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ABSTRACT: Predictive models based on mobile measurements
have been increasingly used to understand the spatiotemporal
variations of intraurban air quality. However, the effects of
meteorological factors, which significantly affect the dispersion of
air pollution, on the urban-form−air-quality relationship have not
been understood on a granular level. We attempt to fill this gap by
developing predictive models of particulate matter (PM) in the
Bronx (New York City) using meteorological and urban form
parameters. The granular PM data was collected by mobile low-
cost sensors as the ground truth. To evaluate the effects of
meteorological factors, we compared the performance of models
using the urban form within fixed and wind-sensitive buffers,
respectively. We find better predictive power in the wind-sensitive group (R = 0.85) for NC10 (number concentration for particles
with diameters of 1 μm-10 μm) than the control group (R = 0.01), and modest improvements for PM2.5 (R = 0.84 for the wind
sensitive group, R = 0.77 for the control group), indicating that incorporating meteorological factors improved the predictive power
of our models. We also found that urban form factors account for 62.95% of feature importance for NC10 and 14.90% for PM2.5
(9.99% and 4.91% for 3-D and 2-D urban form factors, respectively) in our Random Forest models. It suggests the importance of
incorporating urban form factors, especially for the uncommonly used 3-D characteristics, in estimating intraurban PM. Our method
can be applied in other cities to better capture the influence of urban context on PM levels.
KEYWORDS: meteorological factors, mobile monitoring, urban-form−air-quality relationship, 2-D and 3-D urban form, Random Forest

1. INTRODUCTION

Air pollution is the single most significant environmental
health risk worldwide and is associated with increased
mortality and a range of serious diseases.1−3 Air quality data
is critical for the development of effective pollution manage-
ment plans. However, regulatory air pollution monitors have
high operating and capital costs. Even in the United States,
only 60% of the U.S. census urban areas have a regulatory
monitor.4 The sparse nature of the stationary regulatory
monitoring network makes it challenging to quantify intra-
urban air pollution that has a high level of spatiotemporal
heterogeneity.4−6

With the advent of IoT (Internet of Things) technology,
mobile monitoring has proved to be a suitable approach to
characterize intraurban air pollution concentrations at a finer
scale.7 Dedicated mobile platforms have been used to collect
air quality data, using mobile vans,8 Google street-view cars,4

and UAV (Unmanned Aerial Vehicles).9 More recently,
routine fleets of vehicles, such as trash trucks,10 public
transport vehicles,11 and bicycles12 have been used to measure
air pollutants in cities on a real-time basis.

In conjunction, Land Use Regression (LUR) models have
become increasingly more sophisticated.13 Recently, LUR
models relying on machine learning techniques have been
developed to better capture the spatiotemporal distribution of
air pollutants using mobile measurements.6 Also, incorporating
urban form factors has been shown to improve the perform-
ance of these models.
The urban form of a city captures the spatial configurations

and arrangements of different urban elements, such as land use,
population distribution, transportation networks, and urban
infrastructure,14−16 which can impact the spatiotemporal
dynamics of air pollution. For example, industrial and traffic-
heavy areas tend to have a high level of PM concentration.17

Proximity to waterfronts or vegetation is associated with
greater deposition velocity and can impact PM concentra-
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tions.18 Open spaces contribute to better air movement and
hence facilitate pollution dispersion, leading to lower pollution
levels.19 Urban form metrics used in previous predictive
models, such as area, land use mix, population density,
aggregation index, and fractal dimension, tend to be 2-D.20−22

Recently, 3-D urban form characteristics, such as FAI (Frontal
Area Index) and SVF (Sky View Factor), have been shown to
improve the predictive performance of models of PM
concentrations in fields such as urban ventilation,23 urban
climate modeling,24 and urban relief visualization.25 For
example, Ghassoun et al. (2017)26 improved the performance
of predicting the total PM concentration by adding FAI into
the 3-D LUR model. Shi et al. (2016)27 found FAI, coupled
with road network density and traffic volume, were the most
influential factors in predicting street-level PM in Hong Kong.
Tang et al. (2013)28 used building heights and geometry to
enhance the estimation of land use related variables and the
pollution dispersion fields for long-term air pollutants.
Edussuriya et al. (2011)29 found that air pollution concen-
trations were impacted by the aspect ratio, building volume,
and standard deviation of building height.
Meteorological factors also significantly influence ambient

particulate matter levels by impacting ventilation rates, dry
deposition, chemical reactions, natural emissions, and back-
ground aggregation.30 Wind speed and direction, in particular,
are key meteorological variables that have significant impacts
on horizontal transport and distribution of pollution
concentrations, as well as vertical mixing and dispersion in a
region.31 Few studies, however, have evaluated the effects of
wind on the urban-form−air-quality relationship. Arain et al.
(2007)32 were among the first to show that including wind
fields in LUR models could improve air pollution prediction.
Vienneau et al. (2009)33 used eight directional grids and wind
rose diagrams to capture the effects of speed and direction on
the wind-air pollution relationship. Naughton et al. (2018)34

also built on the traditional LUR models by adding interactions
between wind speed and direction to improve model
performance. Contreras et al. (2016)35 proposed using a
wind-sensitive local IDW (Inverse Distance Weighted) model
to incorporate the relationship between wind and urban form
to analyze the spatiotemporal distribution of PM2.5.
Previous studies that captured the impact of meteorology on

the urban-form−air-quality relationship tended to (1) rely on
linear models that likely do not capture the complex
relationships between urban form and PM, (2) rely on
measurements from fixed monitors that do not capture
hyperlocal variations in urban PM concentrations, and (3)
only consider PM2.5 as the main pollutant of interest.
Our study attempts to quantify the importance of

