
Combining Diverse Forms of Human and Machine
Intelligence

by

Andres Campero Nuñez

Submitted to the Department of Brain and Cognitive Sciences
in partial fulfillment of the requirements for the degree of

PhD in Artificial Intelligence and Collective Intelligence

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Brain and Cognitive Sciences

February, 2022

Certified by. .
Thomas W. Malone

Professor
Thesis Supervisor

Certified by. .
Joshua B. Tenenbaum

Professor
Thesis Supervisor

Accepted by .
Mark Harnett

Graduate Officer, Department of Brain and Cognitive Sciences

2

Combining Diverse Forms of Human and Machine Intelligence

by

Andres Campero Nuñez

Submitted to the Department of Brain and Cognitive Sciences
on February, 2022, in partial fulfillment of the

requirements for the degree of
PhD in Artificial Intelligence and Collective Intelligence

Abstract

Artificial Intelligence algorithms never operate in isolation but are always part of
broader processes that often involve humans, other computer algorithms, incentive
structures, and interfaces which modulate the interaction between them. This the-
sis takes this perspective and considers these broader processes by studying specific
combinations of three forms of intelligence: symbolic artificial intelligence, neural ar-
tificial intelligence, and human intelligence. First, diverse forms of Neuro-Symbolic
AI through three pipelines consisting respectively of neural perception with symbolic
reasoning, symbolic inputs with neural reasoning, and a dual-integration that learns
representations which are simultaneously symbolic and neural (Chapter 2); second,
the AI research community as a Human-Symbolic combination through the presenta-
tion of a taxonomy of AI models, tasks and datasets (Chapter 3); and third, a specific
form of Human-AI intelligence observing that a human in combination with GPT3
can perform an HTML code generation task better than either humans or computers
alone (Chapter 4).

Thesis Supervisor: Thomas W. Malone
Title: Professor

Thesis Supervisor: Joshua B. Tenenbaum
Title: Professor

3

4

Acknowledgments

I am very thankful and owe gratitude to many.

Thomas Malone and Josh Tenenbaum have constantly given me a vote of confi-

dence. They have been understanding, patient, willing to take risks with me, and

overall, always supportive in my off-the-beaten-path adventures.

Josh during the first part of my PhD. Such and influential and foundational figure.

You helped me see the important questions. You inspired me through admiration.

Tom during the second. I feel very fortunate to have met you. It has been an

incredible formative and fun opportunity to work with you.

I believe that in the coming century the greatest advances in human knowledge

and the most radical transformations of life and society will come from a deeper

understanding of the mind and of intelligence as computation. You both helped me

grasp this and put it in perspective. Josh always bringing me back to Cognitive

Science; Tom giving insight about the importance of Collective Intelligence.

I would like to thank Armando Solar-Lezama, who has been supportive in multiple

dimensions, directly and also through his influence on Josh and his group. A great

inspiring example as a Mexican.

I would like to thank Rebecca Saxe, always warm, supportive, intelligent, and

most importantly, always kind.

Thanks to the all the Brain and Cognitive Sciences administrative team, specially

Julianne Ormerod, Sierra Vallin, Meredith Canode, and Kris Brewer.

Thank you to all the BCS and MIT Faculty for this formative period, to James

DiCarlo, Tomaso Poggio, Laura Schulz, Andrei Barbu, Susan Carey, David Kaiser,

Michale Fee, Mehrdad Jazayeri, Nancy Kanwisher, Roger Levy, Josh McDermott,

Pawan Sinha, Edward Gibson, Pattie Maes, Abdullah Almaatouq, and many others.

A special thanks goes to Jose Sotelo and Moran Cerf. This would have not been

possible if it not were for you, in a very literal sense.

To all the researchers that directly contributed to the work in this thesis. Andrew

Francl, Tim Klinger, Aldo Pareja, Haoran Wen, Raza Abbas, Jaeyoon Song, San-

5

tiago Renteria, Edward Grefenstette, Tim Rocktaschel, Hienrich Kuttler, Roberta

Raileanu, Thomas Malone and Josh Tenenbaum.

Thanks to the Center for Brains, Minds, and Machines, to the Toyota Research

Institute, to the MIT Center for Collective Intelligence and the MIT Quest for In-

telligence, to London Facebook AI Research, and to the MIT-IBM Watson AI Lab.

They supported many of the projects in this thesis.

To the members of the impressive Cocosci community at MIT with whom I had

recurrent interactions: Luke Hewitt, Max Kleiman-Weiner, Pedro Tsividis, Kevin El-

lis, Amir Arsalan Soltani, Max Nye, Max Siegel, Tobias Gerstenberg, Tom Silver,

Kelsey Allen, Cathy Wong, Vikash Mansinghka, Bernhard Egger, Josh Rule, Jiajun

Wu, Ilker Yldirim, Tomer Ullman, Chris Baker, Timothy O’Donnell, Tejas D. Kulka-

rni, Alex Lew, Feras Saad, Tan Zhi-Xuan, Junyi Chu, MH Tessler, Jon Gauthier,

Tyler Brooke, Joao Loula, Matthias Hoffer, Felix Sosa, Joey Velez, and many others.

Thanks to the people who enriched my experiences at UCL and FAIR in London:

Sebastian Riedel, Edward Grefenstette, Tim Rocktaschel, Hienrich Kuttler, Roberta

Raileanu, Nantas Nardelli, Matko Bosnjak, Pasquale Minervini, Pontus Stenetorp.

A very special thanks goes to the Stateoftheart.ai team: Hugo Ochoa, Eduardo

Espinosa, Jorge Delgadillo, Antonio Teran, Luis Lara, Liuba Orlova, Cuco Resendiz,

Lynne Bairstrow, Luisfe Nuñez, Elena Elorza, Jesse Parent, Gussi Espinoza, as well

as Alfredo Hong, Diego Acevedo, Joseph Puerner, and Ehecatl Antonio Del Rio.

To the ever growing RIIAA organizing team including Jennifer Enciso, Benjamin

Sanchez, Rudy Corona, Enrique Garduño, David Alvarez, Alejandro Noriega, Liuba

Orlova, Luz Angelica, Dhyan Adler, Andres Guevara, Mario Rosas, Victor Jimenez,

and so many others. To Ehecatl Antonio Del Rio for being a life companion.

To all the people that have influenced my intellectual thoughts during my PhD:

Andrei Barbu, Candace Ross, Martin Arjovsky, Pablo Sprechmann, Felix Hill, Meire

Fortunato, Georges Belanger, Edgar Dueñez, David-Lopez Paz, Alex Kell, Yoshua

Bengio, Alan Aspuru, Alejandro Noriega, Bjarke Felbo, Florian Hillen, Aldo Pacchi-

ano, Judith Amores, Benjamin Sanchez, David Alvarez, Michael Chang, Natasha

Jacques, Michael Janner, Ross Morphy, Andreas Haupt, Samuel Barnett, Ronen

6

Zilberman, Alexander Rush, Jorge Nocedal, Jesse Parent, Michiel Bakker, Morgan

Frank, Edmond Awad, Iyad Rahwan, Gemma Roig, Georgios Evangelopoulos, Daniel

Yamins, Daniel Zysman, the participants of the Learning Workshop organized by

Martin Arjovsky and Cinjon Resnick, Jeremy Nixon, Lorenzo Aldeco, David Theurel,

Daniel Low, Ehud Kalai, Martin Schrimpf, and many others.

Thanks to all my friends! The most fun has always been with friends.

To my friends at Northwestern: Gabriel Ziegler, Sergio Armella, Haritz Garro,

Rene Leal, Laia Navarro, Alex Theisen, Ryan lee, Matthew Leisten, Britanny lewis,

Victoria Marone, Carlos Cordova, Laura Garcia, Walther Maradiegue, Monika Pod-

gorski, Roman Acosta, Jose Carreño, Benjamin Grant, Nil Karacaoglu, Ricardo

Dahis, Kartikey Sharma. To Michiel de Jong, such an important friend for coun-

sel, bouncing of ideas, and help to understand the AI field and life more generally.

To my BCS cohort and MIT friends: Heather Kosakowski, Alexi Choueiri, Matthias

Hoffer, Eghbal Hosseini, Andrew Francl, Andrew Bahle, Elli Pollock, Mahdi Ra-

madan, Sabrina Osmany, Jenelle Feather, Daniel Estandian, Charles Choueiri, Sanjay

Guruprasad, Lauren Fratamico, Brando Miranda, Frederico Azevedo.

To Isabel Goldaracena, que me apoyo tanto y me dio tanto cariño. To Casa

Broadway for some extremely fun and inspirational years, what a ride. To Casa

Prospect, you guys were my home. "To Genesis!". To Fuerza Mexico. To all the

Mexicans in Boston: Daniel Young and Fiona Aguilar, Aaron Sonabend and Vicky

Levy, Juan Pablo Rodriguez, Cheko Cantu, Claudia Varela, Jorge Buendia, Bernardo

Garcia Bulle, Julie Ricard, Alvaro Farias, Leila and Karim Pirbay, Ilaria Ricchi,

Bruno, Luis Torres, Pablo Ducru, and so many others.

To all the friends that have supported me during the later period including Jose

Pablo Zarco, Mariana Acevedo, Jose Manuel Cuevas, Mercedes Saldaña, Diana Med-

ina, Daniel Herrera, Montserrat Avila, Dhyan Adler, and Alfredo Carrillo2.

Thanks to the example of my mother Rosa Maria Nuñez, to the support of my

father Alberto Campero, to the love of my (big!) family - all my cousins, aunts,

uncles, and grandparents - and to my Nakama and brother Javier Campero.

For much to come, Gracias!

7

8

Contents

1 Introduction 21

2 Neuro-Symbolic AI 25

2.1 Hierarchical Bayes and Deep Learning 25

2.1.1 Introduction . 25

2.1.2 Model and Learning to Learn 28

2.1.3 Tests and Results . 31

2.1.4 Discussion . 37

2.2 Logical Induction and Distributed Representations 38

2.2.1 Introduction . 38

2.2.2 Background and Related Work 40

2.2.3 The Model . 44

2.2.4 Experiments . 47

2.2.5 Conclusions and Future Work 52

2.3 AMIGo: Adversarially Motivated Intrinsic Goals 55

2.3.1 Introduction . 55

2.3.2 Related Work . 57

2.3.3 Adversarially Motivated Intrinsic Goals 60

2.3.4 Experiments . 64

2.3.5 Conclusion . 70

9

3 AI Research as Collective Intelligence:

A Taxonomy 73

3.1 Introduction . 73

3.2 Desirable Properties and Theoretical Considerations 77

3.2.1 Desirable Properties . 77

3.2.2 Theoretical Considerations and Limitations 78

3.3 The Taxonomy . 79

3.3.1 Overview . 79

3.3.2 Models . 80

3.3.3 Tasks and Datasets . 82

3.3.4 NeurIPS 2020 Dataset . 84

3.4 Current Potential uses of the Taxonomy 86

3.5 Improvements and Open Directions 87

3.6 Conclusion . 88

4 Human-AI Combination for Generating Software 91

4.1 Introduction . 91

4.2 Approach . 92

4.3 Results . 93

4.3.1 Study 1 . 94

4.3.2 Study 2 . 98

4.4 Discussion . 101

4.5 Materials and Methods . 103

4.5.1 Web Pages . 103

4.5.2 Subjects . 105

4.5.3 GPT-3 . 105

4.5.4 Estimating Costs . 106

4.5.5 Instructions and Incentives . 107

10

A ILP Task Descriptions 109

A.1 ILP Tasks . 109

A.2 Countries . 115

A.3 Taxonomy and Kinship . 116

B Learning with AMIGo 117

B.1 Full results . 117

B.2 Hyperparameter Sweeps and Best Values 119

B.3 Sample Efficiency . 120

B.4 Ablation Study . 122

B.5 Qualitative Analysis . 123

B.6 Goal Examples . 125

C The Taxonomy 127

D Human-AI Superintelligence 129

D.1 Regression Derivation . 129

D.2 Study 1 Regression . 131

D.3 Coders vs Non-coders Regression . 131

D.4 Quality and Speed Distributions . 132

D.5 GPT-3 Parameters and Prompts . 133

D.6 Study 1 Robustness Checks . 135

D.7 Cost Regressions . 136

D.8 Full Postings for Recruiting . 137

11

12

List of Figures

2-1 Learning a similarity metric for a new category. The goal is to identify

the correct supercategory and estimate an appropriate similarity metric. 26

2-2 Hierarchical Model . 30

2-3 MSR semantic tree discovered by the Full Model 32

2-4 Ground Truth Tree of Gazoobian Objects as Generated from Human

Similarity Judgments. Each of the three branches at the top of the

tree denotes a supercategoy. The gray box in the lower left hand of the

figure denotes a basic-level category. 35

2-5 Model’s Inferred Semantic Hierarchy of Gazoobian Objects. Outer

boxes denote supercategories inferred by the model. Dashed lines sep-

arate model generated categories within each supercategory. Colored

boxes around each object denote the ground truth supercategories as

shown above. 36

2-6 Animal Taxonomy. Constants are in red and blue, relations are indi-

cated with lines and arrows. 39

2-7 Overview of the model, a step of forward chaining. Parameters are

represented in green and constitute the trainable embeddings, orange

arrows indicate paths on which gradients flow (in the opposite direction). 44

13

2-8 Training with AMIGo consists of combining two modules: a goal-

generating teacher and a goal-conditioned student policy, whereby the

teacher provides intrinsic goals to supplement the extrinsic goals from

the environment. In our experimental set-up, the teacher is a dimensionality-

preserving convolutional network which, at the beginning of an episode,

outputs a location in absolute (𝑥, 𝑦) coordinates. These are provided as

a one-hot indicator in an extra channel of the student’s convolutional

neural network, which in turn outputs the agent’s actions. 57

2-9 Examples of MiniGrid environments. KCharder requires finding the

key that can unlock a door which blocks the room where the goal is

(the blue ball). OMhard requires a sequence of correct steps usually

involving opening a door, opening a chest to find a key of the correct

color, picking-up the key to open the door, and opening the door to

reach the goal. The configuration and colors of the objects change from

one episode to another. To our knowledge, AMIGo is the only algo-

rithm that can solve these tasks. For other examples, see the MiniGrid

repository. 65

2-10 Examples of a curriculum of goals proposed for different episodes of

a particular learning trajectory on OMhard. The red triangle is the

agent, the red square is the goal proposed by the teacher, and the

blue ball is the extrinsic goal. The top panel shows the threshold

target difficulty, 𝑡* of the goals proposed by the teacher. The teacher

first proposes very easy nearby goals, then it learns to propose goals

that involve traversing rooms and opening doors, while in the third

phase the teacher proposes goals which involve removing obstacles and

interacting with objects. 69

3-1 Stateoftheart.ai platform, an interactive viewer displaying the tax-

onomy of Models . 74

3-2 Evolution of models for Intrinsic Motivation within RL 82

14

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid
Stateoftheart.ai

3-3 View of the taxonomy of Tasks, Subtasks and Datasets (in green).

Notice that any given level of the taxonomy can contain both datasets

and tasks depending on whether it has further subspecializations . . . 83

3-4 Arbitrary expansion of the Neuro-Symbolic Reasoning branch as an

example. 84

4-1 Webpages used for experiment . 94

4-2 Display of the interface for the Human-Computer condition. The top

left corner is the field for the subjects to input the natural language

instructions. Below on the left are the obtained HTML outputs which

the user can modify or delete. On the right is the visual display of the

rendered HTML items which can be dragged by the user to different

positions. The figure illustrates some of the kinds of elements GPT-3

is able to create in response to simple textual descriptions, such as

tables, buttons, images, and other HTML tags. 95

4-3 Study 1 Regression results . 97

A-1 Bigger animal taxonomy used for the tasks. Contains 4 predicates, 36

constants and 145 facts . 116

A-2 Inferred family tree. Females shown in bold italics and males in ordi-

nary font. 116

B-1 Reward curves over training time comparing AMIGo to competing

methods and baselines. The y-axis shows the Mean Extrinsic Reward

(performance) obtained in two medium and four harder different envi-

ronments, shown for 30M and 500M frames respectively. 121

B-2 An example of a learning trajectory on OMhard, one of the most

challenging environments. Despite the lack of extrinsic reward, the

panels show the dynamics of the intrinsic rewards for the student (top

panel), for the teacher (middle panel), and the difficulty of the goals

captured as 𝑡* (bottom panel). 124

15

B-3 Some examples of goals during early, mid, and late stages of learning

(examples for KCmedium, OMhard and OMmedium are first, sec-

ond, and third rows respectively). The red triangle is the agent, the

red square is the goal proposed by the teacher, and the blue ball is the

extrinsic goal. 126

D-1 Speed (tasks/min) and Quality Score (% of total points obtained on

an individual submission) distribution for different populations and

conditions . 132

16

List of Tables

2.1 Performance results using the area under the ROC curve (AUROC) on

the MSR dataset in the one-shot learning task 32

2.2 Performance results using the area under the ROC curve (AUROC) on

the MSR dataset with limited training data. 33

2.3 ILP percentage of successful runs. |𝐼| is the number of intentional

predicates. 49

2.4 Performance on the COUNTRIES dataset 50

2.5 Theory Learning Results. Succ is the percentage of successful initial-

izations; Acc stands for the accuracy of the recovered facts; Const is

the number of constants. 51

2.6 Comparison of Mean Extrinsic Reward at the end of training (averaging

over a batch of episodes as in IMPALA). Each entry shows the result of

the best observation configuration, for each baseline, from Tables B.1–

B.4 of Appendix B.1. 68

3.1 Summary Statistics of the Taxonomy 80

3.2 Model Taxonomy. Areas and Subareas 81

3.3 NeurIPS 2020 Dataset. Summary counts are followed by Model and

Dataset counts by area. Subareas of "Miscellaneous" and "Classical"

are shown in italics. 85

4.1 Empirical Summary of Results. Speed and quality averages per condi-

tion (see Appendix D.4 for full distributions). 97

17

4.2 Average costs for each condition. Hourly rate, time spent on eac task,

number of calls to GPT-3 and total cost 100

B.1 Fully observed intrinsic reward, fully observed policy. 117

B.2 Partially observed intrinsic reward, fully observed policy. 118

B.3 Fully observed intrinsic reward, partially observed policy. 118

B.4 Partially observed intrinsic reward, partially observed policy. 118

B.5 Ablations and Alternatives. Number of steps (in millions) for mod-

els to learn to reach its final level of reward in the different environ-

ments (0 means the model did not learn to get any extrinsic reward).

Full Model is the main algorithm described above. NoExtrin-

sic does not provide any extrinsic reward to the teacher. NoEn-

vChange removes the reward for selecting goals that change as a

result of episode resets. withNovelty adds a novelty bonus that

decreases depending on the number of times an object has been suc-

cessfully proposed. Gaussian and Linear-Exponential explore al-

ternative reward functions for the teacher. 123

D.1 Sudy 1 Results. 197 observations from 100 coders. Showing coeffi-

cient estimate, standard error, p-value, 95% confidence interval lower

and upper limits, and the exponential of the coefficient which is the

multiplicative increase due to the different independent variables . . . 131

D.2 HC condition Regression. 200 observations from 150 subjects. Showing

coefficient estimate, standard error, p-value, 95% confidence interval

lower and upper limits, and the exponential of the coefficient which is

the multiplicative increase due to the different independent variables . 131

D.3 Regression for observations that had a score of 90%+, 169 observations

from 96 coders. Showing coefficient estimate, standard error, p-value,

95% confidence interval lower and upper limits, and the exponential of

the coefficient which is the multiplicative increase due to the different

independent variables . 135

18

D.4 OLS Regression without Random Effects. 197 Observations from 100

coders. Showing coefficient estimate, standard error, p-value, 95% con-

fidence interval lower and upper limits, and the exponential of the

coefficient which is the multiplicative increase due to the different in-

dependent variables . 135

D.5 Coders Cost Regression HC vs H . 197 observations from 100 coders.

Showing coefficient estimate, standard error, p-value, 95% confidence

interval lower and upper limits, and the exponential of the coefficient

which is the multiplicative increase due to the different independent

variables . 136

D.6 Coders vs Non-coders Cost Regression HC vs HC’ . HC condition Re-

gression. 200 observations from 150 subjects. Showing coefficient esti-

mate, standard error, p-value, 95% confidence interval lower and upper

limits, and the exponential of the coefficient which is the multiplicative

increase due to the different independent variables 136

19

20

Chapter 1

Introduction

With the recent progress of Artificial Intelligence (AI), there is increasing interest in

creating superintelligent computer algorithms in a wide range of tasks. Despite these

successes, an often overlooked fact is that these models never operate in isolation.

An alternative perspective recognizes that in practice software is always used as part

of broader processes that often involve humans, other computer algorithms, incentive

structures, coordination mechanisms, tools, and other interfaces which modulate the

interaction between them. In this thesis we take this perspective and study these

broader processes that combine diverse forms of human and machine intelligence.

The thesis considers different combinations of three forms of intelligence: symbolic

artificial intelligence, neural artificial intelligence, and human intelligence. Each of

its three chapters studies particular instantiations of a combination of two of those

forms: three pipelines of Neuro-Symbolic AI first, a Human-Symbolic organization of

the research community in the form of a taxonomy second, and a proposed form of

Human-AI (neural) Superintelligence third.

While there is increasingly broad convergence among scientists and engineers that

the mind can in principle be replicated and understood in algorithmic terms, the

specific nature of intelligence is controversial. Two broad perspectives exist with an

ongoing debate that has parallels in both Cognitive Sciences and the Artificial Intel-

ligence. In Machine Learning and AI, the symbolic form of intelligence emphasizes

the role of algorithms that operate over symbols which work as interpretable labels

21

that can represent more complex operations. For example, in most programming lan-

guages, a ’function’ has a name or symbol which can be ’called’ to execute several lines

of code. The second form of intelligence, which we term neural, takes loose inspiration

from the biological brain and is based on artificial neural networks which can learn

to solve problems based on adjusting multiple, usually non-interpretable ’weights’.

This second form became what is now the field of Deep Learning. Similarly, the

study of human concepts by cognitive scientists have historically also been divided

into schools of thought which emphasize either the conceptual more symbolic role,

where the meaning of a concept comes from its relationships to other concepts; or the

more statistical role which posits that the meaning of a concept doesn’t come from

its definition, but from its statistical relationship with typical examples experienced

in the world [23, 65].

The human mind has elements of both perspectives. These two forms of intel-

ligence are strikingly complementary in their strengths and weaknesses. Symbolic

approaches are compositional, highlight the richness of conceptual role, and require

little data to train [45]. On the other hand, neural approaches require less explicit

structure, and have been very successful at performing different tasks across many

domains [59, 77, 123, 16]. The field of Neuro-Symbolic AI has been growing richer in

the last years [33, 42]. Chapter 2 presents three sections which study different spe-

cific ’pipelines’ or ways of combining the two perspectives in the Neuro-Symbolic AI

context: section 2.1 does neural perception first and symbolic reasoning next. Section

2.2 attempts a tight dual-integration, learning representations which are simultane-

ously symbolic and neural. Section 2.3 deals with symbolic inputs but realizes neural

reasoning.

Chapter 3 considers the whole system of Artificial Intelligence algorithms and

human researchers as a particularly powerful collectively intelligent Supermind [70].

Inspired on [71], the chapter develops a comprehensive taxonomy of Artificial Intel-

ligence models, tasks, and datasets. The taxonomy constitutes a classical form of

a symbolic organization of information and the AI research community itself is a

human-machine combination of two forms of intelligence.

22

Chapter 4 studies and defines a specific form of Human-AI Superintelligence:

the ability of the human-computer combination to perform tasks many times better

than either humans or computers alone. We explore the task of code generation

for the context of website replication in HTML, measuring performance in terms of

speed subject to constraints on quality. We explore the combination of GPT-3 [16],

a state-of-the-art neural language model in combination with the a human (for two

populations of coders and non-coders) utilizing an interface for dragging and editing

code. We show this combination of neural machine intelligence and human intelligence

improves performance and, in some cases, is able to obtain Superintelligence.

23

24

Chapter 2

Neuro-Symbolic AI

2.1 Hierarchical Bayes and Deep Learning

2.1.1 Introduction

Recent advances in neural networks and other machine learning methods have led to

computer vision object-recognition systems that are beginning to approach human-

level performance. Trained on thousands of object categories, with thousands of

labeled examples for each, deep convolutional networks can tell if a new image contains

a familiar category almost as well as human adults can in a brief glance. Yet, even

young children have abilities to learn and generalize that go beyond what current

machine vision systems can do. Here we focus on three such abilities:

(1) By age 3, children can learn new object categories from just a single example.

Furthermore, children generalize in different ways as appropriate for different kinds of

categories: labels for artifacts with functionally relevant shapes are preferentially gen-

eralized according to those shapes, while labels for non solid substances or arbitrarily

shaped objects are more likely to be generalized according to material properties.

(2) Children can learn to learn appropriate inductive biases, such as the shape

and material biases described above, from experience with just a few examples each

of a small number of categories that exemplify these biases in a consistent way. The

shape-bias training studies of Smith and colleagues are the best known examples

25

[112].

(3) Children can, in a completely unsupervised way, sort novel objects into cat-

egories and supercategories in a meaningful way, and then use these hierarchical

category structures as strong constraints to learn and generalize names for objects

from just one or a few examples.

Previous attempts to capture these abilities in computational models have had

some success, but not with models that are “image-computable" on the same stim-

uli that people see. These earlier models have used either adult similarity judgments

[125] or highly simplified, idealized feature representations [55] to build their category

hierarchies. Here we show that a computational framework can come close to captur-

ing abilities (1-3) by combining two powerful representation-learning techniques: deep

learning for feature construction and Hierarchical Bayes for unsupervised taxonomy

construction.

We build on work by [99] who build a Hierarchical Bayesian model that “learns to

learn" by incorporating information from past experience into a prior when inferring

statistical properties of a novel category. In particular, when presented with a few

image examples of a new category, the model infers a supercategory and uses the

higher-order knowledge abstracted from previous categories to identify the relevant

features and allow generalization (Figure 2-1).

Figure 2-1: Learning a similarity metric for a new category. The goal is to identify
the correct supercategory and estimate an appropriate similarity metric.

That work was extended by the same authors, who harnessed a two layer Deep-

26

Boltzmann Machine to generate low level feature representations of the images while

learning a prior using a hierarchical Dirichlet process. [100]. Their experimental

data showed that using this prior in combination with more powerful features gave

them a distinct advantage over other methods of classification. This progression of

work suggests that building a model that combines complex feature spaces with a

hierarchical semantic structure may lead to further increases in performance.

