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ABSTRACT

Pumping by means of an infinite train of peristaltic waves is
investigated under conditions where the inertial forces can be neglected.
The analysis is formulated in the unsteady laboratory reference frame for
both two-dimensional and axially-symmetric geometries because of its
direct application to experimental pumps and ureteral function. Pressure
variations as a function of position, time and geometry were calculated.
In addition, new theoretical consideration is given to the phenomena of
"reflux' and "trapping'.

An experimental program using a quasi-two-dimensional apparatus was
carried out in order to investigate the quantitative and qualitative as-
pects of the theory. Studies of pressure vs time, for various squeeze
ratios, flow rates, and Reynolds numbers, were conducted for a sinusoidal
wall geometry. No effects of Reynolds number were observed within the
operating range of the experiments, i.e. up to a Reynolds number of 0.25.
Visual studies documented the existence of "reflux'" along the walls as
well as the identification of "trapped' flow regions beneath the crests
of the waves. Quantitative measurements relating to these phenomena were
made, and are in agreement with the theory.

The infinite-wave-train analysis is combined with a discussion of
urinary physiology in order to develop a model for ureteral function.
Evaluation of urometric data provided a basis for formulation of a ure-
teral wave shape which agrees with radiographic and visual observations.
According to the model, the bulk of the urine is carried within a large
bolus region which has little pressure variation associated with it.

The major pressure variations occur within a two-stage-contracted region
which directly follows the bolus. The peak pressure within the wave
occurs approximately in the center of the contracted region, not at the
end of the bolus. Dimensions within the contracted region (0.1 mm or
less) are approximately equal to the dimensions within the resting ureter.
Consideration is given to a circular cross section, a lobed cross section,
and a combined cross section which includes beth circular and lobed
regions. Finally, a discussion is included of "reflux'" and "trapping' as
related to ureteral function.

Thesis Supervisor: Ascher H. Shapiro
Title: Professor and Head, Department
of Mechanical Engineering
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NOMENCLATURE

mean half-width of passage (plane geometry); or mean radius
(axisymmetric geometry)

half-amplitude of peristaltic wave

wave speed

non-dimensional parameter relating to the leakage flow in
experiment (refer to Equation (D-7))

variables describing continuous wall geometry
non-dimensional wall coordinate, %

transverse wall coordinate

mean wall coordinate, 2

asymmetry factor describing bolus size for continuous geometry

length

>| =

non-dimensional length,
pressure

non-dimensional pressure

2
ap
Buch

pressure rise per wave length

2
&2
3uch

for plane geometry; for axisymmetric geometry)

non-dimensional pressure rise per wave

aZAPA ¢ aZAPA
(BucA or plane geometry; 8uea

for axisymmetric geometry)
instantaneous flow rate in lab reference frame

instantaneous flow rate between axis and the streamline
instantaneous leakage flow in the experiment

instantaneous forward flow in the experiment
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viii

net instantaneous flow in the experiment

net instantaneous flow per half-width of channel per unit

n
2w

time-mean flow observed in lab reference frame

height,

time-mean flow between axis and the streamline
time-mean reflux flow
time-mean leakage flow in experiment
net flow carried by a ureteral wave (spurt volume)
flow rate observed in the lab reference frame
wave frame transverse coordinate (axisymmetric)

)5
non-dimensional catheter radius, —
radius of catheter

peristaltic Reynolds number, %TE

cl
entry length Reynolds number, —x

v

reflux flow as a fraction of net flow

time

residence time of a particle in the wave reference frame
velocity components in wave frame (plane)

velocity components in lab frame (plane)

height of test section

coordinates in wave frame (plane)

non-dimensional coordinate, %

coordinates in lab frame (plane)
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Greek
a
o wave number, Y
B,Y,0 variables defined bv Equation (B-4)
b
¢ squeeze ratio, 5
A wave length
u viscosity
v kinematic viscosity
p density
Y stream function in wave reference frame
8 boundary layer thickness
X stream function ratio, %—
w
*
8 non-dimensional mean flow per half-width per unit height of
%
test channel, A
ac
0 non-dimensional time-mean flow
(g—-for plane geometry; Q2 for axisymmetric geometry)
ac ma ¢
80 non-dimensional flow for APA =0
BR non-dimensional reflux flow
(—B for plane geometry; : for axisymmetric geometry)
- ac na“c
Y non-dimensional stream function
(Ez-for plane geometry; —%— for axisymmetric geometry)
a ¢
n non-dimensional coordinate
(}, % for plane geometry; %3 § for axisymmetric geometry)
ct
T dimensionless time, —

A
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Subscripts

wall position

edge of trapped bolus

the position on a wave where £ = 0
conditions at upstream reservoir
conditions at downstream reservoir
node N

the streamline y



1. INTRODUCTION

1.1, Objectives

Recently, various authors have discussed different aspects of
peristaltic pumping, but few have attempted to relate their work to
the actual behavior of the ureter. This thesis has two primary
objectives. First, to substantiate by experiment the theoretical
predictions for an infinite train of peristaltic waves. Second, to
formulate a fluid mechanical model for ureteral function.

From the medical point of view, such a model should yield insight
into the functioning of normal and abnormal ureters. Further, it may
also pose new questions and hypotheses which should be considered by
ureteral physiologists. A quantitative understanding of ureteral
function might provide information concerning the possible effects of

catheters on the pressure pulse and the mechanism of bacterial reflux.

1.2. Previous Work

The theoretical formulations of different investigators can he
conveniently categorized in terms of the following variables for an
infinite train of peristaltic waves. These are

(i) the wave number, o = a/A

(11) the squeeze ratio, ¢ = b/a
*
(iii) the Reynolds number, R = azc/Av
(iv) the flow parameter, 6 = O/ac for plane geometry;

g = ﬁlﬂazc for axisymmetric geometry

*
For discussion of the appropriate definition of Reynolds number see
Reference (4), Appendix A.



as well as the wave shape. In the published investigations, only
sinusoidal waves were considered except as noted.

(1)

Burns and Parks considered the case of zero Reynolds number,
i.e. inertial forces << viscous forces, for both plane and axisymmetric
geometries. Since their solution was derived in terms of powers of ¢,
the solution is limited to small squeeze ratios. In some calculations,
terms of order ¢4 were considered. Their solution allowed for arbitrary
values of wave numbers.

(2)

Hanin considered the case of a plane geometry with small
squeeze ratios, and with the mean pressure gradient equal to zero.

His solution contained the long-wave-length approximation, i.e. a = 0,
but allowed for arbitrary Reynolds numbers.

Fung and Yih(B)

considered the case of a plane geometry, but
allowed for arbitrary values of Reynolds number and wave number. Their
solution is expressed as an expansion in ascending powers of ¢, and is
thus only valid for small squeeze ratios.

Shapiro, Jaffrin, and Weinberg(a)

considered both the plane and
axisymmetric geometries for zero Reynolds number and wave number.

Their solution allows for arbitrary squeeze ratios, and manv results

are given in closed form. The results include particle trajectory
calculations, and disclosure of two fluid mechanical phenomena designated
as reflux and trapping.

Jaffrin(S)

established the effects of wave number and Reynolds
number in the plane geometry by expansions in powers of a and R. The

solution, which allows for arbitrary amplitude ratio ¢, shows the

effects of wave number and Reynolds number on the pressure rise per



wavelength and on the time-mean flow. The effects of o and R on reflux
and trapping are also included.
A detailed comparison of the foregoing theories is not included

within this thesis as Jaffrin(S)

has illustrated the relationships
between the models. It will suffice to mention that all agree in the
relevant ranges of the governing parameters o, ¢, and R.

Lykoudis(G) made an attempt to model the fluid mechanics of the
ureter. However, instead of peristalsis, he considered a collapsing
cylinder whose radius varied sinusoidally with time. The model was
limited in that it did not model the anatomical operation of the

ureter and it could not produce any net flow unless check valves were

fitted at either end of the cylinder.

1.3. Structure of Thesis

Chapter 2 describes the physiology of the ureter as a hasis for
later formulation of a theoretical model. Both normal and abnormal
conditions are discussed. Operation of the kidneys and bladder are
mentioned when relevant to ureteral function.

Chapter 3 presents briefly the analysis as viewed in the uns teady
laboratory reference frame. Emphasis is placed on those aspects
relevant to the ureteral model described in Chapter 4, Formulation
in the lab reference frame shows how the infinite-wave-train theory
can be modelled by the finite-wave-length experiment of Chapter 5.
Chapter 3 also includes a discussion of trapping and reflux.

A simplified model of ureteral function is present in Chapter 4

for various possible geometries. The effects of a catheter on the
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flow rate and pressure field are also discussed.

Chapter 5 is concerned with a two-dimensional experiment whose
purpose is to test the validity of the inertia-free model. In this
chapter, qualitative and quantitative results are presented.

The conclusions of Chapter 6 are given in two parts. The first
concerns the relationship between the experimental observations and
the predictions of the infinite-wave-train theory. The second part
assesses the ureteral model and its relationship to medical

observations.



2. URINARY PHYSIOLOGY

2.1. Normal Physiology of the Urinary Tract

In order to model the fluid mechanics within the ureter, a basic
understanding of its physiology is required. This chapter is intended
to provide a simplified view of ureteral function and to summarize
current physiological literature. When necessary, both the anatomy
and histology of the ureter will be discussed in order to aid in the
understanding of ureteral function. From the concepts presented, a
simplified physiological model of ureteral function will be developed.

Figure 1 is a general sketch of the ureter and of the other elements
of the urinary system. The urine, which is an ultrafiltrate of blood
plasma, is formed in the cortex region of the kidney in a large number
of small ducts known as nephrons. Both active reabsorption and secre-
tion of selective materials occur within these ducts. The nephrons
terminate in large tubules and finally into primary ducts known as
calyces. These in turn empty into the renal pelvis which is the
upper reservoir of the ureter. The ureters, which are located distal
to the renal pelvis, carry the fluid by means of peristaltic waves to
the bladder where the urine is stored until micturition.

The calyx, renal pelvis, ureter, and bladder will be discussed
individually and then combined to yield a dynamic picture of ureteral
function. The discussion will be limited to normal ureters since their

operation must be understood before abnormal systems can be comprehended.



Renal Pelvis and Calyces. The calyces are the primary ducts
(8)

proximal to the pelvis. Narath(7) and Kiil among others, showed

the existence of calycic contractions through the activation of the
longitudinal muscles located in their walls. Kiil further showed‘the
activity of the calyces and renal pelvis to be independent. Histolog-
ically, each of the calyx ducts was shown to have circular or sphincter
muscles at the proximal end (sphincter fornicis) and distal end
(sphincter calycis) as illustrated in Figure 1. Using urometric
techniques, Kiil showed that even though sphincteral contractions do
occur, the contracted regions can not withstand mild pressure gradients.
For this reason, he concluded that the sphincters are of subordinate
importance in the transport of urine.

Kiil also demonstrated that the pressure variations which exist in
the calyces are very small compared with the magnitude of the pressure
variations within the ureter. The resting pressure in the calyces was
shown to be approximately equal to the renal pelvic pressure. Even
though the calyces and proximal members of the excretory system are
of great physiological interest, their dynamics do not play a major
role in the functioning of the ureter.

Rattner, Fink, and Murphy(g)

, in addition to Kiil, showed
conclusively that the pressure in the renal pelvis remains approximately
constant with time at a level ranging between 2 mm to 10 mm Hg. Morales,

(10)

Crowder, Fishman and Maxwell demonstrated the dependency of renal
pressure on urine flow rate. Their results indicated that increased
rates of diuresis tend to dilate the renal pelvis and increase renal

pressure.



The actual shape of the renal pelvis varies between individuals;
however, this variation in shape does not necessarily affect its
functioning. In general, the shape of the renal pelvis can be considered
similar to that of a funnel. Renal pelvic volume ranges from 3 cc to
5 cc, and remains constant independent of the peristaltic transport of
urine.

It is evident that the renal pelvis undergoes mild contractions
of its detrusor muscles, but it is not known whether this contraction
is actually the beginning of the peristaltic wave. When pressure varia-
tions in the renal pelvis are observed they are usually similar to the
peristaltic pressure fluctuations but of much smaller magnitude (approxi-
mately 1.5 mm of Hg).

Histologically, the division line between the calyces and renal
pelvis is the location of the sphincter calycic muscles. However, no
precise dividing line exists between the renal pelvis and the ureter.
Anatomically, this junction is not well defined since the funnel-shaped
pelvis exists only in very few patients. However, this general region
is designated as the ureteropelvic junction.

Kiil showed that the renal pelvis and ureteral cone fill simultan-
eously while in relaxed state. The peristaltic wave forms in the
ureteropelvic junction and the wave progresses toward the bladder

carrying the urine which was contained within the ureteral cone.

