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ABSTRACT

Pumping by means of an infinite train of peristaltic waves is
investigated under conditions where the inertial forces can be neglected.
The analysis is formulated in the unsteadv laboratory reference frame for
hoth two-dimensional and axially-symmetric geometries because of its
direct application to experimental pumps and ureteral function. Pressure
variations as a function of position, time and geometry were calculated
[In addition, new theoretical consideration is given to the phenomena of
"reflux" and "trappine''.

An experimental program using a quasi-two-dimensional apparatus was
carried out in order to investigate the quantitative and qualitative as-
ects of the theory. Studies of pressure vs time, for various squeeze
ratios, flow rates, and Reynolds numbers, were conducted for a sinusoidal
vall geometry. No effects of Reynolds number were observed within the
operating range of the experiments, i.e. up to a Reynolds number of 0.25.
Visual studies documented the existence of ''reflux' along the walls as
well as the identification of ''trapped" flow regions beneath the crests
&gt;f the waves. Quantitative measurements relating to these phenomena were
made. and are in acreement with the theorv.

The infinite-wave-train analysis is combined with a discussion of
urinary physiology in order to develop a model for ureteral function.
Evaluation of urometric data provided a basis for formulation of a ure-

teral wave shape which agrees with radiographic and visual observations.
According to the model, the bulk of the urine is carried within a large
bolus region which has little pressure variation associated with it.
The major pressure variations occur within a two-stage-contracted region
which directly follows the bolus. The peak pressure within the wave
occurs approximately in the center of the contracted region, not at the
end of the bolus. Dimensions within the contracted region (0.1 mm or
less) are approximately equal to the dimensions within the resting ureter.
Consideration is given to a circular cross section, a lobed cross section,
and a combined cross section which includes both circular and lobed
regions. Finally, a discussion is included of "reflux' and "trapping’ as
related to ureteral function.
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NOMENCLATURE

mean half-width of passage (plane geometry); or mean radius

(axisymmetric geometry)

half-amplitude of peristaltic wave

wave speed

F.i,1d

non-dimensional parameter relating to the leakage flow in

experiment (refer to Equation (D-7))

variables describing continuous wall geometrv

non-dimensional wall coordinate, u

transverse wall coordinate

h
mean wall coordinate,

asymmetrv factor describing bolus size for continuous geometry

length

* x

non-dimensional length, T

pressure

non-dimensional pressure

"a 22p
Grex for plane geometry; Buck for axisymmetric geometrv,

pressure rise per wave length

non-dimensional pressure rise per wave

2202) . . app) . . ;
Ine or plane geometry; Such or axisvmmetric geometrv,

instantaneous flow rate in lab reference frame

Instantaneous flow rate between axis and the streamline

instantaneous leakage flow in the experiment

instantaneous forward flow in the experiment



net instantaneous flow in the experiment

net instantaneous flow per half-width of channel per unit

Q
n

height, ur
time-mean flow observed in lab reference frame

time-mean flow between axis and the streamline

time-mean reflux flow

time-mean leakage flow in experiment

net flow carried by a ureteral wave (spurt volume)

flow rate observed in the lab reference frame

wave frame transverse coordinate (axisymmetric)
r

non-dimensional catheter radius, —

radius of catheter
2

peristaltic Revnolds number, 5
ct

entry length Reynolds number.

reflux flow as a fraction of net flow

{me

residence time of a particle in the wave reference frame

velocity components in wave frame (plane)

velocity components in lab frame (plane)

heicht of test section

coordinates in wave frame (plane)

; X

non-dimensional coordinate, 3

~roordinates in lab frame (plane)



Greek

a
wave number, 3

} variables defined bv Equation (B-4,

b
squeeze ratio, —

wave length

viscosity

kinematic viscosity

density

stream function in wave reference frame

boundary laver thickness

stream function ratio, Le
J

non-dimensional mean flow per half-width per unit height of
x

test channel, Q
ac

non-dimensional time-mean flow

(= for plane geometry; —L— for axisymmetric geometry)
Ta c

non-dimensional flow for AP, = ()

non-dimensional reflux flow

Qr Or
(Te for plane geometry; 5 for axisymmetric geometr

na ¢

non-dimensional stream function

(Zs for plane geometry; + for axisvmmetric geometrv;
a 22c

non-dimensional coordinate

Y R r
or L for plane geometry; 2 a for axisvmmetric geometrv

} , ct

dimensionless time, 3



Subscripts

refers to wall position

refers to edge of trapped bolus

refers to the position on a wave where ~ =

refers to conditions at upstream reservoir

refers to conditions at downstream reservoir

refers to node N

rafers to the streamline



INTRODUCTION

CL. Objectives

Recently, various authors have discussed different aspects of

peristaltic pumping, but few have attempted to relate their work tc

rhe actual behavior of the ureter. This thesis has two primarv

objectives, First, to substantiate by experiment the theoretical

predictions for an infinite train of peristaltic waves. Second. tc

formulate a fluid mechanical model for ureteral function.

From the medical point of view, such a model should yield insight

into the functioning of normal and abnormal ureters. Further, it may

also pose new questions and hvpotheses which should be considered bv

ureteral physiologists. A quantitative understanding of ureteral

function might provide information concerning the possible effects of

~atheters on the pressure pulse and the mechanism of bacterial reflux.

rr Previous Work

The theoretical formulations of different investigators can be

sonvenientlv categorized in terms of the following variables for an

infinite train of peristaltic waves. These are

(1) the wave number, a = a/A

(11) the squeeze ratio, ¢ = b/a

(111) the Reynolds number, R = a’c/r

iv) the flow parameter, 6 = Q/ac for plane geometry;

= 2
3 = Q/na“c for axisvmmetric geometrv

For discussion of the appropriate definition of Revnolds number see
Reference (4). Appendix A.



as well as the wave shape. In the published investigations, onlv

sinusoidal waves were considered excent as noted.

Burns and parks? considered the case of zero Reynolds number,

[.e. inertial forces &lt;&lt; viscous forces, for both plane and axisymmetric

ceometries. Since their solution was derived in terms of powers of ¢,

the solution is limited to small squeeze ratios. In some calculations.

terms of order 0% were considered. Their solution allowed for arbitrarv

values of wave numbers.

Manin 2) considered the case of a plane geometry with small

squeeze ratios, and with the mean pressure gradient equal to zero.

His solution contained the long-wave-length approximation, i.e.

but allowed for arbitrary Reynolds numbers.

Fung and vind considered the case of a plane geometry, but

allowed for arbitrary values of Reynolds number and wave number. Thei:

solution is expressed as an expansion in ascending powers of ¢, and is

thus only valid for small squeeze ratios.

Shaniro, Jaffrin, and Weinberg? considered both the plane and

~y

axisymmetric geometries for zero Revnolds number and wave number.

Their solution allows for arbitrary squeeze ratios. and manv results

are given in closed form. The results include particle trajectorv

calculations, and disclosure of two fluid mechanical phenomena designated

as reflux and trapping.

Jaffrin®&gt;) established the effects of wave number and Reynolds

number in the plane geometry by expansions in powers of a and R. The

solution, which allows for arbitrary amplitude ratio ¢, shows the

affects of wave number and Revnolds number on the pressure rise per



wavelength and on the time-mean flow. The effects of o and R on reflux

and trapping are also included.

A detailed comparison of the foregoing theories is not included

within this thesis as Jaffrin&gt;’ has illustrated the relationships

setween the models. It will suffice to mention that all agree in the

relevant ranges of the governing parameters a, ¢, and R.

fvkoudis®) made an attempt to model the fluid mechanics of the

ureter. However, instead of peristalsis, he considered a collapsing

cylinder whose radius varied sinusoidally with time. The model was

limited in that it did not model the anatomical operation of the

ureter and it could not produce any net flow unless check valves were

fitted at either end of the cvlinder.

| EN Structure of Thesis

Chapter 2 describes the physiology of the ureter as a basis for

later formulation of a theoretical model. Both normal and abnormal

conditions are discussed. Operation of the kidneys and bladder are

mentioned when relevant to ureteral function.

Chanter 3 presents brieflv the analysis as viewed in the unsteadv

laboratory reference frame. Emphasis is placed on those aspects

relevant to the ureteral model described in Chapter 4. Formulation

in the lab reference frame shows how the infinite-wave-train theory

~an be modelled bv the finite-wave-length experiment of Chanter 5.

"hapter 3 also includes a discussion of trapping and reflux.

A simplified model of ureteral function is present in Chapter /

for various possible geometries. The effects of a catheter on the



flow rate and pressure field are also discussed.

Chapter 5 is concerned with a two-dimensional experiment whose

yurpose is to test the validity of the inertia-free model. In this

~hapter, qualitative and quantitative results are presented.

The conclusions of Chapter 6 are given in two parts. The first

concerns the relationship between the experimental observations and

the predictions of the infinite-wave-train theory. The second part

assesses the ureteral model and its relationship to medical

observations.



URINARY PHYSIOLOGY

&gt;. 1. Normal Physiology of the Urinary Tract

In order to model the fluid mechanics within the ureter, a basic

understanding of its physiology is required. This chapter is intended

to provide a simplified view of ureteral function and to summarize

current phvsiological literature. When necessary, both the anatomy

and histology of the ureter will be discussed in order to aid in the

mderstanding of ureteral function. From the concepts presented, a

simplified phvsiological model of ureteral function will be developed.

Figure 1 is a general sketch of the ureter and of the other elements

of the urinary system. The urine, which is an ultrafiltrate of blood

nlasma, is formed in the cortex region of the kidney in a large number

of small ducts known as nephrons. Both active reabsorption and secre-

tion of selective materials occur within these ducts. The nephrons

terminate in large tubules and finally into primary ducts known as

calyces. These in turn empty into the renal pelvis which is the

upper reservoir of the ureter. The ureters, which are located distal

to the renal pelvis, carry the fluid by means of peristaltic waves to

the bladder where the urine is stored until micturition.

The calyx, renal pelvis, ureter, and bladder will be discussed

individually and then combined to yield a dynamic picture of ureteral

function. The discussion will be limited to normal ureters since their

operation must be understood before abnormal systems can be comprehended.



Renal Pelvis and Calyces. The calyces are the primary ducts

proximal to the pelvis. Narath®’’ and k111¢® among others, showed

the existence of calycic contractions through the activation of the

longitudinal muscles located in their walls. Kiil further showed the

activity of the calyces and renal pelvis to be independent. Histolog-

ically, each of the calyx ducts was shown to have circular or sphincter

muscles at the proximal end (sphincter fornicis) and distal end

(sphincter calycis) as illustrated in Figure 1. Using urometric

techniques, Kiil showed that even though sphincteral contractions do

occur. the contracted regions can not withstand mild pressure gradients

For this reason, he concluded that the sphincters are of subordinate

Importance in the transport of urine.

Kiil also demonstrated that the pressure variations which exist ii

the calyces are very small compared with the magnitude of the pressure

variations within the ureter. The resting pressure in the calyces was

shown to be approximately equal to the renal pelvic pressure. Even

though the calyces and proximal members of the excretory system are

of great physiological interest, their dynamics do not nlay a major

role in the functioning of the ureter.

Rattner, Fink, and Murphy), in addition to Kiil, showed

conclusively that the pressure in the renal pelvis remains approximately

constant with time at a level ranging between 2 mm to 10 mm Hg. Morales

. (10)
Crowder, Fishman and Maxwell demonstrated the dependency of renal

sressure on urine flow rate. Their results indicated that increased

rates of diuresis tend to dilate the renal pelvis and increase renal

ressure.,



The actual shape of the renal pelvis varies between individuals;

however, this variation in shape does not necessarily affect its

functioning. In general, the shape of the renal pelvis can be considerec

similar to that of a funnel. Renal pelvic volume ranges from 3 cc to

5 cc, and remains constant independent of the peristaltic transport of

urine.

[t is evident that the renal pelvis undergoes mild contractions

of its detrusor muscles, but it is not known whether this contraction

is actually the beginning of the peristaltic wave. When pressure varia:

ions in the renal pelvis are observed thev are usually similar to the

seristaltic pressure fluctuations but of much smaller magnitude (approxi

natelv 1.5 mm of Hg).

Histologically, the division line between the calyces and renal

belvis is the location of the sphincter calycic muscles. However, no

precise dividing line exists between the renal pelvis and the ureter.

Anatomically, this junction 1s not well defined since the funnel-shaped

pelvis exists only in very few patients. However, this general region

is designated as the ureteropelvic junction.

Kiil showed that the renal pelvis and ureteral cone fill simultan-

eously while in relaxed state. The peristaltic wave forms in the

areteropelvic junction and the wave progresses toward the bladder

~arrving the urine which was contained within the ureteral cone.

Ureter. In adults the normal length of the ureter ranges from

)S em to 30 cm with a resting outside diameter varying between 2 mm

and 10 mm. Figure 2 shows a microscopic cross section of a contracted



 nx
segment of a human ureter . It should be mentioned that the actual

~ross-sectional shape of the lumen is not well known in vivo. The

Folded appearance of the lumen might be a result of the fixation

process. Internal dimensions of the lumen range between 0.1 mm up tc

5 mm. The lumen is surrounded bv both circular and longitudinal

muscles lying within a sheath of connective tissue and blood vessels

giving the external appearance of a thin smooth tube. Backlund 12)

is one of the few investigators who attempted to record diametric

variations of the ureter with a peristaltic wave. It appnears from

his simultaneous recordings of external diameter and internal pres-

sure that pressure variations are associated with sections of the

ureter undergoing observable dimensional fluctuations. His recordings

&gt;f ureteral diameter and pressure as a function of time yield some

insight into the wave form, but the important dimensions required for

ureteral modelling are the internal dimensions of the lumen at various

stages in the wave. The exact variation of lumen shape with time and

pressure still remains unknown.

