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ABSTRACT: Conventional human-driven methods face limita-
tions in designing complex functional metasurfaces. Inverse design
is poised to empower metasurface research by embracing fast-
growing artificial intelligence. In recent years, many research efforts
have been devoted to enriching inverse design principles and
applications. In this perspective, we review most commonly used
metasurface inverse design strategies including topology optimiza-
tion, evolutionary optimization, and machine learning techniques.
We elaborate on their concepts and working principles, as well as
examples of their implementations. We also discuss two emerging
research trends: scaling up inverse design for large-area aperiodic
metasurfaces and end-to-end inverse design that co-optimizes
photonic hardware and post-image processing. Furthermore,
recent demonstrations of inverse-designed metasurfaces showing great potential in real-world applications are highlighted. Finally,
we discuss challenges in future inverse design advancement, suggest potential research directions, and outlook opportunities for
implementing inverse design in nonlocal metasurfaces, reconfigurable metasurfaces, quantum optics, and nonlinear metasurfaces.
KEYWORDS: metasurfaces inverse design, topology optimization, evolutionary optimization, machine learning, large-scale optimization,
end-to-end optimization

■ INTRODUCTION
The success of metasurfaces in the past decade is driven by the
advancement of numerical simulation tools, material platforms,
and fabrication techniques.1−3 Metasurfaces exploited light-
matter interactions to engineer wavefront at subwavelength
resolution by using artificial meta-atoms. They not only unveil
the rich physics of electromagnetic waves but also enable
numerous functional devices that have technological implica-
tions, such as light detection and ranging (LiDAR),4 compact
spectrometers,5−7 advanced cameras,8−10 displays,11 virtual/
augmented reality systems,12,13 etc. The working principle of
metasurfaces is governed by Huygens’ principle:1 meta-atoms
act as scatters or truncated waveguides14,15 to generate
secondary wavelets that mutually interfere. Inspired by that,
most metasurface design so far utilizes a first-principle forward
strategy like “phase matching”. One needs to first deduce an
analytical solution of a targeted phase profile relying on
physical intuition and then seek to match it with a predefined
meta-library. Such a design strategy works well for a device
with simple functionality like a focusing lens for a single
wavelength. Unfortunately, in many cases one may face the
following situations where the conventional forward design is
less useful or even not applicable: the target phase profiles
cannot be numerically solved, the solutions cannot be satisfied

by a meta-library, the solutions are not unique, etc. As the
device functionality complexity, design constraints, and design
degrees of freedom scale up, the future success of metasurfaces
demands an innovation in design philosophy.
Inverse design emerges as a disruptive strategy to tackle the

bottlenecks of metasurface design.16−22 Fundamentally differ-
ent from forward design methods, inverse design is method
agnostic and aims to solve a physics problem by utilizing a
mathematical tool. It formulates the device functionality as an
objective function and performs an optimization task that can
be subject to constraints. There are many advantages when
using inverse design: First, it is well suitable for a metasurface
with complex functionality that cannot be solved analytically.
Second, it is method agnostic and does not need a priori
knowledge of physical principles. Third, it can be powered by
many advanced computational algorithms, especially the recent
blooming of artificial intelligence. Fourth, it allows searching in
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a full design space and finding nonintuitive solutions with
optimal performance. Fifth, it is a powerful tool for optimizing
multifunctional metasurfaces. It systematically searches for a
balance among intercoupled physical parameters, like phase vs
amplitude, and enables quantitative trade-offs between multi-
ple wavelength/polarization/depth/angle-dependent goals.
Cross-talks among multifunctionalities can also be considered
and minimized. More importantly, inverse design can help
unveil new physics phenomena and offer new physics insights.

■ METASURFACE INVERSE DESIGN METHODS
Topology Optimization. Topology optimization aims to

determine an optimal structural layout using a mathematical
tool. In the past decades, it has demonstrated success in solving

industrial problems ranging from designing stiffener ribs for
aircraft to lightweight mechanical parts for vehicles. Recently, it
became an important tool for nanophotonic inverse design.
A key feature of topology optimization (TO) is a large

degree of design freedoms that lead to nearly arbitrary shapes.
A typical TO formulation considers every pixel or voxel in the
design region as a design variable, often leading to 103−109

degrees of freedom. In particular, the design space is
discretized into pixels or voxels, each of which contains a
continuous design variable characterizing materials property.
For example, the design variable α for a binary dielectric
nanophotonic device can be related to the dielectric profile:

= +r r( ) ( ) ( )2 1 1

Figure 1. Metasurface inverse design based on topological optimization. (a) Schematic of a forward simulation to compute the change of electric
field due to material permittivity perturbation. (b) Schematic of an adjoint method to compute adjoint field that is driven by an artificial electric
dipole deduced from the forward simulation. (c) Scanning electron microscopy image of a meta-grating. Reprinted with permission from ref 29.
Copyright (2017) American Chemical Society. (d) Schematic of a diffractive element that splits the solar spectrum into two spectral bands
directing to separated partitions in the far field. Reprinted with permission from ref 31. Copyright (2016) American Chemical Society. (e)
Schematic of a multilayered 2D metalens concentrator that focuses oblique incidence to a single spot. Reprinted with permission from ref 33.
Copyright (2018) by the American Physical Society. (f) An inverse-designed 3D-printed polarization splitter working at 33 GHz. Reprinted with
permission from ref 35. Copyright (2018) The Author(s) https://creativecommons.org/licenses/by/4.0/. (g) Schematic of a device that realizes
broadband focusing and RGB spectral splitting depending on the direction of incident beam. Reprinted with permission from ref 36. Copyright
(2021) The Author(s) https://creativecommons.org/licenses/by/4.0/. (h) Schematic of a freeform meta-atom that exhibits angle-dependent shape
birefringence. Reprinted from ref 38. Copyright (2020) The Author(s), some rights reserved, exclusive AAAS. Distributed under a CC BY-NC 4.0
license https://creativecommons.org/licenses/by-nc/4.0/. (i) Schematic of a 2D metalens consisting of topologically optimized segments.
Reprinted with permission from ref 39. Copyright (2019) The Author(s) https://creativecommons.org/licenses/by/4.0/.
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where ε1 and ε2 denote the permittivity of two materials, r is
the spatial location, and α ∈ [0,1] is the design field. α(r)⃗ may
be initialized to a constant (a uniform state) or a random
distribution (a grayscale state). During optimization, perturba-
tive modifications are gradually added to α(r)⃗ iteratively until a
satisfactory solution is obtained. Meanwhile, a threshold
projection filter16,23−25 is applied to enforce the material
permittivity being either ε1 or ε2.
The possible solutions in a high-dimensional design space

