
MIT Open Access Articles

Elastic job scheduling with unknown utility functions

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Fu, Xinzhe and Modiano, Eytan. 2021. "Elastic job scheduling with unknown utility
functions." Performance Evaluation, 152.

As Published: 10.1016/J.PEVA.2021.102229

Publisher: Elsevier BV

Persistent URL: https://hdl.handle.net/1721.1/145679

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/145679
http://creativecommons.org/licenses/by-nc-nd/4.0/

Elastic Job Scheduling with Unknown Utility Functions

We consider a bipartite network consisting of job schedulers and parallel servers. Jobs arrive at the schedulers

following stochastic processes with unknown arrival rates, and get routed to the servers, which execute the

jobs with unknown service rates. The jobs are elastic, as their “size”, i.e., the amount of service needed for their

completion, is determined by the schedulers. After a job finishes execution, some utility is obtained where the

utility value depends on the job’s size through some underlying concave utility function. We consider the

setting where the utility functions are unknown apriori, while a noisy observation of the utility value of each

job is obtained upon its completion. Our goal is to design a policy that makes job-size and routing decisions to

maximize the total utility obtained by the end of the time horizon 𝑇 . We measure the performance of a policy

by regret, i.e., the gap between the expected utility obtained under the policy and that under the optimal

policy. We first establish an upper bound on the regret of a generic policy, that consists of the cumulative

difference in utility between the job-size decisions of the policy and the solution to a static optimization

problem, and the total backlog of unfinished jobs at the end of the time horizon. We then propose a policy

that simultaneously controls the cumulative utility difference and backlog of unfinished jobs, and achieves

an order optimal regret of �̃� (
√
𝑇). Our policy solves the elastic job scheduling problem by extending the

Stochastic Convex Bandit Algorithm to handle unknown and stochastic constraints, and making routing

decisions based on the Join-the-Shortest-Queue rule. It also presents a principled approach to extending

algorithms for zeroth-order convex optimization to the settings with unknown and stochastic constraints.

1 INTRODUCTION
Job scheduling is a class of problems that study schedule construction and resource allocation to

jobs over a set of machines to optimize for performance objectives such as mean completion time

[1, 2], makespan [3, 5], utility [4, 5], and system stability [6, 7]. Due to the flexibility and versatility

in its modeling and formulation, job scheduling has found a wide range of applications such as

supply chain management [1], operating system optimization [2], and cloud computing [6, 7, 10].

In many job scheduling applications, the jobs to be scheduled are elastic, that is, the arriving
jobs do not have a pre-determined size or duration but instead their “sizes" are determined by the

system scheduler [8, 9], and the utility gained from job completion depends on the “allocated" job

size [10, 11]. A typical example is training tasks for machine learning models. The training process

of many machine learning models (e.g. deep neural network) involves iterative procedures such as

gradient descent [12, 13]. The model’s performance resulting from the training (i.e., utility of the

job) depends on the number of iterations completed (i.e., size of the job) [15]. Thus, it is possible to

take advantage of such elasticity to dynamically determine the sizes of incoming jobs to achieve

considerable gain in terms of the overall performance, as described in [14, 16].

An important element in the scheduling of elastic jobs is the jobs’ utility functions, i.e., the

underlying relationship between the job size and the corresponding utility. Such utility functions

are usually non-decreasing with respect to the job size, and are (approximately) concave, which

reflects, for example, the observation that model performance increases with more training time

while the marginal gain in performance diminishes with training time [17]. Moreover, the utility

functions are often unknown apriori, but function values corresponding to job-size decisions can

be observed. Again, using machine learning training as an example, the training curve is typically

unknown in advance, but the model performance of a certain training time can be observed after a

corresponding training task is completed [18, 19]. While monotonicity and concavity have often

been utilized to design scheduling algorithms with provable guarantees [10, 11], the unknown

nature of the utility function has been overlooked by most works in the literature, which assume

the utility functions to be known beforehand.

Author’s address:

, Vol. 1, No. 1, Article . Publication date: June 2022.

2

In this paper, we study the problem of elastic job scheduling with unknown utility functions. We

consider a discrete-time system of a bipartite network with 𝐾 job schedulers and a set 𝑆 of parallel

servers. There are 𝐾 classes of jobs, with jobs of each class arriving at their corresponding job

scheduler according to a discrete-time stochastic process with mean rate 𝜆𝑘 . Each class is associated

with some concave and monotonically non-decreasing underlying utility function 𝑓𝑘 . At every

time 𝑡 , each job scheduler 𝑘 decides for each incoming job 𝑗 , the job size 𝑥 𝑗 and its designated

server, and then routes the job to the queue of its designated server. The amount of offered service

of server𝑚 is a random variable with mean 𝜇𝑚 . After a job 𝑗 of class 𝑘 finishes its service at its

designated server, we obtain a utility of 𝑓𝑘 (𝑥 𝑗) and receive a noisy observation of the function value

𝑓𝑘 (𝑥 𝑗) + 𝜖 𝑗 , where 𝜖 𝑗 is a zero-mean noise and assumed to be independent for different jobs. Note

that the underlying utility functions {𝑓𝑘 }, and the statistics of the arrival and service processes

{𝜆𝑘 }, {𝜇𝑘 } are initially unknown. The goal is to design a policy that makes job-size and routing

(choice of designated server) decisions based on observed information, in order to maximize the

total utility obtained from jobs completed by the end of the time horizon𝑇 . We adopt regret, which

is equal to the difference between the utility obtained by the optimal policy and that of our policy,

as the performance metric. We start by establishing an upper bound on the regret of a generic

policy that consists of a term reflecting the cumulative gap with respect to the optimal solution

to a static optimization problem and another term reflecting the amount of unfinished workload

at the end of the time horizon. Based on this, we propose a policy that simultaneously controls

the two terms and achieves order-optimal regret. In doing so, the main challenges we face are that

both the objective function and the constraints of the optimization problem are unknown, and the

servers’ capacity needs to be effectively utilized to minimize the unfinished workload at the end

of the time horizon. Finally, we evaluate the empirical performance of our policy and compare

it with a related gradient-based algorithm proposed in [40] that can be adapted to the elastic job

scheduling problem.

Specifically, our main contributions are as follows. First, we establish an upper bound on the

regret of a generic policy for the elastic job scheduling problem that consists of two terms: one

is the cumulative utility difference between the job-size decisions of the policy and the optimal

solution to a static optimization problem, and the other is the total queue length (of unfinished jobs)

at servers at the end of the time horizon𝑇 . The objective function of the static optimization problem

is the sum of the utility functions, and constraints are specified by the statistics of the arrival and

service processes. Note that in the elastic job scheduling setting, the static optimization problem

is not explicitly solvable as the objective function is unknown and the constraints are unknown

and stochastic. Second, we propose a policy that achieves an order-optimal regret of �̃� (
√
𝑇)1 by

combining ideas from the Stochastic Convex Bandit Algorithm [22] and Join-the-Shortest-Queue

routing. Although techniques in related fields such as bandit convex optimization [28] or bandits

with knapsack constraints [32, 33] can be applied to the elastic job scheduling problem, the order-

optimal �̃� (
√
𝑇) regret cannot be achieved by application of previous results in the literature (See

Section 7 for a more detailed discussion). Furthermore, our policy forms a principled approach

to extending existing zeroth-order optimization algorithms (e.g. the algorithm in [22]) to solving

problems with unknown and stochastic constraints, which may be of independent interests. In

the literature, unknown and stochastic constraints are typically handled through primal-dual

gradient-based methods. When applied to zeroth-order optimization algorithms, such methods rely

on using zeroth-order feedback to construct approximate gradients, which leads to sub-optimal

regret [21, 40]. In contrast, our approach works with algorithms that directly utilizes zeroth-order

feedback [22, 23] and enjoys order-optimal regret.

1�̃� (·) hides logarithmic factor of𝑇 .

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 3

We conclude the introduction by giving a road map for the rest of the paper. We present the

model and formal definitions of the elastic job scheduling problem in Section 2. In Section 3, we

prove a general upper bound on the regret. In Section 4, we introduce the algorithm from [22]

and extract the key results therein that will be useful in the design and analysis of our policy. The

policy we propose for the elastic job scheduling problem is presented in Section 5. We evaluate the

empirical performance of our policy in Section 6. A discussion of related works and their relation

to the elastic job scheduling problem is presented in Section 7. Finally, we conclude the paper with

some future directions in Section 8.

2 MODEL AND PROBLEM FORMULATION
2.1 System Model
Consider a discrete-time system with a set of job schedulers and a set of parallel servers that form

a bipartite network (see Figure 1). We use 𝑈 = {𝑢1, . . . , 𝑢𝐾 } to denote the set of schedulers and

𝑆 = {𝑠1, . . . , 𝑠𝑀 } to denote the set of servers. Each scheduler 𝑢𝑘 is connected to a subset 𝑆𝑢𝑘 ⊆ 𝑆 of

servers. Each server has a buffer that stores the jobs to be processed. There are 𝐾 classes of elastic

jobs in the system, where jobs of class 𝑘 arrive at scheduler 𝑢𝑘 and are sent to a server in 𝑆𝑢𝑘 for

execution. At each time slot 𝑡 , a set 𝐴𝑘 (𝑡) of class 𝑘 jobs with |𝐴𝑘 (𝑡) | = 𝑎𝑘 (𝑡) arrive at scheduler 𝑢𝑘 .
For each job 𝑗 , its corresponding scheduler determines its size 𝑥 𝑗 ∈ [0, 𝐵]2, which is the workload

it will add to the server and can be interpreted as its resource requirement. The scheduler then

sends job 𝑗 to the buffer of a server 𝑠 𝑗 ∈ 𝑆𝑢𝑘 for execution, which we will refer to as 𝑗 ’s designated

server. Server 𝑠𝑚’s service rate at time 𝑡 is denoted by 𝑐𝑚 (𝑡). Each server executes the jobs in a non-

preemptive fashion. We assume that for each 𝑘 , 𝑎𝑘 (𝑡) ′𝑠 form a sequence of i.i.d. bounded positive

integer random variables, and for each 𝑚, 𝑐𝑚 (𝑡)’s is a sequence of i.i.d. bounded non-negative

random variables. We assume, E[𝑎𝑘 (𝑡)] = 𝜆𝑘 , E[𝑐𝑚 (𝑡)] = 𝜇𝑚 and 1 ≤ 𝑎𝑘 (𝑡), 𝜆𝑘 , 𝑐𝑚 (𝑡), 𝜇𝑚 ≤ 𝐶 .3 We

will refer to the jobs’ arrival rates 𝜆𝑘 ’s and the servers’ service rates 𝑐𝑚’s, as network statistics. In
this work, we consider the setting where the network statistics are unknown, but the realizations

of arrivals and service are observable (after they occur).

For each server 𝑠𝑚 , we use 𝑄𝑚 (𝑡) to denote the workload queued in the buffer of 𝑠𝑚 at time 𝑡 .

From the description of the model, the amount of work arriving to𝑄𝑚 at time 𝑡 is equal to the total

size of the jobs that are sent to server 𝑠𝑚 from the schedulers. Hence, we can write the evolution of

the workload process as follows where [·]+ = max{·, 0}:

𝑄𝑚 (𝑡 + 1) = [𝑄𝑚 (𝑡) +
𝐾∑
𝑘=1

∑
𝑗 ∈𝐴𝑘 (𝑡)

1{𝑠 𝑗=𝑠𝑚 } · 𝑥 𝑗 − 𝑐𝑚 (𝑡)]+. (1)

Each class 𝑘 is associated with some underlying utility function 𝑓𝑘 that characterizes the rela-

tionship between the size and the utility value obtained from jobs of class 𝑘 . The underlying utility

functions are unknown, but we can receive noisy zeroth-order feedback on the utility functions.

Specifically, after the server finishes executing a job of size 𝑥 of class 𝑘 , we observe 𝑓𝑘 (𝑥) + 𝜖 and
obtain a utility of 𝑓𝑘 (𝑥), where 𝜖 is a zero-mean bounded random noise with |𝜖 | ≤ 𝐶 .4 The noise
values of different jobs are independent. It is important to note that the utility of a job is received

2𝐵 ∈ R+ is an upper bound on the jobs’ size. The job size takes value in R+ and needs not be an integer.

3
We restrict 𝑎𝑘 (𝑡), 𝑐𝑚 (𝑡) to be positive so that at each time we have at least one arrival from each class and the realized

service rates are positive, which simplifies the description of the policy we propose. Our results can be shown without this

restriction.

4
We use 𝐶 to bound various bounded quantities without loss of generality, as 𝐶 can be taken to be the maximum of

realizations of arrivals and service, and observations of utility values.

, Vol. 1, No. 1, Article . Publication date: June 2022.

4

1s

2s

3s

4s

1u

2u

3u

1()a t

2 ()a t

3 ()a t

1()c t

2 ()c t

3 ()c t

4 ()c t

1()x t

2 ()x t

3 ()x t

Fig. 1. Illustration of the system model of the elastic job scheduling problem.

and observed at the time of its completion rather than the time it is dispatched from the scheduler.

We assume that for each job class 𝑘 , its underlying utility function 𝑓𝑘 has the following properties:

(1) 𝑓𝑘 is monotonically non-decreasing and concave.

(2) 𝑓𝑘 is bounded on the domain [0, 𝐵], i.e., ∀𝑥 𝑗 ∈ [0, 𝐵], 𝑓𝑘 (𝑥 𝑗) ≤ 𝐶 . 𝑓𝑘 (0) = 0.

(3) 𝑓𝑘 is 𝐿-Lipschitz continuous, i.e., ∀0 ≤ 𝑥1, 𝑥2 ≤ 𝐵, |𝑓𝑘 (𝑥2) − 𝑓𝑘 (𝑥1) | ≤ 𝐿 · |𝑥2 − 𝑥1 |.

2.2 Problem Formulation
Under the above system model, we study a finite-horizon elastic job scheduling problem. Given

a time horizon 𝑇 , we seek a scheduling policy that determines the size of arriving jobs and their

designated servers such that the total utility obtained from the jobs that are completed in 𝑇 time

slots is maximized. Our scheduling policy needs to be admissible such that at each time 𝑡 , the

decisions it makes are only based on information observed prior to 𝑡 , i.e., 𝑎𝑘 (𝜏)’s for 𝜏 ≤ 𝑡 , 𝑐𝑚 (𝜏)’s
for 𝜏 < 𝑡 and the utility observations obtained before 𝑡 . Let Π be the collection of admissible policies.

Policies in Π do not have access to the underlying utility functions 𝑓𝑘 ’s or the network statistics in

advance, but can only learn them through observations acquired from job executions. Let Π∗
be

the set of all policies, including the ones that know the underlying utility functions and network

statistics. For a policy 𝜋 , let 𝑈 (𝜋,𝑇) be the total utility obtained under policy 𝜋 , which is defined

as the sum of utility obtained from jobs that have been completed by the end of the time horizon 𝑇 .

Note that𝑈 (𝜋,𝑇) is a random variable, the randomness of which comes from job arrivals, service

rates, noisy utility observations and the (possible) inherent randomness in the scheduling policy 𝜋 .

Instead of directly using 𝑈 (𝜋,𝑇), we adopt the notion of regret as the measure of the quality of

scheduling policies.

Definition 1 (Regret). The regret of scheduling policy 𝜋 is defined as

𝑅(𝜋,𝑇) = sup

𝜋∗∈Π∗
E[𝑈 (𝜋∗,𝑇)] − E[𝑈 (𝜋,𝑇)] .

The regret 𝑅(𝜋,𝑇) measures the gap between the expected utility obtained under 𝜋 and the

maximum utility achieved by any (even non-admissible) policy. The goal of the elastic job scheduling

problem is to design an admissible scheduling policy with low regret.

Remark: (i). A crude criterion of low regret is that 𝑅(𝜋,𝑇) = 𝑜 (𝑇), i.e., the regret of 𝜋 grows

sub-linearly with 𝑇 . If policy 𝜋 satisfies this criterion, then the time average utility achieved by 𝜋

is asymptotically optimal as 𝑇 → ∞. Applying the same argument as [26], it can be shown that

there exists instances of the elastic job scheduling problem where no admissible policy can have

regret lower than Θ(
√
𝑇). The regret of the policy we will propose has regret of order �̃� (

√
𝑇),

which implies that it achieves order-optimal regret (ignoring logarithmic factors). (ii). Although the

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 5

performance measure does not explicitly depend on the unfinished workload in the servers at the

end of the horizon𝑇 , such unfinished workload is implicitly accounted for, since the utility𝑈 (𝜋,𝑇)
does not include the unfinished jobs in the queues at time𝑇 . This means that, to achieve low regret,

we cannot blindly increase the job sizes without maintaining the queue stability of the system.

3 GENERAL UPPER BOUND ON THE REGRET
The regret of a policy 𝜋 involves the expected utility of the optimal policy in Π∗

and the expected

utility of 𝜋 . Due to the dynamic nature of the elastic job scheduling problem, directly computing the

regret is challenging. In this section, we prove an upper bound on the regret for policies that satisfy

a certain condition (the policy we propose satisfies the condition), which facilitates the analysis

and design of our policy. The upper bound is constructed by establishing on upper bound on the

expected utility of the optimal policy 𝜋∗
, and a lower bound on the utility of a general policy 𝜋 .