Building on this line of work, we contribute a model that combines the two compo-

nents: powerful image representations extracted from Deep Neural Networks (DNNs)

and a Hierarchical semantic structure that works as a Bayesian prior. We show

how the combination of these two components can “learn to learn" in ways that re-

semble some aspects of child cognition. Additionally, we explore how this model’s

performance is affected as we vary different aspects of the model architecture and the

structure of the training data.

Other approaches to combine probabilistic graphical models and DNNs have re-

cently been proposed that focus on building unsupervised clustering algorithms (Dilok-

thanakul et al., 2016; Johnson et al. 2016). Instead, the focus of our model is to

capture certain aspects of human cognition. This leads to some notable differences.

First, representations in our model are a fixed set of visual relevant features instead

of being learned for the inference task at hand. In addition, our model’s generative

component is limited to a hierarchical structure that aims to recover the semantic

relations between concepts in a useful and meaningful way while other models are

fully generative but tend to have graphs with simpler semantic structures. We there-

fore propose a relatively simple model that is not intended for general unsupervised

learning but that instead focuses on traits of human object and category learning.

More specifically, we test our model’s capacity to capture the previously discussed

human abilities (1-3) in an image recognition framework. First, we evaluate the ability

of our model to learn novel categories from only one or a few examples. To address this

we allow the model to construct a semantic structure from labeled examples in a data

set and then judge the model’s performance on a one-shot learning task. Second, we

assess the models capability to construct inductive biases in low data environments.

27

We test this ability by repeating the first task but limiting the training data available

to the model when it constructs the semantic tree. Finally, in a third task, we test

the model’s ability to learn a hierarchical semantic structure of novel objects in a

completely unsupervised manner. Results suggest that this approach may be suitable

for modeling certain aspects of cognition.

2.1.2 Model and Learning to Learn

Our model combines two Machine Learning approaches that have recently been suc-

cessful at a range of differing tasks. On one hand, powerful deep networks construct

feature spaces that enable rapid and accurate classification. On the other, Hierarchi-

cal Bayesian Models have proven successful in creating taxonomies of the different

concepts learned from previous experience. These taxonomies can then be used as a

prior to identify the relevant features for learning a new category from one or a few

examples based on the distribution of other similar categories. We create various ver-

sions of our model to compare combinations of feature spaces extracted from different

architectures with variants of the Hierarchical Bayesian component.

Learning begins by constructing a 2-level tree of categories and supercategories

that best explains the training observations under a Bayesian framework. The model

learns structure in the observations by first generating useful general features from a

DNN and then developing hierarchical priors that allow previous similar experiences

to bias the learning of new concepts and categories. The priors are constructed by

inferring the means and variances that define the most relevant dimensions from the

DNN feature representations for each category and supercategory (Figure 2-1).

Deep Network Features

We use features extracted from DNNs pretrained for object classification on Ima-

geNet. We obtain a representation from each image by passing it through a network

and extracting the response from the penultimate layer consisting of 4096 real-valued

dimensions. In the regular deep network classification scheme, this response is then

28

passed through a linear weighting and a generalized logistic regression layer. This

layer maps this representation onto probabilities for each class in the specific classi-

fication task for which the network was trained.

We compare the performance of the different versions of our model on features

extracted from two different DNN architectures: Alexnet [59], which was the first

implemented Deep Learning Model that significantly improved object classification

on images; and VGG-16 [110], a more recent architecture with 16 layers that achieves

above 90% top 5 classification performance on ImageNet.

Generative Semantic Organization

After obtaining a useful general image representation from the DNN, the Hierarchical

Bayesian Model’s parameters are inferred by approximating the posterior via Markov

Chain Monte Carlo methods in the following way.

Consider a two-level hierarchy where 𝑁 observed inputs are partitioned into 𝐶

basic-level categories, these categories are in turn partitioned into 𝐾 supercategories.

In this hierarchy of observations, categories, and supercategories, the higher levels

determine a prior over the distribution of the lower levels. In particular, the dis-

tribution over observations (feature vector representations of images in our case) of

each of the different basic level categories are assumed to be multi-variate Gaussian

with a category specific mean 𝑀𝑐 and with precision terms 𝜏 𝑑𝑐 that are assumed to

be independent across the 𝐷 dimensions of the feature space. These precision terms

constitute a similarity metric by determining the relative importance of each of the

features. In turn, we place a conjugate Normal-Gamma prior over {𝑀𝑐, 𝜏𝑐}, this prior

is determined by the supercategory specific level-2 parameters 𝑀𝑘, 𝜏𝑘, 𝛼𝑘, where 𝑀𝑘

and 𝜏𝑘 constitute the expected values of the lower level parameters and 𝛼𝑘 controls

the variability of 𝜏𝑐 around its mean. Finally, for the conjugate priors over the level-2

parameters, we respectively assume Normal, Exponential and Inverse-Gamma distri-

butions that are further shaped by parameters 𝛼0 and 𝛾0. The full generative model

is given in Figure 2-2 [99].

Given a set of observations, the model iteratively performs Bayesian inference by

29

Figure 2-2: Hierarchical Model

alternating between sampling the parameters and inferring the category assignments.

When learning the distributions at each step of the iteration, the supercategory mem-

bership is fixed and the parameters are sampled from posteriors that are analytically

computed using the conjugate priors1. The supercategory membership for each cat-

egory is learned in a similar way by fixing the currrent parameters and the rest of

the hierarchical structure. Every category can be assigned to any of the existing su-

percategories or to a newly created one. The posterior probability of belonging to a

supercategory is computed as a combination the likelihood that the parameters of the

category come from the parameters of the supercategory and a Chinese Restaurant

Process (CRP) prior [46]. This nonparametric prior is a distribution over a partition

on integers in which the 𝑛𝑡ℎ number is assigned to set 𝑘 with probability:

𝑃 (𝑧𝑛 = 𝑘|𝑧1, 𝑧2..., 𝑧𝑛−1) =

⎧⎪⎨⎪⎩
𝑛𝑘

𝑛−1+𝛾
if 𝑛𝑘 > 0

𝛾
𝑛−1+𝛾

if k is new

Where 𝑛𝑘 is the number of previous integers assigned to set 𝑘 and 𝛾 is a concen-

tration parameter sampled from a 𝐺𝑎𝑚𝑚𝑎(1, 1) distribution.

In an unsupervised setting where the categories of the observations are also un-

known, the model utilizes a similar strategy to assign observations to categories as

is used when assigning categories to supercategories. The model iterates through

1For the case of 𝛼𝑘, the conditional posterior cannot be computed analytically and the parameter
is sampled with the Metropolis-Hastings rule [129].

30

the observations and assigns each either to an existing or to a newly created cate-

gory based on the prior and likelihood. By utilizing the CRP prior, the model can

create an unbounded number of categories and supercategories. This entire process

constitutes a Gibbs sampling procedure where both the tree structure and all of the

parameters are simultaneously learned.

2.1.3 Tests and Results

We test the model in scenarios that attempt to capture aspects of human cognition

related to learning from limited data. First we measure the model’s ability to gener-

alize previous knowledge to learn novel categories from only a few examples. Next,

we assess the model on this task when the training data for all of the categories is

also limited to only a few examples. Finally, we exploit the model’s full hierarchy in a

completely unsupervised setting by exploring how the model recovers the underlying

semantic structure.

One-Shot Learning on MSR

In the first task, we test the model’s ability to learn new categories form one or a

few examples. First, we select a category that will be held-out for testing. Labeled

observations for all other basic-level categories are provided for training. The model

learns the semantic structure of the training set by clustering the basic categories

into supercategories and inferring the relevant parameters at all levels of the Bayesian

Hierarchy. The challenge is then to generalize the learned structure to the held-out

category from only one or a few examples.

To do this, the model first infers the best supercategory from one or a few ex-

amples of the withheld category by marginalizing over the category level parameters.

Next, the model uses the supercategory priors and training examples to estimate the

category similarity metric and mean for each dimension in the feature space.

31

Figure 2-3: MSR semantic tree discovered by the Full Model

We evaluate different versions of our model on the MSR Cambridge dataset [58],

which consists of 24 categories with varying numbers of images in each category. In

total this dataset contains roughly 800 images. Figure 2-3 shows a typical partition

over all the categories discovered by the full model. To quantify the models accuracy,

a testset with unlabeled data from all categories is classified.

We repeatedly trained the model withholding one of the categories at a time

and then inferred the withheld category parameters and supercategory membership

using one or a few images. Next, we calculated the posterior probability for each

testset image belonging to each category and variated a threshold to classify images as

belonging to the heldout category or to any of the other categories. This created true

and false positive rates for each point along our threshold which traced out a Receiver

Operating Characteristic curve (ROC) for classifying objects from the withheld vs.

all the other categories. The reported results are calculated by averaging the Area

Under the ROC curve (AUROC) for the model trained with each of the 24 categories

withheld (Table 2.1).

Table 2.1: Performance results using the area under the ROC curve (AUROC) on the
MSR dataset in the one-shot learning task

Examples from Withheld Class
Alexnet VGG

1ex 2ex 4ex 20ex 1ex 2ex 4ex 20ex
Oracle .99 1 1 1
HB-Full .91 .96 .98 .99 .92 .97 .98 .99

One Supercategory .87 .94 .97 .99 .88 .95 .98 .99
NearestN .84 .86 .87 .90 .89 .90 .92 .95
T of T* .76 .80 .84 .87

32

Performance is compared for each combination of an Inference Model and a Net-

work Architecture. HB-Full is the full version of the model described above. One

Supercategory places all the categories in the same single supercategory. NearestN

classifies new points with the label of the nearest neighbor of its feature vector in

euclidean distance. Texture of Textures (T of T)* replaces our DNN features with

the set of responses from a three layer convolutional neural network that uses precom-

puted weights that resemble Gabor filters2. Finally, the Oracle is the same than our

full model, but uses the true empirical mean and variances from the whole population

(including testset). Table 2.1 shows the results for the two different feature spaces

used.

Limited training data regimes

In a second task, we test the capability of our model to extract inductive biases

from experience with just a few examples. To evaluate this capability, our full model

was limited to only 1, 4, 10 or 18 examples of each category used for training. The

number of examples from the withheld category was varied separately. Table 2.2

shows the average AUROC for the same “one vs. all" metric used in the previous

task3. For comparison, the full model performance from the previous table is included

and labeled as “All examples"4.

Table 2.2: Performance results using the area under the ROC curve (AUROC) on the
MSR dataset with limited training data.

Examples from Withheld Class
Alexnet VGG

1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex
Training Examples

1 ex .87 .87 .88 .89 .90 .90 .90 .92
4 ex .92 .96 .99 .99 .93 .97 .98 .99
10 ex .92 .96 .99 .99 .92 .96 .98 .99
18 ex .92 .95 .98 .99 .91 .96 .98 .99

All examples .91 .96 .98 .99 .92 .97 .98 .99

We can see that the largest jump in performance happens when moving from 1

2Taken from [99]
3Averages across 10 random repetitions and all categories are reported.
4Each category contains a varying number of examples

33

to 4 training examples. This likely reflects the fact that a single example provides

information about the mean of the category but not about the variance or similarity

metric, which has to be inferred completely from the prior. However, 4 examples

provide adequate information about the variance to allow the model to appropriately

infer the parameters for new categories. As the number of training examples contin-

ues to increase, there are no further gains in performance. This is consistent with

literature showing that children need at least two examples to learn inductive biases

in certain contexts [112].

Unsupervised Learning on Gazoobian Objects

Humans and children can sort new objects into categories and supercategories in a

semantically meaningful way. While our model is also able to of recover meaningful

structure from labeled examples (Figure 2-3), real situations often demand learning

where labels are completely absent. [103] explores this human capability with a

dataset composed of 45 novel objects that were generated using a modeling software to

simulate a specific taxonomic structure. The dataset consists of three supercategories

supposed to be alien equivalents of plants, tools and snails from the planet “Gazoob".

The objects in each supercategory are further organized into a structure that can be

approximated by basic-level categories (gray box in Figure 2-4).

Our model has the ability to infer both categories and supercategories in an unsu-

pervised manner from observations. [103] shows that a model based on agglomerative

clustering that uses adult similarity judgments is able to recover the taxonomic tree

(Figure 2-4). Here our model is tested with the harder task of recovering the taxo-

nomic tree directly from the same images that people saw. The model accomplishes

this task in a fully unsupervised manner using a single image of each object.

This “image-computable" model is able, although with some mistakes, to recover

the three supercategories and most of the basic-level category structure (Figure 2-

5). Other unsupervised clustering algorithms were also able to capture some of the

semantic structure, but the hierarchy between categories and supercategories was not

evident.

34

Figure 2-4: Ground Truth Tree of Gazoobian Objects as Generated from Human
Similarity Judgments. Each of the three branches at the top of the tree denotes a
supercategoy. The gray box in the lower left hand of the figure denotes a basic-level
category.

35

Figure 2-5: Model’s Inferred Semantic Hierarchy of Gazoobian Objects. Outer boxes
denote supercategories inferred by the model. Dashed lines separate model generated
categories within each supercategory. Colored boxes around each object denote the
ground truth supercategories as shown above.

36

2.1.4 Discussion

One can think of the task of concept learning as consisting of two elements. The

first involves obtaining relevant features to represent the objects and categories com-

monly observed in the world. The second involves constructing a semantic hierarchical

structure with links between categories that humans can use to navigate and perform

tasks. While recent results demonstrate the capabilities of DNNs to classify cate-

gories provided a large number of training examples, they struggle to perform tasks

that require understanding the semantic relationships between classes. The ability

of Hierarchical Bayesian Models to build these semantic structures can further help

with understanding and classifying new categories.

We demonstrate how these two approaches can complement one another by com-

bining them in a computational model. We tested the model’s abilities tasks designed

to approximate human capabilities that are currently difficult for computer vision

systems such as concept generalization, learning inductive biases, and constructing

semantic structures. We show results for three tasks involving limited data availabil-

ity. The model is able to learn relevant semantic structures from just a few examples

of novel objects and effectively transfer appropriate similarity metrics from learned

categories in the form of a prior. In all tasks, the computational framework comes

close to capturing human abilities that other, more complex, machine vision systems

struggle to reproduce.

37

2.2 Logical Induction and Distributed Representa-

tions

2.2.1 Introduction

Humans are continually acquiring, representing, and reasoning with new facts about

the world. To make sense of the vast quantity of information with which we are

presented, we must compress, structure and generalize from what we experience. This

allows us to quickly understand new concepts and make useful predictions about

them. For example, we might represent our knowledge of animals in a taxonomic

hierarchy like that shown in Figure 2-6. Using such a hierarchy coupled with an

inheritance rule that specifies that the attributes of higher nodes are shared by lower

ones, we can achieve exponential compression over a representation which just lists

the facts. Even more exciting, it allows us to infer a whole range of new facts about an

individual simply by observing where it fits in the hierarchy. For example, observing

that a Harpy Eagle is a type of Eagle allows us to immediately deduce that a Harpy

Eagle can fly and breathe.5 But how can such representations be learned from raw

observations? This has been a key problem in semantic knowledge acquisition going

back to at least to the 1960’s in the work of [27], with symbolic, Bayesian, and neural

approaches proposed [96, 49, 127]. In our view (and following [127]) there are three

questions to be addressed in the development of a solution: (1) how can we induce

logical rules from the observations? (2) how can we learn a small set of core facts (the

taxonomy in the example) from which we can infer the observations (and more), and

(3) how can this be done without explicit supervision on the structure of the rules?

In this paper we propose a model which can be used for both Inductive Logic Pro-

gramming (ILP) and theory acquisition/compression. The network is neuro-symbolic

in the sense that it represents predicates for both rules and facts using dense vec-

tors which can be trained using gradient descent towards representations of known

5There are some kinds of reasoning which are not easy to do with a taxonomy (for example,
handling the exception that penguins are birds but don’t fly) but our proposal is not limited to
taxonomic representations.

38

Figure 2-6: Animal Taxonomy. Constants are in red and blue, relations are indicated
with lines and arrows.

predicates (including a fixed set of anonymous invented predicates). The network

implements forward chaining and soft unification. 6

For ILP problems, the network is given a set of “proto-rules" (rules with randomly

initialized predicate parameters) and applies them using forward chaining to the back-

ground facts to produce consequent facts. After 𝐾 steps of forward chaining (𝐾 is a

hyper-parameter) the consequent facts are compared to the labeled target facts and

the rule predicate parameters are trained towards representations of the predicates

which yield all the true target facts and none of the false ones. Representations can

be learned either for the known predicates used in the facts or for auxiliary invented

predicates.

In theory acquisition/compression, the network is given a set of fact observations

and asked to learn a logical theory – a set of core facts and a set of rules – which

together entail the observations. The ability to learn facts is an aspect that has not

been emphasized in many ILP approaches but is present in the Bayesian literature.

For example, when observing that salmon can swim, have fins and have gills, the

model can learn the core fact that salmon are fish even though that is not deducible

directly. By encouraging sparsity in the set of core learned facts with a penalty term

in the loss, the model can be trained to try to minimize the size of the theory it learns.

The remainder of the paper is structured as follows. In the next section we provide

background material and related work. Then we present our model and training

procedure. In Section 4 we present experiments which investigate different capabilities

of the model and demonstrate the efficacy of our approach on a variety of ILP rule

6Soft unification relaxes the requirement that two predicate symbols must be identical for the
rule to be applicable instead favoring a measure of the degree of similarity.

39

induction and domain theory learning datasets. We conclude with a discussion of

limitations and future directions.

2.2.2 Background and Related Work

There is a rich literature on neuro-symbolic induction to which our approach is re-

lated on two main lines: inductive logic programming (ILP) and semantic cognition.

ILP systems try to learn a set of logical rules which can be used to deduce facts of in-

terest while semantic cognition is broadly concerned with how human beings acquire,

represent, and integrate knowledge.

Inductive Logic Programming

In ILP, the goal is to learn (induce) logical rules which can be chained to successfully

answer queries about a target relation, given positive and negative examples of that

relation and some background facts. Logical rules are of the form:

ℎ← 𝑏1, 𝑏2, . . . , 𝑏𝑘 (2.1)

where ℎ is an atom called the head of the rule and 𝑏1, 𝑏2, . . . , 𝑏𝑘 are atoms which

constitute the body. An atom is a positive or negative literal. A literal is a predicate

applied to terms which may, in our case, be either variables or constants. For example

grandfather(𝑋, 𝑌) is a (positive) atom whose predicate is grandfather(·, ·) and

whose arguments (two in this case) are variables 𝑋 and 𝑌 . When the arguments of

the atom are all constants (e.g. parent(Tom, Bill) for constants Tom and Bill) we

call it a ground atom which we also refer to as a fact when it is given as true or its

truth value is inferred from rules. Intuitively, the head of the rule is true if each of

the 𝑏𝑖 in the body are. For example a rule might be:

grandfather(𝑋, 𝑌)← father(𝑋,𝑍), parent(𝑍, 𝑌)

Which is read: 𝑋 is the grandfather of 𝑌 if 𝑋 is the father of 𝑍 AND 𝑍 is the

40

parent of 𝑌 . The head atom holds for any 𝑋 and 𝑌 as long there is some individual

𝑍 for which father(𝑋,𝑍) and parent(𝑍, 𝑌) are both true facts.

Given background facts like father(Bill, Mary) and parent(Mary, Liz), logi-

cal rules can be chained together to prove a goal fact like grandfather(Bill, Liz).

This is an example of a forward chaining deduction because it starts from a set of

facts and unifies (matches) them with the body of a rule to derive the consequences.

It is also possible to do backward chaining in which we start with a goal and work

backwards by unifying it with the head of a rule, recursively trying to prove the body.

Symbolic ILP systems have a rich history dating back decades. A common ap-

proach to inducing rules is called learning from entailment [30], in which hypothesized

rules are combined with background facts and trained to entail the positive and none

of the negative concept examples. The FOIL algorithm [89] is an example of this

approach. Our approach is also of this sort though we use neural networks to learn

the rules. The classic ILP setting has been continually updated to handle richer

knowledge. In [29] for example, they provide several formulations of probabilistic

ILP. We do not consider probabilistic interpretations in our approach, though that is

an interesting avenue for future research.

A related branch of research called Abductive Logic Programming attempts to

learn consistent explanatory facts as well as rules [52]. For example, it might allow

us to induce the fact that eagles are birds from the facts that eagles have wings and

feathers together with the inheritance rule. Our approach for theory acquisition may

be considered an example of this line of work.

Neuro-Symbolic Integration

Symbolic ILP systems do very well at generalizing from just a few examples. This

is because they learn universal rules. They are, however, susceptible to noisy inputs

and even a single bad fact can cause them to fail. On the other hand, neural systems

generally are very robust to noisy input but are sample inefficient and prone to over-

fitting on small amounts of data. Neuro-symbolic systems aim for the best of both

worlds. They can be made robust to noisy inputs while still retaining some of the

41

strong generalization properties typically associated with symbolic systems.

There is a long history of research in neural-symbolic systems from which we

choose just a small set to present here. For a recent survey see [10].

In [106] they introduce Logic Tensor Networks (LTN) and Real Logic whose se-

mantics grounds the terms, atoms and clauses of the language as continuous functions.

They demonstrate that the logic can be implemented using neural networks for the

groundings of the symbols and apply it to solving a database completion problem.

A follow-up paper applies LTN’s to semantic image segmentation [31]. Neither work

considers the problems of rule induction or theory acquisition.

A recent work [72], starts from a probabilistic logic programming language (problog)

and extends it to handle neural predicates which compute probabilities. Like Prolog

and ProbLog, DeepProbLog is a backward chaining approach. It leverages the auto-

matic differentiation system of ProbLog to incorporate neural predicates and trains

with gradient descent. Like Logic Tensor Networks, ProbLog can train neural network

implementations of relations. ProbLog does not do rule induction.

In Neural LP [126], the system can learn chaining-type rules. It uses a neural

controller built on top of TensorLog [26] and is trained to learn rules to compute

a ranked list of entities which satisfy a partially specified query. It differs from

our approach in several respects. It requires a partially specified query. It represents

predicates as TensorLog operators (matrices) whereas we represent them as parameter

embeddings which can be associated with constants and a valuation to represent an

atom. And it is not obvious how it could be applied to learn fact representations.

Sourek et al. [114] uses templates to create grounded networks that depend on

the example. Tran and D’Avila Garcez [118] studies the incorporation and extraction

of knowledge into deep networks. Kazemi and Poole [54] focuses on predicting the

properties of objects.

Our approach is most directly related to two recent neural ILP approaches. In

[36] inference is done through the forward chained application of a set of logical

rules. During learning, a set of all the possible candidate rules is generated according

to a provided template. Parameters are weights associated with pairs of candidate

42

rules. These weights are normalized to lie in [0, 1] and interpreted as probabilities

associated to the rule pairs as possible definitions of the concept. When there are

a large number of rules, this method may suffer scalability issues. In addition it

requires a representation of the truth values of all possible facts and non-facts. By

contrast, [95] construct a function representing a backward-chained proof of the goal

and require only a representation of the true facts. A more conceptual distinction

arises in their parameterizations. In [36] the parameters are weights on rule pairs. In

[95] they start with a set of parameterized rules which, as in our approach, acquire

their meaning as the predicate embeddings of their head and body atoms are trained

through unification with the predicates of the facts. It is not obvious how these

approaches could be applied to theory acquisition requiring fact induction.

In our approach we follow [95] in parameterizing with embeddings but use for-

ward rather than backward chaining so that we don’t have to represent a proof tree

explicitly. Unlike [36], we don’t have to generate all the candidate rules. Instead,

learning is at the level of individual atoms.

Semantic Cognition

Semantic cognition concerns the acquisition and integration of knowledge. Previous

work has modeled semantic cognition as a kind of logical dimensionality reduction

[127, 121], which uses probabilistic generative models that can simultaneously learn

logical rules and a set of core relations that form a theory underlying the observed

data. Like ILP approaches, these models can make deductive inferences through the

application of logical rules. But unlike traditional ILP algorithms, these Bayesian

models are also able to induce facts.

This ability to apply both inductive and deductive reasoning at the level of both

facts and rules provides humans with a rich space of techniques with which to tame

the complexity of everyday experience. These approaches illuminated a promising

direction but were severely challenged by scalability issues. With the success of neural

techniques we believe it is useful to revisit these ideas.

43

Figure 2-7: Overview of the model, a step of forward chaining. Parameters are
represented in green and constitute the trainable embeddings, orange arrows indicate
paths on which gradients flow (in the opposite direction).

2.2.3 The Model

As described above, our focus is on two tasks: rule induction in an ILP setting, and

theory learning (learning both core facts and rules). In this section we describe a

model which can be configured to perform either task and is trained using stochastic

gradient descent. Figure 2-7 illustrates the architecture common to both tasks. A rule

is shown on the bottom left with a head predicate ℎ and two body predicates 𝑏1 and

𝑏2. The model represents the rule as a triple ((𝜃ℎ, 𝑣1, 𝑣2), (𝜃𝑏1, 𝑣3, 𝑣4), (𝜃𝑏2, 𝑣5, 𝑣6)). 𝜃h,

𝜃b1, and 𝜃b2 are parameterized embeddings in R𝑑 corresponding to predicate symbols

ℎ, 𝑏1, 𝑏2; 𝑣𝑖 denote variables 𝑋, 𝑌, 𝑍 which are the subjects and objects that form the

arguments of the atoms.

Facts are represented as quadruples (𝜃𝑝, 𝑠, 𝑜, 𝑣), where 𝜃𝑝 is a parameter vector

shared by all the facts associated with predicate 𝑝; 𝑠 is the subject constant; 𝑜 is the

object constant; and 𝑣 ∈ [0, 1] is a valuation representing the model’s degree of belief

44

in the truth of the atom 𝑝(𝑠, 𝑜). Constants are internally represented as integers

and may be mapped to symbols for interpretation. The set of all current known

facts (either initially given or inferred) is shown in the figure at the upper right. We

maintain a set of all predicates 𝑃 and their associated embeddings which may include

auxiliary predicates that can be used for predicate invention in the learning of rules

and concepts. All predicates are randomly initialized.