meteorological factors on the urban-form−air-quality relation-
ships using a mobile monitoring data set with the following
special design: (1) We incorporated both 2-D and 3-D urban
form characteristics as predictors in a Random Forest (RF)
model to better capture the nonlinearity between urban form
factors and PM concentrations; (2) We used wind-sensitive
buffer distances to capture the effect of meteorological factors
on the urban-form−air-quality relationship; (3) We used PM
concentration measurements collected from mobile low-cost
sensors; (4) In addition to developing models to predict PM2.5
concentrations, our study also predicted that of large particles,
NC10 (number concentrations for coarser particles with
diameters of 1 μm-10 μm). We did this for two reasons: (1)
NC10 is important because, as larger particles tend to travel

shorter distances than finer particles under similar wind
conditions,36 a high concentration of NC10 indicates the
presence of significant local sources of pollution. Identifying
locations of the high-impact local sources can help policy-
makers take necessary actions; and (2) NC10 can be measured
accurately using low-cost sensors under conditions of low
humidity. This will be discussed further in Section 2.2.

2. MATERIALS AND METHODS
2.1. Research Area. The Bronx, New York City (NYC)

(Figure 1) was chosen to be the site of deployment as it has

the highest asthma hospitalization rate, the highest population
percentage of minorities, the lowest mean household income,
and the lowest average educational attainment level of any
borough in New York City. The Bronx is also home to a dense
network of highways and truck routes and other noxious land
uses (e.g., Toxic Release Inventory facilities and other
stationary pollution sources), which are important sources of
pollution.37−39

2.2. Materials. The mobile monitoring platforms used in
this study were developed as part of the City Scanner project
(http://senseable.mit.edu/cityscanner) at Senseable City Lab,
Massachusetts Institute of Technology, and were installed on
municipal vehicles operated by the New York City Department
of Parks and Recreation and the Department of Sanitation.
Each sensing node included an Alphasense OPC-N3 (Optical
Particle Counter) that reports fine particulate matter (PM2.5)
concentrations.40 More details about Alphasense OPC-N3 can
be found in Supporting Information (SI) Section S1:
Alphasense OPC-N3. The nodes recorded measurements
every two seconds. A total of 238,603 (129,348 in pilot 1
and 109,255 in pilot 2) measurements over 144 days (28 in
pilot 1 and 116 in pilot 2) were made.
In addition to reporting PM2.5 measurements, the OPC-N3

also reports concentrations of ambient particles in different size
bins. The measured particle counts agree well with reference
instrument measurements for coarser particles (>0.78 μm)
under conditions of low relative humidity (RH< 80%)41,42 (SI
Figure S2: Dependence on the Relationship Between PM2.5
from the OPC-N3 and Reference Monitor on Humidity). We

Figure 1. We deployed nine (five for pilot 1 and four for pilot 2) low-
cost mobile monitors on vehicles in the Bronx, with a small number of
measurements made in Manhattan, Queens, and Brooklyn from 01/
20/2020 to 02/17/2020 (pilot 1) and 10/15/2020 to 02/08/2021
(pilot 2). The satellite background image comes from ArcGIS in
ESRI.
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thus used the raw concentration metrics of coarser particles for
measurements made in both pilots when the RH < 80% as a
key outcome of interest: NC10 in this study. Other data sources
are summarized in Table 1. More details can be found in SI
Section S2: Covariates Description.

2.3. Methods. The research design is summarized as a
flowchart illustrated in SI Figure S5: Research Flowchart.
Briefly, to predict PM2.5 and NC10 data, we developed two
models. In Model 1, we accounted for the impact of
meteorology on the urban-form−PM relationship by using a
wind-sensitive buffer radius for calculating the 2-D and 3-D
urban form factors. More details about urban form are
explained in Section 2.3.2. In Model 2, all urban form factors
were calculated within fixed buffer radii (i.e., from 100 to 5000
m) of each measurement. All other variables depicted in Table
1 were included as covariates in both models.
2.3.1. Air Quality Data Preprocessing. To calibrate the

error-prone PM2.5 concentrations from the mobile OPC-N3,
we developed a calibration function from our colocation
experiment. We colocated an additional OPC-N3 from the

same manufacturing batch with a reference monitor in the
same general sampling area in the Bronx during pilot 2 (SI
Figure S1: Mobile Monitoring Platform and EPA Fixed Station
in the Bronx; SI Figure S3: Time-Series Analysis of PM2.5
Measurements from the Mobile Sensor and the EPA Reference
Monitor). We found that the RF model with time-varying
covariates was effective (R2 > 90%) at correcting the OPC-N3
measurements. For more information on the calibration
procedure, see SI Section S3: Data Calibration. We applied
this calibration function to the raw PM2.5 measurements made
by the mobile sensors in pilot 2. As no colocation experiment
was performed in pilot 1, we only use PM2.5 measurements
from pilot 2. Henceforth, PM2.5 refers to the calibrated PM2.5
measurements.
To standardize measurements made at the same location in

NYC on different days and at different times, we needed to
correct them for background variation in PM2.5 and NC10,
during a day and over different days that could obscure
changes in local PM concentrations. To do this, we assumed
that background levels vary temporally but not spatially over
the region of interest. Essentially, we assumed that the
background level of each pollutant of interest is due to
transported aerosol from sources outside the study region. We
used a time-series, spline-of-minimums approach to estimate
the background concentrations for PM2.5 and NC10.

43

After estimating the background PM2.5 and NC10 values, we
performed a background time-of-day correction. For more
details on this approach as well as our assessment of the
robustness of the background correction, refer to SI Section
S4: Background Correction. Henceforth, NC10 and PM2.5 in
this article refer to the background-corrected concentrations.