3.1 Upper Bound on the Optimal Utility
Typically, the policy that achieves sup𝜋∗∈Π∗ E[𝑈 (𝜋∗,𝑇)] is a dynamic programming-based policy

that is intractable and difficult to compare to. Therefore, in this section, we relate the expected utility

obtained by the best policy in Π∗
to the optimal value of a (essentially static) convex optimization

problem. To begin with, we define a notion of capacity region of the network, denoted by Λ.
Intuitively, Λ can be interpreted as the set of job-size vector that can be supported by the network

in steady state (i.e., under infinite time horizon). It is formally defined as:

Λ :=

(𝑥1, . . . , 𝑥𝐾)

����������������

∃{𝛼}𝑘𝑚, s.t.∑
𝑘 𝜆𝑘𝛼𝑘𝑚𝑥𝑘 ≤ 𝜇𝑚 ∀𝑠𝑚,

𝛼𝑘𝑚 = 0, ∀𝑠𝑚 ∉ 𝑆𝑢𝑘∑
𝑚 𝛼𝑘𝑚 = 1,∀𝑘

𝛼𝑘𝑚 ≥ 0, ∀𝑘,𝑚
0 ≤ 𝑥𝑘 ≤ 𝐵, ∀𝑘

,

where the variables {𝛼𝑘𝑚} can be considered to be the routing variables that determine how the

jobs of each class are distributed among the servers. Λ conforms with the capacity region in the

network control literature and it is easy to see that Λ is a convex set. Recall that 𝐵 is the maximum

possible size of a job. Consider the following optimization problem P:

P : max

{𝑥𝑘 }

𝐾∑
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥𝑘) (2)

s.t. (𝑥1, . . . , 𝑥𝐾) ∈ Λ, (3)

𝑥𝑘 ∈ [0, 𝐵], ∀𝑘. (4)

Intuitively, the optimization problem characterizes the job scheduling problem with full information

in steady state. The decision variables {𝑥𝑘 } can be interpreted as the steady-state size of jobs of

class 𝑘 . As the objective function of P is concave while the feasibility region is a convex set, it

follows that P is a convex optimization problem. However, note that although P is convex when

we view {𝑥𝑘 } as optimization variables, it loses its convexity if we view {𝑥𝑘 } and {𝛼𝑘𝑚} jointly as

optimization variables, since the capacity region Λ involves constraints

∑
𝑘 𝜆𝑘𝛼𝑘𝑚𝑥𝑘 ≤ 𝜇𝑚 , which

makes it non-convex when viewed as a set over {𝑥𝑘 } and {𝛼𝑘𝑚}.
We proceed to show that the expected utility of any policy in Π∗

is upper-bounded by the optimal

value of the P times the time horizon 𝑇 .

, Vol. 1, No. 1, Article . Publication date: June 2022.

6

Theorem 1. sup𝜋∗∈Π∗ E[𝑈 (𝜋∗,𝑇)] ≤ 𝑇 ·𝑂𝑃𝑇 (P).

Proof Sketch: For any given policy, we first take weighted averages of the sizes of jobs of each

class under the policy over the realizations of the arrival processes. We will then show that the

averages satisfy the constraints of P, and by the concavity of the underlying utility functions, the

corresponding value of the objective function is no less than the expected utility of the policy. Due

to space constraints, we defer the complete proof to Appendix A.1.

It is worth pointing out that Theorem 1 does not imply that the optimal policy is a static one that

assigns the execution time of jobs according to the solution to the optimization problem P. Such

policy would not achieve an expected utility of 𝑇 ·𝑂𝑃𝑇 . The reason is that due to the stochasticity

of the system, the expected number of class 𝑘 jobs completed before 𝑇 is not equal to 𝜆𝑘𝑇 .

3.2 Lower Bound on the General Utility
We now give a lower bound on the expected utility achieved by policies that make job-size decisions

independently of the number of arrivals at the same time slot. As the policy we will propose satisfies

this condition, combined with Theorem 1, it will lead to an upper bound on the regret of our policy.

More formally, let 𝜋 be an arbitrary policy that, for each 𝑡 , decides on 𝑥𝑘 (𝑡) independently of 𝑎𝑘 (𝑡)
for all 𝑘 .5 On a generic sample path 𝜔 , let 𝑥𝑘 (𝑡, 𝜔) be size of class 𝑘 jobs decided by 𝜋 at time 𝑡 .

Let 𝑄𝑚 (𝑇,𝜔) be the workload at server 𝑠𝑚 at the end of time horizon 𝑇 under 𝜋 . We will write

E𝜔 [𝑓𝑘 (𝑥𝑘 (𝑡, 𝜔))] as E[𝑓𝑘 (𝑥𝑘 (𝑡))] and E𝜔 [𝑄𝑚 (𝑇,𝜔)] as E[𝑄𝑚 (𝑇)]. We have the following.

Proposition 1. E[𝑈 (𝜋,𝑇)] ≥ ∑𝑇
𝑡=1

∑𝐾
𝑘=1

𝜆𝑘E[𝑓 (𝑥𝑘 (𝑡))] − 𝐿
∑𝑀
𝑚=1
E[𝑄𝑚 (𝑇)].

Proof. If all the jobs were completed, then under 𝜋 , due to the independence of arrivals and job

size decisions, the expected utility obtained would be

𝑇∑
𝑡=1

𝐾∑
𝑘=1

E𝜔 [𝑎𝑘 (𝑡, 𝜔) 𝑓 (𝑥𝑘 (𝑡, 𝜔))] =
𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝜆𝑘E𝜔 [𝑓 (𝑥𝑘 (𝑡, 𝜔))] =
𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝜆𝑘E[𝑓 (𝑥𝑘 (𝑡))]

The utility actually achieved by 𝜋 is equal to the difference between the aforementioned quantity

and the utility of incomplete jobs in the queues of the servers at the end of the time horizon. Since

the each 𝑓𝑘 is 𝐿-Lipschitz-continuous, 𝑓𝑘 (𝑥) ≤ 𝐿𝑥 . Thus, the expected total utility of incomplete

jobs at the end of time horizon is upper bounded by 𝐿
∑𝑀
𝑚=1
E[𝑄𝑚 (𝑇)]. □

Let 𝒙∗ = (𝑥∗
1
, . . . , 𝑥∗

𝐾
) be the optimal solution to P. It is straightforward to show the following

corollary from Theorem 1 and Proposition 1.

Corollary 1. For any policy𝜋 that decides on𝑥𝑘 (𝑡) independently of𝑎𝑘 (𝑡),𝑅(𝜋,𝑇) ≤
∑𝑇
𝑡=1

∑𝐾
𝑘=1

𝜆𝑘 ·
E[𝑓𝑘 (𝑥∗𝑘) − 𝑓𝑘 (𝑥𝑘 (𝑡))] + 𝐿

∑𝑀
𝑚=1
E[𝑄𝑚 (𝑇)] .

Corollary 1 indicates that a policy can achieve low regret if it can (i). closely approximate the

optimal solution to P, and at the same time, (ii). bound the queue lengths at the servers. The

core challenge of achieving (i) lies in that in our job scheduling problem, we do not know the

network statistics {𝜆𝑘 }, {𝑐𝑚}. Indeed, if the network statistics were known in advance, then the

feasibility region of P would also be known in advance. Solving P would become a stochastic

zeroth-order convex optimization problem, where we can apply the algorithm in [22] and achieve

an order-optimal regret of �̃� (
√
𝑇). However, in the elastic job scheduling problem, the network

statistics, and thus the feasibility region, are unknown and stochastic. In other words, our problem

has stochastic constraints, which makes the algorithm in [22] not applicable. Furthermore, existing

5
Here we assume that the policy sets the size of all the class-𝑘 jobs at time 𝑡 to be 𝑥𝑘 (𝑡) . Otherwise, we can take 𝑥𝑘 (𝑡) as
the average size of the class-𝑘 jobs at time 𝑡 and the results still hold.

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 7

algorithms in stochastic zeroth-order optimization do not involve any scheduling component that

controls the queue lengths of the system (i.e., achieving (ii)). In the following, we will propose a

scheduling policy that adapts the techniques of [22], employs suitable network scheduling, and

still achieves an order-optimal regret of �̃� (
√
𝑇) for the elastic job scheduling problem.

4 PRELIMINARIES
In this section, we review the Stochastic Convex Bandit Algorithm (SCBA) from [22] and extract the

key results therein. Although the algorithm cannot handle the stochastic and unknown constraints,

it can be used in conjunction with the technique developed in this paper to form a policy that

achieves order-optimal regret for the elastic job scheduling problem. The Stochastic Convex Bandit

Algorithm is a generalization of the ellipsoid algorithm [24] to stochastic zeroth-order convex

optimization problems. Formally, let X ⊆ R𝑑 be a compact convex set, and 𝑓 (𝒙) : X ↦→ R be a

convex and 𝐿-Lipschitz continuous function on X. In [22], the Stochastic Convex Bandit Algorithm

aims at solving the optimization problem

min

𝒙
𝑓 (𝒙) (5)

s.t. 𝒙 ∈ X. (6)

with access to a noisy zeroth-order oracle on 𝑓 . Specifically, if we query the oracle at 𝒙 , we observe
ˆ𝑓 (𝒙) := 𝑓 (𝒙) + 𝜖 where 𝜖 is a zero-mean 𝜎-sub-Gaussian random variable and the noise values

of different queries are independent. Let 𝒙∗
be the optimal solution. SCBA outputs a sequence of

queries 𝒙 (1), . . . , 𝒙 (𝑇) (with 𝑇 being the time horizon of SCBA, i.e., the total number of queries),

where each query 𝒙 (𝑡) is computed based on observations obtained from queries before 𝑡 , such

that

∑𝑇
𝑡=1

𝑓 (𝒙 (𝑡)) − 𝑓 (𝒙∗) = �̃� (
√
𝑇) with high probability. We use the one-dimensional special

case (𝑑 = 1) to demonstrate the workflow of the algorithm. As 𝑑 = 1, the feasibility region X is

essentially an interval [𝑙0, 𝑟0]. SCBA proceeds in epochs. It maintains a target region [𝑙, 𝑟] that
contains the optimal solution 𝒙∗

, with high probability. At every epoch, it choose three points that

uniformly span the target region. It then repeatedly queries the points and construct a confidence

interval around the underlying function value of each point. Next, it shrinks the target region by

eliminating an area that is unlikely to contain 𝒙∗
based on the confidence intervals.

6
Specifically, at

a generic epoch 𝜏 with target region [𝑙𝜏 , 𝑟𝜏] the algorithm executes the following steps (where two

intervals [𝑙1, 𝑢1] and [𝑙2, 𝑢2] are 𝛾-separated if 𝑙1 > 𝑢2 + 𝛾):
(1) Let𝑤𝜏 = 𝑟𝜏 − 𝑙𝜏 . Set 𝑥𝑙 := 𝑙𝜏 + 𝑤𝜏

4
, 𝑥𝑐 := 𝑙𝜏 + 𝑤𝜏

2
, 𝑥𝑟 := 𝑙𝜏 + 3𝑤𝜏

4
.

(2) For 𝑖 = 1, . . .; 𝛾𝑖 = 1/2
𝑖
:

(a) Query 𝑥𝑙 , 𝑥𝑐 , 𝑥𝑟 for ⌈𝜎 log𝑇 2/𝛾2

𝑖 ⌉ times. Let
¯𝑓 (𝑥𝑙), ¯𝑓 (𝑥𝑐), ¯𝑓 (𝑥𝑟) be the empirical mean of

observations of 𝑓 (𝑥𝑙), 𝑓 (𝑥𝑐), 𝑓 (𝑥𝑟), respectively.
(b) Set confidence intervals [𝐿𝐵𝑥𝑙 ,𝑈 𝐵𝑥𝑙] := [¯𝑓 (𝑥𝑙)−𝛾𝑖/2, ¯𝑓 (𝑥𝑙)+𝛾𝑖/2], [𝐿𝐵𝑥𝑐 ,𝑈 𝐵𝑥𝑐] := [¯𝑓 (𝑥𝑐)−

𝛾𝑖/2, ¯𝑓 (𝑥𝑐) + 𝛾𝑖/2], [𝐿𝐵𝑥𝑟 ,𝑈 𝐵𝑥𝑟] := [¯𝑓 (𝑥𝑟) − 𝛾𝑖/2, ¯𝑓 (𝑥𝑟) + 𝛾𝑖/2].
(c) If [𝐿𝐵𝑥𝑙 ,𝑈 𝐵𝑥𝑙] is 𝛾𝑖-separated with [𝐿𝐵𝑥𝑐 ,𝑈 𝐵𝑥𝑐] or [𝐿𝐵𝑥𝑟 ,𝑈 𝐵𝑥𝑟], eliminate [𝑙𝜏 , 𝑥𝑙] from

the target region (by setting 𝑙𝜏 to 𝑥𝑙) and proceed to the next epoch.

(d) If [𝐿𝐵𝑥𝑟 ,𝑈 𝐵𝑥𝑟] is 𝛾𝑖-separated with [𝐿𝐵𝑥𝑐 ,𝑈 𝐵𝑥𝑐] or [𝐿𝐵𝑥𝑙 ,𝑈 𝐵𝑥𝑙], eliminate [𝑥𝑟 , 𝑟𝜏] from
the target region (by setting 𝑟𝜏 to 𝑥𝑟) and proceed to the next epoch.

(e) Otherwise, increment 𝑖 and repeat step (2).

Note that in step 2(a), each point 𝑥𝑙 , 𝑥𝑐 , 𝑥𝑟 is queried multiple times but each time counts as

one query, i.e., the sequence of queries output by the algorithm will have multiple copies of

𝑥𝑙 , 𝑥𝑐 , 𝑥𝑟 . For example, we arrive at step 2(a) for some 𝛾𝑖 and 𝑥𝑙 , 𝑥𝑐 , 𝑥𝑟 at 𝑡 . Then, SCBA will output

6
The shrinkage of target region is a step that explicitly relies on the knowledge of the feasibility region in advance.

, Vol. 1, No. 1, Article . Publication date: June 2022.

8

𝑥 (𝑡 + 1) = . . . = 𝑥 (𝑡 + ⌈𝜎 log𝑇 2/𝛾2

𝑖 ⌉) as 𝑥𝑙 , 𝑥 (𝑡 + ⌈𝜎 log𝑇 2/𝛾2

𝑖 ⌉ + 1) = . . . = 𝑥 (𝑡 + 2⌈𝜎 log𝑇 2/𝛾2

𝑖 ⌉)
as 𝑥𝑐 , and 𝑥 (𝑡 + 2⌈𝜎 log𝑇 2/𝛾2

𝑖 ⌉ + 1) = . . . = 𝑥 (𝑡 + 3⌈𝜎 log𝑇 2/𝛾2

𝑖 ⌉) as 𝑥𝑟 . In high-dimension cases,

the algorithm follows the same road map but uses more sophisticated methods for the selection

of query points and the shrinking of target regions. Proposition 2 summarizes the performance

guarantee of SCBA.

Proposition 2 (Theorem 1 of [22]). The Stochastic Convex Bandit Algorithm (SCBA) outputs
a sequence of queries 𝒙 (𝑡), 𝑡 = 1, . . . ,𝑇 such that

∑𝑇
𝑡=1

𝑓 (𝒙 (𝑡)) − 𝑓 (𝒙∗) = 𝑂 (𝐿𝜎
√
𝑇 log𝑇) with

probability at least 1 − 1/𝑇 . Moreover, it follows that
∑𝑇
𝑡=1
E[𝑓 (𝒙 (𝑡))] − 𝑓 (𝒙∗) = 𝑂 (𝐿𝜎

√
𝑇 log𝑇).

The original setting in [22] assumes that the oracle gives unbiased observations of the objective

function. However, in our solution framework for the elastic job scheduling problem that will be

described in the next section, we do not have unbiased observations of the objective function. Thus,

we need to extend SCBA to more general settings, where observations may be biased.

We can see from the high-level description above that the query point selection and target region

shrinking are agnostic to how the confidence intervals are obtained. The algorithm would have a

similar performance guarantee as long as the confidence intervals used (Step 2(b)) have a certain

guarantee of accuracy. Therefore, if we have a procedure that for any 𝒙 , takes in a number of

(possibly biased) observations of 𝑓 (𝒙) from the oracle and outputs a confidence interval [𝐿𝐵𝒙 ,𝑈 𝐵𝒙]
that is sufficiently accurate, then SCBA would still work in conjunction with the procedure, albeit

without the availability of unbiased observations. The aforementioned accuracy requirement of the

procedure is formalized in the following definition. Informally speaking, a procedure is qualified if

based on a large enough number observations, it can construct a confidence interval with width

bounded by some quantity that decreases with the number of observations, and the confidence

interval contains the true value with high probability.

Definition 2. For a given function 𝑓 with domain X, an observation oracle and 𝜎 > 0, a procedure
is qualified if for any 𝒙 ∈ X, 𝛾 > 0, 0 < 𝛿 ≤ 1/2, given ⌈𝜎 log(1/𝛿)

𝛾2
⌉ observations of 𝑓 (𝒙) from

the oracle, the procedure outputs a confidence interval [𝐿𝐵𝒙 ,𝑈 𝐵𝒙] such that 𝑈𝐵𝒙 − 𝐿𝐵𝒙 ≤ 𝛾 and
P{𝑓 (𝒙) ∈ [𝐿𝐵𝒙 ,𝑈 𝐵𝒙]} ≥ 1 − 𝛿 .

Definition 2 can be seen as a generalization of the availability of unbiased observations, i.e., the

original setting of [22]. Since for the setting of [22], if each observation is unbiased with noise being

an independent zero-mean 𝜎-sub-Gaussian random variable, then for any 𝛾 > 0, 0 < 𝛿 ≤ 1/2, given

⌈𝜎 log(1/𝛿)
𝛾2

⌉ such observations, it follows from Hoeffding’s inequality that the confidence intervals

used in Step 2(b) satisfies the condition P{𝑓 (𝒙 ∈ [𝐿𝐵𝒙 ,𝑈 𝐵𝒙])} ≥ 1 − 𝛿 . In particular, in Step 2(b),

we take 𝛿 = 1/𝑇 2
and have that each confidence interval constructed by the algorithm contains

the true value with probability at least 1 − 1/𝑇 2
, which, combined with the union bound, implies

that all the confidence intervals contain the true value with probability at least 1 − 1/𝑇 . Moreover,

inspecting the analysis of [22], we can see that SCBA would have the same performance guarantee

as in Proposition 2 as long as some qualified procedure is available. As a concrete example, in the

one dimensional special case, a qualified procedure can replace Step 2(b) without compromising

the performance of the algorithm. We summarize this generalized performance guarantee of SCBA

in Proposition 3.