To apply the rule to a pair of facts 𝑓1, 𝑓2, where 𝑓𝑖 = (𝜃pi
, 𝑠𝑓𝑖 , 𝑜𝑓𝑖 , 𝑣𝑓𝑖) we first

check for constant matching between the structure of the rules and the constants of

the facts. This is just checking that the variable arguments of the rule body can be as-

signed to the corresponding constants in the facts. If they cannot, then then network

construction stops. For example, as in the figure, the rule grandfather(𝑋, 𝑌) ←

father(𝑋,𝑍), parent(𝑍, 𝑌) can be applied successfully to the pair of facts

father(Bill, Tom), parent(Tom, Mary). However, if applied to father(Bill, Tom),

parent(Anne, Mary), it would not match and would cause network construction to

stop for this rule and fact pair. After a successful constant matching, a set of candi-

date output facts is generated, one for each predicate 𝑝 ∈ 𝑃 . The arguments of the

fact are determined by the bindings of the rule body predicates to the input facts.

The figure illustrates this with arrows flowing from the constants of the input facts

to 𝑆𝑜𝑢𝑡 and 𝑂𝑜𝑢𝑡 forming a consequent fact at the top. The creation of separate facts

for each predicate in 𝑃 is required because of our ignorance of the correct predicate

for the head of the rule.

The valuation for each candidate output fact is determined through soft unifi-

cation by (differentiably) combining the values of the input facts with measures of

the degree of similarity between each input fact predicate and the corresponding rule

body embedding, as well as with the similarity between the rule head embedding

and the candidate fact predicate in 𝑃 . The values of the input facts are multiplied

to implement a soft form of AND. 7 Specifically, we compute the value 𝑣𝑜𝑢𝑡 of an

7There are many other choices which are more theoretically well-grounded, such as the t-norm,
but we found that simple multiplication works the best in practice for this application. Note that
because we restrict ourselves to at most two atoms in the body of a rule, there is no issue with
underflow here.

45

output fact (𝜃𝑝, 𝑠𝑜𝑢𝑡, 𝑜𝑜𝑢𝑡, 𝑣𝑜𝑢𝑡) resulting from the unification between a rule with head

and body predicates 𝜃h, 𝜃b1 , 𝜃b2 and facts 𝑓1 and 𝑓2 with values and corresponding

predicates 𝑣𝑓1 , 𝑣𝑓2 , 𝜃f1 and 𝜃f2 as:

𝑣𝑜𝑢𝑡 = cos(𝜃ℎ, 𝜃𝑝) · cos(𝜃b1 , 𝜃f1) · cos(𝜃b2 , 𝜃f2) · 𝑣𝑓1 · 𝑣𝑓2 (2.2)

If the predicate and arguments of a consequent fact matches one in the set of known

facts, its value is updated with the max between its previous and newly inferred values

(implementing an OR); if it is not, the new fact is appended to the set of known facts.

In this way the valuation is dynamically extended at each step of inference.

We have described how the network is constructed to perform one step of inference

with a single rule. To construct the entire network, we start with an initial set of facts

and perform this inference procedure for each rule and for each pair of facts. If a pair

of facts fails to unify with the rule then that branch of the construction terminates.

The number of steps of inference 𝐾 is a hyper-parameter as is the number of auxiliary

predicates included in the predicate set 𝑃 .

To train the network we use a loss function that depends on the task (we describe

the setup for each task below). The loss gradients are back-propagated to update the

predicate embeddings for the rules and for the facts (the predicates of the facts can

also be fixed, i.e as one-hot vectors). The orange arrows of Figure 2-7 indicate the

paths on which gradients flow (in the opposite direction). The rule and fact predicate

embeddings are the parameters of the network, shown in green.

When a set of background facts is given, as in the case of the ILP tasks, we initialize

the current valuation for the known facts to 1.0 and train the rules and predicates

using a binary-cross-entropy loss to produce the correct values for the positive and

negative target facts.

For theory learning, the aim is to learn a small theory which can recover the

observations and generalize using the logical rules. Thus, we additionally learn a set

of initial core facts that underlie the structure of the observations. In order to do

that, unlike in the ILP setting, we additionally parameterize the valuations for all the

46

facts and initialize them to 0.5 reflecting our initial ignorance of their truth. We train

them towards values which allow the model to faithfully recover the observations. The

model may produce additional facts not in the observations but the loss penalizes only

the implied facts whose predicates and arguments match those of an observed fact

but whose values differ. A regularization term controlled by 𝜆 penalizes the squared

sum of the initial core valuations, encouraging compression. Using the notation 𝑖 ∼ 𝑓

for facts 𝑓 and 𝑖 to indicate that their predicates and arguments match exactly, and

𝑣(𝑓) to denote the value of a fact 𝑓 , the loss can be written:

∑︁
𝑖∈𝐼,𝑓∈𝐹,𝑖∼𝑓

𝐵𝐶𝐸(𝑣(𝑓), 𝑣(𝑖)) + 𝜆
∑︁
𝑖∈𝐼

𝑣(𝑖) (2.3)

where BCE is the standard Binary Cross Entropy.

2.2.4 Experiments

A wide range of previous work has focused on different aspects of logical induction.

Here we test the capabilities of our algorithm in three different settings. First we

test the capability of the algorithm to perform logical rule induction in the set of

tasks covered by [36]. Second, we test our algorithm in a bigger dataset and compare

with [95]. Finally, we test our model in the context of learning domain theories

[127, 121]. The algorithm has to simultaneously learn the atoms of the logical rules,

the representations of the facts of the predicates, and a set of core facts, to do that

the algorithm learns to do deductive and inductive inferences of the facts.

Rule Learning ILP Tasks

We tested the model in the ILP problems from [36].8 The task of an ILP problem is

to learn a target relation given a set of background knowledge facts ℬ and a set of

positive 𝒫 and negative 𝒩 examples of a target relation.

As an example, consider the task of learning the predicate even(𝑋). The back-

8We only skip the Husband and Uncle tasks which require the datasets from [124].

47

ground knowledge is defined using the zero(𝑋) and succ(𝑋, 𝑌) predicates.

ℬ = {zero(0), succ(0, 1), succ(1, 2), ..., succ(9, 10)}

The target positive and negative predicate extensions are:

𝒫 = {target(0), target(2), ..., target(10)}

𝒩 = {target(1), target(9)}

An example solution found by the algorithm is:

target(𝑋)← zero(𝑋)

target(𝑋)← target(𝑌), auxpred(𝑌,𝑋)

auxpred(𝑋, 𝑌)← succ(𝑋,𝑍), succ(𝑍, 𝑌)

Where auxpred acquires the meaning of succ2 which is true of 𝑋, 𝑌 whenever 𝑋+2 =

𝑌 .

Table 2.3 gives a performance comparison to [36]. Since universal logical rules

are perfectly generalizable, and to facilitate comparison, we use the same evaluation

metric: the percentage of runs with different random weight initializations that suc-

cessfully learn rules to solve the task with less than 1𝑒 − 4 mean squared error. To

avoid local minima, we explored adding a decaying normal noise to the embeddings.

This had a small positive effect in some of the tasks, reported results include the

effect of the noise. Details of the problems are given in Appendix A.

We see that our algorithm performs equally or better in most of the tasks. In con-

trast to theirs, search is not made at the level of rules but at the more compositional

level of atoms. In fact, when the embeddings of the dictionary of predicates are fixed

as one-hot vectors, our procedure is very similar to theirs: the parameters that form

the predicates of the rules can be treated as weights that select the correct predicate.

Thus, like in their model, training consists on selecting the weights that make the

48

Table 2.3: ILP percentage of successful runs. |𝐼| is the number of intentional predi-
cates.

Task |𝐼| Recursive 𝜕𝐼𝐿𝑃 Ours

Predecessor 1 No 100 100
Even-Odd 2 Yes 100 100
Even-succ2 2 Yes 48.5 100
Less than 1 Yes 100 100
Fizz 3 Yes 10 10
Buzz 2 Yes 35 70
Member 1 Yes 100 100
Length 2 Yes 92.5 100
Son 2 No 100 100
Grandparent 2 No 96.5 100
Relatedeness 1 No 100 100
Father 1 No 100 100
Undirected Edge 1 No 100 100
Adjacent to Red 2 No 50.5 100
Two Children 2 No 95 0
Graph Colouring 2 Yes 94.5 0
Connectedness 1 Yes 100 100
Cyclic 2 Yes 100 100

embeddings look like the right one-hot vectors and the procedure becomes a symbol

search, except at the level of the atoms instead of the rules. The more general case

where the embeddings are trained and dense, opens the interesting direction to be

explored of studying the learned vector embedding semantic space, as has been done

for standard NLP tasks [76], which can potentially allow for similarity and analogical

reasoning. In our table, we report the result with the trainable embeddings.

It is worth noting the failure of our model in the Graph Colouring and in the

Two Children tasks. A quick exploration suggests that the global optima has a very

sharp neighborhood while the local minima are attractors in most of the space. This

is reminiscent of the Terpret problem [105, 43] and the local minima can only be

avoided when the random initialization is very close to the correct rules.

Notice that since our approach is differentiable, it is not prone to some of the

problems of symbolic ILP, and like in [36], it can handle ambiguity and noise.

49

Table 2.4: Performance on the COUNTRIES dataset

Task Model AUC-PR Rule examples and confidences
NTP NTP-𝜆 Ours

S1 90.83± 15.4 100.00± 0.0 91.15± 15.4 0.85 loc(X,Y) ← loc(X,Z), loc(Z,Y)

S2 87.40± 11.7 94.04± 0.4 86.87± 3.2 0.57 loc(X,Y) ← neighbor(X,Z), loc(Z,Y)

S3 56.68± 17.6 77.26± 17.0 63.08± 28.2
0.59 loc(X,Y)
← neighbor(X,Z), loc(Z,W), loc(W,X)

Countries We are not focused specifically on knowledge base completion but use

the COUNTRIES dataset [14] to evaluate the scalability of our algorithm, comparing

to other neural logical approaches. The dataset contains 272 constants, 2 predicates

and 1158 true facts and is designed to explicitly test the logical rule induction and

reasoning capabilities of link prediction models.

We compare on the 3 tasks described in [95], requiring reasoning steps of increasing

length and difficulty (S1,S2,S3 in table 2.4). We report the Area Under the Precision-

Recall-curve (AUC-PR) where results are comparable to the previous NTP approach.

For completion, we also report 𝑁𝑇𝑃−𝜆 from the same paper which uses an additional

neural link network as an auxiliary loss. Like them, we also show some example rules

and a confidence score by taking the minimum similarity between the atoms of the

rule and their decoded predicates.

To perform the forward chaining during training, at each epoch we randomly

sample from a section of the knowledge graph both the targets and a set of facts to

form the background knowledge. Like the related work, our model can also suffer from

scalability issues, as in forward chaining the size of the facts grows exponentially with

the number of steps. Restricting the number of considered facts through sampling

was sufficient for the task at consideration but this could show problems when scaling

to much bigger datasets, we discuss some future directions in the conclusion.

50

Table 2.5: Theory Learning Results. Succ is the percentage of successful initializations; Acc stands
for the accuracy of the recovered facts; Const is the number of constants.

Taxonomy Family

Preds # Const # Facts # Preds # Const # Facts

Observed Data 4 36 145 6 10 30

Target Theory 4 36 40 4 10 28

% Succ % Acc # Induced Facts % Succ % Acc # Induced Facts

Algorithm 70 99 69 100 96 30.8

Learning Theories

We test the capability of our network to compress a set of observations in the form of

a theory by learning a set of core facts in addition to the logical rules. We take the

two domains considered by Katz et al.[127]: Taxonomy and Kinship.

Taxonomy A taxonomy is a set of observations structured into a tree where down-

stream nodes inherit the properties from the nodes above them in the tree. As shown

in Figure 1, the tree constitutes a theory formed by two logical rules IS(𝑋, 𝑌) ←

IS(𝑋,𝑍), IS(𝑍, 𝑌); HAS(𝑋, 𝑌) ← IS(𝑋,𝑍), HAS(𝑍, 𝑌) capturing inheritance and by

a set of core facts represented with the edges. All observed facts can be recovered by

iterative application of the rules (if salmon are fish, and fish have gills, then salmon

have gills).

From a range of different possible taxonomies we report performance on the bigger

original one from [96]. This data contains 145 facts composed of 4 predicates and 36

constants. The facts can be compressed into a tree structured theory as shown in the

Appendix that contains only 40 core facts.

As shown in Table 2.5, the algorithm is able to learn the theory in 70% of the

runs, achieving 99% accuracy and compressing close to the optimal level (average of

69 compared to the optimal of 40).

51

Kinship We also evaluated performance on the difficult kinship theory, which con-

tains 10 constants and 6 observed predicates mother, father, daughter, wife, husband

(see figure in the Appendix). In this case the compression of the theory consists of

a set of 4 auxiliary core predicates with 28 facts. The algorithm has to learn the

concepts female, male, spouse, child which acquire their meaning through their

extensions and the 6 logical rules that generate the observations:

mother(𝑋, 𝑌)← female(𝑋), child(𝑌,𝑋)

father(𝑋, 𝑌)← male(𝑋), child(𝑌,𝑋)

daughter(𝑋, 𝑌)← female(𝑋), child(𝑋, 𝑌)

son(𝑋, 𝑌)← male(𝑋), child(𝑋, 𝑌)

wife(𝑋, 𝑌)← female(𝑋), child(𝑋, 𝑌)

husband(𝑋, 𝑌)← male(𝑋), child(𝑋, 𝑌)

Table 2.5 shows the statistics for the observed and target compressed data. The

algorithm’s performance is again quantified as the percentage of initializations where

the rules are successfully learned, the accuracy of the recovered data and the number

of learned core facts. The algorithm is able to perform this compression and learns

a set of new predicates that conform the rules, recovering 96% of the data correctly

(the algorithm sometimes deduces that some facts are true when they aren’t because

it can induce incorrect core facts).

2.2.5 Conclusions and Future Work

We have presented a forward chaining inference network which is parameterized in

the embeddings that form its rules and facts. Learning in this model means simul-

taneously learning the right sub-symbolic representations, and the right resulting

symbolic conceptual relations implied through the logical rules; together constituting

a Dual-Factor definition of the concepts [23].

52

We articulated a set of desiderata for models which learn logical theories from ob-

servations which include: compression, rule induction, and the ability to learn without

direct supervision. We showed how our inference procedure satisfies these three con-

ditions in two settings. Our model was able to learn a significant compression for

the taxonomy and kinship datasets proposed by [96] and [127]; learning interpretable

representations not just for the parametrized rules but also for facts – a feature not

emphasized in many traditional ILP solutions – using only the supplied observations

as supervision. These are encouraging results for theory acquisition and point to the

viability of this approach. As demonstrated on the ILP datasets from [14]; [28] and

those from [95], the method also provides an interesting alternative in the ILP setting.

Limitations As in previous work, our model is provided with rules that conform

to templates, ideally this should not be necessary. The network needs to consider the

set of all possible facts when doing core fact induction (which is not necessary for the

rule induction problems), this is not be scalable in practice. Forward chaining grows

exponentially in the number of facts considered at each step, this can also present

a problem when scaling to bigger datasets. From a cognitive science perspective,

the model is still more limited than its Bayesian symbolic counterparts, specifically,

while those models provide graded measures of confidence in their inferences, our

neural logical reasoner does not currently provide meaningful consistent estimates of

uncertainty.

Future Directions One straightforward attempt of learning the structural infor-

mation of the rules provided by the templates (arity and variable order) would be to

encode it by adding dimensions to the embeddings and have the algorithm interpret

them by using independent unifications in the desired way. This would constitute

a slightly more complicated learning task but would maintain the same structure

and mechanism that could be trained through gradient descent. It would also be

interesting to explore richer sampling procedures and the integration of forward with

backward chaining, this could perhaps yield regimes more similar to those of humans

53

and could help scale to larger datasets. We would also like to investigate ways of pro-

viding better estimates of uncertainty – from a full neural probabilistic formulation,

to a heuristic metric based on the number of initializations and on the unification

scores.

54

2.3 AMIGo: Adversarially Motivated Intrinsic Goals

2.3.1 Introduction

The success of Deep Reinforcement Learning (RL) on a wide range of tasks, while

impressive, has so far been mostly confined to scenarios with reasonably dense re-

wards [77, 123], or to those where a perfect model of the environment can be used for

search, such as the game of Go and others [109, 32, 78]. Many real-world environments

offer extremely sparse rewards, if any at all. In such environments, random explo-

ration, which underpins many current RL approaches, is likely to not yield sufficient

reward signal to train an agent, or be very sample inefficient as it requires the agent

to stumble onto novel rewarding states by chance. In contrast, humans are capable

of dealing with rewards that are sparse and lie far in the future. For example, to a

child, the future adult life involving education, work, or marriage provides no useful

reinforcement signal. Instead, children devote much of their time to play, generat-

ing objectives and posing challenges to themselves as a form of intrinsic motivation.

Solving such self-proposed tasks encourages them to explore, experiment, and invent;

sometimes, as in many games and fantasies, without any direct link to reality or to

any source of extrinsic reward. This kind of intrinsic motivation might be a crucial

feature to enable learning in real-world environments [104] .

To address this discrepancy between naïve deep RL exploration strategies and

human capabilities, we present a novel meta-learning method wherein part of the

agent learns to self-propose Adversarially Motivated Intrinsic Goals (AMIGo). In

AMIGo, the agent is decomposed into a goal-generating teacher and a goal-conditioned

student policy. The teacher acts as a constructive adversary to the student: the

teacher is incentivized to propose goals that are not too easy for the student to

achieve, but not impossible either. This results in a natural curriculum of increas-

ingly harder intrinsic goals that challenge the agent and encourage learning about the

dynamics of a given environment.

AMIGo can be viewed as an augmentation of any agent trained with policy

gradient-based methods. Under this view, the original policy network becomes the

55

student policy, which only requires its input-processing component to be adapted

to accept an additional goal specification modality. The teacher policy can then be

seen as a “bolt-on” to the original policy network, entailing that this method is—

to the extent that the aforementioned goal-conditioning augmentation is possible—

architecture-agnostic, and can be used on a variety of RL training model architectures

and training settings.

As advocated in recent work [25, 133, 94, 61], we evaluate AMIGo for procedurally-

generated environments instead of trying to learn to perform a specific task. Procedurally-

generated environments are challenging since agents have to deal with a parameterized

family of tasks, resulting in large observation spaces where memorizing trajectories

is infeasible. Instead, agents have to learn policies that generalize across different

environment layouts and transition dynamics [92, 67, 40, 130]. Concretely, we use

MiniGrid [24], a suite of fast-to-run procedurally-generated environments with a sym-

bolic/discrete (expressed in terms of objects like walls, doors, keys, chests and balls)

observation space which isolates the problem of exploration from that of visual percep-

tion. MiniGrid is a widely recognized challenging benchmark for intrinsic motivation,

which was used in many recent publications such as Goyal et al. 2019, Bougie et

al. 2019, Raileanu and Rocktäschel 2020, Modhe et al. 2020 etc. We evaluate our

method on six different tasks from the MiniGrid domain with varying degrees of diffi-

culties, in which the agent needs to acquire a diverse range of skills in order to succeed.

Furthermore, MiniGrid is complex and competitive baselines such as IMPALA (that

achieve SOTA in other domains like Atari) fail. [91] found that MiniGrid presents

a particular challenge for existing state-of-the-art intrinsic motivation approaches.

Here, AMIGo sets a new state-of-the-art on some of the hardest MiniGrid environ-

ments, being the only method capable of successfully obtaining extrinsic reward on

some of them.

In summary, we make the following contributions: (i) we propose Adversarially

Motivated Intrinsic Goals—an approach for learning from a teacher that generates

increasingly harder goals, (ii) we show, through 114 experiments on 6 challeng-

ing exploration tasks in procedurally generated environments, that agents trained

56

(n,n)(1,1) …

Action

student policy

Softmax

Objects Colors Types Goal

Embed

(x,y) Categorical Goal

goal-generating teacher

Softmax

CNN CNN

Figure 2-8: Training with AMIGo consists of combining two modules: a goal-
generating teacher and a goal-conditioned student policy, whereby the teacher pro-
vides intrinsic goals to supplement the extrinsic goals from the environment. In our
experimental set-up, the teacher is a dimensionality-preserving convolutional network
which, at the beginning of an episode, outputs a location in absolute (𝑥, 𝑦) coordi-
nates. These are provided as a one-hot indicator in an extra channel of the student’s
convolutional neural network, which in turn outputs the agent’s actions.

with AMIGo gradually learn to interact with the environment and solve tasks which

are too difficult for state-of-the-art methods, and (iii) we perform an extensive qual-

itative analysis and ablation study.

2.3.2 Related Work

Our work has connections to many different research areas but due to space con-

straints, we will focus our discussion on the most closely related topics, namely in-

trinsic motivation and curriculum learning.

Intrinsic motivation [83, 84, 101, 4] methods have proven effective for solving

various hard-exploration tasks [8, 85, 19]. One prominent formulation is the use of

novelty, which in its simplest form can be estimated with state visitation counts [116]

and has been extended to high-dimensional state spaces [8, 19, 82]. Other sophisti-

cated versions of curiosity [101] guide the agent to learn about environment dynamics

by encouraging it to take actions that reduce the agent’s uncertainty [115, 19], have

unpredictable consequences [85, 18], or a large impact on the environment [91]. Other

forms of intrinsic motivation include empowerment [56] which encourages control of

57

the environment by the agent, and goal diversity [86] which encourages maximizing

the entropy of the goal distribution. In [62], intrinsic goals are discovered from lan-

guage supervision. The optimal rewards framework presents intrinsic motivation as

a mechanism that goes beyond exploration, placing its origin in an evolutionary con-

text [111], or framing it as a meta-optimization problem of selecting internal agent

goals which optimize the designer’s goals [113]. More recently [132] extend this frame-

work to learn parametric additive intrinsic rewards. Our work differs from all of the

above by formulating intrinsic motivation as a "constructively adversarial" teacher

that proposes increasingly harder goals for the agent.

Curriculum learning [9] is another useful technique for tackling complex tasks

but the curricula are typically handcrafted which can be time consuming. In our

work, the curriculum is generated automatically in an unsupervised fashion. Another

automatic curriculum approach learning was proposed by [102], where an agent con-

stantly searches the space of problems for the next solvable one. However, this method

is not scalable to more complex tasks. [39] generate a curriculum by increasing the

distance of the starting-point to a goal. In contrast to AMIGo, this method assumes

knowledge of the goal location and the ability to reset the agent in any state. A stu-

dent can also self-propose a goal by hindsight experience replay (HER) [3], which has

been demonstrated to be effective in alleviating the sparse reward problem. Recent

extensions have improved goal selection by balancing the difficulty and diversity [37]

of goals. In contrast to our work, in HER, there is no explicit incentive for the agent

to explore beyond its current reach. Since HER is rewarded for all the states it visits,

it is rewarded for easy-to-reach states, even late in the training process. Other related

work has trained a teacher to generate a curriculum of environments that maximize

the learning process of the student [87]. The question of the complementarity be-

tween these and our work is worth pursuing in the future. More similar to our work,

[75] train a teacher to select tasks in which the student is improving the most or in

which the student’s performance is decreasing to avoid forgetting. Note that AMIGo

uses a different objective for training the teacher, which encourages the agent to solve

progressively harder tasks. Similarly, [90] train a goal-conditioned policy and a goal-

58

setter network in a non-adversarial way to propose feasible, valid and diverse goals.

Their feasibility criteria is similar to ours, but requires training an additional dis-

criminator to rank the difficulty of the goals, while our teacher is directly trained to

generate goals with an appropriate level of difficulty.9 Recent surveys of curriculum

generation in the context of RL include [79] and [88].

Closer to our work, [117] use an adversarial framework but require two modules

that independently act and learn in the environment, where one module is encouraged

to propose challenges to the other. This setup can be costly and is restricted to only

proposing goals which have already been reached by the policy. Moreover, it requires

a resettable or reversible environment. In contrast, our method uses a single agent

acting in the environment, and the teacher is less constrained in the space of goals it

can propose.

Also similar to ours, [38] present GoalGAN, a generator that proposes goals with

the appropriate level of difficulty as determined by a learned discriminator. While

their work is similar in spirit with ours, there are several key differences. First,

GoalGAN was created for and tested on locomotion tasks with continuous goals,

whereas our method is designed for discrete action and goal spaces. While not im-

possible, adapting it to our setting is not trivial due to the GAN objective. Second,

the authors do not condition the generator on the observation which is necessary in

procedurally-generated environments that change with each episode. GoalGAN gen-

erates goals from a buffer, but previous goals can be unfeasible or nonsensical for the

current episode. Hence, GoalGAN cannot be easily adapted to procedurally-generated

environments.

A concurrent effort, [131] complements ours, but in the context of continuous con-

trol, by also generating a curriculum of goals which are neither too hard nor too easy

using a measure of epistemic uncertainty based on an ensemble of value functions.

This requires training multiple networks, which can become too computationally ex-

9Unfortunately, both the code for their method—which is far from simple—and for their experi-
mental settings have not been made available by the authors. Therefore we not only cannot run a
fair implementation of their approach against our setting for comparison, we cannot be guaranteed
to successfully reimplement it ourselves as there is no way of reproducing their results in their setting
without the code for the latter.

59

pensive for certain applications.

Finally, our approach is loosely inspired by generative adversarial networks(GANs) [44],

where a generative model is trained to fool a discriminator which is trained to dif-

ferentiate between the generated and the original examples. In contrast with GANs,

AMIGo does not require a discriminator, and is “constructively adversarial”, in that

the goal-generating teacher is incentivized by its objective to propose goals which are

challenging yet feasible for the student.

2.3.3 Adversarially Motivated Intrinsic Goals

AMIGo is composed of two subsystems: a goal-conditioned student policy which

“controls” the agent’s actions in the environment, and a goal-generating teacher (see

Figure 2-8) which guides the student’s training. The teacher proposes goals and is

rewarded only when the student reaches the goal after a certain number of steps. The

student receives reward for reaching the goal proposed by the teacher (discounted by

the number of steps needed to reach the goal). The two components are trained

adversarially in that the student maximizes reward by reaching goals as fast as pos-

sible, while the teacher maximizes reward by proposing goals which the student can

reach, though not too quickly. In addition to this intrinsic reward, both modules are

rewarded when the agent solves the full task.

Training the student

We consider the traditional RL framework of a Markov Decision Process with a state

space 𝑆, a set of actions 𝐴 and a transition function 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) which specifies the

distribution over next states given a current state and action. At each time-step 𝑡,

the agent in state 𝑠𝑡 ∈ 𝑆 takes an action 𝑎𝑡 ∈ 𝐴 by sampling from a goal-conditioned

stochastic student policy 𝜋(𝑎𝑡|𝑠𝑡, 𝑔; 𝜃𝜋) where 𝑔 is a intrinsic goal provided by the

teacher.

