
obtain its internal forces and displacements. These are then used to resize each member by searching the 375
smallest cross-section possible among the specified catalog that satisfies the strength requirements of the 376
Eurocode EN-1993 (Design of Steel Structures). Because this modifies the self-weight of the structure, the 377
structure is analyzed again to ensure that the cross-sections can resist the updated loads and that the structure 378
does not deform excessively. If these requirements are not met, the process is repeated until they are. For 379
this example, the optimizer sizes the design candidates by picking sections from a catalog of 46 circular 380
hollow tubes with diameters ranging from 10 to 100 cm—very large sections are required to be able to 381
characterize poor-performing designs well—in increments of 2 cm and wall thicknesses equal to 5% of the 382
tube diameters or 20 mm, whichever is smallest. Members are sized against yielding (elastic design) with 383
a safety factor of 1.5 and against buckling with a safety factor of 3. The structure is also subject to a 384
displacement limit of L/300 (=13.3 cm), albeit for a smaller load of 33 psf or 1.58 kN/m2. The sizing process 385
is used to automatically evaluate design candidates to the amount of material they require to resist the 386
imposed load, which are normalized by the structure’s footprint (1600 m2) for easier interpretation. 387

3.2 Performance-driven sampling 388

The proposed performance-driven algorithm is run on the space truss design space for 10 steps with 𝑛௜௡௜௧ ൌ389
1000, 𝑁 ൌ 5000, a performance threshold 𝑝 ൌ 0.8, a growth rate 𝑔 ൌ 2, and a growth increase rate 𝛽 ൌ390
0.3. The surrogate model is a support vector regressor with a Gaussian kernel whose parameter 𝛾 and 𝐶 are 391
searched among 5 log-spaced values between 10ଷ and 10ିଷ using 3-fold cross-validation. 392
In total, 6771 samples (including 1000 initial LH samples) are collected at the end of sampling. Figure 6 393
shows a kernel density estimation (Gaussian kernel; bandwidth=2) of the structural mass—the performance 394
metric of interest—of the samples resulting from the performance-driven sampling and compares it against 395
the same estimation obtained for 6771 Latin hypercube samples, which can be seen as an estimate of the 396
true performance distribution of the design space, and the 1000 LH samples collected to initialize the 397
algorithm. Such comparison shows the benefits brought by the performance-driven algorithm compared to 398
a standard sampling scheme in terms of sample quality. The proposed method leads to a much denser 399
sampling of designs with higher performance as the shift in density toward higher-performing scores (low 400
mass) for the performance-driven samples demonstrate. 401

Figure 6: Kernel density estimations of 6771 performance-driven samples scores vs. 6771 and 1000 LH samples scores with strip
plot of the scores of the performance-driven samples

To assess the effectiveness of the algorithm on this high-dimensional example, we can also look at the 402
evolution of the sample quality. Figure 7 shows two graphs that shine a light on the algorithm’s progress 403
and confirm its value for sampling high-dimensional design spaces. The first (on the left) shows how the 404
performance density of the samples collected at each step gradually moves to the left and peaks higher for 405
lower i.e. better mass values. Particularly noteworthy is the big jump between step 0 and step 1: this shows 406
that even a surrogate model relying on little data can significantly help sample much better design 407

Danhaive and Mueller

candidates. The second graph (right) confirms this trend: the mean sample score progressively decreases 408
and the samples (each represented by a single dot) cluster downward. 409

Figure 7: Performance of samples collected for each sampling step. Each point represents a single sample, its vertical
position indicates the sample performance, and its horizontal position indicates when it was collected (jitter is introduced to
improve readability). The mean performance for each step is shown by the solid line. The performance axis is bounded to
[40,140], and samples with larger performance values are crowded at the top of the graph.

