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ARTICLE

Emergent Sasaki-Einstein geometry and AdS/CFT
Robert J. Berman 1✉, Tristan C. Collins 2✉ & Daniel Persson 1✉

A central problem in any quantum theory of gravity is to explain the emergence of the

classical spacetime geometry in some limit of a more fundamental, microscopic description of

nature. The gauge/gravity-correspondence provides a framework in which this problem can,

in principle, be addressed. This is a holographic correspondence which relates a supergravity

theory in five-dimensional Anti-deSitter space to a strongly coupled superconformal gauge

theory on its 4-dimensional flat Minkowski boundary. In particular, the classical geometry

should therefore emerge from some quantum state of the dual gauge theory. Here we

confirm this by showing how the classical metric emerges from a canonical state in the dual

gauge theory. In particular, we obtain approximations to the Sasaki-Einstein metric underlying

the supergravity geometry, in terms of an explicit integral formula involving the canonical

quantum state in question. In the special case of toric quiver gauge theories we show that our

results can be computationally simplified through a process of tropicalization.
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It is expected that a quantum theory of gravity should be able
to explain the emergence of the classical spacetime geometry
in some limit of a more fundamental, microscopic description

of Nature. The AdS/CFT-correspondence (or “gauge/gravity
correspondence”) introduced in ref. 1, provides a framework in
which this problem can, in principle, be addressed. The AdS/CFT
correspondence relates a supergravity theory in the five-
dimensional Anti-deSitter space AdS5 to a strongly coupled,
rank N, superconformal gauge theory on the 4-dimensional flat
boundary R3;1 of AdS5. This is a holographic correspondence
since R3;1 is the (conformal) boundary of AdS5; hence it relates a
gravitational theory in spacetime, to a conformal field theory
(without gravity) on the boundary2–4. In particular, the classical
geometry, i.e., the supergravity vacuum, should therefore emerge
from a particular quantum state of the dual gauge theory. The
main aim of our work is to make this precise by exhibiting a
canonical (i.e., background independent) such quantum state ΨN

and by showing that the supergravity vacuum in question
emerges from the probability amplitude of ΨN in the t’Hooft limit
where the rank N of the gauge group tends to infinity.

In the general setting of minimal supersymmetry, the super-
gravity vacuum is encoded by a Sasaki–Einstein metric gM on a
five-dimensional compact manifold M5,6. On the gauge theory
side the N ¼ 1 superconformal symmetry is encoded by a
complex cone Y of six real dimensions. This means that Y is a
complex affine algebraic variety with a unique singular point y0
(the tip of the cone), endowed with a repulsive holomorphic
R> 0-action, representing the conformal dilatation symmetry of
the gauge theory. In the AdS/CFT correspondence the compact
manifold M on the supergravity side arises as to the base of the
complex cone Y of the gauge theory:

M :¼ Y � fy0g
� �

=R> 0: ð1Þ
The complex cone ðY ;R> 0Þ comes with a canonical holo-

morphic three-form Ω which is homogeneous of degree 3. Such a
space Y is often called a Calabi–Yau cone in the literature and is
usually endowed with a conical Calabi–Yau metric gY, i.e., a Ricci
flat conical Kähler metric, as well as a radial coordinate r, arising
as the distance to the vertex point y0 with respect to the
Calabi–Yau metric gY. However, in the background independent
formalism that we shall stress, the complex cone Y is not, a priori,
endowed with any metric. This is crucial since our aim is to show
how a metric emerges from the metric-independent BPS-sector of
the gauge theory. Recall that BPS-states can be represented by
holomorphic polynomial functions on the vacuum moduli space
of the rank N gauge theory, whose mesonic branch is given by the
symmetric product YN/SN, where SN denotes the symmetric group
on N elements. The vacuum moduli space can thus be described
in purely complex algebro-geometric terms7–9.

In this work, we show that by imposing all the manifest
symmetries of the rank N gauge theory one naturally arrives at a
canonical quantum BPS-state ΨN. More precisely, ΨN can be
realized as a wave function on the vacuum moduli space YN/SN
and its amplitude ∣ΨN∣2 induces a measure on YN:

jΨN ðy1; :::; yN Þj2 Ω ^ �Ω
� ��N ð2Þ

which is SN–invariant and R> 0�invariant along each factor of
YN (here �Ω denotes the conjugate of Ω multiplied by −i so that
Ω ^ �Ω is a volume form on Y). Somewhat surprisingly the state
ΨN does not appear to have been considered before in the lit-
erature. Its explicit expression is given in Section II C, where the
relation to the BPS-sector of the gauge theory is also explained. By
quotienting out the conformal R> 0�symmetry, we arrive at a
measure on MN/SN, which after normalization yields a canonical
probability measure. Equivalently, we obtain a canonical ensem-
ble of N “point-particles” on M. We show that a Sasaki–Einstein

metric gM onM emerges from the canonical ensemble in the large
N-limit. In a little more detail, our construction goes as follows.
First, the volume form dVM of gM emerges, after which the metric
gM can be recovered from dVM in a standard manner (by simply
differentiating dVM twice). In fact, in the course of this procedure
an N-dependent radial function rN on Y naturally appears in an
intermediate step and it induces a “quantum correction” gðNÞ

M to
the Sasaki–Einstein metric gM on M. In this way, a limiting radial
coordinate r on Y emerges from the gauge theory as N→∞.
From the perspective of the AdS/CFT correspondence, the radial
coordinate r on Y corresponds to the radial coordinate on AdS5
and thus our work reveals how the geometry of AdS5, transversal
to the conformal boundary R3;1; naturally emerges from the
gauge theory. A “spin-off effect” of this procedure is that it also
produces (by a kind of back-reaction) a conical Calabi–Yau
metric on Y, namely the cone over gM, whose distance to the
vertex point y0 is precisely r. It should be stressed that there are
very few cases known where the Sasaki–Einstein metric gM on M
can be explicitly computed (but see ref. 10 for a notable family of
exceptions). Thus an important feature of our construction is that
it furnishes canonical approximations gðNÞ

M of Sasaki–Einstein
metrics, encoded in terms of algebro-geometric data through an
explicit integral formula. These can be numerically computed
using Monte-Carlo methods, as detailed in section “Specialization
to the toric case” for the toric case. Some relations to previous
results and ideas for future work are discussed in section
“Discussion”.