are enormous, and gradients of the merit function with respect
to design variables are needed for efficient optimization
convergence. The gradients provide directional guidance to
the optimizer to improve the merit function. Fortunately, it is
possible to compute the gradient for each design variable
efficiently using an adjoint method. One only needs to perform
a forward simulation and an adjoint simulation to obtain all
gradients at once.26−28 Without losing generality, the merit
function can be written as F(E) = ∫ f(E(x)) d3x, where E(x) is
the vectorial electric field in the observation domain, and F is
the merit function. A perturbation in material permittivity ε
change at location x′ in the device domain induces polarization
pind(x′) = αVE(x′), where α denotes the polarizability, and V is
the volume of perturbation. The corresponding change in
merit function can be computed as δF = 2VRe[αE(x′)·EA(x′)],
where Re denotes real part, and EA(x′) is the field in the device
domain from the adjoint simulation using an artificial electric
dipole with amplitude ∂f/∂E(x) at the observation plane. For
example, the merit function of a single wavelength metalens
optimization can be formulated as = | |F E x( )1

2 0
2, where E(x0)

is the electric field at the design focal spot. The change F due
to the permittivity perturbation at x′ can be expressed as

= [ ]F E x G x x p xRe ( ) ( , ) ( )0 0
ind , where the overline denotes

complex conjugation, and G(x0,x′) is the Green’s function that
tells the electric field change at x0 due to dipole of unit
amplitude at x′ (i.e., δE(x0) = G(x0,x′)pind(x′) (Figure 1(a))).
Due to the symmetry of Green’s function and Lorentz
reciprocity, the merit function change can be rearranged as

= [ ]F G x x E x p xRe ( , ) ( ) ( )0 0
ind , and the first term represents

the adjoint electric field at x′ by dipole with amplitude of E x( )0

(i.e., =E x G x x E x( ) ( , ) ( )A
0 0 (Figure 1(b))). This formula

indicates δF for every position x′ can be known by using only a
forward (Figure 1(a)) and an adjoint simulation (Figure
1(b)): δF = Re[EA(x′)pind(x′)].
An early application of topology optimization in nano-

photonics reshapes the design of dielectric waveguides and
photonic crystals.16 We refer the readers to comprehensive
reviews23−25 on topology optimization for a broad view. Here,
we focus on the recent implementation of topology
optimization in metasurface inverse design. One of the earliest
examples of topology-optimized metasurface is demonstrated
by Sell et al.29 In this work (Figure 1(c)), the author showed a
meta-grating based on freeform geometries for beam
deflecting. The deflection efficiency is significantly larger
than conventional designs based on forward approaches
especially at high deflection angles. The inverse-designed
meta-device achieves ∼75% absolute deflection efficiency for
both TE and TM polarizations at a wavelength of 1050 nm.
The metasurface supported multiple Bloch modes, which were
engineered in a nonintuitive way by topology optimization.
Similarly, Xu et al. demonstrated a catenary-like metasurface

using topology optimization for wide-angle and high-efficiency
deflection.30

The topology optimization enables multifunctional metasur-
face inverse design by formulating a composite objective
function. Xiao et al. demonstrated a diffractive spectral-splitter
that spatially separated the visible and near-infrared bands of
sunlight (Figure 1(d)).31 The inverse design objective function
is a sum of TVIS and TIR, which denote the averaged
transmission coefficient through subcells that collect visible
and infrared light, respectively. Sell et al. demonstrated a
multiwavelength meta-grating splitter using a discrete wave-
length-multiplexed objective function.32

Multilayered metasurfaces and even three-dimensional
metamaterials can be designed using topology optimization.
Lin et al. showed a topology optimized multilayered 2D
cylindrical metalens that corrects the off-axis aberration at a set
of discrete angles of incidence ranging from −20 degrees to 20
degrees (Figure 1(e)).33 In another work, a multilayered 2D
metalens concentrator that can focus light with 11 different
angles of incidence to a single focal spot was designed.34 Such
device functionality is barely possible by using a single-layered
metasurface. Callewaert et al. demonstrated an inverse-
designed 3D-printed meta-device that splits light depending
on polarization at microwave frequency (Figure 1(f)).35 A
reconfigurable 3D-printed meta-device has been demonstrated
by Ballew et al. by using topology optimization (Figure
1(g)).36 This device realizes RGB color sorting and focusing
by mechanical switching. In addition, Christiansen et al.
showed that the topology optimization can be even applied to
design multiscale multiwavelength metalenses.37 The authors
demonstrated a multilayered axi-symmetric metalens that has a
tunable focal length at a wavelength of 10 μm by changing the
material index and another device that focuses light at both
wavelengths of 1 and 10 μm.
There are significant advantages in using topology

optimization in metasurface design: First, it can find non-
intuitive device layouts that are not accessible by traditional
forward methods, Second, it can help explore nonintuitive new
device physics. For example, Shi et al. demonstrated a
topological-optimized metasurface that realizes angle-depend-
ent birefringence (Figure 1(h)).38 Third, it can greatly improve
the performance of metasurfaces by exploring larger design
domain (Figure 1(i)).29,39−41 Fourth, it can consider device
performance robustness against fabrication errors.42 More
generally, several methods have been devised that can ensure
robust fabricability for topology-optimized designs.43,44