Recent cineradiographic studies of Barry, Absher, and Boyarsky 13

showed that a lag exists between the initiation of contraction and the

peak of the pressure event. This delav ranges from about 1 second to

1.6 seconds. This fact will be of importance in analvzing the results

nf the theoretical model.

Another interesting observation reported by Barrey et al. was that

rhe bolus seemed to pass the tip of the catheter at the low pressure

From Reference (11).



ohase in the recording. They also reported that a further contraction

»f the ureter exists after the "visible image' or bolus passes the

recording hole in the catheter.

The peristaltic wave travels at an average velocity of approxi-

mately 3 cm/sec with a frequency ranging from 3 to 10 waves per minute

depending on the activity of the kidneys. Investigators have shown

by means of pressure-time traces that the character of the pressure

sulse is similar at various locations along the ureter.

Davis, Zimskind, and Paquet ‘1%, in addition to Kiil and others,

rave shown that the basal pressure (see Figure 3) within the ureter

remains constant throughout the entire length of the ureter, independent

of the intravesical (bladder) pressure. This pressure is approximately

aqual to the pressure within the renal pelvis and calyces. As a contrac

tion complex passes over a ureteral catheter the pressure peaks at

salues ranging between 13 mm and 35 mm of Hg and then returns to the

yasal level. Figure 3a is a representation of a series of tvpnical

wormal pressure waves recorded with an intralumenal catheter bv Kiil

Only pressure pulses obtained bv Kiil are presented, but many other

investigators using modern techniques have obtained similar results,

Average flow rates through each ureter can range up to 2.5 cc/min

(10)Morales et al. conducted a series of experiments which demonstrated

that each peristaltic wave carries between 0.02 and 0.7 cc.

The flow through the ureters is not continuous, but appears to

enter the bladder in spurts. Figure 3c helps illustrate this point.

By considering the location of the catheter, the wave speed, the time

rnd the duration of the spurt. the fluid entering the bladder can be



shown to coincide with the arrival of a wave at the ureterovesical

junction. As was previously mentioned, upon formation of a wave, a

small volume of fluid is confined immediately forward of the contrac-

tion region. This bolus of fluid is transported with the wave and is

probably responsible for the spurt observed at the ureterovesical

orifice. Between the spurts there appears to be little or no flow

antering into the bladder 107.

It has also been observed that increased flow rates are accomodated

&gt;y increased peristaltic frequency and increased bolus length, with

only a small increase in the diameter of the bolus 2, 9, 10, 13)

If the basal pressure in the renal pelvis is artificially raised to an

abnormal level all observed peristaltic activity ceases, even though

the peristaltic action potential can still be recorded through the

ireteral membrane.

Urometric techniques have shown that throughout the entire length

of the ureter the basal pressure is independent of bladder pressure.

This can be the case only if there is some type of valve which isolates

the bladder from the ureter. This so-called valve is known as the

ireterovesical junction. In man, the ureter does not directly pass

through the bladder wall. but remains in the bladder wall for 5 mm to

26 mm before it terminates at the ureterovesical orifice 10) The

details of physiological overation of the valve are not comnletelv under-

stood. One possible mechanism which might account for the valve action

could be a squeezing of the ureterovesical junction resulting from the

internal pressure of the bladder on the bladder wall. Failure of the

salve results in a gross reflux of urine into the ureter with a



corresponding rise in basal and interpelvic pressure.

The physiological significance of the smooth longitudinal muscles

located in the ureteral wall needs to be determined. Bovarsky (17)

described a secondary gliding motion of the ureteral wall in the

following manner, "The ureteral wall slides up over the bolus like a

trouser over a leg". To understand the purpose of this activity, the

longitudinal motion must be studied in much greater detail.

Bladder. The bladder is a highly elastic vesical whose wall is

composed of three distinct layers of smooth muscle which are irregular]

interwoven throughout the connective tissue of the bladder wall. The

 Kg

volume of the bladder is highly dependent on the size of the patient

and the stage of filling, but mav be as high as 500 ml. The desire

to void usually occurs when the intravesicular pressure is nearly

squal to the peak peristaltic pressure (approximately 25 mm of He).

2.2. Pathology of the Ureters

In thie section an attempt will be made to describe briefly a few

&gt;f the abnormal conditions which may occur within the urinary tract.

Although many abnormal conditions can be treated successfullv, a large

number are not well understood and therefore svecific treatment is

mknown.

Mme of these latter conditions is known as ''bulk reflux'. Bacteri:

shich invade the bladder through the urethra irritate the bladder wall

and musculature, causing failure of the ureterovesical valve. Since

‘he pressure in the bladder is usually higher than the basal level



within the ureter, failure of this valve results in a rapid Poiseuille

type back flow towards the kidney.

Under certain poorly defined conditions bacteria which were

originally in the bladder or lower ureter make their way back to the

kidneys in a matter of hours $19), This type of reflux will he defined

as "peripheral reflux. Diffusion, or even diffusion accompanied bv

the motility of the bacteria, has been discounted as a plausible

mechanism for this tvpe of bacterial reflux due to the time scale

involved.

The ureters can also become obstructed by kidney stones, cancers

or other disorders which tend to occlude the lumen of the ureters.

External lesions mav also occur constricting the motion of the ureters.

These conditions have severe effects on the performance of the ureters

and exhibit themselves as severe modifications of the pressure and flow

variations within the afflicted ureter.

’ Simplified Physiological Model

3iven the phvsiological facts above, the task still remains to

penerate a simplified physiological model which can be used to explain

the fluid mechanics of ureteral function. Shaniro, Jaffrin and

Jeinberg indicated that the inertia-free model could be used to

obtain insight into urodvnamics. Thev also showed that in the ureter

the wavelength is long compared to the diameter of the ureter. For

simplicity of computation, we assume that the wave does not change

shape while propagating between the renal pelvis and ureterovesical

iunction.



The peristaltic wave appears to be composed of a relaxed region

y contracted region, and a distended bolus region (see Figure 1).

In this analvsis, the longitudinal motion of the ureter will be

r1eglected.

The shape of the lumen during passage of a wave is not known, but

[t is conceivable that the lumen varies between lobed shape at the

relaxed regions and quasi-circular in the distended bolus region. For

his reason both two-dimensional and axisvmmetric geometries will be

~onsidered.

As can be seen from typical pressure pulses represented in Figure 3

rhe distal and proximal basal pressures across the wave are approximatels

equal. For this reason we will assume that the pressure rise across

the wave is small compared with the peak pressure. This assumption

7111 be explored in greater detail in Section 4.2.

Since the flow enters the bladder in spurts and no flow is

sbserved between spurts, it can be assumed that the fluid velocities

are approximately zero in the relaxed regions of the ureter. This is

in agreement with the observations that there are no pressure gradients

in the relaxed regions. Therefore, all the significant fluid motions

are associated with the contracted and dilated region of the wave.

To summarize. certain characteristics of ureteral function are

tuite well documented and can be used to establish a model. These

~haracteristics are:

(1) the negligibly small pressure rise per wavelength

(ii) the magnitude of the maximum pressure

(iii) the qualitative shane of the pressure pulse

iv) the quantitv of liquid carried per wave



On the other hand, certain gaps exist in the phvsiology which

ivinder close comparisons between the theoretical model and the ureter.

he first major gap is the lack of knowlege concerning the intra-

lumenal wall variation with time and distance along the ureter.

Because of the complex wall structure of the ureters, observation of

rhe external diameter does not yield reliable information about the

dimensions and shape of the lumen.

The second large deficiency in the physiology concerns the measure-

ments of pressure variation and flow within the ureter at various

stages of activity. Most investigators have considered either pressure

variations or flow characteristics, but not the two simultaneously.

[n order to make accurate comparisons between the ureter and the

nodels. it would be desirable to record flow and pressure simultaneously

) 4. End Regions

Ureterovesical Junction. The details of operation and the anatom

&gt;of the ureterovesical junction were discussed in some detail in

Section 2.3. For this reason, discussion in this section will be

nn

limited to a possible explanation of how a wave with AP. = (0 can expel

urine into a pressurized bladder.

One possible explanation for this apparent contradiction might

he a variation in the wave shape locally in the region of the bladder.

In this region the contracted section of the wave might undergo

further contraction causing a strong positive pressure rise in a manner

analogous to a tightening sliding cuff. Further physiological studies

of this junction would be necessary to determine the validity of the

above hvpothesis.



Ureteropelvic Junction. The formation of the wave in the uretero-

selvic region of the kidney can be considered fluid mechanically as a

problem onto itself. Certain facts can be observed from urometric

studies in the ureter. Formation of the wave does not seem to affect

the pressure pulse or basal pressure level at distal points along the

ureter. Using the above information, one can hypothesize that the pres-

sure rise in the forming wave must be approximately zero at all stages

of formation.

Since the ureter is almost empty prior to formation of a wave,

111 the urine carried by a particular wave must come predominately

From the renal pelvis reservoir.

From the current state of knowledge regarding ureteral physiology

t is obvious that before anv detailed modelling of the ureterovesical

or ureteropelvic junctions can be accomplished, extensive physiological

studies must be undertaken.



ANALYSIS OF AN INFINITE WAVE TRAIN

As analytical background for Chapters 4 and 5, it will be

recessary to develop briefly the analysis of an infinite wave train

in the unsteady laboratory reference frame. The concepts of

"peripheral reflux' and "trapping" will also be discussed. By directly

utilizing the lab reference frame, it will be shown that under certain

conditions the infinite-wave-~train situation can be simulated bv a

Finite-wave-train experiment.

30.1. Assumptions (Infinite-Wave-Train Model)

Infinite Wavelength. In the previous chapter, it was mentioned

that the resting dimensions of the ureter are still not well defined,

hut it is expected that the breadth of the lumen ranges somewhere

between 0.1 mm and 3 mm. The length of a wave is about 15 cm, vield-

ing a value of wave number a of less than 1/50. Since a is very small

rhe infinite-wavelength approximation can be used.

This assumption makes it possible to neglect the transverse

components of the pressure gradient as compared with the longitudinal

sradients. In other words, the pressure can be assumed instantaneouslv

miform across each section.

[nertia-Free Flow. As was demonstrated by Shapiro et a1. (¥) the

viscous forces within a peristaltic wave are of order uc/aZ, at least

when no thin boundary laver region exists. The order of magnitude of

the inertial forces can be written as 0c /a. Knowing that the Reynolds



number is the ratio of inertial forces to viscous forces, it can be

seen that the appropriate Reynolds number can be written as R = 22a pv

For the ureter this Reynolds number is of order 0.25. This value is

small enough to give some relevance to the inertia-free theory.

The two assumptions of infinite wavelength and zero Revnolds number

lead to instantaneous Poiseuille flow at each section.

Constant Fluid Properties. In this analysis the viscosity and

density will be considered constant with time. The viscositv of urine

is aoproximately 0.01 Poise at 38°C.

Wall Shape. An infinite wave train has a wall shape of the

reneral form

J I: a (3-1,

At a later stage in the analysis, the wave shape will be reatricted

specifically to a sinusoidal geometry. It should be reemphasized that

this definition of wall shape only allows for transverse motion of

rhe wall.

3.7. Basic Formulation (Two-Dimensional Geometry)

Using the assumptions described in Section 3.1, the governing

equations of motion reduce to the following form (refer to Figure 4a

for the nomenclature):

X-Momen tum:
2

P(X, t) - 3 U(X,y,t)
av u ny?

/ 3=23)



oP
Y-Momen tum: NC 0

Continuity:
aU aV _

NY + ~Y =

(3-2h)

3 8

'n integral form, the equation of continuity can also be expressed as:

 Q(X, 8), 3h(X,8)_IY a+
3 y

Boundary Conditions:

dU
3Y

=0

{3-43)
J = 0

J -
pd

7

J

diy
3 ~

BR! ( 3-4b)

The above boundary conditions describe the condition of symmetry on

the axis and the no-slip condition at the walls, respectivelv.

Integration of the momentum equation (3-2a), using the boundarv

~onditions (3-4), leads to a locallv-Poiseuille velocity profile,

ny

ug _3038 ,2 2~=53g ( H) ( 1-3]

Jsing this velocity distribution, the instantaneous rate of flow through

he cross section can be renresented as

UE,1)_
L

[Larrs
$



A second form for the instantaneous flow can be obtained from integra-

-ion of the continuity relation (3-3b), i.e.