The results discussed and shown above were produced for a specific set of growth rate and 𝛽 parameters, 410
and, as was already discussed in 2.1, these two parameters can alter the result of the sampling process in 411
ways that are worth highlighting. By running the performance-driven algorithm on the long-span roof 412
example for 9 combinations of these two parameters (and using the values listed at the beginning of this 413
section for the other hyperparameters) and tracking the mean of the samples collected at each step, we show 414
that this intuition is confirmed experimentally (Figure 8). Choosing an initial high-value for the growth rate 415
means that the in-step sample mean decreases drastically after the first step with only marginal 416
improvements in subsequent steps. While this yields successive sampling steps with lower sample means, 417
this may indicate that the algorithm is drilling down on a given region and ignoring other promising ones, 418
such that one should not assume that a sudden drop followed by a plateau is necessarily best. A low growth 419
rate and a low 𝛽 also make the algorithm stall because it is simply not strict enough when filtering proposed 420
LH samples. In summary, too high a growth rate does not yield enough exploration and low values for both 421
parameters yield less exploitation. As Figure 8 shows, a choice of a low initial growth rate (1-5) and a 422
moderate value of 𝛽 (0.1-0.5) strikes a good balance between exploration and exploitation, but regardless 423
of 𝑔 and 𝛽, the algorithm yields samples with much better performance than the initial LH step. 424

Danhaive and Mueller

Figure 8: Influence of growth rate and 𝛽 parameters on the mean performance of samples collected at each step.

3.3 Performance-conditioned VAE 425

Figure 9: Architecture of performance-conditioned VAE used for the long span roof example.

The performance-conditioned variational autoencoder with 39,516 trainable parameters diagrammed in 426
Figure 9 is trained based on the data collected by the performance-driven algorithm detailed in the previous 427

Danhaive and Mueller

subsection. Before training, design variables used are normalized from ሾെ3,3ሿ to ሾ0,1ሿ. It is worth noting 428
that the final activation of the network is a rectified linear unit activation (ReLU) which, in contrast to a 429
sigmoid activation, does not restrict the output of the decoder to the ሾ0,1ሿ domain, technically allowing 430
decoded samples to have out-of-bound design variables. In practice, this accelerates training, and the 431
bounds of the design variables are softly integrated by the model through learning. 432
 433

Figure 10: Evolution of reconstruction loss and Kullback-Leibler divergence of the performance-conditioned VAE during training.

The PVAE is trained for 1000 epochs with 5755 samples using the RMSprop gradient descent algorithm 434
[32] to minimize the VAE loss, itself obtained by averaging the MSE reconstruction loss and the Kullback-435
Leibler (KL) divergence between the encoded samples and the normal distribution. The PVAE is validated 436
with 1016 samples. Figure 10 shows the evolution of the loss components (MSE and KL divergence) for 437
the training and validation sets as training progresses: the MSE is expectedly minimized, but the KL 438
divergence progressively increases to an asymptotic value. The latter result may seem a little 439
counterintuitive given the PVAE is trained to minimize the average of both the MSE and the KL divergence. 440
However, the KL divergence should be understood as a regularization term, which is added to the MSE to 441
ensure that the latent space has a continuous and smooth structure. Without the KL divergence, it would be 442
possible to reduce the reconstruction loss even more, but that would be at the expanse of the latent space 443
continuity. Conversely, minimizing the KL divergence would negatively impact the reconstruction MSE. 444
From that perspective, the asymptotically increasing behavior of the KL divergence is only a reflection of 445
the trade-off between the two terms of the VAE loss. 446

3.4 Latent space encoding 447

To assess the impact of the KL divergence on the structure of the latent space, it is useful to look at the 448
projections of the high-dimensional training data points onto the latent space. Figure 11 shows how the 449
5755 training samples are encoded onto the 2D latent space by the encoder, organized according to a slightly 450
asymmetrical normal-like distribution. This structure is a direct consequence of the use of a VAE (with its 451
KL divergence term in the loss function) over the use a regular autoencoder and is indicative of a latent 452
space that is continuous and smooth, both important features for design exploration. 453

Danhaive and Mueller

Figure 11: Projection of training samples onto the latent space by the encoder after training.