Ureter. In adults the normal length of the ureter ranges from
25 cm to 30 cm with a resting outside diameter varying between 2 mm

and 10 mm. Figure 2 shows a microscopic cross section of a contracted



segment of a human ureter*. It should be mentioned that the actual
cross-sectional shape of the lumen is not well known in vivo. The
folded appearance of the lumen might be a result of the fixation
process. Internal dimensions of the lumen range between 0.1 mm up to
5 mm. The lumen is surrounded by both circular and longitudinal
muscles lying within a sheath of connective tissue and blood vessels,
giving the external appearance of a thin smooth tube. Backlund(lz)
is one of the few investigators who attempted to record diametric
variations of the ureter with a peristaltic wave. It appears from

his simultaneous recordings of external diameter and internal pres-
sure that pressure variations are associated with sections of the
ureter undergoing observable dimensional fluctuations. His recordings
of ureteral diameter and pressure as a function of time yield some
insight into the wave form, but the important dimensions required for
ureteral modelling are the internal dimensions of the lumen at various
stages in the wave. The exact variation of lumen shape with time and
pressure still remains unknown.

Recent cineradiographic studies of Barry, Absher, and Boyarsky(13)
showed that a lag exists between the initiation of contraction and the
peak of the pressure event. This delay ranges from about 1 second to
1.6 seconds. This fact will be of importance in analyzing the results
of the theoretical model.

Another interesting observation reported by Barrey et al. was that

the bolus seemed to pass the tip of the catheter at the low pressure

*
From Reference (11).
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phase in the recording. They also reported that a further contraction
of the ureter exists after the "visible image" or bolus passes the
recording hole in the catheter.

The peristaltic wave travels at an average velocity of approxi-
mately 3 cm/sec with a frequency ranging from 3 to 10 waves per minute
depending on the activity of the kidneys. Investigators have shown
by means of pressure-time traces that the character of the pressure
pulse is similar at various locations along the ureter.

Davis, Zimskind, and Paquet(lA), in addition to Kiil and others,
have shown that the basal pressure (see Figure 3) within the ureter
remains constant throughout the entire length of the ureter, independent
of the intravesical (bladder) pressure. This pressure is approximately
equal to the pressure within the renal pelvis and calyces. As a contrac-
tion complex passes over a ureteral catheter the pressure peaks at
values ranging between 13 mm and 35 mm of Hg and then returns to the
basal level. Figure 3a is a representation of a series of typical
normal pressure waves recorded with an intralumenal catheter by Kiil.
Only pressure pulses obtained bv Kiil are presented, but many other
investigators using modern techniques have obtained similar results,

Average flow rates through each ureter can range up to 2.5 ce/min,

Morales et al.(lo)

conducted a series of experiments which demonstrated
that each peristaltic wave carries between 0.02 and 0.7 cc.

The flow through the ureters is not continuous, but appears to
enter the bladder in spurts. Figure 3c helps illustrate this point.

By considering the location of the catheter, the wave speed, the time,

and the duration of the spurt, the fluid entering the bladder can be
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shown to coincide with the arrival of a wave at the ureterovesical
junction. As was previously mentioned, upon formation of a wave, a
small volume of fluid is confined immediately forward of the contrac-
tion region. This bolus of fluid is transported with the wave and 1is
probably responsible for the spurt observed at the ureterovesical
orifice. Between the spurts there appears to be little or no flow
entering into the bladder(lo).

It has also been observed that increased flow rates are accomodated
by increased peristaltic frequency and increased bolus length, with
only a small increase in the diameter of the bolus £8, 9510, 15)_

If the basal pressure in the renal pelvis is artificially raised to an
abnormal level all observed peristaltic activity ceases, even though
the peristaltic action potential can still be recorded through the
ureteral membrane.

Urometric techniques have shown that throughout the entire length
of the ureter the basal pressure is independent of bladder pressure.
This can be the case only if there is some type of valve which isolates
the bladder from the ureter. This so-called valve is known as the
ureterovesical junction. In man, the ureter does not directly pass
through the bladder wall, but remains in the bladder wall for 5 mm to

(16). The

26 mm before it terminates at the ureterovesical orifice
details of physiological operation of the valve are not completely under-
stood. One possible mechanism which might account for the valve action
could be a squeezing of the ureterovesical junction resulting from the

internal pressure of the bladder on the bladder wall. TFailure of the

valve results in a gross reflux of urine into the ureter with a



— Bl =

corresponding rise in basal and interpelvic pressure.

The physiological significance of the smooth longitudinal muscles
located in the ureteral wall needs to be determined. Bovarsky(ly)
described a secondary gliding motion of the ureteral wall in the
following manner, 'The ureteral wall slides up over the bolus like a

trouser over a leg'. To understand the purpose of this activity, the

longitudinal motion must be studied in much greater detail.

Bladder. The bladder is a highly elastic vesical whose wall is
composed of three distinct layers of smooth muscle which are irregularly
interwoven throughout the connective tissue of the bladder wall. The
volume of the bladder is highly dependent on the size of the patient
and the stage of filling, but may be as high as 500 ml. The desire
to void usually occurs when the intravesicular pressure is nearly

equal to the peak peristaltic pressure (approximately 25 mm of Hg).

2.2. Pathology of the Ureters

In this section an attempt will be made to describe briefly a few
of the abnormal conditions which may occur within the urinary tract.
Although many abnormal conditions can be treated successfully, a large
number are not well understood and therefore specific treatment is
unknown.

One of these latter conditions is known as 'bulk reflux". Bacteria
which invade the bladder through the urethra irritate the bladder wall
and musculature, causing failure of the ureterovesical valve. Since

the pressure in the bladder is usually higher than the basal level
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within the ureter, failure of this valve results in a rapid Poiseuille
type back flow towards the kidney.

Under certain poorly defined conditions bacteria which were
originally in the bladder or lower ureter make their way back to the
kidneys in a matter of hours(la). This type of reflux will be defined
as 'peripheral reflux'. Diffusion, or even diffusion accompanied by
the motility of the bacteria, has been discounted as a plausible
mechanism for this type of bacterial reflux due to the time scale
involved.

The ureters can also become obstructed by kidney stones, cancers
or other disorders which tend to occlude the lumen of the ureters.
External lesions may also occur constricting the motion of the ureters.
These conditions have severe effects on the performance of the ureters
and exhibit themselves as severe modifications of the pressure and flow

variations within the afflicted ureter.

2.3. Simplified Physiological Model

Given the physiological facts above, the task still remains to
generate a simplified physiological model which can be used to explain
the fluid mechanics of ureteral function. Shapiro, Jaffrin and
Weinberg(a) indicated that the inertia-free model could be used to
obtain insight into urodvnamics. They also showed that in the ureter
the wavelength is long compared to the diameter of the ureter. For
simplicity of computation, we assume that the wave does not change

shape while propagating between the renal pelvis and ureterovesical

junction.
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The peristaltic wave appears to be composed of a relaxed region,
a contracted region, and a distended bolus region (see Figure 1).

In this analysis, the longitudinal motion of the ureter will be
neglected.

The shape of the lumen during passage of a wave is not known, but
it is conceivable that the lumen varies between lobed shape at the
relaxed regions and quasi-circular in the distended bolus region. For
this reason both two-dimensional and axisymmetric geometries will be
considered.

As can be seen from typical pressure pulses represented in Figure 3,
the distal and proximal basal pressures across the wave are approximately
equal, For this reason we will assume that the pressure rise across
the wave is small compared with the peak pressure. This assumption
will be explored in greater detail in Section 4.2.

Since the flow enters the bladder in spurts and no flow is
observed between spurts, it can be assumed that the fluid velocities
are approximately zero in the relaxed regions of the ureter. This is
in agreement with the observations that there are no pressure gradients
in the relaxed regions. Therefore, all the significant fluid motions
are associated with the contracted and dilated region of the wave.

To summarize, certain characteristics of ureteral function are
quite well documented and can be used to establish a model. These
characteristics are:

(3 the negligibly small pressure rise per wavelength

(14) the magnitude of the maximum pressure

(iii) the qualitative shape of the pressure pulse

(iv) the quantity of liquid carried per wave
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On the other hand, certain gaps exist in the physiology which
hinder close comparisons between the theoretical model and the ureter.

The first major gap is the lack of knowlege concerning the intra-
lumenal wall variation with time and distance along the ureter.

Because of the complex wall structure of the ureters, observation of
the external diameter does not yield reliable information about the
dimensions and shape of the lumen.

The second large deficiency in the physiology concerns the measure-
ments of pressure variation and flow within the ureter at various
stages of activity. Most investigators have considered either pressure
variations or flow characteristics, but not the two simultaneously.

In order to make accurate comparisons between the ureter and the

models, it would be desirable to record flow and pressure simultaneously.

2.4, End Regions

Ureterovesical Junction. The details of operation and the anatomy

of the ureterovesical junction were discussed in some detail in
Section 2.3. For this reason, discussion in this section will be
limited to a possible explanation of how a wave with APA = 0 can expel
urine into a pressurized bladder.

One possible explanation for this apparent contradiction might
be a variation in the wave shape locally in the region of the bladder.
In this region the contracted section of the wave might undergo
further contraction causing a strong positive pressure rise in a manner
analogous to a tightening sliding cuff. Further physiological studies
of this junction would be necessary to determine the validity of the

above hypothesis.
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Ureteropelvic Junction. The formation of the wave in the uretero-

pelvic region of the kidney can be considered fluid mechanically as a
problem onto itself. Certain facts can be observed from urometric
studies in the ureter. Formation of the wave does not seem to affect
the pressure pulse or basal pressure level at distal points along the
ureter. Using the above information, one can hypothesize that the pres-
sure rise in the forming wave must be approximately zero at all stages
of formation.

Since the ureter is almost empty prior to formation of a wave,
all the urine carried by a particular wave must come predominately
from the renal pelvis reservoir.

From the current state of knowledge regarding ureteral physiology,
it is obvious that before any detailed modelling of the ureterovesical
or ureteropelvic junctions can be accomplished, extensive physiological

studies must be undertaken.
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3. ANALYSIS OF AN INFINITE WAVE TRAIN

As analytical background for Chapters 4 and 5, it will be
necessary to develop briefly the analysis of an infinite wave train
in the unsteady laboratory reference frame. The concepts of
"peripheral reflux' and "trapping' will also be discussed. By directly
utilizing the lab reference frame, it will be shown that under certain
conditions the infinite-wave-train situation can be simulated bv a

finite-wave-train experiment.

3.1. Assumptions (Infinite-Wave-Train Model)

Infinite Wavelength. In the previous chapter, it was mentioned

that the resting dimensions of the ureter are still not well defined,
but it is expected that the breadth of the lumen ranges somewhere
between 0.1 mm and 3 mm. The length of a wave is about 15 cm, yield-
ing a value of wave number o of less than 1/50. Since o is very small,
the infinite-wavelength approximation can be used.

This assumption makes it possible to neglect the transverse
components of the pressure gradient as compared with the longitudinal
gradients. In other words, the pressure can be assumed instantaneously

uniform across each section.

(4)

Inertia-Free Flow. As was demonstrated by Shapiro et al. the

viscous forces within a peristaltic wave are of order uc/az, at least
when no thin boundary layer region exists. The order of magnitude of

the inertial forces can be written as pczll. Knowing that the Reynolds
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number is the ratio of inertial forces to viscous forces, it can be
seen that the appropriate Reynolds number can be written as R = azc/vA.
For the ureter this Reynolds number is of order 0.25. This value is
small enough to give some relevance to the inertia-free theory.

The two assumptions of infinite wavelength and zero Reynolds number

lead to instantaneous Poiseuille flow at each section.

Constant Fluid Properties. In this analysis the viscosity and

density will be considered constant with time. The viscosity of urine

is approximately 0.01 Poise at 38°C.

Wall Shape. An infinite wave train has a wall shape of the

general form

H = H({ - 1) (3-1)

At a later stage in the analysis, the wave shape will be restricted
specifically to a sinusoidal geometry. It should be reemphasized that
this definition of wall shape only allows for transverse motion of

the wall.

3.2. Basic Formulation (Two-Dimensional Geometry)

Using the assumptions described in Section 3.1, the governing
equations of motion reduce to the following form (refer to Figure 4a

for the nomenclature):

dP(X,t) _ BZU(X,y, t)

u
X BXZ

X-Momen tum: (3-2a)
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oP

Y-Momen tum: i 0 (3-2h)
U oV
. o 2Y o 0 =
Continuity ™ + Y ( (3-3a)

In integral form, the equation of continuity can also be expressed as:

3Q(X, t) dh(X,t) _
= + & =0 (3-3b)
Boundary Conditions:
U
ye =, ¢
@ Y =0 (3-4a)
Vv =20
U=0
@ Y =nh (3-4b)
- sh
V=3t

The above boundary conditions describe the condition of symmetry on
the axis and the no-slip condition at the walls, respectively.
Integration of the momentum equation (3-2a), using the boundary

conditions (3-4), leads to a locally-Poiseuille velocity profile,

@
a1

(n? - u?) (3-5)

el {=]
N w

Q2
el

Using this velocity distribution, the instantaneous rate of flow through

the cross section can be represented as

ik
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A second form for the instantaneous flow can be obtained from integra-

tion of the continuity relation (3-3b), i.e.

a0 f 28 ar 4 #0) (3-7)

ac 3T

We now calculate the dimensionless time-average flow, 0 = Q/ac, as

!
8(E) = J 9‘—25—) dr (3-8)
0

Using Equations (3-5) and (3-6), the pressure gradient at any section

can be shown to be

3 _ 1 Q1) (i
3 H3 ac o

The periodicity of the wall coordinate can now be employed to describe
the periodic character of other variables. In particular, the pres-

sure gradient and the local flow must also be periodic and of the

following form:

oP oB

St (E,T) = SE'(E - 1) (3-10a)
and

Q(g,T) = Q(E - 1) (3-10b)

Because of the periodic character of these dependent variables, it is
convenient to introduce the variable X = (¢ - t). Equation (3-7) can

now be integrated in terms of this new variable.