Results
Background: AdS/CFT and BPS-states. Recall that the low-
energy dynamics of a general supersymmetric gauge theory is
controlled by the moduli space of classical vacua M: The space
M may be defined as the critical points, modulo complex gauge
equivalence, of the superpotential W appearing in the (UV)
Lagrangian of the gauge theory11,12. Moreover, the BPS-operators
of the gauge theory, i.e., the local operators preserving half of the
supercharges, may be represented by holomorphic, polynomial
functions on M: They thus form a ring known as the chiral ring
of the gauge theory, which is graded by the R-charge. In the
superconformal case, the BPS-operators can be viewed as states
by the usual operator-state correspondence in CFT. The BPS-
states are chiral primary states and saturate the BPS-bound,

Δ ¼ 3
2
R; ð3Þ

where Δ denotes the conformal dimension. As a consequence, the
BPS-sector tends to be robust under non-perturbative corrections
and can thus be used to probe the strong-coupling regime of the
gauge theory.

In the setting of the AdS/CFT correspondence, the mesonic
branch of the moduli space of vacua of the rank N gauge theory is
the symmetric product8

MN ¼ SymNY ¼ YN=SN ; ð4Þ
where Y is a complex cone. From the string theory perspective,
this space parametrizes the transverse positions of ND3-branes
inside Y. For example, in the maximally supersymmetric SU(N)-
case, the superpotential W(Z1, Z2, Z3) is defined on 3 complex
N ×N matrices Zi (transforming in the adjoint representation)
and W ¼ Tr Z1½Z2;Z3�

� �
: Thus the mesonic vacuum moduli

space MN may be parametrized by the set ðC3ÞN=SN of joint
eigenvalues of (Z1, Z2, Z3), showing that, indeed, Y ¼ C3 in
this case.

The mesonic BPS-sector in the maximally supersymmetric case
is isomorphic to the ring of holomorphic, polynomial functions
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on ðC3ÞN=SN : Gauge theories with minimal supersymmetries
may be constructed using quivers, encoding the matter content of
the Lagrangian, as well as the superpotential13. In general, this is a
highly non-trivial task, but our approach only requires that the
corresponding moduli space of classical vacua, encoded by the
complex cone Y, is given.

Mathematical prerequisites: complex-geometric setup. In this
section we provide complex-geometric background, emphasizing
a background-independent (i.e., metric-independent) perspective;
see ref. 14 and the monograph15 for the more standard metric-
dependent point of view. Let Y be a three-dimensional complex
algebraic affine variety with an isolated singularity y0. Concretely,
Ymay be realized as the zero-locus of a collection of holomorphic
polynomials on some complex space CM . Denote by J the
induced complex structure on the regular locus Y− {y0}. Assume
that Y is endowed with a

● A repulsive holomorphic R> 0-action that fixes y0
● a holomorphic top-form Ω, defined on the non-singular

locus Y− {y0}, which is homogeneous of degree 3 with
respect to the R> 0-action on Y.

Such a space Y will here simply be called a complex cone,
though it is often called a Calabi–Yau cone in the physics
literature and an affine Gorenstein cone in the mathematics
literature. The form Ω is uniquely determined up to a
multiplicative constant and can often be written down explicitly.

The vector field on Y generating the R> 0-action will be called
the dilatation vector field and denoted by δ. Rotating δ with the
complex structure J on Y yields another vector field that we shall
denote by ξ:

ξ ¼ Jδ: ð5Þ
The space OðYÞ of holomorphic functions on Y decomposes with
respect to the R> 0-action:

OðYÞ ¼
M

k¼0;1;:::

Oλk
ðYÞ; 0 ¼ λ0 ≤ λ1 ≤ � � � ; ð6Þ

where Oλk
ðYÞ is the vector space of holomorphic (polynomial)

functions, which are homogeneous of degree λk with respect to
R> 0. From the perspective of the underlying superconformal
gauge theory, the infinitesimal R> 0-action δ represents the
conformal dilatation and 2

3 ξ represents the R-symmetry (the
factor 2/3 ensures that Ω has the same R-charge, 2, as the chiral
superspace volume form d2θ, where θ denotes fermionic coordi-
nates of positive chirality). Thus, Eq. (5) is the complex-geometric
realization of the BPS-relation (3) and the summands Oλk

ðYÞ in
the decomposition (6) are thus BPS-states of dimension and R-
charge equal to λk.

The base of a complex cone Y is the compact five-dimensional
manifold M defined by

M :¼ Y � fy0g
� �

=R> 0: ð7Þ
Thus, M is the base of the fibration (Y− {y0})→M obtained by
quotienting out the R> 0�action on Y. Since the vector field ξ on
Y commutes with the generator of the R> 0�action it induces a
vector field on M that we denote by the same symbol ξ—known
as the Reeb vector field on M in the mathematics literature. A
metric gM on M is said to define a Sasaki–Einstein metric on
(M, ξ) if gM has constant Ricci curvature, normalized so that it
coincides with the Ricci curvature of the standard round metric
on the unit-sphere, and is compatible, in a certain sense, with the
complex structure on Y.