Proposition 3. The Stochastic Convex Bandit Algorithm (SCBA), in conjunction with a quali-
fied procedure, outputs a sequence of queries 𝒙 (𝑡), 𝑡 = 1, . . . ,𝑇 such that

∑𝑇
𝑡=1

𝑓 (𝒙 (𝑡)) − 𝑓 (𝒙∗) =

𝑂 (𝐿𝜎
√
𝑇 log𝑇) with probability at least 1 − 1/𝑇 .

Proof. The proposition follows from a similar analysis as in [22]. We defer more details to

Appendix A.2. □

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 9

P : max

𝒙

𝐾∑
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥𝑘)

s.t. 𝒙 ∈ Λ,

𝑥𝑘 ∈ [0, 𝐵], ∀𝑘.

˜P : max

𝒙
𝐹 (𝒙) :=

𝐾∑
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥𝑘) −𝐶 (𝐿 + 1)Δ(𝒙,Λ)

s.t. 𝑥𝑘 ∈ [0, 𝐵], ∀𝑘.

Note that if we are maximizing a concave function 𝑓 over X (cf. (5), (6)), then a similar guarantee

holds with

∑𝑇
𝑡=1

𝑓 (𝒙 (𝑡)) − 𝑓 (𝒙∗) replaced by

∑𝑇
𝑡=1

𝑓 (𝒙∗) − 𝑓 (𝒙 (𝑡)).

5 THE SCHEDULING POLICY
In this section, we propose our scheduling policy for the elastic job scheduling problem – the

Confidence Interval-based Join-the-Shortest-Queue (CI-JSQ) policy. The CI-JSQ policy has two

components: an optimization component that makes job-size decisions at each time slot, and a

routing component that selects a designated server for each job following the Join-the-Shortest-

Queue rule. Assuming that the utility observations are obtained immediately after the job-size

decisions, i.e, there is no feedback delay, we introduce the optimization component in Section 5.1

and the routing component in Section 5.2. We next analyze the performance of the policy in Section

5.3. Finally, we remove the no-feedback delay assumption and extend the policy to the original

setting of the elastic job scheduling problem where the utility observations of the jobs are obtained

after the jobs’ completion in Section 5.4.

5.1 The Optimization Component
In Corollary 1, we show that a policy can achieve low regret if it can make job-size decisions close

to the optimal solution to P and control the queue length of the system. Therefore, the optimization

component of our policy should be able to closely track the optimal solution to P. Despite the

similarity of the observation model of P and that assumed by the algorithm of [22], we cannot

directly apply the algorithm due to the unknown and stochastic constraints of P. In this section,

we develop techniques that make SCBA applicable, so that the query point output by SCBA can

be used as job-size decisions. Our techniques, in conjunction with SCBA, form the optimization

component of our policy for the elastic job scheduling problem.

The overall framework of our approach is that, first, we move the stochastic constraint 𝒙 ∈ Λ of

P in to a penalty term in the objective function and form a (essentially equivalent) transformed

optimization problem
˜P. The transformed optimization problem no longer has any stochastic

constraints, but unlike utility values, unbiased observations of the penalty term are not available.

We thus develop a confidence interval construction procedure and show that under the observation

model of our problem, the procedure is “qualified” according to Definition 2. Therefore, we can

use our confidence interval construction procedure in conjunction with SCBA to compute job-size

decisions for the elastic job scheduling problem.

5.1.1 The Transformed Optimization Problem. For ease of notation, we use the vector 𝒙 to de-

note (𝑥1, . . . , 𝑥𝐾), 𝝀 to denote the arrival rates {𝜆𝑘 } and 𝝁 to denote the service rates {𝜇𝑚}.
We define the function Δ(𝒙,Λ) as the 𝑙1-distance of 𝒙 to the capacity region Λ, i.e., Δ(𝒙,Λ) :=

arg min𝒙′∈Λ
∑𝐾
𝑘=1

|𝑥𝑘 − 𝑥 ′
𝑘
|. Δ(𝒙,Λ) corresponds to a notion of constraint violation, i.e., how far

away a job-size vector is from the capacity region of the network. We will use | | · | |1 to denote the

𝑙1 norm and | | · | | is reserved for the Euclidean (𝑙2) norm. Note that the Lipschitz continuity in this

paper is defined with respect to the Euclidean norm. The transformed problem
˜P is presented at

the top of the page (with P shown on the left for reference).

, Vol. 1, No. 1, Article . Publication date: June 2022.

10

The optimization problem
˜P is constructed by replacing the constraint 𝒙 ∈ Λ of P by a penalty

term in the objective function that penalizes the constraint violation of 𝒙 through Δ(𝒙,Λ). As ˜P
does not involve stochastic constraints, it may be more amenable to SCBA. To formally justify

this, in the following lemmas, we show that
˜P satisfies the requirement of SCBA in form, i.e., it

is a convex optimization problem with Lipschitz objective function. The proof of the lemmas are

deferred to Appendix B.

Lemma 1. Δ(𝒙,Λ) is a convex function of 𝒙 , and thus 𝐹 (𝒙) is a concave function of 𝒙 .

Lemma 2. Δ(𝒙,Λ) is
√
𝐾-Lipschitz continuous, thus 𝐹 (𝒙) is 𝐾𝐿 +𝐶 (𝐿 + 1)

√
𝐾-Lipschitz continuous.

We proceed to show in Lemma 3 that changing the constraint 𝒙 ∈ Λ to a penalty term involving

Δ(𝒙,Λ) does not alter the nature of the problem, as P and
˜P have the same set of optimal solutions.

The proof is again deferred to Appendix B.

Lemma 3.
˜P is a convex optimization problem with the same set of optimal solutions as P.

5.1.2 Construction of Confidence Intervals. The transformed optimization problem ismore amenable

to the algorithm of [22] as it does not involve unknown stochastic constraints. However, in the

elastic job scheduling problem, observation of the objective function 𝐹 of
˜P is not readily available

as after making job-size decision 𝒙 , we only observe (noisy) utility values 𝑓𝑘 (𝑥𝑘)’s but not Δ(𝒙,Λ).
We get around this roadblock by a procedure that constructs confidence interval around 𝐹 (𝒙) using
observations of utility function values and realizations of network statistics. We then show that the

procedure is qualified according to Definition 2, and thus can be used in conjunction with SCBA.

Before formally presenting the confidence interval construction procedure, we first make explicit

what the observation oracle (Definition 2) of the elastic job scheduling algorithm is. Recall the

system model in Section 2, under the current assumption that the utility values are immediately

observable after making the job-size decision, at each time 𝑡 , under job-size decision 𝒙 (𝑡), we
observe noisy utility values { ˆ𝑓𝑘 (𝑥𝑘 (𝑡))}′𝑠7, realizations of job arrivals 𝑎𝑘 (𝑡)’s, and realizations of

offered service 𝑐𝑚 (𝑡)’s. We will refer to the observations corresponding to 𝒙 (𝑡) at 𝑡 , i.e., { ˆ𝑓𝑘 (𝑥𝑘 (𝑡))}
for each 𝑘 , {𝑎𝑘 (𝑡)} for each 𝑘 , {𝑐𝑚 (𝑡)} for each𝑚 as the set of query observations corresponding
to 𝒙 (𝑡), and will often group them together as { ˆ𝑓𝑘 (𝑥𝑘 (𝑡)), 𝑎𝑘 (𝑡), 𝑐𝑚 (𝑡)}. Based on this, we can

interpret the observation model of the elastic job scheduling problem as an oracle that outputs a set

of query observations { ˆ𝑓𝑘 (𝑥𝑘), 𝑎𝑘 , 𝑐𝑚} when we query the oracle at 𝒙 , where E[ˆ𝑓𝑘 (𝑥𝑘)] = 𝑓𝑘 (𝑥𝑘),
E[𝑎𝑘] = 𝜆𝑘 , and E[𝑐𝑚] = 𝜇𝑚 . Note that although 𝑎𝑘 ’s and 𝑐𝑚’s are not dependent on the point of

query 𝒙 , we can still include them in the output of the oracle.

In SCBA, confidence intervals of the function values are constructed based on the results of re-

peated queries at the same point, whichmeans wemaymake the same job-size decisions for multiple

time slots. For this purpose, our confidence interval construction procedure needs to take as input the

query observations ofmultiple consecutive slots (e.g. { ˆ𝑓𝑘 (𝑥𝑘 (𝑡)), 𝑎𝑘 (𝑡), 𝑐𝑚 (𝑡)}, . . . , { ˆ𝑓𝑘 (𝑥𝑘 (𝑡 ′)), 𝑎𝑘 (𝑡 ′), 𝑐𝑚 (𝑡 ′)}
with 𝒙 (𝑡) = 𝒙 (𝑡 + 1) = . . . = 𝒙 (𝑡 ′) = 𝒙) and output a confidence interval [𝐿𝐵𝒙 ,𝑈 𝐵𝒙] around the

true value of 𝐹 (𝒙). Thus, the input to the confidence interval construction procedure can be con-

sidered as independent sets of query observations corresponding to a same generic job-size vector

𝒙 . As the observations { ˆ𝑓𝑘 (𝑥𝑘)} come from utility observations of the jobs, and observations {𝑎𝑘 },
{𝑐𝑚} correspond to the realizations of the arrival and service processes, all values of the query

observations lie in the interval [0,𝐶].
7
As we set the size of all class-𝑘 jobs at 𝑡 to be 𝒙 (𝑡) , we may receive multiple observations of

ˆ𝑓𝑘 (𝑥𝑘 (𝑡)) . It suffices to use

one of them for the query observations of 𝒙 (𝑡) . The assumption that there is at least one arrival of each class was made so

that we obtain at least one observation for each class every time, which simplifies the presentation of the policy.

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 11

The details of the confidence interval construction procedure are shown in Algorithm 1. Since
for a given network topology, the set Λ is fully parameterized by the arrival rates {𝜆}𝑘 and service

rates {𝜇}𝑚 , we will write the function Δ(𝒙,Λ) equivalently as Δ(𝒙,𝝀, 𝝁), where 𝝀 and 𝝁 are the

vector representation of arrival rates and service rates respectively. The intuition behindAlgorithm
1 is that, as the observations { ˆ𝑓𝑘 (𝑥𝑘)}, {𝑎𝑘 } and {𝑐𝑚} are independent and unbiased samples of

{𝑓𝑘 (𝑥𝑘)}, {𝜆}𝑘 and {𝜇}𝑚 , we can construct confidence intervals of each component of {𝑓𝑘 (𝑥𝑘)},
{𝜆}𝑘 and {𝜇}𝑚 such that the true values are constrained to lie in the intervals with high probability.

As we will show, the objective function 𝐹 is Lipschitz continuous with respect to those components.

Hence, confidence intervals around {𝑓𝑘 (𝑥𝑘)}, {𝜆}𝑘 and {𝜇}𝑚 can be translated into a confidence

interval around 𝐹 (𝒙). More specifically, the construction procedure first computes the empirical

means of the samples, and then constructs a lower and an upper estimate for 𝑓𝑘 (𝑥𝑘)’s (Line 3),
𝜆𝑘 ’s (Line 5) and 𝜇𝑚’s (Line 8). For notational simplicity, we assume the lower and upper estimates

of utility values are all in [0,𝐶], and the estimates of 𝜆𝑘 and 𝜇𝑚 are all in [1,𝐶]. Otherwise, we
can simply project the estimates into the interval [0,𝐶] or [1,𝐶] and the results still hold since

the true values of those components lie in the corresponding interval. Then, the lower estimate

𝐿𝐵𝒙 of 𝐹 (𝒙) is computed by combining the lower estimates of utilities and upper estimates of

constraint violation, while the upper estimate 𝑈𝐵𝒙 is computed by combining the upper estimates

of utilities and the lower estimates of constraint violation. Note that in lines 9 and 10, Δ(𝒙,𝝀𝑈 , 𝝁𝐿)
(Δ(𝒙,𝝀𝐿, 𝝁𝑈)) is the constraint violation of 𝒙 with respect to the capacity region of a network with

arrival rates 𝝀𝑈 (𝝀𝐿) and service rates 𝝁𝐿 (𝝁𝑈), and can be computed by solving a simple linear

program (See Appendix C).

Algorithm 1 Confidence Interval Construction

Input: For a given 𝒙 , independent sets of observations { ˆ𝑓𝑘 (𝑥𝑘), 𝑎𝑘 , 𝑐𝑚}’s; Width parameter 𝛾 > 0.

Output: Confidence Interval [𝐿𝐵𝒙 ,𝑈 𝐵𝒙] for 𝐹 (𝒙)
1: for 𝑘 = 1, . . . , 𝐾 do
2:

¯𝑓𝑘 (𝑥𝑘) := empirical mean of the observations
ˆ𝑓𝑘 (𝑥𝑘)’s.

3: 𝑓 𝐿
𝑘
(𝑥𝑘) := ¯𝑓𝑘 (𝑥𝑘) − 𝛾/2, 𝑓 𝑈

𝑘
(𝑥𝑘) := ¯𝑓𝑘 (𝑥𝑘) + 𝛾/2.

4:
¯𝜆𝑘 := empirical mean of the observations 𝑎𝑘 ’s.

5: 𝜆𝐿
𝑘

:= ¯𝜆𝑘 − 𝛾/2, 𝜆𝑈
𝑘

:= ¯𝜆𝑘 + 𝛾/2.

6: for𝑚 = 1, . . . , 𝑀 do
7: 𝜇𝑚 := empirical mean of the observations 𝑐𝑚’s.

8: 𝜇𝐿𝑚 := 𝜇𝑚 − 𝛾/2, 𝜇𝑈𝑚 := 𝜇𝑚 + 𝛾/2

9: 𝐿𝐵𝒙 :=
∑𝐾
𝑘=1

𝜆𝐿
𝑘
𝑓 𝐿
𝑘
(𝑥𝑘) −𝐶 (𝐿 + 1)Δ(𝒙,𝝀𝑈 , 𝝁𝐿).

10: 𝑈𝐵𝒙 :=
∑𝐾
𝑘=1

𝜆𝑈
𝑘
𝑓 𝑈
𝑘
(𝑥𝑘) −𝐶 (𝐿 + 1)Δ(𝒙,𝝀𝐿, 𝝁𝑈).

We now establish the validity of the confidence interval construction procedure, showing that it

can be used in conjunction with SCBA to solve
˜P.

Proposition 4. For function 𝐹 , 𝜎 = 𝐶2𝐷2
log(2𝐾 +𝑀), Algorithm 1 is a qualified confidence

interval construction procedure.

Proof. Recalling Definition 2, to prove the proposition, we will show that for any 𝒙 ∈ [0, 𝐵]𝐾 ,
𝛾 > 0, 0 < 𝛿 ≤ 1/2, given ⌊ 𝜎 log(1/𝛿)

𝛾2
⌋ independent sets of query observations { ˆ𝑓𝑘 (𝑥𝑘), 𝑎𝑘 , 𝑐𝑚}’s,

Algorithm 1 with width parameter 𝛾 = 𝛾/𝐷 outputs a confidence interval [𝐿𝐵𝒙 ,𝑈 𝐵𝒙] such that

𝑈𝐵𝒙 − 𝐿𝐵𝒙 ≤ 𝛾 and P{𝐹 (𝒙) ∈ [𝐿𝐵𝒙 ,𝑈 𝐵𝒙]} ≥ 1 − 𝛿 . The proof proceeds in three steps. First, in

Lemma 4, we show that the confidence interval output by Algorithm 1 has bounded width. Next,

, Vol. 1, No. 1, Article . Publication date: June 2022.

12

in Lemma 5, we prove that if the utility values and network statistics are contained in their lower

and upper estimates used in the procedure, then the constructed confidence interval contains the

true value of 𝐹 (𝒙). The proof of Lemmas 4 and 5 are deferred to Appendix B.

Lemma 4. For any 𝒙 ∈ [0, 𝐵]𝐾 ,𝑈𝐵𝒙 − 𝐿𝐵𝒙 ≤ 𝐷𝛾 where 𝐷 = 3𝐶𝐾 +𝐶 (𝐿 + 1) (𝐾𝐵 +𝑀).

Lemma 5. If for all 𝑘 , 𝑓𝑘 (𝑥𝑘) ∈ [𝑓 𝐿
𝑘
(𝑥𝑘), 𝑓 𝑈𝑘 (𝑥𝑘)], 𝜆𝑘 ∈ [𝜆𝐿

𝑘
, 𝜆𝑈
𝑘
] and for all𝑚, 𝜇𝑚 ∈ [𝜇𝐿𝑚, 𝜇𝑈𝑚], then

𝐹 (𝒙) ∈ [𝐿𝐵𝒙 ,𝑈 𝐵𝒙]

Finally, based on the two lemmas, we show that the confidence interval construction procedure is

qualified by establishing that the utility values and network statistics are contained in their lower and

upper estimates with high probability. Specifically, given a width parameter of value𝛾/𝐷 , by Lemma

4, the confidence interval output by Algorithm 1 satisfies 𝑈𝐵𝒙 − 𝐿𝐵𝒙 ≤ 𝛾 . Furthermore, as the

noise of each utility observation is a variable bounded in [0,𝐶], if given ⌈𝜎 log(1/𝛿)
𝛾2

⌉ ≥ log((2𝐾+𝑀)/𝛿)
(𝛾/𝐷)2

independent samples
8
of 𝑓𝑘 (𝒙𝑘), by Hoeffding’s inequality, the lower and upper estimates used by

Algorithm 1 satisfies P{𝑓𝑘 (𝑥𝑘) ∈ [𝑓 𝐿
𝑘
(𝑥𝑘), 𝑓 𝑈𝑘 (𝑥𝑘)]} ≥ 1 − 𝛿/(2𝐾 +𝑀). The same holds for {𝜆𝑘 }

and {𝜇𝑚}. Hence, by union bound, with probability at least 1 − 𝛿 , all the components of {𝑓𝑘 (𝑥𝑘)},
{𝜆𝑘 } and {𝜇𝑚} lie in the lower and upper estimates used in Algorithm 1. Therefore, invoking
Lemma 5, we have P{𝐹 (𝒙) ∈ [𝐿𝐵𝒙 ,𝑈 𝐵𝒙]} ≥ 1 − 𝛿 , and conclude the proof. □

To summarize, for the optimization component of the policy, we consider the transformed

optimization problem
˜P associated with the elastic job scheduling problem. The optimization

component uses Algorithm 1 in conjunction with SCBA to make job-size decisions. The time

horizon in SCBA is the same as the time horizon of the elastic job scheduling problem. Starting

from 𝑡 = 1, each job-size decision 𝒙 (𝑡) corresponds to a query output by SCBA. Algorithm 1 takes

the query observations as input and computes the confidence intervals as required by SCBA to

generate subsequent queries. Note that the decision made at time 𝑡 by the optimization component

is based on query observations at 1, . . . , 𝑡 −1, which makes it independent of the arrivals at 𝑡 . Hence,

our policy satisfies the condition of Corollary 1. For completeness, we give the detailed workflow

of the optimization component of our policy in Appendix D.

