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Abstract 

Four-dimensional quantitative characterization of heterogeneous materials using in situ synchrotron 

radiation computed tomography can reveal 3D sub-micron features, particularly damage, evolving under 

load, leading to improved materials. However, dataset size and complexity increasingly require time-

intensive and subjective semi-automatic segmentations. Here, we present the first deep learning (DL) 

convolutional neural network (CNN) segmentation of multiclass microscale damage in heterogeneous 

bulk materials, teaching on advanced aerospace-grade composite damage using ~65,000 (trained) 

human-segmented tomograms. The trained CNN machine segments complex and sparse (<<1% of 

volume) composite damage classes to ~99.99% agreement, unlocking both objectivity and efficiency, 

with nearly 100% of the human time eliminated, which traditional rule-based algorithms do not 

approach. The trained machine is found to perform as well or better than the human due to ‘machine-

discovered’ human segmentation error, with machine improvements manifesting primarily as new 

damage discovery and segmentation augmentation/extension in artifact-rich tomograms. Interrogating a 

high-level network hyperparametric space on two material configurations, we find DL to be a disruptive 

approach to quantitative structure-property characterization, enabling high-throughput knowledge 

creation (accelerated by 2 orders of magnitude) via generalizable, ultra-high-resolution feature 

segmentation. 
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1. Introduction 

Heterogeneous materials increasingly inhabit indispensable yet historically unpopulated spaces in 

materials engineering for high-performance structures subjected to extreme loading and/or environment, 

fostering modern breakthroughs in safety, efficiency, and operational envelope.[1–8] Disparate natural[9,10] 

and synthetic[11–14] constituent materials discoveries, concomitant with the growing diversity of 

combinatory processing techniques for design of microstructure[15,16] and interphase[17,18], has expanded 

both the range and knowledgebase of heterogeneous and composite materials, leading to synergistic 

mechanical property enhancements in bulk stiffness, strength, and toughness over traditional 

homogeneous engineering materials[19–21], while often also permitting interdisciplinary strategies for 

multi-functionality (thermal, electrical, optical, etc.).[22,23] Several cross-cutting research themes have 

emerged for mechanical property engineering via composite nano- and microstructural heterogeneity 

and anisotropy, including additive manufacturing[24–26], biomimetics[27–29], and hybrid advanced 

composites.[30,31] However, incomplete understanding of complex structure-property relationships[32,33], 

particularly progressive damage in tough heterogeneous systems built from brittle constituents, has 

emerged as a unifying theme limiting further performance enhancement among the breadth of cutting-

edge advanced materials for structural applications. Fundamental knowledge of heterogeneous material 

mechanics across scales, particularly as related to ‘failure’, strongly limits performance predictive 

capabilities as well as rational nano/microstructural design toward optimization.[34–36] Motivated by 

ongoing failure prediction challenges faced globally by academia, government, and industry, aerospace-

grade advanced composites exemplify the reality of a costly (~$100M[37] and up to 20 years[38,39] for new 

materials insertion), experimentally driven qualification campaigns, incurring materials design 

restrictions and conservative safety margins that undercut theoretical structural efficiency.[40,41] 

The next advances in mechanical performance understanding are underpinned by higher-fidelity 

experimental characterizations (especially temporal data)[33] of complex failure processes comprised of 

multiscale, multi-modal (multiclass) interacting progressive damage[23,35,36] that inform and validate 

predictive models for design. Relative to conventional destructive microscale damage characterization 

techniques[42] like optical and electron microscopy (2D) and acoustic signaling/scanning (low resolution, 

<3D), synchrotron radiation computed tomography (SRCT) is the most data-rich imaging approach 

enabling 4D (spatial and temporal) mechanical failure characterization.[43–46] CT can nondestructively 

visualize interior 3D sub-micron (ultra-high resolution[44]) morphology including processing defects, and 

when coupled with in situ mechanical loading[47,48], establish full-field interplay of complex damage 
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progression (Figure 1a). Compared to modern lab-based X-ray CT, SRCT can provide unparalleled 

performance in aspects such as resolution and scan speed (at present, greater than tens of scans per 

second have been demonstrated, such as ‘tomoscopy’[46]). Despite access to a complete progression of 

damage incipience and evolution, objective quantitative mechanistic insights are challenging to extract 

from the resultant big (~10 GB/mm3), potentially damage-sparse (<<1% of scan volume) datasets due to 

differential X-ray attenuation and myriad X-ray imaging artifacts[49] (e.g., rings, interface-enhancing 

phase contrast, motion blur, noise), computational expense, and particularly important herein, human-

based (see Figure 1b, ‘Trained human’) time-intensive, subjective semi-automatic damage 

labeling/segmentation.[44,47,50] Human segmentation culminates in a data-to-knowledge bottleneck that 

significantly hinders new knowledge from the data-rich scans. SRCT datasets can be acquired over a 

day, but then require years of segmentation and analysis before knowledge is gained and quantified. 

Furthermore, given sensitive image properties and feature diversity, including irregular damage 

morphology, generalized automated damage segmentation based on traditional “rule-based” 

programming (i.e., “hard” computing[51]), which employs digital image processing tools[45,47,50] (e.g., 

filtering, thresholding, clustering, transforming), that would promote objectivity, speed, and feature 

flexibility is thus far impossible to codify. To date, limited work has demonstrated only subjectively 

tuned automated hard algorithms for damage segmentation with narrow applicability[44,45,52,53], 

preventing translation to other materials and in situ configurations. 

Recently, mirroring the rise in availability of both computational power and big data, deep 

learning (DL)[54,55], a branch of machine learning (ML) within artificial intelligence (AI) employing 

artificial neural network (ANN) models, related to “soft” computing[51], to learn complex input-output 

mathematical mappings of various data types, has disrupted many scientific fields with leap-ahead 

computational classification and regression[56], including in materials science.[57–62] Particularly, 

semantic segmentation, defined as pixel-level image classification, is a proven DL application within 

computer vision, commonly achieved via a (fully) convolutional neural network (CNN) architecture. 

