
MIT Open Access Articles

IDEBench: A Benchmark for Interactive Data Exploration

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Eichmann, Philipp, Zgraggen, Emanuel, Binnig, Carsten and Kraska, Tim. 2020.
"IDEBench: A Benchmark for Interactive Data Exploration."

As Published: https://doi.org/10.1145/3318464.3380574

Publisher: ACM|Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data

Persistent URL: https://hdl.handle.net/1721.1/145660

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/145660

IDEBench: A Benchmark for Interactive
Data Exploration

Philipp Eichmann
Brown University
Providence, RI

Emanuel Zgraggen
MIT CSAIL

Cambridge, MA

Carsten Binnig
TU Darmstadt

Germany

Tim Kraska
MIT CSAIL

Cambridge, MA

ABSTRACT
In recent years, many query processing techniques have
been developed to better support interactive data exploration
(IDE) of large structured datasets. To evaluate and compare
database engines in terms of how well they support such
workloads, experimenters have mostly used self-designed
evaluation procedures rather than established benchmarks.
In this paper we argue that this is due to the fact that the
workloads and metrics of popular analytical benchmarks
such as TPC-H or TPC-DS were designed for traditional
performance reporting scenarios, and do not capture distinc-
tive IDE characteristics. Guided by the findings of several
user studies we present a new benchmark called IDEBench,
designed to evaluate database engines based on common
IDE workflows and metrics that matter to the end-user. We
demonstrate the applicability of IDEBench through a num-
ber of experiments with five different database engines, and
present and discuss our findings.

ACM Reference Format:
Philipp Eichmann, Emanuel Zgraggen, Carsten Binnig, and Tim
Kraska. 2020. IDEBench: A Benchmark for Interactive Data Ex-
ploration. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD’20), June 14–19, 2020,
Portland, OR, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3318464.3380574

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3380574

1 INTRODUCTION
Interactive data exploration (IDE), i.e., user-guided explo-
ration of a database is an important task in data analysis.
IDE tools such as Tableau assist users in exploring databases
by allowing them to filter, group, and aggregate data through
a visual user interface. The speed of computation when per-
forming such operations is crucial. A study by Liu et. al. [23]
showed that latencies greater than 500ms can have a signifi-
cant negative impact on user performance. Thus, relational
DBMSs are challenged to provide responses at interactive
speeds for ad-hoc queries that users issue as they explore
data through a visual user interface. However, traditional
analytical DBMSs, such as MonetDB [25] or SAP HANA [14],
often take seconds or even minutes to compute results on in-
creasingly large databases. To mitigate this problem various
query processing techniques have been proposed for DBMSs
[2, 10, 11, 18, 22, 24, 34]. Examples include re-using previ-
ously computed results [9, 11, 13, 15], employing specialized
data structures, on-demand creation of stratified samples
[11], or performing speculative pre-computation based on
previous interactions [20].

As the space of such techniques grows rapidly, comparing
and evaluating their utility in the context of IDE becomes
increasingly important. Yet, the workload used in traditional
analytical SQL benchmarks such as TPC-H [38], TPC-DS
[37], or the Star Schema Benchmark (SSB) [29] are not rep-
resentative of the unique characteristics of IDE, and their
metrics are not primarily intended to capture what matters to
the end-user, rendering them unsuitable for IDE benchmark-
ing. Our analysis of IDE user behavior shows that workloads
are typically composed of sequences of related queries that
are separated by time gaps. Users incrementally refine filters
and visualize subsets of data using multiple plots for differ-
ent attributes and aggregate functions. Conversely, queries
found in existing benchmark are largely independent and
unrelated, and meant to be executed back-to-back. Further-
more, metrics used in existing benchmarks are unable to fully
capture aspects that are important to the end-user. They do

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1555

https://doi.org/10.1145/3318464.3380574
https://doi.org/10.1145/3318464.3380574
https://doi.org/10.1145/3318464.3380574

SIGMOD’20, June 14–19, 2020, Portland, OR, USA Eichmann et al.

not take into account different execution models, such as
blocking execution, where exact results are returned once all
data is processed, and approximate and progressive models,
which can be configured to balance the trade-off between
result quality and query run-time. Moreover, the time a sys-
tem takes to start up is largely neglected even though some
engines heavily rely on pre-processing (e.g. to create samples
offline).

We argue that an IDE benchmark must not be solely based
on the end-to-end run-time of individual queries. Instead
it should report on metrics that reflect that trade-off be-
tween speed and quality, as well as on the time it takes to
pre-process data. Such metrics enable benchmark users and
systems builders to answer questions like, “can a system pro-
vide responses within interactive latencies”, “at what cost
in terms of quality of the result”, “at which data-size would
a traditional column-store like MonetDB outperform an ap-
proximate engine?”, “how much overhead do approximate
query processing techniques introduce?”, etc.
In this paper we present IDEBench, a new benchmark to

facilitate comparison of database engines tested under com-
mon IDE conditions. The design of IDEBench is driven by
the findings of five user studies we have conducted over the
course of the past few years. First, contrary to existing bench-
marks, IDEBench generates and uses time-spaced sequences
of aggregate queries as its workload, which are represen-
tative of common query patterns we observed in the logs
of our user studies. Our goal is not to accurately simulate
users, which is arguably impossible, but instead to focus on a
common denominator of IDE query patterns in query work-
loads that result from IDE systems. Second, IDEBench uses
real-world data. This is crucial since reporting the quality
of approximated results, i.e., accuracy and completeness, us-
ing synthetic uniformly distributed data, for instance, would
be meaningless. To that end, we built a data generator that
can be used to scale real-world datasets to any size while
maintaining the original characteristics. Third, inspired by
prior work of the data visualization community IDEBench
reports on metrics that capture the trade-off between quality
of results and query run-time. Finally, our benchmark is de-
signed in an extensible way that enables users to add custom
datasets and generate workflows that match their IDE use
case.

In summary, the main contributions of this paper are: (1)
We report on the results of an extensive workload analysis
of five user studies. (2) We present the design of IDEBench,
an extensible benchmark that facilitates the evaluation and
comparison of different database engines for IDE workloads.
The source-code of IDEBench is made available to the re-
search community1. (3) We evaluated five different database

1http://github.com/IDEBench/IDEBench-public

engines using IDEBench and present and discuss their results:
two commercial database engines, two research prototypes
(IDEA, approXimateDB/XDB), as well as MonetDB.

2 INTERACTIVE DATA EXPLORATION
In this section we first describe an IDE scenario that exem-
plifies how users visually explore data using IDE tools such
as Tableau and Power BI. We then define the scope of our
benchmark and present a selection of DBMSs that are within
this scope.

2.1 An IDE Example
Jean, a research staff member at a major hospital, wants
to get an overview of the hospital’s patient population and
their health problems. To do so, she looks at electronic health
records from the past 20 years. Jean starts out by examin-
ing demographic information of patients and, for example,
finds that patients ages are normally distributed. She then
continues to look for interesting patterns in admission times
and dates. Jean creates a query that shows the number of
new admits per hour of the day. The result reveals that most
admissions are during business hours, but there is an inter-
esting bump from 7 to 10 pm. She filters down to admits from
the emergency center and notices that most of the admis-
sions between 7 and 10 pm were recorded there. Is this trend
identical on all days of the week? She refines her query to
display admits on weekends and sees that the bump shifted
towards 10 to 12 pm. Who are these patients? Jean filters
her previous age query by patients admitted on weekends
between 10 and 12 pm. She finds that patients ranging from
20 to 35 are over-represented in this subset when compared
to the overall age distribution. Now Jean wants to see which
health problems are common among this sub-population.
She finds that head traumas occur frequently and decides
to check with the administration if the hospital’s duty rota
accommodates for this by making sure a trauma specialist is
on call during weekend nights.