Figure 11 also shows that samples with different performance scores are superimposed in the latent space. 454
This reflects the role that the performance condition plays: it essentially allows the PVAE encoder to use 455
the same real estate in the latent space to pack multiple strata of the high-dimensional design space. 456
Similarly, the performance condition allows the decoder to unfold the latent space into different manifolds 457
in the high-dimensional design space. 458

3.5 Latent space decoding: an atlas of design subspaces 459

The PVAE does not only provide access to a single latent space but rather an atlas of performance maps 460
that designers can sift through by adapting the performance condition. This is particularly useful because it 461
allows designers to investigate potentially interesting trade-offs between performance and other intangible 462
design factors. Figure 12 shows the performance maps obtained by decoding and evaluating the latent space 463
for different 𝑝-values. 464
The maps show that the 𝑝-value (the performance condition) has the intended effect on the performance of 465
the latent spaces: the performance scores increase—they get worse in this case—as the 𝑝-value is increased. 466
The performance map for 𝑝 ൌ 0 includes designs with excellent performance scores, many of them 467
hovering right above 40 kg/m2, i.e. the best objective function value in the design dataset used for training 468
the PVAE and obtained using performance-driven sampling. The latent spaces corresponding to larger 𝑝-469
values unsurprisingly contain only slightly worse designs that demonstrate the potential of the proposed 470
approach to explore design candidates that are slightly suboptimal but qualitatively better. Interestingly, the 471
performance contours are not smooth everywhere, even though the decoder mapping is continuous, because 472
the objective function, the structural mass required to support the imposed loads, is itself non-smooth with 473
respect to the original design variables. This is particularly salient for 𝑝 ൌ 1 where the weight of some 474
designs in the latent space skyrocket: these are designs where the space truss has areas with small structural 475
depths, resulting in large internal axial forces and section sizes. 476

Danhaive and Mueller

Figure 12: Objective function heat maps in the latent spaces learned by the performance-conditioned VAE for different 𝑝-values.

The consistent and anticipated link between the performance condition displayed in Figure 12 is even better 477
illustrated by Figure 13, which shows how the performance of 100 random samples in the latent space 478
changes as the 𝑝-value is increased. Figure 13 also highlights an interesting trend: for 𝑝-values smaller than 479
0, performance continues to improve (decrease) until around 𝑝 ൌ െ0.3. Even though the PVAE is not 480

Danhaive and Mueller

trained with any samples associated with negative 𝑝-values, it learns to extrapolate beyond 𝑝 ൌ 0. These 481
extrapolated trends broadly correspond to an increase of the space truss depth beyond the original bounds 482
of the design space. As the depth of the space truss increases further for values lower than െ0.3, the negative 483
impact of the increased length of the structural members starts to outweigh the benefits of the larger 484
structural depth, and the structural mass increases slightly. 485

Figure 13: Evolution of the performance score of 100 random designs sampled from the latent space ([-3,3]ൈ[-3,3]) (left) as the
performance condition is increased. For values of 𝑝 lower than 0, the VAE successfully extrapolates trends linked with an
improvement (decrease) of the performance score beyond the original bounds of the design space to make the space truss deeper.

To understand the structure of the latent space learned by the PVAE, it is useful to look at how each point 486
in the 2D latent space is mapped to each design variable of the original, high-dimensional design space. 487
Figure 14 shows the values that each of the original design variables takes in different locations of the latent 488
space for 𝑝 ൌ 0. It illustrates the non-linearity of the latent space is, which allows to pack more complex 489
distributions of designs than linear encoding techniques like principal component analysis. It also 490
demonstrates that the latent space is smooth and that any exploration path in the latent space continuously 491
morphs or interpolate between designs. 492
 493

Danhaive and Mueller

Figure 14: Mapping from latent space (ሾെ3,3ሿଶ) to original variables for 𝑝 ൌ 0. Numbers indicate the indices of each design
variable as defined in Figure 5.

An interesting question is whether we can derive any meaning from the latent directions. Sometimes, 494
dimensionality reduction techniques yield lower-dimensional representations with directions to which 495
humans can ascribe meaning a posteriori. For example, research on lighting control has shown human-496
derived criteria for sensor lighting control can be extracted using PCA [33]. Interpreting the meaning of the 497
directions of a learned latent space is typically easier for linear dimensionality reduction methods like PCA. 498
Because the PVAE encoding and decoding are nonlinear, interpreting each latent direction globally is not 499
as straightforward. Nevertheless, despite its apparent complexity, the latent space is intuitive to explore 500
because it can be rendered at once on a 2D computer screen. 501
Of course, the latent space maps also change as the performance condition is modified: Figure 15 shows 502
the evolution of the design variable maps for different 𝑝-values. The evolution of the latent space is smooth 503
and shows that any individual design in the latent space is continuously morphed to match a prescribed 504

Danhaive and Mueller

performance condition. Figure 15 also highlights how the PVAE extrapolates trends for 𝑝-values under 0 505
or above 1. 506

Figure 15: Evolution of latent space maps of original variables for increasing (left to right) values of the 𝑝-value.