5.2 The Routing Component
The routing component of our policy chooses a designated server for each job. It is based on a Join-

the-Shortest-Queue type rule. At time 𝑡 , we route all the class 𝑘 jobs that arrived, to the server with

the smallest queue length (workload backlog) among the ones to which scheduler 𝑢𝑘 is connected

to. More formally, each job 𝑗 ∈ 𝐴𝑘 (𝑡) is sent to the server 𝑠 𝑗 such that 𝑠 𝑗 ∈ arg min𝑠𝑚 ∈𝑆𝑢𝑘 𝑄𝑚 (𝑡).
Note that our scheduling component can be interpreted as a special case of Back-Pressure routing

in the context of a single-hop network.

Combining the optimization component (Section 5.1 and Appendix D) and the routing com-

ponent, we summarize our policy, CI-JSQ, for the elastic job scheduling problem in Algorithm 2.

At each time 𝑡 , we can construct a set of routing variables {𝛼𝑘𝑚 (𝑡)} in the definition of the

capacity region Λ based on the decisions made by Algorithm 2 by setting 𝛼
𝑗𝑠𝑞

𝑘𝑚
(𝑡) := 1 if the jobs

in 𝐴𝑘 (𝑡) are sent to server 𝑠𝑚 and 𝛼
𝑗𝑠𝑞

𝑘𝑚
(𝑡) := 0 otherwise. The set of routing variables will be used

in the analysis of the policy.

8
The inequality holds by plugging in the value of 𝜎 and noting that 0 < 𝛾 ≤ 1/2.

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 13

Algorithm 2 The CI-JSQ Policy

1: for 𝑡 = 1, . . . ,𝑇 do
2: 𝒙 (𝑡) := the job size vector output by Algorithm 1 in conjunction with SCBA on

˜P.

3: for 𝑘 = 1, . . . , 𝐾 do
4: Set the size of jobs in 𝐴𝑘 (𝑡) to 𝑥𝑘 (𝑡).
5: Send the jobs in 𝐴𝑘 (𝑡) to server 𝑠 𝑗 ∈ arg min𝑠𝑚 ∈𝑆𝑢𝑘 𝑄𝑚 (𝑡)

5.3 Performance Analysis
In this section, we analyze the theoretical performance guarantee of the CI-JSQ policy. We will show

that the policy achieves �̃� (
√
𝑇)-regret. From Corollary 1, we can see that the upper bound on the

regret can be decomposed into two terms

∑𝑇
𝑡=1

∑𝐾
𝑘=1

𝜆𝑘E[𝑓𝑘 (𝑥∗𝑘) − 𝑓𝑘 (𝑥𝑘 (𝑡))] and 𝐿
∑𝑀
𝑚=1
E[𝑄𝑚 (𝑇)].

The first term tracks the cumulative loss with respect to the utility functions, which we will refer

to as utility regret, while the second term tracks the queue backlog at the end of the time horizon,

whichwewill refer to as queueing regret. To analyze the regret of the CI-JSQ policy, we first invoke

the regret guarantee of the optimization component to provide bounds on the utility regret and

cumulative constraint violation

∑𝑇
𝑡=1

Δ(𝒙 (𝑡),Λ). Subsequently, based on the cumulative constraint

violation and properties of the routing component of CI-JSQ, we bound the queueing regret.

In the following, we will show that the utility regret

∑𝑇
𝑡=1

∑𝐾
𝑘=1

𝜆𝑘 [𝑓𝑘 (𝑥∗𝑘)− 𝑓𝑘 (𝑥𝑘 (𝑡))], cumulative

constraint violation

∑𝑇
𝑡=1

Δ(𝒙 (𝑡),Λ), and the queueing regret

∑𝑀
𝑚=1

𝑄𝑚 (𝑇) are all in �̃� (
√
𝑇) with

probability at least 1 − 1/𝑇 (or 1 −𝑂 (1/𝑇)). That the expectation of these quantities are in �̃� (
√
𝑇)

immediately follow from the with-high-probability bounds since they are all almost surely bounded

by 𝑂 (𝑇). To avoid unnecessary repetition, we will only state the with-high-probability bounds and

it should be understood that the bounds also hold in expectation.

5.3.1 Utility Regret. To bound the utility regret, we start from the performance guarantee of the

optimization component which will give a bound on

∑𝑇
𝑡=1

∑𝐾
𝑘=1

𝐹𝑘 (𝑥∗𝑘) − 𝐹𝑘 (𝑥𝑘 (𝑡)), where 𝐹 is

the objective function of
˜P. Note that this does not directly lead to a bound on the utility regret∑𝑇

𝑡=1

∑𝐾
𝑘=1

𝜆𝑘 [𝑓𝑘 (𝑥∗𝑘) − 𝑓𝑘 (𝑥𝑘 (𝑡))], which is essentially with respect to the objective function of P.

We further use the structure of 𝐹 to bound the utility regret.

Lemma 6. The job size vectors 𝒙 (𝑡), 𝑡 = 1, . . . ,𝑇 of the CI-JSQ policy satisfy
∑𝑇
𝑡=1

𝐹 (𝒙∗) −𝐹 (𝒙 (𝑡)) =
�̃� (

√
𝑇) with probability at least 1 − 1/𝑇 , where 𝒙∗ is the optimal solution to ˜P .

Proof. The lemma directly follows from Proposition 4, which establishes that Algorithm 1,
and the generalized performance guarantee of SCBA (Proposition 3). □

Recall that from Lemma 3, the optimal solution 𝒙∗
to

˜P is also optimal for P. Thus, we can bound

the utility regret based on Lemma 6 by exploiting the structure of 𝐹 .

Theorem 2. The job size vectors 𝒙 (𝑡), 𝑡 = 1, . . . ,𝑇 of the CI-JSQ policy satisfy
∑𝑇
𝑡=1

∑𝐾
𝑘=1

𝜆𝑘 [𝑓𝑘 (𝑥∗𝑘)−
𝑓𝑘 (𝑥𝑘 (𝑡))] = �̃� (

√
𝑇) with probability at least 1 − 1/𝑇 .

Proof. Recall that 𝒙∗ ∈ Λ, which implies that Δ(𝒙∗,Λ) = 0. Thus, we obtain

𝑇∑
𝑡=1

𝐹 (𝒙∗) − 𝐹 (𝒙 (𝑡)) =
𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝜆𝑘 [𝑓𝑘 (𝑥∗𝑘) − 𝑓𝑘 (𝑥𝑘 (𝑡))] +𝐶 (𝐿 + 1)
𝑇∑
𝑡=1

Δ(𝒙 (𝑡),Λ) (7)

≥
𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝜆𝑘 [𝑓𝑘 (𝑥∗𝑘) − 𝑓𝑘 (𝑥𝑘 (𝑡))] . (8)

, Vol. 1, No. 1, Article . Publication date: June 2022.

14

Invoking Lemma 6, we conclude the proof. □

5.3.2 Queueing Regret. The queueing regret measures the unfinished workload in the servers at the

end of the time horizon. It is related to the excess workload generated by the jobs that the servers

cannot process before 𝑇 . This latter quantity has close connection to the cumulative constraint

violation

∑𝑇
𝑡=1

Δ(𝒙 (𝑡),Λ). Therefore, to analyze the queueing regret, we first study the cumulative

constraint violation, on which a bound can be recovered from Lemma 6 and will provide a handle

on the queueing regret.

Lemma 7.

∑𝑇
𝑡=1

Δ(𝒙 (𝑡),Λ) = �̃� (
√
𝑇) with probability at least 1 − 1/𝑇 .

Proof Sketch: Similarly as in the proof of Theorem 2, we start from the performance guarantee

with respect to 𝐹 and show that the cumulative constraint violation

∑𝑇
𝑡=1

Δ(𝒙 (𝑡),Λ) can be upper

bounded by a constant times

∑𝑇
𝑡=1

𝐹 (𝒙∗) − 𝐹 (𝒙 (𝑡)) .We defer the details to Appendix B

Lemma 7 establishes that the cumulative constraint violation under the zeroth-order scheduling

policy is of order �̃� (
√
𝑇). Under the interpretation of Λ as the capacity region of the network,

each term Δ(𝒙 (𝑡),Λ) represents the excess workload that cannot be handled by the network. The

cumulative constraint violation can thus be considered as the total excess workload injected by the

end of the time horizon 𝑇 . As the excess workload (constraint violation) is defined with respect

to the full capacity region of the network, a bound on total excess workload can only translate to

a bound on total workload backlog at 𝑇 under a routing policy that effectively utilize the service

capacity of a network. We will show that the routing component of the CI-JSQ policy enjoys such

property, and thus establish the bound on the queueing regret of CI-JSQ.

To do so, we first prove some preliminary properties of the routing component of the CI-JSQ policy.

We will use the quadratic Lypunov function of queue length (workload) | |𝑸 (𝑡) | |2 = ∑𝑀
𝑚=1

𝑄2

𝑚 (𝑡).
By the dynamics of the workload process (1), under the CI-JSQ policy, the one slot drift of the

quadratic Lyapunov function satisfies

1

2

| |𝑸 (𝑡 + 1) | |2 − 1

2

| |𝑸 (𝑡) | |2 ≤
𝑀∑
𝑚=1

𝑄𝑚 (𝑡) ·

𝐾∑
𝑘=1

𝑎𝑘 (𝑡)𝛼 𝑗𝑠𝑞𝑘𝑚 (𝑡)𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡)
 +𝐶1, (9)

with 𝐶1 being a constant independent of 𝑇 , and the routing variables {𝛼 𝑗𝑠𝑞
𝑘𝑚

(𝑡)} are the ones

associated with the CI-JSQ policy. Inequality (9) is formally justified in Appendix B.

In the network scheduling and routing literature, the stability of queues is usually established

by showing that the right-hand-side of (9) is upper-bounded by some non-positive quantity and

thus the Lyapunov function of queue lengths has non-positive one-slot conditional expected drift.

In the analysis of queue length regret of the CI-JSQ policy, the aforementioned argument does

not work since the job-size variable 𝑥𝑘 (𝑡)’s may not be in the network capacity region, so the

right-hand-side of (9) may not be non-positive. Instead, we will analyze the upper bound of the

drift (9) in a different approach, showing that although the one-slot drift may be positive at some

time slots, the cumulative drift is upper-bounded throughout the whole time horizon. This is done

in Lemma 8, the proof of which is deferred to Appendix B.

Lemma 8. With probability at least 1 −𝑂 (1/𝑇), for all 𝑡 ,
𝑀∑
𝑚=1

𝑄𝑚 (𝑡) ·

𝐾∑
𝑘=1

𝑎𝑘 (𝑡)𝛼 𝑗𝑠𝑞𝑘𝑚 (𝑡)𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡)
 ≤

𝑀∑
𝑚=1

𝑄𝑚 (𝑡) (𝐶3𝐶2 +𝐶4)
√
𝑇 log𝑇,

where 𝐶2,𝐶3,𝐶4 are constants independent of 𝑇 .

Now, we are ready to prove that the queueing regret of CI-JSQ is in �̃� (
√
𝑇) with high probability.

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 15

Theorem 3. Under the CI-JSQ policy,
∑𝑀
𝑚=1

𝑄𝑚 (𝑇) = �̃� (
√
𝑇) with probability at least 1 −𝑂 (1/𝑇).

Proof. Let𝐶0 be a constant such that𝐶0 ≥ 2𝑀
√
𝐶0 (𝐶3𝐶2 +𝐶4) + 2𝐶1, e.g.,𝐶0 = 4𝑀2 (𝐶3𝐶2+𝐶4+

2𝐶1)2. We will show by induction that | |𝑸 (𝑡) | |2 ≤ 𝐶0𝑇 log
2 (𝑇 + 1) for 𝑡 = 1, . . . ,𝑇 . The theorem

will then follow from that

∑𝑀
𝑚=1

𝑄𝑚 (𝑇) ≤
√
𝑀 | |𝑸 (𝑇) | |. The base case of the induction (𝑡 = 1) holds

trivially. Assume that the statement holds for 𝜏 = 1, . . . , 𝑡 . Summing over (9) for 𝜏 = 1, . . . , 𝑡 and

using Lemma 8, we have

| |𝑸 (𝑡 + 1) | |2 ≤ 2

𝑡∑
𝜏=1

𝑀∑
𝑚=1

𝑄𝑚 (𝜏) · (𝐶3𝐶2 +𝐶4)
√
𝑇 log𝑇 + 2𝐶1𝑇

≤2𝑀
√
𝐶0𝑇 log𝑇 · (𝐶3𝐶2 +𝐶4)

√
𝑇 log𝑇 + 2𝐶1𝑇 (10)

=2𝑀
√
𝐶0 (𝐶3𝐶2 +𝐶4)𝑇 log

2𝑇 + 2𝐶1𝑇, (11)

where we have used the induction hypothesis in (10). As 𝐶0 ≥ 2𝑀
√
𝐶0 (𝐶3𝐶2 +𝐶4) + 2𝐶2, we have

from (11) that | |𝑸 (𝑡 + 1) | | ≤ 𝐶0

√
𝑇 log𝑇 . Thus, we finish the induction and conclude the proof. □

Combining Theorems 2 and 3 and Corollary 1, we have that the CI-JSQ policy achieves �̃� (
√
𝑇)

regret, which we formally summarize in the following theorem.

Theorem 4. Let 𝜋𝐶𝐼−𝐽 𝑆𝑄 denote the CI-JSQ policy. 𝑅(𝜋𝐶𝐼−𝐽 𝑆𝑄 ,𝑇) = �̃� (
√
𝑇).

5.3.3 Remarks.
• Computational Aspect: The main computational cost of the CI-JSQ policy comes from the

confidence interval construction procedure and SCBA. As SCBA is a generalization of the

ellipsoid algorithm, it has a similar computational complexity as the ellipsoid algorithm. We

refer the reader to [22] for a more detailed that front. For the confidence interval construction

procedure, the most computational intensive steps are computing the functions Δ(𝒙,𝝀𝐿, 𝝁𝑈)
and Δ(𝒙,𝝀𝑈 , 𝝁𝐿) (Lines 9 and 10 of Algorithm 1). Each of the function can be computed by

solving a linear program. Due to space limitation, we defer further details to Appendix C.

• Relation to Zeroth-order Optimization with Stochastic Constraints: We believe that

the recipe of constructing a transformed optimization problem by converting the stochastic

constraints as a penalty term in the objective function, designing a procedure that outputs

confidence interval of the value of the transformed objective function using observations

available in the problem setting, and using it in conjunction with SCBA can be extended

to handle more general zeroth-order optimization problems. The recipe may also be able

to work with other algorithms for zeroth-order optimization, extending them to handle

unknown and stochastic constraints, of which a common example is the capacity constraints

in network routing and scheduling. In previous works, unknown and stochastic constraints

are typically handled through primal-dual gradient-based methods. When applied to zeroth-

order optimization problems, those methods rely on using zeroth-order feedback to construct

approximate gradients. Such approximation has large variance when the feedback is noisy

and it typically leads to sub-optimal regret [21, 40]. In contrast, our approach works with

algorithms that directly utilizes zeroth-order feedback [22, 23], which are more robust against

noisy feedback and can achieve order-optimal regret.

• Dependence of Regret on Dimension:Although the CI-JSQ policy achieves optimal regret

with respect to the time horizon𝑇 , its regret dependence on dimension (number of job classes),

which is dominated by the regret bound of SCBA can be large and sub-optimal. We further

discuss the implication of this in simulations. Improving the dependence of the regret on

number of classes is an important future direction.

, Vol. 1, No. 1, Article . Publication date: June 2022.

16

5.4 Dealing with Feedback Delay
So far, we have assumed that the utility observations are immediately available after the job decisions.

In the original setting of the elastic job scheduling problem, the utility values are observed after

the completion of the jobs. We now extend the CI-JSQ policy to deal with such feedback delay.

We propose an episodic version of the CI-JSQ policy (E-CI-JSQ) that achieves the same order

of �̃� (
√
𝑇)-regret. In the E-CI-JSQ policy, the time horizon is divided into ⌊𝑇 /(𝐾𝐵)⌋ episodes with

each episode having 𝐾𝐵 slots. The job-size decision remains unchanged during an episode. In each

episode, the E-CI-JSQ policy designates the first job of each class as a sampling job. The sampling

jobs receives priority service at the servers while the other jobs get served in a First-Come-First-

Serve order. Note that as the size of each job is at most 𝐵 and the realized service rate at each

time is at least 1, we have that for any job-size decision 𝒙 , it takes the system at most 𝐾𝐵 time

slots to complete one job of each class. Hence, the sampling jobs always complete by the end

of each episode. Therefore, for each episode, the utility observations of the sampling jobs and

the realizations of arrivals and services at the first slot of the episode can be used as a sample

for constructing confidence intervals. Based on this, at the episode level, the confidence interval

construction procedure can still be used in conjunction with SCBA to compute job-size decisions

for the E-CI-JSQ policy. Note that here only the utility observations of the sampling jobs are fed

into the confidence interval construction procedure. Since we only update the job-size decision

vector for ⌊𝑇 /(𝐾𝐵)⌋ times (every episode), the time horizon of SCBA is set to be ⌊𝑇 /(𝐾𝐵)⌋. The
routing decisions are still made based on the Join-the-Shortest-Queue rule. Unlike the job-size

decisions, the routing decisions are still updated every time slot. The details of the E-CI-JSQ policy

are shown in Algorithm 3. The E-CI-JSQ policy also enjoys �̃� (
√
𝑇)-regret, the proof of which is

shown in Appendix A.3.