2.2 Scope of Benchmark
The above scenario illustrates a visual data exploration para-
digm, which is commonly referred to as the Visual Informa-
tion Seeking Mantra: “Overview first, zoom and filter, then
details-on-demand” [32]. Modern IDE tools such as Tableau
and Power BI are built to support this paradigm. On demand,
users can create visualizations of attributes of interest, look
at the distribution of associated values, and zoom into subsets
of interest before inspecting specific instances.
Often visualizations can be turned into active filters; a

technique known as linking. Most modern IDE tools can be
configured to interpret selections of value ranges in a plot
as filter that is subsequently applied to other plots presented

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1556

IDEBench: A Benchmark for Interactive
Data Exploration SIGMOD’20, June 14–19, 2020, Portland, OR, USA

Figure 1: A dashboard created by one of our user study participants using Tableau. She laid out multiple visual-
ization in a coordinated view (the dashboard), where all visualizations are implicitly linked. In this example she
selects a range of data points using a mouse gesture, filtering the three linked visualizations (shown by the grey
dashed arrows). This selection results in three concurrent database queries.

to the user. As a result, visualizations can be used to conve-
niently slice and dice data, and to examine sub-populations.
Unlike traditional dashboards, in which all plots are pre-

defined and (implicitly) linked [24], modern IDE tools like
Tableau and Power BI allow users to create custom dash-
boards, where plots can be arbitrarily added, removed, modi-
fied and linked. Interactions such as creating, modifying and
linking plots, as well as selecting value ranges on an existing
plot (filtering), trigger database queries. For instance, a user
selection on a plot that is linked to 𝑛 other plots might results
in 𝑛 concurrent queries. This paper focuses on IDE scenar-
ios in which interactions like the ones outlined above are
supported, and on structured (i.e., relational) datasets that
are too large to be processed by a DBMS within interactive
thresholds.

2.3 Database Landscape
Several commercial and academic DBMSs are either specifi-
cally built for IDE workloads, or can be used to support them.
In the following, we summarize this landscape through three
categories and provide examples for each.

Analytical DBMSs. This category represents database sys-
tems that efficiently execute SQL queries in an exact manner.
It includes column-stores and main-memory systems such
as MonetDB [25], SAP HANA [14], Hyper [21] as well as
database management systems that are designed for online
analytical processing (OLAP) type workloads [8]. Their exe-
cution model cannot guarantee interactive response times
on large datasets.

Approximate DBMSs. Contrary to analytical DBMSs, ap-
proximate DBMSs use either offline or online sampling tech-
niques to compute approximate answers. Most systems allow
users to configure the trade-off between computation time

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1557

SIGMOD’20, June 14–19, 2020, Portland, OR, USA Eichmann et al.

and the quality of the result through a time or quality con-
straint as part of a SQL query. Examples include AQUA [1],
VerdictDB [39], BlinkDB [2], as well as approXimateDB [22].

Specialized IDE DBMSs . Prominent commercial examples
of this category include Tableau [36] and its research pre-
decessor Polaris [35], whose middle-layers are optimized
for IDE workloads. ImMens [24] uses pre-computation over
the entire query space to keep query run-times at a mini-
mum. IDEA [15] is a middleware that provides interactive
query execution on top of existing DBMSs such as Postgres
or raw data sources such as CSV files. IDEA uses an online
aggregation-based execution scheme to progressively com-
pute and push query results to subscribers. Finally, DICE
[18] is optimized for exploratory cube analysis and leverages
interaction delays (i.e., “think-times”) and a user interaction
model to predict future queries.

3 THE NEED FOR AN IDE BENCHMARK
Although there are a number of existing analytical database
benchmarks, this section highlights why they should not be
used for IDE, why a new benchmark for IDE is needed, and
which requirements it must meet.

3.1 Existing Analytical Benchmarks
Traditional analytical database benchmarks (TPC-H, TPC-
DS, SSB) define a data-warehouse based workload with a
fixed set of pre-defined SQL queries: TPC-H consists of 22
business oriented SQL queries, with a schema containing 8
tables (1 fact and 7 dimensions tables). TPC-DS comes with a
much more complex schema containing 24 tables (7 fact and
17 dimensions tables) and 99 queries. SSB is based on TPC-H
and re-organizes the database as a star schema with 5 tables
(1 fact and 4 dimensions tables). SSB features 13 different
queries, only some of which resemble TPC-H queries. Yet,
as we explain in the next section, none of these benchmarks
are representative of IDE workloads.

3.2 IDE Workload Analysis
To evaluate the applicability of existing analytical bench-
marks, and to define benchmark requirements for IDE work-
loads, we draw on five independent user studies conducted
with tools that are representative of what we outlined in
Section 2.2. The five studies were conducted with 109 par-
ticipants in total. Each study followed an open-ended (not
tasked-based) protocol where participants were asked to ex-
plore real-world and synthetic datasets, and instructed to
think-aloud and report insights that were noted down during
the study. The only exception is user study 5, where we did
not have the ability to create think-aloud protocols. However,
we were able to use the interaction logs and query traces of
the user study as basis of our analysis.

0

(a) Selectivity (b) Think-Times

Figure 2: a) Shows the selectivity for all queries of user
study participants. b) shows the distribution of think-
times of all user study participants.

User Study 1 : Interactive Data Exploration Accelerators
(IDEAs). For this study 35 participants were recruited to ex-
plore a subset of the 1994 US census, using a visual IDE sys-
tem called Vizdom that supports progressive visualizations
using a pen-and-touch interface. Its frontend was designed
to interactively explore data by arranging 1D or 2D aggre-
gate plots of attributes on an unbounded canvas. Plots in the
tool are interactive, meaning that users can link plots and
select arbitrary bin ranges to create filter chains, and apply
boolean operations (AND, OR, NOT) to combine multiple
filters, etc.

User Study 2: Tableau / Star-Schema Benchmark. In this
study, conducted as part of this paper, we invited 12 par-
ticipants – all graduate students in computer science – to
explore a dataset using Tableau. We used the SSB benchmark
schema and generated a database with a scale factor of 0.1
(1̃00MB) to ensure that query results could be computed near-
instantaneously. The goal of this study was to find out what
whether the queries in SSB are representative of the traces
that real users generate, and whether these traces overlap
with the ones from study 1-3. Of the 12 participants, 8 stated
to have some experience with data analysis, 4 reported to be
advanced with data analysis (e.g., they have used Tableau,
Power BI, or a similar visual exploration frontends multi-
ple times). Each test subject was first given an overview of
the database schema and a brief overview of the basic func-
tionality of Tableau, e.g., how data can be plotted, filtered,
and how multiple visualizations can be arranged in interac-
tive dashboard views. The experimenter acted as a mediator
between the participant and the software, i.e., the partici-
pants instructed the experimenter on what to do with the
tool. We decided not to let the participants operate Tableau
themselves as most pilot users struggled to remember the
somewhat involved steps required to create plots, filters and
dashboards.

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1558

IDEBench: A Benchmark for Interactive
Data Exploration SIGMOD’20, June 14–19, 2020, Portland, OR, USA

User Study 3: Effect of Progressive Visualizations. The goal
of this study was to investigate how progressive visualiza-
tions affect users during exploratory data analysis. The au-
thors recruited 24 participants from a research university,
all of whom had prior experience in data exploration or
analysis tools (e.g., Excel, R, Pandas). The authors created a
dashboard-like user interface with four visualization slots,
that users can configure by assigning them any attribute
from a dataset. All visualization are 1D/2D aggregate plots
with configurable aggregate functions (count, min, max, avg).
The four visualizations were implicitly linked; selecting val-
ues ranges in one visualization would filter/brush the other
visualizations.