Danhaive and Mueller

In addition to the performance and variable maps, it is also important to look at the actual design geometries 507
corresponding to different points of the latent space to understand the design subspace learned by the PVAE. 508
Figure 16 shows 36 designs decoded from a regular grid of 6-by-6 samples in the latent space (for 𝑝 ൌ 0) 509
and their respective performance scores. These designs demonstrate that the latent space contains 510
geometrically and visually diverse. All of these designs perform very well, and the low-dimensional design 511
subspace can be exhaustively searched by designers to find high-performance options with different 512
qualitative properties. 513

Figure 16: Renderings of a grid of designs in the latent space for 𝑝 ൌ 0 and their corresponding structural mass [kg/m2]. The
vertical and horizontal axes indicate the position of each design in the latent space.

While Figure 16 offers a snapshot of a grid of designs contained in the latent space for a specific value of 514
the performance condition, the influence of the 𝑝-value on design geometry and performance is even better 515
highlighted by looking at individual locations in the latent space with varying performance conditions. 516
Figure 17 shows the morphological evolution of 4 designs at 4 different locations of the latent space as the 517
performance condition is increased, and it illustrates the impact of the performance condition on both design 518
geometry and performance: generally, designs in the latent space with 𝑝 ൌ 1 are essentially shallower 519
versions of the ones in the latent space with 𝑝 ൌ 0. It is noteworthy that much of the latent space with 𝑝 ൌ520
1 still contains many well-performing designs (see Figure 12) with much shallower morphologies. This 521
demonstrates once again the potential of the proposed approach to explore design options that are sub-522
optimal quantitatively but potentially better fits for a host of other reasons. 523
These results confirm that the performance condition preserves most of the broad design characteristics of 524
each design and mostly participates in making the space truss shallower. For experienced structural 525
designers, this result is not surprising: structural depth in areas with high-bending moments, in this case 526
over the supports, is almost always conducive to greater structural efficiency. However, the fact that the 527
PVAE inferred it from data is non-trivial, and the PVAE does not simply operate by moving up the lower 528
surface and moving down the upper surface. For example, some areas of the space truss become shallower 529
more quickly than others. 530

Danhaive and Mueller

Figure 17: Morphological and performance evolution of 4 designs (right) in the latent space (left) as 𝑝 increases from 0 to 1. Each
column corresponds to a single point in the latent space (the location of which is shown at the top). As the performance condition
increases, so does the structural mass, given in kg/m2.

In addition, Figure 17 further shows the usefulness of the performance condition for exploring non-optimal 531
designs. For example, the second and fourth columns of designs show that it can be used to dramatically 532
change the geometry of near-optimal designs while remaining in acceptable territories from a performance 533
perspective. 534

3.6 Latent space navigation 535

As the last section shows, it is possible to build visualizations that summarize the latent space and show 536
both the geometric diversity and the performance of the designs it contains. Such visualizations offer great 537
immediate snapshots of the high-performance regions compressed by the PVAE. However, the PVAE needs 538
not be constrained to the production of static visualizations but can also be explored interactively. This is 539
particularly easy given the 2-dimensionality of the latent space, and designers can navigate the latent space 540
using a simple interface with a three-dimensional view showing the current design geometry, an interactive 541
performance map that designers can move through using with the mouse cursor, and a knob, slider, or even 542
text field to adjust the performance condition. Figure 18 shows a prototype of such an interface with the 543
latent space represented by a 2.5D surface and an additional parallel coordinate plot indicating the decoded 544
original design vector. 545

Danhaive and Mueller

Figure 18: Prototype interface for latent space exploration.