While there are many merits to topology optimization in
inverse design, questions and challenges remain to be resolved
in the future. First, since TO takes advantage of gradient-based
local optimization methods, it is not guaranteed to find true
global optima for most problems of interest which are
nonconvex (i.e., the design space contains local minima/
maxima). However, if the design space is sufficiently large for a
given merit function and constraints, the optimization
landscape typically involves a large of number of local optima
with comparable performance to the global optimum so that
TO can efficiently settle into one of these “good” solutions�a
well-known observation in the theory of optimization known as
“blessing of dimensionality”.45,46 In fact, the “hardest”
optimization problems are known to be those where the
design space may be large but barely large enough for a desired
functionality. For such problems, sophisticated search strat-
egies in addition to local gradient descent may be required
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(such as multistart algorithms47 or deterministic global
optimization48). For a certain class of problems involving at
most quadratic functions of electromagnetic fields, useful
insights about the nature of global optima may be obtained by
using recently developed Lagrange-dual frameworks to
compute shape-independent bounds on light-matter inter-
actions.49−52 However, it remains an open challenge to extend
these frameworks to problems involving general nonquadratic
merit functions. Second, most of the topology optimization so
far consumes considerable computation power when using
Maxwell equation solvers like FDTD or FEM methods. Thus,
it is difficult to scale up the aperiodic metasurface topology
optimization to millimeter or centimeter sizes.
Evolutionary Optimization. Evolutionary optimization

(EA) is a generic population-based numerical optimization
algorithm, which emulates the behaviors of biological systems.
It belongs to global optimization techniques that attempt to
find a global optimal solution as opposed to local optimizers
and does not use gradient information. In this section, we
illustrate several EA techniques that are widely used in a
metasurface inverse design problem.
Genetic algorithm (GA) is a well-known example. It encodes

potential solutions in a chromosome-like data structure and
uses iterative evolution to generate an optimal solution. There
are three key phases during evolution: first, data selection by

choosing better designs as parents for the next generation;
second, crossover that recombines pairs of breeders to increase
population; third, mutation that modifies parts of chromo-
somes to maintain genetic diversity. GA is a suitable method
for combinatory inverse design problems that have discrete sets
of solutions.17,18 Feichtner et al. optimized the near-field
enhancement of plasmonic antennas using a GA (Figure
2(a)).53 It shows an improvement by a factor of 2 compared
with a reference nanorod antenna. Sui et al. deployed a GA-
based topology inverse design method to demonstrate an
ultrawideband polarization conversion metasurface.54 The
metasurface features pixelated structures with different
symmetries. Cai et al. implemented an inverse design of a
transmissive focusing metalens considering nonlocal inter-
action by a GA-based optimization.55

In addition, many modified versions of GA have also been
demonstrated. Jafar-Zanjani et al. demonstrated an adaptive
genitive algorithm in designing a binary plasmonic reflect array
for beam-steering.56 This method includes a flow of objective
function updates such that the optimization first converges to a
set of solutions satisfying high-priority subobjectives and then
improves the other low-objective subobjectives. Li et al.
implemented a microgenetic algorithm for design of broad-
band infrared metasurface absorbers. Compared with a
conventional GA, it initiates with a much smaller population

Figure 2. Metasurface inverse design based on evolutionary optimization. (a) Schematic of a split-ring antenna designed using a genetic algorithm
and simulations of its near field intensity distribution. Reprinted with permission from ref 53. Copyright (2012) The American Physical Society. (b)
Schematic of a beam deflector metasurface consisting of a nanohole array. The structure is designed using particle swarm optimization. Reprinted
with permission from ref 62. Copyright (2017) The Optical Society. (c) Comparison between a chromatic homogeneous lens and an apochromatic
metasurface-GRIN lens using a covariance matrix adaptation evolutionary strategy. Reprinted with permission from ref 64. Copyright (2018) The
Optical Society. (d) Schematic of a 3D metasurface supercell using a multiobjective lazy ant colony optimization. Reprinted with permission from
ref 71. Copyright (2016) American Chemical Society. (e) Schematic of a varifocal metalens based on phase-change material that can be designed
using a multiobjective optimizer. Reprinted with permission from ref 72. Copyright (2020) The Author(s) https://creativecommons.org/licenses/
by/4.0/. (f) Schematic of a silicon metasurface supercell based on freeform meta-atoms using BORG optimizer. Reprinted with permission from ref
73. Copyright (2020) The Optical Society.
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and converges faster.57 Jin et al. introduced a hierarchical
evolutionary algorithm to design meta-hologram.58 This
optimization begins in a lower segmentation of the device
with a coarse resolution and evolves to higher segmentation
with high resolution.
Ant-colony optimization (ACO) is another type of EA

algorithm. It is inspired by ants’ foraging social behavior of
seeking a path between their colony and source food. It was
widely used in finding an optimal solution to a dynamic
graphic problem, like the traveling salesman problem.59 In the
field of metasurface design, ACO is suitable to find a
continuous structure for a combinatorial problem. Lewis et
al. applied ACO in the design of a meander line antenna with
high efficiency at a microwave frequency.60

Particle swarm optimization (PSO) was developed by
imitating the social behavior observed in flocks or schools of
birds. The optimization starts with a population of particles
with random initialization. These particles search for a global
optimum by acting both independently and cooperatively. The
position update of each individual particle during optimization
iterations depends on its momentum, the best personal
position, and the best global position of the group. In the
end, the particles converge to a common best position
representing a global optimum. Different from GA and ACO,
a PSO can be applied to solve a continuous design problem
whose solution is a vector of real numbers instead of binary
values. Kildishev et al. designed a negative-index-metamaterial
design using PSO.61 Ong et al. combined a gradient descent
technique and PSO to design a freestanding nanohole array
metasurface for optimized beam deflection efficiency (Figure
2(b)).62

Covariance matrix adaptation evolution strategy (CMA-ES)
is self-adaptive and requires less user-defined parameters. It is
also used in metasurface inverse design. Elsawy et al. explored
CMA-ES in the design of cylindrical nanopillars arrays that
achieve 85% deflection efficiency for both TM and TE
polarizations and at a wavelength of 600 nm.63 Nagar et al.
used CMA-ES to design a hybrid apochromatic lens consisting
of a gradient-index lens and a metasurface working in the
visible (Figure 2(c)).64

Other evolutionary algorithms have also been developed for
metasurface inverse design including a simulated annealing
method for the design of binary plasmonic structures that
engineer surface plasmon polaritons,65 A branch-and-bound
method for a true global optimization of thin-film optical filter
design,66 a multi-island differential evolution for a metasurface
color filter design,67 and a Bayesian optimization method to
search for a global optimal design of phase gradient
metasurfaces,63 etc.
The examples above show a single-objective optimization