CNNs are a spatially invariant class of deep ANNs that especially excel in scalable discriminative 

(“example-based”) learning of big, complex imagery datasets (Figure 1b, ‘Trained machine’).[63–65] 

Although commercial[66] and open-source[67–69] image analysis tools have recently integrated ML 

capabilities, generally, all datasets are extracted from a single 2D or 3D image for the purpose of quickly 

inferring segmentation of the rest of the image; thus, more generalized CNN learning across numerous 

scans (as required for damage segmentation) would require a custom algorithmic workflow spanning  
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Figure 1. Deep learning unlocks elusive automated damage segmentation of big, complex data. a) In 

situ mechanical testing via synchrotron radiation (X-ray) computed microtomography generates big, rich 

benchmark datasets of complex (multiclass, interacting microscale modalities) progressive polymer-

related damage that underpin heterogeneous materials failure understanding. b) Segmentation input is a 

SRCT scan, reconstructed as a stack of normalized grayscale tomograms. (top) Trained human pipeline, 

which includes manual masking and seed-point identification for semi-automatic region growing, and 

both manual and semi-automatic corrections. Diligent extraction of seminal failure insights from 

complex data is currently bottlenecked by time-intensive, iterative region growing-based human 

segmentation analyses that introduce subjectivity, inconsistency, misclassification, etc. and limit the 
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feasible scope of material types and load step-resolution. Scale bars are 50 µm in zoom-out and 10 µm 

in zoom-in. (bottom) Trained machine pipeline, which begins from the same starting point as the human, 

a deep learning network machine performs end-to-end segmentation (no pre- or post-processing) rapidly 

with negligible human interaction required. 

 

dataset generation to achieve multi-scan inferences. To date, DL for semantic CT segmentation of 

material degradation has been leveraged by several fields, including medicine[70,71] and materials 

engineering (e.g., concrete[72] and advanced composites[73,74]), though to the authors’ knowledge, 

multiclass, micron-scale damage (and progression) that underpins failure of advanced composites 

remains entirely unexplored and a critical open research question in the space of heterogeneous 

materials generally. Moreover, as a general practice in literature, rule-based automated or even 

simulated segmentations comprise the learning datasets[73], such that successful CNN replication is 

highly expected. Alternatively, if manual segmentations were required for learning, then small manually 

annotated datasets (~100 or fewer images) have been employed[72,74], neglecting the potential advantages 

of large-scale CNN generalizability. Here, we use DL CNNs to unlock a traditionally impossible image 

analysis challenge: end-to-end (no pre- or post-processing) automated segmentation of multiclass 

microdamage progression revealed by in situ (sometimes called 4D due to the temporal aspect) SRCT. 

We study the effects on DL of dataset size and composition, using 30 semi-automatically (‘trained 

human’) annotated scans (comprised of 65,000 trained-human-segmented tomograms) for training the 

CNN, comprising 6 specimens and 2 types of advanced (aerospace-grade carbon fiber) composites, as 

well as high-level CNN hyperparameters. Following machine downselection for highest performer, we 

examine a generalizable case study of test set scans, demonstrating machine-inferred segmentation 

(‘trained machine’) of composite damage according to host laminae/plies within composite laminates to 

~99.99% class binary accuracies, with negligible human time required. Compared with semi-automatic 

human segmentation (order of ~10 h per scan), the AI segmentation exhibits objectivity in addition to 

generalizability and high throughput, with numerous examples of exceeding human effectiveness. 

2. Results and Discussion 

2.1. Trained-Human Segmentation Database of Progressive Damage in Heterogeneous Materials 

to Create Trained Machines 

Deep learning is a form of AI/ML-based machine development wherein a discriminative multi-layer 

(deep) NN model is trained (generally under supervision) to predict an output signal given an annotated 

dataset of input-output relations, validated, and tested on independent annotated datasets, as standard 
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practice. Although it is common in the ML community for a trained CNN to be referred to as a learned 

model and the broader system of algorithms including data processing and CNN-based prediction to be 

referred to as a computer, in the context of this study, we refer to both as a trained machine, as we’re 

directly contrasting with a trained human. The performance benefits, in terms of accuracy and 

generalizability, of DL techniques over traditionally programmed automated algorithms are generally 

found to increase with increasing training dataset size and diversity that encapsulates the desired feature 

space.[54] Naturally, in situ SRCT testing output, which can generate on the order of 103 tomograms (i.e., 

virtual cross-sections) per SRCT scan and incorporate on the order of 101 to 103 scans over all load steps 

per specimen lifetime[44,45], dovetails with the fundamental big data requirements for robust DL. Yet, 

human-driven annotations are temporally and often financially expensive, and along with the 

computational expertise and resources required for effective DL management, constitute a high barrier 

to entry for robust DL investigation; hence, the striking current absence of precedent for such a study. 

Therefore, compared to DL architecture studies that focus on new algorithms applied to existing 

benchmark datasets[75], we instead focus here on applying an existing DL architecture proven in 

computer vision to SRCT-imaged damage progression in two different types of advanced composites 

(here, carbon fiber reinforced polymer). The trained-human database forms the ground truth and 

underpins the objective study of hyperparameter effects (i.e., high-level variables in model architecture 

and training strategy, excluding low-level learned model parameters/weights) on DL performance, 

which directly informs machine downselection and the subsequent evaluations of sample scan 

segmentation. 

 Here, we assess DL for heterogeneous materials damage segmentation in the context of typical 

data output from a single SRCT experimental campaign[76,77], wherein the number of acquired scans is 

broadly limited by the properties of the synchrotron light source, data acquisition, and in situ test 

apparatus complexity, among other variables. As depicted in Figure 1a and discussed further in 

Methods, the in situ test considered is double edge-notched tension (DENT) of composite laminates, for 

which the symmetric specimen geometry is known to promote progressive damage concentration 

between the notches. The specimens feature common lamina stacking sequences designed to exhibit in-

plane elastic isotropy: 0° (aligned with tensile load), ±45°, and 90°. Visualized up to 95% of ultimate 

tensile strength (UTS), the primary damage mechanisms revealed via SRCT in this configuration are 

intralaminar polymer cracking and fiber/polymer interfacial debonding, as well as relatively small 

interlaminar delaminations connected to (and thus classified as) 0° lamina damage — we note that fiber 
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breakage, normally observed in laminae aligned with tensile loading, was not observed appreciably here 

due to the polymer-related damage that induces considerable stress redistribution. As shown in Figure 

2a, while all laminates were ~1 mm thick, two different lamina thicknesses — termed ‘Thick’ (8 plies 

per laminate) and ‘Thin’ (16 plies per laminate), with each consisting of a different fiber/polymer system 

— were tested to examine the strong effect of ply thickness on intrinsic polymer damage suppression, 

which is induced by “in situ” geometric/size effects on strength and fracture energy release rate.[78] 

While Thick and Thin specimens exhibit identical damage modalities, their extent and mix of such 

damage varies significantly, such that the segmentation problem correspondingly varies in terms of 

damage mechanism morphology (i.e., fracture surface opening displacement, width, and length), as well 

as distinct gray values of the bulk composite material (elemental-dependent X-ray attenuation 

properties, which also vary generally with X-ray energy). Therefore, we identify a damage segmentation 

problem that features two different levels of complexity: (i) relatively simpler Thick composites that 

exhibit a low quantity of relatively large-volume polymer-related damage mechanisms, and (ii) 

relatively more complex Thin composites that exhibit a high quantity of relatively small-volume 

polymer-related damage mechanisms. Accordingly, in view of a generalized damage segmentation tool 

that learns various manifestations of damage across different composites, we can determine the effects 

of Thick and Thin data contribution on DL. 