The compatibility in question can be formulated in various
ways, but the crucial point for our purposes is that a
Sasaki–Einstein metric gM can be explicitly recovered from its
volume form dVgM

as follows. First observe that dVgM
induces a

radial function, i.e., positive function r on Y which is one-
homogeneous with respect to the R> 0-action:

r :¼ ιδΩ ^ �Ω

dVgM

 !1=6

; ð8Þ

where we have identified the volume form dVgM
on M with its

pull-back to Y. The metric gM on M with volume form dVgM
is a

Sasaki–Einstein metric iff the corresponding radial function r on
Y solves the following PDE, after perhaps rescaling r,

ddcðr2Þ� �3 ¼ Ω ^Ω; dc :¼ J�d ð9Þ
on the regular locus Y− {y0} of Y. Here, d denotes the exterior
derivative and dc denotes its “rotation” by the complex structure
J, so that ddc(r2) defines a two-form on Y and thus the three-fold
exterior product ddcðr2Þ� �3

defines a six-form on Y.
The PDE (9) is the celebrated Calabi–Yau equation on the

complex cone Y; it is equivalent to the condition that the conical
Kähler metric

gY :¼ ddcðr2Þð�; J�Þ; ð10Þ
on Y is a Calabi–Yau metric, i.e., the Ricci curvature of gY
vanishes. Finally, gM may be explicitly recovered by identifying M
with the level set {r= 1} in Y and letting gM be the restriction of
gY to the level set {r= 1}.

It is important to emphasize that, in general, the base (M, ξ) of
a complex cone ðY;R> 0Þ may not admit a Sasaki–Einstein
metric9,14,16. Equivalently, this means that a complex cone may
not admit a conical Calabi–Yau metric and hence no radial
solution r to the Calabi–Yau equation (9). Indeed, by16 there
exists a Sasaki–Einstein metric on (M, ξ) iff the complex cone
ðY ;R> 0Þ is K-stable. This is a purely algebro-geometric
condition.

As shown in ref. 17 the K-stability of Y can be viewed as a
generalized form of the maximization condition for the a-central
charge of the SCFT. This means that, in general, there are
obstructions to the existence of a SCFT with a givenR> 0�graded
mesonic chiral ring OðYN=SN Þ: In the present approach, a
different, but conjecturally equivalent, stability type condition
naturally appears, which is a variant of the notion of Gibbs
stability introduced in the context of Fano manifolds in ref. 18.

Main results: emergent geometry. According to the AdS/CFT-
correspondence the classical supergravity vacuum geometry in
AdS5 should emerge from some limit of a quantum state in the
dual CFT gauge theory on the boundary. Concretely, in the
present setting the non-trivial part of the supergravity vacuum in
question is encoded by a Sasaki–Einstein metric gM on the
internal compact space M, corresponding to the base of the
complex cone Y of the dual gauge theory6. Hence, we want to
show that the Sasaki–Einstein metric gM on M emerges in a
certain “large N-limit” of a specific (and background free)
quantum BPS-state ΨN in the dual-rank N gauge theory.

First, recall that Y is endowed with a holomorphic top-form Ω
and hence one can endow the mesonic classical vacuum moduli

space YN/SN with the volume form ðΩ ^ ΩÞ�N
: Let ψ1; ¼ ;ψNk

be a maximal number of linearly independent mesonic BPS-states
for the rank 1 gauge theory with the same R-charge λk. In other
words, ψ1; ¼ ;ψNk

form a basis in the space Oλk
ðYÞ of

holomorphic functions on Y with the same charge λk. Denote
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by Ψdet the corresponding Slater determinant, i.e., the totally
antisymmetric holomorphic function on YNk given by

Ψdetðy1; ¼ ; yNk
Þ :¼ ∑

σ2SNk

ð�1Þjσjψσð1Þðy1Þ � � �ψσðNkÞðyNk
Þ: ð11Þ

The function Ψdet is independent of the choice of bases in Oλk
ðYÞ

up to an overall multiplicative constant. It thus defines a baryonic
BPS-state in the rank Nk gauge theory8,19.

We aim to construct a symmetric measure on the mesonic
classical vacuum moduli space YNk=SNk

, which is invariant under
the conformal R> 0�action on each factor. One might be
tempted to try with the density ∣Ψdet∣2, but this is unfortunately
not ðR> 0ÞNk -invariant. The resolution is to simply take a suitable
fractional power of the Slater determinant, namely

ΨNk
:¼ Ψ�3=λk

det : ð12Þ
Then, an ðR> 0ÞNk-invariant measure on YN/SN is given by the
combination

jΨNk
ðy1; � � � ; yNk

Þj2 ðΩ ^ΩÞ�Nk : ð13Þ
This measure is both invariant under the SNk

permutation
symmetry and the conformal R> 0-symmetry, as well as the
R-symmetry. However, since Y is non-compact, the integral of
this measure over YNk=SNk

diverges. To circumvent this problem,

we simply quotient by the ðR> 0ÞNk -action to get an induced
measure on the compact space MNk=SNk

. To be specific,

contracting the top-form Ω ^ Ω on Y with the dilatation
vector field δ yields a 5-form ιδðΩ ^ ΩÞ on Y. Thus, the
ðR> 0ÞNk�invariant form

jΨNk
ðy1; � � � ; yNk

Þj2ðιδΩ ^ ΩÞ�Nk ð14Þ
maybe identified with a measure on the compact quotient space
MNk=SNk

: Finally, the canonical probability measure dPNk
on

MNk=SNk
is defined by

dPNk
:¼ 1

ZNk

jΨNk
j2 ιδðΩ ^ ΩÞ� ��Nk ; ð15Þ

where

ZNk
:¼
Z

MNk=SNk

jΨNk
j2 ιδðΩ ^ ΩÞ� ��Nk : ð16Þ

Note that in (15) we have made the implicit assumption that
ZNk

is finite. Since jΨNk
j2 blows-up along a hypersurface in

YNk=SNk
, namely the zero-locus of the Slater determinant

Ψdet, this is actually a very non-trivial condition. We interpret it
as a consistency condition (which turns out to be related to the
mathematical notions of K-stability and Gibbs stability).

Since ΨN is holomorphic away from its singularity locus in YN/
SN (the vanishing locus of Ψdet) the state ΨN can be viewed as a
bound state of BPS-states in the rank N gauge theory.