(SOO) strategy for an inverse design problem with a single
objective function. When coming to a complicated design
problem with multiple competing objectives, multiobjective
optimization (MOO) is a more suitable tool. The idea of
MOO derives from a concept of “Pareto optimality” in
economics defining a high-efficiency state where no single
improvement can be made without worsening the others.68

MOO explores the “Pareto front” in the hyperdimensional
design space that consists of a set of nondominated solutions.
These solutions cannot be further simultaneously improved
toward all objectives. The MOO has advantages over the SOO:
(1) one does not need to manually prioritize the objective
functions; (2) it shows trade-offs between objective functions;

(3) it gives a set of solutions instead of a single solution by
SOO. Wiecha et al. applied a GA-based MOO to design silicon
antennas that can simultaneously achieve high scattering
efficiency at a first wavelength for x polarized light and at a
second wavelength for y polarized light.69 Those silicon
nanostructures were used to realize polarization-encoded
microimages. Zhu et al. implemented a multiobjective lazy
ant colony optimization algorithm (MOLACO) to design a
three-dimensional frequency selective surface (FSS) (Figure
2(d)).70 The FSS exhibits a design stop band at 6 GHz and
pass band at 8 GHz with wide field of view. In another work,
Zhu et al. also adapted MOLACO to design a three-
dimensional phase-gradient plasmonic metasurface supercell
that achieves 84% first-order diffraction efficiency at mid-
infrared.71 Shalaginov et al. designed a MOO-assisted
reconfigurable metasurface design (Figure 2(e)) based on a
phase change material Ge2Sb2Se4Te1(GSST).

72 Simulations
show that the device deflects normal incident light to −1
diffraction order in the amorphous state and to 0 diffraction
order in the crystalline state at a wavelength of 5.2 μm. Whiting
et al. presented a BORG multiobjective evolutionary algorithm
to generate a high-performance freeform meta-atom library.73

The library is further used to build a multifunctional shape-
optimized metasurface like a polarization-dependent beam
splitter (Figure 2(f)).
Machine Learning. Machine learning aims to imitate the

way that humans learn by performing tasks automatically
through “experience” instead of being explicitly programmed.
A deep neural network (DNN), a subfield of machine learning,
is an algorithm that is inspired by biological neural networks in
nature. Its recent development has impacted many fields
including computer vision, speech recognition, drug discovery,
genome sequencing, etc. In recent years, DNNs have driven
the advancement of nanophotonics and metasurfaces re-
search.19,20,22 Here, we focus on how DNNs enhance
metasurface inverse design.
The basic architecture of a DNN consists of layers of

artificial neurons (mathematical operators) that are connected
in series: from an input layer to an output layer through at least
one hidden layer. Depending on the form of connection
between neuron layers, there are different classes of DNNs.
Here, we focus on two mostly used ones: multiplayer
perception (MLP) and convolutional neural network
(CNN). In a MLP, each neuron is a many-to-one data
mapping operator that receives a data vector x from neurons in
a previous layer and outputs a scalar y to a neuron in the next
layer. The operation can be formulated as y = f(wTx + b),
where w is a weight vector, b is a bias term. Both w and b are
trainable through a learning process by iterations of forward
propagations and backward propagations. f is a differentiable
and nonlinear activation function. The nonlinearity of the
activation is critical to neural network accuracy, and commonly
used ones include sigmoid, hyperbolic tangent, rectified linear
unit function, etc. CNNs are usually used in image-based data
processing. In the two-dimensional case, the input data is in
the form of a matrix that can contain image information. A
kernel filter, consisting of a matrix of weight factors, is applied
spatially over the input layer plane. At each position, the kernel
passes a single output value to one neuron in its next layer. The
operation of the kernel is similar as in MLP: a sum of product
of weight matrix and input data matrix followed by an
activation function. The kernel filters are designed to extract
local spatial features from the input layer. More generally, each
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neuron layer can be represented as a tensor (stacked matrices)
when it involves multiple kernel filters. The nature of
complicated neuron connections in a DNN enables capturing
complex nonlinear relationships between inputs and outputs
and thus is a tool for regression and classification tasks.
A discriminative DNN is designed to discriminate between

groups of data. Mathematically, it computes argmaxy P(y|x),
where x are training data, y is a label, and P is a probability
function. It aims to predict the most likely y class considering
x. Discriminative DNNs are used as surrogate models in
replacement of numerical electromagnetic solvers. Given
design variables x of a device, which can be physical
geometries, material properties, wavelengths, or others, the
DNN can predict (interpolate) its physical responses y = f(x),
where y can represent transmission/reflection spectra, electro-
magnetic fields, band structures, etc. It helps reduce

computation time by orders of magnitude once the neural
network has been fully trained. Sajedian et al. demonstrated a
model to predict the absorption responses from plasmonic
structure images by combining a CNN and a recurrent neural
network.74 The training set contains 100 K simulations with
random structures. Deep learning is ∼35 times faster than
simulations.
The fast DNN-based surrogate models in tandem with

numerical optimization techniques open a pathway to
metasurface inverse design. Inampudi et al. used an interior-
point optimization method with a DNN (Figure 3(a)) to
design metagratings for a desired diffraction efficiency
distribution.75 Nadell et al. developed a forward DNN model
where the input is a metasurface geometry that comprises a
supercell of four dielectric cylindrical resonators, and the
output is its frequency-dependent transmittance spectra.76 By