Figure 19 shows a potential exploration path that a designer may take through the latent space in such an 546
interface and the designs that would be explored along such a path. The visualization highlights how 547
navigating through the latent space yields diverse high-performing designs, and the parallel coordinate plot 548
in particular further shows the smoothness and high nonlinearity of the latent space. In addition, it shows 549
the influence of the tunable performance condition. Compared to a manual exploration of the original design 550
space, which would require sequentially adjusting 36 sliders or knobs, this mode of exploration allows 551
designers to generate design variations by controlling only 3 variables, the first of which, the performance 552
condition, allows them to tighten or relax their performance requirements. 553

Danhaive and Mueller

Figure 19: Exploration path in the synthetic latent design space. This visualization highlights a specific exploration path on the
performance landscape of the latent design space. Renderings on the right display designs (accompanied by their performance
scores in kg/m2) on the exploration path for 𝑝 ൌ 0 and 𝑝 ൌ 1. The parallel coordinate plot on the left shows how the original
design variables change as one navigates along the S-shaped exploration path for 𝑝 ൌ 0, with colors indicating the corresponding
location of each of the designs on the path.

 554

Danhaive and Mueller

4 Conclusion 555

This research contributes a method to build and train deep, performance-conditioned latent variable models 556
that pack complex design spaces into continuous, smooth, low-dimensional design subspaces. Design 557
subspace learning offers a new paradigm for performance-informed design exploration that is neither 558
optimization nor random or undirected and that provides a navigable cartography of otherwise unwieldy 559
design spaces. 560

4.1 Future Work 561

There are many interesting and potentially impactful directions for future work related to this research. 562
First, it would be compelling to adapt design subspace learning to rule-based design spaces which have a 563
variable number of parameters and are notoriously hard to control. Second, it would be powerful to illustrate 564
the use of the contribution in multi-objective design contexts, where structural considerations might conflict 565
with other performance objectives typical to architecture, such as daylight autonomy or energy use 566
intensity. In some ways, this can be straightforward: the research presented here can be directly on custom 567
composite objective functions that combine and weigh multiple and potentially divergent performance 568
metrics in a single score, though there are probably more nuanced ways to marry the proposed method with 569
existing multi-objective design approaches. Finally, this research discusses ways low-dimensional design 570
subspaces may be integrated simply as explorable and interactive maps in design tools. Previous work has 571
shown that the nature of the tools we use influences the way we design and that better tools, with more 572
integrated and interactive interfaces, yield better design outcomes [34], [35]. Future work will be devoted 573
to further studying how the interfaces proposed here impact design outcomes in user studies compared to 574
undirected design exploration. 575

4.2 Concluding remarks 576

Design subspace learning offers a new paradigm for performance-informed design exploration that is 577
neither optimization nor undirected search and that provides a navigable cartography of otherwise unwieldy 578
design spaces. Design subspace learning provides ways to explore more design solutions that perform well 579
and explicitly gives designers control over how much performance matters and allows them to negotiate 580
the tension between functional requirements and intangible human factors. It can be used to power 581
intelligent interfaces that foster the exploration and discovery of high-performing designs. Because these 582
interfaces can act as a more natural and intuitive layer of understanding between human designers and 583
complex design spaces, design subspace learning overcomes several important and fundamental limitations 584
to many existing computational design methods and has the potential to broaden the adoption of 585
performance-informed design processes. 586

Acknowledgments 587

This material is based upon work supported by the National Science Foundation under Grant No. 1854833. 588

References 589

[1] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biological Cybernetics, vol. 590
43, no. 1, pp. 59–69, Jan. 1982, doi: 10.1007/BF00337288. 591

[2] T. Kohonen, Self-Organizing Maps. Berlin, Germany: Springer-Verlag Berlin Heidelberg, 2001, ISBN: 978-592
3-642-56927-2. 593

[3] J. Harding, “Dimensionality Reduction for Parametric Design Exploration,” in Advances in Architectural 594
Geometry, 2016, pp. 274–286, doi: 10.3218/3778-4. 595

[4] E. Fuchkina, S. Schneider, S. Bertel, and I. Osintseva, “Design Space Exploration Framework: A modular 596

Danhaive and Mueller

approach to flexibly explore large sets of design variants of parametric models within a single environment,” 597
in Proceedings of the 36th eCAADe Conference, A. Kepczynska-Walczak and S. Bialkowski, Eds. Lodz, 598
Poland, 2018, pp. 367–376. 599