2.3.2. Urban Form Metrics. Estimation of Wind-Sensitive
Urban Form Covariates. To explore the effects of wind and
urban form on air pollution concentrations, we devised a wind-
sensitive buffer around each air pollution measurement, where
the radius was determined by the wind speed and temporal
granularity of the wind (SI Figure S6: Two Scenarios to
Calculate Urban form). In this study, the finest temporal
granularity for wind factor is 5 min according to the IEM
station. The radii we chose describe how far air masses have
moved during these 5 min because of wind. This radius
represents the maximum potential influencing area by the wind
for each measurement. We then estimated model covariates of
all urban form metrics (described below) within this wind-
sensitive buffer. Such a variable buffer allows us to factor in
how different covariates impact local air pollution differently at
different wind speeds.
To test if the inclusion of covariates calculated in a wind-

sensitive buffer region as opposed to a fixed buffer area
improved the model, we compared the predictive accuracy of
models with wind-sensitive buffers with models that only
included urban form metrics estimated in fixed buffer radii
(i.e., 50 m, 100 m, 300 m, 500 m, 1000 m, 2000 m, 3000 m,
and 5000 m) used in previous studies, around each data
point.34,44,45 Note all other covariates that were not related to
urban form (Table 1) were constructed using fixed buffers in
both models.

2-D Urban Form Metrics. We calculated the 2-D urban
form in the study area through the simultaneous utilization of
land use and landscape metrics. Briefly speaking, we calculated
six such metrics, including total area (CA), edge density (ED),
patch density (PD), largest patch index (LPI), landscape shape
index (LSI), and aggregation index (AI), for each land use type

Table 1. Summary of Independent Variablesa

data type
units/

resolution sources

meteorological
factors

temperature Fahrenheit IEM stations in New
York State (i.e., HPN,
JFK, JRB, and LGA)

feel
temperature

wind speed mile per
hour

wind direction degree
relative
humidity

percentage

precipitation millimeter

Land use tree canopy NYC Open Data
grass/shrub
bare soil
water
roads and
railroads

other
impervious
surfaces

buildings with
height
information

meter Microsoft Building
Footprint Data

landfill
facilities

HIFLD

elevation DEM (Digital
Elevation
Model)

30 m USGS

traffic AADT daily Department of
Transportation in NYC

bus stops NYC Open data
track routes

socioeconomic
factors

population count U.S. Census Bureau
household
income

dollar

aIEM: Iowa Environmental Mesonet, OSM: Open Street Map,
HIFLD: Homeland Infrastructure Foundation-Level Data, USGS:
United States Geological Survey, AADT: Annual Average Daily
Traffic.
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in buffer zones constructed around each measurement. These
metrics capture the spatial coverage, fragmentation, patch
dominance, and shape complexity of land use patterns46−48

that likely shape air pollution patterns.49−53 SI Table S1
(Summary of Selected Urban Form Metrics)54 describes each
metric in detail. The interaction between the land use and
landscape metrics also likely impacts PM concentrations.
Therefore, in addition to using each metric as an independent
covariate, we also added interactions of them as predictors.
This gives us 48 urban form metrics in total (eight land uses
times six landscape metrics). Details can be seen in SI Table S2
(Summary Statistics for 2-D Urban Form Metrics for the
Wind-Sensitive Group). We will now describe the unconven-
tional 3-D urban form metrics proposed in this study:
3-D Urban Form. We used Frontal Area Index (FAI), Sky

View Factor (SVF), and height variation (H_Var) to capture
3-D urban form factors.
FAI (Frontal Area Index). FAI is a wind direction-dependent

parameter for estimating aerodynamic resistance of the urban
surface as a prediction of wind ventilation that has been widely
used to evaluate horizontal permeability of the wind from a
specific direction within an urban plot.27 In this study, we
further improved the estimation of FAI in the following
manner: (1). We used real-time direction instead of a fixed27

or dominant26 wind direction during a certain period; (2) We
not only considered the first windward area but the remaining
windward area. These buildings in the remaining windward
area need to be counted when they are higher or wider than
the first windward buildings. More details can be found in SI
Section S5: FAI.
We first resampled the measurements every 5 min in

accordance with the finest temporal granularity of the IEM
station and calculated the FAI values for 2166 resampled data
points based on the real-time wind direction. The FAI surface
was then smoothed by Kriging (SI Figure S8: FAI Value in the
Bronx Area). The smooth results cannot cover the entire Bronx
due to the uneven distribution of collected data points.
However, it does not affect the model construction because the
prediction is point-based. According to the results, most FAI
values in the study range between 0.01 and 0.09, suggesting
that the buildings in the study area did not seriously block the
wind flow. The FAI is lower in the northern Bronx and higher
in the southern Bronx, where wider and taller buildings are
seen and most commercial and residential land uses are
located, which accords with previous findings.55 SI Table S3
(Sum FAI Values for Different Land Uses) shows the sum
value of FAI for different land uses. As can be seen, the
artificial land uses (e.g., buildings, roads, and other impervious
surfaces) have overall higher FAI values than urban vegetation
(grass/shrub), suggesting that wind is more blocked in
building areas where air pollutants are prone to be retarded
leading to poor air ventilation, and vice versa for the water and
bare soil areas.
SVF (Sky View Factor). SVF is a measure of how much sky

is visible at a given location. We include it as a 3D form metric
of the built environment, as it quantifies the openness to the
sky of a given location. More details can be found in SI Section
S6: SVF. Various data sets have been used to estimate SVF,
such as DEM (Digital Elevation Model),56 fisheye photo-
graphs,24 and terrestrial LiDAR.56 In this study, due to data
availability, we used the DEM as the background elevation and
building height to calculate SVF. SVF ranges between 0 and 1
where close to 1 indicates that almost the entire hemisphere is

visible (e.g., planes and peaks) and close to 0 means almost no
sky is visible (e.g., deep sinks and valleys).25

We calculated SVF through 136 406 buildings in the Bronx
and smoothed the results by the Kriging method (SI Figure S9:
SVF Value in the Bronx Area). As can be seen, most areas have
relatively low SVF values (close to 0), indicating that most
regions have an almost completely obstructed sky. This is
because many regions in this zone are highly urbanized areas
with densely distributed tall buildings and relatively low sky
visibility for each observation point. Such dense streets could
trap particulates within their boundaries, leading to high PM
levels within the immediate areas around the roadway.57

Higher SVF values spread over parks, rivers, and open spaces
in the research area in which air pollutants are more easily
transported and diluted.