Figure 3. Metasurface inverse design based on machine learnings. (a) A deep neural network used to predict optical response of a metasurface
given design parameters. Reproduced with permission from ref 75. Copyright (2018) American Chemical Society. (b) A backward deep neural
network based on an autoencoder that maps from optical response space to design space. Reprinted with permission from ref 78. Copyright (2020)
The Author(s) https://creativecommons.org/licenses/by/4.0/. (c) A bidirectional neural network consisting of a forward and a backward network
for inverse design. Reprinted with permission from ref 82. Copyright (2018) American Chemical Society. (d) A generative deep neural network
based on a variational autoencoder for metamaterial design and characterization. Adapted with permission from ref 86. Copyright (2019) Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim. (e) A generative adversarial network that learns structure−property relationships and generates an
optical spectrum form a metasurface (and vice versa). Reprinted with permission from ref 88. Copyright (2019) American Chemical Society. (f) A
variation of generative adversarial network that is based on progressively growing networks architectures. Reprinted with permission from ref 91.
Copyright (2020) American Chemical Society. (g) A generative neural work for global optimization of meta-gratings. Reprinted with permission
from ref 93. Copyright (2019) American Chemical Society.
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combining it with a developed “fast forward dictionary search”
algorithm, they solved the inverse design problem of finding
device candidates that match with designed spectra.
Zhelyeznyakov et al. inverse designed a metasurface that
focuses light at 633 nm and produces an annular beam at 400
nm.77 The inverse design framework includes a DNN that
accelerates the mapping the near field of cylindrical scatters
and a gradient-descent optimizer. In addition, an autoencoder
framework can further help reduce the dimensionality of the
design space, which facilitates the numerical optimization
process.78 Liu et al. demonstrated a method to encode the
binary image of a photonic nanostructure design into a sparse
representation in the Fourier domain.79

A discriminative DNN can also work in an opposite way
(Figure 3(b)) that directly searches for an optimal solution in
device design space x given a device physical response y, i.e., x
= f(y). It is conceptually straightforward but difficult to execute
because of the nonuniqueness nature of such a problem. It is
not trivial to get such a neural network properly trained to
converge to multiple solution branches. To mitigate this issue,
Zhang et al. proposed a multibranched neural network inverse
model.80 This model automatically redirects contradictory
information into different values and associates multiple
outputs of physical parameters to a single input of electrical
parameters. Lin et al. trained a CNN to design plasmonic
metasurface comprising nanodiscs.81 They artificially enforced
a unique mapping from optical response to metasurface
geometry by restricting the nanostructures symmetry during
the data training process. Reducing data dimensionality using
an autoencoder (i.e., an encoder combined with a decoder) is
another strategy to overcome nonuniqueness issues. Kiara-
shinejad et al. used an autoencoder that reduces the
dimensionality of both design space and response space.78 It
converts a many-to-one design problem to a one-to-one design
problem.
A bidirectional DNN is another method to solve a

metasurface inverse design problem.82 It consists of both an
inverse network and a direct network (Figure 3(c)). The
inverse network predicts a device design x given an input of
device response y, and the output x is then fed into the direct
network to predict its device response y′. The training process
aims to minimize the difference between y and y′. Malkiel et al.
used a bidirectional DNN to design plasmonic structures for a
targeted polarization-dependent optical response.83 The DNN
is composed of a geometry-predicting-network and a spectrum-
predicting-network. It shows better accuracy than using inverse
network only. Similarly, Mai et al. used a directional DNN
approach to optimize chiral plasmonic metamaterials exhibit-
ing strong circular dichroism response at mid-infrared region
from 30 to 80 THz.84 An et al. applied it to an all-dielectric
meta-filter inverse design.85

A generative neural network is another class of DNNs. This
network aims to learn a correlation between training data x and
its respective label y by modeling P(x,y), which is a joint
probability distribution. It can then generate a new data set x′
after learning, and that is why this model is called “generative”.
Its key difference from a discriminative neural network is that
its input data resides in a latent space. The term “latent” means
that variables z in this space have no explicit meaning but
rather represent a probability distribution such that P(z) = P(x|
y). The latent variables z are fed into a generative neural
network together with the label y and generate an output x′
that x′ = f(z|y). Here, we highlight two main types of

generative neural network, namely variant autoencoder (VAE)
and generative adversarial network (GAN), which are widely
used in metasurface inverse design.
A VAE comprises an encoder that maps input data to a

distribution in the latent space and a decoder that maps a
sampled variable from the distribution to generate new data.
VAEs can generate device variants similar to the training set by
learning from their principal features. It can also be used to
generate a new distribution of devices with a parameter label
interpolated from the training set. Ma et al. presented an
inverse design strategy using a VAE network (Figure 3(d)).86

The encoder takes device structure images and their
corresponding optical responses as input and latent variable
distributions as output. The decoder functions as a generative
network that uses sampled latent variables with a targeted
optical spectrum to generate new metasurface designs. In
addition, it represents another solution to a one-to-many
inverse design problem. VAE can also play together with a
numerical optimizer for solving inverse design. Liu et al.
combined a VAE and an evolutionary optimization method to
search an optimal metasurface with an on-demand trans-
mission spectra.87 Here, the optimization algorithm acts on the
latent variables that represent photonic design.
A GAN comprises a generative network and a discriminative

network. It is a two-layer contest: on the one hand, the
generator aims to generate new data instances that mimic
training data and fool the discriminator. On the other hand,
the discriminator tries to better differentiate the generative
data from the training data. These two networks are trained
together, and after training completion the generator can
generate new data approximating the training data enough that
the discriminator cannot tell their difference. Liu et al. showed
an inverse design model based on GAN that generates
plasmonic metasurface for targeted transmission spectra with
customized resonances (Figure 3(e)).88 The generator was
trained to generate fake devices using inputs of a conditioned
label of transmission spectra and latent variables. The
discriminator was trained to learn the difference between real
and fake samples and in turns guide the generator to produce
samples with common features as training samples. The
generator and discriminator work together to learn the
structure−property relationship and generate new devices
with a designed transmission behavior. An et al. used a GAN
model to design multifunctional metasurfaces that exhibit
polarization-dependent focusing.89 The metasurfaces comprise
meta-atoms that are produced by generator through learning a
meta-atom library. Jiang et al. presented an inverse design
method to generate freeform metagratings with high efficiency
at a design deflection angle and wavelength.90 This method is
based on a GAN that learns topological optimized metagrat-
ings at a set of design wavelengths and deflection angles. Wen
et al. further showed that a progressively growing generative
network can produce devices with higher efficiency and robust
performance (Figure 3(f)).91 Similarly, Kudyshev et al. inverse
designed thermal emitters with high efficiency by learning from
topological optimized devices via an adversarial autoencoder
network.92 Finally, a hybrid inverse design method based on a
GAN helps address the challenges of searching global-
optimized device. Jiang et al. showed a global topological
optimization network combining a GAN in tandem with an
adjoint-based topological optimizer outperforms the topolog-
ical optimizer alone (Figure 3(g)).93
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ML techniques have proven unique strengths in metasurface
inverse design. However, their weakness cannot be ignored,
and innovations are needed in future development. First, the
required training data in ML sets scales up exponentially with
the dimensionality of the design space.20 Owing to that, ML is
difficult to be applied to an inverse design of large-scale and
complex devices. For example, a device consisting of 100
degrees of freedom may need a large training data quantity of
up to 107. It is well-known as the “curse of dimensionality”.94,95