[5] L. Fuhrimann, V. Moosavi, P. O. Ohlbrock, and P. Dacunto, “Data-Driven Design: Exploring new Structural 600
Forms using Machine Learning and Graphic Statics,” Sep. 2018, Accessed: Jun. 15, 2020. [Online]. Available: 601
http://arxiv.org/abs/1809.08660. 602

[6] N. C. Brown and C. T. Mueller, “Design variable analysis and generation for performance-based parametric 603
modeling in architecture,” International Journal of Architectural Computing, vol. 17, no. 1, pp. 36–52, Mar. 604
2019, doi: 10.1177/1478077118799491. 605

[7] Z. X. Conti and S. Kaijima, “Enabling Inference in Performance-Driven Design Exploration,” in Humanizing 606
Digital Reality, 2017, pp. 177–188, doi: 10.1007/978-981-10-6611-5. 607

[8] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive Growing of GANs for Improved Quality, Stability, 608
and Variation,” arXiv preprint arXiv:1710.10196, Oct. 2017. 609

[9] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd International Conference on 610
Learning Representations (ICLR), Conference Track Proceedings, 2014, Accessed: Feb. 04, 2020. [Online]. 611
Available: http://arxiv.org/abs/1312.6114. 612

[10] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate inference in deep 613
generative models,” in Proceeding of the 31st International Conference on Machine Learning, 2014, pp. 614
1278–1286, Accessed: Jan. 24, 2020. [Online]. Available: http://proceedings.mlr.press/v32/rezende14.pdf. 615

[11] K. Sohn, H. Lee, and X. Yan, “Learning Structured Output Representation using Deep Conditional Generative 616
Models,” in NIPS’15: Proceedings of the 28th International Conference on Neural Information Processing 617
Systems, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Montreal, Canada: MIT 618
Press, 2015, pp. 3483–3491. 619

[12] N. Umetani and Nobuyuki, “Exploring generative 3D shapes using autoencoder networks,” in SA ’17: 620
SIGGRAPH Asia 2017 Technical Briefs, 2017, pp. 1–4, doi: 10.1145/3145749.3145758. 621

[13] A. Burnap, Y. Liu, Y. Pan, H. Lee, R. Gonzalez, and P. Y. Papalambros, “Estimating and Exploring the 622
Product Form Design Space Using Deep Generative Models,” in Proceedings of the ASME 2016 International 623
Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 624
2016, pp. 1–13, doi: 10.1115/DETC2016-60091. 625

[14] S. Carter and M. Nielsen, “Using Artificial Intelligence to Augment Human Intelligence,” Distill, Dec. 2017, 626
doi: 10.23915/distill.00009. 627

[15] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenenbaum, “Learning a Probabilistic Latent Space of 628
Object Shapes via 3D Generative-Adversarial Modeling,” in 30th Conference on Neural Information 629
Processing Systems (NIPS 2016), 2016, pp. 82–90. 630

[16] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas, “Learning Representations and Generative Models 631
for 3D Point Clouds,” in Proceedings of the 35th International Conference on Machine Learning, 2018, pp. 632
40–49. 633

[17] J. Wu, Y. Wang, T. Xue, X. Sun, W. T. Freeman, and J. B. Tenenbaum, “MarrNet: 3D shape reconstruction 634
via 2.5D sketches,” in Proceedings of the 31st International Conference on Neural Information Processing 635
Systems, 2017, pp. 540–550. 636

[18] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image Translation with Conditional Adversarial 637
Networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Nov. 2017, 638
pp. 1125–1134, doi: 10.1109/CVPR.2017.632. 639

Danhaive and Mueller

[19] S. Chaillou, “ArchiGAN: a Generative Stack for Apartment Building Design,” Harvard Graduate School of 640
Design, 2019. 641

[20] D. Ritchie, K. Wang, and Y. Lin, “Fast and Flexible Indoor Scene Synthesis via Deep Convolutional 642
Generative Models,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 643
Nov. 2019, pp. 6175–6183, doi: 10.1109/CVPR.2019.00634. 644

[21] K. Wang, M. Savva, A. X. Chang, and D. Ritchie, “Deep convolutional priors for indoor scene synthesis,” 645
ACM Transactions on Graphics, vol. 37, no. 4, pp. 1–14, Jul. 2018, doi: 10.1145/3197517.3201362. 646