 In our SRCT experiments, four Thick specimens and two Thin specimens were tested (specimens 

denoted by color in Figure 2a), with each test comprising several load steps (i.e., SRCT scans executed 

during pauses in monotonic loading, distinguished by letter) in the range of 60%–95% UTS as well as an 

unloaded step (~0% UTS). In total, a resultant set of ~65,000 raw (no pre-processing beyond standard 

grayscale normalization, see Figures S1 and S2, Supporting Information) tomograms, which were semi-

automatically human-annotated following a human-seeded region growing algorithm as described in 

Methods, representing 30 SRCT volumetric scans across 6 specimens, forms a robust database for 

evaluating DL-based damage segmentation. Prior studies[72–74] of DL damage segmentation of X-ray 

tomograms considered only a single class of damage, and the annotated learning datasets incorporated 

on the order of 102 or fewer human-annotated tomograms, precluding general assessment of DL 

capacity. From our ~65,000-tomogram database, the effects of training dataset size, composition, and 

sequence on learning performance are studied, keeping the test dataset identical for all machine/DL 

network development to facilitate unbiased performance evaluation. As discussed further in Methods  
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Figure 2. Deep learning machine development and downselection to preferred ‘trained machine’. a) 

SRCT dataset composition (numbers for different specimens; letters for different specimen scans) and 

hyperparameter spectrum studied (20 different machines), including sample inference comparison (scan 

Thick 4d), leading to rigorous machine downselection. b) Unbiased downselection to the selected 

machine (dark green) based strictly on minimization of test loss, comparing the complex influence on 

machine performance of various hyperparameters: number of training crops, number of training epochs, 

training and validation dataset composition, and train set sequence sensitivity. The test set class 

intersection over union (IoU) and binary accuracy (BA) standard metrics are shown for the selected 

machine following prediction threshold training using the validation set. c) Training and validation 

learning curves of the downselected machine ‘5INL-50ep’ (top), in which gray shading exhibits 
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relatively low degree of overfitting, along with training epoch (feedforward and backpropagation loop 

over dataset) depicted in inset. Class IoU (bottom) reflects the degree of overlap of human vs. selected 

machine segmentations. 

 

and illustrated in Figure 1b, the input and output image dimensions of the DL machine are smaller than 

the output SRCT tomogram dimensions in our database, requiring the typical practice of patchwise 

sampling[54] of cropped sub-tomograms to populate the learning datasets (cropped sub-tomogram area is 

~5–7% of tomogram area). Patchwise dataset sampling enables efficient learning, and as observed in 

Figure 1b for a Thick tomogram, the current patch size importantly can enable simultaneous 

visualization of the three damage classes. Moreover, since polymer-related damage in aggregate 

constitutes <<1% of the scan volume and is dominate by ±45° laminae damage, efficient and 

generalized dataset crop sampling of a given tomogram was enforced via both random crop positioning 

and presence (or not) of each class, in which the three possible classes (‘Class 1, 2, and 3’, see Figure 

1a) refer to damage in either 0° ±45°, or 90° lamina, respectively. Class-based crop sampling was found 

to be far more effective than purely random sampling (Figure S6, Supporting Information). With the 

mechanisms of sub-tomogram dataset sampling established, two different strategies for SRCT scan 

composition of train and validation datasets were assessed, organized by distribution of specimens and 

their load steps: (i) independent datasets where each specimen appears in only one dataset (‘IND-

datasets’), and (ii) interleaved datasets where each specimen has load steps mixed across the datasets 

(‘INL-datasets’). These strategies for controlling representation (or not) of Thick and Thin in both train 

and validation datasets may have broader implications for in situ experimental design to minimize 

specimen count (e.g., prioritization of load steps and envelope). For example, the INL training dataset 

only contains 20% Thin scans, whereas the IND dataset contains 50% Thin scans. Despite train and 

validation dataset variation, we note that the test dataset is split nearly evenly between Thick and Thin 

specimens that intentionally do not appear in any other datasets, facilitating a proper and balanced 

performance evaluation. Finally, dataset size, which was varied primarily for training here, was 

controlled by identically linearly downsampling each of its constituent scans, followed by the class-

based sub-tomogram sampling algorithm being applied identically to each downsampled tomogram. 

More detailed discussion of dataset size and composition and data augmentation, as well as the primary 

software and hardware used in this study, accompanies Tables S1 and S2, Supporting Information. 
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2.2. Deep Learning to Train Machine Semantic Damage Segmentation 

Semantic segmentation is a particularly challenging application of DL for pixel-/voxel-level image 

classifications, inherently demanding a relatively complex, many-layered model architecture to encode 

feature classes and then decode feature locations.[75] Recently, among various architectures for semantic 

segmentation in self-driving vehicle and biomedical applications, the U-Net[64,67] fully convolutional 

encoder-decoder NN has demonstrated great success in biomedical microscopy segmentation and 

inspired numerous derivative models.[75] As another seminal architecture, though for large-scale image 

recognition, VGG16[79] is an early application of a relatively deep CNN for enhanced feature 

classification. Combining U-Net as the encoder-decoder high-level structure with VGG16 as the deep 

CNN backbone, we employ here their hybridized model (38 trainable layers, 23.7M trainable 

parameters) for multiclass semantic segmentation, with the architecture and layer definitions overviewed 

in Figure 1b and detailed in Figures S4 and S5, Supporting Information. Counterintuitive observations 

leading to the identification of universally effective hyperparameters were discovered in preliminary 

work and uniformly applied to all machines during subsequent refined hyperparametric investigations 

(i.e., machine downselection), as discussed further in Section S1, Supporting Information. First, 

although the current segmentation problem is defined (based on physics) by multiclass classification 

(i.e., mutually exclusive pixel-level damage classes), which functions via a softmax output layer in 

coordination with the categorical cross entropy loss function, the severe imbalance of background 

(composite bulk, air, or SRCT reconstruction mask) over damage pixels skewed learning toward only 

uninteresting undamaged regions, despite implementation of background-class-weighted predictions. 

Therefore, generalization to multi-label classification (i.e., independent pixel-level damage classes, 

though inference selects only the highest prediction value relative to its class threshold) was employed, 

which functions via the sigmoid output layer in coordination with the binary cross entropy loss function. 

Second, a negligible impact of background class inclusion during multi-label classification learning was 

found, such that the learning datasets generated here exclude background class annotations. 