(E,T) oH
a - 57 46 ©. (3-17,

de now calculate the dimensionless time-average flow, 6 = Q/ac, as

3 "J Q(g, 1) dr
J ac
nN

2

Jsing Equations (3-5) and (3-6), the pressure gradient at any section

~an be shown to be

oF _ 1 QE)
dE "3 ac

{ J —u

The periodicity of the wall coordinate can now be emploved to describe

the periodic character of other variables. In particular, the pres-

sure eradient and the local flow must also be periodic and of the

Following form:

111 1

 Nv
3P
T

3B
(g,1) = ar (&amp; -

(ET) = Qo -

(3-102)

( 3-10h)

3ecause of the periodic character of these dependent variables, it is

n,
convenient to introduce the variable x = (£ - 1). Equation (3-7) can

how be integrated in terms of this new variable.



wv

{8 hE) + fen (3-11)

"or a periodic system, Equation (3-10b) shows that f(t) must be equal

to a numerical constant, i.e. f(t) = F. Using the time mean of

quation (3-8) along with Equation (3-11) results in the following

form of dimensionless time-mean flow, which is independent of £:

al I-n0+
ac

(3-122)

‘mere

H(E)dE (3-12b]

Rearrangement of Equation (3-5) with the help of Equation (3-12)

results in the following velocity distribution:

= 2

ug_3(86-H _n_— = 5 | H + 1}{1 = ( 1-113]

From continuity equation (3-3a) and boundary condition (3-4c),

-he V component of velocity can be shown to equal

v_3 dH e-Hm _ 2,8=Hn3Tce Uw Wm Gr (3-14)

here o = a/).

[he local pressure gradient at any point within the peristaltic

save mav now be found from Ea. (3-2a) as

a
IP 1 = 1
T=" 5 - (0-H) = { 3-15)



lhe pressure rise per wavelength can now be found merely by integrat-

ing this relation over one wavelength for anv flow 6 and any periodic

wave shape H(E - 1).

Finite Wave Train. Since one cannot conveniently perform a

laboratory experiment with an infinite train of waves, it is necessarv

tro determine under what conditions a finite-wave-train experiment can

adequately simulate the infinite-wave-train model.

The instantaneous flow defined bv Equation (3-11) is valid for

any wave shape. Using Equations (3-8) and (3-11) the dimensionless-

mean flow becomes

3. = H+ f(t)dn (3-16)

Substituting relation (3-11) into Equation (3-9) results in an equatior

jefining the pressure gradient in terms of wall position and the as

set unknown function f(t) becomes

L

RR3 —

-(Pp, -P 2} Ldf=, u ) H [* 5
(3-17)

nN n,
where the P and Ps are the dimensionless pressures at the input and

exit of the pump, respectively, and L is the dimensionless length of

the pump. From this relation, it can be seen that three conditions

are necessary for f(t) to be constant with time. These are:

v Nn
(1) (P, - P) must be independent of time. This condition

can be easily satisfied by constant pressure reservoirs.



i_. H must be constant for all waves (e.g. periodic wave train)

(i2." L must be an integer number of wavelengths

Jith f(T) equal to a constant, Equation (3-15) will also represent

the pressure gradient in the finite-wavelength model. Integration of

his expression over the entire pump length vields

A+ (0 - &amp; &amp;,
 2 ) 3} de

(3-18)

If L is equal to an integer number cof waves and H is periodic, this

axpression can be rewritten as

v
J .o—1

«
Si -—

= N /

geen dt
3 H H

{3-19a)

[ =i g by

vhere N represents the number of wavelengths between the upstream

reservoir and the node with pressure P,.

From (3-19b) it can be seen that the pressure distribution within

the finite-wave-train experiment exhibits an interesting nodal type

hehavior at every wavelength along the pump. In other words, each

node is acting as a local constant pressure reservoir within the pump

Making use of this nodal property and integrating (3-15), the

sressure variation at any position within the pump can be expressed

=. N

Lv
P TE _T) Ls 1m) ye-MSta&lt;7



‘or a sinusoidal wall shape, e.g.

 Md a3in 27(E - T

‘he pressure rise per wavelength AVN is equal

Z 214AY -d [3-(2 + ¢7)0]
By = 3 (1 - 69)

Eo

(3-21)

(3-,/

he solid curves in Figures 5, 6, and 7 represent the theoretical

ny
Py vs 6 curves for three values of ¢ (the experimental data will be

discussed in Chapter 5). The maximum flow for zero pressure rise is

defined as 6., and the maximum pressure rise for zero net flow is

Nv o NL. »
AF . The curves jn Fipures 8 throueh 11 renresent the theoretical

max

variat;on of pressure with time f ~ three values of ¢ and for various

values of £ and 6. It should hb notad that these curves do not

correspond directly to the two-dimensional theorv but relate to

modified theory which includes the geometry of the e=nerimental

apparatus. This modification, which will be discussed in detail i

Section 3.4. and in Chapter 5, affects the magnitude of the pulse

without altering its shape. The ordinate of the curves is the

. . noo

normalized pressure difference I' - Foe £ = 0 represents the

~oordinate of the reference node. Time is represented on the x-axis,

here T = 0 is the becinnine of a wavelength and T = 1 is the beginning

~f the next wave. The experimental data in Figures 8 to 11 will be

axplained in Chapter 5.



TransformationofVariables.Theunsteadylaboratoryreference

Frame can be transformed into a steadv-state reference frame bv means

»f the coordinate transformations below (refer to Figure 4b for the

nomenclature in this transformed reference frame). In this reference

Frame. the viewer effectivelv moves with the wave.

4 .

~

(3-23)

y _Y
1 a

v v

The velocity profiles and pressure gradient expressed in the

steadv-state reference frame are:

A . 3 /ac n,2c= 145 +E-GT)

3

1.3,dlajaemy)(2,afacyny
- dx

§ }- +4

-
i”  v

.

a¥ _ _ 1 _ aac

nN 2 3
Ix H H

shere the flow o 1 - eagual

1
ac - | %dnc

 ~~

{3-2AR)

(3-27)

3v using the transformation relations and Equations (3-8) and (3-27;

rhe flow can be written as

A



lhe transformed reference frame is in fact the wave reference frame

described by Shapiro et a1. 4). In the analyses to follow, increasing

ise will be made of this steadv wave reference frame.

Stream Function (Wave Reference Frame). In the laboratory

reference frame the flow is unsteady, so the particle path lines (e.g.

Figure 9 of Reference 4) are not necessarily related to the streamlines

(e.g. Figure 4 of Reference 1). In the wave reference frame, the path

lines, streamlines, and streak lines all coincide. These streamlines

are similar to the wall shape. but with decreasing amnlitude as the

axis is approached; except, however, for certain cases where a region

of closed streamlines are present. Some tvpnical streamlines are shown

in Figure 12.

[In the steadv wave reference frame the streamlines correspond

ro the particle trajectories. and can be used as a quantitative marker

for identifving fluid particles. Defining the stream function by

1 = 1 Tx = xr3

and using the velocity profiles described by (3-24) and (3-25),

(3-20

the

rwormalized stream function ratio y can be written as

3
yoo Lt _ _n_ _
b 0 [n(H - 3C) 2 (H - O)]

f 3-30)

Jhere

J— ( 3-303)

vith U = 0 on the axis, the value of the stream function at the wall

Syecomes



I'rapping. Under certain conditions of 6 and ¢, there are

regions of the flow which contain closed streamlingst®, When this

phenomenon occurs, the center streamline splits, and a region of

recirculating closed streamlines form (refer to Figure 12). This regior

comprises a bolus of fluid which, in the laboratory reference frame,

appears to be '"trapped' under the crest of the wave about the center

| ine.

LimitofTrapping.Theconditionsof¢andJinwhich trapping

yecurs can be determined directly from the solution of Equation (3-30)

Jhen trapping exists, the center streamline ¥ = 0 must split to form

the bounding streamline of the bolus. Before the onset of trapping,

Equation (3-30) will have one real solution for n if v = 0, i.e. n =

At the onset of trapping, three real equal values of n will exist for

( = 0, i.e. n = 0. Conceptually, this means that at the onset of the

“rapping the bolus will have zero volume. As the size of the bolus

Increases, the boundary of the trapped bolus can be obtained from the

solution of Equation (3-30) for x = O.

Using the above statement, trapping will occur when any non-

dimensional wall coordinate H is

.

2%

After onset of trapping

(3-32;

the geometric boundarv of the trapped

bolus is defined simply bv

Ff H wd: yy

i,

1/2
(3-33)



The criterion for trapping obtained by Shapiro et a1. (¥) reduces

nathematically to

0, (2-02 + 8%)
% 94°

rr _ 34)

[t can be shown quite easily that Equations (3-33) and (3-34)

sield the same limit of trapping.

Peripheral Reflux. Simultaneous integration of the U and V

components of velocity in the laboratory reference frame enabled

Shapiro et a1, (® to obtain the particle trajectories within the

peristaltic wave (e.g. Figure 9 of Reference 4). From these trajectories

they were able to calculate the average speed of advance of each particle

as a function of geometrv and time mean flow. On the basis of the

analvsis they illustrated that under certain flow conditions the time

average flow was composed of an algebraic sum of forward flow in the

core of the pump and reverse of reflux flow near the walls.

In order to obtain a measure of the rate and quantity of reflux

material, ¢ is used as an indication of material vnarticles, then the

time-mean flow between the axis and a particular value of ¢¥ is calculated

The instantaneous flow between the axis and the coordinate Y can be

sxpressed as:

V(Y,E5T)

| U(E,n,T)dn (3-35)

Using Equation (3-24) and (3-30) the time-average flow beneath

-he particles identified bv U becomes



Q, = ¥ +7 | y(¥,X, t)dt
nN

(3-36)

shere T defines the wave period. Since the integral is evaluated at

1
constant ¥ and X, one can substitute - = dx for dt. After non-

iimensionalizing, Equation (3-35) can be rewritten as:

SV Y eo.

TY, EGF (3-37;

[ime-average flow is therefore the sum of the steady flow,

as seen in the wave reference frame, and the time-average flow in one

period if all the material in one wavelength between the axis and the

streamline Y were transported as a solid block with the wave speed c.

The integrand in Equation (3-37) is obtained numerically by solv-

ing the stream function relation (3-30) for n excent for limiting

rases of small ¢, where a perturbation solution can be octained in

~losed form.

Figure 13 is a sketch showing the four general types of curves

vhich can be obtained for Q,/0., VS X.

Curve I represents a case where neither tranping nor reflux

occurs,

Curve II is a representation of a case without reflux but with

trapping. Point "a" represents the auantitv of fluid tranvped

within the bolus region.

Curve III represents a case of reflux but no trapping. The

nuantitv of fluid between the origin and point "bh" represents



the time-mean forward flow in the core. 28 is the value of the

stream function which divides the forward and reflux regions

The region between 'b'" and the terminal point of the curve

represents the quantity of reflux flow. R is the amount of

reflux flow as a fraction of the net flow.

Curve IV defines the case where both reflux and trapping are

present.

By comparing the values of 2 obtained from this analvsis with

‘he values of y, obtained bv Shapiro et a1.(® one can see both

analyses vield the same results.

Reflux Limit. Even though the limit of reflux is discussed in

great detail by Shapiro et a1. (4), the technique emnloved will be

briefly reviewed to fac’ itate the discussion of the reflux limit in

Chanter 4.

Bv utilizing a perturbation solution about the point (1.1) in

Figure 13 the stream function near the wall can be defined bv a small

narameter

~ Ma=U=  { y=38"

Assuming the wall can be expressed as a power series in € the wall

shane can be rewritten as

N(E.0.8.f) = H+ a.r + = ( 5-39]

[Introducing this relation and (3-37) into the stream function relatior

ind solving for the coefficients a . 3.. etc... then applvineg (3-39)



Into (3-37) results in the following value of flow rate near the wall

For a sinusoidal wall shape.

bo _ J E(e0 = 6%)
2 2,3/2 te

(1 — 02)

{ 3-40)

differentiation of this expression at the point 0 = ®, and v |)

show the slope of the 0 10 curve to be equal to zero at the point (....

for reflux to occur 6 must be greater than 6 . This can only be the

~age if 6 &lt; 62 or if

2
2+0
On

(3-41)

Two-Dimensional Summary Curve. Figure 14 represents a graphic

summary of the results obtained for the two-dimensional sinusoidal

seometry The squeeze ratio is given on the abscissa; ¢ = 0

represents no peristalsis and ¢ = 1 renresents complete occlusion.

The ordinate represents the time-average flow ranging between 6 = 0

and 6 = 60° The regions of reflux and trappine are shown for the case

*
of zero Revnolds number . Only the lower limit of trapoing is shown

in Figure 13 since the upper limit is outside the pumping range of

he model (i.e. 0 &gt; 6 &gt; 6,3 0 &gt; ¢ &gt; 1).

Reflux is quite common over most of the pumping range up to

1/8, = 0.7 for small ¢, and up to 6/6, = ] for complete occlusion

3

Refer to Reference 5 for the effects of Reynolds number and wave number



Also plotted on these curves are the contours of constant reflux

fraction R. For values of ¢ &gt; 0.1 the reflux fraction was found

numerically using Equation (3-37) along with the interrretation of

described in Figure 13 (solid line). For ¢ &lt; 0.1 an exact solution

(dashed line) for reflux fraction was obtained (both solutions are

represented on Figure 11).

The reflux fraction is quite small when 0/8, is greater than 0.5;

yet, as 6/0, decreases, J{ approaches infinity since 84 approaches
zero. Since the reflux flow remains finite, the absolute non-dimensional

value of Bq is shown in Figure 15 as a function of ¢ where the value

&gt;f reflux flow is defined bv

3.3.

f §=423
ma ww

Basic Formulation (Axisymmetric Geometry)

Only the relations necessary for a later discussion of ureteral

function will be developed in this section. The basic formulation

and conclusions are similar to the two-dimensional case, so detailed

discussion will not be included (see Reference 4 for the detailed

analysis). The nomenclature used in the axisymmetric geometry is also

included on Figure 4.