Many efforts have been attempted so far to reduce the large
data dependence and increase the tractability of a complex
inverse design problem including active learning,96 transfer
learning,97 and physics-informed learning.98,99 Second, ML is a
data-driven technique in nature. It performs like a “black box”
for data analysis without straightforward physical interpreta-
tion. The training difficulty arises because its accuracy and
stability highly depend on the training set, and extensive
hyperparameter tuning may also be required case by case. The
lack of underlying physics understanding imposes another
application bottleneck. For example, most ML-based metasur-
face inverse design so far is constrained to an individual unit
cell of subwavelengths scale. When dealing with a large-scale
metasurface consisting of complex aperiodic unit cells, the
usefulness of ML techniques in harnessing the nonlocal light-
matter interaction is questionable. Zhelyeznyakov et al. showed

initial steps toward deep learning of a metasurface supercell
consisting of multiple scatters.77 In addition, S. An et al. used a
neural network to predict the mutual coupling of meta-
atoms.100 Looking ahead, innovations are anticipated to enrich
ML networks with valuable existing physics-based tools like
transfer matrix and Fourier optics.
Emerging Trends in Metasurface Inverse Design. A

major goal in artificial intelligent design of metasurfaces is
finding a feasible solution to a large-scale optimization problem
that contains thousands or even millions of design parameters.
Increasing degrees of design freedom brings more possibilities
in device solutions with better performance or new
functionality. A large-scale metasurface is also demanding in
a realistic application. However, searching for an optimal
solution in a hyperdimensional design space is very difficult.
One needs a fast and accurate electromagnetic modeling
method replacing a brute-force Maxwell equation solver to
evaluate the performance of a multiscale device in many
optimization iterations. The scale of device size and feature size
can be orders of magnitude apart. For example, a mm-scale
metasurface can contain unit cells with a periodicity of
hundreds of nanometers. A feasible pathway is to decompose a
large simulation domain into smaller subdomains, which are
computationally tractable. Multiple boundary conditions have
been explored for the subdomains. The locally periodic

Figure 4. Large-area and end-to-end metasurface inverse design. (a) Schematic of local periodic approximation method that decomposes an
arbitrary aperiodic metasurface into a set of periodic scattering problems. Reprinted with permission from ref 101. Copyright (2018) The Optical
Society. (b) Photography of a 1 cm diameter RGB-achromatic metalens by using inverse design. Reprinted with permission from ref 105. Copyright
(2020) The Author(s) https://creativecommons.org/licenses/by/4.0/. (c) An inverse design framework for cascaded metasurface optics.
Reprinted with permission from ref 104. Copyright (2019) The Optical Society. (d) Schematic of an end-to-end inverse design framework that
includes photonic design and signal processing design. Reprinted with permission from ref 111. Copyright (2020) The Author(s) https://
creativecommons.org/licenses/by/4.0/. (e) An end-to-end inverse design framework that is based on convolutional neural networks. Reprinted
with permission from ref 113. Copyright (2021) The Author(s) https://creativecommons.org/licenses/by/4.0/.
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approximation101 assumes periodic boundary conditions
(Figure 4(a)); however, it has been rigorously shown to
break down for very oblique angles.102 For subwavelength
subdomains, coupling to neighboring subdomains can be taken
into account using the local phase method;103 however, this
approach is computationally intensive. Other boundary
conditions such as perfectly matched layers39 and overlapping
domains40 supplement the locally periodic approximation for
designs that require high numerical apertures and very oblique
angles. Once the subdomains are defined, two approaches can
be used to solve Maxwell’s equations: either the equations are
solved with a brute force solver as in topology optimization,34

or Maxwell’s equations are solved by calling a pretrained
surrogate model that maps geometry parameters to complex
transmission coefficients in shape optimization.101 The former
approach gives more degrees of freedom in the metasurface
design, because every pixel can be a design degree of freedom,
at the cost of more intensive computation. The latter approach
is much faster; however, it is limited in the number of
parameters for the subdomain because the cost of training the
surrogate model increases significantly with the number of
design degrees of freedom. The simplest surrogate is to
construct a library which matches a single parameter per
subdomain to a local response as Backer et al. designed
cascaded systems of metasurfaces (Figure 4(c)).104 For two to
five parameters, Chebyshev interpolation is a very efficient
surrogate;101 however, the need for training data goes
exponentially with the number of degrees of freedom.
Recently, Li et al. demonstrated a centimeter-scale inverse-
designed meta-optics (Figure 4(b)) using this type of
surrogate.105 The aperiodic meta-optics contains ∼ a billion
unit cells and shows wavelength- and polarization-dependent
functionalities. For example, the authors demonstrated metal-
enses that show polarization-insensitive RGB-achromatic
focusing and polychromatic focusing by employing anisotropic
nanofin structures. These experiments demonstrate the
significance of inverse design in the regime of high-dimensional
parameter space and complex device functions. Similarly,
Bayati et al. demonstrated a 1 mm-diameter meta-optics with
extended depth of focus by using an inverse design
framework.106 For more design parameters in the surrogate
model, machine learning techniques have been recently

developed for data efficiency and applied to large scale
optimization.96,107 The global trend for both topology and
shape optimization is to add more physical degrees of freedom
to the design by increasing the scale of the devices, enabling a
more complex scattering with subdomains bigger than the
wavelength, and exploring more physical geometry para-
metrizations.
One can simulate metasurfaces entirely and more accurately

based on Mie scattering theory and transfer matrices; however,
it is currently limited to subdomains with ellipsoid features and
without substrate.108,109 The inverse design is performed on
the whole structure and computationally expensive. More
recently, a GPU-accelerated full-Maxwell solver can simulate
metasurface of 100 × 100 λ2 within 5 min.110 Another
approach to large-scale metasurface optimization is combining
forward and inverse design methods. Li et al. showed a hybrid
method for RGB-achromatic meta-optics design.13 The meta-
optics of 2 mm diameter is judiciously divided into multiple
zones. A forward design approach is applied to engineer
dispersion of each individual zone, and an inverse design
approach is applied to engineer the interference among zones.
Recent research efforts added parameters from image