Q%) .y + £(0) (3-11)

ac

For a periodic system, Equation (3-10b) shows that f(1) must be equal
to a numerical constant, i.e. f(t) = F. Using the time mean of
Equation (3-8) along with Equation (3-11) results in the following

form of dimensionless time-mean flow, which is independent of £:

8 =f-H+ (3-12a)
ac
wvhere
1
H = [ H(E)dE (3-12b)
0

Rearrangement of Equation (3-5) with the help of Equation (3-12)

results in the following velocity distribution:

ll,_é{e-ﬁ
c 2

= {1 = == (3-13)

From continuity equation (3-3a) and boundary condition (3-4c),

the V component of velocity can be shown to equal

- H 3
& - G+ E=HdY (3-14)

6~ B
H

3 oH
=§a-—E{

b4
c

where a = a/A.
The local pressure gradient at any point within the peristaltic

wave may now be found from Eq. (3-2a) as

= 1
= - = (8 - H) = (3-15)
H2 H3
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The pressure rise per wavelength can now be found merely by integrat-
ing this relation over one wavelength for any flow 0 and any periodic

wave shape H(§ - 1).

Finite Wave Train. Since one cannot conveniently perform a

laboratory experiment with an infinite train of waves, it is necessary
to determine under what conditions a finite-wave-train experiment can
adequately simulate the infinite-wave-train model.

The instantaneous flow defined by Equation (3-11) is valid for
any wave shape. Using Equations (3-8) and (3-11) the dimensionless-

mean flow becomes

= i
8(g) = H e

T

I f(t)dr (3-16)

0

Substituting relation (3-11) into Equation (3-9) results in an equation

defining the pressure gradient in terms of wall position and the as

yet unknown function f(1) becomes

L
f(1) = {—('13d ~ ?‘u) - J%—} le dg (3-17)
g2t gL 4

0 0 H3

LY N
where the Pu and P, are the dimensionless pressures at the input and

d
exit of the pump, respectively, and L is the dimensionless length of
the pump. From this relation, it can be seen that three conditions
are necessary for f(T1) to be constant with time. These are:

% "
(1) (Pd - Pu) must be independent of time. This condition

can be easily satisfied by constant pressure reservoirs.



{3:4) H must be constant for all waves (e.g. periodic wave train)

(1i1) L must be an integer number of wavelengths

With f(1) equal to a constant, Equation (3-15) will also represent
the pressure gradient in the finite-wavelength model. Integration of

this expression over the entire pump length yields

A+ 0 - 1—3} dE (3-18)
H H

L
e
i

If L is equal to an integer number of waves and H is periodic, this

expression can be rewritten as

1
%d -F =-N J 4 {5 - B A;J dg (3-19a)
u 2 3
H H
0
or
uY v 0]
By = F =N (3-19b)

where N represents the number of wavelengths between the upstream
reservoir and the node with pressure PN'

From (3-19b) it can be seen that the pressure distribution within
the finite-wave-train e#periment exhibits an interesting nodal type
behavior at every wavelength along the pump. In other words, each
node is acting as a local constant pressure reservoir within the pump.

Making use of this nodal property and integrating (3-15), the
pressure variation at any position within the pump can be expressed

E-N

%(E,T) - P =NaP, - J { 15-+ (6 - f) 1
0 H

} dg (3-20)
H3
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For a sinusoidal wall shape, e.g.
H=14+¢ sin 21(E - T) (3=-21)

the pressure rise per wavelength APA is equal to

2
oy 1 ¢ 2
AP, = = —0 [3 - (2 + ¢7)8] (3-22)
2 a - ¢2)5/2

The solid curves in Figures 5, 6, and 7 represent the theoretical

rb
APA vs 0 curves for three values of ¢®(the experimental data will be

discussed in Chapter 5). The maximum flow for zero pressure rise is

defined as 00, and the maximum pressure rise for zero net flow is

Q"
AP . The curves in Figures 8 through 11 represent the theoretical

A

max
variation of pressure with time for three values of ¢ and for various

values of £ and 8. It should be noted that these curves do not
correspond directly to the two-dimensional theory but relate to a
modified theory which includes the geometry of the experimental
apparatus. This modification, which will be discussed in detail in
Section 3.4. and in Chapter 5, affects the magnitude of the pulse
without altering its shape. The ordinate of the curves is the

v

v
normalized pressure difference I' - P £ = 0 represents the

0°

coordinate of the reference node. Time is represented on the x-axis,

where T = 0 is the beginning of a wavelength and T = 1 is the beginning

of the next wave. The experimental data in Figures 8 to 11 will be

explained in Chapter 5.
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Transformation of Variables. The unsteady laboratory reference

frame can be transformed into a steadv-state reference frame by means
of the coordinate transformations below (refer to Figure 4b for the
nomenclature in this transformed reference frame). In this reference

frame, the viewer effectively moves with the wave.

nue

u
(=

(3-23)

n|<

The velocity profiles and pressure gradient expressed in the

steady-state reference frame are:

2
%=-1+%(1+1{f—°)[1—(ﬁ)] (3-24)
3
§=%ad_§[£%(%)-(§+%‘-‘i)(%)] (3-25)
dx
and
L%,_Lz_ﬂ% (3-26)
dx H H

where the flow q is equal to

nle

H
4 - J dn (3-27)
ac

0

By using the transformation relations and Equations (3-8) and (3-27)

the flow can be written as

9 -¢g-H (3-28)
ac



The transformed reference frame is in fact the wave reference frame
(4)

described by Shapiro et al. . In the analyses to follow, increasing

use will be made of this steadv wave reference frame.

Stream Function (Wave Reference Frame). In the laboratory

reference frame the flow is unsteady, so the particle path lines (e.g.
Figure 9 of Reference 4) are not necessarily related to the streamlines
(e.g. Figure 4 of Reference 1). In the wave reference frame, the path
lines, streamlines, and streak lines all coincide. These streamlines
are similar to the wall shape, but with decreasing amplitude as the
axis is approached; except, however, for certain cases where a region
of closed streamlines are present. Some typical streamlines are shown
in Figure 12.

In the steady wave reference frame the streamlines correspond
to the particle trajectories, and can be used as a quantitative marker

for identifying fluid particles. Defining the stream function by
dy = udy - vdx (3-29)

and using the velocity profiles described by (3-24) and (3-25), the

normalized stream function ratio x can be written as

v 1 n’
X = E; s =~ s LN(H = 30) ~ w (H - C)] (3-30)

where

C=H =9 (3-30a)

with $ = 0 on the axis, the value of the stream function at the wall

becomes
U =-¢C (3-31)
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Trapping. Under certain conditions of 6 and ¢, there are
regions of the flow which contain closed streamlines(a). When this
phenomenon occurs, the center streamline splits, and a region of
recirculating closed streamlines form (refer to Figure 12). This region
comprises a bolus of fluid which, in the laboratory reference frame,

appears to be 'trapped" under the crest of the wave about the center

line.

Limit of Trapping. The conditions of ¢ and 6 in which trapping

occurs can be determined directly from the solution of Equation (3-30).
When trapping exists, the center streamline ¥ = 0 must split to form
the bounding streamline of the bolus. Before the onset of trapping,
Equation (3-30) will have one real solution for n if v = 0, i.e. n = 0.
At the onset of trapping, three real equal values of n will exist for
x =0, i.e. n = 0. Conceptually, this means that at the onset of the
trapping the bolus will have zero volume. As the size of the bolus
increases, the boundary of the trapped bolus can be obtained from the
solution of Equation (3-30) for x = 0.

Using the above statement, trapping will occur when any non-

dimensional wall coordinate H is

H 2 3C (3-32)

After onset of trapping the geometric boundary of the trapped

bolus is defined simply by

p = By

(3-33)

if H # C.
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The criterion for trapping obtained by Shapiro et al.(A) reduces
mathematically to
6 3= 4o )
5 > 2 (3-34)
0 94

It can be shown quite easily that Equations (3-33) and (3-34)

yield the same limit of trapping.

Peripheral Reflux. Simultaneous integration of the U and V

components of velocity in the laboratory reference frame enabled

Shapiro et al.(a) to obtain the particle trajectories within the
peristaltic wave (e.g. Figure 9 of Reference 4). From these trajectories
they were able to calculate the average speed of advance of each particle
as a function of geometry and time mean flow. On the basis of the
analysis they illustrated that under certain flow conditions the time
average flow was composed of an algebraic sum of forward flow in the

core of the pump and reverse of reflux flow near the walls.

In order to obtain a measure of the rate and quantity of reflux
material, ¥ is used as an indication of material particles, then the
time-mean flow between the axis and a particular value of y is calculated.
The instantaneous flow between the axis and the coordinate y can be
expressed as:

Xl Est)
Q = U(E,n,T)dn (3-35)

Using Equation (3-24) and (3-30) the time-average flow beneath

the particles identified by § becomes
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il
g, b +5 J y(¥,X, t)de (3-36)
0

where T defines the wave period. Since the integral is evaluated at
constant § and X, one can substitute - %—dx for dt. After non-
dimensionalizing, Equation (3-35) can be rewritten as:

i
0, = ¥ + J n(§,€)dg (3-37)
0

Time-average flow is therefore the sum of the steady flow,
as seen in the wave reference frame, and the time-average flow in one
period if all the material in one wavelength between the axis and the
streamline Y were transported as a solid block with the wave speed c.

The integrand in Equation (3-37) is obtained numerically by solv-
ing the stream function relation (3-30) for n except for limiting
cases of small ¢, where a perturbation solution can be octained in
closed form.

Figure 13 is a sketch showing the four general types of curves
which can be obtained for ﬁw/aw VS X.

Curve I represents a case where neither trapping nor reflux

occurs,

Curve II is a representation of a case without reflux but with

trapping. Point "a'" represents the quantity of fluid trapped
within the bolus region.

Curve III represents a case of reflux but no trapping. The

quantity of fluid between the origin and point '"b" represents



the time-mean forward flow in the core. wb is the value of the
stream function which divides the forward and reflux regions.
The region between '"b" and the terminal point of the curve
represents the quantity of reflux flow. 'R" is the amount of
reflux flow as a fraction of the net flow.

Curve IV defines the case where both reflux and trapping are
present.

By comparing the values of wb obtained from this analvsis with

(4)

the values of wb obtained by Shapiro et al. ,» one can see both

analyses yield the same results.

Reflux Limit. Even though the limit of reflux is discussed in

great detail by Shapiro et al.(A), the technique emploved will be

briefly reviewed to facilitate the discussion of the reflux limit in
Chapter 4.

By utilizing a perturbation solution about the point (1.1) in
Figure 13 the stream function near the wall can be defined by a small

parameter
"] "]
€ - Y= (3-38)

Assuming the wall can be expressed as a power series in e the wall

shape can be rewritten as

n(¢,9,8,e) = H + ae + 3222 + s (3-39)

Introducing this relation and (3-37) into the stream function relation

and solving for the coefficients ays 2y, etc., then applying (3-39)
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into (3-37) results in the following value of flow rate near the wall

for a sinusoidal wall shape.

3 22048 = 40

g = ¢6 -
2 (1 - 4232

0 C AP (3-40)

Differentiation of this expression at the point 6 = Bw and ¢ = ww
show the slope of the leqw curve to be equal to zero at the point (1.1).

For reflux to occur 6, must be greater than Bw. This can only be the

v

case if 0 < ¢2 or 1if

6 2+
6 3

0

(3-41)

Two-Dimensional Summary Curve. Figure 14 represents a graphic

summary of the results obtained for the two-dimensional sinusoidal
geometry(ﬁ). The squeeze ratio is given on the abscissa; ¢ = 0
represents no peristalsis and ¢ = 1 represents complete occlusion.
The ordinate represents the time-average flow ranging between 8 = 0
and €= 60. The regions of reflux and trapping are shown for the case
of zero Reynolds number*. Only the lower limit of trapping is shown
in Figure 13 since the upper limit is outside the pumping range of

the model (i.e. 0 > 6 > © 0>4¢ > 1),

0’
Reflux is quite common over most of the pumping range up to

8/80 = 0,7 for small ¢, and up to 8/80 = 1 for complete occlusion.

*
Refer to Reference 5 for the effects of Reynolds number and wave number.
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Also plotted on these curves are the contours of constant reflux
fraction '"R". For values of ¢ > 0.1 the reflux fraction was found
numerically using Equation (3-37) along with the interpretation of
described in Figure 13 (solid line). For ¢ < 0.1 an exact solution
(dashed line) for reflux fraction was obtained (both solutions are
represented on Figure 11).

The reflux fraction is aquite small when 8/60 is greater than 0.5;
vet, as 6/6O decreases, 5i‘approaches infinity since 80 approaches
zero. Since the reflux flow remains finite, the absolute non-dimensional

value of BR is shown in Figure 15 as a function of ¢ where the value

of reflux flow is defined by

6. = 6 - 8 (3-42)

3.3. Basic Formulation (Axisymmetric Geometry)

Only the relations necessary for a later discussion of ureteral
function will be developed in this section. The basic formulation
and conclusions are similar to the two-dimensional case, so detailed
discussion will not be included (see Reference 4 for the detailed
analysis). The nomenclature used in the axisymmetric geometry is also
included on Figure 4.