 Beyond the aforementioned universal hyperparameter identification, additional hyperparameter 

investigations were conducted to study DL performance effects from several factors including train set 

size, composition (IND vs. INL), and sequence sensitivity, as well as the usual number of training 

epochs (i.e., the feedforward-backpropagation iterations over the entire training dataset, with major steps 

delineated in Figure 2b inset). As shown in Figure 2a, 20 different machines (encompassing 12 different 

train/validation datasets) developed across this hyperparametric space are plotted to study combinations 
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of these hyperparameters on training and validation time, with the general goal of informing 

minimization of required machine development time toward increased focus on machine inference. 

Additionally, for comparison, sample inferences from three different machines, spanning a large training 

dataset size range, of the same Thick test dataset scan (90% UTS) are shown below the plot, with 

machine 2 (‘2’ inside green circle) highlighted since it is found to be highest performing (referred to as 

‘5INL-50ep’ later). Qualitatively, the 3D-arranged segmentations (i.e., vertical stacking of 2D 

tomograms) appear very similar, suggesting that small training datasets may potentially be 

counterbalanced by increased training epochs for a similar cost in training and validation time, though 

clearer differences in segmentation performance can be distinguished in sample 2D tomograms (see 

discussion and Tables S7 and S8, Supporting Information). 

For an objective quantitative comparison of performance of different machines/networks for 

unbiased downselection, we track the performance of each machine/network through training, validation 

and testing processes. Here, a unitless logarithmic loss function, which directly affects parameter 

optimization/learning during training, as well as class binary accuracy (BA) and class intersection over 

union (IoU), which are standard semantic segmentation performance metrics that measure agreement of 

prediction and ground truth (here, trained-human segmentation), computed over the training and 

validation datasets are important for understanding general learning history. Though, the most 

straightforward comparison of machine performance focuses simply on the loss function, which is 

defined between the annotated label and the machine/network output for each pixel, computed over the 

test dataset (Figure 2b). Interestingly, we find a complex relationship between test loss function and the 

hyperparameters of training dataset size and composition and number of training epochs (labeled as 

‘ep’). For both IND- and INL-datasets, machine performance generally improves with increasing 

training dataset size, as expected, but only through dataset sizes of ~20,000 cropped tomograms; larger 

training dataset sizes exhibit unchanged or worse performance, depending on number of epochs. This is 

the known general tradeoff between underdeveloped feature learning (i.e., underfitting) and overfitting, 

which will be examined later. Overall, as clearly depicted in the Figure 2b inset, the highest performing 

(and thus downselected for further examination) machine is found to feature the following 

hyperparameters: INL-datasets, ~22,000 cropped tomograms in train set, and 50 training epochs. 

Additionally, the class-based performance on the test dataset is listed for the selected trained machine, 

following class prediction threshold training on the IoU metric, with macro-averages of 0.67 and 

>0.9998 for class IoU and BA, respectively, on the test set (see Section S2, Supporting Information, for 
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class prediction thresholds and additional performance metrics discussion, including a validation set 

macro-average BA of 0.9999), motivating detailed qualitative and quantitative examination in the next 

section. For qualitative insight into hyperparameter effects on learning of the overall database, sample 

tomogram inferences for similarly performing machines (relative to the downselected trained machine) 

are included in Section S3, Supporting Information. Finally, shown in Figure 2b is that machine 

performance is relatively insensitive to the sequence of training dataset tomograms during training, 

observed as minimal deviation in test dataset loss. 

Focusing on the downselected machine (5INL-50ep) only, representative training and validation 

results are shown in Figure 2c, capturing the general trends in loss function and class IoU, which are 

computed on both train and validation datasets after each training epoch. As is typical, the training 

dataset loss continually decreases during training and asymptotes at an imprecise value based on the 

intrinsic ground truth error, which will be inspected subsequently; the validation dataset loss decreases 

in an increasingly stable manner during training initially, but remains relatively constant as training 

concludes. The gray-shaded region between loss curves indicates the degree of overfitting to the training 

dataset, and despite its increase through training conclusion at 50 epochs, better performance is found 

here than for identically configured machines trained for only 30 epochs, attributed likely to 

underdeveloped feature learning with fewer epochs (see Figure S29, Supporting Information, for 

training and validation results of other machines). Class IoU is an alternative significant metric to track 

during learning, particularly because it decomposes machine performance into its individual class 

contributions, which is particularly valuable since different classes have different ground truth error and 

are also notionally more challenging to learn than others. It is important to note that common image 

analysis metrics like IoU, F1 score, Precision, and Recall require criteria definition for transforming the 

three output class prediction scores for each pixel into a single criterion score. Whereas class prediction 

thresholds are optimized eventually over a desired metric, this so-called class prediction threshold 

training is not possible until after the machine training has converged; thus, a default class prediction 

threshold of 0.5 is assumed during training and validation, and importantly, it has no effect on parameter 

learning (loss function definition is independent of prediction threshold). For reference, recall that a 0.5 

threshold is exactly correct in an unbiased purely binary classification problem. Similar to the loss 

curves, the class IoU curves reflect steep performance increases followed by asymptotic regions. Here, 

we observe in Figure 2b that Classes 1 and 2 are easiest to learn, followed by Class 3 (attributed to 
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inherent physics-related challenges with SRCT imaging of Class 3, see Figures S25–S27, Supporting 

Information). 

2.3. Generalizable Segmentation of Multiclass Damage in Layered Composite 

Following the trained machine downselection, a detailed qualitative and quantitative inference-based 

evaluation of 5INL-50ep performance is presented using a salient subset of sample scans from the test 

dataset: one Thick and one Thin specimen, each with load steps of 70%, and 90% of DENT UTS 

(corresponding 0% UTS results are presented in Figure S28, Supporting Information). This subset 

enables a clear assessment of machine intelligence capacity, emphasizing objective and consistent 

segmentation across different composite types (Thick and Thin) and their corresponding damage mixes 

as well as sequential progressive damage states, thus facilitating an overall assessment of 

generalizability, which is arguably as critical as segmentation accuracy for adoption in other similar 

problems. 

 The full 3D segmented damage states are the primary desired qualitative outcome of in situ CT 

testing, and are shown in Figure 3. In the first two columns, 3D renderings of human- and machine-

segmented damage are shown, as are the textured specimen exterior surfaces (standard skin feature 

caused by surface film during autoclave curing) and rough water-jetted notched edge, which 

contextualize the location of damage in the DENT specimens. Additionally, the schematic at the right 

portrays the lamina orientation sequence (simply colored to match the resident damage class) of each 

composite type to assist in situating features. Overall, the sparse 3D-connected damage segmentations 

show excellent agreement between human and machine across various damage classes and scales. For a 

more detailed discernment of human vs. machine performance, the intersecting (column 3) and non-

intersecting (column 4, i.e., difference sets) components of each class segmentation are shown, with the 

specimen exterior skin rendering removed. Taken together, these columns illustrate the quantitative IoU 

metric measuring overlap. Thus, for each scan, the corresponding scan-level IoU and Recall (i.e., portion 

of human segmentation that is positively predicted by machine) scores are included for quantitative 

context. In column 3, we observe strong agreement by comparing the intersection components to the 

human segmentation, which is summarized quantitatively by the all-around relatively high Recall scores. 