User Study 4: Multiple Comparisons Problem (MCP) in Visual
Analysis. The aim of this work was to investigate the effect
of MCP in visual analysis by evaluating the accuracy of
user reported insights when exploring a dataset. This study
required users to broadly explore datasets since they were
explicitly asked to find interesting correlations in the data.
All 28 participants were students who had some experience
with data exploration or analysis tools (e.g., Tableau, Pandas,
R) and have taken at least introductory college-level statistics
and probability classes.

User Study 5: DARPA Competitions. As part of a larger
DARPA program, we participated with our own data explo-
ration tool in a competition where 10 government data ana-
lysts were asked to explore new datasets. We gathered and
analyzed the query traces that resulted from the exploration
sessions.

Workload Analysis. Given the results of user studies 1-5,
we were interested to see (1) how users interact with IDE
systems to make sense of data, how these interactions trans-
late to SQL queries for a DBMS, and (2) if the workloads of
existing benchmarks are representative of these queries. Our
method involved analyzing multiple days worth of video
and audio recordings, as well as the analysis of query logs
from the underlying DBMSs. In the following, we discuss
our main observations (O1 - O6).

O1: User actions that trigger database queries User
actions that trigger database queries can be grouped into
three abstract categories (independent of the IDE tool being
used): 1) creating/modifying visualizations: the creation and
modification of a plot involves settings parameters, such as
the attributes that are being visualized, filters to apply to the
data that is being visualized, as well as instructions on how to
group/bin and aggregate the data. 2) linking visualizations:
defining dependencies between plots so that they can be
used as interactive filters 3) selecting bins: selecting a subset
of the visualized data to filter linked plots.

O2: Aggregation dominates. Visualizing large datasets
inevitably leads to over-plotting, which overwhelms users’
perceptual and cognitive capacities. Aggregating data is the
only practically reasonable way to support visual exploration
of big data [24].

O3: Selectivity varies significantly.Queries formulated
by study participants strongly varied in selectivity. We sum-
marize the query selectivity of all queries from user study 3
in Figure 2, showing that approximately 30% of all queries
either have a selectivity of 0 − 10% while another 30% have
a selectivity of 90 − 100% respectively. Similar distributions
emerged in user study 1.

O4:Queries are built incrementally.Users explore data
and answer questions incrementally. Intermediate visualiza-
tions are used to inform further exploration steps. In all
studies this was manifested by users either replacing param-
eters of an existing plot (e.g., the attribute being visualized),
applying filters, etc. In user study 1, for instance, we noticed
that the selections on plots were modified 6.91 times on av-
erage (𝜎 = 9) to change a filter. In some cases users even
changed the filter up to 50 times, trying to find interesting
correlations for multiple minutes. In addition, we found that
the number of attributes used to specify a query ranged from
1 to 5 different attributes (composed by AND and OR oper-
ators). We observed 5 different patterns of how the study
participants used links to define dependencies between visu-
alizations (see Figure 3):

• Independent (Figure 3a), where a user explores data by cre-
ating visualizations using individual queries and applying
filters that only affect a single visualization at a time, as
well as by altering the aggregation function (e.g., switch-
ing from SUM to AVG). This pattern was often used as a first
step to browse through different attributes in a dataset.

• 1:N (Figure 3b), where selecting bins one visualization trig-
gers 𝑁 other queries for all dependent plots. This pattern,
as well as the N:1 and N:N, typically apply after using
independent visualizations to see how slicing and dicing
the data affects previously plotted data.

• N:1 (Figure 3c), where a user links 𝑁 visualizations to a
single visualization. Selecting value ranges in any of the
𝑁 plots adds a filter predicate to the linked plot, forcing it
to update.

• N:N (Figure 3d), where all visualizations are inter-linked.
This pattern is typically found in interactive dashboards,
where every visualization is implicitly linked with all other
plots.

• Sequential (Figure 3e), is a browsing pattern where users
create multiple visualizations that are sequentially linked.
This pattern was often used when users drill down (zoom

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1559

SIGMOD’20, June 14–19, 2020, Portland, OR, USA Eichmann et al.

d) N:N e)

Figure 3: Illustrates five different dependency patterns (see 4.1 for details) we observed during the IDE workload
analysis of five user studies. a) Independent: four independent visualizations, changing the specification of any
of the visualizations does not affect the others as there are no dependencies. b,c,d and e) an arrow represents a
dependency from source to target. For instance, if a selection in the visualization on the left in b) changes, all N
visualizations on the right need to be updated.

in) into subsets of the data by building increasingly selec-
tive filter expressions, while keeping track of intermediate
results.

O5: Single interactions can lead to multiple concur-
rent queries. Linked visualizations can lead to multiple con-
current queries. When users were free to arbitrarily create
and link plots, they created dependency chains of up to 5
links (see Figure 3e, for example), meaning that a selection
change on one plot would trigger up to 5 concurrent queries.
Similarly, in user study 3, users were interacting with a pre-
defined N:N dependency pattern between four visualizations
in total. A selection in one plot led to an update in the other
three visualizations.

O6: Think-Time between interactions.
We observed time gaps between user interactions (think-

time) with high variance, ranging from just a few hundred
milliseconds up to over 200 seconds in individual cases. Fig-
ure 2b shows the think-times recorded in user study 1 (out-
liers of more 60s were omitted). Most think-times were be-
tween 0 and 10s (mean=8.08s, 𝜎 = 13.97), which could be
leveraged by DBMSs to speculatively execute SQL queries
to prepare for the next user interaction.

O7: Real-data matters. Users are less interested in ac-
tual values, but more in the distribution of values and/or
irregularities/outliers that can only be found in real datasets.
Similar observations were made by Amar et al. in a related
study [3]. This became especially apparent in user study 2
and 4 where synthetic data was used. With synthetic data,
users found it difficult to formulate meaningful queries as
all attribute values were uniformly distributed.

Using these observations we derived a set of key require-
ments (R1 - R8) for an IDE benchmark. The list of require-
ments are an attempt to capture crucial aspects of measuring
performance of a data engine in the context of interactive

TPC-H TPC-DS SSB IDEBench

Schema snowflake snowflake star star (default)

Data Origin synthetic synthetic synthetic real-world

Data Distri-
butions

uniform skewed uniform real-world

Data Scal-
ing

yes yes yes yes

Iterative
Query For-
mulation

no 4 out of 99 no yes

Multi-
Query
Execution

no no no yes

Think Time no no no yes

Metrics Time-based Time-based Time-based Quality, Time

Table 1: A comparison of traditional analytical data-
base benchmarks and IDEBench

data exploration, and goes beyond what traditional bench-
marks are designed for.

Workload. A benchmark for IDE should feature queries
that resemble common IDE patterns. First, we note that
based on O2 and O3, queries for aggregated plots have a
common structure involving bins (group-bys), aggregated
values (COUNT, AVG, etc.) as well as a set of filter predicates.
For example, consider a dataset containing flight delays of
domestic flights in the US [28]. A query for a plot showing
the average flight delay per airport for flights originating in
California can be structured as shown in Figure 4.
Second, it is pivotal that the benchmark not only runs

individual queries in isolation (as done by TPC-H, TPC-DS,
and SSB). Instead, as described in O4, the workload should
contain time-spaced sequences of related queries mapping
to the addition or modification of plots or selections therein

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1560

IDEBench: A Benchmark for Interactive
Data Exploration SIGMOD’20, June 14–19, 2020, Portland, OR, USA

SELECT AVG(DELAY) AS VALUE , AIRPORT AS BIN_AIRPORT ,
FROM FLIGHTS_DELAYS
WHERE ORIGIN = 'CA '
GROUP BY BIN_AIRPORT

Figure 4: An example query for a plot showing the av-
erage flight delay per airport for flights originating in
California.