The teacher 𝐺(𝑠0; 𝜃𝑔) is a separate policy, operating on a different “granularity”

than the student: it takes as input an initial state and outputs as actions a goal 𝑔 for

60

the student, which stays the same until a new goal is proposed. The teacher proposes

a new goal every time an episode begins or whenever the student reaches the intrinsic

goal. We assume that some goal verification function 𝑣(𝑠, 𝑔) can be specified as an

indicator over whether a goal 𝑔 is achieved in a state 𝑠. We use this to define the

undiscounted intrinsic reward 𝑟𝑔𝑡 as:

𝑟𝑔𝑡 = 𝑣(𝑠𝑡, 𝑔) =

⎧⎪⎨⎪⎩+1 if the state 𝑠𝑡 satisfies the goal 𝑔

0 otherwise

At each time step 𝑡, the student receives a reward 𝑟𝑡 = 𝑟𝑔𝑡 +𝑟𝑒𝑡 , which is the sum of the

intrinsic reward 𝑟𝑔𝑡 provided by the teacher and the extrinsic reward 𝑟𝑒𝑡 provided by

the environment. The student, represented as a neural network with parameters 𝜃𝜋,

is trained to maximize the discounted expected reward 𝑅𝑡 = E
[︀∑︀𝐻

𝑘=0 𝛾
𝑘𝑟𝑡+𝑘

]︀
where

𝛾 ∈ [0, 1) is the discount factor. We consider a finite time horizon 𝐻 as provided by

the environment.

Training the Teacher

The teacher 𝐺(𝑠0; 𝜃𝑔), represented as a neural network with parameters 𝜃𝑔, is trained

to maximise its expected reward. The teacher’s reward 𝑟𝑇 is a function of the stu-

dent’s performance on the proposed goal and is computed every time this goal is

reached (or at the end of an episode). As a result, the teacher operates at a different

temporal frequency, and thus its rewards are not discounted according to the number

of steps taken by the agent. To generate an automatic curriculum for the student,

we positively reward the teacher if the student achieves the goal with suitable effort,

but penalize it if the student either cannot achieve the goal, or can do so too easily.

There are different options for measuring the performance of the student here, but

for simplicity we will use the number of steps 𝑡+ it takes the student to reach an in-

trinsic goal since the intrinsic goal was set (with 𝑡+ = 0 if the student does not reach

the goal before the episode ends). We define a threshold 𝑡* such that the teacher is

positively rewarded by 𝑟𝑇 when the student takes more steps than the threshold to

61

reach the set goal, and negatively if it takes fewer steps or never reaches the goal

before the episode ends. We thus define the teacher reward as follows, where 𝛼 and

𝛽 are hyperparameters (see Section 2.3.4 for implementation details) specifying the

weight of positive and negative teacher reward:

𝑟𝑇 =

⎧⎪⎨⎪⎩+𝛼 if 𝑡+ ≥ 𝑡*

−𝛽 if 𝑡+ < 𝑡*

One can try to calibrate a fixed target threshold 𝑡* to force the teacher to propose

increasingly more challenging goals as the student improves. Initial experiments with

a fixed threshold indicated that the loss function was sufficient to induce harder goals

and curriculum learning. However, this threshold is different across environments and

has to be carefully fixed (depending on the size and complexity of the environment).

A more adaptive—albeit heuristic—approach we adopt is to linearly increase the

threshold 𝑡* after a fixed number of times in which the student successfully reaches the

intrinsic goals. Specifically, the threshold 𝑡* is increased by 1 whenever the student

successfully reaches an intrinsic goal in more than 𝑡* steps for ten times in a row.

This increase in the target threshold provides an additional metric to visualize the

improvement of the student through the “difficulty” of its goals (see Figure 2-10).

Types of Goals

We can conceive of variants of AMIGo whereby goals are provided in the form of

linguistic instructions, images, etc. To prove the concept, in this framework, a goal

is formally defined as a change in the observation on a tile, as specified by an (𝑥, 𝑦)

coordinate. The agent must modify the tile before the end of an episode (e.g. by

moving to it, or causing the object in it to move or change state). The verification

function 𝑣 is then trivially the indicator function of whether the cell state is different

from its initial state at the beginning of the episode. Proposing (𝑥, 𝑦) coordinates

as goals can present a diverse set of ways for an agent to achieve the goal, as the

coordinates can not only be affected by reaching them but also by modifying what

62

is on them. This includes picking up keys, opening doors, and dropping objects

onto empty tiles. In some cases in our setting, moving over a square is not the

simplest thing possible (e.g. when an obstacle can be removed or a door can be

opened). Similarly, in other tasks and environments it could be easier to affect a cell

by throwing something at it, rather than by reaching it. Likewise, simply navigating

to a set of coordinates (say, the corner of a locked room) might require solving several

non-trivial sub-problems (e.g. identifying the right key, going to it, then going to the

door, unlocking it, and finally going to the target location). We give some examples

of goals proposed by the teacher, alongside the progression in their difficulty as the

student improves, in Figure 2-10.

Auxiliary Teacher Losses

To complement our main form of intrinsic reward, we explore a few other criteria,

including goal diversity, extrinsic reward, environment change and novelty. We report,

in our experiments of Section 2.3.4, the results for AMIGo using these auxiliary losses.

We present, in Appendix B.4, an ablation study of the effect of these losses, alongside

some alternatives to the reward structure for the teacher network.

Diverse Goals. One desirable property is goal diversity [86, 91]. In our im-

plementation of AMIGo in the experiments of Section 2.3.4, we used entropy reg-

ularization to train the teacher and student, which encourages such diversity. This

regularization, along with the scheduling of the threshold, helps the teacher avoid

getting stuck in local minima. Additionally, we considered rewarding the teacher for

proposing novel goals similar to count-based exploration methods [8, 82] with the

difference that in our case the counts are for goals instead of states, based on the

number of times the teacher presents a type of goal to the student. This did not

improve performance and is not part of our model for the rest of the paper.

Episode Boundary Awareness. When playing in a procedurally-generated

environment, humans will notice the factors of variation and exploit them. In episodic

training, RL agents and algorithms are informed if a particular state was an episode

end. To bias AMIGo towards learning the factors of variation in an environment,

63

while not giving it any domain knowledge or any privileged information which other

comparable intrinsic motivation systems and RL agents would not have access to, we

positively reward the teacher if the content of the goal location it proposes changes

at an episode boundary, regardless of whether this change was due to the agent.

Thus, the teacher is rewarded for selecting goals where the object type changes if the

episode changes (for example a door becomes a wall, or a key becomes an empty tile

due to the new episode configuration). While this heuristic is quite general and could

be effective for many tasks as it encourages agents to note environmental factors of

variation, we note it might not be useful in all possible domains and as such is not

an essential part of AMIGo. A comparison an extension of this loss other intrinsic

motivation methods would interesting, but is not straightforward and is left for future

research, we just note that this auxiliary loss on its own is not able to solve even the

medium difficulty environments.

Extrinsic Goals. To help transition into the extrinsic task and avoid local min-

ima, we reward both the teacher and the student with environment reward whenever

the student reaches the extrinsic goal, even if this does not coincide with the intrinsic

goal set by the teacher. This avoids the degenerate case where the student becomes

good at satisfying the extrinsic goal, and the teacher is forced to encourage it “away”

from it.

2.3.4 Experiments

We follow [91] and evaluate our models on several challenging procedurally-generated

environments from MiniGrid [24]. This environment provides a good testbed for

exploration in RL since the observations are symbolic rather than high-dimensional,

which helps to disentangle the problem of exploration from that of visual understand-

ing. We compare AMIGo with state-of-the-art methods that use various forms of

exploration bonuses. We use TorchBeast [60], a PyTorch platform for RL research

based on IMPALA [35] for fast, asynchronous parallel training. The code for these

experiments is included in the supplementary materials, and has also been released

under "https://anonymous" to facilitate reproduction of our method and its use in

64

other projects.

(a) Example episodes in KCharder. (b) Example episodes in OMhard.

Figure 2-9: Examples of MiniGrid environments. KCharder requires finding the
key that can unlock a door which blocks the room where the goal is (the blue ball).
OMhard requires a sequence of correct steps usually involving opening a door, open-
ing a chest to find a key of the correct color, picking-up the key to open the door,
and opening the door to reach the goal. The configuration and colors of the objects
change from one episode to another. To our knowledge, AMIGo is the only algorithm
that can solve these tasks. For other examples, see the MiniGrid repository.

Environments

We evaluate AMIGo on the following MiniGrid environments: KeyCorrS3R3 (KCmedium),

ObstrMaze1Dl (OMmedium), ObstrMaze2Dlhb (OMmedhard), KeyCorrS4R3 (KChard),

KeyCorrS5R3 (KCharder), and ObstrMaze1Q (OMhard). The agent receives a full

observation of the MiniGrid environment. The layout of the environment changes at

every episode as it is procedurally-generated. Examples of these tasks can be found in

Figure 2-9. Each environment is a grid of size 𝑁 ×𝑁 (𝑁 being environment-specific)

where each tile contains at most one of the following colored objects: wall, door, key,

ball, chest. An object in each episode is selected as an extrinsic goal. If the agent

reaches the extrinsic goal, or a maximum number of time-steps is reached, the envi-

ronment is reset. The agent can take the following actions: turn left, turn right, move

forward, pick up an object, drop an object, or toggle (open doors or interact with

objects). Each tile is encoded using three integer values: the object, the color, and

a type or flag indicating whether doors are open or closed. While policies could be

learned from pixel observation alone, we will see below that the exploration problem

is sufficiently complex with these semantic layers, owing to the procedurally generated

65

https://github.com/maximecb/gym-minigrid

nature of the tasks. The observations are transformed before being fed to agents by

embedding each tile of the observed frame into a single representation encoding the

object type, color, and type/flag.

The extrinsic reward provided by each environment for reaching the extrinsic goal

in 𝑡 steps is 𝑟𝑒𝑡 = 1− (.9 · 𝑡)/𝑡max, where 𝑡max is the maximum episode length (which

is intrinsic to each environment and set by the MiniGrid designers), if the extrinsic

goal is reached at 𝑡, and 0 otherwise. Episodes end when the goal is reached, and

thus the scale of the positive reward encourages agents to reach the goal as quickly

as possible.

AMIGo Implementation

The teacher is a dimensionality-preserving network of four convolutional layers inter-

leaved with exponential linear units. Similarly, the student consists of four convolu-

tional layers interleaved with exponential linear units followed by two linear layers

with rectified linear units. Both the student and the teacher are trained using the

TorchBeast [60] implementation of IMPALA [35], a distributed actor-critic algorithm.

But while the teacher proposes goals only at the beginning of an episode or when the

student reaches a goal, the student produces an action and gets a reward at every step.

To replicate the structure of reward for reaching extrinsic goals, intrinsic reward for

the student is discounted to 𝑟𝑔𝑡 = 1− (.9 · 𝑡)/𝑡max when 𝑣(𝑠𝑡, 𝑔) = 1, and 0 otherwise.

The hyperparameters for the reward for the teacher 𝑟𝑇 are grid searched, and optimal

values are found at 𝛼 = .7 and 𝛽 = .3 (see Appendix B.2 for full hyperparameter

search details).

Baselines and Evaluation

We use IMPALA [35] without intrinsic motivation as a standard deep RL baseline.

We then compare AMIGo to a series of methods that use intrinsic motivation to sup-

plement extrinsic reward, as listed here. Count is Count-Based Exploration from [8],

which computes state visitation counts and gives higher rewards to less visited states.

RND is Random Network Distillation Exploration by [19] which uses a random net-

66

work to compute a prediction error used as a bonus to reward novel states; ICM

is Intrinsic Curiosity Module from [85], which trains forward and inverse models to

learn a latent representation used to compare the predicted and actual next states.

The Euclidean distance between the representations of predicted and actual states (as

measured in the latent space) is used as intrinsic reward. RIDE, from [91], defines

the intrinsic reward as the (magnitude of the) change between two consecutive state

representations.

We have noted from the literature that some of these baselines were designed

for partially observable environments [91, 85] so they might benefit from observ-

ing an agent-centric partial view of the environment rather than a full absolute

view [128]. Despite our environment being fully observable, for the strongest com-

parison with AMIGo we ran the baselines in each of the following four modes: full

observation of the environment for both the intrinsic reward module and the policy

network, full observation for the intrinsic reward and partial observation for the policy,

partial view for the intrinsic reward and full view for the policy, and partial view for

both. We use an LSTM for the student policy network when it is provided with par-

tial observations and a feed-forward network when provided with full observations. In

Section 2.3.4, we report the best result (across all four modes) for each baseline and en-

vironment pair, with a full breakdown of the results in Appendix B.1. This, alongside

a comprehensive hyperparameter search, ensures that AMIGo is compared against

the baselines trained under their individually best-performing training arrangement.

We also compare AMIGo to the authors’ implementation10 of Asymmetric Self-Play

(ASP) [117]. In their reversible mode two policies are trained adversarially: Alice

starts from a start-point and tries to reach goals, while Bob is tasked to travel in

reverse from the goal to the start-point.

We ran each experiment with five different seeds, and report in Section 2.3.4

the means and standard deviations. The full hyperparameter sweep for AMIGo

and all baselines is reported in Appendix B.2, alongside best hyperparameters across

experiments.

10https://github.com/tesatory/hsp

67

https://github.com/tesatory/hsp

Results and Discussion

We summarize the main results of our experiments in Table 2.6. As discussed in

Section 2.3.4, the reported result for each baseline and each environment is that of

the best performing configuration for the policy and intrinsic motivation system for

that environment, as reported in Tables B.1–B.4 of Appendix B.1. This aggregation of

114 experiments (not counting the number of times experiments were run for different

seeds) ensures that each baseline is given the opportunity to perform in its best setting,

in order to fairly benchmark the performance of AMIGo.

Table 2.6: Comparison of Mean Extrinsic Reward at the end of training (averaging
over a batch of episodes as in IMPALA). Each entry shows the result of the best
observation configuration, for each baseline, from Tables B.1–B.4 of Appendix B.1.

Medium Difficulty Environments Hard Environments

Model KCmedium OMmedium OMmedhard KChard KCharder OMhard

AMIGo .93 ± .00 .92 ± .00 .83 ± .05 .54 ± .45 .44 ± .44 .17 ± .34

IMPALA .00± .00 .00± .00 .00± .00 .00± .00 .00± .00 .00± .00
RND .89± .00 .94± .00 .88± .03 .23± .40 .00± .00 .00± .00
RIDE .90± .00 .94± .00 .86± .06 .19± .37 .00± .00 .00± .00
Count .90± .00 .04± .04 .00± .00 .00± .00 .00± .00 .00± .00
ICM .42± .21 .19± .19 .16± .32 .00± .00 .00± .00 .00± .00
ASP .00± .00 .00± .00 .00± .00 .00± .00 .00± .00 .00± .00

IMPALA and Asymmetric Self-Play are unable to pass any of these medium or

hard environments. ICM and Count struggle on the “easier” medium environments,

and fail to obtain any reward from the hard ones. Only RND and RIDE perform

competitively on the medium environments, but struggle to obtain any reward on the

harder environments.

Our results demonstrate that AMIGo establishes a new state of the art in harder

exploration problems in MiniGrid. On environments with medium difficulty such as

KCmedium, OMmedium, and OMmedhard, AMIGo performs comparably to

other state-of-the-art intrinsic motivation methods. AMIGo is often able to success-

fully reach the extrinsic goal even on the hardest tasks. To showcase results and

sample complexity, we illustrate and discuss how mean extrinsic reward changes dur-

ing training in Appendix B.3. To analyze which components of the teacher loss were

68

Phase 1 Phase 4 Phase 5Phase
 3

Phase
 2

Figure 2-10: Examples of a curriculum of goals proposed for different episodes of a
particular learning trajectory on OMhard. The red triangle is the agent, the red
square is the goal proposed by the teacher, and the blue ball is the extrinsic goal.
The top panel shows the threshold target difficulty, 𝑡* of the goals proposed by the
teacher. The teacher first proposes very easy nearby goals, then it learns to propose
goals that involve traversing rooms and opening doors, while in the third phase the
teacher proposes goals which involve removing obstacles and interacting with objects.

important, we present, in Appendix B.4, an ablation study over the components pre-

sented in Section 2.3.3. Qualitatively, the learning trajectories of AMIGo display

interesting and partially adversarial dynamics. These often involve periods in which

both modules cooperate as the student becomes able to reach the proposed goals,

followed by others in which the student becomes too good, forcing a drop in the

teacher reward, in turn forcing the teacher to increase the difficulty of the proposed

goals and forcing the student to further explore. In Appendix B.5, we provide a more

thorough qualitative analysis of AMIGo, wherein we describe the different phases of

evolution in the difficulty of the intrinsic goals proposed by the teacher, as exemplified

in Figure 2-10. Further goal examples are shown in Figure B-3 of Appendix B.6.

69

2.3.5 Conclusion

In this work, we propose AMIGo, a meta-learning framework for generating a nat-

ural curriculum of goals that help train an agent as a form of intrinsic reward, to

supplement extrinsic reward (or replace it if it is not available). This is achieved

by having a goal generator as a teacher that acts as a constructive adversary, and

a policy that acts as a student conditioning on those goals to maximize an intrinsic

reward. The teacher is rewarded to propose goals that are challenging but not impos-

sible. We demonstrate that AMIGo surpasses state-of-the-art intrinsic motivation

methods in challenging procedurally-generated tasks in a comprehensive comparison

against multiple competitive baselines, in a series of 114 experiments across 6 tasks.

Crucially, it is the only intrinsic motivation method which allows agents to obtain

any reward on some of the harder tasks, where non-intrinsic RL also fails.

The key contribution of this paper is a model-agnostic framework for improving

the sample complexity and efficacy of RL algorithms in solving the exploration prob-

lems they face. In our experiments, the choice of goal type imposed certain constraints

on the nature of the observation, in that both the teacher and student need to fully

observe the environment, due to the goals being provided as absolute coordinates.

Technically, this method could also be applied to partially observed environments

where part of the full observation is uncertain or occluded (e.g. “fog of war” in Star-

Craft), as the only requirement is that absolute coordinates can be provided and acted

on. However, this is not a fundamental requirement, and in future work we would

wish to investigate the cases where the teacher could provide more abstract goals,

perhaps in the form of language instructions which could directly specify sequences

of subgoals. Other extensions to this work worth investigating are its applicability

to continuous control domains, visually rich domains, or more complex procedurally

generated environments such as [25]. Until then, we are confident we have proved the

concept in a meaningful way, which other researchers will already be able to easily

adapt to their model and RL algorithm of choice, in their domain of choice.

70

Acknowledgements

This chapter was adapted from the following papers where the dissertation author

was a primary author:

• Section 2.1: "Learning to Learn Visual Object Categories by Integrating Deep

Learning with Hierarchical Bayes" [20] (CogSci 2017, by Andres Campero, An-

drew Francl, and Joshua B. Tenenbaum)

• Section 2.2: "Logical Rule Induction and Theory Learning Using Neural Theo-

rem Proving" [21] (2018, by Andres Campero, Aldo Pareja, Tim Klinger, Joshua

B. Tenenbaum, and Sebastian Riedel)

• Section 2.3: "Learning with amigo: Adversarially motivated intrinsic goals" [22]

(ICLR 2021, by Andres Campero, Roberta Raileanu, Heinrich Kuttler, Joshua

B. Tenenbaum, Tim Rocktaschel and Edward Grefenstettete).

71

72

Chapter 3

AI Research as Collective Intelligence:

A Taxonomy

3.1 Introduction

How is Artificial Intelligence research currently organized? How could it be organized

better? How does it evolve and how can one track and analyze its progress? How

does the evolution of models and tasks interact with the organization of the research

community? Can we build frameworks that improve and enhance this organization?

These are the type of questions we attempt to tackle in this chapter. In order to

do so we take stance at both the high-level and the implementation level [73] :

At the high level we advocate a Collective Intelligence perspective as a framework

to think about the complex system of researchers, computer code, and all the incentive

structures, coordination mechanisms, tools, and other interfaces which modulate the

interaction between them.

At the implementation level, we build and present a taxonomy comprised of three

main components. First a taxonomy of models classified into fields and sub-fields, as

well as a chronology with the most important causal links describing the evolution

of AI through successors and predecessors. Second, a taxonomy of tasks, sub-tasks

and datasets. Third, as a dataset that could help provide a link between models

and datasets, for each paper accepted at the conference NeurIPS 2020, we manually

73

classify its models, tasks, and datasets in a comprehensive manner. All The taxonomy

is available a the Open Science Framework and is also available through an interactive

viewer developped at Stateoftheart.ai, displayed here in Figure 3-1

Figure 3-1: Stateoftheart.ai platform, an interactive viewer displaying the taxon-
omy of Models

Taxonomies are widely used across sciences and in daily life. In the context of AI

Research they have been used to classify and organize models, tasks, applications and

others (see Appendix C for a collection of taxonomies used in the literature). Fur-

thermore, taxonomies have themselves been objects of analysis, learning and inference

in diverse machine learning paradigms; including symbolic, Bayesian and neural ap-

proaches proposed [96, 49, 53]. Taxonomies have also been considered important

cognitive elements for knowledge representation [103], theory learning [121] and se-

mantic acquisition going back at least to [27]. Some of the work presented in this

Thesis on Neuro-Symbolic reasoning, which combines deep learning with symbolic

structures, has used taxonomies for the problem of concept learning [20, 21].

More specifically, there are many potential practical benefits of a principled gen-

eral taxonomy for Artificial Intelligence and Machine Learning (i.e. for education,

for popularization, for easing literature reviews, for facilitating navigation, etc). Nev-

ertheless, here we focus on looking for a deeper way of classifying tasks and models

from a research standpoint [97]. As argued in [71], a good taxonomy can help research

74

Stateoftheart.ai

by pointing to new frontiers and signaling open questions, by suggesting next steps

for research, by making analogies between different branches, by clarifying different

alternatives facilitating component reuse, and others. Thus, we are inspired by the

taxonomy of [71] which aims to "contribute to a more systematic theoretical and

empirical foundation for understanding organizational process", in this case in the

context of AI Research..

In recent years AI Research has been developing very rapidly. During the last

5 years in particular, in order to track different aspects of this accelerated process,

multiple independent surveys, tutorials, websites, repositories are constantly being

created and updated. Most research papers devote a section to do a review of the

important related references. We aim to create a centralized public taxonomy to serve

the role of a library of libraries as a living survey of the field. Next are some guiding

considerations.

The MIT Process Handbook for Organizing Business Knowledge We are

heavily inspired and guided by the Process Handbook [71] which developed an ex-

tensive, publicly available on-line knowledge base of business processes, as well as an

interface to maintain, access, and navigate that knowledge. One of the key theoreti-

cal concepts involved in the handbook is the notion of specialization which breaks a

process into different types (as opposed to decomposing it only into its parts). We

adopt this as a guiding principle in the creation of the taxonomy of tasks. 1

The Collective Intelligence Perspective We take the perspective of the AI re-

search community as a collective intelligence system composed of human researchers,

computer algorithms, and all the interfaces, incentive structures and coordination

mechanisms that tie them together. This system can constitute a powerful "Super-

mind" [70], with the potential of achieving a new form of superintelligence.

1A second important element coming from coordination theory is the notion of dependencies
between activities and the coordination processes that manage them. We attempted to take a first
step to expose and classify the variables (dependencies) that allow the compatibility (coordination
between models and tasks/datasets, while you can see some partial progress for the case of Computer
Vision here https://github.com/stateoftheartai/sotaai, this endeavor was not continued.

75

https://github.com/stateoftheartai/sotaai

Evolution of Knowledge and Science of Science Science can be described as

a complex network involving scholars, projects, papers and ideas. In recent years,

with the growth of digital data, the discipline that studies the evolution and progress

of science has converged into a field called Science of Science [41]. Several research

investigations have included the study and modelling of the spread of ideas [12],

the emergence and development of scientific fields [11], the evolutionary dynamics

of cultural change [57], and the topological transition of collaboration networks[13],

among others. The work in [5] studies the evolution of the AI ecosystem from a

venture and funding perspective. A related work to ours [6], generates visualizations

of existing datasets of methods and Machine Learning sub-fields through node-link

representations. This work is based on the data presented at paperswithcode.com

which contains leaderboards of model’s performance in various datasets and is a useful

resource for the community to know the state-of-the-art across the field. Recent work

also uses this resource to present a methodology to study certain dynamics of the AI

research community based on co-authorships [74].

These approaches have permitted various research questions which range from

specific, such as the work of MIT historian of science David Kaiser, who studies

how US physicists grappled with specialization and the (re-)organization of their

scientific journals in the face of runaway growth in numbers of new physicists and

new articles per year [51]; to general, such as the work of Jurgen Renn [93] who takes

a general theoretical perspective to study the co-evolution of epistemic communities

and of systems of knowledge. Renn introduces the notion of an Epistemic Network,

composed of social, semantic and artifact aspects.

The taxonomy, in particular the evolution of models could serve as an interesting

database to ask some of these questions. For example, it can help make analogies by

comparing the evolution of different subareas (such as the raise of unsupervised learn-

ing in both Natural Language Processing, and more recently, in Computer Vision; or

such as interesting parallels between the Teacher-Student paradigms in the sub-fields

of intrinsic motivation in RL and semi-supervised learning in Computer Vision).

In this chapter we present a new dataset consisting of taxonomy of models, tasks

76

paperswithcode.com

and datasets. The taxonomy is really a meta-dataset as it compiles many existing

sub-taxonomies across surveys, papers and other sources. The taxonomy intends

to contribute to understand how research builds up, the lack thereof is a known

problem for academia and for the progress of research more generally [80, 81] and can

help understand the structure of the research communities. In the next section we

discuss some desirable properties for a taxonomy and a few theoretical considerations.

Section 3.3 presents the taxonomy. Section 3.4 discusses some current uses. Section

3.5 discusses some open future directions for improvement. The last section concludes.

3.2 Desirable Properties and Theoretical Consider-

ations

Before introducing the taxonomy, we first describe a set of desirable properties and

then some points of theoretical consideration.

3.2.1 Desirable Properties

Compatibility with the current practice of AI research We would like the

taxonomy to reflect the current organization of the AI community and the research

practice. This is similar to the "Intuitively appealing" desirable criteria from the

Process Handbook [71]. To help with this we compiled a list of specific existing

taxonomies found throughout the literature (see Appendix C).