In column 4, noting application of a different color legend to decompose human vs. machine 

segmentation for each class, where for a given class ‘human only’ aggregates false negative 

(background) or false positive for other classes, we visualize a breadth of non-intersecting components 

that appear to mirror the major intersecting component trends. However, as will be recognized in 2D  
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Figure 3. Comparison of 3D segmentations of selected test set scans. Thick and Thin material type 

specimens at 70% and 90% of ultimate tensile strength (UTS) are segmented by a human and the 

selected trained DL machine (columns 1 and 2). Column 3 visualizes the 3D intersection of human and 

machine results, showing good agreement via solidly filled-in damage instances, whereas column 4 
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visualizes the non-intersecting components, which generally form thin films over intersection 

components. Corresponding intersection over union (IoU) and Recall scores quantify excellent human 

and machine agreement. The schematic (right) visualizes the lamina stacking sequence in each 

specimen. Scale bar for all images, 500 µm. 

 

examination of segmentations, the unfilled non-intersecting components exaggerate the actual non-

intersecting volume of damage, since it will be seen that generally the non-intersecting components form 

a thin-film over the intersecting components, which can be interpreted generally as the machine 

improving on the ground truth with an objective/consistent selection of the extent of damage. 

Quantitatively, the combination of columns 3 and 4 represent the standard IoU metric components. In 

analyzing the class IoU scores, it is critical to note their potential to be misleading in the presence of 

nontrivial ground truth error, as any superior performance by the machine is reflected in a IoU penalty, 

which motivates our subsequent 2D analysis. Thus, considering both Recall and IoU, the overall 

qualitative 3D assessment of machine segmentation is strikingly positive, effectively replicating human 

performance. Of particular import, concentrating on problematic scan regions that normally preclude 

simple gray value thresholding and traditional hard programming, the machine consistently avoids 

segmentation of the artifact-prone notch edge and exterior surface, which are common regions where 

semi-automatic segmentation schemes would fail. 

 For deeper quantitative insight into trained-machine segmentation performance, the test dataset 

sample scan segmentations are examined via 3D object analysis (see Methods section), focusing on 

three key comparative perspectives: spatial distribution (Figure 4a), volume (Figure 4b), and grayscale 

intensity (Figure 4c). Regarding trained-human segmentations, note that each 3D-connected object is the 

result of one application of region growing, though iterative manual subtractive corrections are generally 

required for each such object. First, in Figure 4a, aggregating the barycenter locations for 3D-isolated 

damage segmentation instances, we map the volume-weighted barycenter location of each class (color) 

in each scan (shape) within the corresponding linear 3D image space (axes normalized by scan 

dimensions). For all segmentation scan/class combinations, we observe relatively small (<5%) or even 

negligible shifts in normalized barycenter, suggesting good agreement in global spatial distribution. 

Next, in Figure 4b, the segmented class volumes for each scan, which are also the pointwise volumes 

represented in Figure 4a, are shown relative to a general measure of scan sparsity (<<1% volume), 

underscoring an inherent impediment to segmentation learning in such CT scans of damage even though 

the notches concentrate damage in the scanned regions. Noting the difference in scale between Thick  



17 
 

 

Figure 4. Quantitative comparison of 3D segmentations of selected test set scans. a) Mapping of 

segmentation barycenters (centers of volume normalized by scan dimensions) translation reveals 

agreement (shifts <5%) of global spatial distribution of segmented damage. b) Quantification of sparse 

(<<1% scan volume) segmentation volumes (Human: ‘Hum’ vs. Machine: ‘Mac’) decomposed into 

subgroup volumes contributed by 3D objects within selected volume ranges, revealing the wide 3D 

object volume range and degree of damage connectedness. Good agreement is demonstrated in the 

overall class volumes segmented, as well as the decomposition of total volume into contributions by 

objects within given volume ranges. c) Gray value (GV) intensity-based histograms exhibit the mean 
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gray values of machine-segmented 3D objects (via analysis of stack-arranged segmented slices). Dotted 

white lines reflect the histogram bin boundaries, and grayscale backdrop contextualizes the mean GV 

(see inset for example grayscale damage). The machine (5INL-50ep) appears to sufficiently learn the 

human region growing GV thresholds. Scale bar (inset), 5 µm. 

 

and Thin scans, the listed percent differences in total class volume segmented indicate strong agreement 

for several scan/class combinations, while considerable disagreement is noted for others. Diving deeper, 

the total segmented volume is then decomposed into the aggregate contributions of all objects falling 

into log-scale-separated volume ranges, facilitating understanding of object segmentation discrepancies 

in the context of 3D-connectedness: noise (small object volumes on the order of 10 voxels or less) vs. 

ostensibly 3D-connected damage (larger object volumes). Representative depictions of these damage 

volume classes are shown in Figure S13, Supporting Information. Generally, the total volume 

discrepancies between human and machine correspond to discrepancies in larger-volume objects, 

suggesting that discrepancies arise due to machine augmentation/extension or at the level of entire 3D-

connected damage instances (as also reflected in Figure 4a), requiring the higher resolution investigation 

discussed later. An example is the thin-film of machine vs. human disagreement in column 4 of Figure 

3, as discussed earlier. Additionally, it is recognized that linear scale of Figure 4b prevents clear 

resolution of small volume object presence; thus, a companion log-scale version of the plot is found in 

Figure S12, Supporting Information, and supports the aforementioned explanation. Interestingly, 

smaller-volume objects are characterized in the human segmentations as well, due to subtractive manual 

operations that fragment larger region-grown objects, suggesting a source of ground truth error since the 

maximum tomographic resolution is 2–3× voxel size, setting the theoretical minimum acceptable 

human-segmented connected object volume to be on the order of 10 voxels. Finally, in Figure 4c, we 

report 3D object analysis histograms per class focusing on grayscale intensity, with the plot backdrops 

contextually given according to the 8-bit grayscale (gray values: 0–255) of the tomograms, showing 

distribution of 3D object mean relative to the aforementioned gray value thresholds (which vary 

according to composite type and damage class) applied during human region growing. In the inset, we 

illustrate the tomographic material representation along a line plot of grayscale, exemplifying a sample 

crack segmentation with sub-threshold gray values (here, mean object gray value of 6). Clearly, a great 

majority of machine-segmented objects, including those of Class 3, across both laminate types and load 

steps, exhibit mean gray values within the human-defined thresholds, suggesting flexible ML of the 

(usefully variable) human segmentation strategies for different composite systems. An expansive set of 
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histograms representing basic 3D object statistics, broken down by object volume range, can be found in 

Figures S14–S22, Supporting Information, particularly addressing numerical outliers (recall, no post-

processing here at all). 