Integration of the governing equations in the wave reference frame
and subsequent transformation to the laboratory reference frame leads

to the following velocity profiles

u g/ﬂazc Hi 2
= w2 S s ) (3-43)
H



and
\ 9H g/nazc n g/nazc ny 3
== g 2 () - (1 + 2 1G]
c 9t 2 H 2 H
H H
where 9
H
4 - J & - 1aemd
c
ma c O

The local pressure gradient becomes

P 1 pe)
@ == (B« d7)

g 2

1
H H

Using the following form for the Stokes' stream function

dy = urdr + v rdx

the stream function ratio can be written as

where
Ta ¢
The value of the stream function at the wall

r\, —
oo, =

o=

a
if ¥ = 0 on the axis.

(3-44)

(3-45)

(3-46)

(3-47)

(3-48a)

(3-48b)

(3-49)
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The pressure variation with time can be written as

2 -
Bg,1) - B, = f (L5 + (6 - a%) Lac (3-50)
0 H H

For the case of a sinusoidal wall shape the pressure rise per wavelength

v
APA from Reference 4, is given as

2

2 ¢ ¢ 3 .2
166°(1 - 29 - 86(1 - H1-2 $°)e
AP = 16 ¢ 2 (3-51)

e ¢2)7/2

where

)

Ol =
(26 - $2/2)

(3-51a)

Trapping Limit. In the axisymmetric geometry, the splitting of

the central streamline can also be used to identify the onset of
trapping.

In the axisymmetric geometry the stream function is a biquadratic
equation in n. Before trapping is initiated only one real value of n
can exist for x = 0, 1i,e. n = 0. At the initiation of trapping all
values of n will be real and equal to zero. As the trapping bolus
grows, two roots will remain equal to zero while the remaining positive
root will define the boundary of the trapped zone, i.e. n = Mo

However,

0<n_<H (3-52)
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The lower limit of trapping is defined by the following relation

H = (—21\*[)1/:2 (3-53)

where M is defined by Equation (3-48b).

As the trapped bolus grows, the bhoundary is defined by

2
(2M + H )]l/2 H

N = [ oy Hz) (3-54)
1f M # B,
Shapiro et al.(a) obtain the trapping criteria in the following
form
o, (1-2¢)(2 + 3¢°)
e (3-55)

0 (16 = $o Y4

Again as in the two-dimensional case, the results can be demonstrated

to be equivalent.

Reflux. For the axisymmetric geometry the quantity of dimension-

less time-mean flow below any material particle U can be expressed as

1
0, = 2 + J n2(3, £)de (3-56)
0

Reflux Limit. Using techniques similar to those employed in the

plane geometry, the reflux limit is identically equal to 8/80 =1,

i.e. for all values of flow, reflux will be present except at 6 = 80.
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Axisymmetric Summary Curve. Figure 16 is the summary curve for

the axisymmetric geometry. With ¢ as the abscissa and 6/60 as the
ordinate, the limits of trapping and reflux are shown along with the
contours of constant reflux fraction. As in the two-dimensional case
waas obtained numerically for ¢ > 0.1 and in closed form for o< 0, 1.
Figure 17 is a representation of the reflux flow GR for 8/8n

equal to zero.

3.4. Three-Dimensional Channel Effects

The apparatus, although approximately two-dimensional, has a
rectangular cross section with inactive end walls. For this reason,
it is important to consider the effect of these end walls in the
theory.

Basically, the pumping duct can be considered as a rectangular
channel of constant height with varying aspect ratio. The two-
dimensional theory can be simply modified using an approximate technique

(15)

described by Purday . With this approximation the two-dimensional

pressure gradient (Equation 3-15) becomest

1
2 H dT - 8*
a% n+1 n+ 1 n+ 1
F Jl L o R (3-57)

%
where 6 1s the actual non-dimensional half-width flow per unit height

of channel, and n(£,t) is a function of aspect ratio as determined by

+Refer to Appendix B for the details of this analysis.



G2 0a ) mlEe) = s (3-58)

Here w is the height of the channel and 2h(£,t) is the local gap width.
In the extreme case of ¢ = 0.9, the value of n for the experiment (see
Chapter 5) ranges between 13 at the wide section to 27 in the contracted
region. More will be said in Chapter 5 concerning this modification

and the comparison of the results thereof with experimental results.
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4. URETERAL MODEL

The physiological information presented in Chapter 2, coupled
with the concepts and relations developed in Chapter 3, provide a
platform upon which a theoretical model of ureteral function can be
constructed. As will be shortlv demonstrated, the ureteral model

can be considered as an extension of the infinite-wave-train analysis.

4.1 DBasic Assumptions

Since the analysis presented in Chapter 3 was based upon as-
sumptions which are also relevant to the ureter, i.e.:

(1) the long-wave-length approximation

(ii) neglecting of the inertial forces

(iii) constant viscosity and density,
the governing equations of Chapter 3 will be wvalid for the ureteral
model.

Little is known regarding the detailed physiology of the uretero-
pelvic and uretercvesical junctions. What is known, however, indi-
cates that entry and exit of a peristaltic wave from the ureter does
not affect the character of the urometric pressure pulse.

In the ureteral analysis it will be necessary to consider passage
of a solitary wave. However, as long as the velocity and pressure
fields are prescribed distal and proximal to a wave, the theoretical
approach will be analogous to that prescribed in Chapter 3.

Along with the foregoing assumptions, additional constraints will

be placed on the theoretical model which relate directly to urometric
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observations. These constraints do not alter the theoretical pre-
sentation of Chapter 2 but place restrictions on the values of cer-
tain of the variables.

In the case of a ureteral wave, the conditions at both ends of
a wave are well documented. From Chapter 2, the wave was shown to
have a negligible pressure rise across it as compared with the peak
pressure, i.e. APA = 0. This condition seems to exist within the
ureter, as indicated by Figure 18a, which is a sketch of a typical
phvsiological pressure pulse taken from Kiil(g). Figures 18b and 18c
display the character of pressure pulses if APA < 0 and &PA > 05
respectively. Since neither of the latter two cases are observed
urometrically in normal ureters, the pressure rise across a wave must
be approximately equal to zero.

A second constraint on the model requires that the fluid remain
motionless hetween individual preistaltic waves (i.e. U=V =10
in the resting ureter). In fact, if fluid velocities did occur with-
in the inactive ureter, urine would enter the bladder continuously.
Moreover, there would be pressure gradients ahead of, and behind, the
peristaltic wave, in opposition to clinical observations.

One important conclusion can be drawn from the preceding
paragraphs. Each ureteral wave can be considered independent of any
proximal or distal wave. As long as an inactive or resting length of
ureter separates each peristaltic wave and APA z 0, each individual

wave can have its own pressure pulse, spurt volume, and geometry.
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4.2. General Formulation (Circular Lumen)

Since the ureteral lumen, during various phases of dilation,
must approach an axially-symmetric cross section, it is necessary to
consider the fluid mechanics for such a shape.

Ureteral catheters presently used must affect the size and shape
of the ureteral lumen. Since the outside diameter of the catheter
is approximately equal to the distended diameter of the lumen, the
axisymmetric model should vield some insight into the effects of the
catheter, at least to a first approximation.

When considering the solitary ureteral wave in the wave reference
frame, the constraint on the flow field in the resting ureter places
a restriction on the steady wave frame flow g. In the laboratory
reference frame U = 0; whereas, in the wave reference frame u = -c¢ in
the inactive ureter. For this reason q must be constant at all sec-

tions and equal to

q= - Wazc (4-1)

where a is the radius of the resting ureter.

(4)

By using Equation 23 from Shapiro et al , which may be written

as

]

0 N a
= Q) *t— (4-2)
Ta ¢ Ta c¢

together with Lquation (4-1), a simple but important fact regarding
the flow field can easily be seen. The instantaneous flow (@ will be

positive only if the radial position of the wall is greater than the
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resting radius, i.e. h > a, and will be negative for h < a. Knowing
that the flow is locally Poiseuille, the pressure gradient will be
negative if h > a and positive if h < a. This point will be made
clearer in the discussion of the pressure gradient to be presented
later.

Taking the time average of Lquation (4-2) and using Eguation (4-1)

the dimensionless time-mean flow can be expressed as

=1 -1 (4-3)

2]
where lI7 is the wall position squared when averaged over a wave length.
In other words, in order for a ureteral wave to carry a net positive
g
flow rate, lI” must be greater than unity.
Using Equation (4-3), all the relevant equations presented in
Chapter 3 can be modified to pertain to the solitary ureteral wave.

The pressure gradient within a wave, which can be obtained from

Equations (3-46) and (4-3), is equal to

& _a-ud)
3 7

(4=4)

As was indicated above, the pressure gradient will be positive
Ny
or negative depending upon the value of H, i.e. 3P/3§ > 0 if H < 1

and BH/BE < 6 1 B 1.

Wave Shape. If the actual wave shape were known within the ureter,
Equations (4-3) and (4-4) would directly vield the associated pressure
pulses and spurt values which could then be compared with urological

observations. however, because of insufficient data, it is necessary
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to use an inverse procedure: i.e. to determine from physiological data
a wave shape which is consistent with the theoretical model.

To this end, a typical urometric pulse can be used to vield
the general form for the ureteral wave. Distinction must first be
made between a length-varying pressure pulse at constant time which
can be obtained from Equation (4-4), and a time-varying pressure
pulse at a fixed location which is obtained urometrically.

Figure 19a represents an arbitraryv wave shape at anv instant of
time. Using Equation (4-4) the associated instantaneous curve of
pressure vs distance is shown in TFigure 19b. However, if a catheter
is placed at a fixed location, the pressure pulse, which would be
recorded against time, is shown in Figure 19c. From the length-
varying pressure pulse the positive pressure gradient is associated
with the contracted region, and the negative gradient is related to
the dilated region. In the time-varying pressure pulse the reverse
is the case, i.e. the positive gradient occurs within the dilated re-
gion and the negative gradient occurs within the contracted region.

Examination of typical ureteral pressure pulses, e.g. Fig—
ure 3 or Figure 31, shows that dP/9T is first positive then negative.
Considering the concepts just presented, the ureteral wave must be
composed of a dilated region (H > 1) followed by a contracted region
( < 1). It should be noted that radiographic and visual observations
support this conclusion.

The choice of a particular wave shape is not critical to the
understanding of ureteral fluid mechanics as long as the wave shape

is consistent with the general form as dictated by the shape of the
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pressure pulse. From urometric data it appears as if the wave shape
varies between successive waves and between individuals. For these
reasons a stepped or square wave shape is chosen because it leads to
simple calculations and a simple understanding of ureteral fluid
mechanics.

It is obvious that this geometry cannot simulate the smoothly-
varying shape of the ureter; however, as will be shown later, it is
a good approximation to the smooth geometry.

The particular wall shape which will be used in this analysis is
illustrated in Figure 20a. The shape consists of a contracted region
of uniform cross section (Hl < 1) and a two-stage dilated region.

The first, which is designated the transition region, has a uniform
radius of the same order as the resting radius (Hz g 1). The second
dilated stage or bolus region has a uniform radius much greater than

the resting radius (I >> 1).

Pressure Pulses. Figure 20b represents the triangular shaped

pressure pulse which is obtained from this stepped wave. This pulse
is a reasonable approximation to the urometric pulses (see Figure 3).
The pressure rise per wave length is the sum of three pressure differ-

ences, i.e. API, AP AP Each pressure difference can be expressed

2" 3"

as

— P =
Ali B Ri(ax i (4-5)

where the subscript i refers to the various regions.
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A great deal of information concerning the amplitude and shape of
the pressure pulse can be extracted directly from the character of
the pressure gradient as can be seen from Figure 21. Increasing the

squeeze, i.e. reducing H results in a continuously increasing pres-

1°
sure gradient. However, as li increases beyond unitv, as will be the
case in both dilated regions, the pressure gradient is bounded by a
minimum value. For the axisymmetric geometry, this limiting value
occurs at a value of H = /2,

As the radius of the dilated region increases, the magnitude of
the pressure gradient approaches zero. Since the size of the bolus
is much greater than unityv, the pressure gradient within the bolus
will be approximately equal to zero or AP3 = 0. In other words, no
major pressure variations will be associated with the bolus region of
the wave. For this reason, the major ureteral pressure variations will
be associated with the transition and contraction regions of the wave.
Since the pressure rise per wave length must be equal to zero and
AP, = 0, the value of APl = —APZ. Therefore, the maximum pressure

3
rise within a wave is restricted by AP2 even though APl is without
Limiit:
This fact leads to an interesting disclosure. With this model
the peak pressure will occur at the transition point between the
contraction and transition regions which lags the passage of the bolus

(1.3

by lzlc seconds. As previously noted, Barry et al reported such
a time lag between passage of the bolus over the tip of the catheter

and the peaking of the pressure pulse.
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A closer comparison can be made between the theoretical pressure
pulse and the physiological pressure pulse if a more realistic wave
shape is chosen. Tigure 22 is a sketch showing one possible contin-
uous wave along with the mathematical relations describing its shape.
With the continuous geometry, the end of the transition region is
arbitrarily chosen as the point where the pressure gradient is about
5% of the maximum pressure gradient.