[22] M. E. Yumer, P. Asente, R. Mech, and L. B. Kara, “Procedural Modeling Using Autoencoder Networks,” 647
Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology - UIST ’15, pp. 648
109–118, 2015, doi: 10.1145/2807442.2807448. 649

[23] T. Wortmann and T. Schroepfer, “From Optimization to Performance-Informed Design,” in SIMAUD ’19: 650
Proceedings of the Symposium on Simulation for Architecture and Urban Design, 2019, pp. 1–8. 651

[24] G. E. P. Box and K. B. Wilson, “On the Experimental Attainment of Optimum Conditions,” Journal of the 652
Royal Statistical Society. Series B (Methodological), vol. 13. Wiley, pp. 1–45, 1951, doi: 10.2307/2983966. 653

[25] S. A. Renganathan, R. M. and, and J. Ahuja, “Enhanced data efficiency using deep neural networks and 654
Gaussian processes for aerodynamic design optimization,” arXiv, Aug. 2020, Accessed: Jan. 31, 2021. 655
[Online]. Available: http://arxiv.org/abs/2008.06731. 656

[26] H. Ma, X. Hu, Y. Zhang, N. Thuerey, and O. J. Haidn, “A Combined Data-driven and Physics-driven Method 657
for Steady Heat Conduction Prediction using Deep Convolutional Neural Networks,” arXiv, May 2020, 658
Accessed: Jan. 31, 2021. [Online]. Available: http://arxiv.org/abs/2005.08119. 659

[27] M. A. Mohamad and T. P. Sapsis, “Sequential sampling strategy for extreme event statistics in nonlinear 660
dynamical systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 661
115, no. 44, pp. 11138–11143, Oct. 2018, doi: 10.1073/pnas.1813263115. 662

[28] T. P. Sapsis, “Output-weighted optimal sampling for Bayesian regression and rare event statistics using few 663
samples,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 476, 664
no. 2234, p. 20190834, Feb. 2020, doi: 10.1098/rspa.2019.0834. 665

[29] P. Pandita, I. Bilionis, and J. Panchal, “Bayesian Optimal Design of Experiments For Inferring The Statistical 666
Expectation Of A Black-Box Function,” Journal of Mechanical Design, Transactions of the ASME, vol. 141, 667
no. 10, Jul. 2018, doi: 10.1115/1.404393. 668

[30] R. Agrawal, C. Squires, K. Yang, K. Shanmugam, and C. Uhler, “ABCD-Strategy: Budgeted Experimental 669
Design for Targeted Causal Structure Discovery,” Feb. 2019, Accessed: Mar. 22, 2020. [Online]. Available: 670
http://arxiv.org/abs/1902.10347. 671

[31] C. Preisinger and M. Heimrath, “Karamba—A Toolkit for Parametric Structural Design,” Structural 672
Engineering International, vol. 24, pp. 217–221, 2014, doi: 10.2749/101686614X13830790993483. 673

[32] G. Hinton, “Neural Networks for Machine Learning: Lecture 6,” 2012. 674
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf (accessed Aug. 07, 2020). 675

[33] N. Zhao, M. Aldrich, C. Reinhart, and J. Paradiso, “A Multidimensional Continuous Contextual Lighting 676
Control System Using Google Glass,” in BuildSys ’15: Proceedings of the 2nd ACM International Conference 677
on Embedded Systems for Energy-Efficient Built Environments, 2015, pp. 235–244, doi: 678
10.1145/2821650.2821673. 679

[34] G. Tsai and M. Yang, “How It Is Made Matters: Distinguishing Traits of Designs Created by Sketches, 680
Prototypes, and CAD,” in Proceedings of the ASME 2017 International Design Engineering Technical 681
Conferences and Computers and Information in Engineering Conference, 2017, vol. 7, doi: 682

Danhaive and Mueller

10.1115/DETC2017-68403. 683

[35] E. Burnell, M. Stern, A. Flooks, and M. C. Yang, “Integrating design and optimization tools: A designer 684
centered study,” in Proceedings of the ASME Design Engineering Technical Conference, 2017, vol. 7, doi: 685
10.1115/DETC2017-68307. 686

 687

 688

 689