Integration of the governing equations in the wave reference frame

and subsequent transformation to the laboratory reference frame leads

ro the following velocity profiles

J nae 2
c= 201+5H- (3-413)



cy]

2 2
Vv _ 8H, a/ma’c n q/na’cy ny

Jie re

q_ _ U 2= (2-1 2

2 o )d(n")

"he local pressure gradient pgecomes

nn —

)P 1 2, 1
 — = - = - (8 - HY) =;

dE 02 ot

(3-44)

(3-45)

(3-46)

Jjsing the following form for the Stokes' stream function

ih =u":cnbe \VI ol 7 / 7

‘he stream function ratio can be written as

M + HZ 2 4 ™ + HO 2 2
Ceol gn Eel

MM 2H b

(3-48a)

there

M =~ ou’
ma ©

[he value of the stream function at the wall

v A

be =

(3-48b)

(3-49)

fF 4 =) on the axis.



[he pressure variation with time can be written as

S(g,0) - B= Ly+(8 = 1) de
0 H

(3-50)

for the case of a sinusoidal wall shape the pressure rise per wavelength

v

\P, from Reference 4. is given as

2

166°(1- $0) - 861 - DH a-3 He
 2.7/2

(3-51)

ghere

J
(26 - 2/2)

(3-51a)

Trapping Limit. In the axisvmmetric geometry, the splitting of

rhe central streamline can also be used to identify the onset of

trapping.

[n the axisymmetric geometry the stream function is a biquadratic

aquation in n. Before trapping is initiated only one real value of r

can exist for x = 0, i.e. n = 0. At the initiation of trapping all

values of n will be real and equal to zero. As the trapping bolus

crows, two roots will remain equal to zero while the remaining positive

coot will define the boundarv of the trapped zone, i.e. n

{owever.

(3-52)



The lower limit of trapping is defined by the following relation

HH =
1(ony + 2 { = 1)

shere M is defined bv Equation (3-48b)

As the trapped bolus erows. the boundarv is defined bv

2

oe 11/2 .
(M+HY)

(3-54)

 M4 HZ

Shaniro et a1. obtain the trapping criteria in the following

°) rm

6, (1-20 + 367)
% (16 - 62)62

[ J—55)

Again as in the two-dimensional case, the results can be demonstrated

-0 be equivalent.

Reflux. For the axisymmetric geometry the quantity of dimension-

legs time-mean flow below anv material particle Y can be expressed as

2 n ZY erde j=56"

Reflux Limit. Using techniques similar to those emnloyed in the

nlane geometry, the reflux limit is identicallv equal to 6/6. = 1

i.e. for all values of flow. reflux will be present except at 6 = 0.



Axisymmetric Summary Curve. Figure 16 is the summary curve for

the axisymmetric geometry. With ¢ as the abscissa and 6/6, as the

yrdinate, the limits of trapping and reflux are shown along with the

contours of constant reflux fraction. As in the two-dimensional case

} was obtained numerically for ¢ &gt; 0.1 and in closed form for ¢ &lt; 0.1

Figure 17 is a representation of the reflux flow Op for 6/6,

squal to zero.

} J Three-Dimensional Channel Effects

The apparatus, although approximately two-dimensional, has

-ectangular cross section with inactive end walls. For this reason

it is important to consider the effect of these end walls in the

theorv.

Basically, the pumping duct can be considered as a rectangular

~-hannel of constant height with varying aspect ratio. The two-

iimensional theory can be simply modified using an approximate technique

described by Purday 1). With this approximation the two-dimensional

sressure gradient (Equation 3-15) becomes?

--2 LH dt o-
3p an +.
3

ees dt

n+ 1 n+1

nn

vw

~

(3-57)

 %*
there 8 is the actual non-dimensional half-width flow per unit height

&gt;f channel, and n(£,1) is a function of aspect ratio as determined by

tRefer to Appendix B for the details of this analvs i ay



20x, 1) + n(x,t) = 2
2h

(3-58)

Here w is the height of the channel and 2h(&amp;,t) is the local gap width

[n the extreme case of ¢ = 0.9, the value of n for the exneriment (see

Chapter 5) ranges between 13 at the wide section to 27 in the contracted

region. More will be said in Chapter 5 concerning this modification

and the comparison of the results thereof with experimental results.



URETERAL MODEL

lhe physiological information presented in Chapter 2, coupled

with the concepts and relations developed in Chapter 3, provide a

platform upon which a theoretical model of ureteral function can be

ronstructed. As will be shortlv demonstrated, the ureteral model

an be considered as an extension of the infinite-wave-train analysis

i | Basic Assumptions

Since the analysis presented in Chapter 3 was based upon as-

sumptions which are also relevant to the ureter, i.e.:

(1) the long-wave-length approximation

di) neglecting of the inertial forces

(iii) constant viscositv and densitv,

"he governing equations of Chapter 3 will be valid for the ureteral

nodel.

Little is known regarding the detailed physiologv of the uretero-

relvic and uretercvesical Junctions. What is known. however, indi-

rates that entry and exit of a peristaltic wave from the ureter does

rot affect the character of the urometric pressure pulse.

In the ureteral analysis it will be necessary to consider passage

of a solitary wave. However, as long as the velocity and pressure

fields are prescribed distal and proximal to a wave, the theoretical

approach will be analogous to that prescribed in Chapter 3.

Along with the foregoing assumptions. additional constraints wil]

ve placed on the theoretical model which relate directlv to urometric



sbservations. These constraints do not alter the theoretical pre-

sentation of Chapter 2 but place restrictions on the values of cer-

rain of the variables.

In the case of a ureteral wave, the conditions at both ends of

1 wave are well documented. From Chanter 2, the wave was shown to

have a negligible pressure rise across it as compared with the peak

Jressure, i.e. LP z 0. This condition seems to exist within the

ureter, as indicated by Figure 18a, which is a sketch of a typical

~hvsiological pressure pulse taken from ki11¢8), Figures 18b and 18c

displav the character of pressure pulses if AP &lt; 0 and AP &gt; 0,

respectively. Since neither of the latter two cases are observed

urometrically in normal ureters, the pressure rise across a wave must

He approximatelv equal to zero.

rv ¢ ad constraint on the model requires that the fluid remain

motionless between individual preistaltic waves (i.e. U=V = 0

in the resting ureter). In fact, if fluid velocities did occur with-

in the inactive ureter, urine would enter the bladder continuously.

Moreover, there would be pressure gradients ahead of, and behind, the

neristaltic wave, in opposition to clinical observations.

One important conclusion can be drawn from the preceding

paragraphs. Each ureteral wave can be considered independent of any

nroximal or distal wave. As long as an inactive or resting length of

* * Vv o ” .

ureter senarates each peristaltic wave and AP, = (). each individual

save can have its own pressure pulse, spurt volume, and geometry.



4 eo ae General Formulation (Circular Lumen]

Since the ureteral lumen, during various phases of dilation,

nust approach an axially-symmetric cross section, it is necessary tc

~onsider the fluid mechanics for such a shape.

Ureteral catheters presently used must affect the size and shape

of the ureteral lumen. Since the outside diameter of the catheter

is approximately equal to the distended diameter of the lumen, the

axisymmetric model should vield some insight into the effects of the

ratheter, at least to a first approximation.

“hen considering the solitary ureteral wave in the wave reference

frame, the constraint on the flow field in the resting ureter places

a restriction on the steady wave frame flow a. In the laboratory

reference frame U = 0: whereas. in the wave reference frame u = -c¢ 1.

he inactive ureter. For this reason a must be constant at all sec-—

rHHons and eaual to

+
&lt;

Ta [ Lions

shere a is the radius of the resting ureter.

. . . , 4 , ,

By using Equation 23 from Shapiro et ay ¢ ) which mav be written

Q _ hT a
 = GQ) 3

ma ¢ ma cc

(4—

together with Lquation (4-1), a simple but important fact regarding

‘he flow field can easily be seen. The instantaneous flow CC will be

rositive only if the radial position of the wall is sreater than the



resting radius, i.e. :,andwill be negative for h &lt; a. Knowing

that the flow is locally Poiseuille, the pressure gradient will be

negative if h &gt; a and positive if h &lt; a. This point will be made

~learer in the discussion of the pressure gradient to be presented

later.

Taking the time average of Lauation (4-2) and using Louation (4-1

-he dimensionless time—-mean flow can be exnressed as

0) yr { &amp;4—

2 Co
vhere II” is the wall position squared when averaged over a wave lengt!

[n other words, in order for a ureteral wave to carry a net positive

2 :
flow rate, lI” must be greater than unity.

Using Equation (4-3), all the relevant equations presented in

Chapter 3 can be modified to pertain to the solitarv ureteral wave.

The pressure gradient within a wave, which can be obtained from

taquations (3-46) and (4-3). is equal to

JE 4 [ [1— |

As was indicated above, the pressure gradient will be positive

ny 7 -

yr negative depending upon the value of H, i.e. 23P/3&amp;E &gt; 0 if ll &lt; °

nd 3T/0E &lt; 0 if B -

Wave Shape. If the actual wave shape were known within the ureter

Fquations (4-3) and (4-4) would directly vield the associated pressure

pulses and spurt values which could then be compared with urological

sbservations. however, because of insufficient data, it is necessarv



to use an inverse procedure: i.e. to determine from physiological data

a wave shape which is consistent with the theoretical model.

[o this end, a typical urometric pulse can be used to vield

rhe general form for the ureteral wave. Distinction must first be

made between a length-varying pressure pulse at constant time which

an be obtained from Equation (4-4), and a time-varying pressure

pulse at a fixed location which is obtained urometricallv.

Ficure 19a represents an arbitrary wave shape at anv instant o:

ime. Using Equation (4-4) the associated instantaneous curve of

bressure vs distance is shown in Figure 19b. However, if a catheter

is placed at a fixed location, the pressure pulse, which would be

recorded against time, is shown in Figure 19c. From the length-

varving pressure pulse the positive pressure gradient is associated

with the contracted region, and the negative gradient is related to

the dilated region. In the time-varying pressure pulse the reverse

is the case, i.e. the positive gradient occurs within the dilated re

sion and the negative gradient occurs within the contracted region.

Examination of tvpical ureteral pressure pulses, e.g. Fie-

ure 3 or Figure 31, shows that OP/3T is first positive then negative

Considering the concepts just presented, the ureteral wave must be

corposed of a dilated region (H &gt; 1) followed by a contracted resion

( &lt; 1). It should be noted that radiographic and visual observations

support this conclusion.

The choice of a particular wave shape is not critical to the

understanding of ureteral fluid mechanics as long as the wave shape

is consistent with the general form as dictated bv the shape of the



sressure pulse. From urometric data it appears as if the wave shape

varies between successive waves and between individuals. For these

reasons a stepped or square wave shape is chosen because it leads to

simple calculations and a simple understanding of ureteral fluid

nechanics.

+ is obvious that this geometry cannot simulate the smoothly-

varving shape of the ureter; however, as will be shown later, it is

1 good approximation to the smooth geometry.

(he particular wall shape which will be used in this analysis is

illustrated in Figure 20a. The shape consists of a contracted region

of uniform cross section (H, &lt; 1) and a two-stage dilated region.

The first, which is designated the transition reesion, has a uniform

: . . n,

radius of the same order as the resting radius (HH, &gt; 1). The second

dilated stage or bolus region has a uniform radius much greater than

the resting radius (BB &gt;&gt; 1).

Pressure Pulses. Figure 20b represents the triangular shaped

yressure pulse which is obtained from this stepped wave. This pulse

is a reasonable approximation to the urometric pulses (see Figure 3).

[he pressure rise per wave length is the sum of three pressure differ-

ances, i.e. AP,, AP. AP... Each pressure difference can be expressed

, or
AP = 2.59) (L—,

vhere the subscrint i refers to the various regions.



- great deal of information concerning the amplitude and shape o!

“he pressure pulse can be extracted directly from the character of

the pressure gradient as can be seen from Figure 21. Increasing the

squeeze, i.e. reducing H,, results in a continuously increasing pres-

sure gradient. However, as H increases beyond unity, as will be the

case in both dilated regions, the pressure gradient is bounded bv a

minimum value. For the axisymmetric geometry, this limiting value

sccurs at a value of H = /2.

As the radius of the dilated region increases,themagnitudeof

the pressure gradient approaches zero. Since the size of the bolus

is much greater than unity, the pressure gradient within the bolus

will be approximately equal to zero or AP, = (0. In other words, no

major pressure variations will be associated with the bolus region of

the wave. For this reason. the major ureteral pressure variations will

be associated with the transition and contraction regions of the wave.

Since the pressure rise per wave length must be equal to zero and

AP = 0, the value of AP, = -AP,. Therefore, the maximum pressure

rise within a wave is restricted by AP, even though AP, is without

limit.

[his fact leads to an interesting disclosure. With this model

the peak pressure will occur at the transition point between the

contraction and transition regions which lags the passage of the bolus

| (13)
by £.,/c seconds. As previously noted, Barrv et al reported such

a time lag between passage of the bolus over the tip of the catheter

and the peaking of the pressure pulse.



A closer comparison can be made between the theoretical pressure

yulse and the physiological pressure pulse if a more realistic wave

shape is chosen. Figure 22 is a sketch showing one possible contin-

sous wave along with the mathematical relations describing its shape

~ith the continuous geometrv, the end of the transition region is

arbitrarily chosen as the point where the pressure gradient is about

5% of the maximum pressure gradient.