H_Var. Building height variation describes the smoothness
of the building, which impacts the distribution of wind flow.
For example, high and dense constructions can trap pollutants
between them and impede their dilution.58 Likewise, the
buildings are calculated for both wind-sensitive and fixed buffer
distances. More details can be found in SI Section S7: H_Var.

2.3.3. Covariate Selection. Considering possible collinearity
between the covariates, we used a Greedy Stepwise algorithm
to filter correlated covariates and select the subset of the most
significant covariates as candidates in the RF model. The
preferred subsets of features are highly correlated with the
dependent variable while having low intercorrelation.59

2.3.4. Prediction Model. Machine learning models have
been widely used to model PM concentrations as they can
account for nonlinear relationships, deal with multidimensional
independent variables, and allow for complex interactions
between the various predictors.60 Previous researchers have
found that RF models developed to predict air pollution have
been at least as accurate and, in many cases, more accurate
than linear models.61 Robust cross-validation can prevent
overfitting,62 which is crucial given the nonlinear characteristics
of air pollution.63 Compared to other nonparametric
techniques, such as neural networks, RF also provides metrics
that capture the relative importance of the different
independent covariates in predicting the outcome. Feature
importance is computed as the decrease in node impurity
weighted by the probability of reaching that node, which is also
called MDI (Mean Decrease in Impurity). It counts the times a
feature is used to split a node weighted by the number of
samples it splits.64 This study used the various covariates in an
RF model to predict PM2.5 and NC10 concentrations. To avoid
overfitting, we used a 10-fold cross-validation technique to
tune the hyper-parameters of our model. To illustrate, the
original sample is randomly partitioned into 10 equal-size
subsamples. A single subsample is retained as the validation
data for testing the model, and the remaining nine subsamples
are used as training data. We built 500 trees in RF in the
software Weka for PM2.5 and NC10, respectively, and calculated
the prediction interval by considering the range of prediction
values returned by the individual trees in the forest, which
indicates the range in which the true value is expected to fall.
SI Figure S10 describes RF construction. We also compared
the performance of using an RF model with other commonly
used models (i.e., Artificial Neural Network, Multiple Linear
Regression) to ensure that it is the best model for our data. In
addition, we predicted NC10 and PM2.5 based on the grid
centroids with a resolution of 600 m (same as the urban plot
for which we calculated FAI) in the Bronx. To qualitatively test
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the robustness of the trends of PM2.5 observed from our model,
we compared the spatial variations of PM2.5 produced by the
NYCCAS (The New York City Community Air Survey)
results, a project run by the NYC Department of Health and
Mental Hygiene. A direct comparison between the two results
is not possible, as the NYCCAS data are three-month average
concentrations made in 2018, whereas our data was generated
from 2020 to 2021 over a much shorter period.

3. RESULTS AND DISCUSSIONS
3.1. Model Performance. A key aim of this study is to

evaluate whether using a wind-sensitive buffer improves the
predictive power of our model. Figure 2 shows the results from

10-fold cross-validation for Model 1 (predefined distances)
and Model 2 (wind-sensitive). The wind-sensitive model
outperforms the models using fixed buffer radii (from 50m to
5000 m), which represent the control groups, especially for
NC10 (R increases from 0.01 to 0.85). Predictions of PM2.5 are
not as sensitive to buffer distance with modest improvement
from Model 1 to Model 2 (R increases from 0.77 to 0.84).
NC10 is likely more sensitive to the wind effect because it
comprises coarser particles from nearby sources that tend to be
transported predominantly by the wind. As a result,
incorporating meteorological factors into the urban-form−air-
quality model better captures the spatiotemporal heterogeneity
of the concentration of larger particles. SI Table S4 (Model
Performance for Different Buffer Distances) displays detailed

model performances. Overall, the high predictive power of the
wind-sensitive model for both NC10 (R = 0.85) and PM2.5 (R =
0.84) is encouraging.

3.2. Model Comparison. We compared the performance
of the RF model using the wind-sensitive covariates with other
techniques, ANN (Artificial Neural Network) and MLR
(Multiple Linear Regression), for NC10 and PM2.5 within
Model 2. It was found that the RF model outperforms the
other models with higher R and lower RMSE (SI Table S5:
Performance Comparison Between RF, ANN, and MLR),
which is in line with previous findings.61

3.3. Prediction Results. We explored the performance of
the prediction results of Model 2 using the RF. It appears that
the distribution of NC10 concentrations is narrower than PM2.5
concentrations, see SI Figure S11: Prediction Results for
Different Air Pollutants. Figure 3 displays the predicted PM2.5
and NC10 in the Bronx using the wind-sensitive model. As
NC10 is sensitive to wind factors, we predict NC10 using the
first (5.75 mph, 50 degree) and third quartiles (11.50 mph,
300 degree) during the research period (144 days) to represent
the median of the lower and upper half of the wind
information, respectively. PM2.5 is not as sensitive to wind
factors, so we used the average wind speed (8.02 mph, 174
degree) for prediction. We compared the predicted PM2.5
concentrations with three-month winter averages derived from
the NYCCAS program, which was conducted by the
Department of Health and Mental Hygiene and Queens
College to evaluate air quality distribution across NYC.
Although the NYCCAS data is for a different year and is
averaged over three months in 2018, it still provides us with
ground truth to compare with the general trends of our
predicted results. We found that there are several common
hotspots (relatively higher level of PM2.5 concentration) and
cold spots in Figure 3a,b. For example, both sets of results
show higher PM2.5 concentrations in the border between
northern Pelham and Northeast Bronx, the southern part of
South Bronx, and southern Pelham. Likewise, some cold spots
are found in northwestern Kingsbridge, which qualitatively
demonstrates the credibility of Model 2 (wind-sensitive
model). For NC10, the spatial trends between Figure 3c,d are
more similar. For example, the heavily polluted areas located in
the border between northern Pelham and Northeast Bronx,
western Kingsbridge, and the southern part of South Bronx. In
the western Pelham, the level of NC10 concentration is
relatively lower for both the first and third quartile.