Algorithm 3 The E-CI-JSQ Policy

1: for 𝑡 = 1, . . . ,𝑇 do
2: if 𝑡 is the first slot of an episode then
3: 𝒙 (𝑡) := the vector output by Algorithm 1 in conjunction with SCBA (with time horizon

⌊𝑇 /(𝐾𝐵)⌋) on ˜P executed at the episodic level.

4: Set one job of each class as sampling job that will receive priority service.

5: else
6: Keep the job-size decision vector unchanged, i.e., 𝒙 (𝑡) := 𝒙 (𝑡 − 1).
7: for 𝑘 = 1, . . . , 𝐾 do
8: Set the size of jobs in 𝐴𝑘 (𝑡) as 𝑥𝑘 (𝑡).
9: Send the jobs in 𝐴𝑘 (𝑡) to server 𝑠 𝑗 ∈ arg min𝑠𝑚 ∈𝑆𝑢𝑘 𝑄𝑚 (𝑡)

6 SIMULATIONS
In this section, we evaluate the empirical performance of the CI-JSQ policy. We will first study the

behavior of the job size decisions and queue length under the policy, and then compare its regret

performance with the policy proposed in [40].

6.1 Instantaneous Utility andQueue Length
We construct a bipartite network with 10 job schedulers (corresponding to 10 job classes) and 20

parallel servers. The links between job schedulers and servers are randomly generated with each

scheduler having expected degree 6 (i.e., connected to 6 servers). At every time slot, the arrival rate

of each class is a uniform random variable in {2, 3, 4, 5} while the service rate of each server is a

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 17

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Time

0

10

20

30

40

50

60
U

til
ity

Instantaneous Utility

Noise = 0

Noise = 0.2

Noise = 0.5

Noise = 1

(a)

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Q
ue

ue
 L

en
gt

h

Queue Length

Noise = 0
Noise = 0.2
Noise = 0.5
Noise = 1

(b)

Fig. 2. Instantaneous Utility andQueue Length of CI-JSQ under Different Noise Levels.

uniform random variable in [2, 4]. We assign an underlying utility function to each class of one

of the four types: 𝑓𝑘 (𝑟) = 𝑎𝑘𝑟 (linear function), 𝑓𝑘 (𝑟) = 𝑎𝑘
√
𝑟 + 𝑏𝑘 − 𝑎𝑘

√
𝑏𝑘 (square root function),

𝑓𝑘 (𝑟) = −𝑎𝑘𝑟 2 + 𝑏𝑘𝑟 (quadratic function), 𝑓𝑘 (𝑟) = 𝑎𝑘 log(𝑏𝑘𝑟 + 1) (logarithmic function). The time

horizon is set to 𝑇 = 100000 slots. We vary the level of the observation noise from 0 (no noise) to 1

(each observation is corrupted with noise that is uniformly distributed in [−1, 1]).
We first plot the instantaneous utility of the policy with time in Figure 2(a). The instant utility at

time 𝑡 is defined as

∑𝐾
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥𝑘 (𝑡)) where {𝑥𝑘 (𝑡)} is the job-size decision by the CI-JSQ policy.

The optimal value of the optimization problem P corresponding to our simulation setup is 22. From

Figure 2(a), we see that the instantaneous utility of the CI-JSQ converges to the optimal value under

all noise levels, where the convergence time approximately increases with the noise level.

Next, we plot the evolution of (total) queue length with time in Figure 2(b) under CI-JSQ. For

most of the time, the queue length of CI-JSQ stays at a low level, suggesting that the job-size

vector approaches the optimal from within the capacity region. Furthermore, we can observe that

generally higher noise levels result in larger fluctuation in queue length.

6.2 Regret Performance
We proceed to evaluate the regret performance of the CI-JSQ policy. As the utility of the optimal

dynamic policy is difficult to compute, we use 𝑇 · 𝑂𝑃𝑇 (P) as an approximation to the optimal

utility. In addition to the previously constructed 10-class network, we apply the policies to another

larger network with 50 classes (job schedulers) and 100 servers (all other parameters are the same

as the previous small network) to evaluate the policies’ scalability with respect to the network size.

Algorithm for Comparison: We compare our CI-JSQ policy to the Gradient-Sampling Max-Weight

(GSMW) policy proposed in [40]. The GSMW policy is a general policy for network utility maxi-

mization with unknown utility function. Applied to the elastic job scheduling problem, GSMW

uses observations of utility value to construct approximate gradient of the utility function, i.e.

∇𝑓𝑘 (𝑥) ≃
ˆ𝑓𝑘 (𝑥+𝛿)− ˆ𝑓𝑘 (𝑥−𝛿)

2𝛿
and also employs Join-the-Shortest-Queue routing. As the gradient ap-

proximation has high variance when the observations are noisy, GSMW policy can only achieve a

sub-optimal �̃� (𝑇 3/4)-regret for the elastic job scheduling problem. For completeness, we provide

further details and discussion of the GSMW policy in Appendix E.

We plot the regrets of CI-JSQ and GSMW in the 10-class and 50-class networks in Figures 3

and 4 respectively. We can see that in the 10-class network, when the noise level is 0, GSMW and

CI-JSQ have comparable regret performance. However, CI-JSQ gradually outperforms GSMW by

larger margin as the noise level increases. This can be attributed to that CI-JSQ directly utilizes the

utility value observations rather than using them to construct approximate gradients for job-size

decisions, which is more robust to noise in the observations. On the other hand, GSMW scales

better than CI-JSQ with the network size, as can be seen from Figure 4. Indeed, as mentioned before,

, Vol. 1, No. 1, Article . Publication date: June 2022.

18

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Time Horizon

1

1.5

2

R
eg

re
t

104 Noise = 0

GSMW
CI-JSQ

(a)

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Time Horizon

0

2

4

6

8

R
eg

re
t

104 Noise = 0.2

GSMW
CI-JSQ

(b)

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Time Horizon

0

0.5

1

1.5

2

2.5

R
eg

re
t

105 Noise = 0.5

GSMW
CI-JSQ

(c)

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Time Horizon

0

1

2

3

4

R
eg

re
t

105 Noise = 1

GSMW
CI-JSQ

(d)

Fig. 3. Regret of CI-JSQ and GSMW under different noise levels in the 10-class network.

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Time Horizon

0.5

1

1.5

2

2.5

R
eg

re
t

105 Noise = 0

GSMW
CI-JSQ

(a)

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Time Horizon

1

2

3

4

5

R
eg

re
t

105 Noise = 0.2

GSMW
CI-JSQ

(b)

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Time Horizon

2

4

6

8

10

12

R
eg

re
t

105 Noise = 0.5

GSMW
CI-JSQ

(c)

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Time Horizon

0

0.5

1

1.5

2

2.5

3

R
eg

re
t

106 Noise = 1

GSMW
CI-JSQ

(d)

Fig. 4. Regret of CI-JSQ and GSMW under different noise levels in the 50-class network.

one drawback of the CI-JSQ policy is that, despite achieving optimal regret with respect to the time

horizon 𝑇 , its regret bound has large dependence on the dimension (i.e., number of classes in the

elastic job scheduling problem) of the problem.

7 RELATEDWORKS
In this section, we survey existing results in the related fields and discuss the potential of applying

those results to solve the elastic job scheduling problem.

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 19

7.1 Zeroth-order/Bandit Convex Optimization
Zeroth-order convex optimization refers to the problem of minimizing a convex function 𝑓 over a

(known) convex and compact domain X with access to a zeroth-order oracle of 𝑓 [22, 24–27]. At

each iteration 𝑡 , we are allowed to query a point 𝒙 (𝑡) and receive noisy/noiseless feedback
ˆ𝑓 (𝒙 (𝑡))

with E[ˆ𝑓 (𝒙 (𝑡))] = 𝑓 (𝒙 (𝑡)). The goal is to design algorithms with low regret or optimization error

over a time horizon of𝑇 . The noiseless feedback scenario was studied in [24]. For the noisy feedback

scenario, which is more relevant to the setting of the elastic job scheduling problem, a regret lower

bound of Ω(
√
𝑇) has been established even for simple functions such as linear [26] and quadratic

[27] functions. While the algorithm with order-optimal regret for linear functions was proposed

in [26], the stochastic convex bandit algorithm [22] is the state-of-the-art algorithm that achieves

order-optimal regret for general convex functions. Bandit convex optimization considers a more

challenging setting, where an adversary chooses a sequence of functions 𝑓1, . . . , 𝑓𝑇 and at each

time 𝑡 we receive noisy feedback of 𝑓𝑡 (𝑥𝑡). The goal is to minimize the regret compared to the best

fixed point, i.e., E[∑𝑇
𝑡=1

𝑓𝑘 (𝑥𝑡)] − min𝑥 ∈X
∑𝑇
𝑡=1

𝑓𝑡 (𝑥). The setting is harder than the zeroth-order

convex optimization one and the regret bounds achieved by algorithms in the literature are typically

larger. For general convex functions, �̃� (𝑇 3/4)-regret is achieved by algorithms in [28] and [29]. The

algorithm in [30] improves the bound to �̃� (𝑇 8/13). For strongly convex and smooth functions, [31]

achieves �̃� (
√
𝑇)-regret. Algorithms proposed for zeroth-order or bandit convex optimization rely

on the feasibility region X to be known in advance, which prevents them from being applied to the

elastic job scheduling problem.

7.2 Bandits with Knapsacks
Bandits with knapsacks problem [32–34] is a version of the multi-armed bandits where each arm is

associated with a reward and a resource consumption vector. When an arm is pulled, we obtain

noisy observations of the arm’s reward and resource consumption vector. The goal is to maximize

the total reward over a time horizon 𝑇 subject to knapsack constraints, that the total resource

consumption does not exceed some budget. Let𝑚 be the number of arms. The state-of-art algorithms

achieves a regret of �̃� (
√
𝑚𝑇), which matches the lower bound of the problem.

We briefly discuss the potential of applying bandits with knapsack algorithms to the elastic job

scheduling problem. The knapsack constraints shares similarity with the constraints in the elastic

job scheduling problem. However, in the bandits with knapsacks problem, the decision region is

a discrete set of arms whereas in our problem the decision region is a continuous set. Therefore,

in order to apply the algorithms in [32, 33] to our problem, we need to discretize the decision

region, and thereby creating a correspondence between job-sizes and arms. For intuitive argument,

assume that the decision region is uniformly discretized into𝑚 arms, then the discretization will

incur𝑂 (1/𝑚) error every time slot, which will accumulate to𝑂 (𝑇 /𝑚)-regret over the time horizon.

Combining this with the inherent regret of the algorithms, we see that applying bandit with

knapsack algorithms would achieve 𝑂 (
√
𝑚𝑇 +𝑇 /𝑚)-regret for the elastic job scheduling problem.

The optimal number of arms is 𝑚 = 𝑂 (𝑇 1/3), which leads to 𝑂 (𝑇 2/3)-regret that is worse than
the �̃� (

√
𝑇) of CI-JSQ. This can be attribute to that bandits with knapsack techniques do not take

advantage of the concavity of the utility functions.

7.3 Reinforcement Learning
Reinforcement learning studies finite-horizon Markov Decision Processes (MDPs) with unknown

dynamics. Recently, there have been several works that propose reinforcement learning methods

[35–39] that explicitly learn the parameters of the MDPs through empirical observations and have

provable regret bounds. Our elastic job scheduling problem can be modeled in the MDP framework,

, Vol. 1, No. 1, Article . Publication date: June 2022.

20

with the state being the queue lengths and the action being the job-size decision. However, applying

state-of-the art reinforcement learning methods cannot achieve an order-optimal regret bound of

�̃� (
√
𝑇). For example, the UCRL algorithm proposed in [35] has a regret bound of �̃� (𝑆

√
𝐴𝑇) where 𝑆

is the cardinality of the state space,𝐴 is the cardinality of the action space and𝑇 is the time horizon.

Since in the elastic job scheduling problem, our state space and action space are both continuous,

to apply UCRL, we must first perform necessary discretization. Even if we ignore the discretization

error from state space and focus on the action space (set of job-size decisions), by discretizing the set

of job-size decisions into𝐴 actions, similar to the preceding argument with bandits with knapsacks,

the resulting discretization error leads to a regret of 𝑂 (𝑇 /𝐴). Combining this with the inherent

regret of UCRL, we arrive at a total regret of �̃� (𝑇
𝐴
+ 𝑆

√
𝐴𝑇). Selecting the optimal value of 𝐴 that

minimizes the regret bound (𝐴 = 𝑂 (𝑇 1/3)), the resulting regret is still �̃� (𝑇 2/3), which is worse

than the �̃� (
√
𝑇) regret achieves by our CI-JSQ algorithm. The key reason is that reinforcement

learning methods are designed for general MDPs and do not exploit the special structure of the

elastic job scheduling problem. The lower bounds [35, 36] proposed in reinforcement learning also

do not apply since the problem instances constructed to prove the lower bounds do not satisfy the

properties of the elastic job scheduling problem.

7.4 Network Utility Maximization
Network utility maximization (NUM) is class of problems that study allocating network resources

(e.g. traffic rates, link bandwidth) so as to maximize overall network utility [41–44]. If we view

the job size in the elastic job scheduling problem as traffic rate, then philosophically, the elastic

job scheduling problem can be considered as one instance of NUM in single-hop networks, with

the unknown stochastic constraints corresponding to network stability constraints in stochastic

NUM formulations [43, 44]. As most previous works on NUM focus on the setting where the utility

functions are known in advanced, their results cannot be applied to the elastic job scheduling

problem. An exception is the GSMW algorithm proposed in [40]. However, as discussed before,

GSMW can only achieve a sub-optimal regret of �̃� (𝑇 3/4) in the elastic job scheduling problem.

8 CONCLUSION
In this paper, we have studied the problem of elastic job scheduling with unknown utility functions.

We established an upper bound on the regret of a generic policy that consists of cumulative

utility difference between the job-size decisions of the policy and the optimal solution to a static

optimization problem, and the total queue length at servers at the end of the time horizon 𝑇 . The

upper bound connects the elastic job scheduling problem to zeroth-order convex optimization

with bandit feedback and routing for network stability. Based on the connection, we proposed a

policy that achieves an order-optimal regret of �̃� (
√
𝑇) by simultaneously bounding the cumulative

utility difference and controlling the total queue length. The policy can also be interpreted as a

principled approach to enabling existing algorithms for zeroth-order convex optimization with

bandit feedback [22, 23] to handle parameterized unknown and stochastic constraints.

Although our policy achieves order-optimal regret with respect to the time-horizon𝑇 , its does not

scale well with the number of job classes, which is mainly due to the regret bound of the Stochastic

Convex Bandit Algorithm embedded in the policy, that has large dependence on the dimension of

the problem. While improving the regret dependence on dimension for general zeroth-order convex

optimization is a challenging problem and little progress has been made [23], special structural

properties of the elastic job scheduling problem, e.g., the separability of the objective function of P,

can be exploited to design policies with better dependence on dimension (number of job classes).

We leave this as an important direction for future research.

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 21

REFERENCES
[1] D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong. “Theory and practice in parallel job scheduling.”

inWorkshop on Job Scheduling Strategies for Parallel Processing, pp: 1-34, 1997.
[2] B. Berg, J.P. Dorsman, and M. Harchol-Balter. “Towards optimality in parallel job scheduling.” in Abstracts of the 2018

ACM International Conference on Measurement and Modeling of Computer Systems. 2018.

[3] D. Applegate and W. Cook. “A computational study of the job-shop scheduling problem.” in ORSA Journal on computing,
Vol. 3, No. 2, pp: 149-156, 1991.

[4] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. “Elastic scheduling for flexible workload management.” in IEEE
Transactions on Computers, Vol. 51, No. 3, pp: 289-302, 2002.

[5] T. Cheng, and C. Sin. “A state-of-the-art review of parallel-machine scheduling research.” in European Journal of
Operational Research, Vol. 47, No. 3, pp: 271-292, 1990.

[6] S. T. Maguluri, R. Srikant, and L. Ying. “Heavy traffic optimal resource allocation algorithms for cloud computing

clusters.” in Performance Evaluation, Vol. 81, pp: 20-39, 2014.
[7] S. T. Maguluri, R. Srikant, and L. Ying. “Stochastic models of load balancing and scheduling in cloud computing clusters.”

in Proceedings of IEEE Infocom, pp: 702-710, 2012.

[8] A. Wierman and M. Nuyens. “Scheduling despite inexact job-size information.” in Proceedings of the ACM SIGMETRICS,
2008.

[9] S. T. Maguluri and R. Srikant. “Scheduling jobs with unknown duration in clouds.”in IEEE/ACM Transactions On
Networking, Vol. 22, No. 6, pp: 1938-1951, 2013.

[10] Y. Zheng, B. Ji, N. Shroff, and P. Sinha. “Forget the deadline: Scheduling interactive applications in data centers.” in

IEEE International Conference on Cloud Computing, pp: 293-300, 2015.
[11] Z. Zheng, N. Shroff. “Online multi-resource allocation for deadline sensitive jobs with partial values in the cloud.” in

IEEE INFOCOM, pp: 1-9, 2016.

[12] Y. Bao, Y. Peng, C. Wu, and Z. Li. “Online job scheduling in distributed machine learning clusters." in IEEE INFOCOM,

pp: 495-503, 2018.

[13] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. “Optimus: an efficient dynamic resource scheduler for deep learning

clusters.” in Proceedings of the Thirteenth EuroSys Conference, pp: 1-14, 2018.
[14] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons. “Proteus: agile ml elasticity through tiered reliability

in dynamic resource markets.” in Proceedings of the Twelfth European Conference on Computer Systems, pp: 589-604,
2017.