postprocessing to the optical device parameters for end-to-
end inverse design. Computer vision has reshaped information
acquisition from images by taking advantage of advanced
computational algorithms. Conventional computer vision
emphasizes software advancement for imaging processing at
the back end, with little attention paid to the development of
optics hardware at front. On the one hand, most imaging
systems for computer vision rely on geometric optics, which is
not only bulky but also limited in understanding the wave
nature of light like its polarization or spectral information
without using filters. On the other hand, metasurfaces exploit
wave physics via light-matter interaction at subwavelength
resolution. They enable compact and aberration-free imaging
systems. However, most meta-imaging systems directly map an
object onto an image sensor without involving computational
postprocessing.
The marriage between metasurfaces and computer vision

opens up a new artificial intelligent imaging paradigm. The
end-to-end metasurface inverse design aims to optimize the
optics front end in conjunction with computation-imaging

Table 1. Comparison between Forward Design and Inverse Designa

forward design inverse design

Methods Physics-driven approach: phase matching method, etc. Data-driven approaches: many computational algorithms including TO,
EO, ML, etc.

Computational cost Low computational cost (+) Higher (method-dependent) computational cost (−)
Easy to scale up (+) Difficult to scale up (−)

Physics interpretation Straightforward interpretation (+) Less physics intuition (−)
Applicable design regime Limited to simple device functionality (−) Simple, complex or multiple device functionalities (+)

Limited in considering design constraints (−) Systematically consider design constraints (+)
Requirements of a priori
knowledge

Needs explicit analytical solutions of EM fields
everywhere (−)

Does not require a priori knowledge and inversely discovers solutions
(+)

Other features No feedback loops for performance evaluation (−) Feedback loops for performance optimization (+)
Optimizes EM fields by considering meta-atomss
separately (−)

Optimizes EM fields by considering meta-atoms collectively (+)

Limited in considering couplings between meta-atoms
(−)

Can consider couplings between meta-atoms (+)

Limited in addressing cross-talks among
multifunctionalities (−)

Good at addressing cross-talks among multifunctionalities (+)

aTO stands for topological optimization, EO stands for evolutionary optimization, ML stands for machine learning, and EM stands for
electromagnetic. (+) means advantage, and (−) means limitation.
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back end. It empowers computer vision with rich physics and
new capabilities in data acquisition. Lin et al. showed an end-
to-end inverse design framework (Figure 4(d)) for a meta-
imaging system that can extract spatial, spectral, and
polarization information simultaneously in a single shot
without any filter.111 The metasurface comprises multiple
layers of freeform nanostructures with spatially varying height.
The image postprocessing algorithm is Tikhonov (L2)
regularization method.112 The nanostructure design variables
(height) and the regularization parameters in the computa-
tional algorithm are co-optimized. A general objective function
in an end-to-end problem is the loss function L(ε,p) = ⟨∥u −
û∥2⟩u,η, where ε is the metasurface design parameter, p is the
algorithm parameter, u is the ground-truth image, is the
reconstructed image, η is the noise, and ⟨...⟩u,η denotes the
average over many u and η. The gradients of the objective
function L with respect to p and ε is obtained by a
backpropagation method and an adjoint method. The design
framework seeks optimal ε and p that minimizes the loss
function. In another work, Tseng et al. included a feature-based
imaging postprocessing based on a convolution neural network
(Figure 4(e)).113 The neural network performs image
deconvolution using extracted image features instead of raw
image intensity. The end-to-end inverse design chain co-
optimizes meta-optics and the neural network. The author
showed examples of high-quality reconstructed images by an
inverse-designed meta-imager in tandem with a trained
imaging algorithm.
In the end, we compare forward design and inverse design

from aspects including methods, computational cost, physics
interpretation, applicable design regime, requirements of a
priori knowledge, and other features. Table 1 summarizes the
details highlighting both their advantages (+) and limitations
(−). In general, inverse design is superior to forward design in
many aspects but still has challenges to be addressed in future
research.

Applications of Inverse-Designed Metasurfaces. Be-
sides applications in design of a high-performance optical
component like lenses, gratings, filters, beam splitters, and
exploration of new phenomena like angle-dependent birefrin-
gence as discussed above, inverse designed metasurfaces have
an impact in many other areas. Here, we summarize examples
of recent works. Lin et al. demonstrated an all-optical machine
learning platform, called D2NN, using a stack of 3D-printed
inverse-designed diffractive surfaces.114 The D2NN is an
optical analogy of a classic computer-based neural network
(Figure 5(a)). It operates based on the Huygens’ principle, and
each point in the diffractive surface functions as an artificial
neuron that generates secondary waves. The transmission/
reflection coefficient of each point is a learnable network
parameter, which is iteratively adjusted through training. The
D2NN can implement complex functions like a classifier for
digits/images at the speed of light. Zhan et al. demonstrated an
array of inverse-designed Mie scatterers that can shape the
light focus in three dimensions, for example, a depth-variant
discrete helical pattern.109 It can be potentially used in a depth-
camera. Thureja et al. demonstrated an active beam steering
metasurface (Figure 5(b)) by using an inverse design
approach.115 Though the deployed antennas are nonideal
because it does not cover the full 2π phase range with unity
transmission amplitude, the inverse design strategy offers
nonintuitive array designs that enable high-directivity beam
steering. Furthermore, the required phase modulation range
for high beam directivity can be as low as 180°. The
demonstrated design method for a nonideal active meta-
surfaces may have significant impact in light detection and
ranging (LiDAR), holographic displays, etc. In another work,
Chung et al. showed an inverse designed metasurface based on
liquid crystal that realizes wide deflection angle and high
switching efficiency.116 Li et al. demonstrated the potential
impact of inverse-designed meta-optics in the field of virtual
reality and augmented reality (Figure 5(c)).13 By using an