Usefulness for human researchers The main target of the taxonomy is the re-

search community, and it should be useful. Among others it could be helpful for doing

literature reviews, to understand academic tendencies that can guide the choice of

research topics, to do comparisons among the evolution of different areas, to find

similar models, tasks and datasets, and to learn about fields outside of one’s own

field.

77

Support for automatic inference and reasoning through specialization and

inheritance We would like to exploit some of the components of the taxonomy to

eventually have the potential to afford for automatic or semi-automatic inference and

reasoning. In particular, we would like to create a structure of specialization of tasks

and datasets which would allow for inheritance, where specialized tasks automatically

inherit properties of the parents. Ideally these properties would additionally guide

the specification of the compatibility between models and tasks.

Comprehensiveness While not exhaustive, we would like the taxonomy to be

broad and comprehensive of many of the different existing sub-fields that are generally

identified with Artificial Intelligence and Machine Learning.

3.2.2 Theoretical Considerations and Limitations

Some points of consideration are in place.

Broader Cognitive Taxonomies It is important to note that a taxonomy of ex-

isting AI models and tasks covers only a subset of a broader taxonomy of Intelligence.

For example, [70] recently proposed that the basic building blocks of intelligent be-

havior are Decide what actions to take, Create options for action, Sense the world,

Remember the past and Learn to do all these things better. It would be good to frame

and build a taxonomy that can afford a future expansion or an integration with such

a broader taxonomy of intelligence.

Parts of Models and the Machine Learning pipeline Besides specialization

and inheritance, a second important element of the Process Handbook is its organiza-

tion of processes into parts and sub-parts [71]. As an example, identifying customers,

manufacturing or obtaining products, delivering orders, and receiving payments are

all parts of the process "Sell a product", not specializations. In our context, the

analogous would be divide machine learning processes into its parts or components.

For example a model can be partitioned according to its architecture, its learning

78

mechanism, its inference algorithm, its application domain, the type of representa-

tion it learns, etc... Similarly, the machine learning pipeline usually is composed of a

few main parts such as: data preprocessing, inference, loss computation for learning.

In this work we are not going very deeply into this categorization, but it could be

interesting future work.

Unclear boundaries and pragmatic criteria. The distinction between different

"areas" and "sub-areas" within AI is in many cases far from sharp. The factors that

draw the boundaries between different research communities are often very diverse. To

name a few, they can be based on the application domain, on the historical evolution

of an architecture, on how the human mind is perceived, or even on sociological

and cultural reasons. Thus, in developing the taxonomy, we drew upon informal

knowledge based on how previous surveys, conferences and papers categorize their

respective sub-fields, trying to reflect the organization of research itself. For example,

the distinction between what constitutes a task and a dataset is itself blurry; even

the distinction of Tasks and Models can be blurred (a model can be thought of as a

particular specialization of a task, or a "way" of doing a task), and there are several

fields that could be described both as tasks or as particular forms of doing algorithms.

Moreover the boundaries of tasks and models are some times conceptual, some times

empirical, and sometimes both. To be comprehensive we have to use highly pragmatic

and subjective, although informed criteria.

3.3 The Taxonomy

3.3.1 Overview

The taxonomy is divided into two types of components: Tasks and Datasets on the

one hand, and Models on the other. The taxonomy surveys all the field and was

compiled manually based on surveys, conference tracks, tutorial and other sources.

The taxonomy of tasks is constructed based on the principle of specialization with

an indefinite number of levels that varies for each branch, the leafs of the taxonomy

79

are the Datasets which can be thought of as the ultimate specialization of a task.

On the other hand, the space of existing Models is multi-dimensional and the con-

ceptual partitions within each sub-field follow their own idiosyncrasies. While these

taxonomies are intended to be comprehensive, we naturally we have to focus on the

most important cannot avoid some degree of subjectivity. To complement this, we

additionally present an exhaustive classification of all Models, Tasks and Datasets for

every paper accepted to the Neurips2020 Conference. For a general summary of the

taxonomy see Table 3.1.

Table 3.1: Summary Statistics of the Taxonomy

Models Tasks and Datasets NeurIPS2020

2545 Models 3545 Datasets 1898 Papers
6 Areas 6 Areas 6 Model Areas

55 Subareas 867 Task Nodes 49 Subareas
184 Conceptual Categorizations 2057 Datasets

5831 Parent-Child Model Relations 493 Papers with no Dataset
+ "Classical" area + "Classical" area

3.3.2 Models

The space of existing Models is very multi-dimensional and the conceptual partitions

within each sub-field follow their own idiosyncrasies. For this reason it would be hard

to conceptually organize the existing methods in a unique standardized way. We de-

cided to use fixed hierarchy composed of areas, subareas and sub-sequential further

conceptual categorizations. The dimensions that guide the conceptual categorizations

in the research communities vary across areas. For some areas like Natural Language

Processing (NLP) or Computer Vision (CV), the properties of the Architecture of the

models is crucial: whether it is a Recurrent Neural Network, a Convolutional Neural

Network, a Transformer, etc... In contrast, the subcommunities within Reinforcement

Learning (RL) are organized more based on the scope and method: Intrinsic Moti-

vation, Imitation Learning, Hierarchical Reinforcement Learning, etc... The model

80

Table 3.2: Model Taxonomy. Areas and Subareas

Neuro-Symbolic Reasoning Computer Vision

Graph Neural Networks Unsupervised and Self-Supervised Learning
Logical Reasoning Autoencoders
Visual Reasoning Generative Adversarial Networks

Neural Program Synthesis Few-Shot Learning
Program Synthesis (Search) Semi-Supervised Learning
Neural Program Induction Convolutional Neural Network Architectures

Knowledge Graph Embeddings 3D
Code2Text Video

Object Detection
Visual question Answering

Image Segmentation
Domain Adaptation

Natural Language Processing Reinforcement Learning Robotics

Attention and Transformers Model-based RL Systems
Embeddings Policy Gradient Algorithms Control
RL for NLP Value-based Algorithms Manipulation

Semantic Parsing Multi-Agent Navigation
Dialogue Continual Learning Perception

Recurrent Neural Networks Meta-Learning in RL Planning
Imitation Learning
Intrinsic Motivation

Hierarchical RL

Miscellaneous Classical

ML for Science Deep Learning
Causality Machine Learning
AutoML Statistics

Recommender Systems Optimization
Ethics, Privacy, and Fairness Computer Science

Computational Audition Game Theory
Artificial Life

Evolutionary Algorithms
Climate Change

81

organization in other areas like Robotics and Computer Vision are often divided de-

pending on the Task for which they are used, for example for parsing Videos, or for

Image Segmentation, or for Image Classification. See Table3.2 for a list of all areas

and subareas.

Models Causal Evolution We also trace the historical evolution of some of the

most important models. This is something that all research articles do, normally in

a section called Literature Review. We are not aware of any other dataset like this

one, which unlike a citation graph, was compiled manually by exposing the casual

links that lead from one model to another (See figure 3-2 for an example).

Figure 3-2: Evolution of models for Intrinsic Motivation within RL

3.3.3 Tasks and Datasets

The current practice of AI and Machine Learning heavily relies on the performance

of different models on various datasets (although richer forms of meta-learning and

continual learning in virtual worlds are slowly becoming more common). This allows

for a structured organization of the space of tasks which affords specialization.

The taxonomy we built contains a nested structure of subtasks and subsubtasks

with an indefinite number of levels, which varies from branch to branch. Datasets are

82

the ultimate specializations of tasks and constitute the leafs of the taxonomy. See

figures 3-3 and 3-4 for example views of the general taxonomy and the Neuro-Symbolic

field respectively.

Figure 3-3: View of the taxonomy of Tasks, Subtasks and Datasets (in green). Notice
that any given level of the taxonomy can contain both datasets and tasks depending
on whether it has further subspecializations

The taxonomy is constructed to afford specialization, and therefore inheritance.

This with the intention of enabling the construction of a framework that can even-

tually be used for semi-automatic inference and easy navigation by exposing the

properties that distinguish the different nodes of the taxonomy such as the dimen-

sionality and structure of the output, the size and number of nodes in the input,

and even the structure of the data (an environment as a Markov Decision Process

for RL, a dataset of images for Computer Vision, and a Graph for some more struc-

tured tasks). The taxonomy is built based on many survey papers, conference tracks,

tutorials an others. Part of the taxonomy is a reorganization of some of the data

contained in paperswithcode.com. See Stateoftheart.ai and Appendix C for the

full taxonomy.

83

paperswithcode.com
Stateoftheart.ai

Figure 3-4: Arbitrary expansion of the Neuro-Symbolic Reasoning branch as an ex-
ample.

3.3.4 NeurIPS 2020 Dataset

To complement with a well defined and exhaustive dataset, we manually analyzed

every one of the 1898 papers accepted to the NeurIPS 2020 conference and classified

them according to our taxonomy of models. We also classified every task and dataset

measured in the paper, naturally some papers are of a more theoretical nature and

do not contain any particular dataset or tasks. See Table 3.3 for summary statistics

and Appendix C for links to the full taxonomy.

84

Table 3.3: NeurIPS 2020 Dataset. Summary counts are followed by Model and
Dataset counts by area. Subareas of "Miscellaneous" and "Classical" are shown in
italics.

Concept Total Count

Papers 1898
Model SubAreas 49
High-level Tasks 616
Unique Datasets 2057
Total Dataset Count 4504
Papers with no Dataset 493

Area Model/Paper Count Dataset Count

Neuro-Symbolic 105 401
Computer Vision 309 1887
Natural Language Processing 51 240
Reinforcement Learning/RL 227 429
Robotics 9 18
Total Miscellaneous 254 1036

ML for Science - 365
Ethics, Privacy and Fairness - 97

Time Series - 96
Recommender Systems - 39

Causality - 32
Speech - 27

AutoML - 16
Music and Audio - 11

Other Miscellaneous - 353
Total Classical 943 -

Machine Learning 479 -
Deep Learning 282 -
Optimization 86 -

Statistics 45 -
Game Theory 27 -

Computer Science 19 -
Other 5 -

85

3.4 Current Potential uses of the Taxonomy

There are many potential practical benefits of a principled general taxonomy for AI

and Machine Learning(for education and popularization, for easing literature reviews,

for facilitating navigation, etc). Nevertheless, the focus of this taxonomy is to look

for a deeper more systematic way of classifying tasks and models. It is designed

to contribute to understand how research builds up, the lack of which is a known

problem for the progress of research and general advancement of the field [80, 81].

The current taxonomy can be used to point to new frontiers by signaling open ques-

tions, suggesting next steps for research, making analogies between different branches,

clarifying different alternatives and facilitating component reuse. It is already con-

stantly being used to to navigate the state-of-the-art of AI 2. It helps avoid the

redundancy across the many existing sources while simultaneously providing unified

standardized source that helps organize and understand the structure of the field.

While the contribution of this chapter is the taxonomy on itself and does not

include a formal evaluation, to highlight how the taxonomy performs in terms of the

desirable properties presented above we mention some of its ongoing current uses:

The Center for Science and Technology from Georgetown University has been

a collaborator to continue developing some of the mappings of this taxonomy, inter-

ested in the evolution of science considering questions such as knowledge diffusion and

concept propagation within the framework of Science of Science[41]. The Center

for Humans and Machines from the Max-Planck Institute for Human Development

asked for access to our API to study research questions related to Epistemic Evo-

lution [93] which can include the study and modelling of the spread of ideas [12],

the emergence and development of scientific fields [11], and the topological transi-

tion of collaboration networks[13], among others. Researchers from Harvard devel-

oping the Data Science Reference Framework3 have requested access to the code of

Stateoftheart.ai to use as a template and base to integrate into a broader orga-

nizational computational tool for Data Science.

2Currently 40 daily users navigate the taxonomy through the platform Stateoftheart.ai
3https://www.youtube.com/watch?v=YDLzciKzJug

86

Stateoftheart.ai
Stateoftheart.ai
https://www.youtube.com/watch?v=YDLzciKzJug

3.5 Improvements and Open Directions

While the taxonomy is already finding some uses for the research community, it can

be expanded in several directions.

Cross-Taxonomy Integration It would be enriching to integrate Models, Tasks,

Datasets and even Concepts and Researchers into a single Knowledge Graph, exposing

more complex connections between the different constituents.

Exploiting analogies Several analogies can be made by comparing the evolution

of different subareas examples include the raise of unsupervised learning in both

Natural Language Processing, and more recently, in Computer Vision, both using

very similar loss functions; or - as we learned while constructing the taxonomy -

the interesting parallels between the Teacher-Student paradigms in the sub-fields of

intrinsic motivation in RL and semi-supervised learning in computer vision. It would

be interesting to explore this systematically.

Richer Taxonomy of Tasks Instead of constraining the organization of tasks to

a tree. It would be interesting to create a richer structure that allows navigating the

taxonomy horizontally (i.e. Task A + "Language" → Task B)

Multiple views It would be beneficial to enable multiple alternative views which

can emphasize different aspects and dimensions of the taxonomy depending on the

use-case. For example, one such dimension could favor the conceptual vs the causal.

Another would be the sparse-dense dimension, allowing to view either only the most

important models, or showing all the specific models in the evolution of a sub-field.

Incorporating Machine Learning Various machine learning algorithms could

potentially be helpful (e.g. graph embeddings, graph neural networks, topic models)

to both exploit the taxonomy and to expand it.

87

Synthesizing Programs The taxonomy could ideally be used to help synthesize

code, for example by navigating the space of tasks based on exposed attributes, which

could in turn help select the compatible relevant models. In order to do this, the sys-

tem should be able to both suggest alternative configurations and realize preliminary

evaluations of these alternatives. From the community perspective, there could be

analogies between specific program synthesizers and the collective system. For ex-

ample, making an analogy with [33], there would be a library of models (library of

primitives) which grows and develops as researchers contribute with code and nodes,

this library would be used to generate programs by searching over the taxonomy, in

the process improving itself. Inheritance could allow for program adjustments such

as substituting a task by its specialization, and such as finding a model compatible

with a task based on specific attributes.

3.6 Conclusion

This taxonomy is really just a starting point. While the current use of the taxonomy is

by human researchers, it could be enhanced to be used by semi-automated algorithms

and there are many dimensions and ways to continue expanding and enhancing its

collective aspects. Ultimately the taxonomy is an organized Knowledge Base of AI

research with an interface to interact with it. Could it help accelerate research? Its

possible. For example, understanding from an evolutionary perspective how different

methods and models have evolved could suggest new directions worth studying.

This work is at the intersection of two of the most powerful sources of superintelli-

gence: Artificial Intelligence and Collective Intelligence. The Supermind perspective

puts an emphasis on the role of groups [70] which in our case are composed by the

inter-operation of both humans and machine nodes. As this collective system con-

tinues to advance, the taxonomy too could be expanded or connected into a broader

cognitive taxonomy, one that goes beyond AI research, into a general taxonomy for

the Design of Superminds.

88

Acknowledgements

The taxonomy presented was constructed in collaboration with Santiago Renteria.

The taxonomy is available at the Open Science Framework (Appendix C). It is

also available through an interactive viewer developed at Stateoftheart.ai, built in

collaboration with Hugo Ochoa, Eduardo Espinosa, Jorge Delgadillo, Antonio Teran,

Luis Lara, Liuba Orlova and Cuco Resendiz; with logistic help from Lynne Bairstrow,

Luisfe Nuñez, Elena Elorza, Jesse Parent and Gussi Espinoza. This platform was

developed by Stateoftheart AI PBC, a coorporation for which the author of this

Thesis is the founder and CEO.

Financial support for this work was provided in part by the Toyota Research

Institute (Grant Nos. LP-C000765-SR and PO-000889).

89

90

Chapter 4

Human-AI Combination for

Generating Software

4.1 Introduction

Starting in the 1950s, when Alan Turing proposed his famous “Turing test,” he in-

spired generations of computer scientists with the vision of developing artificially

intelligent computers that would someday equal human performance [48, 68]. Sub-

stantial progress has been made in realizing this vision, and there have been many

studies comparing computer performance to that of humans [120, 109, 63]. But no

computer today can equal human performance in all ways, and many experts believe

that such an accomplishment is still far in the future [15, 63].

In the meantime, people and computers working together in various ways have

become commonplace in many aspects of modern life, and there have been a number of

studies evaluating the performance of such human-computer combinations [119, 122,

47]. But it is surprising, that there isn’t yet a widely recognized scientific equivalent

of the Turing test to systematically measure the synergistic improvements in how well

people and computers together can perform tasks better than either could alone or

better than some other relevant benchmark.

Here we propose such a test and demonstrate its use in two studies, both evalu-

ating how people combined with a state-of-the-art AI program can perform a typical

91

software development task. We also discuss various potential benefits of this test,

including stimulating progress with contests like the autonomous vehicle contests

sponsored by DARPA [17, 7], and providing opportunities for collaboration between

computer scientists and social scientists to develop and study not only new technolo-

gies themselves but also novel ways of combining humans and computers to use these

technologies.

4.2 Approach

There are two simple ideas behind the test we propose:

1. Instead of viewing humans and computers as competitors in performing tasks,

view them as collaborators.

2. Instead of viewing human performance as an upper bound, try to maximize

the ratio between the performance of a human-computer system and a relevant

benchmark such as humans only, computers only, or current practice.

To formalize these ideas, we let

𝑋𝑖 = the performance of system i on a given task

𝜌 = 𝑋𝑖

𝑋𝑗

where the values of 𝑖 and 𝑗 represent different types of systems such as:

H = human

C = computer

HC = human-computer

B = placeholder for any relevant baseline

In general, we will be interested in maximizing

𝜌 = 𝑋𝐻𝐶

𝑋𝐻

With this formulation, when 𝜌 > 1, there is some benefit from the human-

computer combination relative to the baseline, and when 𝜌 >> 1 there is substantial

benefit.

92

We are particularly interested in maximizing a version of 𝜌 that measures the

synergy [64, 2] between humans and computers, which we define as

𝜌 = 𝑋𝐻𝐶

𝑚𝑎𝑥(𝑋𝐻 ,𝑋𝐶)

In this case, when 𝜌 > 1, the combination of humans and computers performs

better than either alone. In other words, when 𝜌 > 1, there is synergy between the

humans and computers.

Of course, to systematically measure any of these kinds of performance, we need to

specify the task(s) being performed (e.g., recognizing faces, developing software), the

dimension(s) being measured (e.g., speed, cost, quality), and details about the types

of systems performing the tasks (such as capabilities of the humans and computers

and configurations of the human-computer systems). For example, in specifying di-

mensions of performance to be measured, there are often multiple dimensions that

can be traded off against each other (e.g., speed can often be increased by reducing

quality). In applying this test, therefore, it is often useful to specify multi-dimensional

performance measures such as maximizing speed subject to the quality being above

a specified level.

In the remainder of the paper, we describe how to use this test in two studies

of a software development task performed by human-computer pairs. In both stud-

ies, the primary computer component is GPT-3 [16], a massive, state-of-the-art AI

system that uses machine learning techniques to produce text that is sometimes strik-

ingly human-like. GPT-3 can also produce other kinds of text, such as the code for

computer software, and that is the focus of the studies described here.

4.3 Results

In both studies, the task is to develop software code in HyperText Markup Language

(HTML) that will generate the web pages shown in Figure 4-1. The web pages include

images, links to external sites, buttons, and text of different sizes and forms (see “Web

pages” in Materials and Methods).

93

(a) Saving Planet Earth, with 27 items. (b) Conference Website, with 13 items

Figure 4-1: Webpages used for experiment

4.3.1 Study 1

In Study 1, the subjects are human coders with expertise in HTML coding (see “Sub-

jects” in Materials and Methods). We consider two experimental conditions. In the

control condition (human-only or “H”), the human generates all the code using a

simple text editor with no AI support. (Of course, the text editor is a simple kind

of computer support, but for simplicity, we consider this a “human-only” condition

because the computer support here is trivial relative to that in the treatment con-

dition.) In the treatment condition (human-computer or “HC”), the human directs

the high-level organization of the website using natural language while leaving the

detailed code generation to the GPT-3 AI algorithm (see “GPT-3” in Materials and

Methods for details). The order and conditions in which a given subject sees the two

tasks are randomized. We do not test a computer-only (or “C”) condition because

we assume that neither GPT-3 nor any other currently available computer system is

capable of performing alone the basic task in this study: looking at a purely visual

representation of a web page and generating the HTML code needed to produce that

web page.

In other words, for Study 1, the conditions are:

H = human coders with conventional HTML text editor

C = computers (assumed impossible today, so not tested)

HC = human coders with GPT-3 interface

As a performance measure, we focus on the speed of performing each task, sub-

ject to a constraint on the quality of the solutions. (See “Web pages” in Materials

and Methods for more details about how quality is defined and measured). More

94

Figure 4-2: Display of the interface for the Human-Computer condition. The top left
corner is the field for the subjects to input the natural language instructions. Below
on the left are the obtained HTML outputs which the user can modify or delete. On
the right is the visual display of the rendered HTML items which can be dragged by
the user to different positions. The figure illustrates some of the kinds of elements
GPT-3 is able to create in response to simple textual descriptions, such as tables,
buttons, images, and other HTML tags.

specifically, we test the hypothesis that the combination of humans and computers

(HC) can achieve synergy relative to both humans alone (H) and computers alone

(C), subject to an acceptable quality constraint (>80% correct submissions). In other

words, we hypothesize that

𝜌 = 𝑋𝐻𝐶

𝑚𝑎𝑥(𝑋𝐻 ,𝑋𝐶)
> 1

and

𝐴𝐻𝐶 , 𝐴𝐻 > .80

where

𝑋𝑖 = speed of system 𝑖

𝐴𝑖 = accuracy of system 𝑖 (submission proportion above quality threshold)

Since 𝑋𝐶 = 0 by assumption, our hypothesis about 𝜌 reduces to

𝜌 = 𝑋𝐻𝐶

𝑋𝐻
> 1

To see whether the hypothesis was confirmed, we consider two alternative ways of

calculating 𝜌 : (a) the ratio/t-test method, and (b) the regression method.

95

Ratio / t-test method. The simplest way to calculate 𝜌 is to compute the ratio of the

averages for the HC and H conditions shown in Table 4.1(a):

𝜌 = 𝑋𝐻𝐶

𝑋𝐻
= 0.032

0.027
= 1.18

We can also use a t-test to compare the means of the two conditions. This shows

that the HC condition is significantly faster than the H condition (t=2.407, p=0.017).

And Table 4.1(a) shows that the accuracy conditions for both conditions are satisfied

(𝐴𝐻𝐶 , 𝐴𝐻 > .80) . In other words, this simple test shows that synergy is present in

these human-GPT-3 groups.

Regression method. By doing a more sophisticated regression analysis, it’s possible

to obtain error bars on the ratio itself and to control for various other factors such as

task, task order, and subject. As shown in SI Appendix Section D.1, the ratio 𝜌 can

be estimated using the following generalized mixed-effects linear regression:

𝑦𝑖 = 𝐵0 +𝐵1𝐶𝑖 +𝐵2𝑂𝑖 +𝐵3𝑇𝑖 + 𝑣𝑖 + 𝜖𝑖

In order to normalize the distribution, we define 𝑦𝑖 as the logarithm of speed for

the ith measurement. This also has the benefit of making the regression equation

consistent with a multiplicative model of performance that enables us to interpret

the exponential of each coefficient, 𝑒𝐵𝑖 , as the multiplicative increase in speed due to

the different independent variables.

For our purposes, the most important coefficient is 𝐵1 = 𝑙𝑜𝑔(𝜌) the coefficient for

the effect of the treatment condition (HC) relative to the control condition (H); 𝐵0

is the fixed intercept; 𝐵2 and 𝐵3 are the fixed coefficients to control for the effect

of the task order and of the task; 𝐶𝑖, 𝑂𝑖, and 𝑇𝑖 ∈ {0, 1} are indicator variables

respectively indicating which of the conditions, which order, and which of the two

tasks occurred for the 𝑖𝑡ℎ measurement; 𝑣𝑖 is the random coefficient for the subject of

the 𝑖𝑡ℎ measurement; and 𝜖𝑖 is a Gaussian error term.

Our pre-registered hypothesis (https://aspredicted.org/see_one.php) was that

the ratio (𝜌) obtained from the regression would be greater than 1.0 with 95% con-

96

https://aspredicted.org/see_one.php

fidence. As Figure 4-3 shows, this hypothesis was confirmed. In other words, this

regression version of the test also shows that the teams combining humans and GPT-3

obtained statistically significant synergy, improving by about a factor of 1.3 beyond

the performance of humans alone. It is interesting to note that, in this case at least,

controlling for the other factors such as task and order gives a higher ratio for 𝜌 (see

Appendix D.2 for full regression results).

Figure 4-3: Study 1 Regression results

Table 4.1: Empirical Summary of Results. Speed and quality averages per condition
(see Appendix D.4 for full distributions).

Condition Speed Accuracy # of Observations(tasks/mins) (% of successful subjects)

(a) Study 1
Human Only (H) 0.027 84% 99
Human - Computer (HC) 0.032 88% 98

(b) Study 2
Human - Computer (HC’) 0.030 95% 97

97

4.3.2 Study 2

In Study 2, the subjects are humans who do not know how to code in HTML (“non-

coders,” see “Subjects” in Materials and Methods), and we have only one experimental

condition. In this human-computer (HC) condition, the non-coder subjects do the

same two tasks using the same GPT-3 interface as the coders in Study 1 (see “GPT-3”

in Materials and Methods). The order tasks are presented to subjects is randomized.

As before, we assume that computers could not perform this task alone, and we also

assume that the non-coders (who do not know HTML) could not do it themselves

alone either.

In other words, for Study 2, the conditions are:

H’ = human non-coders [assumed impossible, so not tested]

C’ = computers (assumed impossible, so not tested)

HC’ = human non-coders with GPT-3 interface

Our pre-registered hypothesis for this study was that the proportion of “suc-

cessful” subjects would be greater than 50% with 95% confidence, where a sub-

ject is “successful” if they achieve at least 90% of the total possible points (https:

//aspredicted.org/see_one.php). Using the data in Table 4.1(b), a one-sample

proportion test (as specified in our pre-registration) shows that this hypothesis is

strongly confirmed (z = 8.87, p « .0001).