Using the continuous wave shape of Figure 22, Equation (4-4) can
be integrated to vield the time-varying pressure pulse. TFigure 23
includes several pressure pules for various geometries along with a
tvpical urometric pulse obtained by Kiil(g). In all cases the pulses
are similar to the physiological pulse. By proper choice of wall

shape, the theoretical pulse can be made to duplicate the urometric

data.

Effect of Catheterization. The general formulation for the intro-

duction of a non-occlusive catheter is shown in Appendix B. The
analysis considers the presence cof a catheter of radius r. which is
introduced into an axisymmetric ureter. In the analysis, it is as-
sumed that the presence of a catheter does not affect the wall shape
or dimensions. It is obvious that the shape of the ureteral wave must
change when a catheter is inserted:; however, as a first approximation,
the analysis will yield the potential effects of the catheter.

The effects of the catheter on the urometric pulse can be seen
in Figure 24, which is a graphical representation of the pressure
gradient as expressed in Figure (B-5). The general shape of the pres-

sure gradient curve remains unchanged as catheter size is increased;
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however, the magnitude of the pressure gradient is severely affected.
Since the peak pressure within a wave is limited by the magnitude of
the maximum negative gradient within the transition region if APk = 0,
the peak pressures within the catheterized ureter will be greater than
that of the non-catheterized ureter for the same geometric variables
(Ll’ L2 and Hz).

The qualitative shape of the pressure pulse with the square wall
model will remain unaffected by introduction of a catheter. i.e. the
peak pressure will still lag passage of the bolus and the pressure
variation within the bolus will be small.

jualitatively, the introduction of a catheter has a small effect
on the pressure pulse produced by the continuous wall shape of

Figure 22. To strengthen this point, Figure 23 also includes a pres-

sure nulse produced from the catheterized model.

Reflux. To investigate the characteristics of the reflux phen-
omenon within a ureteral wave, the method of calculation previously
developed in Chapter 3 will be employed..

The time-mean flow between the axis and a streamline in the wave
frame can be calculated using Equation (3-42) and (3-35) along with
Equation (4-3). The results are similar in character to those pre-
sented in Chapter 3.

One can solve for the reflux limit in a manner analogous to that
presented in Section 3.3. The stream function can first be defined
by Lquation (3-38) then used to define the wall position in povers of
€ as was showvn in Lguation (3-39). Substituting this relation into

Lquation (3-37) along with the appropriate value of the stream function,
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then solving for the constants allows the flow near the wall to be
written in a form similar to Equation (3-40). Eince ew must be greater
than GV, the general condition of reflux in the ureteral model can
be written as

1

J - ) dE > 0 (4-6)

H H-

Since APk = (0 in the ureter, Lquation (4-4) can be integrated to

vield the following relation for the pressure rise per wave

1

J = = ﬁl) dg = 0 (4=7)
4 2

0 H

Comparison of Equation (4-6) and (4-7) leads to the important conclu-—
sion that, with the axisymmetric cross section, reflux cannot occur if

APA = (0. However, for anv AP, > 0 reflux might be present.

A

Displacement Profiles. 1In the wave reference frame, fluid par-

ticles move thru the wave along particular stream lines. The time
each particle takes to pass through the wave will be designated as
its residence time Tp' In the wave reference frame, the non-dimension-
al residence time of the particle on the stream line { equals
0
dm
T = J -—-———X (4_8)
P
2

u
(‘E),\p

(u/c)lp is the local-wave-frame velocity of the particle y.
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Initially, i.e. at T = 0, all particles will be located at £ = 1.
In the laboratory reference frame the particles are carried within the
wave for a time equal to the residence time. To clarify this point
consider the following: if, in the wave reference frame, a particle
takes one wave period to pass thru the wave then, in the laboratory
frame the wave has progressed one period. Therefore, if a particle
were initially at £ = 1 at T = 0, then after the wave moves one period
the particle will still be at £ = 1.

hen Tp is greater than unity, the wave will progress more than
one period before the particle exits the wave, leaving the particle
with a net forward displacement, i.e. £ > 1. If, on the other hand,
Tp is less than unity the wave will have a final position less than
£ = 1 placing it in the reflux region.

With trapping present, particles within the bolus and particles
along the center streamline cannot pass through the wave. However,
particles off the axis will have definite residence times.

At T = 0 a transverse line of particles can be marked at ¢ = 1.
Once particles pass through the wave their position will not change
with time since they will be in the inactive ureter (U = 0). If one
waits until all particles have passed through the wave, a curve may
be drawn through their final positions. This curve will be designated
as the net displacement profile.

Figure 25a is a series of displacement profiles obtained for var-
ious geometrics. Curves I, II and III do not show any indication of
reflux, as should be expected, since these geometries yield a zero

pressure rise per wave. If the constraint of APA = (0 is relaxed, a



T
profile can be obtained which clearly indicates the existence of re-

flux along the walls(curve 1V).

Trapping. The limit of trapping for the axisymmetric ureteral
wave can be obtained by a substitution of Lquation (4-3) into Lquation

(3-53). This expression becomes

H > /2 (4~9)

This means that a trapped bolus will exist beneath anyv position of a

wave that has a radius greater than V2.

Summary Curve. With the ureteral wave, a summary curve can be

drawn showing the regions of reflux and trapping as a function of

geometry. A particular curve will exist for each L L L and I

]! 2) 3) 3!
but Figure 26 onlyv illustrates the case where L] <441, L2 = 441,
L3 = ,118 and H = 25. These particular values were chosen since they

3
are comparable with physiological data. More will be said regarding

these dimensions in the next section.

With Ll’ L4, L, and H3 defined, the two remaining variables,

3

i.e. Hl and HZ’ will be used as the x and v axes, respectively.
Displayed on this figure are the limits of reflux and trapping. The

curve showing the loci of geometries vielding APA = () is concurrent

with the limit of reflux.

Comparison with Physiological Data. In the physiological liter-

ature three facts are well documented and will be used to determine the

validity of the ureteral model, i.e., the qualitative shape of the
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pressure pulse, the magnitude of the peak pressure above basal level,
and the fluid carried within a wave (spurt voluem).

Several points pertaining to the qualitative shape of the pres-
sure pulse have been discussed previously. With both the square wall
and continuous wall shapes, the general shape of the pressure pulse
is similar to the urometric data. In fact, since the peak pressure
occurs between the transition and contraction regions the theoretical

(13)

model predicts the delay observed by Barry et al between passage
of the bolus and the peak pressure. Because of the large radius of
the bolus, as compared with the resting radius, small pressure varia-
tions occur within the bolus region.

In comparing the theoretical model with urometric data it would
be of interest to study the variation of non-dimensional peak pressure

as a function of the relevant geometric parameters for APA = 0,

i.e, L1/L2 and Ez. The corresponding value of Hl can be determined

N "\

from Figure 26. A plot of Pmax - }basal is shovn in Figure 27.

Ll/L2 = 3/7 and Ll/L2 = 7/3 depict the limiting values of L. and L,

1
which have physiological relevance. The peak pressure is bounded at
H2 = 1.5, as could be expected, since the pressure gradient within
the transition regions limits the peak pressure.

The fluid carried within a ureteral wave is related to the time

mean flow through the following relation.

- B (4-10)

2 A
Q. = Ta ¢ o

Equation (4-10) can be used along with Equation (4-3) to determine the

spurt volume within the axisymmetric ureteral wave.
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At this point it would be helpful to consider a few possible
geometries and illustrate the spurt volumes and peak pressures car-
ried by these waves. Table 1 is a representation of a series of
square wall configurations. Because of the large number of variables,
certain of the parameters were held constant including the wave
speed ¢ = 3 em/sec and the viscositv U = .01 Poise.

The value of resting diameter was chosen so that the peak dif-

ferential pressure (Pm ) would be within the physiological

ax Pbasal
range. Variation in resting diameter has a strong influence on peak
pressure since the pressure is inversely proportional to az.

The value of bolus diameter was also held constant since within
the ureter the lumen is most likelv circular and constant in diameter
along the length of the bolus.

With the bolus and resting diameters held constant, the length
and diameter of the contracted and transition regions can be varied. Cer-
tain facts, previously discussed, now become evident: First, the values
of the peak pressure are independent of the dimensions of the bolus
region and depend only on the dimensions of the contraction and dilated
regions. Second, the fluid carried within a wave is only a function
of bolus size and is not affected by the details of the pressure pulse.
‘inally, the diameter within the contracted ureter is approximately
equal to the resting diameter. This fact seems to be substantiated
by radiographic studies which showed that the bulk of the fluid trans-
port is related to the bolus region, while the resting, transition, and
contracted regions of the ureter appear to be void of urine. Since the

dimensions within the contraction and transition regions are very
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small (0.1 mm), radiographic techniques would be unable to detect the
presence of urine.

With the geometries chosen in Table 1, the time lag between pas-
sage of the bolus and the peak pressure ranges between 1.1 and 4
seconds.

Because of the large diameter of the bolus, i.e. ﬂj = 25, trapping
will exist within this region of the wave. The presence of trapping

within the transition region of the wave depends on the actual geo-

metry of the region.

4,3, General Formulation (Lecbe-Shaped Lumen)

From Figure 2 it can be seen that the ureteral lumen can form
a quasi-lobe-shaped geometrv at least in the resting ureter. Since
the actual geometry is quite complicated a lobe-shaped model can be
constructed which includes the major characteristics of the ureter.
The following sketch based on Figure 2 shows a cross-—-sectional shape
consisting of six lobes each having a width 2h, where h is the trans-

verse coordinate of the wall relative to the center line of each

< ,

lobe.

o<

2mm
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The overall dimension was chosen to be 2 mm since the ureteral lumen
is approximately equal to this value. If we neglect the center core,
the cross-sectional geometry can be considered as 6 parallel two-
dimensional channels.

The general formulation is analogous to the circular formulation
presented in Section 4.2. Because of the similarity between the cir-
cular and lobed models the discussion will be brief and only the im-
portant relations will be touched upon.

Since no fluid motions exist except within the active wave
regions, the wave frame flow g, i.e. the flow per unit height in

one-half of a two-dimensional lobe, must equal
q = -ac (4-11)

Using this relation along with mean-flow rate as defined by
Equation (11) of Reference 4, the mean-flow carried by a two-dimen-
sional ureteral wave is related to the average position of the wall

by the following relation.
6 =H-1 (4-12)

In other words, the average dimensionless wall coordinate H must be
greater than unity if the wave is to have net positive flow rate.

The dimensionless pressure gradient within the lobe-shaped wave
can be obtained by substituting equation (4-12) into Equation (3-15).
This relation can be written as

v
9P _ (1 - H)

3E }B (4-13)
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This expression can be integrated to vield the pressure variation
within the wave.

Because of the similarity between hquations (4-13) and (4-4)
the general shape of the wave must be composed of a dilated region
followed by a centracted region. With the square wall shape, the
wave will still consist of three regions and have a triangular
pressure pulse as shown in Fipure 20.

Eauation (4-13) can be plotted against wall position in order
to show the character of the pressure gradient in various regions of
the wave (see Figure 21). The general shape of the pressure gradient
curve is similar to the axisymmetric curve in that they both have a
lower bound for the pressure gradient when H > 1. The bound occurs
at H = 1.5 with the lobe-shaped geometrv. One can also see that the
magnitude of the pressure gradient is alwavs less than the axisym-
metric pressure gradient. This means that for the same basic geometric
configuration, the peak pressure in the two-dimensional wave will be
less than the peak pressure in the circular ureter. Alternatively,
with the lobed cross section a smaller value of "a' is required to

place the peak pressure within the physiological range.

Reflux and Trapping. Using a pertibation solution similar to

the one discussed in Chapter 3 and in Section 4.2, the condition for

reflux with the lobe-shaped geometry can be written as

J (E - —?) dg < 0 (4-14)
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Using Equations (3-30a) and (3-32) along with Equation (4-12)

results in the following criteria for trapping.
H >3 (4-15)

If the value of the wall coordinate h is greater than three times

be 41

the resting coordinate "a', a trapped bolus will exist below that
portion of the wave.

With H3 = 10, L3 = ,118, and L] = L2 = 441, a summarv curve can

be constructed showing the regions of reflux and trapping as a

function of Hl and H2. Here again, an infinite family of geometric

configurations exist for APK = (0, but only a relevant set of parameters

was chosen for display. Also shown on this figure are the values of

“l and H, which yield APA = (), From this curve it can be seen that

reflux will not exist when AP\ = (J.

Displacement Profiles. Net particle displacement profiles can

be constructed for the lobe-shaped geometry by using Equation (4-8)
along with the two-dimensional velocity profiles and stream function.
Curves I, II, and III of Figure 25b show a series of displacement
profiles for geometries where APA = (0. Curve IV shows a profile

where the constraint on AFA was relaxed in order to illustrate a

reflux condition.