(R1). Third, based on O5 the workload should representative
of the fact that a single user interaction can lead to multiple
concurrent queries (R2). Fourth, as stated in O6 and unlike
TPC-H, TPC-DS, and SSB, a benchmark for IDE must honor
that fact that there are think-times between user interactions,
which data engines can leverage for speculative execution
or other tasks (R3).

Data. Contrary to existing benchmarks, a benchmark for
IDE should use a real-world dataset with outliers (O7). The
benchmark must provide tools to scale the data while main-
taining correlations and outliers (R4). Finally, as some data
engines (e.g., BlinkDB [2] or IDEA [11]) only support single-
table schemas, it is important that the data is available in
both normalized and de-normalized form (R5).

Metrics. It is crucial that metrics go beyond measuring
end-to-end runtimes of queries, and capture what matters
to the end-user. Prior research suggests that there are two
main factors that directly impact human performance in
interactive data exploration: response time and accuracy. [5–
7, 16, 17, 27, 30, 31]. For instance, Liu et. al. [23], showed
that even response times of more than 500ms could lead
to poor user performance. Researchers have also found evi-
dence that poor accuracy or incomplete results (e.g., those
of approximate and progressive systems) can lead to poor
user performance [40] and false conclusions [12, 19]. There-
fore, it is important that the metrics used in a benchmark for
IDE reflect the trade-off between processing speed and the
quality of the returned results: measures of responsiveness
(R6), as well as measures of accuracy (R7).

Customizablity. Like traditional analytical database bench-
marks, an IDE benchmarkmust define a default configuration
for workload and dataset. However, as there is no one-size-
fits-all solution for all parameters of a benchmark, we argue
that it is important to provide the ability to customize the
workload and data to match different IDE usage scenarios
(R8). While some may argue that the ability to customize
workloads, datasets and other parameters is undesirable as it
hinders comparability, we, like [4] believe that customizabil-
ity is crucial for adoption by different communities. Being
able to configure such settings in a benchmark allows users
to publish their configurations along with the benchmark

results, and enable others to reason about the applicability,
benefits and drawbacks of database designs and processing
techniques in particular usage scenarios.

4 THE IDEBENCH DESIGN
To address the shortcomings of existing benchmarks we de-
signed IDEBench, a collection of tools that can be used to
evaluate the performance of databases on generated work-
loads that closely resemble the ones we observed in the logs
of various different user studies (see Section 3.2).

4.1 Workflow Generator
Inspired by the observations we made when users visually
explore data, we propose a customizable workload gener-
ator capable of generating series of common time-spaced
user actions in IDE (workflows) which, directly or indirectly,
trigger database queries. The workflow generator simulates
user actions to create/modify and link visualizations (O1).
The set of visualizations and actions used by the generator
are abstract specifications that are independent of a concrete
visualization tool.

4.1.1 Visualization Specification (VizSpec). A VizSpec is an
abstract definition of a visualization, and is identified by an
id. For instance, every visualization created in a Tableau
can be thought of being specified by a VizSpec. It deter-
mines how data is grouped (binning) using one ormany data
dimensions and details how to perform numerical binning,
e.g., using a bin_width or list of numerical boundaries. Us-
ing the aggregates attribute, an arbitrary number of aggre-
gates per bin (e.g., the average of a numerical column and the
total count of item in a bin) can be defined. The selection
attribute specifies which data ranges have been selected on
a visualization. The depends-on attribute specifies a depen-
dency on selections of other visualizations. Finally, the time
of execution of a VizSpec can be specified using the time
attribute, (e.g., the time of a plot creation or modification).
The time is specified in milliseconds relative to the start time
of a workflow to simulate users’ think-time.

4.1.2 User Actions. Based on observation O1 (Section 3.2),
the workflow generator defines the following user actions.
• Create/Modify: An action to either create a new or mod-
ify an existing visualization. Each action is defined by a
full VizSpec for creating a new visualization or a partial
VizSpec for modifying a visualization (see Figure 5 and 8)
respectively.

• Link: An action to link two existing visualizations, i.e. to
establish a dependency from one visualization to another.
It can be expressed by a partial VizSpec containing an
id and one or more ids of visualizations it depends on
(depends-on).

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1561

SIGMOD’20, June 14–19, 2020, Portland, OR, USA Eichmann et al.

Visualization:
id: (string)
time: (number)
binning: (BinningDimension [])
aggregates: (Aggregate [])
selection: (string)
depends -on: (string)

BinningDimension:
column: (string)
width: (optional number)
boundaries: (optional number [])

Aggregate:
type: (enum COUNT|DCOUNT|AVG|SUM|MIN|MAX)
dimension: (string)

Figure 5: A Visualization Specification

• Select: An action to select a subset of the data in a visual-
ization can be expressed by partial VizSpec containing its
id and a set of selection predicates as a selection string.

4.1.3 Query Model. Any VizSpec 𝑣 can be mapped to a data-
base query 𝑄 (𝑣) as shown in Figure 6 which is an abstract
specification of SPJA queries. A query uses 𝑣 ’s bin (group-
by) and aggregates specification, and its filter attribute is
recursively computed as union of all selections of visualiza-
tions 𝑣 depends on. The filter attribute can be thought of as
the WHERE clause of a SQL statement, comprising all relevant
filter predicates. Joins between tables are implicitly defined
in our query model by the attributes which are selected; i.e.,
we create equi-joins between those tables based on the given
database schema of our data generator (see Section 4.2).

Query:
binning: (BinningDimension [])
aggregates: (Aggregate [])
filter: (string)
time: (number)

Figure 6: IDEBench’s Query Model

Using such an abstract query specification, a concrete data-
base driver of our benchmark renders an executable query.
For example, if the database provides a SQL-like interface
we generate queries as shown in Figure 8.

4.1.4 Creating Workflows by Simulating User Actions. Our
workflow generator is designed to model interactive data
exploration workflows, i.e. actions to create new and mod-
ify existing visualizations (R1). It uses as a Markov chain
comprising three user actions: create/modify, link, and select
bins (see Figure 7). We derived the transition probabilities
between any pair of these actions empirically through the
analysis of the study logs described in Section 3. The work-
load generator comes with pre-configured but customizable

(R8) transition probabilities that can be used to generate vari-
ants of workflows mimicking the five dependency patterns
shown in Figure 3 (an independent workflow, for example,
has zero transition probability from create/modify to either
link or select bins). To create a new workflow, the workflow
generator samples 𝑛 actions from the Markov chain and adds
a fixed inter-query pause (think-time) to consecutive actions
by setting the time attribute of a VizSpec (R3) accordingly.
We use fixed rather than dynamic think-times to be able to
measure its effect on the accuracy of query results, as we
shall see in the Section 6.4. An example workflow that was
created by our generator for a 1:N workflow type is shown
in Figure 8.

Link Select

Create/Modify

.4

.4

.4.4

.2

.4

.2 .4

.2

Figure 7: Example of a Markov Chain used for 1:N
workflows.

Every user action exposes a set of parameters that are
drawn randomly from a set of configurable probability dis-
tributions when creating a workflow (R8):
• Create/Modify: the number and types of binning dimen-
sions (e.g., whether is a 1D or 2D plot), the bin width (i.e.,
the group-by granularity) or bin boundaries (i.e., mini-
mum and maximum value used for each dimension), as
well as the number and types of aggregates to use in the
visualization.