Using the continuous wave shape of Figure 22, Equation (4-4) car

be integrated to vield the time-varving pressure pulse. Tigure 23

includes several pressure pulses for various geometries along with a

: . . ., (8

typical urometric pulse obtained by Ki11 ) In all cases the pulses

are similar to the physiological pulse. By proper choice of wall

shape, the theoretical nulse can be made to duplicate the urometric

1ata.

iffect of Catheterization. The general formulation for the intro

duction of a non-occlusive catheter is shown in Appendix B. The

analvsis considers the presence of a catheter of radius r, which is

introduced into an axisymmetric ureter. In the analvsis, it is as-

sumed that the presence of a catheter does not affect the wall shane

or dimensions. It is obvious that the shape of the ureteral wave must

change when a catheter is inserted; however, as a first approximation.

the analysis will yield the potential effects of the catheter.

The effects of the catheter on the urometric pulse can be seen

in Figure 24, which is a graphical representation of the pressure

ecradient as expressed in Figure (B-5). The general shape of the pres-

sure gradient curve remains unchanged as catheter size is increased:



1owever, the magnitude of the pressure gradient is severely affected.

5ince the peak pressure within a wave is limited by the magnitude of

the maximum negative gradient within the transition region if oP = 0.

rhe peak pressures within the catheterized ureter will be ereater than

that of the non-catheterized ureter for the same geometric variables

L., L, and H,).

The qualitative share of the pressure pulse with the square wall

rodel will remain unaffected bv introduction of a catheter. i.e. the

reak pressure will still lag passage of the bolus and the nressure

variation within the bolus will be small.

Qualitatively, the introduction of a catheter has a small effect

on the pressure pulse produced by the continuous wall shape of

“igure 22. To strengthen this point, Figure 23 also includes a pres

sure nulse nroduced from the catheterized model.

Reflux. To investigate the characteristics of the reflux phen-

omenon within a ureteral wave, the method of calculation rreviously

developed in Chapter 3 will be emploved..

The time-mean flow between the axis and a streamline in the wave

frame can be calculated using Lauation (3-42) and (3-35) along with

Lauation (4-3). The results are similar in character to those pre-

sented in Chanter 3.

One can solve for the reflux limit in a manner analcgous to that

resented in Section 3.3. The stream function can first be defined

hy LEauation (3-38) then used to define the wall position in powers of

= as was shown in Equation (3-39). Substituting this relation into

Lquation (3-37) along with the appropriate value of the stream function



then solving for the constants allows the flow near the wall to be

written in a form similar to Equation (3-40). Since © must be greater

than 6 , the general condition of reflux in the ureteral model can

be written as

pf oe
a’ (/,—¢

J

Since AP = () in the ureter, Lquation (4-4) can be integrated to

7ield the following relation for the pressure rise per wave

J /
1

- 5, dg
02

«J ( [,~ /

Comparison of Equation (4-6) and (4-7) leads to the important conclu-

sion that, with the axisymmetric cross section. reflux cannot occur if

AP, = 0, However, for anv AP, &gt; 0 reflux might be present.

Displacement Profiles. In the wave reference frame, fluid par

icles move thru the wave along particular stream lines. The tine

each particle takes to pass through the wave will be designated as

its residence tine T_- In the wave reference frame. the non-dimension-

1] residence tire of the particle on the stream line { equals

Loon
i dx

Cy

)

(L-8,

u/c), is the local-wave-frame velocity of the particle y.



Initially, i.e. at T = 0, all particles will be located at § = .

[n the laboratory reference frame the particles are carried within the

vave for a time eaual to the residence time. To clarify this point

consider the following: if. in the wave reference frame, a particle

rakes one wave period to pass thru the wave then, in the laboratory

Frame the wave has progressed one neriod. Therefore, if a particle

vere initiallv at £ = 1 at T = 0, then after the wave moves one period

rhe particle will still be at &amp; = 1.

When 7 is greater than unity, the wave will prosress more than

one period before the particle exits the wave, leaving the particle

vith a net forward displacement, i.e. £&amp; &gt; 1. If, on the other hand.

is less than unity the wave will have a final position less than

 Ll placing it in the reflux region.

Jith trapnnine present, particles within the bolus and particles

along the center ctreamline cannot pass throush the wave. However,

axie will have definite residence times.particles ¢ ~

At transverse l’ne of particles can be marked at &amp; =

Once part “= nass through the wave their position will not change

with time since they will be in the inactive ureter (7 = 0). If one

waits until all particles have passed through the wave. a curve mav

be drawn through their final positions. This curve will be designated

as the net displacement profile.

Figure 25a is a series of displacement profiles obtained for var:

lous geometrics. Curves I, II and III do not show any indication of

reflux, as should be expected, since these geometries vield a zero

rressure rise per wave. If the constraint of AP. = 0 is relaxed,a



rrofile can be obtained which clearlv indicates the existence of re-

‘lux along the walls (curve IV).

Trapping. The limit of trapping for the axisymmetric ureteral

vave can be obtained bv a substitution of ILquation (4-3) into Lquation

'3-53). This expression becomes

1 /A 1 4, ]

his means that a trapped bolus will exist beneath any position of -
-

vave that has a radius ¢creater than Jo.

Summary Curve. With the ureteral wave, a summary curve can be

lrawn showing the regions of reflux and trapping as a function of

reometry. A particular curve will exist for each Lys L,, Las and Hl.

yut Figure 20 onlv illustrates the case where L, = .441, L, = 44],

uo = 118 and It = 25. These particular values were chosen since thes

are comparable ww’ physiological data. More will be said regarding

‘hese dimensions i.1 the ne-“it section.

With Lys Ly, L and F defined, the two remaining variables,

lL.e. i, and H,, will be used as the x and v axes, respectively.

Displayed on this figure are the limits of reflux and trapnins. The

curve showing the loci of geometries vielding AP, = 0 is concurrent

vith the limit of reflux.

Comparison with Physiological Data. In the physiological liter-

ature three facts are well documented and will be used to determine the

validity of the ureteral model, i.e., the qualitative shape of the



bressure pulse, the magnitude of the peak pressure above basal level

and the fluid carried within a wave (spurt voluem).

Several points pertaining to the qualitative shape of the pres-

sure pulse have been discussed previously. With both the sauare wall

and continuous wall shares, the general shape of the pressure pulse

is similar to the urometric data. In fact, since the peak pressure

occurs between the transition and contraction regions the theoretical

: (13)
model predicts the delay observed by Barry et al between passage

of the bolus and the peak pressure. Because of the large radius of

‘he bolus, as compared with the resting radius, small pressure varia-

ions occur within the bolus region.

(n comparing the theoretical model with urometric data it would

be of interest to studv the variation of non-dimensional peak pressure

as a function of the relevant geometric parameters for AP, = ()

i.e. L,/L, and Ey. The corresponding value c*
vu av

from Figure 26. A plot of P - PF . is shown in Figure 27.
max basa’

L/L, = 3/7 and L,/L, = 7/3 depict the limiting values of L, and L,

which have physiological relevance. The peak pressure is bounded at

i, = 1.5, as could be exnected, since the pressure gradient within

the transition regions limits the peak pressure.

The fluid carried within a ureteral wave is related to the time

nean flow through the following relation.

)
4

= Ta© (4-10

iquation (4-10) can be used along with Equation (4-3) to determine the

spurt volume within the axisvmmetric ureteral wave.



At this point it would be helpful to consider a few possible

reometries and illustrate the spurt volumes and peak pressures car-

ried by these waves. Table 1 is a representation of a series of

square wall configurations. Because of the large number of variables

certain of the parameters were held constant including the wave

speed ¢ = 3 cm/sec and the viscositv yu = .01 Poise.

The value of resting diameter was chosen so that the peak dif-

ferential pressure (P - P ) would be within the physiological
max basal 2

range. Variation in resting diameter has a strong influence on peak

. . 2

aressure since the pressure is inverselv proportional to a

The value of bolus diameter was also held constant since within

the ureter the lumen is most likelv circular and constant in diameter

along the length of the bolus.

ith the bolus and resting diameters held constant, the length

and diameter of the contracted and transition regions can be varied. Cer

tain facts, previously discussed, now become evident: First, the values

of the peak pressure are independent of the dimensions of the bolus

region and depend only on the dimensions of the contraction and dilated

regions. Second, the fluid carried within a wave is onlv a function

cf bolus size and is not affected bv the details of the pressure pulse

Finally, the diameter within the contracted ureter is approximately

equal to the resting diameter. This fact seems to be substantiated

by radiographic studies which showed that the bulk of the fluid trans-

port is related to the bolus region, while the resting, transition, and

contracted regions of the ureter appear to be void of urine. Since the

dimensions within the contraction and transition regions are very



small (0.1 mm), radiographic techniques would be unable to detect the

yresence of urine.

vith the geometries chosen in Table 1, the time lag between pas-—

sage of the bolus and the peak pressure ransres between 1.1 and 4

seconds.

Because of the large diameter of the bolus, i.e. Il. = 25, trapnins

vill exist within this region of the wave. 1he presence of trapping

within the transition region of the wave depends on the actual ¢geo-

netry of the region.

t J General Formulation (Lecbe-Shaped Lumen)
From Figure 2 it can be seen that the ureteral lumen can form

1 aqauasi-lobe-shared geometrv at least in the resting ureter. Since

‘he actual geometrv is ~. °° c.mlicated a lobe-shaped rnodel can be

constructed which includes the maior characteristics of the ureter.

The following sketch based on Figure 2 shows a cross-sectional shane

consisting of six lobes each having a width 2h. where h is the trans-

verse coordinate of the wall relative to the center line of each

lobe.

 ”,



"he overall dimension was chosen to be 2 mm since the ureteral lumen

is approximately equal to this value. If we neglect the center core

-he cross-sectional geometrv can be considered as 6 parallel two-

dimensional channels.

[he general formulation is analorous to the circular formulation

nresented in Section 4.2. Because of the similaritv between the cir-

cular and lobed models the discussion will be brief and onlv the im-

yortant relations will be touched upon.

Since no fluid motions exist except within the active wave

reeions, the wave frame flow q, i.e. the flow per unit height in

yne-half of a two-dimensional lobe, must equal

{

ising this relation along with mean-flow rate as defined by

quation (11) of Reference 4, the mean-flow carried bv a two-dimen-

sional ureteral wave is related to the average position of the wall

hv the following relation.

= oo (H—1)

[n other words, the average dimensionless wall coordinate H must be

creater than unity if the wave is to have net positive flow rate.

The dimensionless pressure gradient within the lobe-shaped wave

can be obtained by substituting equation (4-12) into Equation (3-15).

This relation can be written as

nu

YP _ (1-H)
AE I

(4Li—=1"



This expression can be integrated to vield the pressure variation

+1 thin the wave.

Because of the similarity between Eauations (4-13) and (4-4)

the ceneral shape of the wave must be composed of a dilated region

followed by a contracted region. With the snuare wall shane, the

vave will still consist of three regions and have a triangular

rressure nulse as shown in Figure 20.

Equation (4-13) can be plotted against wall position in order

to show the character of the pressure gradient in various regions of

the wave (see Figure 21). The general shape of the pressure gradient

curve is similar to the axisymmetric curve in that they both have a

lower bound for the pressure gradient when H &gt; 1. The bound occurs

at H = 1.5 with the lobe-shaped geometrv. One can also see that the

magnitude of the pressure gradient is alwavs less than the axisvm-

netric pressure gradient. This means that for the same basic geometric

configuration, the peak pressure in the two-dimensional wave will be

less than the peak pressure in the circular ureter. Alternatively.

vith the lobed cross section a smaller value of ''a' is required to

place the peak pressure within the physiological range.

Reflux and Trapping. Using a pertibation solution similar to

rhe one discussed in Chanter 3 and in Section 4.2, the condition for

reflux with the lobe-shaped ceonmetrv can be written as

Ld.
G —~ = deg oJ (4-14)



Using Equations (3-30a) and (3-32) along with Equation (4-12)

results in the following criteria for trapping.

(4 1

[f the value of the wall coordinate h is greater than three times

rhe resting coordinate "a'', a trapped bolus will exist below that

portion of the wave.

Uith Ha, = 10, L, = .118, and L, = L, = ,44]1, a summarv curve can

oe constructed showing the regions of reflux and trapping as a

function of H, and Hy. llere again, an infinite family of geometric

configurations exist for LP = (), but onlv a relevant set of parameter

was chosen for display. Also shown on this figure are the values of

t, and H, which yield AP = (0. From this curve it can be seen that

reflux will not exist when AP, = 0

Displacement Profiles. Net particle displacement profiles can

&gt;e constructed for the lobe-shaped geometry by using kquation (4-8)

along with the two-dimensional velocity nrofiles and stream function

Curves I, II, and III of Figure 25b show a series of displacement

profiles for geometries where AP, = (, Curve IV shows a profile

where the constraint on AF, was relaxed in order to illustrate a

reflux condition.

Comparison withPhysiological Observations. By summing the flow

From each of the 6 lobes a relation can be developed between the spurt

volume GQ, and the mean-flow rate defined by Equation (4-12). This re-

lation can be written as



J, = 1.2 ac (4-16

lhe general character of the peak pressure within a stepned wave

is shown graphically in Figure 29. Since the major nressure varia-

ions are associated with the contraction and transition regions.

only Hy, L, and L, are displaved as variables. As with the circular

ceometry, the two curves depict the limiting values of the longitu-

dinal coordinates which have physiological significance. The value

of H, corresponding to each value of H, can be obtained from Figure

28 when AP, = 0.