Figure 5. Applications of inverse-designed metasurfaces. (a) Schematic of a diffractive neural network comprising multiple transmissive layers that
performs at the speed of light. Reprinted with permission from ref 114. Copyright (2018) AAAS. (b) Schematic of a beam steering active
metasurface based on plasmonic antennas and ITO. Reprinted with permission from ref 115. Copyright (2020) American Chemical Society. (c)
Schematic of a compact virtual reality platform based on an RGB-achromatic meta-eyepiece. Reprinted from ref 13. Copyright (2021) The
Author(s), some rights reserved, exclusive AAAS. Distributed under a CC BY-NC 4.0 license https://creativecommons.org/licenses/by-nc/4.0/.
(d) Schematic of inverse designed metalens 3D-printed on an optical fiber tip that is used for direct laser lithography. Reprinted with permission
from ref 117. Copyright (2021) American Chemical Society. (e) Schematic of a programmable metasurface imager that detects body gestures.
Reprinted with permission from ref 118. Copyright (2019) The Author(s) https://creativecommons.org/licenses/by/4.0/.
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inverse design tool in conjunction with dispersion engineering,
it is possible to harness light interference at different
wavelengths both locally and nonlocally and realize RGB-
achromatic focusing. The design principle defies the conven-
tional understanding of physical constraints governing a
Fresnel lens. It also addresses a major challenge of traditional
optical lenses, that form factor and chromatic aberrations are
hard to reduce at the same time. A next-generation VR
platform was demonstrated by combining a meta-optics and a
miniaturized fiber scanning display. In a recent work, Li et al.
demonstrated an inverse design framework that is well suited
for a large-scale (cm-scale) metasurface optimization prob-
lem.105 The combination of large-aperture meta-optics and a
laser back-illuminated micro-LCD opens a new path to
compact and high-resolution VR imaging. Hadibrata et al.
demonstrated an application of inverse-designed metasurfaces
in fiber optics and optical lithography (Figure 5(d)). An
inverse-designed metalens was fabricated on an optical fiber tip
via a 3D direct laser-writing technique.117 The fiber-tip lens
was implemented as an objective in a homemade two-photon
laser-writing setup, which achieved a feature writing size of
∼200 nm. Li et al. recently demonstrated that a dynamic
metasurface-imager (Figure 5(e)), which is controlled by a
machine-learning assisted programming technique, realized
real-time body imaging and body gesture classification.118 It
opens a new paradigm for intelligent surveillance, compressed
sensing, and beyond.

■ DISCUSSION AND OUTLOOK
Inverse design has greatly reshaped the landscape of
metasurfaces research. Looking ahead, inverse design antici-
pates unlocking even greater possibilities by using more
geometrical and physical degrees of freedom. More geometrical
freedom can be introduced by considering larger subdomains
and volumetric (or multilayer) designs. Richer scattering
effects that result from increased geometrical freedoms and
dimensions are key to the next paradigm shift in inverse design
inspiring a new generation of metasurface platforms. What is
more, inverse design is essential in reducing the modeling
errors of metasurfaces by considering multilayer or near-field
couplings,100 which are neglected in forward design methods.
So far, it is still a challenging task and requires innovations to
realize the inverse design of large-area, volumetric, and
freeform metasurfaces especially considering the computa-
tional cost and fabrication complexity. With further develop-
ment of inverse design techniques, we envision that inverse-
designed freeform meta-atoms73 and supercells119 will enable
high-performance, large-scale metasurfaces with higher effi-
ciency, broader spectral bandwidth, wider angular bandwidth,
and better dispersion/polarization control in the near future.
Even richer physics can be realized by incorporating novel

material properties/effects into the inverse design formulation.
For example, a majority of existing metasurface designs can be
characterized as “local” in the sense that the incident electric
field is transformed by the “local” scattering coefficients
restricted to each unit cell�very often, a single transmission
coefficient in the case of a subwavelength unit cell. We expect
that much more comprehensive models using larger unit cells,
simulating angle-sensitive scattering in Fourier space, and/or
taking into account nearest-neighbor couplings will enable
richer “non-local” effects and stronger spatial dispersion. More
generally, exotic media with arbitrary angle-dependent
permittivity ε(k) (for example, photonic crystal superprisms120

and nonlocal meta-materials121,122) may be inverse-designed in
conjunction with a local metasurface, of which the
computation is more tractable, to achieve enhanced
sensitivities and unprecedented functionalities such as non-
paraxial imaging, space squeezing, and hyperfine depth sensing.
Inverse design can also have impacts on the development of

reconfigurable metasurfaces123−125 integrated with active
materials that possess dynamic device functions in response
to external stimuli like electric/magnetic tuning, optical tuning,
mechanical tuning, thermal tuning, etc. Despite different
tuning mechanisms, a common research interest in this field
is to optimize a device’s multiple functions in different
dynamical states. In such a case, inverse design presents a
powerful tool to systematically balance among multiple
objectives, evaluate device performance trade-offs, as well as
reduce their cross-talks. Similarly, it can be applied to design
time-varying metasurfaces with spatiotemporal light control.126

Another exciting direction for metasurface inverse design is
to incorporate quantum models in various forms and contexts.
For example, in imaging domains, quantum illumination
protocols have enabled enhanced detection capabilities in
noisy environments as well as ultra-Rayleigh subdiffraction
resolutions.127−129 On the other hand, metasurfaces can also
be used to greatly influence the coherence and entanglement of
quantum objects (such as qubits).130 We envision that an end-
to-end inverse-design formulation of quantum meta-optics
(classical Maxwell photonics combined with quantum design)
will serve as a springboard for launching a new era of quantum
engineering technologies.
Nonlinear optics is another rich area of metasurface research

that presents a wide range of applications from signal
processing, optical switching to biosensing.131 Metasurfaces
can exhibit a strong nonlinear optical response by electro-
magnetic field localization and enhancement.132 In addition,
they can relax phase-matching constraints133,134 and offer
unprecedented control over polarization and spin−orbital
coupling.135 Inverse design paves a way to study the
relationship between metasurface topology and light−matter
interactions in nonlinear regime, providing valuable insights to
further improve frequency conversion efficiency. Benefiting
from enhanced nonlinearity, a nonreciprocal metasurface can
break the time-reversal symmetry of wave propagation.136,137 It
is a promising candidate to realize light isolation over THz
bandwidth. With the help of inverse design, nonreciprocal
wave propagation is expected to occur at lower light intensity
and over a broader bandwidth.
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