• Link: linking strategy (none, 1:N, N:1, etc.).
• Select Bins: the bins to be selected as filter predicates.
Analogous to the transition probabilities between any of

these actions, the defaults for the probability distributions of
these parameters were informed by findings in the empirical
analysis our user study logs.
When simulating an action the workflow generator re-

computes the filter attribute for all affected queries and
schedules affected queries for execution by setting the time
attribute. To that end it keeps track of all VizSpecs or mod-
ifications thereof, by maintaining a directed dependency
graph𝐺 = (𝑉 , 𝐸). A directed edge in𝐺 defines a dependency
(link) between two visualizations, e.g., 𝑣1 → 𝑣2 indicates that
𝑄 (𝑣1) must be re-executed when the specification of 𝑣2, in
particular its selection attribute is modified (R2).

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1562

IDEBench: A Benchmark for Interactive
Data Exploration SIGMOD’20, June 14–19, 2020, Portland, OR, USA

id: "A"
time: 0
binning:
 dimension: "CARRIER"
aggregates:
 type: "avg"
 dimension: "DEP_DELAY"

SELECT
 CARRIER,
 AVG(DEP_DELAY)
FROM
 FLIGHTS
GROUP BY
 CARRIER

id: "B"
time: 2000
binning:
 dimension: "CARRIER"
aggregates:
 type: "avg"
 dimension: "DEP_DELAY"

SELECT
 CARRIER,
 AVG(DEP_DELAY)
FROM
 FLIGHTS
GROUP BY
 CARRIER

id: "C"
time: 4500
binning:
 dimension: "CARRIER"
aggregates:
 type: "avg"
 dimension: "DEP_DELAY"

SELECT
 CARRIER,
 AVG(DEP_DELAY)
FROM
 FLIGHTS
GROUP BY
 CARRIER

id: "C"
time: 11000
depends_on: "A"

[no query]

id: "A"
time: 13300
selection:
 "CARRIER = ‘AA’ OR
 CARRIER = ‘DL’ OR
 CARRIER = ‘UA’"

SELECT
 ORIGIN_STATE,
 COUNT(*)
FROM
 FLIGHTS
GROUP BY
 CARRIER
WHERE
 CARRIER = 'AA' OR
 CARRIER = 'UA'

SELECT
 FLOOR(ARR_DELAY/30)
 AS BIN_ARR_DELAY,
 AVG(DEP_DELAY)
FROM
 FLIGHTS
GROUP BY
 BIN_ARR_DELAY
WHERE
 CARRIER = 'AA' OR
 CARRIER = 'UA'

id: "B"
time: 8000
depends_on: "A"

[no query]

vA

vA

vB

vA

vB

vC

vA

vB

vC

vA

vB

vC

vA

vB

vCvC

vC

Figure 8: An example of a generated 1:Nworkflow (Fig-
ure 3c.), the corresponding VizSpecs and translations
to SQL. The highlighted item in the query graph corre-
sponds to the current user action. Note that the final
interaction triggers two SQL queries.

4.2 Data Generator
Using real-world datasets in a benchmark for IDE is impor-
tant as non-synthetic distributions make it harder for DBMSs
to retrieve a representative sample, which consequently af-
fects the quality of the results. Currently, IDEBench uses
the U.S. domestic flight delay dataset [28] as default. How-
ever, users can customize the benchmark and plug in custom
datasets.

FLIGHT
YEAR

CARRIER_ID

ORIGIN_ID

DESTINATION_ID

DEP_DELAY

TAXI_OUT

TAXI_IN

ARR_DELAY

AIR_TIME

DISTANCE

AIRPORT

ID

CODE

NAME

STATE

CARRIER

ID

CODE

NAME

Figure 9: The schema of IDEBench’s default dataset.

To scale a dataset to different sizes, IDEBench comes with
a data generator that can resize a given dataset to any size
(R4). The generator tries to maintain distributions in the
data and relationships between attributes when scaling by
simulating a Gaussian Copula [26]. The intuition behind this
procedure is that every multivariate joint distribution can
be expressed in terms of its marginal distributions and a
function (the copula) which describes their relationship [33].
This decomposition allows for the creation (simulation) of
new correlated samples.
In order to simplify the resizing process, IDEBench re-

quires that the dataset is provided in a star schema-like for-
mat, in de-normalized form. This, however, is no limitation
since typical IDE queries (i.e., SPJA queries) are natively sup-
ported on a star-schema. The algorithm to scale a dataset
works as follows:

(1) First, we draw a random sample from the dataset.
(2) Second, we compute the covariance matrix Σ and per-

form a Cholesky decomposition on Σ = 𝐴𝑇𝐴.
(3) Finally, we resize the data. To create a new tuple, we

generate a vector 𝑋 ∼ N(0, 1) of random normal vari-
ables and induce correlation by computing 𝑋 = 𝐴𝑋 .
Furthermore, we transform𝑋 to a uniform distribution
and finally use the CDF from the sample to transform
the uniform variables to a correlated tuple.

Optionally, as a last step the data generator can split the
generated data into multiple tables (fact and dimensions)
based on the user-provided schema (R5).

4.3 Main Metrics
IDEBench computes metrics that capture the trade of be-
tween the runtime of a query and the quality/usefulness of
the results.

Data Preparation Time. In IDEBench users are required to
report on all actions taken to prepare for a benchmark run

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1563

SIGMOD’20, June 14–19, 2020, Portland, OR, USA Eichmann et al.

(called “data preparation time” in our report). This includes
the time it takes to copy the dataset into the system, to create
sample tables/views offline, perform pre-processing, execute
warm-up queries, etc.
Then, for every query, we compute the following metrics:

Time Requirement Violations. In IDEBench wemeasure the
responsiveness of a DBMS using Time Requirements (TR).
TR Violated is a boolean value indicating whether a query
exceeded the time requirement specified in the settings (see
Section 5.4). TR is violated if time TR after initiating the
query no result is present or can be fetched. In practice, this
means, that for batch-processing and AQP systems, TR is
violated if the run-time of a query is greater than TR, and no
intermediate result is present. For progressive systems, TR
is violated if time TR after initiating a query no result can be
fetched. Because IDEBench focuses on interactivity, it does
not measure the actual query duration, i.e. it does not wait
for query results to return if the computation takes longer
than TR. If a query exceeds TR, database drivers can abort
the query.

Mean Relative Error (MRE). Approximate and progressive
results deviate from the ground-truth. To understand how
much they deviate we measure the error between the latest
result of an aggregate query and its ground-truth by comput-
ing the relative error, i.e., the ratio between the difference
of the latest estimated result for a query 𝐹𝑖 and the actual
result 𝐴𝑖 (R7).

MRE =
1
𝑛

𝑛∑
𝑖=1

|𝐹𝑖 −𝐴𝑖 |
|𝐴𝑖 |

Missing Bins/Groups. Missing Bins/Groups is the percent-
age of all bins missing in the latest result for query. It is
a measure of completeness for an aggregate query result,
irrespective of the number of tuples processed by a system.
The intuition is that the faster a system can enumerate all
groups, the more insightful this will be to a user (R7).

Missing Bins =
|𝑏𝑖𝑛𝑠_𝑚𝑖𝑠𝑠𝑖𝑛𝑔|

|𝑏𝑖𝑛𝑠_𝑖𝑛_𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ |
Missing bins are reported for exact and non-exact systems.

While for exact systems the percentage of missing bins is
either 0% or 100% (depending on whether or not a result
was present in time), for non-exact systems we use the latest
result that was returned within the given time-threshold. The
mean relative error is only computed for results of non-exact
systems.

Cosine Distance. Based on the observation that often users
are more interested in characterizing data by its distribution

Listing 1: A stub for a database adapter.

class SampleAdapter:

def workflow_start(self):

called before a benchmark run starts

do pre -processing , if applicable

def run_query(self , viz_spec , result_queue):

1. translate viz_spec into query

2. execute query

def workflow_end(self):

do clean -up, if applicable

rather than by the exact aggregated values [3], we addition-
ally measure the cosine distance to test howmuch the “shape”
of an aggregate result deviates from the shape of the ground-
truth.