Figure 2. Model performances for the control groups (fixed buffer
radii) and the wind-sensitive group.

Figure 3. Comparison between predicted PM2.5 (ug/m
3) and NYCCAS in 2018 and NC10 (per/cm

3) results based on 1st and 3rd wind quartile.
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We also find that Model 2 underestimates NC10
concentrations while the reverse is true for PM2.5 (SI Figure
S12: Prediction Interval for Different Air Pollutants). This
suggests that the current model is more stable in predicting air
pollutants with relatively lower concentration levels. It accords
with SI Figure S11, which shows that values with high
concentration levels diverge more from the fitted estimate.
3.4. Feature Importance. Figure 4 shows the distribution

of feature importance for Model 2. Higher feature importance
indicates the higher frequency of being chosen in the model
and more influence on the air pollution concentration. After
feature filtration, no selected features have shown obvious
collinearity (SI Figure S13: Scatter Plot Matrix for the Selected
Features).
For NC10, the urban form factors account for 62.95% of

feature importance, 31.17% for 3-D urban form (17.64% for
H_Var and 13.53% for FAI), and 31.78% for 2-D urban form
(16.35% for LPI-Railroad and 15.43% for LSI-Railroad), which
is much higher than the remaining meteorological factors
(36.31%). For PM2.5, the feature importance of 3-D urban
form factors (9.99%: 5.50% for SVF, 4.49% for FAI) almost
doubles the 2-D urban form counterparts (4.91%: 2.46% for
LPI-Building, 2.45% for LPI-Bare_Soil). According to SI
Figure S14 (Feature Importance of NC10 for Groups with
Different Buffer Radius), we also find that 3-D urban form
factors, such as FAI, SVF, and H_Var, take essential
proportions of feature importance for most groups using
fixed buffer distances when estimating NC10. It further proves
that incorporating 3-D urban form is essential for estimating
intraurban air pollutants, which accords with previous findings
that urban morphology is more decisive to the street-level air
quality in high-density cities.27 For the 2-D urban form in
Figure 4, the shape complexity (LSI) and path dominance
(LPI) of the railroad, buildings, and bare soil are the final
selected features. To illustrate, on the one hand, the aggregated
and dominated distribution of railroad and buildings indicate
intensive emission hotspots. On the other hand, air pollutants
in areas with bare soil and smaller FAI value (SI Table S3), are
easier to be transported and diluted. SI Table S6 (Feature
Importance for Different Air Pollutants) shows the feature
importance for all 10 folds. As for meteorological factors, RH is
the only selected feature for all air pollutants and is also highly
correlated with both PM2.5 and NC10 (SI Figure S15:
Correlation Matrix of Selected Features and Air Pollutants).
3.5. Meteorological Effects. To further explore the

meteorological effects on the urban-form−air-quality relation-
ship, we find that FAI, the wind-dependent variable, is the only

factor that has been selected in all NC10 models and it also
accounts for a large proportion of feature importance in most
groups using different buffer distances. Besides, the feature
importance of the same urban form factors also varies in
different groups (SI Figure S14). We also find that using the
fixed radius may be unreliable to make accurate predictions
compared to the wind-sensitive group (SI Figure S16:
Predicted NC10 for First and Third Quantile Meteorological
Factors for Different Groups). These findings reconfirm the
significance of meteorological effects on the urban-form−air-
quality relationship.

4. IMPLICATIONS
Our results revealed that (1) including the effects of
meteorology on the relationship between urban form and
PM concentrations improved our prediction accuracy of NC10
and to some extent PM2.5; (2) Using the RF model that
allowed for nonlinear relationships between the various
covariates and PM concentrations led to greater predictive
capacity, and it outperformed ANN and MLR; (3) 2-D and 3-
D urban form factors had considerable feature importance in
our RF model. Thus, using mobile measurements from low-
cost sensors has the potential to develop fine-scale granular
maps of PM concentrations in cities around the world. NC10 is
an important parameter for officials to understand as it can aid
in the development of plans to control sources within their
local jurisdiction. However, our study has several limitations:

1 More work needs to be done to validate the performance
of low-cost sensors in a mobile setting and the results
should be compared with advanced air dispersion
models to provide a more accurate assessment of
pollution dispersion.65,66

2 In our construction of urban form factors, we regarded
buildings as regular cuboid shapes. However, real-world
building shapes could be more complicated than the
assumed shapes. Therefore, more data sets, such as
LiDAR,67 high-resolution DEM,56 and the existing
building database,26 can be used to calculate 3-D
urban form. It is necessary to construct the 3-D model
on finer scales and analyze how it will affect pollution
dilution and transportation.

3 We used a circular buffer to calculate urban form.
However, it is necessary to explore other buffer shapes,
such as plume buffers68 or semicircular regions.61

4 The spatiotemporal coverage of the air quality data is
limited in this study (01/20/2020 to 02/17/2020 for
pilot 1 and 10/15/2020 to 02/08/2021 for pilot 2), so

Figure 4. Feature importance (%) for different air pollutants within the wind-sensitive group.
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we cannot explore the effects of seasonality and
heterogeneity of air pollution on a broad scale. Future
pilots may deploy mobile sensors within multiple cities
combined with satellite-derived AOD (Aerosol Optical
Depth) to further explore the spatiotemporal hetero-
geneity of urban air pollutants.