To better understand the trained human vs. selected trained machine (5INL-50ep) performance, 

we consider comparative segmentation themes generally observed in 2D tomograms, which are direct 

inputs and outputs of the machine, while focusing on the more damage-prevalent (90% UTS) Thick test 

dataset scan segmentation, shown in Figure 5 (corresponding results for Thin presented in companion 

Figure S23, Supporting Information). The following discussion applies to both Thick and Thin figures. 

Applying the same color legend as in Figure 3, we illustrate the general themes in representative Thick 

sub-tomograms (vertical location along specimen marked in bottom schematic; location selection not 

based on any rules), with the organizing principle being qualitative comparative performance, i.e., equal, 

superior, or inferior performance of the machine relative to human. Though, practically, examples of all 

three distinctions are actually interspersed throughout each sample sub-tomogram. In each tomographic 

image and inset, we identify several factors/artifacts that complicate generalized CT image analysis of 

damage: damage sparsity, multiple scales of isolated damage instances (ranging from single 

fiber/polymer debonds to multi-lamina polymer cracks), highly irregular damage morphologies and 

orientations, morphological, spatial, and grayscale intensity differences in Thick vs. Thin damage, 

jagged notch edges, phase contrast fringes at interfaces due to X-ray detection in the near-field Fresnel 

region[44], unclear reconstruction of 90° laminae (e.g., Figure S25, Supporting Information), and noise, 

among others. Nonetheless, equivalent performance (row 1) is demonstrated by virtually complete 

segmentation of matrix damage instances, which is observed in the vast majority of tomograms across 

all scales and classes, consistent with the high validation and test dataset macro-averages of class BA 

scores of 99.99% and 99.98%, respectively. Interestingly, although the machine can only access the yz-

plane during training, without the aid of human-generated masking, it demonstrates adequate 

performance on 90° lamina damage despite its lower quality reconstruction; in comparison, human-

driven Class 3 segmentation relies also on the xz-plane. Machine superiority (row 2) is demonstrated 

where the machine discovers entirely new damage instances missed by the human, augments existing 

diffuse segmentations (caused partly by local grayscale noise in tomogram near human-defined 

thresholds, and also includes the thin film feature from Figure 3 column 4), or correctly extends 

segmentations to artifact-prone specimen edges. Note that the rate of damage-positive machine 
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superiority is infeasible to calculate here given the nontrivial extent of human error. Occurring with least 

frequency, machine inferiority (row 3) is demonstrated where the  

 
Figure 5. Examples of machine vs. human segmentations where: (top) the machine performs similar to 

the human, (middle) the machine outperforms the human, and (bottom) the machine underperforms the 

human. The quality of the selected trained machine (5INL-50ep) segmentations of Thick 90% UTS is 

evaluated based on a (subjective) scale with 3D locations of cropped tomograms shown in a schematic. 
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noted by mean class binary accuracy (BA)) as the bulk of multiscale, diffuse damage is segmented with 

the correct class, differing only by a thin outer film/layer. The middle row characterizes observed causes 

(iv–vi) of machine superiority as discovering new damage, augmenting interior human segmentation, 

and extending near-edge damage closer to the edge. The bottom row characterizes the observed causes 

(vii–ix) of machine inferiority (minority case noted by mean classification error rate (CER)) as damage 

misclassification (false positive), absent classification (typically only in complex edge regions, false 

negative), and exterior edge overrun. Such quality characterizations appear interspersed in actuality 

throughout each representative row. Scale bar is 50 µm in zoomed-out views, and 20 µm in zoomed-in 

(inset) views. 

 

model misclassifies or entirely misses damage, or segments regions outside of the specimen interior. 

Examples of machine inferiority in 2D are typically closely located to, and significantly outnumbered 

by, larger regions of machine equivalence or even superiority. Note that machine inferiority is the 

minority case due to the test set macro-average classification error rate (CER, equivalent to one minus 

the class BA) of 10-4, which includes nontrivial human error and can be considered as a proxy for 

damage-positive misclassification (false positives) rate in this class-independent prediction framework 

(wherein multi-label classification predictions are class-thresholded to a single class or background for 

each pixel). 

3. Conclusion 

Materials insertion for high-performance, safety-critical structural applications has historically been 

slowed by uncertainty related to damage initiation and growth, which affects strength and toughness, 

particularly in heterogeneous advanced fiber composites. Data-rich emergent in situ SRCT studies for 

high-fidelity damage characterization are underpinning mechanistic understanding and allow 

microstructural-optimization-validated predictive modeling. However, despite the conceptual 

completeness of 4D damage state visualization via SRCT, objective mechanistic insights are slowed by 

large quantities of artifact-prone tomograms that are indeterminable by conventional “rule-based” 

automated segmentation, necessitating reliance on subjective, tedious human-driven (manual or semi-

automatic) segmentation techniques. Altogether, these factors constitute a choked big data bottleneck on 

advancing understanding via CT studies.  

We present a foundational investigation of DL capacity to classify sparse, multiclass polymer-

related microdamage in advanced composite laminates via in situ SRCT, exemplary materials that 

feature notoriously complex failure behavior of great interest to several research communities, including 

aerospace, automotive, and renewable energy. Recognizing that DL performance scales with training 

dataset size and diversity, we robustly study generalizability of novel feature learning across 30 SRCT 



22 
 

scans (~65,000 tomograms, totaling ~3×1011 voxels) comprising 6 specimens and 2 different laminate 

types, necessary for maximizing the speed and objectivity benefits of automation. Following a high-

level hyperparametric optimization study involving 20 different machines featuring a fully convolutional 

neural network in an encoder-decoder architecture, proven in semantic segmentation within other 

domains, the selected trained machine (5INL-50ep) was found via 2D and 3D quantitative and 

qualitative analyses to have excellent agreement (~99.99% class binary accuracies on validation and test 

datasets) with the ground truth via time-intensive, subjective human-driven semi-automatic 

segmentation methods, while concurrently introducing significant improvements in efficiency and 

consistency, and in some cases improving upon the trained-human ground truth. The DL/AI 

segmentation approach accelerates materials knowledge creation by 2 orders of magnitude, e.g., the 

65,000 tomograms were segmented by the trained human in ~60 working days, or ~0.23 years, while a 

single trained machine would take ~2 full days (~0.005 years). This corresponds to 1 GPU as considered 

here for the trained machine; further acceleration is achievable with multi-GPU machines, or multiple 

machines working in parallel. 