5 THE IDEBENCH IMPLEMENTATION
IDEBench comprises two main components: a benchmark
driver, which is responsible for simulating previously gen-
erated workflows, and database adapters which translate
and delegate instructions from the benchmark driver to a
database.

5.1 Benchmark Driver
The core of IDEBench is the benchmark driver, a command
line application configured to load and simulate workflows
created by the workflow generator. Given a workflow, the
driver reads VizSpecs and builds and modifies an internal
query graph structure, delegating queries and query updates
to a database adapter (cf. Section 5.2). The database adapter
then translates the VizSpecs from their JSON specification
to the query language supported by the DBMS (e.g. SQL).

5.2 Database Adapters
In order to benchmark an IDE system using IDEBench, a data-
base adapter must be implemented, which acts as a proxy
between the benchmark and the system that is being tested.
The benchmark driver delegates changes made to the query
graph to a database adapter, which then translates them
into queries supported by the database (e.g., SQL). There
are three core methods that must be implemented by a data-
base adapter: workflow_start, which can be used to run
pre-processing tasks before a workflow starts, run_query to
initiate new or update existing VizSpecs (e.g., when adding a
filter, see Listing 1), and workflow_end which is called once
the workflow has ended, allowing the database adapter to
perform clean-up tasks.

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1564

IDEBench: A Benchmark for Interactive
Data Exploration SIGMOD’20, June 14–19, 2020, Portland, OR, USA

Setting Description Default
Workflows The workflows to run in the benchmark 10
Time Re-
quirement
(TR)

The maximum execution duration for a
query

0.5s

Dataset and
Size

The dataset to run the benchmark on
and the number of rows in the fact table

Flights
500M

Think Time The delay between two consecutive in-
teractions

3s

Using Joins Whether a star schema is used where
dimension tables are pre-joined to fact
table

False

Confidence
Level

The confidence level at which an
AQP/progressive systems return confi-
dence intervals

95%

Table 2: Benchmark Settings

5.3 Benchmark Defaults
By default IDEBench uses 10 generated workflows using a
mix of the four query graph patterns described in Section
4.1. Table 2 shows a summary of the most important pa-
rameters of IDEBench and their defaults, which we defined
based on findings in our user studies. It uses the flight delay
dataset (introduced in Section 4.2) scaled to 500M tuples in
de-normalized form (i.e., only one large fact table). It also
sets the time requirement TR for each query to 0.5 seconds,
uses a think-time of 3 seconds between each user interaction,
and a confidence level of 95%.

Upon completion of a benchmark run, IDEBench generates
two reports: (1) An aggregated summary report listing how
frequently the time requirement was violated, how many
bins are missing on average, and the distribution of mean
relative errors for all queries which did not violate the time
requirement. Figure 10 shows an example of such a summary
report. (2) A detailed report listing all settings and metrics
on a per-query basis.

5.4 Customizing the Benchmark
For the sake of comparability, we encourage users of IDEBench
to use the default configuration. However, all parameters can
be modified so that users of IDEBench can test their database
systems with settings that match a specific target use-case.
For instance, some DBMS might be specifically optimized for
data exhibiting certain distributions, for very low latencies,
or for a workload that only supports specific types of queries.

6 AN EXPERIMENTAL STUDY
To demonstrate the applicability of IDEBench and show the
effects on the different classes of query processing engines
(2), we conducted an experimental study using following
DBMSs:

(1)MonetDB: a state-of-the-art open-source analytical DBMS,
which uses a blocking query execution model that requires
users to wait until an exact query result is computed. Thus,
upon initiating a query, the run-time of a query is unknown.
(2) approXimateDB/XDB: a PostgreSQL-based DBMS that sup-
ports online aggregation using the wander join algorithm
[22]. It allows for a maximum run-time to be set in SQL. In
addition, a “report interval” can be set so that intermediate
results can be retrieved at fixed time intervals. XDB has some
limitations in terms of query support, which we describe in
detail in Section 6.2. (3) IDEA: a system that supports online
aggregation and uses a fully progressive computation model;
after initiating a query, results can be polled at any point
in time. (4) System X: a commercial in-memory AQP engine
operating on stratified sample tables that are created offline.
The run-time of queries cannot be specified explicitly but
must be indirectly adjusted by varying the size of samples
tables. (5) System Y: a commercial specialized SQL engine
for IDE that uses a blocking execution model, which is de-
signed as an in-memory optimization layer on top of various
different DBMSs.

In the remainder of this section, we describe the configu-
ration and setup of our experiments, and discuss the results
and findings.

6.1 Configuration and Setup
Configuration. We used the default flight delay dataset

(see Section 4.2), with S=100 million, M=500 million (default),
and L=1 billion tuples in de-normalized form (i.e., a single
pre-joined table). Furthermore, we used five different time
requirements (TR) 0.5s, 1s, 3s (default), 5s, and 10s, and a
fixed confidence level of 95% (default). While various Human-
Computer-Interaction studies recommend time requirements
of less than 1𝑠 (see Section 3), we also included larger ones
to get a better sense of how fast results converge. Because
none of the systems use speculative query execution in their
default configuration, we set the think-time to a fixed value
of 1𝑠; we analyze the effect of varying the think-times in a
separate experiment (see Section 6.4).

Setup. We ran IDEBench on MonetDB, approXimateDB,
IDEA and System X, but were unable to run the full bench-
mark on System Y due to the absence of an API that could
be used in a database adapter. However, we executed se-
lected queries of our benchmark manually through its user
interface in a separate experiment (see Section 6.5). All ex-
periments were conducted on a computer with two Intel
E5-2660 CPUs (2.2GHz, 10 cores, 25MB cache) and 256GB
RAM. We used the default parameters for all DBMSs without
hand-tuning them and did not tweak or optimize any of the
system parameters.

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1565

SIGMOD’20, June 14–19, 2020, Portland, OR, USA Eichmann et al.

Figure 10: Shows the aggregated benchmark results for four systems in a summary report. The benchmark was
run for five time requirements on a dataset with 500M rows. It shows the mean percentage of time violations and
missing bins, as well as a CDF of the mean relative errors (MREs) truncated to errors less or equal to 100%. Thus,
the greater the proportion of small errors, the smaller the area above the curve (shown as percentage above the
CDF).

6.2 Exp. 1: Overall Results
In our main experiment (Figure 10 and 11) we analyzed how
the four systems behave with respect to different time re-
quirements (see Figure 10). We show the results for 10 work-
flows of the default configuration, a data size of 500M tuples,
de-normalized schema, and a confidence level of 95%.

Data Pre-Processing. In MonetDB data stored in a CSV file
can be loaded into the database through an SQL interface,
which takes approximately 19 minutes for 500M records.
IDEA expects data in a single randomized CSV file. On start-
up the system loads a configurable number of tuples into
main memory, which took approximately 3min in our ex-
periment. With System X data stored in a CSV file can be
loaded into the database through a SQL interface. In order
to be able to execute approximate queries, stratified sample
tables have to be created offline. We used a sample size of
1% of the dataset size. System X further requires that each
connection executes a warm-up query when the system is
restarted. For 500M records, we measured a data preparation
time of 27min. Finally, approXimateDB took 130min to load
and prepare the data. While this system provides support
to pre-load relations and indexes into the database buffer in

main memory, we did not make use of this feature for our
experiments.