Ising Figure 28 along with Equations (4-16) and (4-12), Table

2 can be constructed showing the spurt volumes and peak pressures fov

various geometries for which AP, = 0. As with the circular geometry.

the spurt volume is related to the bolus regrion: while, the pressure

pulse is related to the contraction and transition regions. As was

mentioned previously, the value of resting lobe width required to

nlace the peak pressure within the physiological range is less than

required for the circular geometry, i.e., 0.056 mm as compared vith

0.1 mm, respectively. With all ceometric configurations, wave speed

and viscosity were constants and eaual to 3 cm/sec and .0l1 Poise,

respectively.

4.4. Combination of the Lobed and Circular Ceometries. The ureteral

Lumen is not entirely circular or lobe-shaped, in fact, the shane

most likely varies between circular in the bolus region and lobe-

shaped in the resting, contracted, and transition regions.



As a first approximation, one can consider the cross section

7ithin the wave to suddenlv change from circular to lobe-shaped

at the end of the bolus region. In actualitv, a continuous trans-

i tion must exist; however, the conclusions formulated using the

sudden transition model will vield some insight into the smooth

transition. The general wave shape and nomenclature will be similar

ro the wave shapes presented in Figure 20 and 22 except ly will be

radial while 1, and bh, will be the transverse coordinate 'Y'.

rom the discussions presented in Sections 4.2 and 4.3, the ef

fects produced by a combination geometry will be straight forward.

It has been shown that the maior fluid transport is associated with

+he bolus region r© the wave. while the pressure pulse is related tc

rhe transition ar

pressure puls: -y rh Na

* contrar*®‘1regions. Since the spurt volume and

. independent, each quant’ “&gt; can be calculated for

its appropriate geometry, i.e. thie pressure + +1

theory and the spurt volume from the axisymmetric theory. In cal-

culating actual numerical values of pressure and fluid transport, care

nust be taken to match the instantaneous flow rate ( on either side of

rhe cross-sectional discontinuities.

4.5. Summary Comments on the Ureteral Model. As was illustrated in

Tables 1 and 2. either the lobed or circular geometry can account for

beak pressures and spurt volumes within the physiological rance. A

combination of the geometries. which is most likely the case within

he ureter. will also vield reasonable results.

The ureteral wave is composed of a urine carrying region, where

rapping is most likely present. followed by a contracted region whicl



is responsible for the pressure pulse. Conceptually, the ureter oper-

ates with a tvpe of "milking action’ where the urine is transported

in front of a pressure cuff which is formed bv the contraction and

-ransition regions of the wave.

Along the ureter, larse pressure variations are not required tu

~ransport urine, in fact, peak pressures 1/100 as large will be as

~ffective. llowever, in order to expel urine into a nressurized

bladder, peak pressures greater than intra-vesical pressures are re-

quired. If these peak pressures were less than the bladder pressure

a small regurgitation of urine into the ureter will occur as the

lreterovesical junction opens.

The actual internal dimensions of the ureter during passage of

1 wave are not determined exactly from the analvsis: however. the

rance of these dimensions is indicated. If the urometric pulses are

true recordings of intra-lumenal pressure, i.e. not artifact caused

5v the catheter, dimensions of 0.1 mm or less are required within the

resting and contracted regions of the ureter. Because of the large

size of the bolus as compared with the other dimension, the ureteral

wave would appear visually as a single dilated region followed bv a

single contracted region. Radiogranhic data apnnears to confirm this

~onclusion.

From the analysis, the presence of a catheter appears to have

small effect in the qualitative shape of the pressure pulse, but does

severely affect the magnitude of the peak pressure. As was expected.

the magnitude of this effect depends on the size of the catheter as

well as the accomodation of the lumen to the catheter.



Ihe model also presents a possible interpretation of the ob-

served time lag between the passage of thie bolus and the peak pressure

Gravity will have little effect on ureteral function as long as

-he ureterovesical junction effectivelv isolates the ureter from the

bladder. When the ureter is vertical, an additional pgh static head

will be present within the ureter.

Analvtically, it appears as if retrograde urine transport will

not be present in normal ureters since the pressure rise across a

wave must be greater than zero for reflux to occur. lHowever, it

night be present when alterations of wave shape occur. With refined

rhvsiological techniques, it might be possible to identify the pres-

nce of reflux bv urometric techniaues.



EXPERIMENTAL PROGRAM

). Introduction

[n Chapter 1 various theoretical treatments of peristaltic

yumping were mentioned; however, adequate experimental confirmation

&gt;f these theories does not exist.

The experimental program described in this chapter was developed

to yield both quantitative and qualitative information on neristaltic

pumping at Reynolds numbers where the fluid could be considered in-

sartia- free. The visual experiments were designed to determine the

operating conditions for which the phenomena of reflux and trapping

are present.

Pressure studies included an investigation of the pressure rise

yer wave length and the pressure variation within a wave as a functior

~f &amp; and 6.

TQ
* + -~J 3 :Previously, T. Latham ) constructed a quasi-two-dimensional

apparatus with which he obtained the integral pumping characteristics

ny

i.e. AP vs 0, for a range of Revnolds numbers. For kK &lt; 0.2 his

Ly

results substantiated the linear nature of the AP, vs 0 curves, as

, 4 mapredicted by Shapiro et a1 ), Latham's apparatus was modified by

S. Weinberg and E. Eckstein in (1965) to allow for limited flow

visualization. The results confirmed the existence of reflux near

rhe walls. but the work was not published because no reliable quan-

-itative data could be obtained with the apparatus.



&gt;.2. DescriptionofApparatus

Figure 30 is a schematic diagram showing the major components of

the fluid circuit. The peristaltic pump is located between two open

reservoirs, each of which is composed of a lower transition chamber.

vhich will be discussed later, and an upper tank. The upstream tank

2
rad a cross-sectional area of 1 ft and a height of 1 ft, while the

downstream tank had the same area but a height of 2 ft.

The fluid level in the upstream tank was maintained at Fo bv use

of an over-flow pipe which was located within the reservoir. The fluic

sover-flow from the upstream reservoir was returned to a sump tank

vhich was located beneath the pump.

The downstream reservoir had an adjustable over-flow pipe which

was used to set the pressure level, Po. The over-flow from the down-

stream reservoir passed into a three-wav diverter valve. It was then

diverted into a graduate for flow rate measurements or allowed to re-

turn to the sump tank for recirculation.

Manometers, which were attached to each reservoir, were used to

monitor the fluid levels within the reservoirs.

A variable speed gear pump, which was located beneath the sump

tank, continuously supplied the fluid to the upstream reservoir. All

conduit, external to the peristaltic pump, was 1 1/2 in. I.D. vinvl

tubing, except for 1 in. I.D. tubing between the gear pump and upstreanr

reservoir.

Various mixtures of glycerine and water were chosen as the workings

‘luid because of the large range of attainable viscosities (i.e. from



, centipoise (cps) to 500 cps) and the transparent character of the

mixtures. The latter requirement was necessary for visualization

studies.

A top view of the peristaltic pump is sketched in Figure 31

The pumping duct is bounded by a semi-circular backwall. a moving wall

and two cover plates (refer to Figure 32 for a cross-sectional view

of the pumping duct).

The stationary wall was composed of a 7 5/16 in. thick plexiglass

slate sandwiched between two 1 in. thick plates of aluminum. A radius

of 17.197 in. was machined in the back wall, then smoothed and polished

to insure good visual properties.

Affixed directly to the ends of the backwall were the reservoir

rransition chambers. The chambers were designed so that a sudden

increase in gap width would exist at the termination of the pumping

recion in order to minimize end effects.

From Figure 32, it can be seen that the pumping duct and transi-

rion chamber were bounded above and below by 3/4 in. thick plexiglass

cover plates. The moving wall was composed of a 1/16 in. thick sheet

of 70 durometer neoprene rubber taped to a .015 in. spring steel band

The rubber sheet extended 1/2 in. on either side of the steel band so

that a wiper seal could be formed (see Figure 32). Due to the severe

curvature of the rubber, it was necessary to sew the rubber to the

edee of the steel band over the entire length of the test section.

The technique for sealing the ends of the pumping duct and tran-

sition reservoirs is shown in Figure 31. In the region of the transi-

ion reservoirs, spring steel flaps were attached to the moving wall.



he neoprene rubber sheet was taped and sewn to these flaps resulting

in a continuous dynamic seal throughout the entire pumping chamber.

These flaps were then clamped to the ends of the transition reser-

voirs enclosing the pumping channel.

vith the test duct designed in this manner, internal pressures

yf 2 psig could be supported with minor leakage.

As was mentioned previously, the peristaltic action of the

moving wall was generated using a variable speed roller cam. The car

was comnosed of a central aluminum structure which supported 48

adiustable roller arms. Figures 31 and 33 show the basic structure

characteristics of the cam and rollers and their relative location

within the apparatus. Thirty (30) of the rollers were constructed of

aluminum and eighteen (18) were magnetic assemblies. The magnetic rol

lers were used where tension force was required to hold the steel band

in position, i.e. at x = 0, 1/4, 1/2 on each wave.

Since the moving wall was indistensible, the transverse peristal-

tic motion was accompanied bv a small amount of oscillatory tyre longi

tudinal motion. With a periodic wave, this secondary motion will have

zero amplitude every wave length from the rigid holding support. In

this apparatus the support was placed at one wave length from the begin

ning of the pumping duct so that the secondarv motion would eaual zero

at every integer wave position within the pump.

The entire peristaltic pump was mounted within a 4 in. steel "T°

yeam frame which was designed to withstand both static aad dynamic

loading. The frame maintained tolerances within * .003 in. without

obstructing the visualization experiments.



&gt;.2. Comparison Between the Experiment and the Two-Dimensional Theory

[In constructing an experimental apparatus, it is not possible

ro exactly simulate the conditions prescribed by the two-dimensional

rheory. For this reason this section is intended to introduce the

differences between theorv and experiment, and to discuss three pos-

sible effects on the theoretical model.

In Chapter 3, the theory was developed for a straight pump with

yoth walls undergoing peristaltic motion. Mechanically, it is much

simpler to construct a circular experiment than a straight one. How-

ever, as long as the radius of curvature of the experiment (17.2 in.’

is much larger than the mean gap width (.5") the curvature will have :

negligible effect on the flow field.

The next point to be discussed concerns the effect of a single

moving wall in the theory. It was shown in Chanter 3 that the local

pressure gradient within a peristaltic pump is a function only of the

local wall dimension relative to the local center line of the pump.

[In this apparatus this fact is still valid, but the center line of the

pump is now in the center of the gap and is no longer the line of

symmetry.

In accordance with the basic simulation criteria described in

Chapter 3, the following features were incorporated into the apparatus

(a) the test section contained exactly three wave lengths (an integer

rumber)*. (b) a periodic sinusoidal peristaltic wave was imposed on

*It should be noted that the two-dimensional theory could be modified
ro include non—-integer wave lengths.



one wall, (c) open reservoirs, which were intended to approximate

~onditions of constant pressure, were placed at the ends of the

pumping section.

At this point. feature (c¢) in the above paragraph requires fur

thur discussion. Because of the size of the reservoirs and the un-

steady character of the instantaneous flow rate Q(x,t) fluctuations

in pressure level up to 3 mm of fluid were observed for ¢ = .9. Ir

addition, the flaps, which were used to seal the transition reservoirs

deformed with static pressure and induced additional pressure fluctua-

tions. Together, these effects caused absolute pressure variations

within the pump, but did not affect the differential pressure readings

or visualization studies at low Reynolds numbers.

The fluctuations in reservoir pressure level became a serious

problem in the higher Revnolds number studies which were done bv

sw ._ (20) ; ; ion

Lk. Eckstein . When fluid is supplied from a reservoir into a chan-

nel or duct, consideration must be given to the entry length where

the Poiseuille type flow develores. Appendix C includes the details

of a calculation showing that for R &lt; 1 the entry length in this ar-

paratus was less than A/25. For this reason, it can be assumed that

the flow is locally Poiseuille throughout the pumping channel.

In Section 5.2, the effect of wall indistensibility was men-

rioned, i.e. the presence of a secondary longitudinal motion. An

analysis by Burns and parks 3) showed that as ao &lt;&lt; 1 this longitudinal

motion will have a small effect on the theorv (0 = .013 in this

apparatus).

In Chanter 3, it was shown that the theoretical treatments of

peristaltic pumping could be considered in terms of oo. ¢. R, and 0



'he values of these parameters in the present experiment are:

(i) Wave Number oa. For all experiments conducted in this

~hesis the value of a was set at 0.013. From the work of Burns anc

(1) . (5) , .
Parks and Jaffrin this value of o was small enough so that

rhe effects of wall curvature could be neglected.

(ii) Squeeze Ratio ¢. Any value of ¢ between 0 and 0.9 could

he imposed on the pumping channel with reasonable accuracy. However

with ¢&amp; &gt; 0.9 the accuracy required in setting the gap increased be-

vond the maximum accuracy of the apparatus. In this experimental

study, squeeze ratios of 0.9, 0.7, and 0.4 were used.

(iii) Reynolds Number R. For the experimental studies discussec

in this thesis, the Reynolds number KR ranged between .001 and .25. As

will be shown, these Reynolds numbers were clearlv within the inertia

free range. By proper choice of wave speed and viscosity, values of |

up to 30 could be obtained (20)

(i) Mean Flow Rate 6. At each value of ¢. a particular wave

speed and viscosity could be chosen so that the mean flow rate 6 could

be obtained between 0 = 0. and 6 = 0.