Comparison with Physiolopical Observations. Dy summing the flow
from each of the 6 lobes a relation can be developed between the spurt
volume QE and the mean-flow rate defined by Equation (4-12). This re-

lation can be written as



= 1.2 ac * 8 (4-16)

QL,

The general character of the peak pressure within a stepped wave
is shown graphically in Figure 29, Since the major pressure varia-
tions are associated with the contraction and transition regions,

only hz, L1 and L2 are displayed as variables. As with the circular

geometry, the two curves depict the limiting values of the longitu-
dinal coordinates which have physiological significance. The value

of Hl corresponding to each value of H

28 when APA = 0.
Using Figure 28 along with Equations (4-16) and (4-12), Table

, can be obtained from Figure

2 can be constructed showing the spurt volumes and peak pressures for
various geometries for which APA = (0. As with the circular geometry,
the spurt volume is related to the bolus region:; while, the pressure
pulse is related to the contraction and transition regions. As was
mentioned previously, the value of resting lobe width required to
place the peak pressure within the physiological range is less than
required for the circular geometry, i.e., 0.056 mm as compared with
0.1 mm, respectively. With all geometric configurations, wave speed

and viscosity were constants and equal to 3 cm/sec and .01 Poise,

respectively.

4.4. Combination of the Lobed and Circular Ceometries. The ureteral

lumen is not entirely circular or lobe-shaped, in fact, the shape
most likely varies between circular in the bolus region and lobe-

shaped in the resting, contracted, and transition regions.
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As a first approximation, one can consider the cross section
within the wave to suddenly change from circular to lobe-shaped
at the end of the bolus region. In actualitv, a continuous trans-
ition must exist; however, the conclusions formulated using the
sudden transition model will yield some insight into the smooth
transition. 7The general wave shane and nomenclature will be similar
to the wave shapes presented in Figure 20 and 22 except H3 will be
radial while H, and I will be the transverse coordinate "Y'.

From the discussions presented in Sections 4.2 and 4.3, the ef-
fects produced by a combination geometry will be straight forward.
It has been shown that the major fluid transport is associated with
the bolus region of the wave, while the pressure pulse is related to
the transition and contraction regions. Since the spurt volume and
pressure pulse are independent, each quantity can be calculated for
its appropriate geometry, i.e. the pressure pulse from two-dimensional
theory and the spurt volume from the axisymmetric theorv. In cal-
culating actual numerical values of pressure and fluid transport, care
must be taken to match the instantaneous flow rate (Q on either side of

the cross-sectional discontinuities.

4.5. Summary Comments on the Ureteral Model. As was illustrated in

Tables 1 and 2, either the lobed or circular geometry can account for
peak pressures and spurt volumes within the physiological range. A
combination of the geometries, which is most likely the case within
the ureter, will also vield reasonable results.

The ureteral wave is composed of a urine carrving region, where

trapping is most likely present, followed by a contracted region which



is responsible for the pressure pulse. Conceptually, the ureter oper-
ates with a type of "milking action' where the urine is transported

in front of a pressure cuff which is formed by the contraction and
transition regions of the wave.

Along the ureter, large pressure variations are not required to
transport urine, in fact, peak pressures 1/100 as larpe will be as
effective. Illowever, in order to expel urine into a pressurized
bladder, peak pressures greater than intra-vesical pressures are re-
quired. If these peak pressures were less than the bladder pressure,
a small regurgitation of urine into the ureter will occur as the
ureterovesical junction opens.

The actual internal dimensions of the ureter during passage of
a wave are not determined exactly from the analysis; however, the
range of these dimensions is indicated. If the urometric pulses are
true recordings of intra-lumenal pressure, i.e. not artifact caused
by the catheter, dimensions of 0.1 mm or less are required within the
resting and contracted regions of the ureter. DBecause of the larrge
size of the bolus as compared with the other dimension, the ureteral
wave would appear visually as a single dilated region followed bv a
single contracted region. Radiographic data appears to confirm this
conclusion.

From the analysis, the presence of a catheter appears to have
small effect in the qualitative shape of the pressure pulse, but does
sevérely affect the magnitude of the peak pressure. As was expected,
the magnitude of this effect depends on the size of the catheter as

well as the accomodation of the lumen to the catheter.
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The model also presents a possible interpretation of the ob-
served time lag between the passage of the bolus and the peak pressure.

Cravity will have little effect on ureteral function as long as
the ureterovesical junction effectively isolates the ureter from the
bladder. When the ureter is vertical, an additional pgh static head
will be present within the ureter.

Analytically, it appears as if retrograde urine transport will
not be present in normal ureters since the pressure rise across a
wave must be greater than zero for reflux to occur. However, it
might be present when alterations of wave shape occur. With refined
physiological techniques, it might be possible to identify the pres-

ence of reflux by urometric techniques.
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5. EXPERIMENTAL PROGRAM

5.1. Introduction

In Chapter 1 various theoretical treatments of peristaltic
pumping were mentioned; however, adequate experimental confirmation
of these theories does not exist.

The experimental program described in this chapter was developed
to yield both quantitative and qualitative information on peristaltic
pumping at Reynolds numbers where the fluid could be considered in-
ertia- free. The visual experiments were designed to determine the
operating conditions for which the phenomena of reflux and trapping
are present.

Pressure studies included an investigation of the pressure rise
per wave length and the pressure variation within a wave as a function
of ¢ and O.

Previously, T. Latham(lgj constructed a quasi-two-dimensional

apparatus with which he obtained the integral pumping characteristics,

"

i.6. APA vs 8, for a range of Reynolds numbers. For R < 0.2 his
n

results substantiated the linear nature of the APA vs B curves, as

(4)

predicted by Shapiro et al . Latham's apparatus was modified by
S. Weinberg and E. Eckstein in (1965) to allow for limited flow

visualization. The results confirmed the existence of reflux near
the walls, but the work was not published because no reliable quan-

titative data could be obtained with the apparatus.
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5.2. Description of Apparatus

Figure 30 is a schematic diagram showing the major components of
the fluid circuit. The peristaltic pump is located between two open
reservoirs, each of which is composed of a lower transition chamber,
which will be discussed later, and an upper tank. The upstream tank
had a cross-sectional area of 1 ft2 and a height of 1 ft, while the
downstream tank had the same area but a height of 2 ft.

The fluid level in the upstream tank was maintained at Pn by use
of an over-flow pipe which was located within the reservoir. The fluid
over-flow from the upstream reservoir was returned to a sump tank
which was located beneath the pump.

The downstream reservoir had an adjustable over-flow pipe which

was used to set the pressure level, P The over—-flow from the down-

L
stream reservoir passed into a three-way diverter valve. It was then
diverted into a graduate for flow rate measurements or allowed to re-
turn to the sump tank for recirculation.

Manometers, which were attached to each reservoir, were used to
monitor the fluid levels within the reservoirs.

A variable speed gear pump, which was located beneath the sump
tank, continuously supplied the fluid to the upstream reservoir. All
conduit, external to the peristaltic pump, was 1 1/2 in. I.D. vinyl
tubing, except for 1 in. I.D. tubing between the gear pump and upstream
reservoir.

Various mixtures of glvcerine and water were chosen as the working

fluid because of the large range of attainable viscosities (i.e. from
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1 centipoise (cps) to 500 cps) and the transparent character of the
mixtures. The latter requirement was necessary for visualization
studies.

A top view of the peristaltic pump is sketched in Figure 31.

The pumping duct is bounded by a semi-circular backwall, a moving wall,
and two cover plates (refer to Figure 32 for a cross-sectional view
of the pumping duct).

The  stationary wall was composed of a 7 5/16 in. thick plexiglass
plate sandwiched between two 1 in. thick plates of aluminum. A radius
of 17.197 in. was machined in the back wall, then smoothed and polished
to insure good visual properties.

Affixed directly to the ends of the backwall were the reservoir
transition chambers. The chambers were designed so that a sudden
increase in gap width would exist at the termination of the pumping
region in order to minimize end effects.

From Figure 32, it can be seen that the pumping duct and transi-
tion chamber were bounded above and below by 3/4 in. thick plexiglass
cover plates. The moving wall was composed of a 1/16 in. thick sheet
of 70 durometer neoprene rubber taped to a .0l15 in. spring steel band.
The rubber sheet extended 1/2 in. on either side of the steel band so
that a wiper seal could be formed (see Figure 32). Due to the severe
curvature of the rubber, it was necessary to sew the rubber to the
edge of the steel band over the entire length of the test section.

The technique for sealing the ends of the pumping duct and tran-
sition reservoirs is shown in Figure 31. In the region of the transi-

tion reservoirs, spring steel flaps were attached to the moving wall.
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The neoprene rubber sheet was taped and sewn to these flaps resulting
in a continuous dynamic seal throughout the entire pumping chamber.
These flaps were then clamped to the ends of the transition reser-
voirs enclosing the pumping channel.

With the test duct designed in this manner, internal pressures
of 2 psig could be supported with minor leakage.

As was mentioned previouslyv, the peristaltic action of the
moving wall was generated using a variable speed roller cam. The cam
was composed of a central aluminum structure which supported 48
adjustable roller arms. Figures 31 and 33 show the basic structure
characteristics of the cam and rollers and their relative location
within the apparatus. Thirty (30) of the rollers were constructed of
aluminum and eighteen (18) were magnetic assemblies. The magnetic rol-
lers were used where tension force was required to hold the steel band
in position, i.e. at x = 0, 1/4, 1/2 on each wave.

Since the moving wall was indistensible, the transverse peristal-
tic motion was accompanied by a small amount of oscillatory tvpe longi-
tudinal motion. With a periodic wave, this secondary motion will have
zero amplitude every wave length~from the rigid holding support. In
this apparatus the support was placed at one wave length from the begin-
ning of the pumping duct so that the secondarv motion would equal zero
at every integer wave position within the pump.

The entire peristaltic pump was mounted within a 4 in. steel "1"
beam frame which was designed to withstand both static aad dynamic
loading. The frame maintained tolerances within # .003 in. without

obstructing the visualization experiments.
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5.3. Comparison Between the Experiment and the Two-Dimensional Theory

In constructing an experimental apparatus, it is not possible
to exactly simulate the conditions prescribed by the two-dimensional
theory. For this reason this section is intended to introduce the
differences between theory and experiment, and to discuss three pos-—
sible effects on the theoretical model.

In Chapter 3, the theory was developed for a straight pump with
both walls undergoing peristaltic motion. Mechanically, it is much
simpler to construct a circular experiment than a straight one. How-
ever, as long as the radius of curvature of the experiment (1722 4n.)
is much larger than the mean gap width (.5") the curvature will have a
negligible effect on the flow field.

The next point to be discussed concerns the effect of a single
moving wall in the theory. It was shown in Chapter 3 that the local
pressure gradient within a peristaltic pump is a function only of the
local wall dimension relative to the local center line of the pump.

In this apparatus this fact is still valid, but the center line of the
pump is now in the center of the gap and is no longer the line of
symmetry.

In accordance with the basic simulation criteria described in
Chapter 3, the following features were incorporated into the apparatus:
(a) the test section contained exactly three wave lengths (an integer

number)*, (b) a periodic sinusoidal peristaltic wave was imposed on

*It should be noted that the two-dimensional theory could be modified
to include non-integer wave lengths.
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one wall, (c) open reservoirs, which were intended to approximate
conditions of constant pressure, were placed at the ends of the
pumping section.

At this point, feature (c) in the above paragraph requires fur-
thur discussion. Because of the size of the reserveoirs and the un-
steady character of the instantaneous flow rate Q(x,t) fluctuations
in pressure level up to 3 mm of fluid were observed for ¢ = .9, 1In
addition, the flaps, which were used to seal the transition reservoirs,
deformed with static pressure and induced additional pressure fluctua-
tions. Together, these effects caused absolute pressure variations
within the pump, but did not affect the differential pressure readings
or visualization studies at low Reynolds numbers.

The fluctuations in reservoir pressure level became a serious
problem in the higher Reynolds number studies which were done by
) Eckstein(zo). When fluid is supplied from a reservoir into a chan-
nel or duct, consideration must be given to the entry length where
the Poiseuille type flow developes. Appendix C includes the details
of a calculation showing that for R < 1 the entry length in this ap-
paratus was less than A/25. For this reason, it can be assumed that
the flow is locally Poiseuille throughout the pumping channel.

In Section 5.2, the effect of wall indistensibility was men-
tioned, i.e. the presence of a secondary longitudinal motion. An

(1)

analysis by Burns and Parks showed that as o << 1 this longitudinal
motion will have a small effect on the theory (o = .013 in this
apparatus).

In Chapter 3, it was shown that the theoretical treatments of

peristaltic pumping could be considered in terms of o, ¢, R, and 0.
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The values of these parameters in the present experiment are:

(i) Wave Number «. TFor all experiments conducted in this

thesis the value of o was set at 0.013. From the work of Burns and

(1) (5)

Parks and Jaffrin this value of 0 was small enough so that
the effects of wall curvature could be neglected.

(ii) Squeeze Ratio ¢. Any value of ¢ between 0 and 0.9 could

be imposed on the pumping channel with reasonable accuracy. However,
with & > 0.9 the accuracy required in setting the gap increased be-
vond the maximum accuracy of the apparatus. In this experimental
study, squeeze ratios of 0.9, 0.7, and 0.4 were used.