Looking forward, while transfer learning techniques that can accelerate ML were not used here, 

future machines may be initialized with the presented model to aid learning efficacy, though this 

likelihood needs to be proven with new human-generated ground truth labels in future work, particularly 

on noisier, lower-resolution (more challenging) lab-based µCT datasets, which are becoming common in 

materials engineering, as well as similar high-resolution SRCT datasets which continually enlarge in 

scale as scan rate and detector size increase at all global beamlines. DL-based segmentation can 

successfully characterize sparse, extremely complex damage within vast SRCT datasets, establishing 

such tools as presently unmatched candidates to accelerate understanding of basic structure-property 

relationships, underpinned by failure mechanisms, across a spectrum of heterogeneous materials (e.g., 

biological and biomimetic). Future straightforward extensions include microstructural morphological 

segmentation that elucidates constituent interplay with damage progression and trends for advanced and 

other types of heterogeneous and composite materials, as well as machines capable of 3D and 4D 

segmentation to deepen learning via the full-field and temporal (in situ) nature of CT data. 

4. Methods 

In situ synchrotron radiation computed tomography testing of advanced composite laminates: In this 

study, two different types of aerospace-grade carbon fiber/epoxy advanced composite laminates 

comprised of unidirectional prepreg laminae are examined: standard-thickness-ply (termed ‘Thick’) and 
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thin-ply (termed ‘Thin’), as illustrated in Figure S1, Supporting Information. The Thick laminate 

material system is comprised of Hexcel AS4/8552 (130 µm nominal cured lamina thickness) and 

employs a quasi-isotropic lamina stacking sequence of [0°/90°/±45°/∓45°/90°/0°] ([0°/90°/±45°]S in 

composite shorthand); the Thin laminate material system is comprised of Toho Tenax HTS40/Q-1112 

(54 µm nominal lamina thickness) and employs a similar quasi-isotropic lamina stacking sequence of 

[0°/90°/±45°/0°/90°/±45°/∓45°/90°/0°/∓45°/90°/0°] ([0°/90°/±45°]2S in composite shorthand). Both 

laminates were cured in an autoclave according to their respective (different) manufacturer cure 

schedules, which are documented in refs. [76,77], producing a ~1 mm laminate thickness for both types. 

Based on refs. [80,81], double edge-notched tension (DENT) specimens (length of 70 mm and grip 

section width of 4 mm, with two 1.1 mm-radius edge notches centered lengthwise) were manufactured 

with a high-precision waterjet (Omax 2652 Jet Machining Center; 0.01-in tool offset). Aluminum tabs 

with 1.5-mm thickness were adhered to each specimen end to aid load transfer from the loading rig 

grips, resulting in 50 mm of specimen length not being tabbed. Ex situ DENT testing was performed 

next, using a Zwick/Roell Z010 uniaxial loading rig equipped with a 10-kN load cell to plan in situ 

DENT ultimate tensile strength (UTS, equivalent to the maximum applied tensile load divided by the 

grip section cross-sectional area) load steps as a percentage of ex situ UTS. Next, using beamline ID19 

at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, in situ SRCT testing was 

performed in displacement control (1 mm/minute, 2 Hz sample rate), where DENT specimens were 

monotonically loaded in a Deben electromechanical (screw-driven) loading rig (parallel alignment of 

loading axis, 0° lamina fibers, and tomography stage rotational axis, all of which were orthogonal to the 

X-ray beam plane) and paused via fixed displacement at various load steps (0%, 60%–95% of the mean 

ex situ UTS for each laminate type) to accommodate SRCT scanning of one of the two notch edge 

regions (see Figure 1a for idealized specimen loading curve). Each scan took an average of 7 minutes, 

including time for displacement application, stress relaxation (typically less than 10 MPa nominal stress 

over ~1 minute) during fixed grip displacement that mitigates blurring artifacts caused by specimen 

motion, field-of-view (FoV) positioning, and scan acquisition. The ultra-high-resolution SRCT scans 

and scan reconstructions were performed using the following parameters: 20 keV X-ray energy 

(monochromatic), 50 ms exposure, 2996 radiographic projections (180° angular range), 0.65 μm 

isotropic voxel size, and 1.66 mm × 1.66 mm × 1.40 mm FoV. An established ID19 imaging protocol 

employing a 60-mm propagation (sample to detector) distance was used to allow enhanced visualization 

of individual fibers and micron-scale crack opening displacements via edge-enhancing propagation-
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based phase contrast that appears in tomograms as black/white fringes at interfaces due to differential X-

ray refraction[80], facilitated by positioning the detector in the near-field Fresnel region.[44] Following 

radiograph acquisition, tomographic scan reconstruction was performed using an algorithm based on the 

inverse radon transform via filtered back projection on either a tomogram-by-tomogram basis[82], as well 

as a generalized 3D basis for arbitrary slice monitoring during testing[83], with both approaches including 

ring artifact correction and center shift determination, and then finished by grayscale normalization over 

all tomograms in a single scan/stack. Following tomographic reconstruction and normalization, 32-bit 

floating-point grayscale raw volumetric images (2,560 pixels × 2,560 pixels × 2,160 pixels) were 

generated, which were subsequently adjusted identically in brightness/contrast (histogram adjusted to -

60 to +60 gray value range, reflecting local linear X-ray attenuation coefficients for each specimen FoV, 

for 32-bit real-valued tomograms), downsampled to 8-bit grayscale images without loss of generality, 

and cropped to remove broad air and SRCT mask regions using Fiji ImageJ. In total, a set of thirty 

SRCT scans (~65,000 tomograms) encompassing six specimens (four Thick specimens and two Thin 

specimens) were acquired, as shown in Figure 2a. Additional methodology details for this study are 

provided elsewhere.[84] 

Traditional (trained-human) damage segmentation for X-ray microtomography of advanced composites 

as ground truth: Since simple gray value thresholding (Figure S2, Supporting Information) and even 

more sophisticated rule-based programming approaches involving digital image processing tools (e.g., 

ref. [85]) are unsuitable/inaccurate for automation of the present multiclass 3D segmentation problem, a 

semi-automatic seeded region growing technique was implemented to create ground truth (i.e., 

baseline)-labeled damage segmentation results, which collectively comprise the DL model development 

database. The state-of-the-art trained human-driven segmentation approach of iterative seeding then 

region growing, which prioritizes accuracy over labor and objectivity, iteratively employs in FEI Avizo 

Version 9.4 a blend of manual lamina masking (via the brush tool) to limit segmentation propagation to 

within the laminae and the magic wand tool to segment 3D-connected regions that both contain a 

manual seed point and possess gray values less than a human-defined threshold, as exemplified in Figure 

1b. Consequently, features of interest segmented by region growing remain within masked regions 