We emphasize that by “canonical” we mean that the definition
of dPNk

is background independent, in the sense that it does not
depend on any underlying metric on Y or M. It only depends on
the complex structure J on the classical vacuum moduli space and
the R> 0-action and thus only on the superconformal symmetry
of the rank N-gauge theory. This is a crucial point for describing
the emergence of the classical Sasaki–Einstein metric gM on M,
which is our main focus.

We have also restricted the values of the rank N to be a
sequence of integers

Nk :¼ dimOλk
ðYÞ; ð17Þ

i.e., the multiplicity of the R-charge λk. This can be seen as a
quantization condition. As is well-known, in the quasi-regular
case (discussed in the next section) Nk is a polynomial in k of the
form,

Nk ¼
λ2k
2
V þOðk1Þ; λk � k; k ! 1 ð18Þ

where the positive number V is an algebraic invariant of the
complex cone ðY ;R> 0Þ; known as its volume9,14,16.

Assume, for simplicity, that the complex cone ðY ;R> 0Þ
associated to the gauge theory is quasi-regular. A complex cone
ðY ;R> 0Þ is quasi-regular if (up to a rescaling) the R> 0�action
on Y can be complexified to a holomorphic C ´�action. Denote
by dPð1Þ

N the probability measure on M defined as the 1− point
correlation measure of the canonical ensemble ðdPN ;M

N=SNÞ
introduced in the previous section. In other words, dPð1Þ

N is
obtained by “integrating out” all but one of the factors of MN:

dPð1Þ
N ðyÞ ¼ 1

ZN

Z
MN�1=SN�1

jΨNk
ðy; y2; :::; yNÞj2

´ ιδðΩ ^ΩÞ� ��N�1
:

ð19Þ

Our main conjecture can now be stated as follows:
Conjecture A: Assume that the canonical ensemble ðdPN ;M

N=
SNÞ is well-defined, i.e., that ZN <1. Then

(i) The one-point correlation measure dPð1Þ
N converges, as

N→∞, to the volume form dVM of a Sasaki–Einstein
metric gM on (M, ξ), normalized to have unit-volume,

lim
N!1

dPð1Þ
N ¼ dVM; ð20Þ

(ii) The sequence of radial functions

rN :¼ dPð1Þ
N

ιδðΩ ^ ΩÞ

 !�1=6

ð21Þ

on the complex cone (Y, R>0) converges, as N→∞, toward
the radial function r of the Calabi–Yau metric gY on Y
corresponding to the Sasaki–Einstein metric gM on (M, ξ).

(iii) Conversely, if there exists a unique Sasaki–Einstein metric
gM on M, then ZN < 1.

We emphasize that for finite N, the radial function rN yields an
explicit approximation gðNÞ

M to the Sasaki–Einstein metric gM on
M by identifying M with the level set {rN= 1} and setting

gðNÞ
M ¼ ddcðr2N ÞjMð�; J�Þ ð22Þ

(c.f. Eq. (10)). Hence, part (ii) of the conjecture is equivalent to

lim
N!1

gðNÞ
M ¼ gM ; ð23Þ

which is the sought-after emergence of the Sasaki–Einstein metric
on M in the large N limit.

To be mathematically precise, the convergence statements in
the conjecture are supposed to hold in the standard weak
topologies. In fact, we make the stronger conjecture that the
random measure N�1 ∑N

i¼1 δxi on the canonical ensemble
converges in law toward the deterministic measure dVM. Below
we will prove a β-deformed version of this conjecture.

We first introduce a real-analytic family of probability
measures dPN;β on MN/SN, defined for a real parameter β, such
that dPN;β coincides with dPN for β=−1, if ZN <1: To this
end, fix a background radial function r0 on Y. We can then
identify the base M :¼ Y � fy0g

� �
=R> 0 of the cone Y with the
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level set r0 ¼ 1
� �

in Y and define dPN;β as follows:

dPN;β :¼
1

ZN;β

Ψdetðy1; y2; :::; yNÞ2
�� ��3βλkdV�N

0 ; ð24Þ

where dV0 denotes the volume form on M obtained by restricting
the five-form ιδΩ ^ �Ω to the level set r0 ¼ 1

� �
and ZN;β is the

corresponding normalization constant (recall that N is the
multiplicity of the charge λk). The parameter β can be viewed
as a regularization parameter, since ZN;β is automatically finite
when β > 0 (or slightly negative). However, it should be stressed
that it is only in the canonical case β=−1 that the probability
measure (24) is independent of the choice of radial function
r0. Let rN,β be the radial function on Y defined by

rN;β :¼
dPð1Þ

N;β

dV0

 !1=6β

r0 ð25Þ

(coinciding with rN when β=− 1) and denote by gðNÞ
M;β the

corresponding metric on M, obtained by replacing the radial
function rN in Eq. (22) with rN,β. We then have:

Theorem B: For each β > 0, there exists

(i) a volume form μβ on M such that

lim
N!1

dPð1Þ
N;β ¼ μβ;

(ii) a radial function rβ on Y such that

lim
N!1

rN;β ¼ rβ;

(iii) and a Sasaki metric gM,β on M such that

lim
N!1

gðNÞ
M;β ¼ gN;β:

Moreover, if (M, ξ) admits a Sasaki–Einstein metric, then rβ and
gM,β extend real-analytically to [−1,∞] and setting β=− 1 yields
a Sasaki–Einstein metric gM on M.

The proof is given in §IV. In the course of the proof, we will
show that the square of the limiting radial function rβ is the
unique conical Kähler potential on Y solving the following PDE
on Y− {y0}:

ðddcr2βÞ
3 ¼

r2β
r20

 !3ðβþ1Þ

Ω ^ �Ω: ð26Þ

In particular, for β=−1 this is indeed the Calabi–Yau
equation (9) for the radial function r corresponding to a
Sasaki–Einstein metric gM on M.