[15] A. Or, H. Zhang, and M. Freedman. “Resource elasticity in distributed deep learning.” in Proceedings of Machine Learning
and Systems, Vol. 2, pp: 400-411, 2020.

[16] H. Zhang, L. Stafman, A. Or, and M. Freedman. “Slaq: quality-driven scheduling for distributed machine learning.” in

Proceedings of the Symposium on Cloud Computing, pp: 390-404. 2017.
[17] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and F. Yang. “Analysis of large-scale multi-tenant GPU

clusters for DNN training workloads.” in USENIX Annual Technical Conference, pp: 947-960, 2019.
[18] M. Anzanello, and F. Fogliatto. “Learning curve models and applications: Literature review and research directions.” in

International Journal of Industrial Ergonomics, Vol. 41, No. 5, pp: 573-583, 2011.
[19] A. Klein, S. Falkner, J. Springenberg, and F. Hutter. “Learning curve prediction with Bayesian neural networks.” 2016.

[20] H. Yu, Hao, M. Neely, and X. Wei. “Online convex optimization with stochastic constraints.” in Advances in Neural
Information Processing Systems, 2017.

[21] X. Cao, and KJ. Liu. “Online convex optimization with time-varying constraints and bandit feedback.” in IEEE Transac-
tions on Automatic Control, Vol. 64, No. 7, pp: 2665-2680, 2017.

[22] A. Agarwal, D. P. Foster, D. Hsu, S. M. Kakade, and A. Rakhlin. “Stochastic convex optimization with bandit feedback.”

in SIAM Journal on Optimization, Vol. 23, No. 1, pp: 213-240, 2013.
[23] T. Liang, H. Narayanan, and A. Rakhlin. “On zeroth-order stochastic convex optimization via random walks.” arXiv

preprint arXiv:1402.2667 (2014).

[24] A. Nemirovsky, D. Yudin, “Problem complexity and method efficiency in optimization”, 1983.

[25] Y.Wang, S. Du, S. Balakrishnan, and A. Singh. “Stochastic zeroth-order optimization in high dimensions.” in International
Conference on Artificial Intelligence and Statistics, pp: 1356-1365, 2018.

[26] V. Dani, T. P. Hayes, and S. M. Kakade. “Stochastic linear optimization under bandit feedback.” 2008.

[27] O. Shamir, “On the complexity of bandit and derivative-free stochastic convex optimization.’ in Conference on Learning
Theory, pp: 3-24, 2013.

[28] A. D. Flaxman, A. T. Kalai, H. B. McMahan, “Online convex optimization in the bandit setting: gradient descent without

a gradient” arXiv preprint cs/0408007, 2004.

[29] T. Chen and G. B. Giannakis. “Bandit convex optimization for scalable and dynamic IoT management.” in IEEE Internet
of Things Journal, Vol. 6, No. 1, pp: 1276-1286, 2018.

, Vol. 1, No. 1, Article . Publication date: June 2022.

22

[30] S. Yang and M. Mohri. “Optimistic bandit convex optimization.” in Advances in Neural Information Processing Systems,
pp: 2297-2305, 2016.

[31] E. Hazan and K. Levy. “Bandit convex optimization: Towards tight bounds.” in Advances in Neural Information Processing
Systems, Vol. 27, pp: 784-792, 2014.

[32] A. Badanidiyuru, R. Kleinberg, A. Slivkins, “Bandits with knapsacks.” in IEEE Annual Symposium on Foundations of
Computer Science, pp: 207-216, 2013.

[33] S. Agrawal and N. R. Devanur. “Bandits with concave rewards and convex knapsacks.” in Proceedings of the ACM
Conference on Economics and Computation, pp: 989-1006. 2014.

[34] S. Agrawal and N. R. Devanur. “Linear contextual bandits with knapsacks.” in Advances in Neural Information Processing
Systems, pp: 3450-3458, 2016.

[35] T. Jaksch, R. Ortner, and P. Auer. “Near-optimal Regret Bounds for Reinforcement Learning.” in Journal of Machine
Learning Research, Vol. 11, No. 4, 2010.

[36] I. Osband, D. Russo, and B. Van Roy. “(More) Efficient Reinforcement Learning via Posterior Sampling.” in Advances in
Neural Information Processing Systems, 2013.

[37] I. Osband, and B. Van Roy. “Model-based reinforcement learning and the eluder dimension.” in Proceedings of the 27th
International Conference on Neural Information Processing Systems, Vol. 1, pp. 1466-1474, 2014.

[38] K. Asadi, D. Misra, and M. Littman. “Lipschitz continuity in model-based reinforcement learning.” in International
Conference on Machine Learning, pp. 264-273, 2018.

[39] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. “Is Q-learning provably efficient?." in Proceedings of the 32nd
International Conference on Neural Information Processing Systems, pp. 4868-4878. 2018.

[40] X. Fu and E. Modiano. “Learning-NUM: Network Utility Maximization with Unknown Utility Functions and Queueing

Delay.” arXiv preprint arXiv:2012.09222 (2020).

[41] S. H. Low and D. E. Lapsley. “Optimization flow control. I. Basic algorithm and convergence.” in IEEE/ACM Transactions
on Networking, Vol. 7, No. 6, pp: 861-874, 1999.

[42] D. Palomar and M. Chiang. “Alternative distributed algorithms for network utility maximization: Framework and

applications.” in IEEE Transactions on Automatic Control, Vol. 52, No.12, pp: 2254-2269, 2007.
[43] X. Lin and N. B. Shroff. “Utility maximization for communication networks with multipath routing.” in IEEE Transactions

on Automatic Control, Vol. 51, No. 5, pp: 766-781, 2006.
[44] M. Neely, E. Modiano, and C. E. Rohrs. “Dynamic power allocation and routing for time varying wireless networks.” in

Proceedings of IEEE INFOCOM, 2003.

A PROOF OF THEOREMS AND PROPOSITIONS
A.1 Proof of Theorem 1

Proof. For any given policy, we first take weighted averages of the sizes of jobs of each class

under the policy over the realizations of the arrival processes. We will then show that the aver-

ages satisfy the constraints of P, and by the concavity of the underlying utility functions, the

corresponding value of the objective function is no less than the expected utility of the policy.

To facilitate the proof, we define the following optimization problem P ′
:

P ′
: max

{𝑟𝑘 },{𝑏𝑘𝑚 }

𝐾∑
𝑘=1

𝜆𝑘 𝑓𝑘 (
𝑟𝑘

𝜆𝑘
) (12)

s.t.
∑
𝑚

𝑏𝑘𝑚 = 𝑟𝑘 , ∀𝑘 (13)∑
𝑘

𝑏𝑘𝑚 ≤ 𝜇𝑚 ∀𝑚 (14)

𝑏𝑘𝑚 = 0, ∀𝑠𝑚 ∉ 𝑆𝑢𝑘 (15)

𝑏𝑘𝑚 ≥ 0, ∀𝑘,𝑚 (16)

0 ≤ 𝑟𝑘 ≤ 𝐵𝜆𝑘 ,∀𝑘. (17)

P ′
can be interpreted as an reformulation of P ′

where 𝑟𝑘 is the total load of class 𝑘 jobs (i.e., 𝜆𝑘𝑥𝑘)

and 𝑏𝑘𝑚 is the class 𝑘 load routed to server 𝑠𝑚 (i.e., 𝜆𝑘𝛼𝑘𝑚𝑥𝑘). The reason that we define such a

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 23

reformulation is that while P is convex over {𝑥𝑘 } as optimization variables but possibly non-convex

over {𝑥𝑘 } and {𝛼𝑘𝑚}, P ′
is convex over both {𝑟𝑘 } and {𝑏𝑘𝑚}.

We now argue thatP andP ′
are equivalent. For any feasible {𝑥}𝑘 solution toP, since (𝑥1, . . . , 𝑥𝐾) ∈

Λ, we have there exists {𝛼}𝑘𝑚 such that {𝑥}𝑘 , {𝛼}𝑘𝑚 satisfy the conditions of Λ. It follows that
we can construct a feasible solution to P ′

by setting 𝑟𝑘 = 𝜆𝑘𝑥𝑘 and 𝑏𝑘𝑚 = 𝛼𝑘𝑚𝑟𝑘 . Similarly, given

any feasible solution to P ′
, we can construct a corresponding feasible solution to P by setting

𝑥𝑘 = 𝑟𝑘/𝜆𝑘 . Thus, we establish the equivalence of P and P ′
.

Proceeding to the proof of Theorem 1, for an arbitrary 𝜋 ∈ Π∗
, consider a sample path 𝜔 of an

execution of 𝜋 . Let 𝑎𝑘 (𝑡, 𝜔) be the number of job arrivals of class 𝑘 at 𝑡 , 𝑐𝑚 (𝑡, 𝜔) be the realization of

the service rate of 𝑠𝑚 at 𝑡 on the sample path 𝜔 . Define 𝑁𝑘 (𝜔) :=
∑𝑇
𝑡=1

𝑎𝑘 (𝑡, 𝜔) be the total number

of class 𝑘 jobs that arrived before 𝑇 , and 𝐶𝑚 (𝜔) :=
∑𝑇
𝑡=1
𝑐𝑚 (𝑡, 𝜔) be the total offered service of

server𝑚. Further, we define 𝑥𝑘 (𝜔) to be the average (over all arrived jobs of class 𝑘) amount of

service that class 𝑘-jobs received before 𝑇 . Note that 𝑥𝑘 (𝜔) here is the average of received service

rather than job-size decision made by the policy. For a job that is finished before 𝑇 , its received

service is equal to the its job size, otherwise its received service is smaller than its size determined

by the policy. Let𝑈 (𝜋,𝑇 , 𝜔) be the utility achieved under policy 𝜋 under sample path𝜔 . By Jensen’s

inequality, we have𝑈 (𝜋,𝑇 , 𝜔) ≤ ∑𝐾
𝑘=1

𝑁𝑘 (𝜔) 𝑓𝑘 (𝑥𝑘 (𝜔)).
For each 𝑘 , define 𝑥𝑘 :=

∑
𝜔 𝑝 (𝜔)𝑁𝑘 (𝜔)𝑥𝑘 (𝜔)/

∑
𝜔′ 𝑝 (𝜔 ′)𝑁𝑘 (𝜔 ′) with 𝑝 (𝜔) being the probability

mass of 𝜔 .9 We claim that (𝑥1, . . . , 𝑥𝐾) is a feasible solution to P. Indeed, for each sample path

𝜔 , define 𝑟𝑘 (𝜔) :=
𝑁𝑘 (𝜔)𝑥𝑘 (𝜔)

𝑇
and 𝑐𝑚 (𝜔) :=

𝐶𝑚 (𝜔)
𝑇

. It follows from the physical constraints of

the network that there exists {𝑏𝑘𝑚 (𝜔)} such that

∑
𝑚 𝑏𝑘𝑚 (𝜔) = 𝑟𝑘 (𝜔) for all 𝑘 and

∑
𝑘 𝑏𝑘𝑚 (𝜔) ≤

𝑐𝑚 (𝜔) for all𝑚. Also, {𝑏𝑘𝑚 (𝜔)} satisfy (14) and (15). Hence, setting 𝑟𝑘 :=
∑
𝜔 𝑝 (𝜔)𝑟𝑘 (𝜔), 𝑏𝑘𝑚 :=∑

𝜔 𝑝 (𝜔)𝑏𝑘𝑚 (𝜔) and noting that by definition 𝑐𝑚 =
∑
𝜔 𝑝 (𝜔)𝑐𝑚 (𝜔), we have {𝑟𝑘 }, {𝑏𝑘𝑚} is a

feasible solution to P ′
. Therefore, (𝑥1, . . . , 𝑥𝐾) with 𝑥𝑘 =

𝑟𝑘
𝜆𝑘

is feasible to P. The claim follows

from the fact that 𝑇𝜆𝑘 =
∑
𝜔 𝑝 (𝜔)𝑁𝑘 (𝜔).

Finally, we complete the proof by establishing that

∑
𝜔 𝑈 (𝜋,𝑇 , 𝜔) ≤ ∑𝐾

𝑘=1
𝑇𝜆𝑘 𝑓𝑘 (𝑥𝑘). The theo-

rem will then follow from the feasibility of (𝑥1, . . . , 𝑥𝐾). Indeed, we use 𝑇𝜆𝑘 =
∑
𝜔 𝑝 (𝜔)𝑁𝑘 (𝜔) and

have, ∑
𝜔

𝑝 (𝜔)𝑈 (𝜋,𝑇 , 𝜔) ≤
𝐾∑
𝑘=1

∑
𝜔

𝑝 (𝜔)𝑁𝑘 (𝜔) 𝑓𝑘 (𝑥𝑘 (𝜔))

=

𝐾∑
𝑘=1

𝑇𝜆𝑘

∑
𝜔 𝑝 (𝜔)𝑁𝑘 (𝜔) 𝑓𝑘 (𝑥𝑘 (𝜔))∑

𝜔′ 𝑝 (𝜔 ′)𝑁𝑘 (𝜔 ′) ≤
𝐾∑
𝑘=1

𝑇𝜆𝑘 𝑓𝑘 (𝑥𝑘),

where the last inequality follows from Jensen’s inequality. □

A.2 Proof of Proposition 3
Proof. The proof of Proposition 3 essentially follows from the same analysis as Theorem 1 of

[22]. Since results of [22] are not the contribution of this paper, we do not reiterate the analysis

here but instead present the main idea behind the proof of Theorem 1 of [22] and demonstrate how

it can be applied to prove Proposition 3.

The proof of Theorem 1 of [22] consists mainly of a probability argument and a geometry argu-

ment. The probability argument establishes that each confidence interval constructed throughout

the algorithm contains the true value with probability 1 − 1/𝑇 2
. In the original setting of [22], the

argument holds since for each query, the algorithm receives a noisy but unbiased observation of

the function value with the noise being a zero-mean 𝜎-sub-Gaussian random variable. Applying

9
For ease of notation, we assume 𝜔 lies in a discrete set.

, Vol. 1, No. 1, Article . Publication date: June 2022.

24

the union bound, it follows that all the confidence intervals contain the true value with probability

1 − 1/𝑇 . Since an error probability of 1/𝑇 does not affect the order of expected regret, based on the

probability argument, the analysis can be carried on in a deterministic fashion assuming that all the

confidence intervals contain the true value. Next, the geometry argument (c.f. the one dimensional

special case in Section 4) establishes that: (i). the optimal point is always contained in the target

region and never eliminated, and (ii). the elimination procedure shrinks the target region fast

enough so that the query points (Step 2(a)), which always lie in the target region, approach the

optimal point quickly and the regret accumulated through the queries can be bounded by �̃� (
√
𝑇).

Note that the geometry argument holds as long as the confidence intervals used by the algorithms

have widths bounded by the parameter 𝛾𝑖 (c.f. Step 2) and contain the true function value.

Now, if we plug in a qualified procedure to SCBA, the probability argument holds by taking

𝛿 in Definition 2 as 1/𝑇 2
. The procedure constructs confidence intervals that satisfies the width

requirement by setting the parameter 𝛾 in Definition 2 as the desirable width value (𝛾𝑖) throughout

the execution of the algorithm. Thus, the geometry argument also holds. It follows that, even

without unbiased observations, a qualified procedure in conjunction with the Stochastic Convex

Bandit Algorithm has the regret guarantee, which proves Proposition 3. □

A.3 Proof of Regret Bound of E-CI-JSQ
In this section, we prove the regret bound of the episodic CI-JSQ policy, which is formally summa-

rized in the following theorem.

Theorem 5. Let 𝜋𝐸−𝐶𝐼−𝐽 𝑆𝑄 denote the E-CI-JSQ policy. 𝑅(𝜋𝐸−𝐶𝐼−𝐽 𝑆𝑄) = �̃� (
√
𝐾𝐵𝑇) = �̃� (

√
𝑇).

Proof. We index the episodes with 𝑒 = 1, . . . , ⌊𝑇 /(𝐾𝐵)⌋ and denote the job-size vector in

episode 𝑒 as 𝒙 (𝑒). We first claim that the job-size decision sequence at each episode 𝒙 (𝑒), 𝑒 =

1, . . . , ⌊𝑇 /(𝐾𝐵)⌋, is equivalent to the query sequence output by SCBA (with horizon ⌊𝑇 /(𝐾𝐵)⌋) in
conjunction with the confidence interval construction procedure (Algorithm 1). Indeed, for the

SCBA and the confidence interval construction procedure to work at an episodic level, for each

episode 𝑒 , we need the set of query observations { ˆ𝑓𝑘 (𝑥𝑘 (𝑒)), 𝑎𝑘 (𝑒), 𝑐𝑚 (𝑒)} corresponding to 𝒙 (𝑒) to
be available by the start of the next episode 𝑒 + 1. {𝑎𝑘 (𝑒)} ({𝑐𝑚 (𝑒)}) correspond to realized arrivals

(services) for each class (server) and can be taken as the realizations of any time slot during the

episode. The utility observations { ˆ𝑓𝑘 (𝑥𝑘 (𝑒))} may not be available right after the job-size decisions

are made because of the feedback delay. However, since we designate the first job of each class at

the beginning of each episode as a sampling job and the sampling jobs receive priority services, the

queueing delay experienced by the sampling jobs are only caused by other sampling jobs in the

queue. As each job has size at most 𝐵, there are 𝐾 sampling jobs in each episode, and the realized

service of each server is lower bounded by 1, with probability one, all the sampling jobs of one

episode finish execution in 𝐾𝐵 time (the length of an episode). It follows that we receive the utility

observations of the sampling jobs, i.e., { ˆ𝑓𝑘 (𝑥𝑘 (𝑒))} by the end of the episode 𝑒 . Therefore, the set

of query observations { ˆ𝑓𝑘 (𝑥𝑘 (𝑒)), 𝑎𝑘 (𝑒), 𝑐𝑚 (𝑒)} is available to SCBA and the confidence interval

construction procedure before computing 𝒙 (𝑒 + 1). Hence, the job-size decision sequence at the

episode level is equivalent to the query sequence computed by SCBA (with horizon ⌊𝑇 /(𝐾𝐵)⌋) in
conjunction with Algorithm 1.