(laminae) and comprise gray values that are identified manually as representing damage (much darker in 

grayscale intensity than bulk composite, air, or SRCT reconstruction mask). Particularly, associated with 

slight differences in the X-ray attenuation properties of their fiber/matrix systems, different gray value 

threshold ranges were selected for Thick and Thin specimens: [0, 40] for 0° or ±45° lamina damage and 
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[0, 70] for 90° lamina damage in Thick specimens, and [0, 30] for 0° or ±45° lamina damage and [0, 30] 

for 90° lamina damage in Thin specimens. The larger threshold range selected for 90° lamina damage in 

Thick specimens was driven by the presence of local reconstruction clarity artifacts (blurring), as the 90° 

fibers are disadvantageously arranged parallel to the X-ray beam plane. In contrast, no such region 

growing threshold range expansion was needed to improve 90° lamina damage segmentation in Thin 

specimens, since they exhibited an observed relative suppression of overall polymer damage extent. In 

practice, the trained human (baseline) segmentation process initiates by examining a relatively small 

region of a lamina-masked tomogram and manually setting seed points for region growing in human-

identified damage sub-regions, as demonstrated in the baseline segmentation pipeline in Figure 1b. Note 

that when using this semi-automatic method, a trained human has access to all three mutually orthogonal 

image planes captured by volumetric SRCT, providing a strong analytical advantage as 0° and ±45° 

laminae damage are more clearly visualized in the yz-plane and 90° lamina damage is more clearly 

visualized in the xz-plane (planes normal to lamina/fiber direction are preferred, as cracks are more 

evident there). For comparison, as discussed previously, the current trained-machine segmentation only 

accesses the yz-plane, as it is 2D slice-based. Once all human-identified damage regions in the 

tomogram have been segmented via region growing, manual pixel-level corrections are typically needed 

and performed using the brush tool to subtract erroneous selections from segmentation label sets or 

refine masks as needed, particularly in interlaminar (lamina/lamina) regions where different damage 

class instances interact and near specimen edges and lamina interfaces due to expected and observed 

masking errors associated with their rough/wavy morphologies, which display dark/bright imaging 

artifacts caused by inherent interference/fringe effects of propagation-based phase contrast in SRCT, 

underpinning masking of the notch edge region as especially salient due to its susceptibility to false-

positive segmentations. Overall, polymer damage present in interior regions located at least five fibers or 

~30 µm away from the rough notch exterior edge were examined, to promote feasible and consistent 

region-growing results without compromising accuracy. Once a tomogram sub-region (or sub-stack) was 

segmented relatively accurately (based on trained human assessment), neighboring tomographic regions 

were processed with the same baseline procedure. In total, iterating with 2D-based inspections over a 

single entire 3D tomographic image (stack of tomograms), the semi-automatic region growing 

segmentation method generally required on the order of ~10 h (up to greater than 20 h) of trained human 

labor that comprises considerable levels of subjectivity. Following segmentation, the quantification 

module (label analysis) in Avizo was used for class-level analyses.  
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Deep learning-based (trained-machine) damage segmentation of X-ray microtomography of advanced 

composites: The DL machine development workflow as executed here, including model and data inputs 

and outputs, is presented in Figure S3, Supporting Information. The workflow, comprising the six steps 

of data ingestion, dataset preparation, machine training and validation, prediction threshold training, 

machine testing, and machine inference, are organized such that depending on the development stage of 

the machine as well as the segmentation needs, different combinations of these steps may be warranted, 

which can be further generalized to include DL hierarchies comprised of developing desired broader-

scoped machines from the combined output of numerous more tractable narrower-scoped machines. For 

example, developing a new model (without any transfer learning/pre-training) necessitates performing 

all six steps of the workflow. In contrast, once a model has been fully developed (trained, validated, and 

tested), if new, relatively similar SRCT data (in terms of lamina stacking sequence, specimen orientation 

relative to X-ray beam, damage mechanisms, etc. based on similar or nearly identical experimental 

setups) needs to be segmented, then only steps 1 (i.e., data ingestion) and 6 (i.e., machine inference) 

need to be executed. Overall, compared to the trained human, the trained machine begins from a similar 

starting point (here, yz-plane sub-tomogram; note that the machine cannot learn from xz- or xy-planes) 

and performs end-to-end multiclass segmentation (no pre- or post-processing) in a much shorter 

timeframe and with (presumed) greater levels of consistency (n.b., machine segmentation is repeatable). 

Repeating over the full tomogram stack (complete scan), the machine requires ~1 h of computational 

time, which is strongly dependent on computational resources. The human time required to operate a 

trained machine pipeline is negligible. Public access to our code repository is discussed below in 

Supporting Information. 

 The DL model development was performed with Python 3.5 using Keras/Google Tensorflow 

Version 2.1 in combination with the publicly available DL model library Segmentation Models[86] 

(GitHub public repository). Regarding hardware, virtual machines facilitated by Google Cloud Platform 

were utilized, with each featuring one NVIDIA Tesla P100 GPU (additional GPUs would be expected to 

reduce machine time). The primary details and hyperparameters used in the current DL model/network 

architecture are presented in Tables S1 and S2, Supporting Information. We note that from the full set of 

semi-automatically labeled 2D tomograms (n.b., region growing masks excluded from labeled learning 

datasets) spanning thirty 3D SRCT scans (~65,000 tomograms) of both Thick and Thin specimens, 

class-based crop sampling was employed to more efficiently train the model. Note that no transfer 

learning was used in this study; models/networks were randomly initialized as discussed in Section S1, 
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Supporting Information. Class-based cropping involves patchwise sampling of a human-specified 

number of sub-tomograms (512 pixels × 512 pixels) from each full-sized tomogram (~2,000 pixels × 

~2,000 pixels here, following minor initial cropping of air regions) based on the presence (or not) of a 

given class of polymer damage within the sub-tomogram. Three classes of (polymer) damage were 

annotated semi-automatically by a trained human, as previously discussed, and used for model training: 

Class 1 comprises polymer damage located in 0° laminae, Class 2 comprises polymer damage located in 

±45° laminae, and Class 3 comprises polymer damage located in 90° laminae. Additionally, we note that 

to reinforce more general learning of damage features, class-sampled crops/sub-tomograms were 

subsequently rotated randomly by integer multiples of 90°, a form of a technique known as data 

augmentation. Finally, as discussed previously, we note that while each pixel was treated here in a 

multi-label context, the final inference workflow step enforced selection of only the single highest 

(relative to each respective class prediction threshold) probability class, or no class at all since the 

background was not included explicitly as a learned class here. Further details regarding multi-label 

classification and background class exclusion are presented in Section S1, Supporting Information. 

Quantitative segmentation analysis in two and three dimensions: Three-dimensional object analysis of 

each segmentation class was conducted via 3D ImageJ Suite[87], a Fiji ImageJ plug-in. 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author.  
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