At this point, consideration must be given to the effects re-

sulting from the actual cross-sectional peometry of the pumping chan-

nel. The first of these effects was originally discussed in Section

3.4 and concerns the presence of upper and lower cover plates. No more

will be mentioned at this time as the results of the modification are

discussed in detail in Section 5.5

In addition to these three-dimensional effects, the pumping chan-

nel also included inactive regions where the fluid was able to leak



backwards. These leakage channels existed at the seal recess slot

in the backwall and at the top of the channel where the seal bends

outward. Since the local pressure cradients within the pump were

strongly dependent on the local gap widths, a significant increase

in gap width will result in inactive regions which mav in turn con-

rain leakage flow.

The effect of this leakage flow can be incorporated into the

-heoretical model in the manner as discussed in Appendix D. Basical

ly, the analysis assumes the flow in the leakage channel to be of

the I'oiseuille type and to be proportional to the local pressure

rradient induced by the active peristaltic pump. From this analysis

a dimensionless parameter ¢. which onlv depends on the geometry of

the leakage channel. can be used to characterize the leakare flow

within the pump. More will be said regarding this modification in

Section 5.5.

Experimental Technique

The technique used to set the adjustable roller arms on the cam

is discussed in the next paragraph. Initially, the moving wall was

withdrawn from the machine, and a series of roller arms were extended

until contact was made with the stationary wall. Using a removable

micrometer rig, which was attached to the downstream transition cham-

ber, the position of these extended rollers was measured and subse-

quently used to locate the position of the backwall. Knowing the thick

aess of the moving wall, the roller arms could be set to the desired

vave shape. Tor the present experimental studies, the cam was adjusted

0 generate the following periodic wave shane:



&gt;= 1 +¢sin2m("- (5-

with the local gap equal to 2... Using the wall setting technique

just described, each roller arm could be set within a tolerance of

£,002 in.

During each experimental run it was necessary to maintain a

record of wave speed and fluid viscosity. The wave speed, which

ranged between 1 cm/sec and 20 cm/sec, was logged on a Sanborn re-

corder with a timing mark. This mark was stimulated by a cam-

nicroswitch assembly mounted on the center shaft of the machine.

After obtaining a fluid sample from the downstream over-flow

pipe, during each run, the viscosity was measured using a Brookfield

.V model viscometer. Occasional viscosity checks were made using a

Savbolt viscometer.

Flow Rate. It was necessarv to measure the time-mean flow rate

-hrough the pump by using a collection technique because of the un-

steadv character of the instantaneous flow rate. Using the three-wav

diverter valve, the downstream over-flow was diverted in graduated

cylinders. Collection was made for at least six wave periods, i.e.

one revolution of the cam. At the opening and closing of the diverter

valve, a timing mark was entered onto the recorder bv means of a foot-

sperated microswitch.

Pressure. The pressure rise across the machine was read directly

From the reservoir manometers. To measure the pressure variation with

rime at fixed locations within the pumping duct, 1/8 in. diameter



&gt;ressure taps were drilled through the backwall at 1X, 1 1/4 A.

1 1/2 A. 1 3/4 A, and 2A from the beginning of the pumping duct.

All taps were placed 1 in. below the center of the channel (see

Fieoures 35 and 37a). From the discussion of the nodal behavior of

‘he pressure field within the pump (Chapter 3), these pressure taps

, -o D) — —~

were used to measure Peo1/a Poo Pra1/2 Pos Proa/4 Ps and

AP,, respectively.

To this end, a pressure manifold was constructed from 3/8 in.

rubing and attached to a Sanborn 268B differential pressure trans-

ducer (see Figure 34a). Because of the manifold, it was necessarv

to investigate the dynamic response of the pressure recording svs-

rem. Using a technique discussed in Appendix E, the lowest natural

frequency of the svstem was found to be 150 Hz. Since the characteris

-i.&gt; freauenci2&gt;s measured were well below this value (e.g. &lt; 1 Hz),

10 attenuation or amplification of the pressure signal was expected.

Visual. In all visual experiments, the character of the flow

field was identified using dye injection techniques. The dye used was

a mixture of Dupont Rhodamine B powered dve (orange), which was dis-

solved in water, and glycerine. By mixing proper proportions of

glycerine and dye, the density of the dve was matched to the density

of the working field. In some cases it was necessarv to dissolve the

oowdered dve in pure glvcerine.

[n the visualization studies, the dve was injected into the

bumping channel at two locations. When it was necessary to accuratels

nlace the dve, a micrometer controlled injection svstem was used (see

F{ocure 34b). This injection rie replaced the central pressure tan

Aurine the visualization studies



The other dye injection location, which was in the upstream

-ransition chamber, was used for the visualization of the trapping

shenomenon. This injection port, which was 0.1 in I.D. tubing, was

not used when accurate placement of the dve was required.

The dve motion within the channel was photographed in color

vith either a Beaulieu R16 movie camera or a Mamiva Sekor 500Th

35 mm still camera. For all experimental runs, the camera was mounted

om a rig which was located on the center shaft of the experiment about

} ft above the level of the injection ports (refer to Figure 35 for

a photograph of the test channel as seen by the cameras). Data was

obtained either in the wave reference frame, i.e. allowing the camers

ro move with the center shaft, or in the laboratory reference frame

 vy holding the camera rig stationary.

Different visualization techniques were emploved to identify

‘he phenomena of reflux and trapping.

(. ? flux. To identify the presence of reflux, the camera

sas mounted in the laboratorv reference frame. Dve was injected.

ising the micrometer injection port, in the region near the station

ary or moving wall. The net progress of the dve was photographed

during various flow rates and squeezes in order that the "reflux"

operating conditions could be identified.

By visualizing the flow field near the walls, reflux could be

santly identified by the retrograde motion of the dve. Without re-

flux the dve would proceed downstream in the direction of wave motion

{ii) Trapping. Tor all visualization studies pertaining to

trapping, the camera recorded data in the wave reference frame. The

first objective of these visual studies was to determine under what



conditions of flow 6 and squeeze ¢ the trapped bolus exists within

the flow field. The visualization technique which proved to be most

success ful for this work was related to the streamlines shape in the

wave reference frame. Since the trapped bolus is bounded by a single

streamline ¥ = 0, anv dve outside the bolus cannot enter into the

-ranped zone.

Using this simple idea, the progress of a line of dve, external

of the bolus, was used to identifv the existence of trapning as well

as the outline of the trapped bolus. Figure 35 is a sketch showing

‘he progress of the dye line after injection across the neck of the

wave. The dye line can be considered as a series of material par-

ricle markers, each located on a particular streamline Yy. As time

hrogresses, each particle will move along its particular streamline

at a velocity depending on its location within the wave. Since the

 J) = 0 streamline approaches a stagnation point at the end of the bolus

the J -e marking this streamline will asymptotically approach a sta-

tionarv position in the wave reference frame. The location of the

dye marking y = 0 could be identified and used to calculate the vel

ocities in the wave reference frame. More will be said about this

point in the next section.

If no trapping is present, the injected dye will eventually pass

through the wave into the following wave since all velocities within

the wave are negative.

To visualize the internal structure of the bolus, dye was in-

jected directly into the bolus. Experimentally, it was necessary

-0 inject dve into two regions of the bolus to identifv the internal



streamline patterns. Region I in Figure 36 was used to visualize the

leading edge of the bolus, while Region II was used to obtain the

rearward streamline natterns.

ded Results and Discussion

For the pressure studies as well as the visual experiments three

values of squeeze ratio were used, i.e. ¢ = 0.4, ¢ = 0.7, and ¢ = 0.9

[hese values proved sufficient to explore the operating range of the

apparatus and to establish the validity of the modified leakage-

rhannel theorv.

AY
Curves of OF vs 8. To obtain the overall pumping characteristics

&gt;f the apparatus, the pressure rise per wave length was measured as

7 function of flow rate for each value of ¢. Using this data. curves

n,
of AP vs 0 were constructed and compared with the two-dimensional and

nodified theories.

Figures 5 through 7 display the experimental results along with

the theoretical curves predicted by the two-dimensional theory (solid

curves). The data clearly deviates from the theory. In order to re-

concile the experiment with theorv, it is necessary to include the ef-

fects produced bv the actual cross-sectional geometrv of the pumping

~hannel.

At first we can consider the results obtained from the three-

dimensional approximation described in Section 3.4 and Appendix A. Ths

ny

short dashed line in Figure 6 shows the curve of AP, vs 0 with the

three-~dimensional approximation. This curve is only shown for ¢ = 0.7

&gt;ut the effects are similar for all ¢'s



At each value of AP the flow rate is reduced due to the presence

n,

of end walls. In particular, at AP = 0 the value of Sh is reduced to

a value which is approximately equal to the value obtained experimen-

tally. Alternatively, the pressure rise per wave length is reduced for

cach value of 6; however, at 8 = 0 the maximum pressure rise still re-

nains above the experimental value.

The effect of a leakage area on the theorv can be explained

using the following concepts. The amount of leakage flow will be

dependent on the magnitude of the adverse pressure gradient. At

J = 0, the mean pressure gradient is zero so the leakage flow will have

a negligible effect on the flow field; however, as AF is increased.

the effect becomes more pronounced. For this reason 6, will be

weakly affected by ¢, i.e., curves of constant ¢ will remain linear

and will always intersect 0 = 8y- The greater the leakage area the

n,
preater the effect on AP o

Amax

The effects of the channel and leakage area can be combined to

obtain a theoretical curve which agrees well with the exrerimental re-

sults (long dashed curves in Figures 5 through 7).

In order to correlate the modified theory with the experimental

Jata, a value of the leakage parameter § = 0.0061 was required for

b = 0.7 and ¢ = 0.4: however, a value of ¢ = 0.0028 was reauired for

b = 0.9. This preceeding statement requires further explanation.

I'wo values of ¢ were required because the area of the leakage channel

vas reduced between the experimental runs of ¢ = 0.9 and those of

db = 0.7 and ¢ = 0.4. The important fact to consider is that a single

value of €¢ was required for both &amp; = 0.4 and &amp; = 0.7. This should



ye the case since ( depends only on the peometrv of the leakage

channel and no chance in geometrv was made between these experimental

CUnsS.

From the discussion of the leakage parameter in Section 5.3 and

in Appendix D, a decrease in leakage area should be accompanied bv a

decrease in ¢: however, this was not the case. This apparent contra-

liction can be explained by considering the assumntion used in the

leakage model. In the theoretical analysis, the pressure gradient ir

the leakage channel is imposed by the peristaltic pumping action.

[This fact requires that there be a free exchange of fluid in the ver-

ical direction at everv section in the pump. When narrow gaps are

sresent, as for ¢ = 0.9, this assumption will not be valid since there

will be vertical pressure gradients restricting fluid motion. This

restricted fluid motion will result in an apparent reduction in leak-

Age area.

From the discussion in Appendix D, the value of can be related

to an effective pipe leakage area. For ¢ = 0.7, the value of ¢ cor-

2 . .

responds to a leakage area of 0.5 cm, which roughlv compares with

the area affected by the curvature of the seal, i.e. the area where

the rubber sheet bends to form the wiper seal.

The data obtained for oF, and 6 also demonstrate the absence of

inertial forces at least up to a Reynolds number of .25. From Figure

6, the data clearly shows that an order-of-magnitude increase in Rey-

nolds number had no effect on the experimental results. A study con-

 — , (20) . ,

ducted by E. Eckstein showed that the inertial effects do not be-

come important until the Revnolds number exceeds 2.



P(x,t) curves. Due to the sensitivity of the pressure trans-

ducer and the pressure limit of the dynamic seal, pressure pulses

ould be obtained experimentallv onlv for certain values of d

and 6.

he experimental data is shown in Figures 8 through 11 for a

series of squeeze ratios and flow rates. The theoretical curves were

obtained using the leakage-channel theory with the appropriate values

rf €. Both the leakage and the channnel modifications effect only

the magnitude of the pressure pulse not the shape.

From Figures 8 through 11, it can be seen that the experimental

results agree quite well with the theoretical predictions considering

the strong dependence of the pressure gradient on the wall position.

The best agreement between theory and experiment was obtained for

by = 0.4. It should be noted, that the data displaved for ¢ = 0.4

is an average curve taken from the actual pressure traces shown ir

Figure 37 (only © = 6, data is shown). The eight cycle per wave

oscillation present in these pulses are attributable to the pressure

sradients induced by the small wall deflections which exist between

the 8 roller arms. This oscillation was not observed with ¢ = 0.9

and ¢ = 0.7 since the local pressure gradients within the pump were

nuch greater than the gradients induced by the wall deflection between

the rollers.

The asymmetry exhibited in the pressure pulses shown in Figure ©

vas attributed to an overdumped R-C filter in the electronic circuit.

Visualization Studies

(i) Reflux. Using the visualization technique discribed in Sec-

-4 ON 5.4. both qualitative and quantitative data on the reflux



phenomenon was obtained. Bv systematic variation of 6/6, and ¢,

the reflux limit could be reasonablv identified bv the motion of the

dve along the walls. With reflux present, the retrograde motion of

‘he dve was a clear indication of its presence. The operating

hoints where reflux was observed are plotted on the two-dimensional

summary curve (Figure 14) with 0 normalized with respect to 6,

experimental. The symbols "®'" and "6" refer to the operating condi-

ions where reflux was and was not observed, respectivelv. For ¢ = 0.)

and ¢ = 0.4, the data confirms the existence of 'reflux' and ''no

reflux’ operating regions. Using the present visualization technique,

no information concerning the quantity of reflux flow could be

obtained.

lhe reflux along the walls is clearly shown in Figure 38 which

is a sequence of frames taken from the experimental data for ¢ = 0.7

before (6/0, = (0.84) and after the onset of reflux (8/6, = 0.57).