As before, we also test the hypothesis that 𝜌 > 1, and we observe that

𝑋𝐻𝐶′ = 0.30 tasks per minute

𝑋𝐻′ = 𝑋𝐶′ = 0 (by assumption)

Since the denominator of 𝜌 is 0, 𝜌 will, of course, always be undefined, regardless

of the value of 𝑋𝐻𝐶′ . However, in this context, it is reasonable to interpret 𝜌 as an

arbitrarily large number, which we denote here as “∞”. In other words, we say that

𝜌 =
𝑋𝐻𝐶′

𝑚𝑎𝑥(𝑋𝐻′ ,𝑋𝐶′)
= .030

𝑚𝑎𝑥(0,0)
= “∞”

In practical terms, this means that non-coder humans and the GPT-3 computer

system have very strong synergy. They can do something together that neither could

do at all alone, and this is a very desirable result from the perspective of the 𝜌 test.

98

https://aspredicted.org/see_one.php
https://aspredicted.org/see_one.php

Comparing coders to non-coders

Since there could be many factors affecting the differences between the populations

of coders and non-coders in our study, we should be cautious about making causal

inferences from a comparison of the results between these two populations. It is,

however, interesting to calculate a value of 𝜌 by comparing the two here.

As before, we do this in two ways. First, using the ratio/t-test method, to estimate

𝜌 , not 𝜌, we obtain

𝜌 = 𝑋𝐻𝐶

𝑋𝐻′
= 1.071

This suggests that the coders are slightly faster than the non-coders, but a t-test

shows that the difference between the two is not significant (t=-.718, p = 0.474).

Second, using the regression method, we obtain a similar value for 𝜌 of 1.015 (p

=0.902) and the results are also not significant (that is, 𝜌 is not significantly different

from 1). In other words, it appears that not only does using GPT-3 allow the non-

coders in our study to do a task they could not otherwise have done, it allows them

to do the task as fast as experienced coders do. (see Appendix D.3 for full regression

results)

Calculating 𝜌 for cost

We have focused so far on using 𝜌 to analyze differences in speed, but it is also

possible to use it to analyze other performance dimensions. For example, one obvious

question here involves cost: If non-coders are now able to do a task using GPT-3 that

previously would have required coders, could it be more economical to use non-coders

for this task?

To obtain a suggestive answer to this question, we estimated the costs, 𝐶𝑖, of

performing the task in condition i by taking into account (a) the time each subject

spent doing the task, (b) the cost of this time based on that subject’s individual

hourly rates as shown on the UpWork.com site at the time of the experiment, (c) the

number of calls to GPT-3 each subject made, and (d) the average cost of GPT-3 calls

at the time of the experiment (see “Estimating costs” in Materials and Methods). The

99

resulting cost estimates are shown in Table 4.2.

Table 4.2: Average costs for each condition. Hourly rate, time spent on eac task,
number of calls to GPT-3 and total cost

Condition Rate/h Mins/task GPT3 Calls Total Cost
NonCoders-GPT3 (𝐶𝐻𝐶′) $11.40 41.91 28.5 $10.57
Coders-GPT3 (𝐶𝐻𝐶) $16.28 38 24 $8.82
Coders Alone (𝐶𝐻) $16.28 42.47 - $10.92

Using the ratio / t-test method to estimate 𝜌 for the two conditions in Study 1,

we obtain

𝜌 = 𝐶𝐻𝐶

𝐶𝐻
= 10.57

10.92
= 0.97

The t-test in this case is not significant (t = -0.405, p = 0.686). The results of

the regression method are similar: 𝜌 = 0.890 (p = 0.109). So the use of GPT-3 does

not appear to significantly reduce the total cost for coders developing HTML code in

this study.

It is also interesting to calculate a different version of 𝜌 for the comparison between

coders with GPT-3 in Study 1 and non-coders with GPT-3 in Study 2. Using the

ratio / t-test method , we obtain

𝜌 = 𝐶𝐻𝐶

𝐶𝐻𝐶′
= 10.57

8.82
= 1.20

and the t-test is not significant (t = 1.911, p = 0.057).

However, when we estimate this version of 𝜌 using the regression method, we see

that the cost for coders was significantly greater than for non-coders (𝜌 = 1.40, p =

.010). In other words, the more sensitive regression test allows us to see that non-

coders using GPT-3 can create the HTML code for websites at significantly less cost

than experienced coders. We’ll discuss some of the implications of this finding in the

Discussion section (see Appendix D.7 for full regressions).

100

4.4 Discussion

In this work, we proposed and demonstrated an approach to systematically studying

the performance of human-computer groups. The approach focuses on the ratio (𝜌)

of improvement that human-computer groups provide relative to other possibilities,

similar to how previous studies have looked at large improvements in fields such as

hardware and theoretical algorithms [107].

Substantive results

There were three primary substantive results of the empirical work we described.

First, we found that the combination of humans coders with GPT-3 was about 1.3

times faster(a 30% improvement) relative to human coders alone. This means there

was a statistically significant level of what we define as synergy in this combination. It

is also interesting to observe that this level of speed improvement (30%) is consistent

with self-reported improvements from using Copilot, another GPT-3-based software

development tool (see for example [50]). We speculate that this improvement ratio

may be characteristic of this class of software development tasks using today’s state-

of-the-art AI-based tools but that this ratio may improve in the future.

Second, we found that human non-coders using GPT-3 were able to do the same

task as the coders even though we assume that neither the human non-coders nor

today’s AI algorithms could have done this task alone. In other words, this human-

computer combination had extreme synergy (𝜌 >> 1) which we might call superin-

telligence.

Third, we found that, in the samples of coders and non-coders we studied, the

non-coders using GPT-3 were able to create websites about as fast and at significantly

less cost than the coders. This would presumably be very desirable for managers and

owners of organizations and for the newly-empowered non-coders themselves. But it

might be seen as a form of deskilling by the coders whose jobs could now be per-

formed by people with less skill–and for lower compensation [cites for: Attewell, P.

(1987). The deskilling controversy. Work and occupations, 14(3), 323-346. Downey,

101

M. (2021). Partial automation and the technology-enabled deskilling of routine jobs.

Labour Economics, 69, 101973.].

Methodological comments

Methodologically, we believe that the test we have proposed provides a simple and

broadly comparable measure of the performance of human-computer groups. Unlike

the statistical techniques used in most previous empirical studies of human-computer

groups, this metric provides a clear and intuitive indication of not only whether the

human-computer groups were better but also of how much better.

More specifically, we described two methods for calculating the ratio 𝜌. The

ratio/t-test method is the easiest to apply, and the ratio part of this test can be used

even if only average values are available without any details the distribution of the

data. The regression method is potentially more sensitive because it can control for

other variables, such as tasks, subjects, and task order, and it also automatically

provides significance tests and confidence intervals for the 𝜌 ratio. But it is somewhat

more complicated to perform, and it requires access to the raw data.

Broader implications

A complement to the Turing test. As noted in the Introduction, generations of

computer scientists have been inspired by the Turing test to try to create comput-

ers that can equal human performance. And to a significant degree, the vision of

computers that can replicate–and potentially replace–humans has dominated much

public discussion and business decision-making in recent years.

But as many observers since at least the 1960s have pointed out, computers can

also be used to augment human intelligence, not just to replace it (e.g., [66, 34, 70, 69].

And, perhaps, our focus on the Turing test has even prevented us from recognizing

and developing these possibilities in ways that would have been better for business

and society [108, 1].

We believe that the test proposed here, by focusing on and quantitatively measur-

ing the combined performance of people and machines can help correct this imbalance

102

and lead to better economic and societal uses of computers.

Contests for the best human-computer performance. For example, one way this

test could help stimulate progress is by having contests like the autonomous vehicle

contests sponsored by DARPA that were so useful in the development of autonomous

vehicles (e.g., [98]). But in this case, the contests would not be about seeing which

teams could create computers to equal human performance; they would be about

creating human-computer systems to get the highest possible values of 𝜌 for various

tasks.

The contest organizers might, for example, identify the task to be done and spec-

ify (a) the pool of human participants, and (b) the specific hardware and software

platforms that contestants could use. The goal of the contestants would then be to

design human-computer groups that would produce the highest values for 𝜌.

Among other things, such contests would provide opportunities for constructive

collaborations between computer scientists and social scientists that could be of very

substantial practical value. These multi-disciplinary teams would not only develop

new algorithms and other technologies but also design and study new ways of config-

uring human-computer systems to perform various tasks more effectively.

In summary, we hope that the work described in this paper can help advance

progress toward finding more powerful ways of combining people and computers to

do more and more of the tasks in our economies and our societies.

4.5 Materials and Methods

4.5.1 Web Pages

To represent the space of possible web pages, we used two sample pages that varied

in difficulty:

1. "Saving Planet Earth" (Fig. 4-1a) was designed by us and contains 27 compo-

nents used in scoring the correctness of the code generated.

2. "Conference Website" (Fig. 4-1b) was adapted and simplified from a task given

103

towards the end of an HTML course called Learn to Code (https://learn.

shayhowe.com/practice/adding-media/index.html and contains only 13 com-

ponents.

In addition to the visual images shown in the figures, each image also included

pop-up messages to specify the details of active elements such as buttons and links.

Subjects could see these messages by rolling their mouse over the images.

Evaluating the correctness of code generated. The correctness of the code generated

for each page was scored based on the total number of components in the page. A

component was defined as one individual HTML element (e.g., a button or a link),

and each component was worth a maximum of 4 points, one point each for:

1. position relative to the overall frame of the webpage (0.5 points if the position

is slightly off).

2. content, text or graphical (0.5 points if mostly correct, e.g., if the correct text

says “Over 100 locations” and the subject said “100 locations”).

3. color, that is, text color, background color, button color, etc.

4. functionality, that is, what the component does (i.e., text just displays text,

links should link to external pages).

Since each component was worth a maximum of 4 points, the image in Fig. 2a

was worth 27x4 = 108 points, and the one in Fig. 2b was worth 13x4 = 52 points.

We consider a submission “correct” if it receives at least 90% of the maximum number

of points available for it.

All the code generated was evaluated by the same person for consistency. A

second person rated 10% of the code submissions to measure inter-rater reliability.

As expected, following the rubric, both raters had an almost perfect overlap never

differing by more than one point out of the 52 and 108 total points per web page.

Quality Threshold. For accuracy, we calculate the proportion of submissions which

are correct as defined above, and we expect at least 80% of submissions in a condition

to be “correct.”

104

https://learn.shayhowe.com/ practice/adding-media/index.html
https://learn.shayhowe.com/ practice/adding-media/index.html

Level of Effort. For all analyses, we excluded any submissions in which the subject

didn’t put effort, defined as spending less than 10 minutes and using less than 7 calls

to GPT-3 for the “human-computer” (“HC”) condition; and as spending less than 10

minutes and generating less than 15 lines of code for the “human-only” (“H”) condition.

These are reasonable numbers below which the task cannot be performed.

These criteria led to excluding 3 out of 200 submissions in Study 1 (2 in condition

HC, 1 in condition C), and 3 out of 100 submissions in Study 2 (2 from the same

person).

4.5.2 Subjects

Recruiting. Subjects were recruited from the online labor market UpWork.com. For

the posting requesting “coders,” 100 subjects were recruited, and for the one requesting

“non-coders,” 50 were recruited. See Appendix D.8 for full postings.

Screening. The status of subjects as coders or non-coders was confirmed by using

text message conversations with the subjects and by reviewing their resumes and

biographical information on UpWork. The software interface used in the experiment

also asked the subjects to self-classify as a non-coder or coder. Subjects who did not

self-classify for the group they were recruited for were not included in the study.

4.5.3 GPT-3

GPT-3 description. GPT-3 stands for “Generative Pre-trained Transformer 3” [16].

It is a massive AI system that uses autoregressive machine learning techniques to

generate many kinds of text. With over 175 billion parameters, it was extensively

trained on a vast corpus of text including all of Wikipedia, many books, and much

more material from the Internet. It has outperformed existing state-of-the-art models

in many benchmarks. Particularly impressive and relevant is its performance in the

few-shot domain, where the model is conditioned to a specific task by providing only

a few examples.

Use of GPT-3 in these studies. We developed special software for our subjects to

105

use as an interface to GPT-3. This software uses the OpenAI API to interface with

GPT-3, and it provides two primary additional features:

1. Parameters and prompts. To perform specific tasks, GPT-3 needs some de-

tailed parameters and (usually) some examples to indicate what kinds of text

outputs the system should generate in response to various kinds of inputs. See

SI Appendix D.5 for details of the parameters and examples we provided.

2. User interface. The user interface for GPT-3 that was used by subjects in both

studies is shown in Figure 4-2. It works as follows: First, the human subject

describes in English text a component needed in the web page (e.g., “Green

button that says ‘Learn More’ ” as shown in the upper left corner of Figure 4-2).

Then the GPT-3 system automatically generates the HTML code needed to

produce that component (e.g., the code shown in the lower left corner of Figure

4-2). And, simultaneously, the interface we created adds that component to the

replica of the web page shown on the right side of the screen (e.g., the green

button shown in the middle of Figure 4-2). If the human thinks the displayed

component is correct, the human can then move that component to its proper

location in the replica of the web page. If not, the human can (a) delete the

component and try again to describe in English what the component should be,

or (b) modify the HTML code directly (if the human knows enough to do so).

4.5.4 Estimating Costs

We compute the total cost per task per subject for the different conditions by com-

puting the human cost which depends on the time spent in a task and the hourly rate

per subject; and the GPT-3 cost based on the number of calls and the average cost

per call. The Davinci engine is $.06 per 1000 tokens, each call uses an average of 66

tokens plus an additional 578 tokens for the prompting. The average cost per GPT-3

call is $.039.

106

4.5.5 Instructions and Incentives

Instructions. All subjects were provided with the following instructions:

"In this experiment, you are asked to solve two different problems. The main goal

of each problem is to try and replicate a mockup website as accurately as possible.

You can receive up to $30 for participating in this experiment.

• The base amount will be $10 for completing both problems.

• You will receive an additional bonus of up to $10 dollars per problem, condi-

tional on getting it right and depending on how fast you do it. Before starting

the actual problem you will have some time with a practice mockup to get fa-

miliar with the interface, so that you don’t lose your time in the actual problem

when it counts towards the amount of bonus you get (the faster you do it the

bigger the bonus)".

Payment. Each subject received a base payment of $10 for participating in the ex-

periment. They received no bonus for incorrect submissions. For correct submissions,

their bonus was determined according to the folllowing rule:

• $10.00 if done more than 10 minutes faster than the average

• $7.50 if done between the average and 10 minutes faster than the average

• $5.00 if done in a time between the average and 10 minutes slower than the

average.

• $2.50 if done more than 10 minutes slower than the average

Note that this detailed payment rule was not provided to the subjects. They received

only the instructions specified above.

Training Session. Subjects were encouraged to practice using a simple example web

page they could try to replicate with unlimited time. The performance on this training

session was not evaluated. Subjects were additionally provided with videos of how to

interact with the interface.

107

Acknowledgements

The unpublished work on this chapter was done in collaboration with Thomas Malone,

Haoran Wen, Jaeyoon Song, Raza Abbas, and Abdullah Almaatouq as part of the

research for the Center for Collective Intelligence at MIT. The interface was built by

Haoran Wen.

Financial support for this work was provided in part by the Toyota Research

Institute (Grant Nos. LP-C000765-SR and PO-000889).

108

Appendix A

ILP Task Descriptions

A.1 ILP Tasks

Description of tasks and the proto-rule templates used during training. More details

are in [36]:

Predecessor In this task we aim to learn the predecessor relation, 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟(𝑋, 𝑌)←

𝑠𝑢𝑐𝑐(𝑌,𝑋), from basic arithmetic facts {𝑧𝑒𝑟𝑜(0), 𝑠𝑢𝑐𝑐(0, 1), 𝑠𝑢𝑐(1, 2), ...}. We use the

following template:

𝐹 (𝑋, 𝑌)← 𝐹 (𝑌,𝑋) (9)

Even-Odd In this task we aim to learn the 𝑒𝑣𝑒𝑛 predicate. Here the background

knowledge is the same as in Predecessor (above). We must include an extra auxiliary

predicate that learns to encode the relation 𝑜𝑑𝑑. We use the following templates:

𝐹 (𝑋)← 𝐹 (𝑋) (1)

𝐹 (𝑋)← 𝐹 (𝑍), 𝐹 (𝑍,𝑋) (2)

𝐹 (𝑋)← 𝐹 (𝑍), 𝐹 (𝑍,𝑋) (2)

109

Even-succ2 Described in Experiments in Section 2.2.

𝐹 (𝑋)← 𝐹 (𝑋) (1)

𝐹 (𝑋)← 𝐹 (𝑍), 𝐹 (𝑍,𝑋) (2)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

Less Than Here we aim to learn the 𝑙𝑒𝑠𝑠𝑇ℎ𝑎𝑛 relation. Background knowledge is

the same as in the tasks above. A possible solution would be:

𝑙𝑒𝑠𝑠𝑇ℎ𝑎𝑛(𝑋, 𝑌)← 𝑠𝑢𝑐𝑐(𝑋, 𝑌)

𝑙𝑒𝑠𝑠𝑇ℎ𝑎𝑛(𝑋, 𝑌)← 𝑙𝑒𝑠𝑠𝑇ℎ𝑎𝑛(𝑋,𝑍), 𝑙𝑒𝑠𝑠𝑇ℎ𝑎𝑛(𝑍, 𝑌)

We used these templates:

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋, 𝑌) (5)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

Fizz As in the children game Fizz-Buzz, numbers that are divisible by three should

be classified as Fizz. These are the template protorules used during training:

𝐹 (𝑋)← 𝐹 (𝑋) (1)

𝐹 (𝑋)← 𝐹 (𝑍), 𝐹 (𝑍,𝑋) (2)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

Buzz Following the same logic as in Fizz, we used the following templates:

𝐹 (𝑋)← 𝐹 (𝑋) (1)

𝐹 (𝑋)← 𝐹 (𝑍), 𝐹 (𝑍,𝑋) (2)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

110

Member Here we aim to learn 𝑚𝑒𝑚𝑏𝑒𝑟(𝑋, 𝑌), which is true if 𝑋 is an element of

list 𝑌 . The background knowledge encodes values on a list by using two predicates:

𝑐𝑜𝑛𝑠(𝑋, 𝑌) which is true if node 𝑌 is after list 𝑋 (lists are terminated with the null

node 0); and 𝑣𝑎𝑙𝑢𝑒(𝑋, 𝑌) which is true if the value of node 𝑋 is 𝑌 . One possible

solution is:

𝑚𝑒𝑚𝑏𝑒𝑟(𝑋, 𝑌)← 𝑣𝑎𝑙𝑢𝑒(𝑌,𝑋)

𝑚𝑒𝑚𝑏𝑒𝑟(𝑋, 𝑌)← 𝑐𝑜𝑛𝑠(𝑌, 𝑍),𝑚𝑒𝑚𝑏𝑒𝑟(𝑋,𝑍)

We used these templates:

𝐹 (𝑋, 𝑌)← 𝐹 (𝑌,𝑋) (9)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑌, 𝑍), 𝐹 (𝑋,𝑍) (10)

Length The 𝑙𝑒𝑛𝑔𝑡ℎ(𝑋, 𝑌) relation is true if the length of list 𝑋 is 𝑌 . We represent

lists in the same way as in the 𝑀𝑒𝑚𝑏𝑒𝑟 task. We required at least one extra inten-

tional predicate 𝑝𝑟𝑒𝑑1. One possible solution would be:

𝐿𝑒𝑛𝑔𝑡ℎ(𝑋,𝑋)← 𝑧𝑒𝑟𝑜(𝑋)

𝐿𝑒𝑛𝑔𝑡ℎ(𝑋, 𝑌)← 𝑐𝑜𝑛𝑠(𝑋,𝑍), 𝑝𝑟𝑒𝑑1(𝑍, 𝑌)

𝑝𝑟𝑒𝑑1(𝑋, 𝑌)← 𝐿𝑒𝑛𝑔𝑡ℎ(𝑋,𝑍), 𝑠𝑢𝑐𝑐(𝑍, 𝑌)

We used these templates:

𝐹 (𝑋,𝑋)← 𝐹 (𝑋) (8)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

Son We aim to learn 𝑠𝑜𝑛𝑂𝑓(𝑋, 𝑌) relation from family-related facts involving

𝑓𝑎𝑡ℎ𝑒𝑟𝑂𝑓 , 𝑏𝑟𝑜𝑡ℎ𝑒𝑟𝑂𝑓 and 𝑠𝑖𝑠𝑡𝑒𝑟𝑂𝑓 . We required at least one extra intentional

111

predicate that learns the relation 𝑖𝑠−𝑚𝑎𝑙𝑒. One possible solution would be:

𝑠𝑜𝑛𝑂𝑓(𝑋, 𝑌)← 𝑓𝑎𝑡ℎ𝑒𝑟(𝑌,𝑋), 𝑖𝑠𝑀𝑎𝑙𝑒(𝑋)

𝑖𝑠𝑀𝑎𝑙𝑒(𝑋)← 𝑏𝑟𝑜𝑡ℎ𝑒𝑟(𝑋,𝑍)

𝑖𝑠𝑀𝑎𝑙𝑒(𝑋)← 𝑓𝑎𝑡ℎ𝑒𝑟(𝑋,𝑍)

We used these templates:

𝐹 (𝑋, 𝑌)← 𝐹 (𝑌,𝑋), 𝐹 (𝑋) (11)

𝐹 (𝑋)← 𝐹 (𝑋,𝑍) (12)

𝐹 (𝑋)← 𝐹 (𝑋,𝑍) (12)

Grandparent The goal of this task is to infer the grandparent relation from ob-

served mother-of and father-of facts. Our templates were:

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋, 𝑌) (5)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋, 𝑌) (5)

Relatedness 𝑟𝑒𝑙𝑎𝑡𝑒𝑑(𝑋, 𝑌) is true if there is an undirected path between 𝑋 and

𝑌 . Background knowledge contains family related facts as in the tasks Son and

Grandparent. We used these templates:

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋, 𝑌) (5)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋, 𝑌) (5)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑌,𝑋) (9)

112

Father In this task we aim to learn the 𝐹𝑎𝑡ℎ𝑒𝑟 relation in challenging set up (in-

complete background knowledge and irrelevant facts). We used these template:

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

Undirected Edge In this task the background knowledge is composed of several

𝑒𝑑𝑔𝑒(𝑋, 𝑌) facts. The goal is to learn 𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝐸𝑑𝑔𝑒(𝑋, 𝑌) which is true if there is

an edge between nodes 𝑋 and 𝑌 regardless of the direction. We used the templates:

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋, 𝑌) (5)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑌,𝑋) (9)

Adjacent to Red In this example we extend the background knowledge of the

example above with color facts: 𝑔𝑟𝑒𝑒𝑛(𝐶), 𝑟𝑒𝑑(𝐶), as well as 𝑐𝑜𝑙𝑜𝑢𝑟(𝑋,𝐶) which is

true if node 𝑋 is of colour 𝐶. We included one auxiliary predicate that learns the

relation 𝑖𝑠𝑅𝑒𝑑(𝑋). One possible solution would be:

𝑎𝑑𝑗𝑇𝑜𝑅𝑒𝑑(𝑋)← 𝑒𝑑𝑔𝑒(𝑋, 𝑌), 𝑖𝑠𝑅𝑒𝑑(𝑌)

𝑖𝑠𝑅𝑒𝑑(𝑋)← 𝑐𝑜𝑙𝑜𝑢𝑟(𝑋, 𝑌), 𝑟𝑒𝑑(𝑌)

We used these templates:

𝐹 (𝑋)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍) (13)

𝐹 (𝑋)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍) (13)

Two Children Here we aimed to learn the has-at-least-two-children(X) predicate,

which is true if there are at least two facts of the form 𝑒𝑑𝑔𝑒(𝑋,𝑍). The background

knowledge includes 𝑒𝑑𝑔𝑒 and 𝑛𝑒𝑞 (not equals) relations. We included one auxiliary

predicate 𝑝𝑟𝑒𝑑1. One possible solution would be:

𝑡𝑤𝑜𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑋)← 𝑒𝑑𝑔𝑒(𝑋, 𝑌), 𝑝𝑟𝑒𝑑1(𝑋, 𝑌)

113

𝑝𝑟𝑒𝑑1(𝑋, 𝑌)← 𝑒𝑑𝑔𝑒(𝑋,𝑍), 𝑛𝑒𝑞(𝑍, 𝑌)

We used these templates:

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

𝐹 (𝑋,𝑋)← 𝐹 (𝑋,𝑍), 𝐹 (𝑋,𝑍) (15)

Graph Colouring The task is to learn the adj-to-same(X,Y) which is true if nodes

𝑋, 𝑌 are of the same colour and there is an edge between them. The background

knowledge is similar as in the task Adjacent to Red. We included an auxiliary pred-

icate that should learn the relation same-colour(X,Y).One possible solution would be:

𝑎𝑑𝑗𝑇𝑜𝑆𝑎𝑚𝑒(𝑋, 𝑌)← 𝑒𝑑𝑔𝑒(𝑋, 𝑌), 𝑠𝑎𝑚𝑒𝐶𝑜𝑙𝑜𝑢𝑟(𝑋, 𝑌)

𝑠𝑎𝑚𝑒𝐶𝑜𝑙𝑜𝑢𝑟(𝑋, 𝑌)← 𝑐𝑜𝑙𝑜𝑢𝑟(𝑋,𝑍), 𝑐𝑜𝑙𝑜𝑢𝑟(𝑌, 𝑍)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑌, 𝑍) (10)

𝐹 (𝑋,𝑋)← 𝐹 (𝑋,𝑍), 𝐹 (𝑋,𝑍) (15)

Connectedness In this task we want to learn connected(X,Y) which is true if there

is a sequence of edges connecting nodes 𝑋 and 𝑌 . We used the templates:

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋, 𝑌) (5)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

Graph Cyclicity In this task the algorithm should learn the concept of cyclicity.

This is true of a node when there is a path departing from it and arriving to itself.

114

The templates used were:

𝐹 (𝑋)← 𝐹 (𝑋,𝑋) (4)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋, 𝑌) (5)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

A.2 Countries

We mimicked some of the templates found in the appendix E of [95]. In order to

closely follow their approach, only for this task we enforced some predicates to be

the same, so that #1 represents the same predicate across the rule. In detail for each

task:

Countries S1

#1(𝑋, 𝑌)← #1(𝑌,𝑋)

#1(𝑋, 𝑌)← #2(𝑋,𝑍),#2(𝑍, 𝑌)

Countries S2

#1(𝑋, 𝑌)← #1(𝑌,𝑋)

#1(𝑋, 𝑌)← #2(𝑋,𝑍),#3(𝑍, 𝑌)

Countries S3

#1(𝑋, 𝑌)← #1(𝑌,𝑋)

#1(𝑋, 𝑌)← #2(𝑋,𝑍),#3(𝑍,𝑊),#4(𝑊,𝑌)

115

A.3 Taxonomy and Kinship

Taxonomy This task was described in section 2.2.4, the dataset can be seen in

figure A-1. We used the following templates to perform this task:

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

𝐹 (𝑋, 𝑌)← 𝐹 (𝑋,𝑍), 𝐹 (𝑍, 𝑌) (3)

Figure A-1: Bigger animal taxonomy used for the tasks. Contains 4 predicates, 36
constants and 145 facts

Kinship This task was described in section 2.2.4. The theory is in figure A-2

Figure A-2: Inferred family tree. Females shown in bold italics and males in ordinary
font.