Finiteness properties of the normalizing constant. Loosely
speaking, Theorem B thus shows that Conjecture A holds after
the analytic continuation. More precisely, it shows that Con-
jecture A holds under the assumption that the order of taking the
limits Nk→∞ and β→−1 may be interchanged. By a physics
level of rigor Conjecture A may thus be considered as established.
However, we do expect that the introduction of the parameter β is
not needed and, in particular, that ZN <1 if and only if (M, ξ)
admits a unique Sasaki–Einstein metric. In the case when the
Sasaki–Einstein metric is not unique, i.e., when the Lie algebra
gðY; ξÞ of the automorphism group of (Y, ξ) is non-trivial20, we
conjecture that ZN;β <1 for any β >−1 when N is sufficiently
large. The “only if direction” can be deduced from recent
mathematical results in complex geometry for complex cones Y of
any dimension, as will be shown elsewhere. Proving the
remaining direction appears, however, to be very challenging,
except in the case when Y has complex dimension two, where a
direct proof of Conjecture A can be given.

For example, when Y ¼ C2 realizing M as the Hopf fibration
over the two-sphere S2 and factorizing Ψdetðx1; x2; :::; xN Þ reveals
that ZN;β can be expressed as the configurational partition
function for N particles on S2 interacting by the 2D-gravitational
force with a mean-field scaling:

ZN;β ¼ CN

Z
ðS2ÞN

Y
1≤ i≠j≤N

kxi � xjk
2β

N�1

R3 dA�N ; ð27Þ

expressed in terms of the restriction to S2 of the Euclidean norm
on R3 (c.f. Eq. (36)). Applying the arithmetic-geometric means
inequality reveals that the integral is finite precisely when
β >−(1− 1/N). A similar argument applies to any Y of complex
dimension two, using that Y is a Kleinian singularity, i.e., Y ¼
C2=G for a finite subgroup G of SU(2) and thus thatM is a Seifert
fibration over S2, branched over three points (in this case
ZN;β < 1 for β=−1-when N is sufficiently large-since gðY ; ξÞ
is trivial; details will appear elsewhere). For higher-dimensional Y
the Slater determinant Ψdetðx1; x2; :::; xN Þ can not, however, be
factorized. But a condition ensuring that our canonical partition
function ZN is finite for any N is that Y is an exceptional
singularity21,22. For example, there are exactly (up to conjugation)
five cases of exceptional (non-isolated) singularities of the form
Y ¼ C3=G; for G a finite subgroup of SLðC; 3Þ; notably Klein’s
simple group of order 168, PSL(2, 7),21, Cor 3.15. See ref. 23 for
the construction of the matter content and gauge groups of the
corresponding gauge theories; the quiver graphs for the five
“exceptional” groups G appear in figure 5 in refs. 23.

Moreover, a list of three-dimensional exceptional quasi-
homogeneous (isolated) hypersurface singularities in C4 is given
in ref. 22, Cor 1.1. Consider for example the case when Y is a
Briskorn–Pham singularity:

Za0
0 þ Za1

1 þ Za2
2 þ Za3

3 ¼ 0
� � � C4; ð28Þ

endowed with the diagonal C��action with weights proportional
to a�1

i : If the powers ai are coprime and taken in increasing order,
then Y is an exceptional Gorenstein affine variety iff
1< ∑3

i¼0 a
�1
i < 1þ a�1

3 . This condition is, for example, satisfied
for the powers (2, 3, 7, 11) and is, in fact, equivalent to the
condition that ZN <1 for any N. It also implies that the base of
Y admits a Sasaki–Einstein metric. However, in Conjecture A we
only demand that ZN <1 for N sufficiently large.

Discussion
Let us conclude by briefly mentioning some relations to previous
work. First of all, our work is very much in the spirit of the
program for emergent geometry in AdS/CFT initiated by
Berenstein24,25. The main new feature in our work is the
appearance of a negative and fractional power of the Slater
determinant in the definition of the state ΨN (see Eq. (12)) and its
β-deformation. This is crucial in order to obtain background
independence and to see the emergence of the spacetime metric,
as explained in Section II C.

As explained at the end of section “Methods”, our approach
builds on the probabilistic approach to Kähler–Einstein metrics
on Fano manifolds introduced in refs. 18,26,27, which, in turn, is
motivated by the Yau–Tian–Donaldson (YTD) conjecture for
Fano manifolds. A different connection between the YTD con-
jecture and AdS/CFT was first exhibited in ref. 17 (compare the
discussion on stability in section “Mathematical prerequisites:
complex geometric setup”).

Finally, we note that our canonical ensemble on M may be
viewed as an ensemble of N dual giant gravitons28, as will be
elaborated on in a separate publication.
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Methods
Proof of Theorem B. We will show how to deduce the theorem from the results in
refs. 27,29 concerning a probabilistic approach to Kähler–Einstein metrics on Fano
manifolds. We thus start with some well-known geometric preparations to realize
M0 as a fibration over a Fano manifold (orbifold); see ref. 30, Section 2.3. First
assume that ξ is a regular Reeb vector field. This means that the orbits of the
complexification of ξ coincide with the orbits of a C��action on Y without fixed
points on Y*:= Y− {y0}. The corresponding compact complex manifold X :¼
Y�=C� is a Fano manifold, i.e., the dual K�

X of its canonical line bundle KX is
ample. The natural projection from Y to X realizes Y* as the total space of the qth
tensor power K�q

X ! X for some rational positive number q, when the zero-section
has been removed (and Y gets identified with the variety obtained by blowing down
the zero-section). For example, in the cases when Y is C3 and the conifold one gets
X ¼ P2 and X ¼ P1 ´P1 with q= 1/3 and q= 1/2, respectively. In other words,
denoting by L the ample line bundle ðK�

X Þ�q , we may identify Y with the total space
of the fibration L*→ X, with the zero-section deleted. The fixed radial function r0
on Y corresponds to a Hermitian metric ∥⋅∥ on L* and the induced quotient
fibration M0→ X realizes M0 is a principal U(1)-bundle over X, namely the unit-
circle bundle of (L*, ∥⋅∥):