5 Although we analyzed the feature importance for
different urban form factors, the marginal effects and
the monotonicity of these factors on the prediction
results remain unclear. Therefore, it will be helpful to
add partial dependence plots69 and SHAP value70

distribution of urban form factors to further explore
them in future studies.
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visualization technique. Remote sensing 2011, 3 (2), 398−415.
(26) Ghassoun, Y.; Löwner, M.-O. Land use regression models for
total particle number concentrations using 2D, 3D and semantic
parameters. Atmos. Environ. 2017, 166, 362−373.
(27) Shi, Y.; Lau, K. K.-L.; Ng, E. Developing street-level PM2. 5
and PM10 land use regression models in high-density Hong Kong
with urban morphological factors. Environ. Sci. Technol. 2016, 50 (15),
8178−8187.
(28) Tang, R.; Blangiardo, M.; Gulliver, J. Using building heights
and street configuration to enhance intraurban PM10, NOx, and NO2
Land use regression models. Environ. Sci. Technol. 2013, 47 (20),
11643−11650.
(29) Edussuriya, P.; Chan, A.; Ye, A. Urban morphology and air
quality in dense residential environments in Hong Kong. Part I:
District-level analysis. Atmos. Environ. 2011, 45 (27), 4789−4803.
(30) Jacob, D. J.; Winner, D. A. Effect of climate change on air
quality. Atmospheric environment 2009, 43 (1), 51−63.
(31) Seaman, N. L. Meteorological modeling for air-quality
assessments. Atmospheric environment 2000, 34 (12−14), 2231−2259.
(32) Arain, M.; Blair, R.; Finkelstein, N.; Brook, J.; Sahsuvaroglu, T.;
Beckerman, B.; Zhang, L.; Jerrett, M. The use of wind fields in a land
use regression model to predict air pollution concentrations for health
exposure studies. Atmos. Environ. 2007, 41 (16), 3453−3464.
(33) Vienneau, D.; De Hoogh, K.; Briggs, D. A GIS-based method
for modelling air pollution exposures across Europe. Sci. Total
Environ. 2009, 408 (2), 255−266.
(34) Naughton, O.; Donnelly, A.; Nolan, P.; Pilla, F.; Misstear, B.;
Broderick, B. A land use regression model for explaining spatial
variation in air pollution levels using a wind sector based approach.
Sci. Total Environ. 2018, 630, 1324−1334.
(35) Contreras, L.; Ferri, C. Wind-sensitive interpolation of urban
air pollution forecasts. Procedia Computer Science 2016, 80, 313−323.
(36) Wilson, J. G.; Kingham, S.; Pearce, J.; Sturman, A. P. A review
of intraurban variations in particulate air pollution: Implications for
epidemiological research. Atmos. Environ. 2005, 39 (34), 6444−6462.

(37) Luttinger, D.; Wilson, L. A study of air pollutants and acute
asthma exacerbations in urban areas: status report. Environ. Pollut.
2003, 123 (3), 399−402.
(38) Maciejczyk, P. B.; Offenberg, J. H.; Clemente, J.; Blaustein, M.;
Thurston, G. D.; Chen, L. C. Ambient pollutant concentrations
measured by a mobile laboratory in South Bronx, NY. Atmospheric
environment 2004, 38 (31), 5283−5294.
(39) Corburn, J.; Osleeb, J.; Porter, M. Urban asthma and the
neighbourhood environment in New York City. Health & place 2006,
12 (2), 167−179.
(40) Alphasense OPC-N3 Particle Monitor. For use in high polution
urban environments. https://www.alphasense.com/index.php/air/
downloads/OPC-N3.pdf.
(41) Crilley, L. R.; Shaw, M.; Pound, R.; Kramer, L. J.; Price, R.;
Young, S.; Lewis, A. C.; Pope, F. D. Evaluation of a low-cost optical
particle counter (Alphasense OPC-N2) for ambient air monitoring.
Atmospheric Measurement Techniques 2018, 11 (2), 709−720.
(42) Sousan, S.; Koehler, K.; Hallett, L.; Peters, T. M. Evaluation of
the Alphasense optical particle counter (OPC-N2) and the Grimm
portable aerosol spectrometer (PAS-1.108). Aerosol Sci. Technol. 2016,
50 (12), 1352−1365.
(43) Brantley, H.; Hagler, G.; Kimbrough, E.; Williams, R.;
Mukerjee, S.; Neas, L. Mobile air monitoring data-processing
strategies and effects on spatial air pollution trends. Atmospheric
measurement techniques 2014, 7 (7), 2169−2183.
(44) Meng, X.; Chen, L.; Cai, J.; Zou, B.; Wu, C.-F.; Fu, Q.; Zhang,
Y.; Liu, Y.; Kan, H. A land use regression model for estimating the
NO2 concentration in Shanghai, China. Environmental research 2015,
137, 308−315.
(45) Tian, Y.; Yao, X.; Chen, L. Analysis of spatial and seasonal
distributions of air pollutants by incorporating urban morphological
characteristics. Computers, Environment and Urban Systems 2019, 75,
35−48.
(46) Liu, Y.; Wu, J.; Yu, D. Characterizing spatiotemporal patterns of
air pollution in China: A multiscale landscape approach. Ecological
Indicators 2017, 76, 344−356.
(47) Liu, Y.; Wu, J.; Yu, D.; Ma, Q. The relationship between urban
form and air pollution depends on seasonality and city size.
Environmental Science and Pollution Research 2018, 25, 1−14.
(48) Buyantuyev, A.; Wu, J.; Gries, C. Multiscale analysis of the
urbanization pattern of the Phoenix metropolitan landscape of USA:
time, space and thematic resolution. Landscape and Urban Planning
2010, 94 (3−4), 206−217.
(49) Borrego, C.; Martins, H.; Tchepel, O.; Salmim, L.; Monteiro,
A.; Miranda, A. I. How urban structure can affect city sustainability
from an air quality perspective. Environmental modelling & software
2006, 21 (4), 461−467.
(50) Bechle, M. J.; Millet, D. B.; Marshall, J. D. Effects of income
and urban form on urban NO2: Global evidence from satellites.
Environ. Sci. Technol. 2011, 45 (11), 4914−4919.
(51) Martins, H. Urban compaction or dispersion? An air quality
modelling study. Atmospheric environment 2012, 54, 60−72.
(52) Cho, H.-S.; Choi, M. Effects of compact urban development on
air pollution: Empirical evidence from Korea. Sustainability 2014, 6
(9), 5968−5982.
(53) Rodríguez, M. C.; Dupont-Courtade, L.; Oueslati, W. Air
pollution and urban structure linkages: Evidence from European
cities. Renewable and Sustainable Energy Reviews 2016, 53, 1−9.
(54) McGarigal, K. FRAGSTATS help. University of Massachusetts;
Amherst, M., Ed., 2015.
(55) Burian, S.; Brown, M.; Linger, S. Morphological Analyses using
3D Building Databases, LAUR020781; Los Alamos National
Laboratory: Los Angeles, CA, 2002; pp 36−42.
(56) Lindberg, F.; Grimmond, C. Continuous sky view factor maps
from high resolution urban digital elevation models. Climate Research
2010, 42 (3), 177−183.
(57) Britter, R.; Hanna, S. Flow and dispersion in urban areas. Annu.
Rev. Fluid Mech. 2003, 35 (1), 469−496.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.1c04854
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