(iii) Reynolds Number R. For the experimental studies discussed

in this thesis, the Reynolds number R ranged between .001 and .25. As
will be shown, these Reynolds numbers were clearly within the inertia
free range. By proper choice of wave speed and viscosity, values of R

up to 30 could be obtained(zo).

(iv) Mean Flow Rate f#. At each value of ¢, a particular wave

speed and viscosity could be chosen so that the mean flow rate § could

be obtained between 8 = 6. and 6§ = 0.

0

At this point, consideration must be given to the effects re-
sulting from the actual cross-sectional peometry of the pumping chan-
nel. The first of these effects was originally discussed in Section
3.4 and concerns the presence of upper and lower cover plates. No more
will be mentioned at this time as the results of the modification are
discussed in detail in Section 5.5

Inaddition to these three-dimensional effects, the pumping chan-

nel also included inactive regions where the fluid was able to leak
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backwards. These leakage channels existed at the seal recess slot
in the backwall and at the top of the channel where the seal bends
outward. Since the local pressure gradients within the pump were
strongly dependent on the local gap widths, a significant increase
in gap width will result in inactive regions which may in turn con-
tain leakage flow.

The effect of this leakage flow can be incorporated into the
theoretical model in the manner as discussed in Appendix D. Basical-
ly, the analysis assumes the flow in the leakage channel to be of
the I'oiseuille type and to be proportional to the local pressure
gradient induced by the active peristaltic pump. From this analysis,
a dimensionless parameter ¢, which only depends on the geometry of
the leakage channel, can be used to characterize the leakage flow
within the pump. More will be said regarding this modification in

Section 5.5.

5.4. Ixperimental Technique

The technique used to set the adjustable roller arms on the cam
is discussed in the next paragraph. Initially, the moving wall was
withdrawn from the machine, and a series of roller arms were extended
until contact was made with the stationary wall. Using a removable
micrometer rig, which was attached to the downstream transition cham-
ber, the position of these extended rollers was measured and subse-
quently used to locate the position of the backwall. Knowing the thick-
ness of the moving wall, the roller arms could be set to the desired
wave shape. For the present experimental studies, the cam was adjusted

to generate the following periodic wave shape:
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Lo 1+ ¢ sin2n(E - T) (5-1)
with the local gap equal to 2h. Using the wall setting technique
just described, each roller arm could be set within a tolerance of
£.,002 in.

During each experimental run it was necessary to maintain a
record of wave speed and fluid viscosity. The wave speed, which
ranged between 1 cm/sec and 20 e¢m/sec, was logged on a Sanborn re-
corder with a timing mark. This mark was stimulated by a cam-
microswitch assembly mounted on the center shaft of the machine.

After obtaining a fluid sample from the downstream over-flow
pipe, during each run, the viscosity was measured using a Brookfield
LV model viscometer. Occasional viscosity checks were made using a

Saybolt viscometer.

Flow Rate. It was necessary to measure the time-mean flow rate
through the pump by using a collection technique because of the un-
steady character of the instantaneous flow rate. Using the three-way
diverter valve, the downstream over-flow was diverted in graduated
cylinders. Collection was made for at least six wave periods, i.e.
one revolution of the cam. At the opening and closing of the diverter
valve, a timing mark was entered onto the recorder by means of a foot-

operated microswitch.

Pressure. The pressure rise across the machine was read directly
from the reservoir manometers. To measure the pressure variation with

time at fixed locations within the pumping duct, 1/8 in. diameter
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pressure taps were drilled through the backwall at 1A, 1 1/4 X,
11/2 A, 1 3/4 A, and 2\ from the beginning of the pumping duct.
All taps were placed 1 in. below the center of the channel (see
Figures 35 and 37a). From the discussion of the nodal behavior of
the pressure field within the pump (Chapter 3), these pressure taps
were used to measure PE=1/4 - PO’ P€=1/2 - PO’ P€=3/4 = PO’ and
APA’ respectively.

To this end, a pressure manifold was constructed from 3/8 in.
tubing and attached to a Sanborn 268B differential pressure trans-
ducer (see Figure 34a). Because of the manifold, it was necessary
to investigate the dynamic response of the pressure recording sys-
tem. Using a technique discussed in Appendix E, the lowest natural
frequency of the system was found to be 150 Hz. Since the characteris-
tic frequencies measured were well below this value (e.g. < 1 Hz),

no attenuation or amplification of the pressure signal was expected.

Visual. In all visual experiments, the character of the flow
field was identified using dye injection techniques. The dye used was
a mixture of Dupont Rhodamine B powered dye (orange), which was dis-
solved in water, and glycerine. By mixing proper proportions of
glycerine and dye, the density of the dye was matched to the density
of the working field. In some cases it was necessary to dissolve the
powdered dye in pure glycerine.

In_the visualization studies, the dye was injected into the
pumping channel at two locations. When it was necessary to accurately
place the dye, a micrometer controlled injection system was used (see
Figure 34b). This injection rig replaced the central pressure tap

during the visualization studies.
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The other dve injection location, which was in the upstream
transition chamber, was used for the visualization of the trapping
phenomenon. This injection port, which was 0.1 in I.D. tubing, was
not used when accurate placement of the dye was required.

The dye motion within the channel was photographed in color
with either a Beaulieu R16 movie camera or a Mamiva Sekor 500Tb
35 mm still camera. For all experimental runs, the camera was mounted
on a rig which was located on the center shaft of the experiment about
3 ft above the level of the injection ports (refer to Figure 35 for
a photograph of the test channel as seen by the cameras). Data was
obtained either in the wave reference frame, i.e. allowing the camera
to move with the center shaft, or in the laboratory reference frame
by holding the camera rig stationary.

Different visualization techniques were emploved to identify
the phenomena of reflux and trapping.

(i) Reflux. To identify the presence of reflux, the camera
was mounted in the laboratory reference frame. Dve was injected,
using the micrometer injection port, in the region near the station-
ary or moving wall. The net progress of the dye was photographed
during various flow rates and squeezes in order that the "reflux"
operating conditions could be identified.

By visualizing the flow field near the walls, reflux could be
easily identified by the retrograde motion of the dve. Without re-
flux the dye would proceed downstream in the direction of wave motion.

(ii) Trapping. For all visualization studies pertaining to
trapping, the camera recorded data in the wave reference frame. The

first objective of these visual studies was to determine under what
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conditions of flow & and sgueeze ¢ the trapped bolus exists within
the flow field. The visualization technique which proved to be most
successful for this work was related to the streamlines shape in the
wave reference frame. Since the trapped bolus is bounded by a single
streamline ¥ = 0, any dye outside the bolus cannot enter inte the
trapped zone.

Using this simple idea, the progress of a line of dye, external
of the bolus, was used to identify the existence of trapping as well
as the outline of the trapped bolus. Figure 35 is a sketch showing
the progress of the dye line after injection across the neck of the
wave. The dye line can be considered as a series of material par-
ticle markers, each located on a particular streamline Y. As time
progresses, each particle will move along its particular streamline
at a velocitv depending on its location within the wave. Since the
Y = 0 streamline approaches a stagnation point at the end of the bolus,
the dye marking this streamline will asymptotically approach a sta-
tionary position in the wave reference frame. The location of the
dve marking y = 0 could be identified and used to calculate the vel-
ocities in the wave reference frame. More will be said about this
point in the next section.

If no trapping is present, the injected dye will eventually pass
through the wave into the following wave since all velocities within
the wave are negative.

To visualize the internal structure of the bolus, dye was in-
jected directly into the bolus. Experimentally, it was necessary

to inject dye into two regions of the bolus to identify the internal
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streamline patterns. Region I in Figure 36 was used to visualize the
leading edge of the bolus, while Region Il was used to obtain the

rearward streamline patterns.

5.5. Results and Discussion

For the pressure studies as well as the visual experiments three
values of squeeze ratio were used, i.e. ¢ = 0.4, ¢ = 0.7, and ¢ = 0.9,
These values proved sufficient to explore the operating range of the
apparatus and to establish the validity of the modified leakage-

channel theory.

0y
Curves of APA vs 8. To obtain the overall pumping characteristics

of the apparatus, the pressure rise per wave length was measured as

a function of flow rate for each value of ¢. Using this data, curves
of A%A vs O were constructed and compared with the two-dimensional and
modified theories.

Figures 5 through 7 display the experimental results along with
the theoretical curves predicted by the two-dimensional theorv (solid
curves). The data clearly deviates from the theory. In order to re-
concile the experiment with theory, it is necessary to include the ef-
fects produced by the actual cross-sectional geometry of the pumping
channel.

At first we can consider the results obtained from the three-
dimensional approximation described in Section 3.4 and Appendix A. The
short dashed line in Figure 6 shows the curve of A%A vs O with the

three-dimensional approximation. This curve is only shown for ¢ = 0.7,

but the effects are similar for all ¢'s.
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At each value of AP, the flow rate is reduced due to the presence

A

of end walls. In particular, at A%K = 0 the value of 80 is reduced to
a value which is approximately equal to the value obtained experimen-
tally. Alternatively, the pressure rise per wave length is reduced for
each value of 8; however, at 6 = 0 the maximum pressure rise still re-
mains above the experimental value.

The effect of a leakage area on the theorv can be explained
using the following concepts. The amount of leakage flow will be
dependent on the magnitude of the adverse pressure gradient. At
B = 90 the mean pressure gradient is zero so the leakage flow will have

a negligible effect on the flow field; however, as AF, is increased,

A
the effect becomes more pronounced. For this reason 80 will be
weakly affected by ¢, i.e., curves of constant ¢ will remain linear

and will always intersect 0 = 6 The greater the leakage area the

0°
¥
greater the effect on AP 5
Amax

The effects of the channel and leakage area can be combined to
obtain a theoretical curve which agrees well with the experimental re-
sults (long dashed curves in Figures 5 through 7).

In order to correlate the modified theory with the experimental
data, a value of the leakage parameter ¢ = (0.0061 was required for

¢
¢

]

0.7 and ¢ = 0.4; however, a value of ¢ = 0.0028 was required for

]

0.9. This preceeding statement requires further explanation.
Two values of { were required because the area of the leakage channel
was reduced between the experimental runs of ¢ = 0.9 and those of
¢ = 0.7 and ¢ = 0.4. The important fact to consider is that a single

value of ¢ was required for both ¢ = 0.4 and ¢ = 0.7. This should
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be the case since ¢ depends only on the geometrv of the leakage
channel and no change in geometrv was made between these experimental
runs.

From the discussion of the leakage parameter in Section 5.3 and
in Appendix D, a decrease in leakage area should be accompanied bv a
decrease in ¢; however, this was not the case. This apparent contra-
diction can be explained by considering the assumption used in the
leakage model. In the theoretical analysis, the pressure gradient in
the leakage channel is imposed bv the peristaltic pumping action.
This fact requires that there be a free exchange of fluid in the ver-
tical direction at every section in the pump. When narrow gaps are
present, as for ¢ = 0.9, this assumption will not be wvalid since there
will be vertical pressure gradients restricting fluid motion. This
restricted fluid motion will result in an apparent reduction in leak-
age area.

From the discussion in Appendix D), the value of ¢ can be related
to an effective pipe leakage area. For ¢ = 0.7, the value of ¢ cor-
responds to a leakage area of 0.5 cmz, which roughly compares with
the area affected by the curvature of the seal, i.e. the area where
the rubber sheet bends to form the wiper seal.

The data obtained for A%A and 6 also demonstrate the absence of
inertial forces at least up to a Reynolds number of .25. From Figure
6, the data clearly shows that an order-of-magnitude increase in Rey-
nolds number had no effect on the experimental results. A studvy con-

(20)

ducted by E. Eckstein showed that the inertial effects do not be-

come important until the Reynolds number exceeds 2.
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P(x,t) curves. Due to the sensitivity of the pressure trans-

ducer and the pressure limit of the dynamic seal, pressure pulses
could be obtained experimentallv only for certain values of ¢
and O,

The experimental data is shown in Figures & through 11 for a
series of squeeze ratios and flow rates. The theoretical curves wvere
obtained using the leakage-channel theory with the appropriate values
of ¢. Both the leakage and the channnel modifications effect only
the magnitude of the pressure pulse not the shape.

From Figures 8 through 11, it can be seen that the experimental
results agree quite well with the theoretical predictions considering
the strong dependence of the pressure gradient on the wall position.
The best agreement between theory and experiment was obtained for
¢ = 0.4. It should be noted, that the data displayed for ¢ = 0.4
is an average curve taken from the actual pressure traces shown in
Figure 37 (only O = 80 data is shown). The eight cvcle per wave
oscillation present in these pulses are attributable to the pressure
gradients induced by the small wall deflections which exist between
the 8 roller arms. This oscillation was not observed with ¢ = 0.9
and ¢ = 0.7 since the local pressure gradients within the pump were
much greater than the gradients induced by the wall deflection between
the rollers.

The asymmetry exhibited in the pressure pulses shown in Figure 9

was attributed to an overdumped R-C filter in the electronic circuit.