M0 ,! L�ð¼ Y�Þ
& #

X

ð29Þ

where

M0 ¼ r0 ¼ 1
� � ¼ k � k¼ 1f g: ð30Þ

As a consequence, there is a one-to-one correspondence between the space PðM0Þξ
of ξ-invariant probability measures μ on M0 and the space PðXÞ of probability
measure ν on X:

μ ¼ ν � dθ; ð31Þ
expressing μ as the fiber product of ν with the ξ-invariant probability measures dθ
defined on the fibers of the fibration M0→ X. In other words, ν is proportional to
the contraction of μ with ξ, descended to X. Introducing local holomorphic coor-
dinates z on X and locally trivializing L* with the holomorphic section (dz)⊗q of
K�q

X we may locally express

Ω ¼ dz ^ dðw1=qÞ; r20 ¼ jwj2eϕ0 ðzÞ� �1=3q
; ð32Þ

where w is a local holomorphic coordinate along the fibers of L* and eϕ0ðzÞ denotes
the squared norm of (dz)⊗q, i.e., eϕ0ðzÞ ¼k ðdzÞ�qk2: The local formula for Ω fol-
lows from the observation that dz ∧ d(w1/q) glues to define an equivariant global
holomorphic three-form on Y*. The appearance of the power 1/3q in the formula
for r20 then follows from the relation ξ ¼ 3qξL� ; where ξL� is the standard U(1)-
action along the fibers of L* (satisfying ξL�w ¼ iw), resulting from the normal-
ization condition ξΩ= 3iΩ. Since the weight space Hλk

ðYÞ may be identified with
the space H0 (X, L⊗k) of holomorphic sections of the kth tensor power of the
holomorphic line bundle L→ X it also follows that λk= 3qk. Concretely, the
identification in question is obtained by noting that an element Ψ in Hλk

ðYÞmay be
locally expressed as Ψ(z,w)= fk(z)wk for a local holomorphic function fk(z),
globally transforming as a holomorphic section of L⊗k→ X. In particular,

Ψdet ¼ f detðz1; :::; zN Þwk
1 � � �wk

N ð33Þ
where the local holomorphic function f detðz1; :::; zN Þ on XN transforms as a

holomorphic section of ðL�kÞ⊞N ! XN ; namely as the Slater determinant of
H0(X, L⊗k). Moreover, by Eq. (32) we have

Ψdet

�� ��2
jMN

0
¼ jf detðz1; :::; zN Þj2e�kϕ0ðz1 Þ � � � e�kϕ0ðzN Þ

¼: k f detk2;
ð34Þ

using, in the last equality, the induced Hermitian metric ∥⋅∥ on ðL�kÞ⊞Nk ! XN :
With these preparations in place, we can thus express

dPð1Þ
N;β ¼ νN;β � dθ�N ; ð35Þ

where νN,β is the probability measure on XN defined by

νN;β ¼
k f detk

2
k
β
qdVX

�NR
XN k f detk

2
k
β
qdVX

�N
; ð36Þ

where the volume form dVX on X corresponds to the volume form dV0 on M0

under the correspondence (31). The probability measure νN,β on XN is precisely the
probability measure defined by the “temperature deformed” determinantal point
process on X introduced in ref. 27, associated with the Hermitian holomorphic line
bundle (L, ∥⋅∥) over the compact complex manifold X endowed with a volume
form dVX at the inverse temperature β/q. By ref. 27, Theorem 5.7 (and ref. 27,
Lemma 5.1) its one-point correlations measures νð1ÞN;β converge as N→∞, in the
weak topology of measures on X, toward a volume form νβ on X of the form

νβ ¼ e
β
qφβdVX for the unique smooth function φβ on X satisfying the following PDE

on X:

1
V
ðωL þ ddcφβÞ2 ¼ e

β
qφβdVX ; ð37Þ

where ωL is the Kähler form defined by the curvature of the metric ∥⋅∥ on L, locally
expressed as ωL= ddcϕ0(z). Using that ωL ¼ ddclog ðr0Þ2=3q a direct calculation
now reveals that the radial function rβ on Y defined by

rβ :¼
μβ
dV0

� �1=6β

r0; ð38Þ

satisfies the PDE (26). This proves the convergence in item 1 of Theorem B with μβ
the volume form in PðMÞξ corresponding to νβ in PðXÞ: Similarly, applying27,
Corollary 5.8 then proves the convergence of rN,β and gN,β toward rβ and gβ,
respectively. Moreover, if (M, ξ) admits a Sasaki–Einstein metric, then it corre-
sponds to a Kähler–Einstein metric ωX on X. Thus, as shown in Step 2 of the proof
of ref. 29, Theorem 7.9, the PDE (37) on X admits a unique solution φβ for any
β >−1 and φβ defines a real-analytic family converging to the Kähler potential φ−1

of a Kähler–Einstein metric on X, as β→−1. When rephrased in terms of rβ and
gM,β this concludes the proof of Theorem B in the regular case. Finally, in the case
when ξ is quasi-regular one can proceed essentially as in the regular case, using that
in this case, the quotient X is a Fano orbifold, so that the role of KX is now played
by the orbifold canonical line bundle of X.

This concludes the proof of Theorem B.

Specialization to the toric case. In this section, we specialize our proposal to the
case of a toric quiver gauge theory. As is well-known in this case the corresponding
complex cone Y is a toric affine Gorenstein variety. As shown in refs. 31,32 (Y, ξ)
admits a conical Calabi–Yau metric gY iff ξ is the unique minimizer of the volume
functional V(ξ) on the space of normalized Reeb vectors, introduced in ref. 33.
Equivalently, from the gauge theory point of view, this means that the U(1)R-
symmetry induced by ξ maximizes the a-central charge. We explain how gY
emerges from our proposal using a tropicalization procedure, which renders the
proposal provably convergent and computationally feasible. It also applies to
irregular Reeb vector fields.