Using Propositions 3 and 4, we have

∑ ⌊𝑇 /(𝐾𝐵) ⌋
𝑒=1

𝐹 (𝒙∗) − 𝐹 (𝒙 (𝑒)) = �̃� (
√
𝑇 /(𝐾𝐵)) both in expecta-

tion and with probability at least 1 − ⌊𝑇 /(𝐾𝐵)⌋. Since the job-size decision remains unchanged

during each episode, for E-CI-JSQ,

∑𝑇
𝑡=1

𝐹 (𝒙∗) − 𝐹 (𝒙 (𝑡)) = 𝐾𝐵�̃� (
√
𝑇 /(𝐾𝐵)) = �̃� (

√
𝐾𝐵𝑇) = �̃� (

√
𝑇).

Therefore, we can carry out the same analysis as in Theorems 2 and 3, and show that the regret of

the E-CI-JSQ policy is also in �̃� (
√
𝑇).

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 25

□

B PROOF OF LEMMAS
B.1 Proof of Lemma 1

Proof. We show the first part of the lemma. The second part follows immediately from the first

part since 𝐹 is the sum of concave utility functions minus 𝐶 (𝐿 + 1) times Δ. Consider any 𝒙 , 𝒚, we
will show that for any 0 ≤ 𝑝 ≤ 1, 𝑝Δ(𝒙,Λ) + (1− 𝑝)Δ(𝒚,Λ) ≥ Δ(𝑝𝒙 + (1− 𝑝)𝒚,Λ). As Λ is a closed

convex set, there exists 𝒛1, 𝒛2 such that Δ(𝒙,Λ) = | |𝒙 − 𝒛1 | |1 and Δ(𝒚,Λ) = | |𝒚 − 𝒛2 | |1. Then, using
the convexity of 𝑙1 norm, we have

𝑝Δ(𝒙,Λ) + (1 − 𝑝)Δ(𝒚,Λ) = 𝑝 | |𝒙 − 𝒛1 | |1 + (1 − 𝑝) | |𝒚 − 𝒛2 | |1 ≥ ||𝑝𝒙 + (1 − 𝑝)𝒚 − 𝑝𝒛1 − (1 − 𝑝)𝒛2 | |1.

Also, 𝒛 = 𝑝𝒛1 + (1 − 𝑝)𝒛2 ∈ Λ. It follows from the definition of Δ that

𝑝Δ(𝒙,Λ) + (1 − 𝑝)Δ(𝒚,Λ) ≥ ||𝑝𝒙 + (1 − 𝑝)𝒚 − 𝑝𝒛1 − (1 − 𝑝)𝒛2 | |1 ≥ Δ(𝑝𝒙 + (1 − 𝑝)𝒚,Λ).

□

B.2 Proof of Lemma 2
Proof. Again, we prove the first part of the lemma, and the second part follows from the first

by definition. Consider two vectors 𝒙 and 𝒚, w.l.o.g., assume Δ(𝒙,Λ) ≥ Δ(𝒚,Λ). As Λ is a closed

convex set, there exists 𝒙 ′
, 𝒚′

such that | |𝒙 − 𝒙 ′ | |1 = Δ(𝒙,Λ) and | |𝒚 −𝒚′ | |1 = Δ(𝒚,Λ). We have

Δ(𝒙,Λ) − Δ(𝒚,Λ) = | |𝒙 − 𝒙 ′ | |1 − ||𝒚 −𝒚′ | |1
≤ ||𝒙 −𝒚′ | |1 − ||𝒚 −𝒚′ | |1 (18)

≤ ||𝒙 −𝒚 | |1 ≤
√
𝐾 | |𝒙 −𝒚 | |, (19)

where Inequality (18) follows from the definition of Δ(·,Λ) and Inequality (19) follows from Cauchy-

Schwarz inequality. Therefore, the function Δ(·,Λ) is
√
𝐾-Lipschitz Continuous (with respect to

the Euclidean norm). □

B.3 Proof of Lemma 3
Proof. By Lemma 1, Δ is a convex function. It follows that the objective function of

˜P is concave.

As the constraint ∀𝑘, 𝑥𝑘 ∈ [0, 𝐵] is easily seen to be convex, it follows that
˜P is a convex problem.

We now proceed to prove that P and 𝑃 have the same set of optimal solutions. Let �̃�∗
be an

optimal solution to
˜P. We first show that �̃�∗ ∈ Λ. For the sake of contradiction, if �̃�∗ ∉ Λ, i.e.,

Δ(�̃�∗,Λ) > 0, then there exists 𝒙 ′ ≠ �̃�∗
such that 𝒙 ∈ Λ and | |�̃�∗ − 𝒙 | | = Δ(�̃�∗,Λ). As each 𝑓𝑘 is

monotonically non-decreasing and 𝐿-Lipschitz continuous, we have

𝐾∑
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥∗𝑘) −
𝐾∑
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥𝑘) ≤
∑

𝑘 :�̃�∗
𝑘
≥𝑥𝑘

𝜆𝑘𝐿 |𝑥∗𝑘 − 𝑥𝑘 |

≤ 𝐶𝐿
∑

𝑘 :�̃�∗
𝑘
≥𝑥𝑘

|𝑥∗
𝑘
− 𝑥𝑘 |

≤ 𝐶𝐿 | |�̃�∗ − 𝒙 | |1
< 𝐶 (𝐿 + 1)Δ(�̃�∗,Λ). (20)

, Vol. 1, No. 1, Article . Publication date: June 2022.

26

It follows from (20) that

𝐾∑
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥𝑘) −𝐶 (𝐿 + 1)Δ(𝒙,Λ) >
𝐾∑
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥∗𝑘) −𝐶 (𝐿 + 1)Δ(𝑥∗,Λ),

which contradicts that �̃�∗
is optimal for

˜P. Therefore, �̃�∗ ∈ Λ, which implies that Δ(�̃�∗,Λ) = 0.

It follows that 𝐹 (�̃�∗) = ∑𝐾
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥∗𝑘). We now claim that �̃�∗
is also optimal for P. Indeed, if not,

then there exists 𝒙 ∈ Λ such that

∑𝐾
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥𝑘) >
∑𝐾
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥∗𝑘). As Δ(𝒙,Λ), this implies that

𝐹 (𝒙) > 𝐹 (�̃�∗), which again contradicts that �̃�∗
is optimal for

˜P.

On the other hand, as we have established that any optimal solution �̃�∗
to

˜P must satisfy

Δ(�̃�∗,Λ) = 0, which means that it is also feasible for P. Therefore, an optimal solution to P must

also be optimal for
˜P. We thereby establish the equivalence between optimal solutions of

˜P and

P. □

B.4 Proof of Lemma 4
Proof. We need to show that

𝑈𝐵𝒙 − 𝐿𝐵𝒙 =

𝐾∑
𝑘=1

[𝜆𝑈
𝑘
𝑓 𝑈
𝑘
(𝑥𝑘) − 𝜆𝐿𝑘 𝑓

𝐿
𝑘
(𝑥𝑘)] +𝐶 (𝐿 + 1)

(
Δ(𝒙,𝝀𝑈 , 𝝁𝐿)) − Δ(𝒙,𝝀𝐿, 𝝁𝑈)

)
≤ 𝐷𝛾.

For the first component, we have

𝜆𝑈
𝑘
𝑓 𝑈
𝑘
(𝑥𝑘) − 𝜆𝐿𝑘 𝑓

𝐿
𝑘
(𝑥𝑘)

=(¯𝜆𝑘 +
𝛾

2

) (¯𝑓𝑘 (𝑥𝑘) +
𝛾

2

) − (¯𝜆𝑘 −
𝛾

2

) (¯𝑓𝑘 (𝑥𝑘) −
𝛾

2

)

=𝛾 (¯𝑓𝑘 (𝑥𝑘) + ¯𝜆𝑘 +
𝛾

4

) ≤ 3𝐶𝛾,

where in the last inequality we have used that all the observations lie in the interval [0,𝐶] and
𝛾 ≤ 𝐶 , which is an implicit upper bound on 𝛾 since we have restricted the lower and upper estimates

to be in [0,𝐶].
For the second component, for fixed 𝝁, consider 𝝀 = (𝜆1, . . . , 𝜆𝐾) and 𝝀′ = (𝜆′

1
, . . . , 𝜆′

𝐾
) where

𝝀 and 𝝀′
only differ at the 𝑘-th component with 𝜆′

𝑘
> 𝜆𝑘 . Then for any 𝒙 in the capacity region

corresponding to 𝝀, we construct 𝒙 ′
such that 𝒙 ′

only differ with 𝒙 at the 𝑘-th component and

𝑥 ′
𝑘
= [𝑥𝑘 − 𝐵(𝜆′𝑘 − 𝜆𝑘)/𝜆𝑘]

+
. From the structure of the capacity region, it is easy to see that 𝒙 ′ ∈ Λ

and | |𝒙−𝒙 ′ | |1 ≤ 𝐵(𝜆′
𝑘
−𝜆𝑘)/𝜆𝑘 ≤ 𝐵(𝜆′

𝑘
−𝜆𝑘). It follows that for fixed 𝒙, 𝝁, Δ(𝒙,𝝀′, 𝝁) −Δ(𝒙,𝝀, 𝝁) ≤

𝐵(𝜆′
𝑘
−𝜆𝑘). Using a similar argument, we can show that for fixed𝝀, consider two different service rate

vectors 𝝁 = (𝜇1, . . . , 𝜇𝐾) and 𝝁 ′ = (𝜇 ′
1
, . . . , 𝜇 ′

𝐾
) that only differ at the 𝑘-th component with 𝜇 ′

𝑘
> 𝜇𝑘 ,

Δ(𝒙,𝝀, 𝝁) − Δ(𝒙,𝝀, 𝝁 ′) ≤ 𝐵(𝜇 ′
𝑘
− 𝜇𝑘). It follows that Δ(𝒙,𝝀𝑈 , 𝝁𝐿)) − Δ(𝒙,𝝀𝐿, 𝝁𝑈) ≤ (𝐾𝐵 +𝑀)𝛾 .

Combine the two parts, we have

𝑈𝐵𝒙 − 𝐿𝐵𝒙 ≤ 3𝐶𝐾𝛾 +𝐶 (𝐿 + 1) (𝐾𝐵 +𝑀)𝛾 = 𝐷𝛾. □

□

B.5 Proof of Lemma 5
Proof. We note that

∑𝐾
𝑘
𝜆𝑘 𝑓𝑘 (𝑥𝑘) increases component-wise with 𝝀. Also, from the definition

of Λ, for a fixed 𝒙 , the function Δ(𝒙,𝝀, 𝝁) decreases component-wise with 𝝀 while increases

component-wise with 𝝁. Therefore, we have if for all 𝑘 , 𝑓𝑘 (𝑥𝑘) ∈ [𝑓 𝐿
𝑘
(𝑥𝑘), 𝑓 𝑈𝑘 (𝑥𝑘)], 𝜆𝑘 ∈ [𝜆𝐿

𝑘
, 𝜆𝑈
𝑘
]

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 27

and for all𝑚, 𝜇𝑚 ∈ [𝜇𝐿𝑚, 𝜇𝑈𝑚],

𝐿𝐵𝒙 =

𝐾∑
𝑘=1

𝜆𝐿
𝑘
𝑓 𝐿
𝑘
(𝑥𝑘) −𝐶 (𝐿 + 1)Δ(𝒙,𝝀𝑈 , 𝝁𝐿)

≤ 𝐹 (𝒙) =
𝐾∑
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥𝑘) −𝐶 (𝐿 + 1)Δ(𝒙,𝝀, 𝝁)

≤ 𝑈𝐵𝒙 =

𝐾∑
𝑘=1

𝜆𝑈
𝑘
𝑓 𝑈
𝑘
(𝑥𝑘) −𝐶 (𝐿 + 1)Δ(𝒙,𝝀𝐿, 𝝁𝑈). □

□

B.6 Proof of Lemma 7
Proof. For each 𝑡 , let 𝒙 ′(𝑡) be the projection of 𝒙 (𝑡) onto Λ with respect to 𝑙1-norm, i.e., | |𝒙 (𝑡) −

𝒙 ′(𝑡) | |1 = Δ(𝒙 (𝑡),Λ) and 𝒙 ′(𝑡) ∈ Λ. Since 𝒙 ′(𝑡) is feasible to P while 𝒙∗
is the optimal solution to

P, we have for each 𝑡 ,
∑𝐾
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥∗𝑘) ≥
∑𝐾
𝑘=1

𝜆𝑘 𝑓𝑘 (𝑥 ′𝑘 (𝑡)) . Then, again, starting from (7), we have

𝑇∑
𝑡=1

𝐹 (𝒙∗) − 𝐹 (𝒙 (𝑡)) (21)

=

𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝜆𝑘 [𝑓𝑘 (𝑥∗𝑘) − 𝑓𝑘 (𝑥𝑘 (𝑡))] +𝐶 (𝐿 + 1)
𝑇∑
𝑡=1

Δ(𝒙 (𝑡),Λ)

≥
𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝜆𝑘 [𝑓𝑘 (𝑥 ′𝑘 (𝑡)) − 𝑓𝑘 (𝑥𝑘 (𝑡))] +𝐶 (𝐿 + 1)
𝑇∑
𝑡=1

Δ(𝒙 (𝑡),Λ)

≥
𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝜆𝑘∇𝑓𝑘 (𝑥 ′𝑘 (𝑡)) [𝑥
′
𝑘
(𝑡) − 𝑥𝑘 (𝑡)] +𝐶 (𝐿 + 1)

𝑇∑
𝑡=1

Δ(𝒙 (𝑡),Λ) (22)

≥ −
𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝜆𝑘𝐿 |𝑥 ′𝑘 (𝑡) − 𝑥𝑘 (𝑡) | +𝐶 (𝐿 + 1)
𝑇∑
𝑡=1

Δ(𝒙 (𝑡),Λ) (23)

≥ −𝐶𝐿
𝑇∑
𝑡=1

Δ(𝒙 (𝑡),Λ) +𝐶 (𝐿 + 1)
𝑇∑
𝑡=1

Δ(𝒙 (𝑡),Λ) (24)

= 𝐶

𝑇∑
𝑡=1

Δ(𝒙 (𝑡),Λ), (25)

where in (22), ∇𝑓𝑘 (𝑥 ′𝑘 (𝑡)) is a subgradient of 𝑓𝑘 at 𝑥
′
𝑘
(𝑡) and it follows from the concavity of 𝑓𝑘 , (23)

follows from the Lipschitz-continuity of 𝑓𝑘 (which implies that |∇𝑓𝑘 (𝑥 ′𝑘 (𝑡)) | ≤ 𝐿), and (24) follows

from the definition of 𝒙 ′
and that 𝜆𝑘 ≤ 𝐶 . Combining (25) with Lemma 6, we conclude the proof of

the lemma. □

B.7 Proof of Inequality (9)

1

2

| |𝑸 (𝑡 + 1) | |2 − 1

2

| |𝑸 (𝑡) | |2

, Vol. 1, No. 1, Article . Publication date: June 2022.

28

=

𝑀∑
𝑚=1

©«
𝑄𝑚 (𝑡) +

𝐾∑
𝑘=1

∑
𝑗 ∈𝐴𝑘 (𝑡)

1{𝑠 𝑗=𝑠𝑚 } · 𝑥 𝑗 (𝑡) − 𝑐𝑚 (𝑡)

+ª®®¬

2

−𝑄𝑚 (𝑡)2

≤
𝑀∑
𝑚=1

©«𝑄𝑚 (𝑡) +
𝐾∑
𝑘=1

∑
𝑗 ∈𝐴𝑘 (𝑡)

1{𝑠 𝑗=𝑠𝑚 } · 𝑥 𝑗 (𝑡) − 𝑐𝑚 (𝑡)ª®¬
2

−𝑄𝑚 (𝑡)2

=

𝑀∑
𝑚=1

©«𝑄𝑚 (𝑡) +
𝐾∑
𝑘=1

𝑎𝑘 (𝑡)𝛼 𝑗𝑠𝑞𝑘𝑚 (𝑡)𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡)ª®¬
2

−𝑄𝑚 (𝑡)2

≤
𝑀∑
𝑚=1

𝑄𝑚 (𝑡) ·

𝐾∑
𝑘=1

𝑎𝑘 (𝑡)𝛼 𝑗𝑠𝑞𝑘𝑚 (𝑡)𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡)
 +𝐶1.

B.8 Proof of Lemma 8
Let {𝛼𝑘𝑚} be any other routing variables that satisfy the constraints in the definition ofΛ. First, from
Line 5 of Algorithm 2, we have that the routing component of CI-JSQ minimizes the upper bound

of queue-length drift over all routing choices in the network scheduling and routing literature.

That is, under the CI-JSQ policy, for all 𝑡 and any routing variables {𝛼𝑘𝑚},
𝑀∑
𝑚=1

𝑄𝑚 (𝑡)

𝐾∑
𝑘=1

𝑎𝑘 (𝑡)𝛼 𝑗𝑠𝑞𝑘𝑚 (𝑡)𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡)
 ≤

𝑀∑
𝑚=1

𝑄𝑚 (𝑡)

𝐾∑
𝑘=1

𝑎𝑘 (𝑡)𝛼𝑘𝑚𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡)
 . (26)

Let �̃� (𝑡) ∈ Λ be the job-size vector such that | |𝒙 (𝑡) − �̃� (𝑡) | |1 = Δ(𝒙 (𝑡),Λ). As �̃� ∈ Λ, there exists
{𝛼𝑘𝑚} such that

∑𝐾
𝑘=1

𝜆𝑘𝛼𝑘𝑚𝑥𝑘 (𝑡) − 𝜇𝑚 ≤ 0 for all𝑚. Using (26), we have,

𝑀∑
𝑚=1

𝑄𝑚 (𝑡) ·

𝐾∑
𝑘=1

𝑎𝑘 (𝑡)𝛼 𝑗𝑠𝑞𝑘𝑚 (𝑡)𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡)
 +𝐶1

≤
𝑀∑
𝑚=1

𝑄𝑚 (𝑡) ·

𝐾∑
𝑘=1

𝑎𝑘 (𝑡)𝛼𝑘𝑚𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡)
 +𝐶1.