H

https://doi.org/10.1016/j.habitatint.2011.02.001
https://doi.org/10.1016/j.habitatint.2011.02.001
https://doi.org/10.1080/0042098042000309748
https://doi.org/10.1080/0042098042000309748
https://doi.org/10.1016/j.proeng.2015.07.350
https://doi.org/10.1016/j.proeng.2015.07.350
https://doi.org/10.1016/j.proeng.2015.07.350
https://doi.org/10.1016/j.atmosenv.2015.01.052
https://doi.org/10.1016/j.atmosenv.2015.01.052
https://doi.org/10.1177/2399808317705880
https://doi.org/10.1177/2399808317705880
https://doi.org/10.1016/j.compenvurbsys.2019.101362
https://doi.org/10.1016/j.compenvurbsys.2019.101362
https://doi.org/10.3390/rs12111793
https://doi.org/10.3390/rs12111793
https://doi.org/10.1016/j.uclim.2018.05.004
https://doi.org/10.3390/rs3020398
https://doi.org/10.3390/rs3020398
https://doi.org/10.1016/j.atmosenv.2017.07.042
https://doi.org/10.1016/j.atmosenv.2017.07.042
https://doi.org/10.1016/j.atmosenv.2017.07.042
https://doi.org/10.1021/acs.est.6b01807?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.6b01807?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.6b01807?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es402156g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es402156g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es402156g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.atmosenv.2009.07.061
https://doi.org/10.1016/j.atmosenv.2009.07.061
https://doi.org/10.1016/j.atmosenv.2009.07.061
https://doi.org/10.1016/j.atmosenv.2008.09.051
https://doi.org/10.1016/j.atmosenv.2008.09.051
https://doi.org/10.1016/S1352-2310(99)00466-5
https://doi.org/10.1016/S1352-2310(99)00466-5
https://doi.org/10.1016/j.atmosenv.2006.11.063
https://doi.org/10.1016/j.atmosenv.2006.11.063
https://doi.org/10.1016/j.atmosenv.2006.11.063
https://doi.org/10.1016/j.scitotenv.2009.09.048
https://doi.org/10.1016/j.scitotenv.2009.09.048
https://doi.org/10.1016/j.scitotenv.2018.02.317
https://doi.org/10.1016/j.scitotenv.2018.02.317
https://doi.org/10.1016/j.procs.2016.05.343
https://doi.org/10.1016/j.procs.2016.05.343
https://doi.org/10.1016/j.atmosenv.2005.07.030
https://doi.org/10.1016/j.atmosenv.2005.07.030
https://doi.org/10.1016/j.atmosenv.2005.07.030
https://doi.org/10.1016/S0269-7491(03)00025-3
https://doi.org/10.1016/S0269-7491(03)00025-3
https://doi.org/10.1016/j.atmosenv.2004.02.062
https://doi.org/10.1016/j.atmosenv.2004.02.062
https://doi.org/10.1016/j.healthplace.2004.11.002
https://doi.org/10.1016/j.healthplace.2004.11.002
https://www.alphasense.com/index.php/air/downloads/OPC-N3.pdf
https://www.alphasense.com/index.php/air/downloads/OPC-N3.pdf
https://doi.org/10.5194/amt-11-709-2018
https://doi.org/10.5194/amt-11-709-2018
https://doi.org/10.1080/02786826.2016.1232859
https://doi.org/10.1080/02786826.2016.1232859
https://doi.org/10.1080/02786826.2016.1232859
https://doi.org/10.5194/amt-7-2169-2014
https://doi.org/10.5194/amt-7-2169-2014
https://doi.org/10.1016/j.envres.2015.01.003
https://doi.org/10.1016/j.envres.2015.01.003
https://doi.org/10.1016/j.compenvurbsys.2019.01.003
https://doi.org/10.1016/j.compenvurbsys.2019.01.003
https://doi.org/10.1016/j.compenvurbsys.2019.01.003
https://doi.org/10.1016/j.ecolind.2017.01.027
https://doi.org/10.1016/j.ecolind.2017.01.027
https://doi.org/10.1007/s11356-018-1743-6
https://doi.org/10.1007/s11356-018-1743-6
https://doi.org/10.1016/j.landurbplan.2009.10.005
https://doi.org/10.1016/j.landurbplan.2009.10.005
https://doi.org/10.1016/j.landurbplan.2009.10.005
https://doi.org/10.1016/j.envsoft.2004.07.009
https://doi.org/10.1016/j.envsoft.2004.07.009
https://doi.org/10.1021/es103866b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es103866b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.atmosenv.2012.02.075
https://doi.org/10.1016/j.atmosenv.2012.02.075
https://doi.org/10.3390/su6095968
https://doi.org/10.3390/su6095968
https://doi.org/10.1016/j.rser.2015.07.190
https://doi.org/10.1016/j.rser.2015.07.190
https://doi.org/10.1016/j.rser.2015.07.190
https://doi.org/10.3354/cr00882
https://doi.org/10.3354/cr00882
https://doi.org/10.1146/annurev.fluid.35.101101.161147
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c04854?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(58) Shen, J.; Gao, Z.; Ding, W.; Yu, Y. An investigation on the
effect of street morphology to ambient air quality using six real-world
cases. Atmos. Environ. 2017, 164, 85−101.
(59) Hall, M. A., Correlation-based feature selection for machine
learning 1999.
(60) Ren, X.; Mi, Z.; Georgopoulos, P. G. Comparison of Machine
Learning and Land Use Regression for fine scale spatiotemporal
estimation of ambient air pollution: Modeling ozone concentrations
across the contiguous United States. Environ. Int. 2020, 142, 105827.
(61) Tian, Y.; Yao, X. A.; Mu, L.; Fan, Q.; Liu, Y. Integrating
meteorological factors for better understanding of the urban form-air
quality relationship. Landscape Ecology 2020, 35 (10), 2357−2373.
(62) Breiman, L. Random forests. Machine learning 2001, 45 (1), 5−
32.
(63) Gardner, M. W.; Dorling, S. Artificial neural networks (the
multilayer perceptron)a review of applications in the atmospheric
sciences. Atmospheric environment 1998, 32 (14−15), 2627−2636.
(64) Perrier, A. Feature Importance in Random Forests. https://
alexisperrier.com/datascience/2015/08/27/feature-importance-
random-forests-gini-accuracy.html.
(65) Hodgson, S.; Nieuwenhuijsen, M. J.; Colvile, R.; Jarup, L.
Assessment of exposure to mercury from industrial emissions:
comparing “distance as a proxy” and dispersion modelling approaches.
Occupational and environmental medicine 2006, 64 (6), 380−388.
(66) Maantay, J. A.; Tu, J.; Maroko, A. R. Loose-coupling an air
dispersion model and a geographic information system (GIS) for
studying air pollution and asthma in the Bronx, New York City.
International Journal of Environmental Health Research 2009, 19 (1),
59−79.
(67) Heo, H. K.; Lee, D. K.; Park, C. Y.; Kim, H. G. Sky view factor
calculation in complex urban geometry with terrestrial LiDAR.
Physical Geography 2021, 42, 1−21.
(68) Bellander, T.; Berglind, N.; Gustavsson, P.; Jonson, T.; Nyberg,
F.; Pershagen, G.; Järup, L. Using geographic information systems to
assess individual historical exposure to air pollution from traffic and
house heating in Stockholm. Environ. Health Perspect. 2001, 109 (6),
633−639.
(69) Liu, M.; Chen, H.; Wei, D.; Wu, Y.; Li, C. Nonlinear
relationship between urban form and street-level PM2. 5 and CO
based on mobile measurements and gradient boosting decision tree
models. Building and Environment 2021, 205, 108265.
(70) Wang, A.; Xu, J.; Tu, R.; Saleh, M.; Hatzopoulou, M. Potential
of machine learning for prediction of traffic related air pollution.
Transportation Research Part D: Transport and Environment 2020, 88,
102599.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.1c04854
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