Let Y be a 3-dimensional normal affine toric variety. This means that Y is a
normal affine variety endowed with the holomorphic action of the 3-dimensional
complex torus 3 with an open dense orbit, where TC :¼ ðC�Þ3 denotes the
complexification of the compact torus T:=U(1)3. Accordingly, we can identify TC
with an open subset of Y and view Y as an TC�equivariant compactification of
TC: Denote by y0 the unique point in Y which is fixed under TC and by
z= (z1, z2, z3) the holomorphic coordinates on TC: Since it requires no extra effort
we will allow y0 to be a non-isolated singularity, following32.

The ring RðYÞ, consisting of all holomorphic polynomials on Y, splits with
respect to the TC-action on Y:

RðYÞ ¼
M

p2C�\Z3

Czp; zp :¼ zp11 z
p1
2 z

p3
3 ; ð39Þ

where C� is the “moment polytope” of the affine toric variety Y. C� can be
represented as the convex cone in ðR3Þ� whose dual is a convex cone C � R3. To
simplify the notation we will identify the dual ðR3Þ� with R3 in the usual way. The
Reeb vector fields ξ on Ymay be identified with vectors ξ inR3 lying in the interior
of the cone C: Denote by λk the corresponding weights ξ; p

	 

as p ranges over

C� \Z3; ordered so that λ1 < λ2... < . We can thus represent the corresponding
weight spaces of RðYÞ as

Hλk
ðYÞ ¼

MNk

i¼1

Czp; ð40Þ

where we have enumerated the lattice points p1; :::; pNk
in the 2-dimensional

convex polytope Pk defined as the intersection of the convex cone C� with the
hyperplane f ξ; �h i ¼ λkg :

Pk ¼ λkPξ \Z3; Pξ :¼ fC� \ ξ; �h i ¼ 1g; ð41Þ
(note that the polytope Pξ is denoted by Δ in ref. 9 and called the characteristic
polytope). Now assume that Y is Gorenstein and denote by Ω the TC�equivariant
holomorphic top-form on Y− {y0}. On TC � Y , we can express

Ω ¼ zlΩ0; Ω0 :¼
dz1
z1

^ dz2
z2

^ dz3
z3

ð42Þ

for some l 2 Z3; where Ω0 is the standard TC�invariant volume form on TC: The
condition that Ω is homogeneous of degree 3 under the Reeb field ξ translates into
the condition l; ξh i ¼ 3: For example, when Y ¼ C3 with the standard Reeb vector
ξ= (1, 1, 1), the cone C� is the positive octant in R3 and Pξ bounds the unit-
simplex. We will also briefly discuss the case of the conifold below.

We now specialize our proposal to the toric case. First, note that using the
bases zp1 ; :::; zpNk in Hλk

ðYÞ the corresponding Slater determinant Ψdet may be
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represented as the following holomorphic function on TNk
C � YNk:

Ψdetðz1; :::; zNk
Þ ¼ ∑

σ2SNk

ð�1Þjσjzpσð1Þ � � � zpσðNk Þ ð43Þ

Accordingly, on the open dense subset TN
C of YN we can, using formula (42),

express

jΨNk
j2ðΩ ^ΩÞ�Nk ¼ ρNk

ðz1; :::; zNk
ÞðΩ0 ^Ω0Þ

�Nk ; ð44Þ
where

ρNk
ðz1; :::; zNk

Þ :¼ ∑
σ2SNk

ð�1Þjσjzqσð1Þ � � � zqσðNk Þ

�����
�����
�2 3

λk

: ð45Þ

Here we have defined qi:= pi/λk− l/3, i= 1,…,Nk, corresponding to the discrete
points of the scaled and shifted polytope Qk defined as

Qk :¼ Pk=λk � l=3 � R3 \ ðZ=λkÞ3
Qξ :¼ Pξ � ‘=3;

ð46Þ

where Qξ is the limit of Qk when k→∞.
From a computational point of view, this explicit expression for ρNk

ðz1; :::; zNk
Þ

is still rather challenging to work with directly. But the construction of a
Sasaki–Einstein metric can be simplified by further leveraging the toric structure.

To see this, first recall that, in general, the group GðY; ξÞ of all biholomorphisms
of a complex cone Y, commuting with the Reeb vector field ξ and homotopic to the
identity, acts transitively on the space of conical Calabi–Yau metrics gY20. In
particular, the toric case GðY; ξÞ contains the group TC and thus gY is not uniquely
determined, but can be taken to be T-invariant. The density ρNk

ðz1; :::; zNk
Þ; on the

other hand, is not TNk�invariant. This is to be expected as the large N-limit should
encapsulate all conical Calabi–Yau metrics on Y—not only the T-invariant ones. In
order to directly extract a T-invariant conical Calabi–Yau metric gY from the large
N-limit we can modify the density ρNk

on YNk to render it TNk�invariant. This can
be achieved in various ways, but from a computational point of view, the most
efficient modification appears to replace the density ρNk

ðz1; :::; zNk
Þ with its

tropicalization:

ρðNkÞ
trop ðz1; :::; zNk

Þ :¼ max
σ2SNk

z
qσð1Þ
1 � � � zqσðNk Þ

Nk

��� ���2
 !�3

; ð47Þ

where, in particular, the sum over SNk
has been replaced with a maximum. In terms

of the logarithmic real coordinates

x ¼ ðx1; x2; x3Þ :¼ log ðjz1j2Þ; log ðjz2j2Þ; log ðjz3j2Þ
� � 2 R3 ð48Þ

this means that

ρðNkÞ
trop ðz1; :::; zNk

Þ :¼ e�NE
ðNk Þ
trop ðx1 ;:::;xNk

Þ; ð49Þ

where EðNkÞ
trop ðx1; :::; xNk

Þ denotes the following symmetric piece-wise affine convex

function on ðR3ÞNk :

EðNkÞ
trop ðx1; :::; xNk

Þ ¼ 3
Nk

max
σ2SNk

x1; qσð1Þ
D E

þ � � �
�

� � � þ xNk
; qσðNkÞ

D E�
:

ð50Þ

Hence, the corresponding TNk�invariant “tropicalized” measure on YNk may be
expressed as follows

ρðNkÞ
trop ðz1; :::; zNk

ÞðΩ ^ ΩÞ�Nk ¼ e�NkE
ðNk Þ
trop ðx1 ;:::;xNk

ÞðdxÞ�Nk � ðdθÞ�Nk ; ð51Þ

with dθ denoting the T-invariant probability measure on T. Contracting Ω ^Ω
with the dilation vector field δ:=−Jξ, as before, thus yields a TNk�invariant
measure on MNk : By performing a linear change of coordinates on R3, we may
assume that dilatation on Y corresponds to translations in the x3-variable in R3:

The contraction in question thus corresponds to replacing R3 in Eq. (51) by R2.
However, the integral over MNk given by the corresponding normalizing constant
always diverges due to the diagonal action of the residual symmetry group TC=T:
This action has the effect of translating the center of mass in R2 of a configuration

ðx1; :::; xNk
Þ 2 ðR2ÞNk : The remedy is to break the symmetry in question. This can

be achieved by introducing a background radial function (as in Theorem B). But
from a computational point of view the most efficient way is to simply impose the
constraint that the center of mass in R2 of ðx1; :::; xNk

Þ vanishes, i.e., that x1 þ
:::þ xNk

vanishes. Finally, since the number Nk may scale as o(k2), unless ξ is
quasi-regular, we replace Nk with any positive integer N and take q1, ..., qN to be any
sequence of points in the polytope Qξ with the property that

lim
N!1

1
N

∑
N

i¼1
δqi ¼ νQξ

ð52Þ

where νQξ
is the Euclidean measure on Qξ normalized to have unit total mass. In

summary, the tropicalized probability measure thus corresponds to the following

Boltzmann–Gibbs measure on ðR2ÞN :

μðNÞ
trop :¼

1

ZðNÞ
trop

e�NEðNÞ
tropðx1 ;:::;xN ÞðdxÞ�N ; ð53Þ

with

ZðNÞ
trop :¼

Z
e�NEðNÞ

tropðx1 ;:::;xN Þdx�N ð54Þ

together with the constraint of vanishing center of mass.
We then have the following result.
Theorem C: ZðNÞ

trop <1 for N sufficiently large iff (M, ξ) admits a conical
Sasaki–Einstein metric (i.e., iff ξ minimizes the volume functional V(ξ) on the Reeb
cone). Moreover, if this is the case then the law of the empirical measure 1

N ∑
N
i¼1 δxi

on the ensemble ðR2ÞN ; μðNÞ
trop

� �
converges in law, as N→∞, toward a volume form

μSE on R2; the normalized volume form of the unique T-invariant Sasaki–Einstein
metric on (M, ξ) with vanishing center of mass (when expressed in real logarithmic
coordinates on R2).

The probability measure μSE on R2 may be expressed as

μSE ¼ e�3ϕdx; ð55Þ
where the function ϕ on R2 corresponds to the Kähler potential r2 of the
corresponding T-invariant conical Calabi–Yau metric on Y, i.e., r2 ¼ eϕðxÞþ l;xh i=3:
Theorem C thus provides evidence for Conjecture A. The advantage of the
tropicalized setup is that the corresponding energy EðNÞ

tropðx1; :::; xN Þ is continuous.
The theorem can be shown using results in ref. 34, where a closely related tropical
approach to Kähler–Einstein metrics on toric Fano varieties was introduced.
Details will appear elsewhere.

For example, in the homogeneous cases of C3 and the conifold it is well-known
that the polytope Qξ is a translation of the two-dimensional simplex or the unit-
square, respectively. In these cases, the function ϕ(x) is given explicitly, modulo an
additive constant, by ϕðxÞ ¼ log ð1þ ex1 þ ex2 Þ � x1=3� x2=3 for C3 and ϕðxÞ ¼
log ðe�x1=2 þ ex1=2Þ þ log ðe�x2=2 þ eþx2=2Þ for the conifold.

Similarly, in the case when Y is C2 the polytope Qξ is equal to [−1/2, 1/2] and
the corresponding one-point correlations can be computed explicitly for any finite
N. The result is a polynomial of degree N in e−∣x∣, converging, as N→∞, toward e
−2ϕ(x), where ϕðxÞ ¼ log ðe�x=2 þ ex=2Þ � C. Indeed, in this case, the corresponding

tropical energy EðNÞ
trop turns out to coincide with the energy of a self-gravitating

system in 1D (with a mean-field scaling), to which the exact results in ref. 35 apply.
In general, however, the solution ϕ can not be explicitly computed. An

important feature of Theorem C is that it provides an efficient way of obtaining
numerical approximations to the solution ϕ and thus to the Sasaki–Einstein metric
on M, using Hamiltonian Monte-Carlo. The starting point is the observation that
the gradient of the energy NEðNÞ

trop appearing in the Boltzmann–Gibbs measure (51)

is, for a generic configuration ðx1; :::; xN Þ 2 R2N ; precisely the discrete optimal
transport map matching the points (x1, ..., xN) with the fixed points q1, ...., qN in
Qξ

36. Thanks to the last years rapid developments of scalable optimal transport
solvers this allows one to numerically compute the gradient in nearly OðNÞ
operations (efficiently implemented on GPU-hardware37,38). Moreover, since EðNÞ

trop

is convex Hamiltonian Monte-Carlo should merely require OðN1=4Þ gradient
evaluations39, suggesting that the total running time of the simulation nearly scales
as OðN1þ1=4Þ:

Monte-Carlo techniques have previously been applied in ref. 40 to the vacuum
moduli space YN/SN in the case Y ¼ C3; but using a different N-particle BPS-wave
function (with a Metropolis algorithm).

We leave the implementation of our simulation scheme for the future.

Data availability
Data sharing is not applicable to this article since no data sets were generated or analyzed
during the current study.
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