Speed and Quality Metrics. As expected for an exact ex-
ecution model, MonetDB’s TR violations decrease roughly
linearly with the time requirement, and so does the percent-
age of missing bins (see also Figure 11a). On the contrary,
approXimateDB never violates the TR as the query run-time
can be specified accordingly. However, it is important to note
that this system only supports online aggregation for COUNT
and SUM, but does not support AVG and multiple aggregates
in a single query. Therefore, we excluded all unsupported
queries (34% of all queries) for approXimateDB. For compari-
son, running the experiment for all queries (falling back to
regular Postgres for unsupported queries) leads to TR vio-
lations of 66% for all TRs, i.e., all non-approximate queries
exceeded TR.

With SystemX more than 60% of all queries violate TR=0.5s.
Interestingly, for TR=1s only 5% are violated, and for TR=3s
all query results are returned on time. The percentage where
TR is violated is therefore a good indicator of how large a
sample table needs to be, if speed is more important than
result quality. IDEA does not violate any TR, with the excep-
tion of 1% of all queries for TR=0.5. The authors confirmed

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1566

IDEBench: A Benchmark for Interactive
Data Exploration SIGMOD’20, June 14–19, 2020, Portland, OR, USA

Figure 11: a, b, and c) show how the ratio of TR violations, the median of the mean relative margins, and the
cosine distance behave for increasing time requirements. d) Compares how the percentage of missing bins dif-
fers depending on which system and workflow type is used. e) A comparison of the percentage of violated time
requirements for MonetDB and approXimateDB, using a normalized and de-normalized dataset of size 500M. f)
Shows the effect of varying think-times on missing bins for IDEA.

that this is due a slightly higher overhead for the first query
after a restart of the system. IDEA also starts off with sig-
nificantly less missing bins (37%) for TR=0.5 than any other
system, but achieves similar performance as System X for
TR>=1s. Furthermore, IDEA manages to perform better than
other systems in terms of mean relative error of all returned
results. The median of all mean relative errors is significantly
less than approXimateDB’s and System X.

Another interesting fact can be observed by inspecting the
cumulative distribution of mean relative errors. In Figure 10
(column Error), approXimateDB’s “area above the curve” is
significantly greater than the one of IDEA and System X, indi-
cating that high mean relative errors occur more frequently.
A similar conclusion can be drawn by looking at the end of
the curve. For instance, approXimateDB’s curve ends, below
50%, indicating that more than 50% of all mean relative errors
are greater than 100%.
Figure 11b and 11c show how the median of the mean

relative margins, and the cosine distance changes for the
different DBMSs with increasing time requirements. Again,
approXimateDB has significantly greater relative margins
than both IDEA and System X. Moreover, while System X ’s
median is close to 120% for TR=0.5s and drops to approx-
imately 20% for TR=1s, IDEA’s median remains constant
around zero for all TRs. Finally, Figure 11d compares how

the proportion of missing bins differs based on the system
and query graph patterns. As none of the systems we used
in the evaluation use speculative execution by default, there
are only few notable differences per column. For instance,
MonetDB has fewer missing bins on average for “indepen-
dent browsing” and N:1 patterns, which may be attributed
to the fact that interactions of these workflows only trigger
a single query.

6.3 Exp. 2: Varying Schema Complexity
In this experiment, we compare the performance ofMonetDB
and approXimateDB using a normalized and de-normalized
schema. Contrary to experiment 1, we set up approXimat-
eDB so that any query that cannot be executed online will
fall back to a regular Postgres query. We exclude IDEA and
System X as they do not support joins. Using the data gener-
ator we created two datasets of 100M and 500M tuples and
normalized the data so that the fact table holds foreign keys
to two dimension tables (airports and carriers). Interestingly,
as can be seen in Figure 11e, both MonetDB and approXimat-
eDB perform slightly better in terms of time requirement
violations with a normalized schema since the overall scan
volume of data significantly decreases. MonetDB’s propor-
tion of TR violations grows with the size of the normalized

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1567

SIGMOD’20, June 14–19, 2020, Portland, OR, USA Eichmann et al.

dataset, while approXimateDB’s TR violations remain steady
due its ability to perform joins online.

6.4 Exp. 3: Varying Think-Time
In this experiment, we evaluated the impact of increasing
think times between interactions (see Figure 11f). We used
an experimental extension of IDEA that speculatively exe-
cutes queries when two visualizations are linked. For this
experiment, we used a fixed data size of 500M tuples, a time
requirement of 3 seconds, and created a custom workflow
comprising two linked visualizations. Internally, IDEA uses
a simple speculative execution procedure. While user think
IDEA starts queries for every possible single bin selection
in the source visualization. If too many bins exist, it selects
only the 𝑘 visually most dominant ones. If upon the next
interaction one of the bins is selected, IDEA can return a
potentially better estimate of the results, as the query was
given more processing time. Figure 11f shows the results of
this experiment with the proportion of missing bins for ten
different think times (1s - 10s).

6.5 Exp. 4: Experiment with System Y
In the last experiment, we manually executed a selected
subset of our workflows in a commercial IDE System Y and
used MonetDB as a backend. We used a fixed data size of
500M and performed three variants of the 1:N workflow type.
In particular, we were interested to see whether System X ’s
middle layer that pre-fetches and pre-computes query results
leads to significant benefits over using a vanilla MonetDB
setup. However, we did not find this to be the case. System
Y renders and updates the visualizations in the workload
roughly at the same speed as if MonetDB is used directly.

6.6 Discussion
Our experimentswith IDEBench and five systems have shown
that the performance on IDE workloads in terms of data
preparation time, responsiveness as well as the quality of
the results can vary significantly, and thus these systems are
not equally suitable for IDE.

Preparation Time. Creating representatives samples offline
is challenging: users need to find a suitable sample size to bal-
ance the trade-off between processing speed and quality of
the results. Although the time overhead of offline-sampling
approaches can be reduced by employing online sampling
instead, systems using online sampling such as approXimat-
eDB may still require much time to load data into the DBMS.
IDEA, for instance, bypasses the loading problem by reading
samples from disk at runtime. The system, however, requires
the data to be randomized prior to ingestion.

Time Violations. We found that progressive and AQP sys-
tems like IDEA and System X were able to keep time viola-
tions at a minimum while maintaining low error rates with
increasing data sizes and time requirements. This is in stark
contrast to traditional analytical databases represented by
MonetDB where time violations increase for larger datasets
and time requirements. We also found that approXimateDB
can only execute a subset of the queries in our workload
online. It has to revert to executing a significant number of
queries in a blocking fashion, which leads to notably more
TR violations. Finally, given the log of queries that a user
executes during an exploration workflow, systems can lever-
age think-times to speculatively execute queries in order to
provide faster responses upon the next user interaction.

Error Metrics. Progressive systems progressively refine re-
sults and therefore lower the errors and confidence intervals
over time, converging to an exact result. AQP systems that
create sample tables offline, on the other hand, have con-
stants error rates and confidence intervals, irrespective of
the time requirement. To optimize the error rates for such
systems, users must find representative sample that is small
enough not to violate the time requirement, which can be
challenging. Finally, we observed weak completeness scores,
i.e. high missing-bin values for low time requirements and in
workflows containing concurrent queries (such as sequential
or 1:N).

7 CONCLUSION
In this paper, we presented IDEBench, a new benchmark
designed to evaluate systems for interactive data exploration
(IDE). Unlike traditional analytical database benchmarks,
IDEBench’s workloads and metrics are inspired by the re-
quirements and usage patterns of real IDE systems that were
derived through a number of different user studies. Using our
benchmark we conducted an evaluation that included five
different DBMSs (approximateDB, IDEA, MonetDB as well as
two commercial systems) representing three different system
categories (traditional exact DBMSs, approximate/progres-
sive DBMSs, as well as specialized engines for IDE). The
results showed that especially for low latency requirements
approximate and progressive query processing engines out-
perform traditional databases.