I

https://doi.org/10.1016/j.atmosenv.2017.05.047
https://doi.org/10.1016/j.atmosenv.2017.05.047
https://doi.org/10.1016/j.atmosenv.2017.05.047
https://doi.org/10.1016/j.envint.2020.105827
https://doi.org/10.1016/j.envint.2020.105827
https://doi.org/10.1016/j.envint.2020.105827
https://doi.org/10.1016/j.envint.2020.105827
https://doi.org/10.1007/s10980-020-01094-6
https://doi.org/10.1007/s10980-020-01094-6
https://doi.org/10.1007/s10980-020-01094-6
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1016/S1352-2310(97)00447-0
https://alexisperrier.com/datascience/2015/08/27/feature-importance-random-forests-gini-accuracy.html
https://alexisperrier.com/datascience/2015/08/27/feature-importance-random-forests-gini-accuracy.html
https://alexisperrier.com/datascience/2015/08/27/feature-importance-random-forests-gini-accuracy.html
https://doi.org/10.1136/oem.2006.026781
https://doi.org/10.1136/oem.2006.026781
https://doi.org/10.1080/09603120802392868
https://doi.org/10.1080/09603120802392868
https://doi.org/10.1080/09603120802392868
https://doi.org/10.1080/02723646.2020.1778156
https://doi.org/10.1080/02723646.2020.1778156
https://doi.org/10.1289/ehp.01109633
https://doi.org/10.1289/ehp.01109633
https://doi.org/10.1289/ehp.01109633
https://doi.org/10.1016/j.buildenv.2021.108265
https://doi.org/10.1016/j.buildenv.2021.108265
https://doi.org/10.1016/j.buildenv.2021.108265
https://doi.org/10.1016/j.buildenv.2021.108265
https://doi.org/10.1016/j.trd.2020.102599
https://doi.org/10.1016/j.trd.2020.102599
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c04854?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/series/infocus?utm_source=pdf_stamp&utm_medium=digital_ads&utm_campaign=PUBS_1221_MCF_EB_InFocus_Jrnl_PDFs&ref=pdf