[t is necessarv to identify the retrograde position of the dve with

white indication line because of the limitations of black and white

photography. For 6/6, = 0.57 the position of the retrograde dve

differs on each wall since dve was placed near the moving wall before

it was placed on the stationary wall. At T = 10.0 the dve has pro-

rressed beyond the range of the camera.

(ii) Trapping. Using the techniaues described in Section 5.4,

the "trapped" operating conditions were observed and plotted on the

two-dimensional summary curve (Figure 14). A "trapped" operating

condition is indicated by " " and a ''non-trapped" condition by ''’

No trapping was observed for ¢ = 0.4. At ¢&amp; = 0.7 the data showed



yood agreement with the theoretical predictions of the two-dimensional

~heorv. In Section 5.4 a technique was described for identifving the

vosition of the forward stagnation point on the bolus. Briefly, the

technique involved the recording of the motion of a dve line after

insertion into the neck of the pumping channel. If trapping existed.

he dve marking the center streamline (¢ =0) approached the stagnation

hoint of the bolus. Figure 39 is a sequence of frames showing the

notion of the dye line for ¢ = 0.7 and 0/6, = 1, The location of

he stagnation point as well as the outline of the bolus are clearly

syvident.

Using the preceeding technique, the position of the central stream-

line could be identified and plotted as a function of time after inser-

tion. Figure 40 is a graph showing the position of dye marking ¢ = 0

vs time. T represents the non-dimensional time after insertion of the

 Nnive. x is the wave frame position of the dve on the streamline ¥ = 0

[he curves for 6/6, = 1 and 8/t = 0.74 clearly show the asymptotic be-

havior of the dve as it approached the stagnation point. The theoreti-

cal asymptotes are also shown on these curves.

When trapping is not present the dye passes direc

save as is shown for 6/6, = 0.52.

“1yv through the

Using the mean curve drawn thru the data, the slopes can be used

n
0 determine the wave frame velocity u/c as a function of x. Figure

41 is a plot of the experimental velocity data along with the velocities

&gt;redicted by the two-dimensional theory. For 0/6, = 1 and 6/6, = 0.74

the data agrees quite well with the experimental results.



The detail structure of the bolus can be demonstrated by a

series of photographs taken from experimental runs. Figure 42a

is a close up view showing the shape of the leading edge of the

holus for ¢ = 0.9 and 6/6, = 1. The internal streamline pattern i:

~learlv evident at the rear end of the bolus in Figure 42b for

b = 0.9 and 6/6, = 1. Figure 42c is a overall view of the trapped

volus beneath the crest of the wave with ¢ = 0.7 and 6/6, = .



APPENDIX
A

:FFECT OF THREE-DIMENSIONAL PUMPING CHANNEL ON THE PLANE THEORY

Ihe effects of three-dimensionality can be introduced into the

. . . : (15)

ylane theorv bv an approximate technique described bv Purdav

[heoreticallv, the total instantaneous flow at each section

7ithin the pumping channel can be written as

3
; _ _h” oP

opal to E) = 2w( 3 5%) ‘A-

‘urdavy showed that for a channel the pressure gradient in a

ocally Poiseuille type flow will equal

3X Tn 3 AVG
A /

vshere n is a function of aspect ratio in the channel and can be ob-

tained from Lquation (3-58).

Ji th Ym defined as flow rate per unit area of channel, a rela-

rion can be developed between the net flow rate through the nump Q

and the theoretical flow rate OO. From Equation (a-1) and (A-2) this

elation can be shown to equal

DE
n

1 gn ween {3 .oD 1 Q(x, cl) { A— 3

Jere

On
Degt)(x.vi A=



Jith the actual time mean flow defined as

r

AR z
T | oa

3

(A-5

there T is the wave period, and using Equation 10 of Reference 4,

‘he non-dimensional average flow rate through the pump can be shown

"0 )

¢* _q [_n
de = - — dT +

ac ac n+t+1
nN

_nH
, n+ 1 dt (A-6

Jsing the integral form of the continuity relation (Equation 3-3b)

1long with Equation (A-6) results in the following form of the modi-

fied pressure gradient in the experimental channel

oF_
NE

nH :

T+ dt © n+ 1 n+ 1
1 _ 1 (A= /

n
— 7 a1

_ 0%
where 6% = ——

ac

This expression can now be integrated to vield p(x,t) and

uv
\P vg H%



APPENDIXB

INTRODUCTIONOFACATHETEF

Currently, the diameters of intralumenal catheters are greater

han the resting dimensions within the ureter. Therefore, as the

~atheter is inserted the lumen will encircle the catheter to form

1» quasi-axisvmmetric annulus. Using this concept, a model will be

jeveloped showing the effects of a catheter on an axisvmmetric

lumen.

Ficure 43 is a representation of the nomenclature used in this

nodel. The analysis will be presented for a general wall shane in the

save reference frame.

[t should be noted that the model assumes that the wave shape

remains unchanged as the catheter is inserted. From the foregoing

discussion, it is obvious that the catheter must effect the wall

shape: however, for a first approximation this model shows the gen-

sral effects of catheter insertion.

[n the wave reference frame, the flow entering the wave is reduced

Jue to the interference of the catheter. This wave frame flow now

he comes

1 - ale - r) (B—-|

vhere r_ is the radius of the catheter.

The governing equations for this model are identical to those

ised in the axisymmetric formulation. However, the boundary conditions



are altered due to the presence of a catheter. These new boundary

~onditions in the wave reference frame are

(D-2,
r nt oi

Integration of the governing equations along with the introduc-

ion of Equation (B-1) results in the following expression for the non-

{imensional pressure gradient in the wave reference frame

2 2 2

B_aRe lr) a
no 3 - ®

1x

(B—?

Jhere

Ceo? ory + ord2nw- LR?= 2 (H R,) + 2t(G; H In H 5 Re. In R

a /

(HT - R_

 T In R_

(B-43’

(R=4b)

1d

J z n - R%)/ (In R= ln H)
~ co

(B-4c]

'n the laboratory reference frame the pressure gradient can be

written as



5B
5=#6 - 1 (B-

shere 0(E - T) is Equation (B-3) expressed in the laboratory

~oordinates.

The instantaneous flow within a wave is equal

Q_ J.
2

fa ¢C
R

I Ugb= a)

Lu

(R-6

Introducing the velocity profile and (A-1l) into Equation (B-6) and

integrating, results in an expression for the instantaneous flow rate.

Takine the time mean of this expression over a wave length results in

‘he following familiar form of the non-dimensional mean flow.

a



APPENDIX C

EFFECTOFENTRYLENGTH

[he boundary laver thickness in a developing flow was shown by

chlichtine 18) to be equal +

v5

y
A

1

Ws

IC J

here 6 is the boundary laver thickness, L_ is the length along the

»late, and U is the velocitv outside the boundarv laver in the un-

disturbed stream.

Changing this expression to include the peristaltic pumping
2

a . .

Reynolds number ES results in the following expression for the

rhickness of the boundary laver:

5 _ 5 al
Ro 1/2 2A

lf
4

At the beginning of the pumping channel the boundary lavers form

&gt;n both the stationary wall and the moving wall. Since the flow be-

~omes fullv develoned when 6 = a, from equation (C-2) it can be seen

‘hat for a R &lt; 1 the entrv length region is less than A/25.



APPENDIX bb}

EFFECT OF LEAKAGE FLOW

The leakage flow modification can be considered independently

and then combined with the channel modification to vield a theore-

-1cal approximation for the experimental geometry.

he instantaneous flow throuch anv section of the pump is rela-

-ed to the total pump cross-sectional area by the following continu-

tv relation

a, 9A = 0
9X ot

(|

[n this model, the leakage area will be assumed constant at

syerv section and eaual to AL while the pump area will equal

v (Li) = 2wh(X,t)

Jsing this fact, continuity can be rewritten as

\ J

0Q* | oh_3X t oT 0

here 0% is defined bv Equation (A-4). In this model, Q% can be

sxpressed as a linear sum of the instantaneous flow in the active

sump O.. and the leakage flow O. - Mathematically. this statement can

he written as

ac ac aw A.c
§ J)

Ny



for low Reynolds numbers, the leakage flow can be considered a

&gt;oiseuille tvpe flow, which is proportional to the local peristaltic

punning pressure gradient. The leakage will be assumed to be of the

following form.

4 AL op
Ac 28

1,

Jhere K is a constant.

ntegrating the continuity equation and using Equation (D-3)

results in the following relation between the instantaneous flows

ind the averace flows.

Q Q oq Q
Fr + A fr =H - II + _F + A 23

ac aw Arc ac aw ac
(D-3.

Knowing that Q_. is actually equal to Q in the two-dimensional

rheorv and using Equation (D-4)., the actual pressure gradient in

rhe pump can be written as

oF _ F-ex) uw
 wet) w+)

(D-6

Jshere

2ohb= K—5-
aWw

(D-/;

[n the analysis ¢ is a non-dimensional parameter which is found

sxperimentally and is only a function of channel geometrv. The higher

rhe value of % *ha Jarcer the leakace are-



[f an analogy is made between the leakage-flow defined by

“quation (D-4) and a Poiseuille flow through a pipe, K can be

Found to equal 3/8 1. Equation (D-7) can then be used to calculate

in effective pipe leakage area which will have the same leakage

flow as the experimental apparatus.



APPENDIX I

CALCULATIONOFTHENATURALFREOUENCYOFTHEPRESSURE-MANIFOLDSYSTEM

‘or 4 spbring-mass svstem, the natural frequency

- 55 Vid/m

I can be exnressed

(+.

vhere k is the spring constant and m is mass. The analogy within a

Fluid svstem is

i a

5 V1/C3 ([— 2;

shere C is the capacitance of the system and I is the total inertance

&gt;f the fluid defined bv the following relation.

ols
. A.

(I-13,

vhere i refers to each component of a fluid circuit up to n components

and LIA, is the length to area ratio of each comnonent.

Knowing all dimensions within the pressure recording svstemn,

and assuming that the capacitance is only due to the pressure trans-

ducer. the natural freauencies of the manifold can be calculated (refer

-0 Reference 23 for a detailed discussion of this analvsis).



Resting Wave Contracted Transition Bolus Minimum
Diameter Length Length Length Length Diameter

mm cm

Bolus
Diameter

Mm

Pret thasal Spurs
Volume

3
cm

Physiological Range

N.1 =- 2 8 + 20 3 a 12 3 » 12 0.1=&gt;0.5 \ =" 0.02 &gt; 0.5

Ureteral Model

)

a1

4 1

NM.1

|

16
/

10

L6
“7
19

16
17
19

16
4

[.A

11.50
11.50
11.50

7.50
7.50
7.50

7.50
7.50
7.50

3.50
3.50
3.50

Ty

3.50
3.50
3.50

7.50
7.50
7.50

7.50
7.50
7.50

11.50
11.50
11.50 1

2H,a
0.095
0.095
0.095

0.094
0.094
0.094

0.092
0.092
0.092

0.082
0.082
0.082

2H .=

2.5
2.5
IL

2.5
2.5
2.5

2.5
2.5
2.5

2.5
2.5
2.5

P -P.
max

8.25
8.25
8.25

7.50
7.50
7.50

13.50
13.50
13.50

18.75
18.75
18.75

}
1

0.05
0.10
0.20

0.05
0.10
0.20

0.05
0.10
0.20

0.05
0.10
0.20

TABLE 1: TYPICAL VALUES OF PEAK PRESSURE AND SPURT VOLUME FOR CIRCULAR GEOMETRY



Resting Wave Contracted Transition Bolus Minimum Bolus p x" Pp 1 Spurt
Lobe Width Length Length Length Length Lobe Width Lobe Width "2 858% yolume

&gt;

cmmm cm mmHo

Physical Range

0.1 =» ? 8 + 20

Jretaral Model

a

nN.056 6
 7
10

 nN 056 L6
L7
1G

8) “56 16
/

19

6 i6
7
19

3 &gt;

11.50
11.50
11.50

7.50
7.50
7.50

7.50
7.50
7 50

3.50
3.50
3 50

12 3 »

3.50
3.50
3.50

7.50
7.50
7.50

7.50
7.50
7. 50

11.50
11.50
11.50

I,

/,

N 1 »

2H,a
0.053
0.053
0.053

0.052
0.052
0.052

0.050
0.050
0.050

0.046
0.046
N.NL6E

0.5 0.1 ~»

-

0.56
0.56
0.56

0.56
0.56
0.56

0.56
0.56
0.564

0.56
N.56
0.56

Pon Pe
6.07
6.07
6.07

4.50
4.50
4.50

9.98
9.98
0.08

18.24
18.24
18.24

){i 0.02 » 0,6

0.03
0.07
0.12

0.03
0.06
0.12

0.04
0.07
N.13

0.05
0.08
N.14

TABLE 2: TYPICAL VALUES OF PEAK PRESSURE AND SPURT VOLUME FOR LOBE-SHAPED GEOMETRY
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