Visualization Studies

(i) Reflux. Using the visualization technique discribed in Sec-

tion 5.4, both qualitative and quantitative data on the reflux
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phenomenon was obtained. By systematic variation of BIB” and ¢,
the reflux limit could be reasonably identified by the motion of the
dve along the walls. With reflux present, the retrograde motion of
the dye was a clear indication of its presence. The operating
points where reflux was observed are plotted on the two-dimensional
summary curve (Figure 14) with 6 normalized with respect to 80
experimental. The symbols '"®" and "@" refer to the operating condi-
tions where reflux was and was not observed, respectivelv. For ¢ = 0.7
and ¢ = 0.4, the data confirms the existence of "reflux' and "no
reflux" operating regions. Using the present visualization technique,
no information concerning the quantity of reflux flow could be
obtained.

The reflux along the walls is clearly shown in Figure 38 which
is a sequence of frames taken from the experimental data for ¢ = 0.7
before (8/90 = (0.84) and after the onset of reflux (8/80 =057
It is necessary to identify the retrograde position of the dve with a
white indication line because of the limitations of black and white
photography. For 8/80 = 0.57 the position of the retrograde dve
differs on each wall since dve was placed near the moving wall before
it was placed on the stationary wall. At T = 10.0 the dve has pro-
gressed beyond the range of the camera.

(ii) Trapping. Using the techniques described in Section 5.4,
the "trapped" operating conditions were observed and plotted on the
two-dimensional summary curve (Figure 14). A "trapped" operating

o

and a 'mon-trapped" condition by ,

ot

condition is indicated by

No trapping was observed for ¢ = 0.4. At ¢ = 0.7 the data showed
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good agreement with the theoretical predictions of the two-dimensional
theory. In Section 5.4 a technique was described for identifying the
position of the forward stagnation point on the bolus. Briefly, the

. technique involved the recording of the motion of a dye line after
insertion into the neck of the pumping channel. If trapping existed,
the dye marking the center streamline ({ =0) approached the stagnation
point of the bolus. Figure 39 is a sequence of frames showing the
motion of the dye line for ¢ = 0.7 and 8/80 = 1. The location of

the stagnation point as well as the outline of the bolus are clearly
evident.

Using the preceeding technique, the position of the central stream-
line could be identified and plotted as a function of time after inser-
tion. Figure 40 is a graph showing the position of dye marking ¢ = 0
vs time. T represents the non-dimensional time after insertion of the
dye. ; is the wave frame position of the dye on the streamline y = 0.
The curves for B/BO = 1 and 8/80 = 0.74 clearly show the asymptotic be-
havior of the dye as it approached the stagnation point. The theoreti-
cal asymptotes are also shown on these curves.

When trapping is not present the dye passes directly through the
wave as is shown for 8/80 = 0.52.

Using the mean curve drawn thru the data, the slopes can be used
to determine the wave frame velocity u/c as a function of }_ Figure
41 is a plot of the experimental velocity data along with the velocities
predicted by the two-dimensional theory. For 0/00 = 1 and 8/80 =0 .74

the data agrees quite well with the experimental results.
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The detail structure of the bolus can be demonstrated by a
series of photographs taken from experimental runs. Figure 42a
is a close up view showing the shape of the leading edge of the
bolus for ¢ = 0.9 and 6/80 = 1. The internal streamline pattern is
clearly evident at the rear end of the bolus in Figure 42b for
¢ = 0.9 and 8/80 = 1, Figure 42c is a overall view of the trapped

bolus beneath the crest of the wave with ¢ = 0.7 and 6/80 = 1.,
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APPENDIX A

EFFECT OF THREE-DIMENSIONAL PUMPING CHANNEL ON THE PLANE THEORY

The effects of three-dimensionalitv can be introduced into the
. : : (15)
plane theory by an approximate technique described by Purdav 3
Theoretically, the total instantaneous flow at each section

within the pumping channel can be written as

h3 aP

( 3:“‘ ﬁ) (A-1)

} = 2 -
‘total(x’t) sk

Purday showed that for a channel the pressure gradient in a

locally Poiseuille type flow will equal

8P 3u(h + 1)

= = =it A
oXx h3 IAVG (=2)

where n is a function of aspect ratio in the channel and can be obh-

tained from Lguation (3-58).
With U defined as flow rate per unit area of channel, a rela-
tion can be developed between the net flow rate through the pump Qn

and the theoretical flow rate 0. TFrom Equation (a-1) and (A-2) this

relation can be shown to equal

n

Q*(x,t) = s Q(x,t) (4-3)
where
Qn
* _n =
Wk (x,t) oo (A-4)
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With the actual time mean flow defined as

T
J Q"‘dt
0

o =

=l

(A-5)

where 1T is the wave period, and using Equation 10 of Reference 4,

the non-dimensional average flow rate through the pump can be shown
to be

(A-6)

Using the integral form of the continuity relation (Lquation 3-3b)

along with Equation (A-6) results in the following form of the modi-

fied pressure gradient in the experimental channel

il
nkH
=0 O
N [n+1dT * n+1 n+1
dP 0 n n
9 1 : HB H2
['ﬁ"-_—*_"——"d’l'
0
0%
where 6% = Q
ac

This expression can now be integrated to yield p(x,t) and

o
*
APA vs 0%,
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APPENDIX B

INTRODUCTION OF A CATHETER

Currently, the diameters of intralumenal catheters are greater
than the resting dimensions within the ureter. Therefore, as the
catheter is inserted the lumen will encircle the catheter to form
a quasi-axisymmetric annulus. Using this concept, a model will be
developed showing the effects of a catheter on an axisymmetric
lumen.

Figure 43 is a representation of the nomenclature used in this
model. The analysis will be presented for a general wall shape in the
wave reference frame.

It should be noted that the model assumes that the wave shape
remains unchanged as the catheter is inserted. From the forepoing
discussion, it is obvious that the catheter must effect the wall
shape; however, for a first approximation this model shows the gen-
eral effects of catheter insertion.

In the wave reference frame, the flow entering the wave is reduced
due to the interference of the catheter. This wave frame flow now

becomes
q= - c(a2 - ri) (B-1)

where r, is the radius of the catheter.
The governing equations for this model are identical to those

used in the axisymmetric formulation. However, the boundary conditions
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are altered due to the presence of a catheter.

conditions in the wave reference frame are

These new boundary

(B-2)

Integration of the governing equations along with the introduc-

tion of Equation (B-1) results in the following expression for the non-

dimensional pressure gradient in the wave reference frame

2 2 2
QE_= ﬁ RC - 1+ (H - RC) _ m(x)
b Y
where
L 4 4 1 2 1
y=3 @ -R) + 216G H lnE -5 R
- @ - B%)
Cc
8=R+ 1 In R
& c
and
6= (@ - R%)/(n R - 1n H)
[ 24 C
In the

written as

(B-3)

(B-4c)

laboratory reference frame the pressure gradient can be
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Tl

d

d

<2
gy

= QE - 1) (8-5)

where §1(§ - 1) is Equation (B-3) expressed in the laboratory
coordinates.

The instantaneous flow within a wave is equal to

H2
B SN B 2 159 '
2 aa J c d(a) (B 6)
a ¢ 2
R
c

Introducing the velocity profile and (A-1) into Equation (B-6) and
integrating, results in an expression for the instantaneous flow rate.
Taking the time mean of this expression over a wave length results in

the following familiar form of the non-dimensional mean flow.

8 = H° -1 (B=-7)
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APPENDIX C

EFFECT OF ENTRY LENGTH

The boundary layer thickness in a developing flow was shown by

Schlichting(16) to be equal to
vﬂx
§ =35 T (c-1)

where 6 is the boundary laver thickness, RX is the length along the
plate, and U is the velocitv outside the boundary layer in the un-
disturbed stream.

Changing this expression to include the peristaltic pumping
Reynolds number C%j%) results in the following expression for the

thickness of the boundary layer;

)

5

1/2 Rx

o

8 :
7 (C-2)
b

>

At the beginning of the pumping channel the boundary layers form
on both the stationary wall and the moving wall. Since the flow be-
comes fully developed when § = a, from equation (C-2) it can be seen

that for a R < 1 the entry length region is less than A/25.
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APPENDIX D

LFFECT OF LEAKAGE FLOW

The leakage flow modification can be considered independently
and then combined with the channel modification teo vield a theore-
tical approximation for the experimental geometry.

The instantaneous flow through any section of the pump is rela-
ted to the total pump cross-sectional area by the following continu-
ity relation
aQ
n A
LU L e D-1

X at ¢ ( )
In this model, the leakage area will be assumed constant at

every section and equal to AL while the pump area will equal

Ap(X,t) = 2wh(X,t) (b-2)
Using this fact, continuity can be rewritten as

3Q% , Bh _ o

X ot

where Q* is defined by Equation (A-4). In this model, Q* can be
expressed as a linear sum of the instantaneous flow in the active
pump QF and the leakage flow QL. Mathematically, this statement can

be written as

Q.. Q
ALc
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For low Reynolds numbers, the leakage flow can be considered a
Poiseuille type flow, which is proportional to the local peristaltic
pumping pressure gradient. The leakage will be assumed to be of the

following form.

L. _ g L3® (D-4)

where K is a constant.
Integrating the continuity equation and using Equation (D-3)
results in the following relation between the instantaneous flows

and the average flows.

Q.. Q _Q 0
i+—AP~(—£)=H-H+—F+ﬁL—(~E) (p-5)
ac aw ALC ac aw ac

Knowing that QF is actually equal to Q in the two-dimensional
theory and using Equation (D-4), the actual pressure gradient in

the pump can be written as

F _ @E-e0) u -
AE 3 3 B
H + ¢) H” + ¢)
where
3
¢ = K %— (D-7)
a w

In the analysis ¢ is a non-dimensional parameter which is found
experimentally and is only a function of channel geometry. The higher

the value of § the larger the leakage area.
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If an analogy is made between the leakage-flow defined by
Equation (D-4) and a Poiseuille flow through a pipe, K can be
found to equal 3/8 m. Equation (D-7) can then be used to calculate
an effective pipe leakage area which will have the same leakage

flow as the experimental apparatus.
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APPENDIX I

CALCULATION OF THE NATURAL FREQUENCY OF THE_RBESSURE—ﬁANIFOLD SYSTEM

For a spring-mass system, the natural frequency f can be expressed

as

£ .= -zlw Kin (E-1)

where k is the spring constant and m is mass. The analogv within a

fluid system is

] S iy
f = o v/ GT (E-2)

where C is the capacitance of the system and I is the total inertance

of the fluid defined by the following relation.

& 1 4 o
I = g " (E-3)

where i refers to each component of a fluid circuit up to n components
and S'Li/Ai is the length to area ratio of each component.

Knowing all dimensions within the pressure recording svstem,
and assuming that the capacitance is only due to the pressure trans-
ducer, the natural frequencies of the manifold can be calculated (refer

to Reference 23 for a detailed discussion of this analvsis).



Resting Wave Contracted Transition Bolus Minimum Bolus Pmaiékasal Spurt
Diameter Length Length Length Length Diameter Diameter Volume
mm cm cm cm cm mm mm mmHg cm3
Physiological Range
Qalnr 2 8 +~ 20 3F -+ 1.2 312 1= 5 =055 2 >3 5= 20 0.02 = 0.5
Ureteral Model
2a A Lll Lzl LBA 2Hla 2H3a Pmax'_Pﬂ QU
0.1 16 11.50 3.50 1 0.095 255 8425 0.05
1 13580 3.50 2 0.095 2o 8.25 0.10 1
19 11.50 350 4 N0.095 2i, 5 8.25 0.20 -
o0
054 16 7.50 7+50 1 0.094 2.5 7.0 0.05 I
17 7.50 Tl 2 0.094 205 7.50 n.10
19 7.50 7.50 4 0.094 2.5 7.50 0.20
Qok 16 7.50 7.50 1 0.092 25 1350 0.05
i 7 7:50 7.50 2 0,092 25 13.50 0.10
19 1.50 7.50 4 0.092 2.5 13.50 0.20
R 16 3. 50 1150 il 0.082 245 1:8. 75 0.05
17 3.50 11.50 2 0.082 Z2e5 1875 0.10
19 350 11.50 4 0.082 2D 18.75 0.20

TABLE 1: TYPICAL VALUES OF PEAK PRESSURE AND SPURT VOLUME FOR CIRCULAR GEOMETRY



Resting Wave
Lobe Width Length
mm cm

Physical Range

0.1 > 2

Ureteral Model

8+ 20

2a

0.056

0.056

0,056

0.056

TABLE 2:

16
17
19

16
L7
19

16
17
19

16
17
19

Contracted
Length

cm

3 +12

Transition
Length

cm

3> 12

Bolus Minimum Bolus P x-—Ph al
Length Lobe Width Lobe Width @ A
cm mm mm mmH g
) e 0.1 2> 0.5 0.1 > 1 5= 20
L3A 2Hla 2H3a Pmax--Pn
i Nn.053 0:56 6.07
2 N0.053 N.56 6.07
4 0.053 N.56 6.07
1 0.052 0.56 4.50
2 0,052 0.56 4,50
4 0.052 0.56 4.50
i 0.050 0=56 9,08
2 0.050 0.56 9,08
4 0.050 0.56 9,08
il 0.046 N.56 18.24
2 Nn.046 N.56 18.24
4 Nn.N46 0.56 18.24

TYPICAL VALUES OF PEAK PRESSURE AND SPURT VOLUME FOR LOBE-SHAPED GEOMETRY
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Volume

3
cm
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