=

𝑀∑
𝑚=1

𝑄𝑚 (𝑡) ·

𝐾∑
𝑘=1

𝑎𝑘 (𝑡)𝛼𝑘𝑚𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡) + 𝑎𝑘 (𝑡)𝛼𝑘𝑚 (𝑥𝑘 (𝑡) − 𝑥𝑘 (𝑡))
 +𝐶1

=

𝑀∑
𝑚=1

𝑄𝑚 (𝑡) ·

𝐾∑
𝑘=1

𝑎𝑘 (𝑡)𝛼𝑘𝑚𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡)
 +

𝑀∑
𝑚=1

𝑄𝑚 (𝑡) ·

𝐾∑
𝑘=1

𝑎𝑘 (𝑡)𝛼𝑘𝑚 |𝑥𝑘 (𝑡) − 𝑥𝑘 (𝑡) |
 +𝐶1

≤
𝑀∑
𝑚=1

𝑄𝑚 (𝑡) ·
𝐶2Δ(𝒙 (𝑡),Λ) +

𝐾∑
𝑘=1

𝑎𝑘 (𝑡)𝛼𝑘𝑚𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡)
 +𝐶1, (27)

where 𝐶2 = 𝐾𝐶 is another constant independent of 𝑇 .

From (27), we can see that the upper bound on the drift is smaller than or equal to the prod-

uct of queue length and a term of

∑𝐾
𝑘=1

𝑎𝑘 (𝑡)𝛼𝑘𝑚𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡) and another involving the con-

straint violation Δ(𝒙 (𝑡),Λ). A cumulative upper bound on the latter term can be established from

Lemma 7. Invoking Lemma 7, we have that there exists a constant (independent of 𝑇) 𝐶3 such that

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 29∑𝑇
𝑡=1

Δ(𝒙 (𝑡),Λ) ≤ 𝐶3

√
𝑇 log𝑇 with probability at least 1 − 1/𝑇 . In the subsequent analysis, we can

thus focus on the set of sample paths where

∑𝑇
𝑡=1

Δ(𝒙 (𝑡),Λ) ≤ 𝐶3

√
𝑇 log𝑇 , as the remaining set

where the condition is not satisfied has probability at most 1/𝑇 . We next proceed to bound the

former term

∑𝐾
𝑘=1

𝑎𝑘 (𝑡)𝛼𝑘𝑚𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡). Let Δ̃(𝑡) :=
∑𝑀
𝑚=1

∑𝐾
𝑘=1

𝑎𝑘 (𝑡)𝛼𝑘𝑚𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡). Δ̃(𝑡) can
be considered as a stochastic version of the quantity

∑𝐾
𝑘=1

𝜆𝑘𝛼𝑘𝑚𝑥𝑘 (𝑡) − 𝜇𝑚 ≤ 0 which has been

shown to be less than or equal to zero. {Δ̃(𝑡)}𝑡=1,...,𝑇 is a stochastic process and we use {F𝑡 } to
denote its natural filtration. Note that the job sizes 𝑥𝑘 (𝑡) and 𝑥𝑘 (𝑡) are determined by information

up to 𝑡 − 1, and are thus F𝑡−1-measurable. While 𝑎𝑘 (𝑡)’s, 𝑐𝑚 (𝑡)’s are independent of F𝑡−1. Hence,

we have that

E[Δ̃(𝑡) | F𝑡−1] = E

𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝑎𝑘 (𝑡)𝛼𝑘𝑚𝑥𝑘 (𝑡) − 𝑐𝑚 (𝑡) | F𝑡−1

 =
𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝜆𝑘𝛼𝑘𝑚𝑥𝑘 (𝑡) − 𝜇𝑚 ≤ 0.

Also, as 𝑎𝑘 (𝑡)’s, 𝑐𝑚 (𝑡)’s, 𝛼𝑘𝑚 , 𝑥𝑘 (𝑡) are all bounded, Δ̃(𝑡) is also bounded with probability 1. It

follows that 𝑆𝑡 :=
∑𝑡
𝜏=1

Δ̃(𝜏) is a super-martingale with bounded increment. Therefore, by Azuma-

Hoeffding Inequality, we have that with probability at least 1 − 1/𝑇 , 𝑆𝑡 ≤ 𝐶4

√
𝑇 log𝑇 for all

𝑡 = 1, . . . ,𝑇 for some constant 𝐶4 independent of 𝑇 . Thus, we can again restrict ourselves to the set

of sample paths on which both

∑𝑡
𝜏=1

Δ(𝒙 (𝜏),Λ) ≤ 𝐶3

√
𝑇 log𝑇 and

∑𝑡
𝜏=1

Δ̃(𝜏) ≤ 𝐶4

√
𝑇 log𝑇 for all

𝑡 = 1, . . . ,𝑇 .

C COMPUTATION ASPECT OF CI-JSQ
In this section, we show that for given 𝒙,𝝀, 𝝁, Δ(𝒙,𝝀, 𝝁) can be obtained by solving the following

linear program 𝐿𝑃Δ.

𝐿𝑃Δ : max

{𝑦𝑘 ,𝑏𝑘𝑚 }

𝐾∑
𝑘=1

𝑦𝑘 (28)

s.t.
∑
𝑚

𝑏𝑘𝑚 = 𝜆𝑘𝑦𝑘 , ∀𝑘 (29)∑
𝑘

𝑏𝑘𝑚 ≤ 𝜇𝑚 ∀𝑚 (30)

𝑏𝑘𝑚 = 0, ∀𝑠𝑚 ∉ 𝑆𝑢𝑘 (31)

𝑏𝑘𝑚 ≥ 0, ∀𝑘,𝑚 (32)

0 ≤ 𝑦𝑘 ≤ 𝑥𝑘 , ∀𝑘. (33)

Let {𝑦∗
𝑘
} (or 𝒚∗

) be the optimal solution to 𝐿𝑃Δ, the following proposition shows that we can

obtain the value of Δ(𝒙,𝝀, 𝝁) by solving 𝐿𝑃Δ.

Proposition 5. For given 𝒙,𝝀, 𝝁, Δ(𝒙,𝝀, 𝝁) = ∑𝐾
𝑘=1

(𝑥𝑘 − 𝑦∗𝑘).

Proof. Let Λ be the capacity region of the network with the network statistics being 𝝀, 𝝁. First,
if 𝒙 ∈ Λ, then from the definition, we see that the optimal solution to 𝐿𝑃Δ can be obtained by setting

𝑦∗
𝑘
= 𝑥𝑘 , 𝑏

∗
𝑘𝑚

= 𝛼𝑘𝑚𝜆𝑘𝑥𝑘 , where {𝛼𝑘𝑚} is a set of routing variables that makes the constraints of Λ

satisfied with 𝒙 . It follows that
∑𝐾
𝑘=1

(𝑥𝑘 − 𝑦∗𝑘) = Δ(𝒙,𝝀, 𝝁) = 0. If 𝒙 ∉ Λ. Let 𝒙 ′ ∈ Λ be a job-size

vector such that | |𝒙 − 𝒙 ′ | |1 = Δ(𝒙,𝝀, 𝝁). Note that by definition of Δ, 𝒙 ′
must satisfy 𝑥 ′

𝑘
≤ 𝑥𝑘 for

all 𝑘 , otherwise we can decrease some 𝑥 ′
𝑘
that violates this and obtain a 𝒙 ′

that still lies in Λ but

with a smaller 𝑙1-distance to 𝒙 . Hence, we have
∑𝐾
𝑘=1

𝑥 ′
𝑘
=
∑𝐾
𝑘=1

𝑥𝑘 − Δ(𝒙,𝝀, 𝝁). Note that 𝒙 ′ ∈ Λ,

, Vol. 1, No. 1, Article . Publication date: June 2022.

30

so we can define variables {𝛼𝑘𝑚} such that {𝛼 ′
𝑘𝑚

}, {𝑥 ′
𝑘
} satisfy the constraints of Λ. By setting

𝑏𝑘𝑚 = 𝛼 ′
𝑘𝑚
𝜆𝑘𝑥

′
𝑘
, we see that {𝑥 ′

𝑘
}, {𝑏𝑘𝑚} are feasible to 𝐿𝑃Δ. It follows that

𝐾∑
𝑘=1

(𝑥𝑘 − 𝑦∗𝑘) ≤
𝐾∑
𝑘=1

(𝑥𝑘 − 𝑥 ′𝑘) = | |𝒙 − 𝒙 ′ | |1Δ(𝒙,𝝀, 𝝁). (34)

On the other hand, as {𝑦∗
𝑘
} satisfies the constraints of 𝐿𝑃Δ, 𝒚∗ ∈ Λ (as manifested by setting

𝛼𝑘𝑚 = 𝑏𝑘𝑚/
∑
𝑚 𝑏𝑘𝑚) and | |𝒙 −𝒚∗ | |1 =

∑𝐾
𝑘=1

(𝑥𝑘 − 𝑦∗𝑘). Thus, from the definition of 𝒙 ′
, we have

| |𝒙 −𝒚∗ | |1 =
𝐾∑
𝑘=1

(𝑥𝑘 − 𝑦∗𝑘) ≤ ||𝒙 − 𝒙 ′ | |1 =
𝐾∑
𝑘=1

(𝑥𝑘 − 𝑥 ′𝑘) = Δ(𝒙,𝝀, 𝝁). (35)

Combining (34) and (35), we have Δ(𝒙,𝝀, 𝝁) = ∑𝐾
𝑘=1

(𝑥𝑘 − 𝑦∗𝑘). □

D WORKFLOWOF THE OPTIMIZATION COMPONENT OF CI-JSQ
In this section, we present the workflow of the optimization component of the CI-JSQ for the elastic

job scheduling algorithm using the one-dimensional case in Section 4.

Initially, at 𝑡 = 1, CI-JSQ starts with the target region (of the zeroth epoch of SCBA) [𝑙0, 𝑟0] = [0, 𝐵].
Then, it repeatedly executes the following steps:

(1) Let𝑤𝜏 = 𝑟𝜏 − 𝑙𝜏 . Set 𝑥𝑙 := 𝑙𝜏 + 𝑤𝜏

4
, 𝑥𝑐 := 𝑙𝜏 + 𝑤𝜏

2
, 𝑥𝑟 := 𝑙𝜏 + 3𝑤𝜏

4
.

(2) For 𝑖 = 1, . . .; 𝛾𝑖 = 1/2
𝑖
:

(a) Let 𝑡 be the current time slot. Set job-size decisions 𝑥 (𝑡 + 1) = . . . = 𝑥 (𝑡 + ⌈𝜎 log𝑇 2/𝛾2

𝑖 ⌉) as
𝑥𝑙 .

(b) Feed the query observations to Algorithm 1 and obtain confidence interval [𝐿𝐵𝑥𝑙 ,𝑈 𝐵𝑥𝑙]
for 𝑥𝑙 .

(c) Set job-size decisions 𝑥 (𝑡 + ⌈𝜎 log𝑇 2/𝛾2

𝑖 ⌉ + 1) = . . . = 𝑥 (𝑡 + 2⌈𝜎 log𝑇 2/𝛾2

𝑖 ⌉) as 𝑥𝑐 .
(d) Feed the query observations to Algorithm 1 and obtain confidence interval [𝐿𝐵𝑥𝑐 ,𝑈 𝐵𝑥𝑐]

for 𝑥𝑐 .

(e) Set the job-size decisions 𝑥 (𝑡 + 2⌈𝜎 log𝑇 2/𝛾2

𝑖 ⌉ + 1) = . . . = 𝑥 (𝑡 + 3⌈𝜎 log𝑇 2/𝛾2

𝑖 ⌉) as 𝑥𝑟 .
(f) Feed the query observations to Algorithm 1 and obtain confidence interval [𝐿𝐵𝑥𝑟 ,𝑈 𝐵𝑥𝑟]

for 𝑥𝑟 .

(g) If [𝐿𝐵𝑥𝑙 ,𝑈 𝐵𝑥𝑙] is 𝛾𝑖-separated with [𝐿𝐵𝑥𝑐 ,𝑈 𝐵𝑥𝑐] or [𝐿𝐵𝑥𝑟 ,𝑈 𝐵𝑥𝑟], eliminate [𝑙𝜏 , 𝑥𝑙] from
the target region (by setting 𝑙𝜏 to 𝑥𝑙) and proceed to the next epoch.

(h) If [𝐿𝐵𝑥𝑟 ,𝑈 𝐵𝑥𝑟] is 𝛾𝑖-separated with [𝐿𝐵𝑥𝑐 ,𝑈 𝐵𝑥𝑐] or [𝐿𝐵𝑥𝑙 ,𝑈 𝐵𝑥𝑙], eliminate [𝑥𝑟 , 𝑟𝜏] from
the target region (by setting 𝑟𝜏 to 𝑥𝑟) and proceed to the next epoch.

(i) Otherwise, increment 𝑖 and repeat step (2).

E GRADIENT SAMPLING MAXWEIGHT
We explain in more details how to apply the GSMW policy in [40] to the elastic job scheduling

problem. For simplicity of description of the policy, we assume that every time slot, there are at

least two job arrivals of each class and utility values are observable immediately after the injection

of jobs. The pseudo-code of the GSMW policy on our problem is shown in Algorithm 4.
The GSMW policy can be considered as a first-order primal dual algorithm that solves the

optimization problem P associated with the elastic job scheduling problem. The primal variables

are the job-sizes and GSMW uses (noisy) utility value observations to construct approximate

gradient of the utility functions (Line 6). The dual variables are the queue lengths and are updated

based on network dynamics. The authors in [40] analyzes the regret of GSMW when the utility

observations are noiseless and show that by setting 𝑉 = 𝑂 (
√
𝑇), 𝛼 = 𝑂 (𝑇), 𝛿 = 𝑂 (1/

√
𝑇), GSMW

, Vol. 1, No. 1, Article . Publication date: June 2022.

Elastic Job Scheduling with Unknown Utility Functions 31

Algorithm 4 The Gradient Sampling Max-Weight Policy

Input: Parameters 𝑉 , 𝛿, 𝛼

1: Initialize: 𝑥𝑘 (0) = 𝛿 .
2: for 𝑡 = 1, 2, . . . ,𝑇 do
3: for 𝑘 = 1, . . . , 𝐾 do
4: 𝑢𝑘 injects one job of size 𝑟𝑘 (𝑡) + 𝛿, another of size 𝑟𝑘 (𝑡) − 𝛿 , and all other jobs of size 𝑟𝑘 .

5: The designate server of class 𝑘 is chosen as 𝑠𝑘 (𝑡) ∈ arg min𝑠𝑚 ∈𝑆𝑢𝑘 𝑄𝑚 (𝑡).
6: Observe

ˆ𝑓𝑘 (𝑟𝑘 (𝑡) + 𝛿) and ˆ𝑓𝑘 (𝑟𝑘 (𝑡) − 𝛿) and compute
ˆ∇𝑓𝑘 (𝑥𝑘 (𝑡)) :=

𝑓𝑘 (𝑥𝑘 (𝑡)+𝛿)−𝑓𝑘 (𝑥𝑘 (𝑡)−𝛿)
2𝛿

7: Update queue lengths according to 𝒙 (𝑡) and the network dynamics.

8: for 𝑘 = 1, . . . , 𝐾 do
9: 𝑥𝑘 (𝑡 + 1) := P[𝛿,𝐵−𝛿]

[
𝑥𝑘 (𝑡) + 1

𝛼
(𝑉 · ˆ∇𝑓𝑘 (𝑥𝑘 (𝑡)) −𝑄𝑠𝑘 (𝑡) (𝑡))

]
achieves �̃� (

√
𝑇)-regret. However, when the utility observations are noisy, �̃� (

√
𝑇)-regret is no

longer achievable due to the variance of the approximate gradient
ˆ∇𝑓𝑘 (𝑥𝑘 (𝑡)). Following a similar

analysis in [40], it can be shown that the optimal parameter regime under noisy observations is

𝛼 = 𝑂 (𝑇),𝑉 = 𝑂 (
√
𝑇), 𝛿 = 𝑂 (𝑇 1/4) and GSMW achieves �̃� (𝑇 3/4)-regret.

, Vol. 1, No. 1, Article . Publication date: June 2022.

	Abstract
	1 Introduction
	2 Model and Problem Formulation
	2.1 System Model
	2.2 Problem Formulation

	3 General Upper Bound on the Regret
	3.1 Upper Bound on the Optimal Utility
	3.2 Lower Bound on the General Utility

	4 Preliminaries
	5 The Scheduling Policy
	5.1 The Optimization Component
	5.2 The Routing Component
	5.3 Performance Analysis
	5.4 Dealing with Feedback Delay

	6 Simulations
	6.1 Instantaneous Utility and Queue Length
	6.2 Regret Performance

	7 Related Works
	7.1 Zeroth-order/Bandit Convex Optimization
	7.2 Bandits with Knapsacks
	7.3 Reinforcement Learning
	7.4 Network Utility Maximization

	8 Conclusion
	References
	A Proof of Theorems and Propositions
	A.1 Proof of Theorem 1
	A.2 Proof of Proposition 3
	A.3 Proof of Regret Bound of E-CI-JSQ

	B Proof of Lemmas
	B.1 Proof of Lemma 1
	B.2 Proof of Lemma 2
	B.3 Proof of Lemma 3
	B.4 Proof of Lemma 4
	B.5 Proof of Lemma 5
	B.6 Proof of Lemma 7
	B.7 Proof of Inequality (9)
	B.8 Proof of Lemma 8

	C Computation Aspect of CI-JSQ
	D Workflow of the Optimization Component of CI-JSQ
	E Gradient Sampling Max Weight