116

Appendix B

Learning with AMIGo

B.1 Full results

Tables B.1–B.4 show the final performance of the intrinsic motivation baselines trained

using one of four different training regimes enumerated in Section 2.3.4. For each base-

line, we train on KCMedium and OMmedium, and use the best hyperparameters

for each task (for that particular baseline and training regime) to train it on the re-

maining harder versions of those environments (i.e. on KChard and KCharder or

OMmedhard and OMhard, respectively).

Table B.1: Fully observed intrinsic reward, fully observed policy.

Medium Difficulty Environments Hard Environments

Model KCmedium OMmedium OMmedhard KChard KCharder OMhard

AMIGo .93± .00 .92± .00 .83± .05 .54± .45 .44± .44 .17± .34

IMPALA .00± .00 .00± .00 .00± .00 .00± .00 .00± .00 .00± .00
RND .00± .00 .00± .00 .00± .00 .00± .00 .00± .00 .00± .00
RIDE .00± .00 .04± .04 .00± .00 .00± .00 .00± .00 .00± .00
Count .00± .00 .00± .00 .00± .00 .00± .00 .00± .00 .00± .00
ICM .00± .00 .01± .01 .00± .00 .00± .00 .00± .00 .00± .00
ASP .00± .00 .00± .00 .00± .00 .00± .00 .00± .00 .00± .00

For IMPALA, the numbers reported for KCmedium and OMmedium are from

the experiments in [91], while the numbers for the harder environments are presumed

to be .00 because IMPALA fails to train on simpler environments.

117

Table B.2: Partially observed intrinsic reward, fully observed policy.

Medium Difficulty Environments Hard Environments

Model KCmedium OMmedium OMmedhard KChard KCharder OMhard

RND .64± .09 .01± .01 .00± .00 .00± .00 .00± .00 .00± .00
RIDE .84± .02 .00± .00 .00± .00 .00± .00 .00± .00 .00± .00
Count .45± .26 .00± .00 .00± .00 .00± .00 .00± .00 .00± .00
ICM .42± .21 .00± .00 .00± .00 .00± .00 .00± .00 .00± .00

Table B.3: Fully observed intrinsic reward, partially observed policy.

Medium Difficulty Environments Hard Environments

Model KCmedium OMmedium OMmedhard KChard KCharder OMhard

RND .00± .00 .00± .00 .00± .00 .00± .00 .00± .00 .00± .00
RIDE .88± .01 .94± .00 .18± .35 .19± .37 .00± .00 .00± .00
Count .01± .01 .00± .00 .00± .00 .00± .00 .00± .00 .00± .00
ICM .06± .12 .05± .06 .16± .32 .00± .00 .00± .00 .00± .00

Table B.4: Partially observed intrinsic reward, partially observed policy.

Medium Difficulty Environments Hard Environments

Model KCmedium OMmedium OMmedhard KChard KCharder OMhard

RND .89± .00 .94± .00 .88± .03 .23± .40 .00± .00 .00± .00
RIDE .90± .00 .85± .28 .86± .06 .00± .00 .00± .00 .00± .00
Count .90± .00 .04± .04 .00± .00 .00± .00 .00± .00 .00± .00
ICM .00± .00 .19± .19 .00± .00 .00± .00 .00± .00 .00± .00

As a sanity check, we also verified that ASP learns successfully in easier environ-

ments not considered here, such as MiniGrid-Empty-Random-5x5-v0, and MiniGrid-

KeyCorridorS3R1-v0, to validate the official PyTorch implementation.

Tables B.1–B.4 indicate that the best training regime for the intrinsic motivation

baselines (for all the tasks they can reliably solve) is the one that uses a partially

observed intrinsic reward and a partially observed policy (Table B.4). When the

intrinsic reward is based on a full view of the environment, Count and RND will con-

sider almost all states to be "novel" since the environment is procedurally-generated.

Thus, the reward they provide will not be very helpful for the agent since it does

not transfer knowledge from one episode to another (as is the case in fixed environ-

118

ments [8, 19]). In the case of RIDE and ICM, the change in the full view of the

environment produced by one action is typically a single number in the MiniGrid

observation. For ICM, this means that the agent can easily learn to predict the next

state representation, so the intrinsic reward might vanish early in training leaving the

agent without any guidance for exploring [91]. For RIDE, it means that the intrinsic

reward will be largely uniform across all state-action pairs, thus not differentiating

between more and less "interesting" states (which it can do when the intrinsic reward

is based on partial observations [91]).

B.2 Hyperparameter Sweeps and Best Values

For AMIGo, we grid search over batch size for student and teacher ∈ {8, 32, 150},

learning rate for student ∈ {.001, .0001}, learning rate for teacher ∈ {.05, .01, .0001}

unroll length ∈ {50, 100}, entropy cost for student ∈ {.0005, .001, .0001}, entropy cost

for teacher ∈ {.001, .01, .05}, embedding dimensions for the observations ∈ {5, 10, 20},

embedding dimensions for the student last linear layer ∈ {128, 256}, and teacher loss

function parameters 𝛼 and 𝛽 ∈ {1.0, 0.7, 0.5, 0.3, 0.0}.

For RND, RIDE, Count, and ICM, we used learning rate 10−4, batch size 32, unroll

length 100, RMSProp optimizer with 𝜖 = 0.01 and momentum 0, which were the best

values found for these methods on MiniGrid tasks by [91]. We further searched over

the entropy coefficient ∈ {0.0005, 0.001, 0.0001} and the intrinsic reward coefficient

∈ {0.1, 0.01, 0.5} on KCmedium and OMmedium. The results reported in Tables B.1,

B.2 and B.3 use the best values found from these experiments, while the results

reported in Table B.4 use the best parameter values reported by [91]. For ASP, we

ran the authors’ implementation using its reverse mode. We used the defaults for

most hyperparameters, grid searching only over sp_steps ∈ {5, 10, 20}, sp_test_rate

∈ {.1, .5}, and sp_alice_entr ∈ {.003, .03}.

The best hyperparameters for AMIGo and each baseline are reported below:

AMIGo: a student batch size of 8, a teacher batch size of 150, a student learning

rate of .001, a teacher learning rate of .001, an unroll length of 100, a student entropy

119

cost of .0005, a teacher entropy cost of .01, and observation embedding dimension of

5, a student last layer embedding dimension of 256, and finally, 𝛼 = 0.7 and 𝛽 = 0.3.

RND: partially observed intrinsic reward, partially observed policy, entropy cost

of .0005, intrinsic reward coefficient of .1

RIDE: for KCmedium, partially observed intrinsic reward, partially observed

policy, entropy cost of .0005, intrinsic reward coefficient of .1; for OMmedium: fully

observed intrinsic reward, partially observed policy, entropy cost of .0005, intrinsic

reward coefficient of .1

COUNT: partially observed intrinsic reward, partially observed policy, entropy

cost of .0005, intrinsic reward coefficient of .1

ICM: for KCmedium, partially observed intrinsic reward, fully observed policy,

entropy cost of .0005, intrinsic reward coefficient of .1; for OMmedium: partially

observed intrinsic reward, partially observed policy, entropy cost of .0005, intrinsic

reward coefficient of .1

ASP: Best performing hyperparameters (in the easier environments) were 10

sp_steps, a sp_test_rate of .5, and Alice entropy of .003. All other hyperparam-

eters used the defaults in the codebase.

B.3 Sample Efficiency

We show, in Figure B-1, the mean extrinsic reward over time during training for the

best configuration of the various methods. The first row consists of intermediately dif-

ficult environments in which different forms of intrinsic motivation perform similarly,

the first two environments require less than 30 million steps while OMmedhard and

the three more challenging environments of the bottom rows require in the order of

hundreds of millions of frames. Any plot where a method’s line is not visible indicates

that the method is consistently failing to reach reward states throughout its training.

The important point of note here is that on the two easiest environments, KCmedium

and OMmedium, agents need about 10 million steps to converge while on the other

four more challenging environments, they need an order of 100 million steps to learn

120

KCmedium OMmedium

m
ea

n_
ep

is
od

e_
re

tu
rn 1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
1e7
3.0 3.0

1e7

4 5 1 32 4 5
1e8
frames

1e8
321 00

m
ea

n_
ep

is
od

e_
re

tu
rn

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

KChardOMmedhard

KCharder OMhard

Figure B-1: Reward curves over training time comparing AMIGo to competing meth-
ods and baselines. The y-axis shows the Mean Extrinsic Reward (performance) ob-
tained in two medium and four harder different environments, shown for 30M and
500M frames respectively.

the tasks, showcasing AMIGo’s contributions not just to solving the exploration

problem, but also to improving the sample complexity of agent training.

121

B.4 Ablation Study

To further explore the effectiveness and robustness of our method, in this subsection

we investigate the alternative criteria discussed in Section 2.3.3. We compare the

Full Model with its ablations and alternatives consisting of removing the extrinsic

bonus (NoExtrinsic), removing the environment change bonus (NoEnvChange),

adding a novelty bonus(withNovelty).

We also considered two alternative reward forms for the teacher to provide a

more continuous and gradual reward than the previously introduced “all or nothing”

threshold. We consider a Gaussian 𝑝 ∼ Normal(𝑡*, 𝜎) reward around the target

threshold 𝑡*:

𝑟𝑇 =

⎧⎪⎨⎪⎩−1 if 𝑡+ = 0

1 + log𝑝(𝑡
+)− log𝑝(𝑡

*) otherwise

and a Linear-Exponential reward which grows linearly towards the threshold and

then decays exponentially as the goal proposed becomes too hard (as measured ac-

cording to the number of steps):

𝑟𝑇 =

⎧⎪⎨⎪⎩𝑒−(𝑡+−𝑡*)/𝑐 if 𝑡+ ≥ 𝑡*

𝑡+/𝑡* if 𝑡+ < 𝑡*

We report these two alternative forms of reward as (Gaussian and Linear-Exponential)

in the study below.

Performance is shown in Table B.5 where the number of steps needed to converge

(to the final extrinsic reward) is reported. A positive number means the model learned

to solve the task, while 0 means the model did not manage to get any extrinsic

reward. For all models we encourage goal diversity on the teacher with a high entropy

coefficient of .05 (as compared to .0005 of the student).

As the table shows, removing the extrinsic reward or the environment change

bonus severely hurts the model, making it unable to solve the harder environments.

The novelty bonus was minimally beneficial in one of the environments (namely

122

Table B.5: Ablations and Alternatives. Number of steps (in millions) for models
to learn to reach its final level of reward in the different environments (0 means the
model did not learn to get any extrinsic reward). Full Model is the main algorithm
described above. NoExtrinsic does not provide any extrinsic reward to the teacher.
NoEnvChange removes the reward for selecting goals that change as a result of
episode resets. withNovelty adds a novelty bonus that decreases depending on the
number of times an object has been successfully proposed. Gaussian and Linear-
Exponential explore alternative reward functions for the teacher.

Medium Difficulty Environments Hard Environments

Model KCmedium OMmedium OMmedhard KChard KCharder OMhard

Full Model 7M 8M 320M 140M 300M 370M
NoExtrinsic 240M 50M 0 0 0 0
NoEnvChange 400M 37M 0 0 0 0
withNovelty 15M 20M 350M 100M 370M 0
Gaussian 320M 60M 0 0 0 0
Linear-Exp 0 0 0 0 0 0

KChard) but slightly ineffective on the others. The more gradual reward forms

considered are not robust to the learning dynamics and often result in the system

going into rabbit holes where the algorithm learns to propose goals which provide

sub-optimal rewards, thus not helping to solve the actual task. Best results across all

environments in our Full Model were obtained using the simple threshold reward func-

tion along with entropy regularization and in combination with the extrinsic reward

and changing bonuses, but without the novelty bonus.

B.5 Qualitative Analysis

To better understand the learning dynamics of AMIGo, Figure B-2 shows the in-

trinsic reward throughout training received by the student (top panel) as well as the

teacher (middle panel). The bottom panel shows the difficulty of the proposed goals as

measured by the target threshold 𝑡* used by the teacher (described in Section 2.3.3).

The trajectories reflect interesting and complex learning dynamics.

For visualization purposes we divide this learning period into five phases: Phase

1: The student slowly becomes able to reach intrinsic goals with minimal difficulty.

123

Phase 1 Phase 4 Phase 5Phase
 3

Phase
 2

Figure B-2: An example of a learning trajectory on OMhard, one of the most chal-
lenging environments. Despite the lack of extrinsic reward, the panels show the
dynamics of the intrinsic rewards for the student (top panel), for the teacher (middle
panel), and the difficulty of the goals captured as 𝑡* (bottom panel).

The teacher first learns to propose easy nearby goals. Phase 2: Once the student

learns how to reach nearby goals, the adversarial dynamics cause a drop in the teacher

reward which is then forced to explore and propose harder goals. Phase 3: An

equilibrium is found in which the student is forced to learn to reach more challenging

124

goals. Phase 4: The student becomes too capable again and the teacher is forced to

increase the difficulty of the proposed goals. Phase 5: The difficulty reaches a state

where it induces a new equilibrium in which the student is unable to reach the goals

and forced to improve its student.

AMIGo generates diverse and complex learning dynamics that lead to constant

improvements of the agent’s policy. In some phases, both components benefit from

learning in the environment (as is the case during the first phase), while some phases

are completely adversarial (fourth phase), and some phases require more exploration

from both components (i.e. third and fifth phases).

Figure 2-10, presented in Section 2.3.4, further exemplifies a typical curriculum

in which the teacher learns to propose increasingly harder goals. The examples show

some of the typical goals proposed at different learning phases. First, the teacher

proposes nearby goals. After some training, it learns to propose goals that involve

traversing rooms and opening doors. Eventually, the teacher proposes goals which

involve interacting with different objects. Despite the increasing capacity of the agent

to interact with the environment, OMhard remains a challenging task and AMIGo

learns to solve it in only one of the five runs.

B.6 Goal Examples

Figure B-3 shows examples of goals proposed by the agent during different stages of

learning. Typically, in early stages the teacher learns to propose easy nearby goals.

As learning progresses it is incentivized to proposed farther away goals that often

involve traversing rooms and opening doors. Finally, in later stages the agent often

learns to propose goals that involve removing obstacles and interacting with objects.

We often observe this before the policy achieves any extrinsic reward.

125

Figure B-3: Some examples of goals during early, mid, and late stages of learning
(examples for KCmedium, OMhard and OMmedium are first, second, and third
rows respectively). The red triangle is the agent, the red square is the goal proposed
by the teacher, and the blue ball is the extrinsic goal.

126

Appendix C

The Taxonomy

The full taxonomy is in the Open Science Framework under the project:

Thesis Andres Campero 2021

https://osf.io/6bdsu/?view_only=66d52c46cc664349b48540f8f37baea6

• The full taxonomy and evolution of Models can also be found Here. An inter-

active version can be found in https://www.stateoftheart.ai/models

• The full taxonomy of Tasks and Datasets can also be found Here. An inter-

active version can be found in https://www.stateoftheart.ai/tasks

• The full NeurIPS 2020 dataset can also be found Here.

• The Collection of Taxonomies can also be found Here.

127

https://osf.io/6bdsu/?view_only=66d52c46cc664349b48540f8f37baea6
https://osf.io/6bdsu/?view_only=66d52c46cc664349b48540f8f37baea6
https://docs.google.com/spreadsheets/d/1X-ZBLQkaJEhLLm1EWcV0_XbX80jrhAt5XiTBqHZJ04c/edit?usp=sharing
https://www.stateoftheart.ai/models
https://docs.google.com/spreadsheets/d/1X-ZBLQkaJEhLLm1EWcV0_XbX80jrhAt5XiTBqHZJ04c/edit?usp=sharing
https://www.stateoftheart.ai/tasks
https://docs.google.com/spreadsheets/d/10y8pI7WxfB2IbxLXyznTmru51rcXNYiomX4sctbMlFA/edit?usp=sharing
https://docs.google.com/document/d/1eu4c7P2o_8Jc6yCES9WdYCI2h7pFS-JDzXJ4mKeHX1A/edit?usp=sharing

128

Appendix D

Human-AI Superintelligence

D.1 Regression Derivation

For a more sophisticated estimation of 𝜌 we derive the generalized mixed-effects linear

regression from a model where we assume the performance is a multiplicative function

with the following variables: 𝑠 = 𝛽 𝑎
𝑑
𝑓𝑛𝑒

𝑠𝑖𝑗𝑘𝑠 = speed of subject i on task j in condition k and order w

𝑎𝑖 = ability of subject i

𝑑𝑗 = difficulty of task j

𝑔𝑤 = effect on performance of task order w

𝑓𝑘 = effect on performance of condition k

𝑒𝑖𝑗𝑘𝑤 = error for subject i on task j in condition k and order w

Namely, relative to some baseline speed 𝛽, speed is increased by greater ability a

and greater facilitation f and by doing the task for a second time, and it is decreased

by increased task difficulty d. We also assume that error is multiplicative, not additive.

That is, errors are modeled as percentage increases or decreases not absolute increases

or decreases.

With these assumptions, the performance of subject i on task j in condition k and

order w can be modeled as follows:

129

𝑠𝑖𝑗𝑘𝑠 = 𝛽(
𝑛∏︁

𝑖=1

𝑎𝑞𝑖𝑖)(
2∏︁

𝑗=1

𝑑
−𝑇𝑗

𝑗)(
2∏︁

𝑘=1

𝑓𝐶𝑘
𝑘)(

2∏︁
𝑤=1

𝑔𝑂𝑤
𝑤)𝑒𝑖𝑗𝑘𝑤

where

n = number of subjects

𝑞𝑖 =

⎧⎪⎨⎪⎩1 𝑓𝑜𝑟 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇𝑗 =

⎧⎪⎨⎪⎩1 𝑓𝑜𝑟 𝑡𝑎𝑠𝑘 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶𝑘 =

⎧⎪⎨⎪⎩1 𝑓𝑜𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑂𝑤 =

⎧⎪⎨⎪⎩1 𝑓𝑜𝑟 𝑜𝑟𝑑𝑒𝑟 𝑤

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This equation can be transformed into a linear regression by taking natural loga-

rithms on both sides:

𝑙𝑛𝑠𝑖𝑗𝑘𝑤 = 𝑙𝑛 𝛽 +
𝑛−1∑︁
𝑖=1

𝑞𝑖𝑙𝑛 𝑎𝑖 +
𝑚−1∑︁
𝑗=1

𝑇𝑗𝑙𝑛 𝑑𝑗 +

𝑝−1∑︁
𝑘=1

𝐶𝑘𝑙𝑛 𝑓𝑘 +
𝑟−1∑︁
𝑤=1

𝑂𝑤𝑙𝑛 𝑔𝑤

where n, m, p and r are respectively the number of sukbjects, tasks, conditions,

and order numbers.

Using the observed values for 𝑠𝑖𝑗𝑘𝑤 and the indicator variables for 𝑇𝑗, 𝐶𝑗, and 𝑂𝑗

for each observed value, we can use linear regression to estimate the values of 𝑙𝑛 𝛽,

𝑙𝑛 𝑑𝑗, 𝑙𝑛 𝑓𝑘, and 𝑙𝑛 𝑔𝑤 which we can relabel as 𝐵0, 𝐵1, 𝐵2 and 𝐵3. Finally, we can take

the exponentials of these logs to recover the estimated values of the original variables:

𝛽, 𝑎𝑖, 𝑑𝑗, 𝑔𝑤 and 𝑓𝑘. We estimate the subject random effects by taking 𝑣𝑖 = 𝑞𝑖𝑙𝑛 𝑎𝑖

130

D.2 Study 1 Regression

Table D.1: Sudy 1 Results. 197 observations from 100 coders. Showing coefficient
estimate, standard error, p-value, 95% confidence interval lower and upper limits,
and the exponential of the coefficient which is the multiplicative increase due to the
different independent variables

Effect Estimate SE p 95% CI LL 95% CI UL 𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

Intercept 3.697 0.066 0.000 3.567 3.827 40.326

Condition 0.240 0.076 0.002 0.091 0.390 1.271

Task -0.098 0.066 0.137 -0.227 0.031 0.376

Order -0.329 0.059 0.000 -0.444 -0.214 0.720

Subject RE 0.046 0.063

D.3 Coders vs Non-coders Regression

Table D.2: HC condition Regression. 200 observations from 150 subjects. Showing
coefficient estimate, standard error, p-value, 95% confidence interval lower and upper
limits, and the exponential of the coefficient which is the multiplicative increase due
to the different independent variables

Effect Estimate SE p 95% CI LL 95% CI UL 𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

Intercept -3.792 0.099 0.000 -3.986 3.597 0.023
Condition 0.015 0.118 0.902 -0.217 0.247 1.015

Task 0.311 0.049 0.000 0.216 0.406 1.365
Order -0.221 0.048 0.000 0.126 0.315 0.802

Subject RE 0.410 0.435

131

D.4 Quality and Speed Distributions

(a) Speed, Study 1 Condition HC (Hu-
man Coders + GPT-3)

(b) Quality, Study 1 Condition HC (Hu-
man Coders + GPT-3)

(c) Speed, Study 2 Condition HC’ (Hu-
man Non-coders + GPT-3)

(d) Quality, Study 2 Condition HC’ (Hu-
man Non-coders + GPT-3)

(e) Speed, Study 1 Condition H (Human
Coders)

(f) Quality, Study 1 Condition H (Human
Coders)

Figure D-1: Speed (tasks/min) and Quality Score (% of total points obtained on an
individual submission) distribution for different populations and conditions

132

D.5 GPT-3 Parameters and Prompts

For all our experiments we used the Open-AI API with the Davinci engine, a tem-

perature of 0.3 and a max_token length of 512.

Conditioning GPT-3 is conditioned by prompting where each prompt includes a nat-

ural language sentence that the user would type followed by the HTML that would

be returned by GPT-3:

• "Hello world button"

<button style="padding: 12px 24px; border: 1px solid lightgray; background-

color: whitesmoke; border-radius: 4px; font-size: 14px; color: black; font-

weight: normal;">Hello World</button>

• "pink button that says Banana with white text color"

<button style="padding: 12px 24px; border: 1px solid lightgray; background-

color: pink; border-radius: 4px; font-size: 12px; color: white; font-weight:

normal;">Banana</button>

• "Large Google Pixel button with no background"

<button style="padding: 12px 24px; border: 1px solid lightgray; background-

color: transparent; border-radius: 4px; font-size: 24px; color: black; font-

weight: normal;">Google Pixel</button>

• "red square"

<div style="width: 100px; height: 100px; background-color: red;"></div>

• "orange rectangle"

<div style="width: 200px; height: 100px; background-color: orange;"></div>

• "paragraph that says I like apples"

<p style="color: black; font-size: 14px;">I like apples</p>

• "large text that says Black Circle in blue"

Black Circle

133

• "Air-Conditioner in brown color"

Air-Conditioner

• "My birthday is coming up soon!"

<p>My birthday is coming up soon!</p>

• "text that says Google and links to https://www.google.com/"

<a href="https://www.google.com/" target="_blank" style="color: black; text-

decoration: none;">Google

• "FACEBOOK and links to https://www.facebook.com/"

<a href="https://www.facebook.com/" target="_blank" style="color: black;

text-decoration: none;">FACEBOOK

• "image from https://picsum.photos/id/237/200/300"

<img src="https://picsum.photos/id/237/200/300" style="width: 200px; object-

fit: contain;">

• "<div style="width: 1024px; height: 200px; background-color: darkslategray;"

/>"

<div style="width: 1024px; height: 200px; background-color: darkslategray;"

/>

• "<input type="submit" value="Submit!"></input>"

<input type="submit" value="Submit!"></input>

• "table that says Fruits, Apple, Lime, Blueberries in the first column and Color,

Red, Green, Blue in the second column"

<table style="width: 250px; border-collapse: collapse; border: 1px solid black;

text-align: center;"><tr><th>Fruits</th><th>Color</th></tr><tr><td>Apple</td><td>Red</td></tr

><tr><td>Lime</td><td>Green</td></tr><tr><td>Blueberries</td><td>Blue</td></tr>

</table>

134

D.6 Study 1 Robustness Checks

Regression for only coders that passed For robustness, we run the same re-

gression only for the population of coders that where successful, defined as obtaining

at least 90% of the total possible points on the task. This regression has 169 obser-

vations. Table D.3 shows the results. The exponential of the condition coefficient

remained similar improving to 1.33 with a Confidence Interval of [1.14, 1.55].

Table D.3: Regression for observations that had a score of 90%+, 169 observations
from 96 coders. Showing coefficient estimate, standard error, p-value, 95% confidence
interval lower and upper limits, and the exponential of the coefficient which is the
multiplicative increase due to the different independent variables

Effect Estimate SE p 95% CI LL 95% CI UL 𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

Intercept 3.632 0.068 0.000 3.498 3.765 37.788
Condition 0.287 0.078 0.000 0.134 0.439 1.332

Task -0.030 0.069 0.667 -0.166 0.106 0.970
Order -0.347 0.060 0.000 -0.465 -0.230 0.707

Subject RE 0.038 0.073

Removing Subject Random Effects We analyze a regression without Random

Effects for the population of coders using a standard Ordinary Least Squares. The

regression has 197 observations from 100 coders. We see that the exponential of the

condition coefficient remains almost the same at 1.26 still showing significance but

with a slightly bigger variance and a Confidence Interval of [1.06, 1.51].