8 ACKNOWLEDGEMENTS
This research is funded by the DARPA Award 16-43-D3M-
FP040, NSF Award IIS-1562657 and NSF Award IIS-1514491
and supported by Google, Intel, and Microsoft as part of the
MIT Data Systems and AI Lab (DSAIL).

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1568

IDEBench: A Benchmark for Interactive
Data Exploration SIGMOD’20, June 14–19, 2020, Portland, OR, USA

REFERENCES
[1] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The aqua

approximate query answering system. In ACM SIGMOD, pages 574–
576, 1999.

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
Blinkdb: queries with bounded errors and bounded response times on
very large data. In Proceedings of the 8th ACM European Conference on
Computer Systems, pages 29–42. ACM, 2013.

[3] R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic
activity in information visualization. In Information Visualization, 2005.
INFOVIS 2005. IEEE Symposium on, pages 111–117. IEEE, 2005.

[4] L. Battle, R. Chang, J. Heer, and M. Stonebraker. Position statement:
The case for a visualization performance benchmark. IEEE Internet
Computing, 13(3):48–55, 2009.

[5] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Clay-
pool. The effects of loss and latency on user performance in unreal
tournament 2003®. In Proceedings of 3rd ACM SIGCOMM workshop on
Network and system support for games, pages 144–151. ACM, 2004.

[6] J. Brutlag. Speed matters for google web search. https://services.
google.com/fh/files/blogs/google_delayexp.pdf, 2009.

[7] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The information
visualizer, an information workspace. In ACM SIGCHI, pages 181–186.
ACM, 1991.

[8] S. Chaudhuri and U. Dayal. An overview of data warehousing and
olap technology. ACM Sigmod record, 26(1):65–74, 1997.

[9] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig, U. Çetintemel,
and S. Zdonik. An architecture for compiling udf-centric workflows.
PVLDB, 8(12):1466–1477, 2015.

[10] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and T. Kraska. Vizdom:
interactive analytics through pen and touch. PVLDB, 8:2024–2027,
2015.

[11] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and T. Kraska.
The case for interactive data exploration accelerators (IDEAs). In
HILDA@SIGMOD, page 11. ACM, 2016.

[12] G. Cumming and S. Finch. Inference by eye: confidence intervals and
how to read pictures of data. American Psychologist, 60(2):170, 2005.

[13] M. El-Hindi, Z. Zhao, C. Binnig, and T. Kraska. Vistrees: fast indexes
for interactive data exploration. In ACM SIGMOD, page 5, 2016.

[14] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and J. Dees.
The SAP HANA database – an architecture overview. IEEE Data Eng.
Bull., 35(1):28–33, 2012.

[15] A. Galakatos, A. Crotty, E. Zgraggen, C. Binnig, and T. Kraska. Revisit-
ing reuse for approximate query processing. PVLDB, 10(10):1142–1153,
2017.

[16] P. Hanrahan. Analytic database technologies for a new kind of user:
the data enthusiast. In ACM SIGMOD, pages 577–578. ACM, 2012.

[17] J. Heer and B. Shneiderman. Interactive dynamics for visual analysis.
Queue, 10:30, 2012.

[18] P. Jayachandran, K. Tunga, N. Kamat, and A. Nandi. Combining user
interaction, speculative query execution and sampling in the dice
system. PVLDB, 7:1697–1700, 2014.

[19] S. Joslyn and J. LeClerc. Decisions with uncertainty: the glass half full.
Current Directions in Psychological Science, 22(4):308–315, 2013.

[20] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed and
interactive cube exploration. In ICDE, pages 472–483. IEEE, 2014.

[21] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots. In ICDE, pages
195–206. IEEE, 2011.

[22] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online aggregation via
random walks. In ACM SIGMOD, pages 615–629. ACM, 2016.

[23] Z. Liu and J. Heer. The effects of interactive latency on exploratory vi-
sual analysis. IEEE transactions on visualization and computer graphics,
20:2122–2131, 2014.

[24] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual querying of big
data. In Computer Graphics Forum, volume 32, pages 421–430. Wiley
Online Library, 2013.

[25] Monetdb. http://www.monetdb.org. Accessed: 2019-11-02.
[26] R. B. Nelsen. An introduction to copulas. Springer Science & Business

Media, 2007.
[27] J. Nielsen. Powers of 10: Time scales in user experience. Retrieved

January, 5:2015, 2009.
[28] B. of Transportation Statistics. Bureau of transportation statistics.

http://www.transtats.bts.gov, 2017. Accessed: 2019-10-21.
[29] P. E. O’Neil, E. J. O’Neil, and X. Chen. The star schema benchmark

(ssb). Pat, 200(0):50, 2007.
[30] S. C. Seow. Designing and engineering time: The psychology of time

perception in software. Addison-Wesley Professional, 2008.
[31] B. Shneiderman. Response time and display rate in human performance

with computers. ACM Computing Surveys (CSUR), 16(3):265–285, 1984.
[32] B. Shneiderman. The eyes have it: A task by data type taxonomy for

information visualizations. In Visual Languages, 1996. Proceedings.,
IEEE Symposium on, pages 336–343. IEEE, 1996.

[33] M. Sklar. Fonctions de repartition an dimensions et leurs marges. Publ.
inst. statist. univ. Paris, 8:229–231, 1959.

[34] Snappy data. https://www.snappydata.io/. Accessed: 2019-11-02.
[35] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query,

analysis, and visualization of multidimensional relational databases.
IEEE Trans. Vis. Comput. Graph., 8(1):52–65, 2002.

[36] Tableau. http://www.tableau.com. Accessed: 2019-11-02.
[37] TPC-DS. http://www.tpc.org/tpcds/, 2016. Accessed: 2019-11-02.
[38] TPC-H. http://www.tpc.org/tpch/, 2016. Accessed: 2019-11-02.
[39] VerdictDB. Verdictdb. https://www.verdictdb.com. Accessed: 2018-05-

30.
[40] E. Zgraggen, A. Galakatos, A. Crotty, J.-D. Fekete, and T. Kraska. How

progressive visualizations affect exploratory analysis. IEEE transactions
on visualization and computer graphics, 23(8):1977–1987, 2017.

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1569

https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://services.google.com/fh/files/blogs/google_delayexp.pdf
http://www.monetdb.org
http://www.transtats.bts.gov
https://www.snappydata.io/
http://www.tableau.com
http://www.tpc.org/tpcds/
http://www.tpc.org/tpch/
https://www.verdictdb.com

	Abstract
	1 Introduction
	2 Interactive Data Exploration
	2.1 An IDE Example
	2.2 Scope of Benchmark
	2.3 Database Landscape

	3 The Need for an IDE Benchmark
	3.1 Existing Analytical Benchmarks
	3.2 IDE Workload Analysis

	4 The IDEBench Design
	4.1 Workflow Generator
	4.2 Data Generator
	4.3 Main Metrics

	5 The IDEBench Implementation
	5.1 Benchmark Driver
	5.2 Database Adapters
	5.3 Benchmark Defaults
	5.4 Customizing the Benchmark

	6 An Experimental Study
	6.1 Configuration and Setup
	6.2 Exp. 1: Overall Results
	6.3 Exp. 2: Varying Schema Complexity
	6.4 Exp. 3: Varying Think-Time
	6.5 Exp. 4: Experiment with System Y
	6.6 Discussion

	7 Conclusion
	8 Acknowledgements
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 20
 Mask co-ordinates: Horizontal, vertical offset 38.55, 709.03 Width 538.90 Height 37.72 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 20

 CurrentAVDoc

 38.5531 709.0271 538.9046 37.715

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 14
 15
 14
 14

 1

 HistoryList_V1
 qi2base