Table D.4: OLS Regression without Random Effects. 197 Observations from 100
coders. Showing coefficient estimate, standard error, p-value, 95% confidence interval
lower and upper limits, and the exponential of the coefficient which is the multiplica-
tive increase due to the different independent variables

Effect Estimate SE p 95% CI LL 95% CI UL 𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

Intercept 3.697 0.074 0.000 3.551 3.845 40.326
Condition 0.238 0.090 0.009 0.060 0.416 1.269

Task -0.100 0.078 0.203 -0.254 0.054 0.904
Order -0.324 0.069 0.000 -0.461 -0.188 0.723

135

D.7 Cost Regressions

Table D.5: Coders Cost Regression HC vs H . 197 observations from 100 coders.
Showing coefficient estimate, standard error, p-value, 95% confidence interval lower
and upper limits, and the exponential of the coefficient which is the multiplicative
increase due to the different independent variables

Effect Estimate SE p 95% CI LL 95% CI UL 𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

Intercept 2.507 0.068 0.000 2.373 2.640 12.268

Condition -0.116 0.072 0.109 -0.258 0.026 0.890

Task -0.147 0.063 0.019 -0.269 -0.024 0.863

Order -0.311 0.056 0.000 -0.420 -0.201 0.733

Subject RE 0.196 0.159

Table D.6: Coders vs Non-coders Cost Regression HC vs HC’ . HC condition Re-
gression. 200 observations from 150 subjects. Showing coefficient estimate, standard
error, p-value, 95% confidence interval lower and upper limits, and the exponential
of the coefficient which is the multiplicative increase due to the different independent
variables

Effect Estimate SE p 95% CI LL 95% CI UL 𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

Intercept 2.135 0.108 0.000 1.922 2.347 8.457

Condition 0.337 0.130 0.010 0.082 0.591 1.401

Task -0.351 0.046 0.000 -0.441 -0.261 0.704

Order -0.199 0.046 0.000 -0.289 -0.110 0.819

Subject RE 0.512 0.553

136

D.8 Full Postings for Recruiting

Non-Coders Needed For Web Experiment (Open to all with no coding background)

"We are MIT researchers doing experiments on tools that help create

websites. We are looking for non-coders that can help us test our interface.

If you are a coder, look for our other job here https://www.upwork.com/

ab/applicants/1425936000678547456/job-details.

Your job will be to replicate a couple of website mockups. We estimate

this would take 45 mins - 1.5hrs of your time for the whole job. We might

also want to discuss your experience during the task to improve it.

If you perform well on this job, we will prioritize you for similar future

projects.

To be a good fit for this project you should have no experience with coding

(If you code, you should look and will do better by doing the “Website

Mockup Replication in HTML (For Coders)” experiment).

You will receive a base pay of $10 dollars and will receive a bonus of $10

dollars for each problem you get correctly amounting to up to $30 dollars

for the two problems

You will complete this job using the special interface we provide. The link

to the interface will be sent to you once we have accepted you for the job.

If you are interested in this project, please submit a proposal.”

Frontend Web Developer Needed For Experiment

"We are MIT researchers doing experiments on tools that help create

websites. We are looking for coders with experience in HTML and CSS

to test our interface.

Your job will be to replicate a couple of website mockups. We estimate

this would take 45 mins - 1.5 hrs of your time for the whole job. We may

also want to discuss your experience with the task to improve it.

137

https://www.upwork.com/ab/applicants/1425936000678547456/job-details
https://www.upwork.com/ab/applicants/1425936000678547456/job-details

If you perform well on this job, we will prioritize you for similar future

projects.

To be a good fit for this project you should have experience coding in

HTML and CSS.

You will receive a base pay of $10 dollars and will receive a bonus of $10

dollars for each problem you get correctly amounting to up to $30 dollars

You will complete this job using the special interface we provide. The link

to the interface will be sent to you once we have accepted you for the job.

If you are interested in this project, please submit a proposal.”

138

Bibliography

[1] Daron Aceomglu, Michael Jordan, and Glen Weyl. How ai fails us. WIRED,
2021.

[2] Abdullah Almaatouq, Mohammed Alsobay, Ming Yin, and Duncan J Watts.
Task complexity moderates group synergy. Proceedings of the National Academy
of Sciences, 118(36), 2021.

[3] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Woj-
ciech Zaremba. Hindsight experience replay. Advances in neural information
processing systems, 30:5048–5058, 2017.

[4] Andrew G Barto. Intrinsic motivation and reinforcement learning. In Intrinsi-
cally motivated learning in natural and artificial systems, pages 17–47. Springer,
2013.

[5] Rahul Basole and AI Accenture. Visualizing the evolution of the ai ecosystem.
In HICSS, pages 1–10, 2021.

[6] Rahul C Basole and AI Accenture. The ecosystem of machine learning methods.
In HICSS, pages 1–10, 2021.

[7] Reinhold Behringer, Sundar Sundareswaran, Brian Gregory, Richard Elsley,
Bob Addison, Wayne Guthmiller, Robert Daily, and David Bevly. The darpa
grand challenge-development of an autonomous vehicle. In IEEE Intelligent
Vehicles Symposium, 2004, pages 226–231. IEEE, 2004.

[8] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Sax-
ton, and Remi Munos. Unifying count-based exploration and intrinsic motiva-
tion. In Advances in Neural Information Processing Systems, pages 1471–1479,
2016.

[9] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Cur-
riculum learning. In Proceedings of the 26th annual international conference on
machine learning, pages 41–48. ACM, 2009.

[10] T. Besold, A. Garcez, S. Bader, H. Bowman, P. Domingos, P. Hitzler, K. Kühn-
berger, L. Lamb, D. Lowd, P. Lima, et al. Neural-symbolic learning and rea-
soning: A survey and interpretation. arXiv:1711.03902, 2017.

139

[11] Luís Bettencourt, David Kaiser, Jasleen Kaur, Carlos Castillo-Chavez, and
David Wojick. Population modeling of the emergence and development of sci-
entific fields. Scientometrics, 75(3):495–518, 2008.

[12] Luís MA Bettencourt, Ariel Cintrón-Arias, David I Kaiser, and Carlos Castillo-
Chávez. The power of a good idea: Quantitative modeling of the spread of
ideas from epidemiological models. Physica A: Statistical Mechanics and its
Applications, 364:513–536, 2006.

[13] Luís MA Bettencourt, David I Kaiser, and Jasleen Kaur. Scientific discovery
and topological transitions in collaboration networks. Journal of Informetrics,
3(3):210–221, 2009.

[14] G. Bouchard, S. Singh, and T. Trouillon. On approximate reasoning capabilities
of low-rank vector spaces. AAAI Spring Syposium on Knowledge Representation
and Reasoning (KRR), 2015.

[15] Rodney Brooks. The seven deadly sins of al predictions, 2017.

[16] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. CoRR, abs/2005.14165, 2020.

[17] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The DARPA urban chal-
lenge: autonomous vehicles in city traffic, volume 56. springer, 2009.

[18] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and
Alexei A. Efros. Large-scale study of curiosity-driven learning. In International
Conference on Learning Representations, 2019.

[19] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration
by random network distillation. In International Conference on Learning Rep-
resentations, 2019.

[20] Andres Campero, Andrew Francl, and J. B Tenenbaum. Learning to learn visual
object categories by integrating deep learning with hierarchical bayes. CogSci,
2017.

[21] Andres Campero, Aldo Pareja, Tim Klinger, Josh Tenenbaum, and Sebastian
Riedel. Logical rule induction and theory learning using neural theorem proving.
arXiv preprint arXiv:1809.02193, 2018.

140

[22] Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B. Tenenbaum,
Tim Rocktäschel, and Edward Grefenstette. Learning with amigo: Adversari-
ally motivated intrinsic goals, 2020.

[23] S. Carey. The origin of concepts. Oxford University Press, 2009.

[24] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic
gridworld environment for OpenAI gym. https://github.com/maximecb/
gym-minigrid, 2018.

[25] Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging
procedural generation to benchmark reinforcement learning. arXiv preprint
arXiv:1912.01588, 2019.

[26] William W. Cohen. Tensorlog: A differentiable deductive database. CoRR,
abs/1605.06523, 2016.

[27] A.M. Collins and M.R. Quillian. Retrieval time from semantic memory. Journal
of Verbal Learning and Verbal Behavior, 8:240–248, 1969.

[28] A. Cropper and S. Muggleton. Learning higher-order logic programs through
abstraction and invention. In IJCAI, pages 1418–1424, 2016.

[29] L. De Raedt and K Kersting. Probabilistic inductive logic programming. In
Probabilistic Inductive Logic Programming, pages 1–27. Springer, 2008.

[30] Luc De Raedt. Logical settings for concept-learning. Artif. Intell., 95(1):187–
201, August 1997.

[31] I. Donadello, L. Serafini, and AS. D’Avila Garcez. Logic tensor networks for
semantic image interpretation. In IJCAI, pages 1596–1602, 2017.

[32] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
Benchmarking deep reinforcement learning for continuous control. ArXiv,
abs/1604.06778, 2016.

[33] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary,
Lucas Morales, Luke Hewitt, Armando Solar-Lezama, and Joshua B. Tenen-
baum. Dreamcoder: Growing generalizable, interpretable knowledge with wake-
sleep bayesian program learning, 2020.

[34] DC Engelbert. A conceptual framework for the augumentation of man’s intel-
lect. Vistas in information handling, 1963.

[35] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih,
Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. IM-
PALA: Scalable distributed deep-rl with importance weighted actor-learner ar-
chitectures. arXiv preprint arXiv:1802.01561, 2018.

141

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid

[36] R. Evans and E. Grefenstette. Learning explanatory rules from noisy data.
Journal of Artificial Intelligence Research, 61:1–64, 2018.

[37] Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-
guided hindsight experience replay. In Advances in Neural Information Pro-
cessing Systems, pages 12623–12634, 2019.

[38] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic
goal generation for reinforcement learning agents. In Proceedings of the 35th
International Conference on Machine Learning, 2018.

[39] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter
Abbeel. Reverse curriculum generation for reinforcement learning. arXiv
preprint arXiv:1707.05300, 2017.

[40] John Foley, Emma Tosch, Kaleigh Clary, and David Jensen. Toybox: Better
atari environments for testing reinforcement learning agents. arXiv preprint
arXiv:1812.02850, 2018.

[41] Santo Fortunato, Carl T Bergstrom, Katy Börner, James A Evans, Dirk Hel-
bing, Staša Milojević, Alexander M Petersen, Filippo Radicchi, Roberta Sina-
tra, Brian Uzzi, et al. Science of science. Science, 359(6379):eaao0185, 2018.

[42] Artur d’Avila Garcez, Marco Gori, Luis C Lamb, Luciano Serafini, Michael
Spranger, and Son N Tran. Neural-symbolic computing: An effective methodol-
ogy for principled integration of machine learning and reasoning. arXiv preprint
arXiv:1905.06088, 2019.

[43] A. Gaunt, M. Brockschmidt, R. Singh, N. Kushman, P. Kohli, J. Taylor, and
D. Tarlow. Terpret: A probabilistic programming language for program induc-
tion. arXiv preprint arXiv:1608.04428, 2016.

[44] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
27, pages 2672–2680. Curran Associates, Inc., 2014.

[45] Noah D Goodman, Joshua B Tenenbaum, and Tobias Gerstenberg. Concepts in
a probabilistic language of thought. Technical report, Center for Brains, Minds
and Machines (CBMM), 2014.

[46] Thomas Griffiths and Joshua B Tenenbaum. Hierarchical topic models and the
nested chinese restaurant process. Advances in neural information processing
systems, 16:17, 2004.

[47] Matthew Groh, Ziv Epstein, Chaz Firestone, and Rosalind Picard. Deepfake de-
tection by human crowds, machines, and machine-informed crowds. Proceedings
of the National Academy of Sciences, 119(1), 2022.

142

[48] Barbara Grosz. What question would turing pose today? AI magazine,
33(4):73–73, 2012.

[49] G. Hinton. Learning distributed representations of concepts. In Proceedings of
the eighth annual conference of the cognitive science society, 1986.

[50] Jeremy Howard. Is github copilot a blessing, or a curse? Fast.ai, 2021.

[51] David Kaiser. Booms, busts, and the world of ideas: Enrollment pressures and
the challenge of specialization. Osiris, 27(1):276–302, 2012.

[52] Antonis C Kakas, Robert A. Kowalski, and Francesca Toni. Abductive logic
programming. Journal of logic and computation, 2(6):719–770, 1992.

[53] Y. Katz, N. Goodman, K. Kersting, C. Kemp, and J. Tenenbaum. Modeling se-
mantic cognition as logical dimensionality reduction. Proceedings of the Annual
Meeting of the Cognitive Science Society, 2008.

[54] Seyed Mehran Kazemi and David Poole. Relnn: a deep neural model for rela-
tional learning. arXiv preprint arXiv:1712.02831, 2017.

[55] Charles Kemp, Amy Perfors, and Joshua B Tenenbaum. Learning overhypothe-
ses with hierarchical bayesian models. Developmental science, 10(3):307–321,
2007.

[56] Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Empower-
ment: A universal agent-centric measure of control. In 2005 IEEE Congress on
Evolutionary Computation, volume 1, pages 128–135. IEEE, 2005.

[57] Bernard Koch, Daniele Silvestro, and Jacob G Foster. The evolutionary dynam-
ics of cultural change (as told through the birth and brutal, blackened death of
metal music). SocArXiv, 2020.

[58] Pushmeet Kohli, Toby Sharp, Tom Minka, John Winn, Jamie Shotton, and
Antonio Criminisi. Microsoft research in cambridge image dataset, 2005.

[59] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[60] Heinrich Küttler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath
Sivakumar, Tim Rocktäschel, and Edward Grefenstette. TorchBeast: A Py-
Torch platform for distributed RL. arXiv preprint arXiv:1910.03552, 2019.

[61] Heinrich Küttler, Nantas Nardelli, Roberta Raileanu, Marco Selvatici, Ed-
ward Grefenstette, and Tim Rocktäschel. The NetHack Learning Environment.
In Workshop on Beyond Tabula Rasa in Reinforcement Learning (BeTR-RL),
2020.

143

[62] Nicolas Lair, Cédric Colas, Rémy Portelas, Jean-Michel Dussoux, Peter Ford
Dominey, and Pierre-Yves Oudeyer. Language grounding through social interac-
tions and curiosity-driven multi-goal learning. arXiv preprint arXiv:1911.03219,
2019.

[63] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Ger-
shman. Building machines that learn and think like people. Behavioral and
brain sciences, 40, 2017.

[64] James R Larson. In search of synergy in small group performance. Psychology
Press, 2010.

[65] S. Laurence and E. Margolis. Concepts and cognitive science. Concepts: core
readings, pages 3–81, 1999.

[66] Joseph CR Licklider. Man-computer symbiosis. IRE transactions on human
factors in electronics, (1):4–11, 1960.

[67] Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew
Hausknecht, and Michael Bowling. Revisiting the arcade learning environment:
Evaluation protocols and open problems for general agents. Journal of Artificial
Intelligence Research, 61:523–562, 2018.

[68] Computing Machinery. Computing machinery and intelligence-am turing. Mind,
59(236):433, 1950.

[69] Thomas Malone, Daniela Rus, and Robert Laubacher. Artificial intelligence
and the future of work. MIT Work of the Future RB17-2020, 2020.

[70] Thomas W Malone. Superminds: The surprising power of people and computers
thinking together. Little, Brown Spark, 2018.

[71] Thomas W Malone, Kevin Crowston, and George Arthur Herman. Organizing
business knowledge: The MIT process handbook. MIT press, 2003.

[72] R. Manhaeve, S. Duman, A. Kimmig, T. Demeester, and L. De Raedt.
Deepproblog: Neural probabilistic logic programming. arXiv preprint
arXiv:1805.10872, 2018.

[73] David Marr. Vision: A computational investigation into the human representa-
tion and processing of visual information. mit press. Cambridge, Massachusetts,
1982.

[74] Fernando Martinez-Plumed, Pablo Barredo, Sean O Heigeartaigh, and Jose
Hernandez-Orallo. Research community dynamics behind popular ai bench-
marks. Nature Machine Intelligence, 3(7):581–589, 2021.

[75] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-
student curriculum learning. IEEE transactions on neural networks and learning
systems, 2017.

144

[76] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[77] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning, pages 1928–1937, 2016.

[78] Matej Moravcík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan
Bard, Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowl-
ing. DeepStack: Expert-level artificial intelligence in no-limit poker. ArXiv,
abs/1701.01724, 2017.

[79] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor,
and Peter Stone. Curriculum learning for reinforcement learning domains: A
framework and survey. arXiv preprint arXiv:2003.04960, 2020.

[80] Allen Newell. You can’t play 20 questions with nature and win: Projective
comments on the papers of this symposium. 1973.

[81] Michael Nielsen. Reinventing discovery. Princeton University Press, 2020.

[82] Georg Ostrovski, Marc G Bellemare, Aäron van den Oord, and Rémi Munos.
Count-based exploration with neural density models. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 2721–2730.
JMLR. org, 2017.

[83] Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation
systems for autonomous mental development. IEEE transactions on evolution-
ary computation, 11(2):265–286, 2007.

[84] Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a
typology of computational approaches. Frontiers in neurorobotics, 1:6, 2009.

[85] Deepak Pathak, Pulkit Agrawal, Alexei Efros, and Trevor Darrell. Curiosity-
driven exploration by self-supervised prediction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 16–
17, 2017.

[86] Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and
Sergey Levine. Skew-fit: State-covering self-supervised reinforcement learning.
arXiv preprint arXiv:1903.03698, 2019.

[87] Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer.
Teacher algorithms for curriculum learning of deep rl in continuously parame-
terized environments. In Conference on Robot Learning, pages 835–853. PMLR,
2020.

145

[88] Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves
Oudeyer. Automatic curriculum learning for deep rl: A short survey. arXiv
preprint arXiv:2003.04664, 2020.

[89] J. R. Quinlan and R. M. Cameron-Jones. Induction of logic programs: FOIL
and related systems. New Generation Computing, 13(3,4):287–312, 1995.

[90] Sebastien Racaniere, Andrew K Lampinen, Adam Santoro, David P Reichert,
Vlad Firoiu, and Timothy P Lillicrap. Automated curricula through setter-
solver interactions. arXiv preprint arXiv:1909.12892, 2019.

[91] Roberta Raileanu and Tim Rocktäschel. {RIDE}: Rewarding impact-driven ex-
ploration for procedurally-generated environments. In International Conference
on Learning Representations, 2020.

[92] Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and Sham M
Kakade. Towards generalization and simplicity in continuous control. In Ad-
vances in Neural Information Processing Systems, pages 6550–6561, 2017.

[93] Jürgen Renn. The Evolution of Knowledge: Rethinking Science for the Anthro-
pocene. Princeton University Press, 2020.

[94] Sebastian Risi and Julian Togelius. Procedural content generation: From auto-
matically generating game levels to increasing generality in machine learning.
arXiv preprint arXiv:1911.13071, 2019.

[95] T. Rocktäschel and S. Riedel. End-to-end differentiable proving. In Advances
in Neural Information Processing Systems, pages 3791–3803, 2017.

[96] T. Rogers and J. McClelland. Semantic cognition: A parallel distributed pro-
cessing approach. MIT Press, Cambridge, MA, 2004.

[97] Anselm Rothe, Alexander S Rich, and Zhi-Wei Li. Topics and trends in cogni-
tive science (2000–2017). In Proceedings of the 40th Annual Conference of the
Cognitive Science Society, pages 1175–1180. Cognitive Science Society Austin,
TX, 2018.

[98] Christopher Rouff and Mike Hinchey. Experience from the DARPA urban chal-
lenge. Springer Publishing Company, Incorporated, 2011.

[99] Ruslan Salakhutdinov, Joshua B Tenenbaum, and Antonio Torralba. One-shot
learning with a hierarchical nonparametric bayesian model. In ICML Unsuper-
vised and Transfer Learning, pages 195–206, 2012.

[100] Ruslan Salakhutdinov, Joshua B Tenenbaum, and Antonio Torralba. Learn-
ing with hierarchical-deep models. IEEE transactions on pattern analysis and
machine intelligence, 35(8):1958–1971, 2013.

146

[101] Jürgen Schmidhuber. A possibility for implementing curiosity and boredom
in model-building neural controllers. In Proc. of the international conference
on simulation of adaptive behavior: From animals to animats, pages 222–227,
1991.

[102] Jürgen Schmidhuber. Powerplay: Training an increasingly general problem
solver by continually searching for the simplest still unsolvable problem. In
Front. Psychol., 2011.

[103] Lauren A Schmidt. Meaning and compositionality as statistical induction of
categories and constraints. PhD thesis, Citeseer, 2009.

[104] Laura Schulz. Finding new facts; thinking new thoughts. In Advances in child
development and behavior, volume 43, pages 269–294. Elsevier, 2012.

[105] D. Selsam. The terpret problem and the limits of sgd. On Machine Intelligence,
https://dselsam.github.io/the-terpret-problem/, 2018.

[106] L. Serafini and A. Garcez. Logic tensor networks: Deep learning and logical
reasoning from data and knowledge. arXiv preprint arXiv:1606.04422, 2016.

[107] Yash Sherry and Neil C. Thompson. How fast do algorithms improve? [point
of view]. Proceedings of the IEEE, 109(11):1768–1777, 2021.

[108] Divya Siddarth, Daron Acemoglu, Danielle Allen, Kate Crawford, James Evans,
Michael Jordan, and Glen Weyl. The turing test is bad for business. Harvard,
Justice, Health and Democracy Impact Initiative, 2021.

[109] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484, 2016.

[110] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[111] Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come
from. In Proceedings of the annual conference of the cognitive science society,
pages 2601–2606. Cognitive Science Society, 2009.

[112] Linda B Smith, Susan S Jones, Barbara Landau, Lisa Gershkoff-Stowe, and
Larissa Samuelson. Object name learning provides on-the-job training for at-
tention. Psychological Science, 13(1):13–19, 2002.

[113] Jonathan Sorg, Satinder P Singh, and Richard L Lewis. Internal rewards miti-
gate agent boundedness. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 1007–1014, 2010.

147

[114] G. Sourek, V. Aschenbrenner, F. Zelezny, and O. Kuzelka. Lifted relational
neural networks. arXiv preprint arXiv:1508.05128, 2015.

[115] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing explo-
ration in reinforcement learning with deep predictive models. arXiv preprint
arXiv:1507.00814, 2015.

[116] Alexander L Strehl and Michael L Littman. An analysis of model-based interval
estimation for markov decision processes. Journal of Computer and System
Sciences, 74(8):1309–1331, 2008.

[117] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur
Szlam, and Rob Fergus. Intrinsic motivation and automatic curricula via asym-
metric self-play. arXiv preprint arXiv:1703.05407, 2017.

[118] S. Tran and AS. D’Avila Garcez. Deep logic networks: Inserting and extracting
knowledge from deep belief networks. IEEE transactions on neural networks
and learning systems, 2016.

[119] Philipp Tschandl, Christoph Rinner, Zoe Apalla, Giuseppe Argenziano, Noel
Codella, Allan Halpern, Monika Janda, Aimilios Lallas, Caterina Longo, Josep
Malvehy, et al. Human–computer collaboration for skin cancer recognition.
Nature Medicine, 26(8):1229–1234, 2020.

[120] Pedro A Tsividis, Thomas Pouncy, Jaqueline L Xu, Joshua B Tenenbaum, and
Samuel J Gershman. Human learning in atari. In 2017 AAAI Spring Symposium
Series, 2017.

[121] T. Ullman, N. Goodman, and J. Tenenbaum. Theory learning as stochastic
search in the language of thought. Cognitive Development, 27(4):455–480, 2012.

[122] Michelle Vaccaro and Jim Waldo. The effects of mixing machine learning and
human judgment. Communications of the ACM, 62(11):104–110, 2019.

[123] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, et al. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

[124] W. Wang, K. Mazaitis, and W. Cohen. A soft version of predicate invention
based on structured sparsity. In IJCAI, pages 3918–3924, 2015.

[125] Fei Xu and Joshua B Tenenbaum. Word learning as bayesian inference. Psy-
chological review, 114(2):245, 2007.

[126] F. Yang, Z. Yang, and W. Cohen. Differentiable learning of logical rules for
knowledge base reasoning. In Advances in Neural Information Processing Sys-
tems, pages 2316–2325, 2017.

148

[127] K. Yarden, N. Goodman, K. Kersting, C. Kemp, and J. Tenenbaum. Model-
ing semantic cognition as logical dimensionality reduction. Proceedings of the
Annual Meeting of the Cognitive Science Society, 2008.

[128] Chang Ye, Ahmed Khalifa, Philip Bontrager, and Julian Togelius. Rotation,
translation, and cropping for zero-shot generalization. CoRR, abs/2001.09908,
2020.

[129] Ilker Yildirim. Bayesian inference: Metropolis-hastings sampling. University of
Rochester, NY, 2012.

[130] Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfit-
ting and generalization in continuous reinforcement learning. arXiv preprint
arXiv:1806.07937, 2018.

[131] Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic curriculum learning
through value disagreement, 2020.

[132] Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards
for policy gradient methods. In Advances in Neural Information Processing
Systems, pages 4644–4654, 2018.

[133] Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. RTFM: generalising
to new environment dynamics via reading. In International Conference on
Learning Representations, 2020.

149

	Introduction
	Neuro-Symbolic AI
	Hierarchical Bayes and Deep Learning
	Introduction
	Model and Learning to Learn
	Tests and Results
	Discussion

	Logical Induction and Distributed Representations
	Introduction
	Background and Related Work
	The Model
	Experiments
	Conclusions and Future Work

	AMIGo: Adversarially Motivated Intrinsic Goals
	Introduction
	Related Work
	Adversarially Motivated Intrinsic Goals
	Experiments
	Conclusion

	AI Research as Collective Intelligence: A Taxonomy
	Introduction
	Desirable Properties and Theoretical Considerations
	Desirable Properties
	Theoretical Considerations and Limitations

	The Taxonomy
	Overview
	Models
	Tasks and Datasets
	NeurIPS 2020 Dataset

	Current Potential uses of the Taxonomy
	Improvements and Open Directions
	Conclusion

	Human-AI Combination for Generating Software
	Introduction
	Approach
	Results
	Study 1
	Study 2

	Discussion
	Materials and Methods
	Web Pages
	Subjects
	GPT-3
	Estimating Costs
	Instructions and Incentives

	ILP Task Descriptions
	ILP Tasks
	Countries
	Taxonomy and Kinship

	Learning with AMIGo
	Full results
	Hyperparameter Sweeps and Best Values
	Sample Efficiency
	Ablation Study
	Qualitative Analysis
	Goal Examples

	The Taxonomy
	Human-AI Superintelligence
	Regression Derivation
	Study 1 Regression
	Coders vs Non-coders Regression
	Quality and Speed Distributions
	GPT-3 Parameters and Prompts
	Study 1 Robustness Checks
	Cost Regressions
	Full Postings for Recruiting

